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Abstract  
 

Wearable systems embodied as patches could offer noninvasive and real-time 
solutions for monitoring of biomarkers in human sweat as an alternative to blood 

testing, with applications in personalized and preventive healthcare. Sweat is 
considered to be a biofluid of foremost interest for analysis due the numerous 

biomarkers it contains. Recent studies have demonstrated that the concentration 

of some of these biomarkers in sweat, such as the electrolytes studied in this work, 
can be directly correlated to their concentrations in blood, making sweat a trusted 

biofluid candidate for non-invasive diagnostics.  

Until now, the biggest impediment to on-body sweat monitoring was the lack of 

technology to analyze sweat composition in real-time and mainly to continuously 
collect it. The goal of this work was to develop the building blocks of such wearable 

system for sweat electrolyte monitoring, with main emphasis on the passive 
microfluidics, the integrated miniaturized quasi-reference electrode and the 

functionalization of the sensing devices. The basic sensor technology is formed by 

Ion Sensitive Field Effect Transistors (ISFET) realized in FinFET and ultra-thin 
body Silicon on Insulator technology. 

This thesis shows the development of a state-of-the-art microsystem that allows 

multisensing of pH, Na+, K+ electrolyte concentrations in sweat, with high 

selectivity and high sensitivities (≈50 mV/dec for all electrolytes), in a wearable 
fashion. The microsystem comprises a biocompatible skin interface that collects 

even infinitesimal quantities of sweat (of the order of hundreds of picoliters to 
tenths of nanoliters), which the body produces in periods of low physical effort. 

One of the main achievements of this work is the integration of Ion Sensing Fully 
Depleted FETs and zero power consumption microfluidics, enabling low power 

(less than 50 nWatts/sensor) wearable biosensing. The thesis presents the needed 

technological processes and optimizations, together with their characterization, in 
order to achieve a Lab-On-Skin system.  
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Résumé 
 

Un système portatif sous la forme d’un patch offrirait une solution pour mesurer 
des bio-marqueurs dans la sueur humaine en temps réel and de manière non-

invasive, comme alternative aux tests sanguins, avec des applications en médecine 
personnalisée et préventive. La sueur est considérée comme un bio-fluide d’intérêt 

primordial pour l’analyse au vu des nombreux bio-marqueurs qu’elle contient. 

Des études récentes ont démontré que les concentrations de certains bio-
marqueurs dans la sueur, comme les électrolytes étudiés dans ce travail, peuvent 

être directement corrélées à leurs concentrations dans le sang, faisant de la sueur 
un candidat fiable comme bio-fluide pour des diagnostiques non-invasifs. 

Jusqu’à présent, le plus grand obstacle pour une mesure de la sueur sur le corps 
était le manque de technologie pour analyser la composition de la sueur en temps-

réel, et principalement pour la collecter en continu. Le but de ce travail consiste à 
développer les modules constituant un tel système portatif pour la mesure 

d’électrolytes dans la sueur, avec une emphase particulière sur la micro-fluidique 

passive, l’électrode de référence miniaturisée intégrée, et la fonctionnalisation des 
dispositifs de capteurs. La technologie des capteurs est basée sur des transistors à 

effet de champs (field effet transistors, FET) sensibles aux ions (Ion sensitive FET, 
ISFET) réalisés sous forme de FET à ailerons (FinFET) ou de FET en silicium sur 

isolant (silicon on insulator, SOI) ultra-mince.  

Cette thèse présente le développement d’un microsystème prêt à porter à la pointe 

de la technologie permettant la mesure simultanée du pH ainsi que de différents 
analytes tels le sodium et le potassium dans la sueur avec une grande sensibilité 

(50mV/dec) et sélectivité. Le microsystème comporte une interface de collecte de 
la sueur compatible avec la peau afin de récolter des quantités infinitésimales de 

sueur de l’ordre d’une centaine de picolitres à quelques dizaines de nanolitres 

produits lorsque le corps est au repos.  L’un des principaux accomplissements de 
ce travail est l’intégration d’un système basé sur des transistors à effet de champ 
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sensible à différents analytes couplé à une interface microfluidique permettant la 
création d’un système portable de suivi de bio-marqueurs basse consommation 

(moins de 50nW par senseur).  Cette thèse présente les processus technologiques 
et optimisations nécessaires ainsi que leurs caractérisations dans le but d’obtenir 

un système Lab-on-skin. 

 

Mots-clés: capteur portable; analyse de la transpiration; FinFET; FD SOI 
ISFET; microfluidique cutanée; microfluidique avec la SU-8; microfluidique 
passive; capteur sans étiquette; détection biochimique; intégration 
hétérogène; électrode Ag/AgCl de quasi-référence miniaturisée.  
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 Introduction  
 

In this chapter the motivations and goals of this work are presented. A brief 
introduction to sweat analysis is given in order for the reader to get immersed into 

the importance of the analysis of this biofluid. Afterwards, the structure of this 

thesis is presented.   

1.1 Rationale & objectives  

Personalized and preventive healthcare could be revolutionized through real-time 
analysis of biochemical markers in biofluids. Access to the biochemical 

information of a person could provide a more accurate picture of health and 

wellness parameters. Today, this typically means a blood test in laboratory: a 
process that is precise, but invasive, and offering only a snapshot at a given point 

in time. Furthermore, pressure to reduce medical expenditure [1] have incited the 
healthcare ecosystem to look into preventive health and look for alternatives to 

blood testing, notably wearable, noninvasive and continuous sweat monitoring [2] 
[3].  

The field of wearable technologies aims to offer individuals information about 
their evolving physiology. Continuous collection of data could be used to generate 

statistics that, parsed with big data techniques, would help to generate 
personalized baselines with indications of the user’s health status [4] [5] [6].  

Today, wearable technology available in the market is focused on tracking physical 

activity and vital signs like heart rate and blood oxygen saturation [7], but they fail 
to provide molecular-level information related to the body’s dynamic chemistry 

[8]. This is where sweat analysis becomes extremely relevant.  

Many of the biomarkers available in blood are also available in sweat, and 

particular conditions (cystic fibrosis [9], dehydration [10] [11] [12] [13], 
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hyponatremia [14]) have been associated with changes in biomarkers available in 

sweat. Until now, the biggest impediment to on-body sweat monitoring was the 
lack of technology to analyze sweat composition in real-time and mainly to 

continuously collect it [15], but the recent advances in nanosensors and the 
development of microfluidic biochips pave the way towards full biochemical 

microsystems. 

The objective of this thesis is to develop of a zero-power, intelligent, autonomous 

wearable system to track biochemical information at the surface of the skin in real 
time. This system heterogeneously integrates state-of-the-art ISFET sensor 

technology, with a biocompatible microfluidic interface, to deliver the first “Lab-
on-skin” sensing platform. The full process for fabrication of this system is 

achieved by standard semiconductor fabrication procedures.  

This work gives first an introduction to sweat analysis, the reasons behind the 

research and a state-of-the-art investigation of wearable devices for sweat available 
today. Afterwards, the modules of the wearable system are presented: chapter 3 

presents the sensing technology and chapter 4 the wearable microfluidic system. 

Chapter 5 presents the heterogeneous integration of the modules with a 
miniaturized quasi reference electrode. In addition, three functionalization 

methods are proposed for the detection of Sodium and Potassium sensing with 
ISFETs. Chapter 6 presents the electrical characterization of the system for both 

Sodium and Potassium sensing in an analyte.   

This project has been developed with a funding from the Swiss National Science 

Foundation via the Flag-Era CONVERGENCE project and in collaboration with 
the Swiss start-up XSensio.  

1.2 Thesis outline   

This thesis is divided in seven chapters including this one.  
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Chapter 1: Thesis overview  

The current chapter presented the background of the research, and the motivations 

and goals of this thesis.  

Chapter 2: Sweat analysis  

This chapter explains the attractiveness of monitoring the biochemical 

composition of sweat. The main biomarkers present in sweat are mentioned and 

thus, the advantages of using sweat as a tool for monitoring physiological 
information relevant to the health and wellness of an individual. In addition, this 

chapter describes human skin as a microfluidic system, allowing to extract critical 
parameters for the design of a biocompatible microfluidic system, capable of 

collecting even infinitesimally small sweat droplets directly from skin.  

Chapter 3: Sensing with computing technology  

This chapter introduces high-k dielectric 

Ion Sensitive Field Effect Transistors 

(ISFETs) as the main sensing technology for 
the wearable system. The chapter describes 

the advantages of using Complementary 
Metal-Oxide Semiconductor (CMOS) 

compatible technology in a system as a step 

forward to low power robust sensing system. Two main architectures of high-k 
ISFETs technology were used in the validation of the wearable system: FinFET in 

Silicon Bulk and Fully Depleted Silicon-On-Insulator (FD SOI) nanoribbon ISFETs. 
A description of both architectures is given and a discussion is developed on the 

advantages of using these devices as pH sensing devices.    
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Chapter 4: Wearable passive microfluidics for sweat collection and 

analysis 

The development of a wearable microfluidic 
interface compatible with skin is presented. 

The microfluidic system presents an 

optimized design of capillary channels for a 
fully passive flow control of the sweat 

collected on the skin and delivered to the 
sensors. Materials and fabrication processes 

are fully compatible with post-processing of 

silicon wafer for direct on-chip integration 
for the wearable sensing technology.  

 

Chapter 5: Heterogeneous Integration of functionalized ISFETs with 
embedded passive capillary microfluidics and miniaturized Ag/AgCl 

Q.R.E 

The research presented in this chapter 

shows the integration of the microfluidic 
interface with ISFETs. The chapter presents 

a proposal for a miniaturized Quasi 

Reference Electrode to be used in the 
miniaturized system. This R.E. is capable to 

offer stable and fully calibrated 
measurements of the biomarkers in the analyte with long term stable operation (13 

days). In addition, three methods for ISFET functionalization are proposed and 

discussed. After experimentation it was possible to observe that the most reliable 
functionalization method is to use a polymeric membrane on top of a gold metallic 

gate to sense K+ and Na+ electrolytes.  
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Chapter 6: Experimental results: Fully integrated system for wearable 

multi sensing sweat applications 

The sensing performance characterization 
results for Sodium and Potassium sensing 

under transient conditions are finally 

given in this chapter. The FD SOI 
nanoribbon ISFET with a polymeric 

membrane is successfully demonstrated 
here as a highly robust, sensitive, and 

selective sensor for pH, Na+ and K+ (≈50 

mV/dec for all electrolytes).  

 

Chapter 7: Conclusions and outlook  

The last chapter summarizes the main technical contributions and achievements 

reported in the manuscript. It provides a brief outlook and suggests topics of 

interest for further work.  
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 Sweat sensing  
 

This chapter explores the possibilities that continuous sweat sensing offers for 
healthcare and wellness applications. Sweat could become a very relevant biofluid 

as its biochemical composition is interrelated with several blood biomarkers. 

Proper understanding on how blood and sweat biomarkers are correlated could 
provide tools for preventive healthcare and disease diagnostics. This chapter 

provides a list of these biomarkers. In addition, this chapter summarizes efforts in 
literature to describe human skin as a microfluidic system. This is a relevant study 

for this work as its sets a foundational guide for further development of wearables 

for sweat.  

2.1 Biomarkers in human sweat  

Sweat is produced in the skin by a collection of glands and serves as a thermal 
regulation system for the body. There are two main types of sweat glands, eccrine 

and apocrine. Eccrine glands are distributed almost all over the human body 
whereas apocrine are mostly limited to the axilla and perianal areas in humans [16] 

[17] [18]. Further discussion in this thesis is limited to the sweat produced by the 

eccrine sweat gland. Apocrine glands have a different secretion process that goes 
beyond the scope of this work.  

The rich composition of biomarkers in eccrine sweat, altogether with the fact that 

it can be collected in a noninvasive fashion, makes it a very interesting biofluid for 

analysis. Sweat sensing technologies then have enormous potential to be used for 
wellness and healthcare applications [19] [20] [21]. Enabling continuous 

biomonitoring of sweat could trigger a paradigm shift in the biomedical 
community.   
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Sweat is mainly composed of water (usually 99%) [22], with moderately acidic to 

neutral pH levels (4.5-6) [23].  It also contains minerals, specifically electrolytes, 
like Sodium, Potassium, Chloride (in mM concentration), and Ammonia, which 

ionizes with high sweat pH reaching milimolar concentrations (several times 
higher than in blood) [19] [24]. In addition, other organic substances can be traced 

in transpiration, like aminoacids [25] [26] [27], lactic acid and butyric acid [28] [29]. 
Urea and lactate can be generated from blood or directly from the sweat gland and 

are also found in milimolar concentrations in sweat. Glucose can be traced in a μM 

range of concentration. Proteins like hormones and neuropeptides can be traced in 
nano molar or pico molar range of concentrations [24]. Table 2.1 summarizes the 

analytes found in sweat and their typical concentration levels, altogether with 
typical sensing layers found in literature, which is data that is relevant for the 

discussion in the subsequent chapters of this thesis.  

Today, sweat analysis is mainly used for detection of cystic fibrosis [30]. Patients 

with cystic fibrosis have a very high concentration of chloride in their sweat, 
showing a malfunction in the sweat glands. Sweat has also been used for detection 

of illicit drugs, as drug metabolites are expelled by sweat [31] [32]. These tests are 

still performed in laboratories and in the clinic [19]. The main limitations of sweat 
as a clinical sample are the difficulty to produce enough sweat for analysis, sample 

evaporation, lack of appropriate sampling devices [33]. Wearable devices can solve 
many of these issues as the sweat is collected and analyzed in real time, directly 

from the skin.  

2.1.1 Sweat biomarkers’ correlation with blood biomarkers  

Recent studies show that sweat contains many of the same biomarkers as blood. 
The correlation between the biomarkers in both biofluids may lead to the 

development of better diagnostics tools. However, there is still a lack of biomarker 
partitioning models between sweat and blood [19]. Further understanding of 
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partitioning models will help to obtain better opportunities for sweat-based 

diagnostics.  

As of today, studies of biomarker partitioning have been done for some 
electrolytes (Sodium, Potassium, Chloride and Ammonia), and small molecules 

like ethanol, cortisol, urea and lactate. Biomarker partitioning models with sweat 

are based on the direct correlation with blood, plasma or serum. It is important to 
make the distinction as concentrations of biomarkers in blood do not represent the 

concentration in serum or plasma [19].  

 

 

Table 2.1. Summary of studied biomarkers in sweat. Adapted from [24]. 

Sensing modality 
Targeted 
Analyte 

Concentration 
in sweat 

Sensing layer References 

Potentiometry 

pH 3-8 polyaniline [34] [35] 

Na+ 10-100 mM Na ionophore [34] [36] 

K+ 1-18.5 mM K ionophore [36] 

Cl- 10-100 mM Ag/AgCl [36] 

Ca2+ .41-12.4 mM Ca ionophore [35] [36] 

NH4+ 0.1-1 mM 
NH4+ 

ionophore 
[37] 

Chrono-

amperometry 

Glucose 100-200 μM 
Glucose 
oxidase 

[38] 

Lactate 5-20 mM 
Lactate 

oxidase 
[34] 

Ethanol 2.5-22.5 mM 
Alcohol 
oxidase 

[39] [40] 

Cyclic 
Voltammetry 

Uric acid 2-10 mM Carbon [41] 

Ascorbic acid 10-50 M Carbon [41] [42] 
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Sensing modality 
Targeted 
Analyte 

Concentration 
in sweat 

Sensing layer References 

Square wave 
stripping 

voltammetry 

Zn2+ 100-1560 μg l-1 Bi [43] 

Cd2+ <100 μg l-1 Bi [43] 

Pb2+ <100 μg l-1 Bi, Au [43] 

Cu2+ 
<100-1000 μg l-

1 
Au [43] 

Hg+ <100 μg l-1 Au [43] 

Electrochemical 
impedance 

spectroscopy 

Cortisol 8-140 ng ml-1 ZnO, MoS2 [44] [45] 

2.1.2 Case study for sodium and potassium levels in sweat 

This thesis shows the development of a wearable sensor that is able to detect 
concentrations of sodium and potassium in an analyte. This section explains the 

applications that can be targeted with the detection of these markers.  

Measurements of sodium chloride in sweat can be used to predict hormonal 

changes that lead to ovulation [46] and could be used for predicting sweat rates 
[19]. This is especially important as it has been proven that some biomarkers are 

rate dependent (like lactate and chloride). This is possible since Sodium and 
Chloride are the dominantly abundant ions in sweat.  

Potassium is an interesting ion in sweat as it is proportional to blood concentration 
and completely independent from the sweat rate. Concentration in plasma 

predicts muscle activity [47] and certain conditions related to hypo or 
hypherkalemia [48].  
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2.2 Microfluidics of the sweat gland  

The human eccrine gland is constituted of different components (Fig 2.1), which 
are the secretory coil, the dermal duct and the upper coiled duct. In the upper duct, 

the sweat duct expands in diameter, until it arrives to the surface of the skin as a 

pore. The physical dimensions of these components can vary depending on 
gender, age, and race [22] [49]. The secretary coil can measure up to 700 μm in 

diameter, with a length that can measure up to 5 millimeters. The inner diameter 
of the secretary coil and the dermal ducts have diameters ranging from 5-10 μm. 

Different parts of the body have different gland densities [50]. Densities across the 

body are summarized in the table 2.2.   

 

 

Figure 2.1 Structure of the human sweat glands [19]. 

 

Regarding the hydraulic capabilities of the sweat glands, sweat rates can go as high 
as 5-10 nl/min/gland. Considering a wearable device to be attached in the forearm, 

the sweat rate would go up to 1.5 μliters per cm2 per minute. This number is to be 
considered in periods of physical activities. On the other hand, in steady-state, the 

volume of sweat produced reduces dramatically, reaching values in the order to 
20 nanoliters per cm2 per minute [50] [19].  
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Table 2.2. Gland density approximation per location in the body. Adapted from [19] 

Location Approximately gland density (per cm2) 

Abdomen/back/legs 100 

Forehead/forearm 150 

Palm/finger 250 

Toe 550 

 

2.3 State-of-the-Art of wearable sweat sensing 

In this introductory state-of-the-art, the latest wearable sweat sensors are briefly 

described. These wearable sweat sensors combine different substrates and 
detection mechanisms. The wearable sweat devices vary in form depending on the 

targeted application. For sports application the preferred wearable design focuses 

on wrist or head bands, whereas for medical purposes, a patch seem to be more 
attractive [24].  

One of the latest wearable sweat sensors (Fig 2.4a) was designed by Gao et al [3]. 

It shows a system of electrochemical sensors packaged in a wristband capable of 

measuring metabolites (glucose and lactate), and electrolytes (sodium and 
potassium), as well as skin temperature. Sodium and potassium sensors showed 

sensitivities of 62.5 mV and 59.5 mV per decade of concentration, respectively, in 
ambient conditions. The detection of the analytes is done with two electrodes 

(3mm diameter) coated with a selective membrane consisting of an ionophore (for 

Na+ and K+). Large amounts of sweat are required to perform the biochemical 
analysis (minimum 30 microliters to cover the whole surface of a single electrode).  
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Rose and Heikenfeld proposed an adhesive RFID sensor patch (Fig 2.4b) for 

electrolyte monitoring on sweat [51].  The patch offers a read out dynamic range 
with 20-70 mM range in the detection of Sodium, using a potentiometric modality 

for detection of the biomarker. Values of 57mV/dec of Na+ were measured in the 
laboratory (25mV/dec in wearable format). In posterior works, Sonner and 

Heikenfeld developed a wearable sweat sensing system which induce sweating 
with iontophoresis. The new system included an Ag/AgCl chloride sensor [52]. 

The works by Choi et al., also propose the use of an Ag/AgCl for chloride sensing 

in a wearable system [53]. The works by Kim et al. [54] proposes the use of a patch 
that employs an amperometric detection method of alcohol in sweat with a 

sensitivity of 0.36 μA/dec.  

Koh and Rodgers propose a colorimetric approach for analyte detection in sweat 

[55]. It is composed of electrochemical electrodes printed in a temporary tattoo 
paper (Fig 2.4c). The device is design to detect lactate, glucose, pH and chloride. 

This device is designed for single use, although, it is the only wearable system 
(besides the one presented in this work) considering the use of a controlled 

microfluidic environment on skin.  

To our knowledge, there are only 3 publications in which ISFETs are used as the 

sensing unit for sweat analysis. The work of Nagata and Takei, propose a wearable 
device (Fig 2.4d) based on ISFETs for pH measurements and skin temperature 

monitoring [56]. They report a sensitivity for pH of 51 mV/dec with an Al2O3 gate 

oxide. The work of Cazale et al [57] successfully used functionalized ISFETs to 
quantify sodium levels in sweat with a sensitivity of 57 mV/dec, however this was 

not tested in a wearable format. The works of Douthwaite [58] present a wearable 
sweat pH sensor with CMOS ISFETs with a sensitivity of approximately 50 

mV/pH. This work is the only sweat sensing system, besides our own, that 

considers and quantifies the low power consumption of the sensing devices in a 
sweat sensing system.  
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Figure 2.2 State-of-the-art wearable sweat sensors. a) Multiplexed electrochemical system for sweat 
monitoring in a wrist band [3]. b) Band aid patch for continuous monitoring of ions in sweat [51]. c) 
Wearable stamp for colorimetric detection of sweat analytes [55]. d) Patch for pH monitoring on sweat [56]. 

2.4 Alternative biofluids 

The most studied biofluid is blood. Blood and interstitial fluid can be probed by 
implantable devices, but it is hard to access them in a noninvasive fashion through 

a wearable platform. Serum and urine share the same disadvantage. In literature, 
besides sweat, two other candidates are proposed as interesting biofluids for 

healthcare and diagnostics, tears and saliva [59].  

Tears are produced by lacrimal glands. They comprise proteins, peptides, 

electrolytes, goblet cells and blood. The rich composition of biomarkers in tears, 
make them an interesting biofluid to be considered for continuous analysis.  

Glucose detection in tears is particularly important as it shows a direct correlation 

with glucose levels in blood [60]. In addition, aminoacids, antioxidants and 
metabolites have been detected in tears [61] [62] [63]. Nonetheless, there are several 

limitations for tear collection as human eyes are very delicate and easy to irritate.  
Fig 2.2 shows a prototype for tear analysis developed by Yao et al, designed to 

quantify tears glucose levels.  
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Figure 2.3 Example showing a wearable sensor for tear collection and analysis. Retrieved from [64].  

Saliva comprises several elements permeating from blood through transcellular 
paths. Therefore, it is an optimal alternative to blood analysis for monitoring the 

metabolic state of the human body [65]. Current research is making efforts in 
developing portable salivary diagnostics tools [66]. Some of the biomarkers 

currently tested in a wearable fashion are pH, and fluoride activity. pH in saliva is 

tested to study the acidogenecity of the plaques [67], whereas fluoride monitoring 
provides information about the fluoride dentifrice efficacy [68]. Lactate and 

bacteria has also been measured in undiluted human saliva samples [69] [70]. 
Figure 2.3 shows a prototype from Mannoor et al, designed to quantify bacteria.  

 

Figure 2.4 Examples of wearable sensors for saliva sampling. Adapted from [70]. 
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2.5 Summary & discussion  

This chapter explains why sweat is an interesting biofluid for healthcare 
applications. The diversity of biomarkers contained in sweat, and the possibility 

to quantify each of them offers the possibility to monitor in real time biochemical 

information of a person. This chapter summarizes the different biomarkers in 
sweat that have been studied in the literature and shows the latest wearable sweat 

sensors. A brief summary of other biofluids for wearable sensing applications has 
been discussed too.   

Bariya and Javey [24], enlist 5 different challenges for body sweat sensing with the 
actual wearable devices. This discussion is relevant for this work as it directly 

focuses on resolving these issues, as will be demonstrated in the following sections 
of this thesis.  

Low sweat rates. Sweat rates vary with factors including activity intensity and 
hydration level, and highly depend on individuals. In the case of sedentary sweat 

rates (in the order of tenths of nanoliters per cm2 per minute), wearable devices 
must employ microfluidic techniques to be able to manipulate such limited 

volumes of liquid.   

Sample evaporation. Evaporation and chemical degradation between sweat 

collection and testing can become a problem for the sensitivity. Concentration of 
the constituent biomarkers in sweat can vary with evaporation of the biofluid.  

Obtaining fresh sweat. New sweat secreted onto the skin could mix with older 
sweat. Therefore techniques to control the sweat flow should be put in the systems 

so that detection only occurs in the freshest sweat.  

Contamination from skin. Irregular sweating has led to the use of chemicals (such 

as pilocarpine) in order to stimulate the sweat to come out of the glands. This could 
have an undesired effect in the concentration of the biochemical markers in sweat.  
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Sweat rate effects. There is a need to compensate sweat rate effects as the 

concentration of certain biomarkers in sweat can be directly linked to it. This has 
already been proven for Sodium, Chloride and Lactate [19].  

This thesis proposes in the following chapters a system that addresses these 

limitations. The use of ISFETs as sensing units provide a miniaturization of the 

sensing area of one order of magnitude (from millimeter size to micrometer size), 
requiring much less volume of sweat to provide a response to a specific analyte. 

Moreover, ISFETs provide an advantage over traditional electrochemical sensing 
electrodes as they are able to detect a single entity in an analyte (a single ion, 

molecule or protein), but also they can measure a large change in concentration, 
this will be explained in detail in Chapter 3. In addition, a microfluidic device 

fabricated on top of the ISFETs allows the control of the sweat flow with the 

possibility of manipulating volumes of liquid in a picoliter range as it will be 
demonstrated in Chapter 4.   
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 Sensing with computing 
technology  

 

This chapter deals with the sensing technology used in the wearable system. Two 
state-of-the-art ISFET structures are described and their characterization as sensors 

is presented. These two ISFET architectures have proven to be excellent pH sensors 
with very high sensitivity. The importance of the sensing devices is paramount in 

a wearable system for different reasons: first, CMOS compatibility is desired as to 

offer the possibility to monolithically integrate in a single chip highly sensitive 
sensors with a readout system. Second, low power consumption is highly desired 

in order to avoid rapid battery exhaustion. These two requirements are satisfied 
by the ISFETs presented in this chapter. The enhancement of the sensors to be used 

for electrolyte sensing purposes is presented in chapter 5 of this Thesis.  

3.1 The Ion Sensitive Field Effect Transistor 

Ion sensing can be traced down to 100 years ago with the first Ion-Selective 

Electrodes (ISEs) [71] [72]. The most common devices ISEs are glass electrodes, 
which are still used for pH sensing in standard pH-meters [73]. Modification of the 

sensing interface allows sensing of other ions, such as sodium ( ) and 
potassium ( ) [74].  With the development of metal oxide field-effect transistors 

(MOSFETs), studies of the interface between oxides, metals and semiconductors 

led to the development of Ion Sensitive FET (ISFET) [75]. The ISFET was 
introduced in the 1970’s [76] as an alternative to the ISEs for pH and other ions’ 

sensing with the perspective to miniaturize the system.  

With ISEs, it is possible to quantify the concentration of a target molecule in a fluid 

by measuring the potential difference between the ISE and a reference electrode 
(typically and Ag/AgCl reference electrode), this type of measurement is a classic 
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electroanalytical method called potentiometry. The reference electrode is expected 

to be electrochemically stable via a well-defined redox reaction. This electrode is 
immersed in a solution of its own salt at high concentration, condition identified 

as a major drawback for making this electrodes smaller [77]. This thesis deals with 
the miniaturization of the reference electrode in section 5.2. In the ISE, the potential 

is directly proportional to the charge of the targeted analyte in a solution. 
Measurements of pH levels are the easiest experiments to carry on as any oxide in 

a surface attract naturally hydrogen ions [78] [79]. The pH is an indicator of the 

acidity or basicity of an aqueous solution and it is calculated with the following 
expression:  

Equation 3.1 

 

 

Where refers to the concentration of Hydrogen ions. The change of pH is 

calculated with the Nernst equation:  

Equation 3.2 

 

 

With equation 3.2 it is possible to describe the proton concentration difference 

caused by the potential between the bulk solution of the oxide surface. The 

constant refers to the Boltzmann Constant,  the absolute temperature,  is 
the pH variation in the bulk equation and is a dimensionless sensitivity 

parameter which value is defined by the capacitive effect created with the ionic 
activity in a surface. The value of  varies between 0 and 1 and will be defined in 

section 3.1.1 of this text. By substituting the constant values in Equation 3.2 it is 

possible to calculate the ideal Nernstian response of a pH sensitive electrode which 
corresponds to 59.6 mV/pH. 
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ISFETs are also used for this kind of potentiometry measurements. As in ISEs, ionic 

activity is expected to create a change in potential in an oxide or metallic surface 
in the gate terminal of this type of devices. To understand this statement it is 

necessary to understand how a MOSFET an ISFET relate to each other.  

The ISFET is similar to a planar metal oxide semiconductor field effect transistor 

(MOSFET) in many respects. The main difference being the gate electrode. The 
metallic gate of MOSFETs is absent in ISFETs, exposing directly the gate oxide to 

a liquid environment as can be seen in Figure 3.1. The gate electrode is therefore 
replaced with a reference electrode, thus, the potential at the silicon surface is a 

function of the reference electrode and the influence of the ions or charged 
molecules inside a solution.   The electrostatic control of the source to drain current 

is then a direct consequence of ion sensing.  

 

 

Figure 3.1 Diagrams showing the analogy between a planar MOSFET (left) and a planar ISFET (right).  

In conventional MOSFETs, the gate voltage  can be described with the following 
equation:  

Equation 3.3 

 

 

Where  is the potential drop across the gate oxide,  is an exponential 

potential drop occurring between the silicon oxide interface and the bulk 
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semiconductor, and  is a third potential drop that compensates for the 

different work functions of the metal and the semiconductor.  

The threshold voltage , in strong inversion, is given by equation:  

 

Equation 3.4 

 

 

Where  is the elementary charge,  is the oxide charge,  is the interface 

charge,  is the depletion layer charge in the silicon,  is the gate oxide 
capacitance per unit area and  is the Fermi potential.   

A MOSFET works in three operation regimes, which are dependent on the applied 

 and , these regimes are: accumulation  , depletion   
and inversion  .  

When the MOSFET operates in the linear region, the drain current   dependence 
with respect to   is given by the following expression: 

Equation 3.5 

 

 

Where  is the width and   the length of the channel and  is the electron 

mobility.  refers to the potential applied in drain terminal of the device.  

In an ISFET, the contributions in potential of the reference electrode  and the 

chemical potential , which is related to ionic content of the analyte in contact 

with the gate dielectric have to be represented in the current-voltage equations. 
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These contributions replace the ones that the metallic gate cause and therefore Eq. 

3.3 is modified and expressed with the following expression [75]: 

Equation 3.6 

 

 

With a threshold voltage in strong inversion [80]:  

Equation 3.7 

 

 

Where  relates to the surface potential due to the charged molecules absorbed 

and  is the surface dipole potential of the solvent (usually constant).  refers 

to the surface potential at the Si-Oxide interface. In Equation 3.76, as there is no 
metallic gate, the contribution  is not considered. For a fixed , only the 

surface potential  varies as a function of the ionic content.  

The Oxide-Electrolyte potential contributes linearly to the surface potential at the 

Si-Oxide interface, in other words, the electronic properties of the FET are not 
modulated by the  but rather shifted by it. It is important to remark as well that 

the  is also completely independent from the properties of the FET. Therefore, a 

change in  results in a change in . This change in the threshold voltage can be 
then monitored by fixing the Reference Electrode Voltage and measuring the drain 

current.  

In case of weak inversion operation, the surface potential of Field Effect Transistor 

(FET) varies between F and 2 F and the drain current depends exponentially on 
the gate to source bias. For instance, for pH sensing in weak inversion (at gate 

voltages smaller than the threshold voltage) operation [81], the following equation 
stands: 
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Equation 3.8 

 

 

Where ID is the drain current of the ISFET, γ is a constant including the reference 

electrode potential, while the n-factor is the so-called slope factor of the ISFET 

including effects of the double layer and any other top passivation layer, if used. 
A functional operation of ISFETs in weak inversion operation offers ultra-low 

currents (below hundreds to tens of nA) and, therefore, guarantees low power per 
sensor [82] [83].  

ISFETs share a similar condition to MOSFETs: in both, only with an ideal coupling 
between the oxide surface and the solution (or metal gate for MOSFETs), it is 

possible to allow the maximum change transduced by the device. The readout 
sensitivity  refers to the quality of the surface transduction and the electronic 

readout capability of the FET device [84]. The Readout Sensitivity is a quality factor 
representation as it can be described in terms of transconductance-to-current ratio, 

a very important parameter used in Integrated Circuit design [85]. The  is equal 

to the relative drain current variation before and after a change in a solution and it 
can be modeled with the following expression:  

Equation 3.9 
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Where  is the transconductance-to-current ratio. represents the subthreshold 

slope, which describes the variation of the drain current corresponding to a gate 

potential variation in the subthreshold region [86]:  

Equation 3.10 

 

 

Where  is the capacitances in the depletion region and  correspond to the 
interface trap states region in the semiconductor/insulator interface.  

The use ISFETs provide an advantage over traditional ISEs as they allow to work 

with non-linear output characteristics. This gives the possibility to detect a single 

ion or molecule but also allows measuring large changes in concentration of the 
analyte. Electrodes cannot handle the last condition as huge output signals cannot 

be handled by the electronics [77]. In addition, when miniaturizing ISEs, their 
resistance tends to increase and their capacitance to decrease, leading to poor 

potential stability [87]. A clear disadvantage when compared to ISFETs, which 

features can easily go below tenths of μm.  

ISFET sensing devices have become promising candidates competing with other 
sensing technologies as they allow integration with various interfacing electronic 

readouts that are CMOS compatible. In addition, ISFETs provide the possibility of 

meeting the demand for multifunctional and scalable sensors with low fabrication 
costs [88] [89] [84].  

Furthermore, ISFET technology is label-free, therefore there is no need to attach 

any label or probes to the analyte to improve the detection capabilities [90]. This 

characteristic provides the advantage of better real time detection with high 
specificity and detection sensitivity if compared to other label-free sensors. ISFETs 

also provide the cheapest manufacturing costs. Moreover, they provide 
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mechanical durability and resistance to the environment, making them reliable 

over time [88].   

Other sensing counterparts to FET sensing include: gas sensors [91], optoelectronic 
devices [92] [93], mass spectroscopy [94] [95], microcantilevers [96] [97], quantum 

dots [98], Atomic Force Microscopy [99], carbon nanotubes [100] [101] and surface 

Plasmon resonance [102] [103]. However, these technologies require the use of 
complex instrumentation setups, making their integration in miniaturized systems 

complicated with respect to ISFETs. 

3.1.1 The site-binding model 

The gate oxides in the ISFETs are intrinsically responsive to inorganic salt ions. 

This mechanism is described with the site-binding model (SBM) proposed by Yates 

[104] and with the site-dissociation model proposed by Van der Berg [105]. The 
SBM explains the ISFET pH response as a purely capacitive effect (in the 

assumption that the interface is ideally polarized). The model describes the surface 
complexation in ions at oppositely charged oxide sites [106]. The adsorption of 

electrolytes on oxide surfaces has been extensively studied over the past decades 
[107] [108] [109] [110] [111] [112]. This research was essential for the development 

of glass electrodes, and afterwards other ion sensitive electrodes [113], including 

ISFETs [114] [115]. This research has allowed to model the Nernst equation 
(Equation 3.2) considering the influence of the gate oxide. To observe this, the 

parameter  is modified as follows:  

Equation 3.11 

 

Where  is the surface buffer capacitance of the dielectric of the gate terminal of 
the ISFETs. relates to the differential capacitance that depends on the ionic 

concentration in the solution. When  approaches unity,  will reach the 
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maximum value of 59.6 mV/pH (Nernst limit). Equation 3.11 shows that besides 

the ionic concentration of the solution, and the temperature considered in the 
Nernst equation, it is important to consider the gate dielectric used for the gate 

terminal in the ISFET, which is typically an oxide in silicon substrate FETs. 

Each oxide has on its surface a number of Hydroxyl groups (A-OH), described by 

the surface density . These groups act as punctual sites and a chemical reaction 
occurs once there is a change in the concentration of H+ groups in the oxide-

electrolyte interface. The hydroxyl groups could donate protons to the solution 
(acidic reaction), accept them (basic reaction) or they could be neutral, as can be 

observed in Figure 3.2. The balance mechanism between the surface potential and 
the H+ ion concentration in the bulk of the solution is described with the following 

equilibrations [116] [117]:  

Equation 3.12 

 

 

 

And:  

Equation 3.13 

 

 

 

Every type of oxide has a specific number of sites and a base or acid dissociation 
constant  & .  represents the activity of protons at the oxide/electrolyte 

interface and the number of sites per unit area  of a particular surface group. 
The dissociation constants can be expressed in their logarithmic presentation: 
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Equation 3.14 

 

 

 

Assuming that the total number of surface hydroxyl groups per unit are constant:  

Equation 3.15 

 

 

Equation 3.11 can be expressed in term of the dissociation constant and the 

differential double layer capacitance (determined by ion concentration of the 
bulk solution) [118], allowing to calculate the in terms of the oxide used in the 

ISFET:  

Equation 3.16 

 

 

Materials with a relatively high number of surface hydroxyl groups lead to a 

Nernstian response. In the case of this work, Hafnium dioxide is an important 

material as it has a high density of hydroxyl groups which translates to a higher 
pH sensitivity as will be shown in the next section of this thesis.  
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Figure 3.2 Site dissociation model with amphoteric sites. 

Criticism has been raised against the assumption of a purely capacitive interface 

[74] [119] as it is stated that ideally polarized interfaces do not exist. This 
assumption raises questions on whether protons get adsorpted at the sensor 

surface or within the interface. However high-k dielectrics, such as hafnium, are 
excellent barriers against ionic diffusion and show negligible hydration [77].   

3.1.2 Advantages of Hafnium-based dielectrics in ISFETs 

Hafnium Oxide is part of a group of oxides called “high k”, which include also 

ZrO2, Ta2O5, La2O3, and TiO2. The term high-k relates to a bulk property. With the 
scaling down of MOS transistors, the thickness of the normally used SiO2 has 

decreased to a minimum of 1.2 nanometers, which account to an impressive 
number of only 5 atomic layers. This characteristic has brought undesired effects 

in the performance of transistors as high leakage currents have been observed, 

with a reduction of the breakdown voltage and also a reduction in the oxide 
reliability. High-k dielectrics offered an acceptable alternative to SiO2 because of 

their higher permittivity [120] [121] [122] [123].   HfO2 has been chosen in the CMOS 
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industry among other high-k dielectrics because of its large band offset with 

Silicon and its thermodynamic and kinetic stability [124].  

Hafnium Dioxide offers advantages in terms of sensitivity too. HfO2 offers a 
response to pH that is close to the Nernst limit (59 mV/pH at room conditions) 

[125] [126] [127] in comparison with SiO2, which reports less than ideal non-linear 

threshold voltage shifts per pH [128] [129] [130]. With an important ionic strength, 
the relationship described in equation 3.8 becomes exclusively dependent on the 

parameter . A higher value of  translate into a higher change in the , 
which according to equation 3.5, will represent a higher change in the threshold 

voltage . For thin and ultra-thin layers ( ) of HfO2 the  value ( ) is 
equal or greater than the value ( ) that SiO2 offers [131]. In chapter 6 of this 

thesis, the use of HfO2 as a sensing material is justified, as the operation of the 

sensor is fully pH responsive and linear as is expected from HfO2 devices. Using 
such thin layers of HfO2 carry some tradeoffs, as the life time expectancy of the 

device is shortened as will also be discussed in chapter 6 of this thesis.  

In this work, two types of ISFET architectures with HfO2 dielectrics were 

characterized in a miniaturized measurement setup environment. The first ISFET 
structure design (FinFETs as described in section 3.2) was fabricated by Dr. Sara 

Rigante [84] and the second one (Nanoribbon ISFETs as described in section 3.3) is 
being developed in by Doctoral Assistant Francesco Bellando [132], the two type 

of devices will be detailed in the following sections of this thesis.  
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3.2 FinFETs on Si-Bulk for sensing applications  

The FinFETs with a liquid gate presented in this section have been developed by 
Dr. Sara Rigante [88]. The reason for the documentation of her works in this thesis 

is that the devices she developed are characterized in this work in a miniaturized 

experimental setup, as will be shown in section 6.1 of this thesis.  

FinFETs are recognized as one of the best performing nanoelectronic devices 
because of their excellent electrostatic control over the FET gate [88]. The FinFET 

is part of a group of transistors that are generally referred as multi-gate FET. One 

of the main advantages of these devices is that there is better control of the channel 
depletion with respect to a standard MOSFET while reducing the influence of the 

drain electric field on the channel.  

 A FinFET is a vertical transistor with lateral conductive channels as can be 

appreciated in Fig 3.5a. The gate generates an electrostatic potential surrounding 
the device almost in its totality providing excellent channel control. Thus, a steeper 

subthreshold slope can be achieved translating into higher readout sensitivity 
[133].  In literature, only one group has exploited a similar device for sensing 

applications, however only the top side of their FinFETs were used for sensing 

while the lateral sides were controlled by metallic gates [134]. In the case of this 
architecture, the whole vertical FinFET structure is fully immersed in the solution, 

giving total control of the channel to the potential in the analyte.  

3.2.1 Technological development of FinISFETs 

The FinFETs were fabricated by Dr. Sara Rigante in CMi, EPFL [88] [84]. The 

development was done according to a top-down approach on a silicon bulk 

substrate. The full process can be consulted in [88]. The whole fabrication process 
can be simplified as shown in Fig. 3.5.a. The final dimensions of the fabricated 

device are 16 nm < TFin < 40 nm, and 50nm < HFin < 120 nm, with HFin/TFin 
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always higher than 3. The quality of the device and the efficacy of the electrical 

insulation was first tested on the metal gate devices. All devices feature as HfO2 
oxide with an HfO2 thickness of 8 nm. The devices were passivated with an SU-8 

layer exposing only the gate dielectric to the liquid.  

 

Figure 3.3 (a) Simplified process flow for two-dimensional FinFETs; (b) optical top image of a FinFET array 
for sensing applications with SU-8 next to the FET channels; (c) SEM top image of a single FinFET with metal 
gate; (d) SEM cross-sections obtained. Adapted from [84]. 

3.2.2 pH sensing with FinISFETs 

Dr. Sara Rigante and the Nanoelectronics group of the University of Basel 
characterized the response of liquid gate FinISFETs. The pH sensing FinFETs 

achieved an almost full Nernstian response with ∆Vth = 57 mV/pH between pH = 

3 and pH = 10, as shown in Fig. 3.6. Moreover, the HfO2 FinFET exhibits excellent 
output sensitivity, as defined in Eq. 3.10. The drain current Id has been monitored 

in time, exchanging solution of different pH values from pH = 10 to pH = 3 and 
backward, as reported in Fig. 3.7. The FinFET has been biased at VREF= 1.5V, VDS = 

100mV at pH = 10. According to the ID(VREF) characteristics, such bias corresponds 
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to the subthreshold region of the FinFET where the subthreshold slope is steep and 

constant. Long-term stability measurements have been performed over 4.5 days. 
The liquid environment was kept at constant pH = 6. After a stabilization time of 

about two minutes the VTH was extracted at ITH = 2 nA.  For a 3 wire FinFET with 
TFin = 20 nm the drift is 0.10 mV/h, while for a 5 wire FinFET with TFin = 30 nm is 

0.12 mV/h.  

 

 

Figure 3.4 Transfer Characteristics from FinFET sensors. Extracted from [84]. 

Subthreshold slope values are in the range 70 mV/dec ≤ SS ≤ 79 mV/dec, while 105 

≤ ION/IOFF ≤ 106 with the highest value ION/IOFF = 2*106 obtained. Such excellent results 
imply that there are no parasitic contributions through the Si-Bulk.  

From figure 3.7, it is also possible to observe the reversibility of the current level 
for the same pH values. By calculating the mean ID value for each population of 

data at a specific pH value the current hysteresis can be estimated.  The higher 
current hysteresis is ΔIH = 8.6 nA at pH = 7 and the average current hysteresis is 

∆IH = 5.6 nA.  
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Figure 3.5 drain current ID for a FinFET sensor during a time period of 1 hour from pH = 10 to pH = 3 and 
backward at VREF = 1.5 V and VDS = 100 mV. Extracted from [84].  
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3.3 Fully Depleted UTB SOI FETs for sensing 
applications  

Due to the complexity and cost of fabricating FinFETs, a second architecture of 
ISFET is explored. This process has been developed by PhD candidate Francesco 

Bellando [132]. This thesis summarizes his work as the FD SOI ISFET sensors are 
characterized for electrolyte sensing in section 6.2 of this thesis.  

The devices are built on an ultra-thin SOI substrate (20nm Si on 145nm BOx), 
which allows us to achieve a good electrostatic control by eliminating the parasitic 

capacitances and reducing the OFF-state current by preventing the formation of 
parasitic current paths. Another of the main reasons to use an SOI substrate is to 

explore the possibility in the future to test the devices with a back gate. The interest 

in this research relies in the possibility of avoiding the use of a reference electrode 
in the sensing system, as reference electrodes are bulky components and hard to 

miniaturize, this will be discussed in chapter 5 of this thesis. Up until the time of 
publication of this Thesis, it has not been proven that ISFETs can be biased with a 

back gate.  

Photolithography has been chosen over e-beam lithography for the definition of 

the FET shape as photolithography grants fast, cheap, parallel fabrication of chips, 
which is necessary for moving to industrial production. Furthermore, e-beam 

normally uses an HSQ-based negative resist for the definition of sparse structures, 

which after exposure becomes extremely similar to SiO2, making its removal 
dangerous for the exposed BOX. 

3.3.1 Technological development  

The main fabrications steps of the ISFETs in Ultra-Thin BOX chips are described in 
Fig. 3.6. The devices are built on Fully-Depleted (FD) SOI substrate, which allows 

to achieve excellent electrostatic control and low current leakage. The SOI FET 
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sensors have ribbon-like form factors, with a Si film thickness of 30nm and channel 

widths ranging from 0.8 to 4μm with lengths of 15μm. The 3nm HfO2 gate 
dielectric offers nearly ideal Nernstian sensitivity to pH and ultra-low gate 

leakage. The Atomic Layer Deposition (ALD) of HfO2 is performed on top of 3 nm 
of dry SiO2, resulting in a defect free interface with zero-hysteresis C_V 

characteristics. AlSi 1% metal lines are deposited by lift-off, followed by contact 
annealing. 100 nm layer of gold has been sputtered on top of the gate stacks for the 

ionic sensors that need integration of functionalization layers and for the control 

sensors. The pH sensors have no metallization on the high-k gate stack. Next, a 3 
μm passivation layer of SU-8 photoepoxy is processed on top of the wafer to isolate 

FET sensor interconnects, with openings left only in the sensor channel regions 
(and for contact pads).  

 

Figure 3.6 a) Simplified process flow for FD SOI ISFETs; (b) optical top image of fabricated chip with the 
ISFET arrays. C) ISFET array for sensing applications with SU-8 next to the FET channels; (d) SEM top image 
of a single ISFET with metal gate; (d) SEM cross-sections obtained showing the gate stack of the ISFET. (f) 
Miniaturized reference electrode optical image, (g) SEM of the Ag/AgCl layer of the Q.R.E. 
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3.3.2 Device Layout  

The layout of the devices is shown in figure 3.7 below. It consists of a chip with an 

area of 82 mm2, comprising 28 ISFETs and 2 MOSFETs (for characterization 
purposes). The chip has 4 arrays of 8 transistors each. Each array of transistors 

share a common source.  The use of arrays in the design allows to functionalize 

each quadrant for a different analyte detection. The length of the channels of the 
ISFETs (as displayed in Fig 3.7) is of 15 μm, and the results presented in this thesis 

correspond to that gate length unless indicated differently.  

 

Figure 3.7 Sample layout. Blue areas are the AlSi lines for contacts. Green areas are the lithography design 
for the ion implantation. Grey areas are the gold lines for the metallic gate. Inset) Close up for the upper 
right array comprising an array of 8 FETs comprising ISFETs with a channel length of 15 μm and a width 
of 2 μm. 

3.3.3 Characterization of ISFETs in a liquid environment 

The sensor performance characterization experiments in a liquid environment 

shown in the following chapters were made using a shielded cascade manual 
probe station (Cascade Microtech Inc., Summit 1200) and a precision 

semiconductor analyzer Agilent 4156A. A PDMS stamp with patterned channels 
was mechanically fixed on top of the sensors as can be seen in figure 3.8. A syringe 

pump 11 Elite Harvard apparatus regulated the liquid flow rate in the system 

(typically up to 100μl/min), flushing the analyte through a PTFE tube connected to 
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the inlet of the system.  An external reference electrode (MI-16-701, 

Microelectrodes Inc.) biased the system. Figure 3.8 shows this measurement setup.  

 

Figure 3.8 Measurement setup for ISFETs in liquid environment 

3.3.4 pH sensing with FD SOI ISFETs 

Two sets of experiments were performed with the sensors. The first steady-state 

measurements were performed to obtain the transfer characteristic of the devices with the 

reference electrode biasing the liquid gate exposed to different pH buffers (pH=3-9) and 

measuring the variations of the drain current (VD was set at 200 mV while the VREF potential 

was applied from -0.5 to 1V with steps every 10mV). The results are SS=210 mV/dec with a 

highest value ION/IOFF > 103. The sensitivity for this sensor was 53.8 mV/pH as shown in 

figure 3.9. Sensitivities were extracted at different drain current levels to see the linearity 

of the response of the sensor in the weak inversion region as can be seen in the bottom of 

figure 3.9 
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Figure 3.9 Top) Electrical characterization of ISFET devices for pH measurements with ISFETs on UTBSOI. 
Bottom) Sensitivity of the device extracted at different drain current. 

The second round of measurements were performed at constant drain voltage and 
by fixing the voltage of the reference electrode. Due to the characteristic curve of 

our FinISFETs, a value of 620 mV at the reference electrode and a value of 200mV 
at the drain were fixed. If SNR is to be understood as the relation between the mean 

of the signal (σ) and 6 times the standard deviation of the same (6σ), we get a value 

of 18, which proves the distinction between pH levels with our system is very 
reliable. Working at these levels of voltage and current could enable our system to 

work at a nanoWatts range. The pH buffers were consecutively measured to 
evaluate the response in time of the device. Results showed an almost linear 

response of the sensor per pH value, estimating a variation of approximately 1 

nA/pH. A very fast and clean response of the sensor (1.2 s from 90% to 10% of the 
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measured current) was appreciated with the variation of the pH buffers (figure 

3.10).  

 

 

Figure 3.10 Time dependent measurements of the ISFET.  ID measured while sampling pH buffers at a 
VREF=620mV and VD= 200mV  
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3.4 Summary: high-k dielectric ISFETs for sweat 
analysis in wearable devices  

This chapter has explained how an ISFET works and how it is intrinsically 
sensitive to pH due to the gate oxides. It has been explained how ISFETs are 

excellent sensors to replace ISEs for potentiometric measurements as they allow 
miniaturization and low power consumption. Moreover, this chapter has also 

shown the importance of the use of high-k materials as the gate dielectric in ISFET 

devices for pH sensing.  

Two ISFET architectures have been described in this chapter. The first one, the 
FinFET structure for pH sensing has shown excellent results. However, the 

technological development of these devices is highly complex (over 80 steps) and 

can be difficult to industrialize. FinFETs with liquid gates are good chemical 
sensors, but their performance (in terms of sensitivity) is not expected to be better 

to other ISFET architectures [88].  Therefore, the nanoribbon ISFET (section 3.3) 
was developed, proposing a much simpler structure to fabricate and delivering 

similar sensitivities for measuring pH (57mV/pH and 53.8mv/pH respectively). 

Both architectures have proven to be optimal pH sensors (with Nernstian 

response) that could be used as sensors in a wearable platform as they can work 
with ultra-low power consumption (in the nanoWatts range). As mentioned, 

another advantage is that the technology is CMOS compatible and therefore easy 

to integrate in more complex electronic systems including a read out system and a 
wireless communication system as will be discussed in the last chapter of this 

Thesis.   

It has been observed that there is a weakening in the response of the sensors with 

time. This could be a direct consequence of a degradation of the ultra-thin layer of 
Hafnium Oxide. This has been reported before by Rigante [88].  Gentle cleaning 

procedures should be followed to avoid deterioration of the gate oxide. Avoiding 
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Hydrofluoric (HF) solutions and high power oxygen plasma steps should be a 

consideration while working with ISFET devices.  

Electrostatic discharge is another important parameter to take care off. Extreme 
care has to be taken while testing the devices as they are very sensitive to 

discharges. As will be discussed in the next chapter, SU-8 photoresist provides a 

layer of protection aiding in this issue.  

Yet another consideration has to be made while characterizing the ISFETs. The 
chemical composition contained in the pH buffers can directly influence the 

measurements. This has been reported by Tasarov [106]. This influence can be 

observed in the non-linearity of the VTH.  

This chapter has been focused only in pH sensing with ISFETs. The following 
sections of this thesis will discuss how to take advantage of this type of devices to 

obtain a wearable sweat sensor.  
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 Wearable passive microfluidics 
for sweat collection and analysis  

 

This chapter explores the development of a passive microfluidic system that is able  
to successfully collect sweat from human skin and transport it to the sensing units 

of a wearable system (more specifically, the ISFETs presented in the previous 
chapter). The microfluidic platform proposed in this thesis aims to take advantage 

of the limited amounts of sweat that the human body produces. Together with the 

ISFETs, this biocompatible microfluidics could enable real time analysis of sweat.  

As discussed in chapter 2, one of the main limitations of wearable sweat sensors is 
the absence of a system that is able to effectively manipulate the limited amount of 

available sweat coming out of the skin pores. As of today, all of the wearable sweat 

sensors have to be tested with subjects performing physical activities, limiting the 
applications of wearable sensing to the field of sports. The presented work aims to 

overcome that limitation with an innovative microfluidic system. 

The design of the passive microfluidics presented in this chapter is strongly 

aligned with zero power consumption, therefore, this chapter explores the 
possibility of exploiting capillary forces in a portable microfluidic chip and 

specifically within full SU-8 devices. A brief introduction to the SU-8 material 
describes its composition and justifies its use in a wearable device as it has been 

demonstrated as a bio-compatible and resistant material [135]. Later, a detailed 

explanation on the design of the SU-8 microfluidics is given and its involvement 
with sweat acquisition and passive transportation from inlet to outlet of the 

microfluidics. This chapter concludes with the results of the validation 
experiments of the fabricated prototypes. The integration of the microfluidics with 

the ISFET devices described in the previous chapter of this thesis are presented in 

the chapter 5.  
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4.1 Capillary microfluidics  

This microfluidic device presented in this work propose the use of capillary forces 
in the microfluidic chamber to transport the collected fluid through the system 

instead of using any sort of embedded micropump, a system that would be much 

more complex to fabricate  and integrate within the system. Microfluidic capillary 
systems take advantage of the surface tension effect on a system to manipulate 

liquids [136]. Such systems have been successfully used in affinity assays 
experiments, supplying constant continuous flows over several minutes. Using 

capillary forces allows to obtain a system that is self-powered as no external power 

sources intervene in the system. In addition, capillary systems are self-regulated 
as liquid handling is structurally and chemically encoded in microscale conduits 

[137]. The inclusion of these two characteristics show an autonomous microfluidic 
capillary system as it requires no interaction from a user or external force. The next 

section briefly introduces the theory of capillary forces.  

4.1.1 Capillary forces  

The capillary effect is a driving force which allows for a pumpless drawing of a 
fluid in a small tube, thus, it becomes an ideal mean for achieving the initial filling 

of a channel in a wearable device. Its mechanism could be described as following: 
wall adhesion causes the water on the sides to creep along the boundaries until the 

correct Contact Angle (CA) is reached; this causes a deformation of the liquid 
surface (minimizing the surface energy) as can be observed in Figure 4.1. The 

contact angle, is the contact line between the solid walls of SU-8 and the liquid on 

the surface. Thus, the liquid at the center of the channel moves forward, causing 
the liquid on the border to lose again the correct CA and to creep along the 

boundaries again to recover it.  

The process would stop when the fluid mass reaches the critical point at which the 

gravity force equals the capillary force; however, in a microenvironment that 
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would never occur. Therefore, the flow continues until it reaches the end of the 

channel or until all the available liquid has been pumped (whichever happens 
first). An absorbent material inserted at the outlet of the channel could act as 

another capillary pump in series, causing the liquid to continue flowing within the 
system.  

 

Figure 4.1.  Left. The angle between the solid-liquid and the liquid-gas interface at the contact line. The 
picture is taken from a measurement of the contact angle of a water drop on SU-8 in air showing a C.A. θ = 
64.1. Right Displacement δℓ of the contact line away from the equilibrium position. The change of the 
interface areas are proportional to +δℓ, δℓcos θ, and - δℓ for the solid-liquid, liquid-gas, and solid-gas 
interface, respectively. Reproduced from [138]. 

 

The capillary filling is a consequence of the interaction between the surface tension 
of sweat and the geometry of the surfaces of the system [138]. Fig. 4.2 illustrates 

the capillary filling in a channel. When the contact angle of a wall is θ<90° it is 
considered wettable or hydrophilic (high surface energy), if θ>90°, the wall is 

considered hydrophobic (low surface energy). The motion of a fluid inside a 

patterned surface is due to the interaction between the surface tension of the liquid 
and the chemistry and geometry of the solid-liquid interface [139] [140] [141]. The 

capillary filling has been extensively studied and it can be described with the 
following model.  

The interfacial pressure of a liquid that is front advancing into a rectangular 
channel is described by the following equation [142]:  
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Equation 4.1 

 

where is the surface tension of the liquid,  and  are the height and width of 
the channel, respectively, and correspond to the contact angles of the 

liquid with the surface of the bottom, top, left, and right walls, respectively.  

The volumetric flow rate  is defined by:  

Equation 4.2 

 

Subject to:  

Equation 4.3 

 

 

Where is the filling speed of a channel up to a distance by capillary action,  

 is the time-dependent volume filled, is the difference in pressure, and  is 

the hydrodynamic resistance of the channel, which for a rectangular microchannel 
is described by:  

Equation 4.4 

 

 

where is the fluid viscosity. By substituting Equation 4.4 in Equation 4.2, and 

equating Equations 4.3 and 4.2, the following expression is obtained [143]:  
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Equation 4.5 

 

 

which by integrating leads to:  

Equation 4.6 

 

 

which is also known as the Washburn equation [144]. This equation describes the 
progression of the advancing meniscus in the microchannel. When at least one wall 

is very hydrophilic, filling times are independent of the contact angle of the 

opposing substrate and are significantly faster than when both substrates have 
identical, moderate contact angles.  

 

Figure 4.2 COMSOL simulation of capillary filling of a 3D single structure. Adapted from [145] 

Each wall in the microfluidic system contributes to generate a negative pressure in 

front of the liquid, drawing the liquid into the channels. If the cross section of a 
channel is reduced, the capillary pressure will increase and vice versa. This gives 

to possibility to adjust the flow of the liquid through the channels by playing with 
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the geometry of the system, giving the ability to valve, guide, and displace liquids 

along surfaces as reported by [140] [142] [146].  

The following sections of this chapter present three different methods of increasing 
complexity and efficiency for sweat collection on skin with capillary systems.  

4.2 Microfluidics for collection and flow control of sweat 

This section presents three methods for sweat collection on skin with flow control. 

The first method consists of using a hydrophobic cavity to accumulate sweat 

produced by human skin. This method is similar to what every previous work on 
wearable sweat sensing application utilize as reported in the state-of-the-art 

presented in Chapter 1.  The second method explores the possibility of using a 
patterned SU-8 surface to reduce the high volume of sweat that the traditional 

methods require. This is a very important enhancement of the system that could 

provide sweat collection even when people are at rest.  The third and last method 
described an improvement of the latest, achieving control of even lower volumes 

of sweat.  

4.2.1 Sweat collection based on a sealed cavity.   

Under exercise or high temperature conditions, the human body can produce up 

to 1.5 microliters of sweat per cm2 per minute [19]. This simplifies the 

development of a microfluidic interface as a simple spatially delimited collection 
cavity containing the sweat sensors for biochemical analysis. In literature, all the 

wearables for sweat sensing rely on this principle. That is the main reason why 
other experiments have to be performed under physical activity. This section 

shows the development of a prototype designed to manipulate sweat in a high 

sweat rate regime adapted to our sensor system design. The research presented in 
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this section has been developed in collaboration with MSc. Clementine Lipp from 

XSensio.  

Figure 4.3 shows the schematic of a cavity on top of a substrate. The cavity consists 
of a sealant ring and an absorbent material to expel the sweat once the collection 

area is filled.  The cavity is delimited on the side by a frame (or ring) of medical 

adhesive attached under the chip (Trilaminate acrylic medical adhesive, Vancive 
MED6000), on the top and bottom by the chip and the skin surfaces. The adhesive 

ring fulfils three functions: fixation of the device on the skin, sealing the cavity, 
and acts a spacer material to avoid contact between the skin surface and the 

sensors. 

The outlet of the system or drain, consists of a strip of textile-based wicking 

material (e.g. an absorbent material such as silk) that is attached to the chip by the 
adhesive, as shown in figure 4.4. The drain may be dimensioned as to provide a 

lower flow rate than the flow rate of the collected sweat, such as to keep the cavity 
filled (and the sensors wet). This method will guarantee a constant operation of 

the system as it is constantly acquiring fresh samples of the biofluid. All of the 

materials used in this prototype are biocompatible.  

 

Figure 4.3 sealed cavity for sweat collection 

The sealant material has an approximate thickness of 200μm and the inner 

dimensions of the frame is a square of 5mm side. Therefore the volume capacity of 
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sweat required to fill the space is 5mm3 or 5μl. Considering, sweat collection on a 

person’s arm, if the corresponding flow rate of the sweat is the theoretical 
maximum of 1.5μl/cm2/min, it would take approximately 13 minutes for the sweat 

to fill up the cavity and reach the sensors, as illustrated in figure 4.4.  

 

 

Figure 4.4 Filling of cavity 

After assembling the microfluidics, the device was tested on skin to observe the 
filling of the cavity under exercise conditions. A food dye solution was applied on 

the skin and was allowed to dry before applying the device, in order to color in 
blue any sweat that would form on the skin, as can be observed in Figure 4.5. It 

was observed that after 15 minutes of exercise, sweat was successfully transported 
through the drain after filling the cavity. Afterwards, the absorbent material 

regulated the draining of the sweat. 

 

Figure 4.5 Left. Microfluidic collection device for high sweat rates. Right. After 15 minutes of sport, sweat 
started to get drained by the absorbent material 
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As described above, a strip of absorbent material is placed in the outlet to drain 

the sweat out of the system. The method to regulating the flow of the microfluidic 
channels by an absorbent material for sweat analysis purposes has been exploited 

by previous reports [147]. For our application, it is important to guarantee that the 
channels are wet at all times, therefore a brief study was performed on absorbent 

materials to study the rate at which they drag liquid. A schematics of the 
experiment can be observed in figure 4.6. Water transport in textile material is 

regulated by capillary action as well. Four absorbent materials were tested to 

observe their performances as flow regulators, as shown in Figure 4.6.   

 

Figure 4.6 Left, Experiment setup to measure the sorptivity of different absorbent materials. Right, 
experimental setup to compare the volume of liquid filled in different absorbent materials. 

The sorptivity of a porous material allows to calculate the speed in which the liquid 
is transported through the drain of the system.  The sorptivity is the capacity of the 

medium to absorb the liquid [148] and is defined by the next equation:  

Equation 4.7 

 

Where V is the volume intake of the porous material, A the cross-section area of 

the material, S: sorptivity [  and  is time the porous material takes to be 
filled. The sorptivity of the different materials was obtained by measuring the 

water intake versus time in a determined length  along them from the 

following equation:  
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Equation 4.8 

 

To regulate the flow rate at which a liquid is expelled from the system, different 

porous materials can be used and their geometry can be tuned (thickness and 
cross-section). In this work, different kinds of fabrics were characterized to extract 

this quantity. Table 4.1 shows the different values of sorptivity for fabrics that were 
used as wicking materials.  

Table 4.1 Absorption capabilities of different fabrics 

Material Thickness [μm] Time at 10mm [s] 

Cleanroom fabric 360 0,95 

Polyester 94% 

Lycra 6% 
125 1,48 

Cotton 175 114,7 

Silk 60 5,37 

 

In order to find the most suitable drain for the application, it is important to 
consider the flow rate at which the liquid will be drained by the wicking material. 

A very fast draining flow rate like the one produced by cotton would empty the 

cavity of the system immediately and dry out the sensors. Another consideration 
to be made is the thickness of the material, as the thicker the material, the harder 

it is to integrate, and the bigger the volume required for the sweat to be in contact 
with the sensor (as it increases the distance between the skin surface and the chip 

surface). Considering this, the material that provides the best compromise between 
thickness and speed of absorption should be the best option for the system. As a 

result, silk can be considered as the optimal material as it provides with an 
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acceptable draining speed, a minimal material thickness, a good resistance and 

ability to keep its shape when wet.  

4.2.1.1 Discussion on sealed cavity microfluidics  

This section showed the performance of a sealed cavity employed as a sweat 
collector in wearable devices. As it has been shown, it takes a long time for sweat 

to arrive into the sensing area since the dead volume of the cavity has to be filled 
first. The main consequence of employing this type of microfluidics is that it limits 

the use of the sensor to high sweat rate conditions, limiting its use to the field of 

sports. This type of microfluidics exposes another problem: the high dead volume 
of the cavity would limit the time resolution of the measurement of any change of 

concentration in the sweat emerging on the skin surface, since the new sweat will 
be diluted with the old sweat already present of the cavity. The time resolution of 

the measurement of a change of concentration of an analyte in the sweat will hence 

be limited by the time to renew the liquid in the cavity, limiting the real-time 
measurement’s performance of the system.  

The following section proposes a solution that decreases the required volume of 

sweat needed to reach the sensing area.  
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4.3 Microfluidic devices for low sweat rates  

As previously mentioned in chapter 2, when a person is at rest, human skin 
typically produces as little as 20 nanoliters per minute per cm2 [19]. Due to the 

limited amounts of sweat available there is a need to develop better microfluidic 

systems for sweat collection in this regime. The approach that this thesis proposes 
is the use of a patterned surface to enhance the collection of sweat and requiring 

lower volumes of liquid to fill the system.  

One constraint that the microfluidic design tackled was the fabrication process’ 

compatibility with a CMOS process line. This is important to facilitate industrial 
processes for mass production. The most feasible solution was to use a structural 

photoresist that could be used in contact with the skin. This thesis proposes the 
use of the SU-8 resist as it is a very suitable material for these purposes, as it is easy 

to integrate with sensing devices fabricated on silicon wafers. The SU-8 epoxy 

negative photoresist benefits from well-defined microfabrication processes and it 
has been proven to be a biocompatible material. The next subsection presents the 

properties of SU-8 photoepoxy.  

4.3.1 SU-8 resist 

SU-8 has been used as a material for microfabrication since 1997. SU-8 is a negative 

tone structural photoresist developed by IBM [149]. Due to its composition, SU-8 

is a good material to fabricate 3D structures which require high resolution and 
high aspect ratio on thick layers. SU-8 is a multifunctional epoxy derivative of bis-

phenol-A novolak, which is a resist designed for spin coating of very thick films 
(>500 μm). With time, SU-8 became a good alternative to X-ray lithography, 

offering extreme aspect ratios and precision [150] [151].  
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Figure 4.7 Structural formula of the SU-8 oligomer, featuring 8 epoxy functions. Upon photoactivation the 
epoxy rings open and bind with epoxy groups of other oligomers to form a highly crosslinked network. 

SU-8 was developed by dissolving the EPON SU-8 epoxy resin in a solvent 
(gamma-butyrilactone or cyclopentanone) with a photoinitiator (triaryl sulfonium salt). 

SU-8 oligomers’ structural formula features 8 epoxy-functions (thus, the name SU-

8) [152]. Epoxy rings will open and bind with epoxy groups of other oligomers 
after photoactivation to form a highly crosslinked network. High crosslinking 

results in solvent-induced swelling of other negative resists. Another important 
property of SU-8 is its high epoxy content, as this enhances adhesion of SU-8 to 

other materials and makes it highly sensitive to UV exposure. Furthermore, an 

extra consequence of the highly cross-linked matrix is that the resist is chemically 
very inert and temperature stable, making it resistant to prolonged plasma etching, 

which makes it hard to strip a layer of SU-8.  

As previously mentioned, this work aims to find a suitable interface that is 

compatible with human skin, therefore, biocompatibility of SU-8 becomes of the 
uttermost importance. Recent studies have proven SU-8 as a material that offers 

biocompatible conditions such as already FDA approved materials like silicone 
elastomer, Buna-S and medical steel. Sources have shown that implants with SU-8 

inside of mice had no effect whatsoever on the animal’s tissue. After 8 weeks of 

analysis, no degradation of the SU-8 surface was observed [135]. 

After 20 years of use, SU-8 has become one of the standard microfabrication 
materials. Nowadays, several processes have been optimized to make it easier to 
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use. In this work, the necessity for high aspect ratios (leading to the innovative 

design of passive microfluidics), low surface roughness (control of contact angle 
for microfluidics) [153] and relatively high dielectric strength (protection for 

electrostatic discharge of sensors) [154] make it ideal for use in this application.  

To validate SU-8 as a suitable material for a capillary system, its contact angle was 

measured to determine its hydrophilicity. The CA was characterized with the 
machine Krüss DSA-30E. This tool allows to deposit a 3 μl droplet of water on a 

surface and to analyze its surface profile to automatically compute the CA with a 
precision of 0.1°. As seen in figure 4.8, the results were promising as the measured 

contact angle was of 64.1°, making it a suitable material for capillary microfluidics. 

 

 

Figure 4.8 Contact angle measurement of a drop of liquid on top of a SU-8 surface after hard bake. 

It is possible to decrease the contact angle of SU-8 by surface treatment. This was 
demonstrated by applying a short low power plasma treatment (1 minute, 100W). 

In figure 4.9, it can be observed that the surface treatment decreased the contact 
angle of SU-8 to zero. However, the plasma treatment will last for a limited time, 

and thus, SU-8’s contact angle will stabilize again to its initial condition. 

Nevertheless, as the aim of this work is to guarantee the continuous operation of 
the microfluidic device for long periods of time, the plasma treatment was kept for 

prototyping purposes.  
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Figure 4.9 Plasma treatment effect in a SU-8 surface filled with micropillars. The contact angle decreases 
to zero degrees making SU-8 very hydrophilic. 

This research validated the use of SU-8 as a feasible material for wearable sweat 

sensing devices as it is a material that is biocompatible and compatible with 
microfabrication techniques. The next section presents the development of a SU-8 

microfluidic device to collect sweat on skin.  

4.3.2 Open microfluidics for wearable sweat sensing 

This section presents a microfluidic system that benefits from a complex design for 
sweat collection and transportation. The design includes an arborescent pattern 

with very thin channels enhancing capillary forces to act and drag the liquid 
droplets towards the sensors. Figure 4.10 shows the design of the proposed 

microfluidic structure. As can be observed, the arborescent structures are 

expanded as much as possible over the area of the chip. The objective is to try to 
collect sweat from as many pores as possible. The prototype presented in this 

section has been developed in collaboration with Dr. Fabien Wildhaber and Mr. 
Pietro Clement from XSensio.   
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Figure 4.10 a) Arborescent design for open microfluidics. 

 

Considering a thickness of the microfluidic layer of 25 μm, the fluidic capacity of 

the entire microfluidic structure is limited to 174 nanoliters, which accounts for 

3.48% of the volume required by the sealed cavity microfluidic system presented 
in the past section. Once the channels are filled, the sensors will be in contact with 

the liquid allowing a constant analysis of the sweat ionic content. To avoid the 
channels emptying in a short time, a flow control structure (micropump) is 

embedded after the channel. The capillary pump has the largest capillary pressure 
on the chip and it determines the flow rate in the system. The microfluidic passive 

pump reduces drastically the speed of the fluid inside of the channels, allowing 

the liquid to remain for longer periods of time in contact with the sensor in the 
channel.  

Flow rates are encoded in the design of the pump [155] [156].  The micropumps 

consists of an array of micropillars, these pillars are patterned as hexagons at 

regular intervals to achieve a relatively low flow resistance as shown by Gervais 
and Delamarche [157] [158].  It is important to mention as well that the direction 

of the flow can be controlled by using arrays of asymmetrical micropillars [159].  
The distance between the pillars in the different designs are varied in order to vary 
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the pressure inside of the micropumps, and thus, the speed of the liquid 

displacement.  

The micropump leads then to an absorbent material at its outlet to allow longer 
operation times and by evacuating the liquid and hence allowing fresh samples of 

sweat to arrive in the system. The next section details the fabrication process of the 

open SU-8 microfluidics.  

4.3.2.1 Fabrication process for open SU-8 microfluidics  

The fabrication process begins by preparing a Borofloat®/Burosilicate glass (float) 
wafer with a thickness of 550 μm (Low Resistivity of 9.7 [ohm.cm] at 100 Hz, at 25 

°C). The wafer is exposed to a short plasma treatment for surface cleaning.  The 
step is processed on a Tepla 300 machine, applying 400 ml/min of O2 for 7 minutes 

with a 500 Watt power.  

After preparation of the substrate, a first spin coating of a 3 μm layer of SU-8 

(Gersteltec GM1050) on the bottom wafer is done with a Sawatec LSM200 coater. 
This layer works as a passivation layer for the sensors in the system. When testing 

with float wafers though, it is critical to use this layer as it acts also as an adhesion 

layer for the microfluidic system that is placed on top. After spincoating, the wafer 
is placed on a Sawatec HP401Z for 30 minutes at 30°C to obtain a better uniformity 

of the surface. Subsequently, the temperature was increased to 120°C for 45 
minutes with increasing and decreasing ramps of 4°C per minute. This softbake is 

a required step to evaporate the solvent in the SU-8 resist.  

After the softbake of the first SU-8 layer, the substrate is exposed to UV light 

through a photolithographic mask with the Süss MA6 double-side mask aligner. 
An exposure dose of 100 mJ/cm2 for 4.8 seconds delivered the best results as seen 

in Figure 4.11. After exposure, the wafer was placed back in the Sawatec hotplate 

to perform the Post Exposure Bake treatment. The post exposure bake enhances 
the cross linking of the exposed patterns in the SU-8. The wafer is left for 20 
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minutes at 90°C while using a ramp of 2°C per minute to rise from and to fall back 

to room temperature. The wafer is then placed in a wafer box overnight for 
relaxation. The next step is the immersion of the wafers in PGMEA to develop the 

SU-8. Better results are achieved by using two Propylene Glycol Monomethyl 
Ether Acetate (PGMEA) baths, one of 40 seconds and a second of 20 seconds, 

followed by an IPA bath of 1 minute.  

 

Figure 4.11 First layer for passivation with SU-8 

After the first SU-8 layer is deposited on top of the wafer, a second layer of 30μm 
(Gersteltec GM1070) is spin coated on top.  This layer corresponds to the channels 

and micropumps of our microfluidic layer. Exposition and baking times of the 

photoepoxy are crucial to achieve the aspect ratio and definition of our structures. 
After several exposure tests, a 5.6 seconds UV exposure was found to be optimal 

for both the channels and the hexagon shape of the pillars inside of the 
micropump. In the results section of this chapter the different considerations for 

the shape of the micropumps are presented. Experimentation to find ideal 
development times was also performed, concluding that the best results are 

obtained after a first bath of 60 seconds and a second one of 30 seconds in PGMEA 

development, followed by a rinse in IPA as can be seen in Figure 4.12. The 
fabrication concludes with a last step of baking of the SU-8 to eliminate any 

possible residues of solvent and to improve adhesion of the SU-8 to the substrate. 
The wafer is left for 1 hour at 180°C to achieve this. The ramp times have been 
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found to be critical for this process. Ramps have been programed with increases 

and decreases of minimum 2°C per minute.  

 

Figure 4.12 SU-8 development for micropumps 

4.3.2.2 Microfluidic system characterization 

In order to simulate the sweat flow through human skin and the filling of 

microfluidic channels in contact with it, an artificial skin setup was designed as 

observed in Figure 4.13. The idea of testing the system with an artificial skin comes 
from the need to observe whether the system is able to collect liquid in its inlet, fill 

the channel, and maintain a continuous and unilateral flow. The setup is made of 
an aluminum body containing a cavity filled with artificial sweat. A glass slide fits 

at the bottom of the cavity allowing for observation through the cavity (and the 

liquid it is filled with) with an inverted microscope, and the artificial skin (a 
molded lens of agarose hydrogel) is mounted on the top. The flow rate may be 

controlled via a syringe pump to simulate sudation of human body at various 
range of physical activity.  



Wearable passive microfluidics for sweat collection and analysis 

62 
 

 

Figure 4.13 Experimental setup for characterization of passive microfluidics. a) Wafer set on an inverted 
Zeiss microscope. B) Wafer mounted on top the artificial skin setup. c) Schematics of the artificial skin 

setup (Cross section). 

One way to improve the microfluidic characterization setup is to employ 

fluorescence techniques. Fluorescence facilitates the visualization of the flow of 
liquid inside of microfluidic channels. Figure 4.14 shows the artificial skin setup 

enhanced mounted with an opaque membrane (copper + polyimide laminate) with 

pores (perforated with a 250 μm drill) compatible with fluorescence microscopy. 
The liquid filling the cavity is a solution of fluorescent rhodamine dye and the 

microscope is equipped with the corresponding filter set. In this case the 
observation is done from the top of the membrane and not through the cavity.  

 

Figure 4.14 Artificial skin setup with fluorescence 
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4.3.2.3 Experimental results on open microfluidics  

After fabrication the chip was placed on top of the artificial skin setup. Figure 4.15 
shows how the liquid is successfully collected from a pore by the arborescent 

structure and then transported through capillary forces to the outlet area. 

Experimentation shows that it takes only 1.74 seconds for the liquid to arrive to the 
drain material in the outlet of the pump. It is important to highlight the action of 

the micropump, as it diminished the velocity of the liquid front compared to the 
microchannel. Figure 4.15 shows how the liquid takes less than a second to fill all 

the microchannels but it took approximately one more second to advance some 
100 μm inside of the micropump. As mentioned before the microfluidic device 

requires only 174 nanoliters to be completely filled, therefore these results led us 

to the conclusion that it is possible to collect ultra-low volumes of sweat on SU-8 
open microfluidics.  

 

Figure 4.15 Sweat transport through SU-8 microfluidics 
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4.3.3 Closed microfluidics for wearable sweat sensing 

An alternative to the previously proposed method is to close the channels with a 

second SU-8 layer. This encapsulation will allow the micropump to better control 
the flow as it will be enclosed in a sealed cavity. In addition, SU-8 could help to 

protect the ISFETs from any electrostatic discharge coming from the skin. Also, a 

second layer avoids contamination of the system with dead skin, lipids (such as 
sebum), bacteria, etc.  

 Nonetheless, the technological challenge is more complicated as creating full SU-
8 devices relies on a highly complex microfabrication process. Figure 4.13 

illustrates the concept of full SU-8 microfluidic devices and its interaction with an 
electronic system and human skin. As in the previous design, the microfluidics 

design includes an inlet with an arborescent design to absorb sweat from skin, a 
channel and a micropump. As previously mentioned, the micropump is added in 

order to control the speed in which the liquid is flowing through the microchannel. 
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Figure 4.16 Sweat analysis patch concept. Left: concept for wearable device to enable sweat analysis in 
real time. Center, 3D model of the presented microfluidic chip. Right: zoom in constituent inlets and outlets 

of a 30 μm layer of SU-8 in a 4” Borofloat wafer. 
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4.3.3.1 Overview of the fabrication process flow 

As mentioned before, one of the main challenges to obtain multilevel structures 
with SU-8 is to be able to close the channels after patterning them on a wafer. To 

do this, a two-wafer process was developed [160]. The main steps can be seen in 

Figure 4.17. The device fabrication was realized at the Center of 
MicroNanotechnology (EPFL-CMi). The key features of the process are:  

 Technology: Silicon bulk and Borofloat glass  

 Total number of steps: 34 

 Total number of masks: 2 Chromium masks and 1 virtual mask 
 Critical steps:  

1. Exposure times in order to achieve a good compromise between the 
correct development of the micropillars and the channels.  

2. Bonding process between two wafers with SU-8 layers.  

3. Anodic dissolution of Aluminium.  
 Main cleanroom techniques: 

1. UV lithography  
2. Sputtering  

3. SEM, mechanical profilometers.  

 

The fabrication process begins by preparing the substrates to be used. A bottom 

float wafer with a thickness of 550 μm, with a Low Resistivity of 9.7 [ohm.cm] at 

100 Hz, at 25 °C and a top double side polished silicon wafer with a thickness of 
380 μm, boron doped to a resistivity of 1-10 ohm.cm.   Both wafers are exposed to 

a short plasma treatment for surface cleaning.  The step is processed on a Tepla 300 
machine, applying 400 ml/min of O2 for 7 minutes with a 500 Watt power.  
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Figure 4.17 Process flow to fabricate full SU-8 devices 

 

The bottom wafer process follows the same steps presented in the previous section 

(section 4.3.2.1). After development, the pillar structures were very well defined as 
can observed in figure 4.18. The array of pillars are used as micropumps as 

described in section 4.3.2. Arrays of pillars with different size and different space 
between each pillar were patterned in the SU-8 to obtain different flow rates. All 
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pillars are shaped as hexagons, but 2 diameter sizes were tested, 10 μm (Fig 4.18A 

& B) and 20 μm (Fig 4.18 C & D). The spacing between each pillar was also varied, 
with values of 10 μm in the x axis and 10 μm in the y axis (Fig 4.18A&C), an 

increase in the x axis to 20 μm can be observed in Fig 4.18B. Figure 4.18D shows a 
distance of 10 μm in both axes. The results of the flow rate dependence on the pillar 

array is discussed in the next section of this thesis.  

 

Figure 4.18 Micropumps patterned in SU-8. 

To close the channels and the micropumps with a layer of SU-8, a second wafer is 

processed. On this double side polished silicon wafer, a 20 nm layer of Chromium 
is sputtered, followed by 100 nm layer of Aluminum sputtered deposition. Both 

thin film layers are deposited with the DP 650 Alliance-concept machine.  The 
Aluminium layer will be dissolved later in the final steps of the process. Once the 

Aluminium is in place, a 30 μm layer of SU-8 is placed on top following the same 



Wearable passive microfluidics for sweat collection and analysis 

69 
 

procedure mentioned before. Although, because of the reflectivity of the 

Aluminium layer below, the exposition time is decreased to 5 seconds. After the 
PEB, both wafers are put in contact while applying a 130°C temperature and a 4.5 

bars pressure for 90 minutes with 4°C per minute ramp sequence. This is achieved 
by employing the Süss SB 6, vacuum anodic bonder. This step bonds the SU-8 

layers. This phenomenon is a result of further cross linking of the SU-8 in the 
interface between both wafers.  

After processing, channels are closed. In order to release the microfluidic structure, 
the wafer sandwich is put under a 1 Molar Sodium Chloride solution and a 5 Volt 

potential is applied to the backside of the wafer with a platinum counter electrode 
(connected to the negative terminal) to  anodic dissolve the Aluminum.  

The anodic dissolution of aluminium occurs as the material will react with the 
chloride ions in the solution once a potential is applied to it. The phenomenon is 

described by the following reaction:  

 

 

 

This step releases the top wafer leaving the full SU-8 structures. Finally, inlets and 
outlets are drilled with an excimer laser (OPTEC LSV3). After experimentation it 

was determined that a low frequency (150 Hz) with 100 shots was optimal to open 
the top SU-8 layer without damaging the layers below. The laser was set to work 

with 5mJ of power.  Figure 4.19 shows the drilling of a 100 μm outlet in full SU-8 

microfluidics.  
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Figure 4.19 Outlet opening with Excimer Laser 

 

4.3.3.2 Experimental results 

After fabrication, the wafer was placed on top of the artificial skin setup described 
before in this chapter. The wafer was not treated prior to the experiments (no 

plasma activation). Once the liquid arrived from the artificial skin to the inlet, it 

was possible to observe the liquid flow through the system. The liquid then went 
to the first microfluidic structure, a channel with a 100 μm length, a 30 μm width 

and a depth of 30 μm (capacity of 90 picoliters of liquid). The channel filled in less 
than 1 second as observed in Figure 4.20.  
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Figure 4.20 Filling of an SU-8 channel by capillary forces 

The menisci of the filling fronts move from regions of high capillary pressure (the 

channels) into regions of reduced capillary pressure (the passive pumps) without 

generating air bubbles.  

A first set of micropillars was tested, the diameter of the hexagons inside the 
micropumps was designed at 10 μm with spacings between each pillar of 20 μm 

in the x and 10 μm in the y axis (Fig 4.18B). The flow inside of the micropump was 

measured at 120 picoliters per minute. With such a low speed of the volume, the 
liquid inside of the channels started evaporating before the liquid was reaching 

the outlet. 

In order to increase the speed of the liquid inside of the system it is necessary to 

reduce the fluidic resistance. This is achieved by increasing the size of the pillars, 
to test this, a second set of micropillars were tested, the pillars have a 20 μm 

diameter, and the space between the pillars is reduced to 10 μm in the x axis and 
0 μm in the y axis, as has been shown in Fig. 4.18C. The flow rate was increased to 

4.2 nanoliters per minute. The displacement of the liquid can be observed in figure 
4.21.  It is worth mentioning that a slight spread of liquid was observed along the 
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edge before the pump started filling. Nevertheless, the amount of liquid running 

through the edge is almost negligible. The increased size of the pillars seems to 
have reduced the pressure in the sidewall of the channels as the spreading effect 

over the edges was less noticeable with that configuration. 

 

 

Figure 4.21 Left: Micrograph of a micropump with 10 μm-wide pillars showing unilateral flow of liquid 
from inlet to outlet. Top right: Micrograph of a micropump with 20 μm-wide pillars showing an increase 

in the speed of the flow. Bottom right: Variation of flow rates for different size of micropillars. [161] 
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4.4 Summary & discussion 

This chapter has presented three methods to integrate a microfluidic interface that 
can provide sweat collection and flow control in wearable sweat sensing devices. 

The first presented method is important as its relative simplicity allows for fast 

testing of the devices. With this sealed cavity microfluidics we have successfully 
collected sweat from human skin while controlling the flow of the liquid inside. 

This is the only method that can be compared to what literature shows in state-of-
the-art wearable sweat sensors. As it was mentioned, due to the high volume of 

sweat required to fill this sealed cavities, the use of this kind of microfluidic 

devices is limited to sweat analysis under physical activity.  

The following two methods propose the use of a patterned microfluidic interface 
to guarantee the operation of the wearable device to operate even when people is 

at rest, assuring the acquisition of fresh sweat samples while avoiding sample 

evaporation and the dilution of biomarkers, and hence ensuring reliable 
quantification of the concentration of the molecules of interest with ISFETs. To our 

knowledge, this is an option that has not been explored or considered before in 
wearable sweat sensing systems, and poses therefore an essential impact in the 

field. The main contributions of this work can be summarized as follows: 

 Through the careful design of the microfluidics, we have successfully 

developed a microfluidic interface capable of drawing volumes of liquid 
from an artificial skin setup. The approximate volume acquired in the open 

microfluidic device is in the order of 200 nanoliters. Reducing by a factor 
10 the volume of liquid needed compared to a non-patterned microfluidic 

device. We have shown successful unidirectional flow of liquid through 

the microsystem.  
 An improved version of the latest microfluidic system has successfully 

reduced the volume of sweat to fill the system by another factor of 10, 
allowing manipulation of volumes of liquid of the order of 20 nanoliters. 



Wearable passive microfluidics for sweat collection and analysis 

74 
 

As has been demonstrated, the use of micropumps allowed to control the 

flow rate from 120 pl/min to 4.2 nl/min by adjusting the space between the 
pillars.  

 The parameters for fabrication presented in this thesis allowed the 
fabrication of micropumps in full SU-8 devices, a process that is extremely 

complicated due to the fragility of the micropillars. Even if the fabrication 
of the devices was successful, the yield was low. Further optimization of 

the process can improve the results. Special attention has to be put in the 

anodic dissolution of the aluminium sacrificial layer, as the release of the 
top wafer is likely to damage the full microfluidic structure.  

 The microfluidic interface proposed in this chapter is CMOS compatible 
and benefits from standard microfabrication procedures, making this 

process suitable for mass production once optimized. The integration of the 

microfluidic interface paves the way toward a better understanding of the 
biochemical dynamics of sweat.  
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 Heterogeneous Integration of 
functionalized ISFETs with embedded 
passive capillary microfluidics and 
miniaturized Ag/AgCl Q.R.E   

 

This thesis has discussed in the previous chapters the utility of using ISFET sensors 

in wearable sensing systems as they are compact devices that operate with low 

power consumption. In addition, this thesis has discussed the importance to use a 
microfluidic interface between the sensors and human skin to take advantage of 

very low volumes of sweat. This chapter deals with the integration of the different 
technological modules, presented in the previous chapters, to develop one of the 

first low power electrolyte sensing microfluidic chips based on the heterogeneous 

integration of: (i) high-k functionalized ISFET sensors, (ii) passive microfluidics on 
SU-8, and (iii) a miniaturized Ag/AgCl quasi-Reference Electrode.  

Functionalization of ISFET sensors is of the utmost important in sweat sensing 

systems as they allow quantification of other ions besides hydrogen. Therefore, 

this chapter describes three functionalization methods to achieve sodium and 
potassium sensing with ISFETs. These methods are 1) Self-Assembled Monolayers 

(SAMs) on HfO2, 2) SAMs on Metal gate ISFETs and 3) Ion Sensing Membranes 
(ISM).  

Later, a process for the miniaturization of an Ag/AgCl quasi Reference Electrode 
(QRE) on top of SU-8 surfaces is proposed. As discussed in chapter 3, the reference 

electrode is paramount in ISFET measurements as its stability determines an 
expected fixed potential . This thesis provides a method to deposit a stable 

Miniaturized QRE, lasting for up to 24 hours of continuous measurements.  

Finally, the heterogeneous integration of the three components is described, 

providing a fully integrated and compact platform that could be exploited for 
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electrolyte monitoring in biofluids for healthcare applications. We describe the full 

fabrication process for the microfluidic system with the embedded reference 
electrode.   

5.1 Functionalization of ISFETs for electrolyte sensing  

After the successful detection of pH with high-k dielectric ISFETs (described in 

Chapter 2), efforts were dedicated to adapt ISFET technology to provide Sodium 
and Potassium ion sensing in a biofluid such as sweat. To achieve this, the surface 

of the gate oxide has to be modified, or functionalized. The main objective of the 

functionalization is obtaining measurements that show high specificity between 
the different ions, while maintaining the ISFET optimal performance. In this 

section, three possible methods for functionalization of ISFETs are discussed. A 
brief introduction to each method is given in order to understand the main 

differences between each functionalization process and later discuss the results 

obtained with each method. The development of this work has been developed in 
collaboration with Dr. Negar Moridi, Dr. Johan Longo and Dr. Neil Ebejer from 

Xsensio.  

5.1.1 Self-Assembled Monolayers of crown ethers on HfO2 

Self-Assembled Monolayers allow the interaction of molecules with a substrate in 

a densely packed arrangement. This influences the physical properties of the 

exposed surface [162] [163] [164]. The functionalization is based on host-guest 
inclusion interactions between the sensor surface and a target molecule. This 

requires covalent attachment of "host" molecules like crown ethers at the surface 
of the ISFET gate terminal [165]. The modification of the surface of the gate with 

crown ethers creates a screening effect that allows the quantification of the targeted 
ion.   
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This section provides the detailed procedure for covalent immobilization of crown 

ethers on the surface of hafnium oxide substrates. Crown ethers are cyclic chemical 
compounds that consist of a ring containing several ether groups. The denticity of 

the polyether influences the affinity of the crown ether for different cations (such 
as sodium and potassium) as figure 5.1 illustrates.  

SAMs combine two properties, first the existence of a specific and reversible 
interaction between guest and the monolayer assures selective recognition, also, 

the binding of a guest has to be transduced into an electrical signal [166] [167] [168]. 
As seen in literature, most of the work regarding functionalization with SAMs has 

been performed on top of noble metals (especially gold) on electrodes. 
Nonetheless, before moving forward to a post-process to deposit a metal gate on 

top of the ISFET sensors, we decided to test the SAMs on top of HfO2 directly. 

Research has been done to place SAMs on oxides, focusing mostly on electrodes 
[169] [170], although the works from Zhang proposes a method to deposit SAMs 

on top of SiO2 Nanowires [171].  

 

Figure 5.1 Crown ether composition to allow the detection of different molecules 
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A protocol has been developed for selective detection of sodium and potassium in 

sweat. This requires covalent immobilization of crown ethers as “host” molecules 
on the sensitive HfO2 surface of the sensors. The functionalization protocol is 

developed here on a simple potentiometric (ISE) sensor formed of platinum 
electrodes covered by HfO2 (and measured with a commercial Ag/AgCl reference 

electrode). This research has been developed in collaboration with Dr. Negar 
Moridi.  

Immobilized SAMs of crown ethers on HfO2 substrates were used as “host 
surfaces” for the detection of alkali metal ions as guest molecules. This strategy 

was applied for a selective detection of sodium and potassium as target molecules. 
The binding of metal ion to polyether is strongly dependent on the size of the metal 

ion and the size of the cavity in the center of polyether. 15-crown-51 selectively 

forms complexes with Na+ as its ionic diameter match perfectly with the cavity 
size. Similarly, 18-crown specifically binds to K+ (Table 1). Therefore, 4’-

aminobenzo-15-crown-5 was used for selective detection of sodium ions and 2-
aminomethyl-18-crown-6 was used for selective detection of potassium ions.  

 

 

 

5.1.1.1 Formation and characterization of a self-assembled monolayer  

The simple potentiometric sensors, i.e. ion selective electrode (ISE) sensors (Fig. 
5.2) were fabricated as follow: The starting substrate was a silicon wafer with a 1 

μm thick layer of SiO2. First 20 nm thick Cr adhesion layer and a 100 nm thick Pt 

Table 1 Ionic diameters and cavity sizes. 
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layer have been sputtered. The electrodes have been patterned with 

photolithography and plasma etching of the metals. After a short oxygen plasma 
to remove the remaining photoresist, 3 nm of HfO2 have been deposited by ALD. 

 

Figure 5.2 Picture of a die of “Pt/HfO2 potentiometric sensors”: here two Pt working electrodes are present on the die 
which is wire bonded to a chip carrier for subsequent electrical measurements. 

The procedure to perform selective sensing of sodium ions with functionalized 

ISFETs with crown ethers was first reported by Wipf et al [172]. The same chemical 
process was followed to achieve selective sensing of Na+ ions in ISEs that count 

with HfO2 as a sensing layer as explained before. SAMs of crown ethers derivatives 

were prepared in three steps (Fig 5.3a). Cleaned hafnium oxide substrates were 
prepared by immersing in piranha solution (H2SO4:H2O2, 70:30, v/v) at 100°C for 

20 min. The sensors were then thoroughly rinsed with deionized water and ethanol 
for 10 min respectively and dried under a nitrogen stream. Amino terminated 

SAMs were obtained by immersing the cleaned substrates in 10% v/v solution of 

(3-aminopropyl)triethoxysilane (APTES) in ethanol for 12 hours at room 
temperature. The substrates were then rinsed with ethanol and dried under N2 

stream. The formed APTES layer was cured at 100°C for 24 h. Subsequently, 
isothiocyanate functional groups were introduced on to the monolayer by 

exposure to a solution of 1,4-phenylene diisothiocyanate (0.1 M) in toluene at 50°C 
for 2 hours  (Fig 5.3a step ii) followed by rinsing with toluene and drying in a 

stream of N2. The self-assembled monolayer (SAM) layers formed were reacted 

with the 2-aminomethyl-15-crown-5 to allow its covalent immobilization. This was 
achieved by incubating the samples in a solution of 2-aminomethyl-15-crown-5 (5 
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mM) in borate buffer (50 mM, pH 8.5) at 50°C for 2 hour, after which the substrates 

were sonicated in deionized water in order to remove physisorbed molecules. 
After immobilization, the contact angle increased from 18° to 78°, suggesting the 

successful grafting of APTES. The presence of the isothiocyanate functional groups 
at the surface of the sensors was evidenced by XPS measurements taken on 

functionalized substrates. The results revealed that the atomic ratio of S/N 
increased from 0 to 0.34 for APTES and isothiocyanate functionalized substrates 

respectively. This proved the successful immobilization of isothiocyanate groups 

on the HfO2 surface. Furthermore, an increase in atomic ratio of C/Si from 3.5 to 6 
was measured for isothiocyanate and crown ether functionalized sensor 

respectively. That suggest the successful immobilization of crown ethers on 
hafnium oxide substrates. In order to detect Potassium ions, SAMs of 18-crown-6 

on hafnium oxide was prepared following the same procedure described above, 

by using 4′-aminobenzo-18-crown-6 instead of 2-aminomethyl-15-crown-5.   

 

Figure 5.3 a) Formation of organized monolayers of amino derivatives of crown ether on hafnium oxide 
surfaces. i) (3-aminopropyl)triethoxysilane; ii) 1,4-phenylene diisothiocyanate; iii) 2-aminomethyl-15-
crown-5 (Na+ sensors ) or 4′-aminobenzo-18-crown-6 (K+ sensors) ; b) Schematic representation of 
experimental setup; c) Sampling measurements for 100mM NaCl of Na+ sensors with three times repetition; 
d) Sampling measurements for 100mM KCl of K+ sensors with three times repetition 
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5.1.1.2 Assessment of sensitivity and selectivity of sensors functionalized for Na+ and K+ 
ions 

In order to test the fabricated ISE sensors, the open circuit potential was measured 
against a commercial Ag/AgCl reference electrode, Microelectrodes Inc. 16-702 

Ag/AgCl reference electrode (Microelectrodes Inc., Bedford, USA). The ISE sensors 
dies were mounted and wire bonded in chip carriers using epoxy to passivate the 

wiring and form a small well. A syringe pump was used to fill the well with a 

given electrolyte solution (ions and concentration) maintaining the liquid contact 
between the ISE sensor and the flow-through electrode via the electrolyte-filled 

tubing, as shown in Fig 5.3.b. Measurements were performed on an HP 4156A 
parameter analyzer (Hewlett-Packard JP, Tokyo, Japan). In the open circuit 

potential measurements, no current is applied in the system, the reference 

electrode provides a stable reference potential for the measurement of the potential 
of the fabricated functionalized (working) electrodes. Thus, the reference electrode 

is connected to ground and zero current is applied on the fabricated ISE sensors, 
only measuring the potential over time. 

The sensitivity of each (sodium and potassium respectively) functionalized test 
sensor was assessed separately using different buffer solutions of NaCl and KCl 

respectively with varying concentrations. OCP sampling measurements were 
performed for 6 minutes for each functionalized sensor with each 

analyte/concentration solution and repeated three times (Fig 5.3.c&d). Fig. 5.4 
demonstrate the open circuit potential (OCP) measurements of sensors 

functionalized for sodium (Fig. 5.4a) and potassium (Fig. 5.4b) in the electrolyte 

solutions with concentration of 0.1-300 mM Na+ and K+ respectively. For both 
sensors a linear relationship with a regression coefficient of 22.3 mV/dec (sensor 

functionalized for sodium) and 26.1 mV/dec (sensor functionalized for potassium) 
between open circuit potential and Na+/K+ concentration in logarithmic scale was 

observed.  



Heterogeneous Integration of functionalized ISFETs with embedded passive capillary 
microfluidics and miniaturized Ag/AgCl Q.R.E 

82 
 

The selectivity of the sodium (respectively potassium) functionalized sensor was 

assessed by measuring the cross-sensitivity to the non-target ion: potassium 
(respectively sodium). This was achieved by using increasing concentration of KCl 

and NaCl (0.1-300 mM) for Na+ and K+ sensors respectively. It was observed that 
depending on non-target ion concentration the response was at least 50% lower for 

each sensor compared to the response for their target ions (Fig. 5.4a&b). For both 
sensors a linear relationship with a regression coefficient of 11.4 mV/dec (sensor 

functionalized for sodium, response to potassium) and 14.1mV/dec (sensor 

functionalized for potassium, response to sodium) between open circuit potential 
and Na+/K+ concentration in logarithmic scale was observed. 

In parallel, an APTES modified sensor [172] as a reference sample, was studied 

following the same experimental procedure. Fig. 5.4a demonstrates the open 

circuit potential measurements of Ref sensors in the electrolyte solutions with 
concentration of 0.3-300 mM NaCl for sodium functionalized sensor. Fig. 5.4b 

demonstrates the open circuit potential measurements of Ref sensors in the 
electrolyte solutions with concentration of 0.3-300 mM KCl for potassium 

functionalized sensor. Regarding the values measured for the reference sensors, 

one hypothesis could be that the OCP measured for reference sample comes from 
a cross sensitivity with Cl- and therefore these values were subtracted from values 

measured for sensors functionalized for sodium and potassium (Fig. 5.4c&d). For 
both sensors a linear relationship with a regression coefficient of 13.7mV/dec 

(sensor functionalized for sodium) and 15.2mV/dec (sensor functionalized for 

potassium) between open circuit potential and Na+ /K+ concentration in 
logarithmic scale was observed. Depending on non-target ion concentration, the 

response of the sensor was 91% to 100% lower, compared to the response for their 
target ions (Fig. 5.4c&d). 
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Figure 5.4a) Sensitivity and selectivity assessment of Na+ sensors; b) Sensitivity and selectivity assessment 
of K+ sensors; c) Sensitivity and selectivity assessment of Na+ sensors after Ref values were subtracted from 
values measured for sensors functionalized for sodium d) Sensitivity and selectivity assessment of K+ sensors 
after Ref values were subtracted from values measured for sensors functionalized for potassium. 

5.1.1.3 Discussion: SAMs functionalization for ISFETs 

After obtaining good results of selectivity and sensitivity with SAMs on ISEs with 

Hafnium dioxide as a sensing layer, the same process was replicated on top of the 
ISFET devices. Nonetheless, the sensors show no response with variations in the 

reference electrode voltages. The possible reason for this might be the use of the 
piranha solution used in the formation of the SAMs, it is possible that the SU-8 

passivation layer gets degraded with the piranha and therefore creating a short 

circuit between the three terminals of the device. Due to the lack of results with 
ISFETs and the SAMs on HfO2 FET gate, the presented process was modified and 

adapted to be deposited on gold gates on top of the gate oxide, as explained in the 
following section.  
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5.1.2 Self-Assembled Monolayers of crown ethers on a metal 
gate  

The use of a metal gate (principally gold) in an ISFET has been exploited in 
literature to decrease the number of sites  in the gate terminal and thus, decrease 

the response the hydrogen activity in the surface of the gate terminal of the ISFET 
[172] [77]. A functionalization of the metal gate is then performed with crown 

ethers to improve the specificity of the system. The design of crown ethers that can 

form SAMs on noble metals typically requires the introduction of thiol 
functionalities in the crown ethers structure. It has been demonstrated that n-

alkanethiols are also able to form self-assembled monolayers on gold substrates 
[173] [174]. In order to achieve this in our process, a 20 nm layer of gold was 

deposited on top of the gate dielectric as can be seen in figure 5.5. A 5 nm layer of 

titanium was sputtered as an adhesion layer.  

 

 

Figure 5.5 SEM picture of the deposition of a gold layer on top of a Nanoribbon ISFET.  

 

The functionalization of the FET is based on a thiol-gold interaction between 
thiolate ion-sensitive crown ethers and the gold gate of the sensor. The first part of 
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the process is dedicated to the hydroxyl to thiol crown ether modification, Fig. 5.6a. 

The alcohol group of the crown ether is converted to a sulfonate (leaving group) 
using toluene sulfonyl chloride. A nucleophilic substitution using 

2,2’.(ethylenedioxy)-diethanedithiol is then performed to obtain a thiol 
functionalized crown ether. The FET arrays are functionalized for K+ and Na+ 

sensing (Fig. 5.6b&c) by putting them 12 hours in contact with a solution of 
thiolated crown-ethers in methanol.   

 

 
Figure 5.6 Functionalization chemistry of the Au gates for specific electrolyte sensors: a) hydroxy crown 

ethers modification, (b) and (c) FET gold gate functionalization for K+ and Na+ sensing, respectively. 

 

The functionalization was tested directly on top of ISFETs, the results were 
positive for Sodium sensing, while the potassium functionalization was non-

responsive. The characterization results are presented in the section 6.2.1 of this 
thesis.  



Heterogeneous Integration of functionalized ISFETs with embedded passive capillary 
microfluidics and miniaturized Ag/AgCl Q.R.E 

86 
 

5.1.3 Functionalization with ion sensitive polymeric membranes  

Ion sensitive polymeric membranes (ISMs) deposited on electrodes can offer an 

alternative to SAM functionalization. This is one of the most used technologies 
when using chemical sensors [175]. ISMs are formed by a mixture of a PVC 

membrane with an ionophore. Ionophores are molecules that interact with a 

specific ion. The chemical composition of the ionophore is what defines its 
specificity [176] [177].  

The challenge resides then in the proper integration of polymeric membranes on 
top of ISFET devices. This section shows the process to fabricate and deposit 

sensitive membranes for sodium and potassium on ISFET sensors with a gold gate. 
This is an adaptation of the process that Javey’s group presented to deposit 

sensitive membranes on ISEs in [24].  

 

 

Figure 5.7 Functionalization chemistry of Au gates with a polymeric membrane for potassium sensing 

 

The Sodium selective membrane was prepared by mixing Na ionophore X (1% 

weight, w/w), Sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate Na-TFPB 

(0.55% w/w), Poly(vinil) chloride PVC (33% w/w), and dioctyl sebacate DOS 
(65.45% w/w). 100 mg of the membrane cocktail was dissolved in 660 μl of 
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tetrahydrofuran. The Potassium selective membrane cocktail was composed of 

valinomycin (2% w/w), Sodium tetraphenylborate NaTPB (0.5%), PVC (32.7% 
w/w), and DOS (64.7% w/w). 100 mg of the membrane cocktail was dissolved in 

350 μl of cyclohexanone [59]. Ion-selective membranes were then prepared by 
drop-casting, respectively, 10 μl of the Na+- selective membrane cocktail and 4 μl 

of the K+-selective membrane cocktail onto electrodes. Figure 5.8 shows the drop-
casting method of the membrane on top of electrodes with a 2 mm diameter.  

 

Figure 5.8 Dropcasting of ISM for sodium sensing 

5.1.3.1 Sodium sensing with ISE’s and a polymeric membrane 

Prepared devices, were hydrated and equilibrated with the test solution (50mM 
NaCl and 20mM KCl for Na+ ISM and K+ ISM functionalized sensors respectively) 

before use for about 30 minutes. Measurements were ran until a stable value 

potential was reached. When going from a higher concentration to a lower one the 
devices were washed with deionized water to avoid contamination. All 

measurements were performed in a 2-electrodes arrangement using a commercial 
Ag/AgCl reference electrode.   

The response for a sodium selective membrane is reported in Figure 5.9, showing 
a fast response to changes in the concentration of the analyte.  
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Figure 5.9 Sodium sensing with ISE functionalized with a polymeric membrane 

 

The linearity of the system and the high selectivity of ionophore chemistry is 

shown in Figure 5.10, with a Near Nernstian behavior of 56.1 mV / decade. To 
evaluate the cross-sensitivity of the ISM, the sensor was alternatively put in contact 

with a solution of KCl (100mM) and NaCl (1mM) (see figure 5.10b). Experimental 
results highlighted a high selectivity of the Na+ ISM against K+ ions. Indeed, the 

response of the ISM for 100mM KCl is reported to be lower than its response to 

1mM NaCl, leading to a negligible K+ sensitivity of the sensor.  

 

Figure 5.10 Left) Sensitivity of ISE to Na concentration, Right) Selectivity of Na membrane 
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5.1.3.2 Potassium sensing with ISE’s and a polymeric membrane 

The ISE with a potassium selective membrane below shows similar behavior to 
that for the sodium selective membrane as Figure 5.11 displays.  

 

Figure 5.11 Sampling concentrations of KCl with ISEs and a potassium selective membrane. 

Similar to the response of the membrane for sodium, the membrane for potassium 

showed a linear response with a 53.9 mV/dec sensitivity towards KCl 

concentration solutions as can be observed in figure 5.12. The ISE with a membrane 
for potassium sensing also showed a negligible cross sensitivity with Sodium 

when put in contact with a 100mM NaCl solution, as can be observed in figure 
below: 

 

Figure 5.12 Left) Sensitivity of ISE to K concentrations Right) Selectivity of K membrane 
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5.1.4 Discussion: ISFET functionalization 

This research focused on developing an optimal functionalization process for the 

gate dielectric of the ISFET devices. SAMs of crown ethers deposited on an 
electrode with an HfO2 interface provided sensitivities of 22.3mV/dec and 

26.1mV/dec for sodium and potassium respectively. No cross-sensitivity has been 

observed. Nevertheless, the values of sensitivity are below what we were 
expecting. On the other hand, the ion sensitive polymeric membranes on top of 

electrodes delivered quasi-Nernstian responses, with sensitivities of 56.1mV/dec 
and 53.9mV/dec for sodium and potassium respectively. This is a good indicator 

that functionalization of ISFETs with ISMs might offer better results, as will be 

shown in the next chapter of this thesis.  

The main reason to use ion sensitive membranes over SAMs for functionalization 
of ISFETs is because the deposition of ISMs involves no aggressive chemical 

process that compromise the integrity of the chip. On the other hand, the creation 

of SAMs on top of the ISFETs requires a first step of a piranha bath at a 100°C 
which compromises the SU-8 passivation layer, a risk that could result in eventual 

short circuits as liquid could create an electric path between the source and drain 
terminals of the FET.  
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5.2 Development of a miniaturized quasi Ag/AgCl 
Reference Electrode on SU-8 substrates 

Chapter 3 of this thesis has described how potentiometry measurements work and 
how there is a need to have a potential reference electrode in the system. Since 

ISFETs work with a potentiometry principle, the reference electrode is a key 
component in ISFET operation.  Originally, the ISFET concept was believed to 

abandon the need of an external reference electrode, but this assumption has been 

proven wrong and it is largely accepted that the reference electrode is necessary 
[75] [77] [178]. Therefore, efforts in miniaturization have been undertaken to 

develop miniaturized reference electrodes. Miniature reference electrodes have 
been the subject of many studies with different applications, but there is still big 

room for improvement concerning overall performance, and materials and 

methods for fabrication. This section presents the development of a process to 
integrate a miniaturized Ag/AgCl quasi reference electrode in a SU-8 environment.  

This work has been developed with MSc. Amira Muhech, Dr. Raffaele Cossimati, 
and Dr. Fabien Wildhaber from XSensio. 

5.2.1 The reference electrode 

In electrochemical studies, a reliable reference electrode is needed to provide a 

stable potential for measurement execution. The measurement of potential of an 
oxidation-reduction reaction with a working electrode requires a stable reference 

point, which is why an electrode with fixed potential is placed. This is called a 
reference electrode, and no current should pass through it [179]. In the case of an 

ISFET, the gate terminal is replaced by a reference electrode immersed in an 

aqueous solution. The potential at the surface of the gate oxide is related to the 
amount of charges present in the solution, which are contributions of both the 

reference electrode and the ionic charges in the liquid environment [180].  
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For our application, ideally, the reference electrode has to be stable over a defined 

range of pH (from 3-8), a defined range of NaCl and KCl concentration (1-100 mM). 
Additionally it has to be compatible with the SU-8 polymeric substrate with a long 

term stability (potential drift should be minimized during a long operation time). 
Moreover, it should not introduce toxic or hazardous materials. Additional 

advantageous characteristics would be resistance to corrosion (which would affect 
the reactions in the test solution), insensibility to interference species, and low 

noise [181] [182]. 

Electrode potentials are generally expressed with respect to the standard hydrogen 

electrode (SHE). The SHE is a reference electrode that has a defined potential of 0V 
at standard conditions (25 ºC, 1 bar pressure). This electrode is used as the standard 

reference for measuring cell potentials. However, given that it needs a constant 

flow of hydrogen gas, it is difficult to fabricate, if not miniaturize [183]. 

Most experiments in aqueous solutions use a saturated calomel electrode, or a 
silver-silver chloride electrode (Ag/AgCl). The calomel electrode, commonly used 

in the laboratory, has great potential stability, however, it requires a large amount 

of mercury for its fabrication, controlled H2 pressure, and it cannot be used above 
80 ºC. It is generally avoided in microchip applications [184]. The Ag/AgCl 

electrode is therefore the best choice for miniaturization, for its simplicity of use 
and compatibility with microfabrication techniques, plus its electrochemical 

characteristics. However, the integration of an Ag/AgCl reference electrode is not 

possible in a microsystem due to its size. Therefore, the use of a quasi-reference 
electrode has to be considered.  

5.2.2 Ag/AgCl Quasi Reference Electrode on SU-8 

A quasi-reference electrode typically consists of a metal wire that is inserted 
directly into the analyte. An important difference between a reference electrode 

and a QRE is the lack of thermodynamic equilibrium in the later [185]. The 

advantages they offer are a small impedance effect (which, nevertheless, could 
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make the system susceptible to environmental noise), no liquid junction potential 

(potential that develops when two solutions are in contact), and no contamination 
of the analyte due to electrolyte leakage. This makes the design much simpler.  

However, the drawbacks are: slight potential shift during the measurements 

(because of formation of surface oxides) [186], and often, operation performance 

varies depending on pH or temperature [185]. Moreover, it is susceptible to 
changes in the activity of its primary ion (Cl¯) [187]. 

An important issue to overcome when designing and fabricating a quasi-reference 

electrode is the lack of stability when used in different conditions. Instability is 

often attributed to the dissolution of the salt layer, and the development of mixed 
potentials at the electrode/solution interface. The solubility constant for AgCl is 

so approximately 1.9 mg of AgCl will dissolve in a liter of water at room 
temperature [188]. It is then easy to suppose that in a miniaturized version, with a 

considerably smaller AgCl volume, the layer will dissolve more easily, giving 
place to unwanted perturbance. According to a previous study by Polk and 

colleagues [188], a good solution would be to increase the quantity of available 

AgCl on the electrode. To achieve this, a thicker layer of silver is needed, naturally.  

A solution to the previously mentioned issues would be to use a reference 
electrode with a solidified electrolyte, which could also function as salt bridge. 

Some authors have coated the Ag/AgCl electrode with polymeric materials 

saturated with KCl such as agarose [189], porous silicon [184], glass fiber filters 
[190], and hydrophilic polyurethane [191], to cite a few. These coatings provide a 

constant concentration of chloride ions [192], and make the reference electrode 
insensitive to changes in pH and Cl¯ ion concentration. An outer polymer layer, 

such as Nafion, perfluorocarbon polymer (PFCP), cellulose acetate or 

polyurethane, is often used to help against degradation, and discriminate against 
organic species [184] [181] [192]. This work proposes coating the Ag/AgCl QRE 

with a polymer layer to stabilize the electrode as will be detailed in the next section. 
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5.2.2.1 Technological development  

The process to obtain a miniaturized quasi reference electrode on a SU-8 substrate 
is described next. SU-8 (Gersteltec Sarl, Switzerland) was processed on a 4-inch Si 

wafer. The wafer is cleaned with oxygen plasma for 7 minutes at 500 W before the 

SU-8 procedure. A 5 μm layer of SU-8 was spin-coated using a Sawatec LSM200 
(Sawatec AG, Sax, Switzerland). Then, the photo resist was baked for 25 min at 

130°C. To evaporate the solvent and to smooth the surface, the wafers were then 
exposed to UV light on a Karl Suss MA6 back-side mask aligner (Karl Suss, 

Garching, Germany) for 6 seconds at an intensity 10 mW/cm2. Afterwards, the 
wafers were baked at 90 ºC for 90 minutes to achieve cross-linking of the resist. 

Finally, the processed SU-8 wafers were left to rest overnight.  

A short surface treatment (30s at 200 W) of oxygen plasma was used on the SU-8 

wafers prior to metal deposition (no other type of surface treatment was 

performed). Afterwards an adhesion layer of 40 nm of Chromium was deposited 
prior to the silver electrode (900 nm) deposition, Chromium was chosen as an 

adhesion metal due to its optimal performance in adhesion with SU-8 substrates. 
Metals were deposited by sputtering on a DP 650 (Alliance-Concept, Cran-Gevrier, 

France). Sputtering was selected as deposition method because it provides a more 
uniform layer, and stronger adhesion between metals. 3 μm of silver were then 

electroplated to obtain a more robust reference electrode. The electrode was then 

chlorinated as explained in the following section.  

5.2.2.2 Chlorination 

The typical methods for AgCl formation from silver include anodization in 
chlorinated solutions, and chemical chlorination [181] [188]. Anodization consists 

of the formation of a surface oxide in a chemical solution. Current is passed from 

the anode (material to oxidize) to the cathode (inert material) through an 
electrolyte.  
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In chemical oxidation, the electrode is immersed in an aqueous solution of FeCl3. 

The reaction that takes place proceeds as:  

 

Equation 5.1 

 

 

FeCl3 is reduced to FeCl2, and the silver cation combines with the chlorine anion to 

generate AgCl in the silver electrode’s surface [193]. To chlorinate the electrode, 
FeCl3 is pipetted on top of the silver electrode, letting the silver chlorinate for 75 

seconds. Afterwards, the chip is rinsed in deionized water. SEM was used to 
characterize the electrodes; the results are shown in Figure 5.13.  

 

Figure 5.13 Top optical views, (a) and (b), and SEM magnifications, (c) and (d), of the fabricated Ag/AgCl 
Quasi-Reference Electrode, before and after the Chlorination. 

After chlorination, the electrode was coated with a Butvon®, a polyvinyl butymal 
(PVB) polymer solution filled with NaCl. 5 μl of this PVB membrane were drop 

casted on top of the electrodes as described in [3].  
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5.2.3 Electrical characterization of the reference electrode 

For assessing electrical performance, the fabricated electrodes were tested by 

measuring open-circuit potential (OCP) against a commercially available Ag/AgCl 
reference electrode (16-702 Microelectrodes Inc., Bedford, USA). All measurements 

were performed on an HP 4156A parameter analyzer (Hewlett-Packard JP, Tokyo, 

Japan). A diagram of the setup is provided in figure 5.14. 

 

Figure 5.14 Setup for measuring open-circuit potentials. 1. Syringe pump to deliver a constant flow of 3 M 
KCl into the commercial reference electrode 2. Parameter analyzer 3. Commercial reference electrode 4. 

Fabricated reference electrode 5. Beaker with 3 M KCl. Note: The liquid contained in the pump is the same 
as the one in the beaker. 

The miniaturized Ag/AgCl QRE was tested in a 23 mM NaCl environment under 
a continuous flow of 25 nl/min. The potential of the miniaturized QRE is fully 

stable, ensuring stable operation for 14 hours as can be observed in figure 5.15.  

 

Figure 5.15 Stability plot of open circuit potential of the reference microelectrode while perfusing 23 mM 
NaCl at 25 nl/min through the channel (vs. a commercial flow-through AgCl ref. electrode). 
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5.3 Integration process for technological modules 

This section presents a method to integrate all the different technology modules 
presented in this thesis to deliver the first “Lab-on-skin” system. The highest 

achievement of this work, is the successful combination of very different 

technologies in a single chip.  

A first prototype to validate the functionality of the FinISFETs in a miniaturized 
characterization environment for pH sensing is presented. With this prototype, we 

evaluated the performance of the first architecture of ISFET sensors presented in 

chapter 3 with a Pressure Sensitive Adhesive (PSA) microfluidics and a 
miniaturized quasi reference electrode. Afterwards, this section shows the 

development of the SU-8 microfluidics (presented in chapter 4) with an embedded 
reference electrode over the nanoribbon ISFETs (presented in chapter 3).  

5.3.1 Post processing of PSA microfluidics for FinISFET 
characterization  

In this work, it was important to validate the operation of ISFETs in a miniaturized 

microfluidic environment. Pressure Sensitive Adhesives provides a good option 

for rapid prototyping of a system as it is easily manually manufactured [93]. Figure 
5.16b shows the main fabrication steps to post process microfluidics and a 

miniaturized Ag/AgCl quasi reference electrode on top of the liquid gate FinFETs 
described in the third chapter of this thesis.  
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Figure 5.16 Integration of a miniaturized R.E. embedded in a microfluidic channel and a chip with ISFET pH sensors a) 
Critical steps for the fabrication of the ISFET devices. Description of process flow in [88] , b) Process flow to achieve the 
integration of the sensing unit, the microfluidic channels and the miniaturized reference electrode with the ISFET sensor 
chip. c) 3D model of the integrated system. Reproduced from [194].  

The fabricated FinISFET devices have a maximum length of 15 μm, with this 
condition it was possible to design a very simple microfluidic system that could be 

filled with as little as 25 nL. The system consists of an array of single channels that 

are patterned in the PSA.  When a drop of liquid was placed on top of the inlets, 
the liquid immediately filled the channels, as can be seen in figure 5.17. 

Nonetheless, there was no control of the speed or direction of the liquid inside the 
channel, condition that becomes a disadvantage when the amount of sweat to 

analyze is limited. 

 

Figure 5.17. PSA passive microfluidics showing the transport of liquid from inlet to outlet by capillary 
forces. 
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Samples were prepared over 100 micron-thick PSA 93049 (Adhesives Research, 

Limmerick, Ireland). The OPTEC LSV3 Excimer Laser was used to pattern the 
reference electrodes in a single layer PSA sheet. The detailed workflow for the 

fabrication of this Reference Electrode is shown on Figure 5-15.b (Steps 4-6). The 
Reference Electrode pattern is a rectangle with a 50 mm2 area. The microfluidic 

device was fabricated using a single layer Pressure-sensitive-adhesive (Adhesives 
Research, Ireland). The channels in the PSA were patterned with the OPTEC LSV3 

Excimer Laser.  

5.3.1.1 Fabrication methods for PSA microfluidics on FinISFETs with integrated QRE 

Once the channels were patterned on the PSA, the adhesive foil was removed and 

then manually aligned to be placed on top of the FinFET sensors as described in 
Figure 5.16b (steps 1-3) and as it can be appreciated in Figure 5.16a. The closing lid 

for the microfluidic chamber is the PSA layer with the Reference Electrode. The 

protective lid of this PSA layer was removed and then manually aligned on top of 
the microfluidic channels to proceed with its placement. Once positioned, the 

inlets and outlets were opened with the OPTEC LSV3 Excimer Laser to get access 
to the microfluidic channels. Once the inlets and outlets were ready the integration 

of the system was achieved. As soon as a liquid reaches the inlets, the channels are 
automatically filled by action of the capillary forces. The continuous flow of the 

liquid through the channels is ensured by placing an adsorbent material in the 

outlets. Once the flow of the liquid has been established and stabilized, we have 
carried out the electrical characterization of the FinFET sensors. 

After patterning, silver was deposited, nevertheless, silver metal requires an 

adhesion layer to avoid its detachment from the substrate. Different metal 

combinations were tried as adhesion layers. No reported adhesion layers for PSA 
were found in the literature, therefore we tried different adhesive layers that are 

commonly used for silver with other polymers. The metals chosen for adhesion 
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promoters were Cr based on [195], a Cr/Ti combination based on [196] and Al 

based on the experiment performed by [197].  

 

 

Figure 5.18 Top optical picture of the passive microfluidic layer integrated on top of the FinFET sensor 
chip. Left) PSA channels placed on top of the ISFET sensing unit. Right) Closing lid of the microfluidic 

channel with the integrated Reference Electrode. 

To evaluate the adhesion of metals to the PSA, the tape test method, based on 
ASTM standard D3359 (ASTM International, 1996) was used. Scotch tape (3M, 

Maplewood, USA) was pressed carefully on top of the metal layer. A finger was 
run over it to enhance contact, and afterwards, the tape was pulled quickly. The 

best results we obtained by placing Chromium as the adhesive enhancer between 

the silver and PSA. The metals were deposited by sputtering on a DP 650 (Alliance-
Concept, Cran-Gevrier, France). First, 46 nm of Chromium were deposited as an 

adhesive layer and then 900 nm of Silver were deposited. Although in previous 
studies thin-films had been deposited by evaporation, sputtering was selected as 

deposition method because it provides a more uniform layer, and stronger 

adhesion between metals. Additionally, it allows to deposit thicker layers in less 
time and it has a lower operational cost.     

In this work, anodization was selected as the method for AgCl formation for its 

simplicity and safety. Surface cleaning to remove possible impurities was 

performed prior to chlorination. Samples were dipped in a solution of 0.3 M HNO3 
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for three minutes and rinsed with deionized water two times. The silver electrode 

sample was used as the anode, and a platinum thin-film counter electrode was 
used as a cathode. Both electrodes were dipped in a 3M KCl solution. Afterwards 

an electrical current was allowed to pass in the interface. A current density of 2 
mA/cm2 was applied for 37 seconds, to achieve 200 nm of silver chloride. An SEM 

picture of the Ag/AgCl reference electrode on top of the PSA layer can be seen in 
figure 5.18. The characterization results of the system are presented in the next 

chapter of this thesis.  

 

Figure 5.19 Fabrication of miniaturized Q. R.E. a) SEM images of the miniaturized reference electrode 
showing the Ag/AgCl formation, AgCl salts can be appreciated in red b) detailed cross section of the 

deposition of the silver on top the PSA layer, adapted from [198] 

5.3.2 Lab-on-skin devices  

This section reports the wafer-level 3D heterogeneous integration of the FD UTB 
SOI nanoribbon ISFETs, presented in chapter 3.3, and SU8 micro/nanofluidics, 

presented in chapter 4, to obtain wearable multi-sensing system, called Lab-on-

skinTM [199].  

The Lab-On-Skin concept is depicted in the 3D embodiment showed in Fig. 5.20. 
The reported design includes different sensor arrays based on ionic-sensitive FD 

SOI sensors with high-k dielectric gate stack: (1) bare HfO2 gate stack sensors array 
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for pH sensing, (2) functionalized gold gate stacks arrays with specific 

functionalization for Na+, (3) functionalized gold gate stacks arrays with specific 
functionalization K+ detection. 

 

Figure 5.20 Top: Lab-on-skinTM concept, depicting the design of the sensing and microfluidics layers, with 
a 3D perspective of the various layers.  

The SOI FET sensors have been fabricated with the process reported in Chapter 3. 
Next, a 3 μm passivation layer of SU-8 photoepoxy is processed on top of the wafer 

to isolate FET sensor interconnects, with openings left only in the sensor channel 

regions (and for contact pads).  

Once the passivation layer is placed, the second layer of SU-8 is processed with the 
parameters described in Section 4.3.2.1 to create the microfluidic structures on top. 

Next, the reference electrode is chlorinated with the process described in Section 

5.2.2.3.  The chip was then wirebonded to a flexible PCB with the ball bonding 
technique using gold wires (25 μm). Epoxy is then deposited on top of the wires to 

passivate them. Figure 5.21 depicts the final assembly of the first Lab-on-skin 
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device. The remaining process is the functionalization of the ISFET devices. To 

achieve this, ion selective membranes for sodium and potassium are drop casted 
on top of the ISFETs as described in Section 5.1.3. The next chapter presents the 

electrical characterization results of the Lab-on-skin system.  

.  

Figure 5.21 Lab-on-skin chip after integration with a flexible Printed Circuit Board 

5.3.2.1 Discussion: Heterogeneous Integration of Lab-on-skin system  

This section has presented a method that allows the successful integration of 

functionalized ISFETs with a microfluidic interface and a miniaturized Ag/AgCl 

quasi-reference electrode. It is important to remark that there were a lot of 
constraints towards the full integration of the system, due to incompatibility of the 

different technologies in the assembly. The first consideration to be made is the 
functionalization method chosen. We have decided to use the ISM (as described in 

5.1.3) for functionalization of ISFETS because it shows a better Nernstian response 

for sensing. In addition, when testing, the deposition of SAMs damaged the ISFET 
devices. This was a consequence of the aggressiveness of the solvents required to 

perform this functionalization process. Additionally, concerning the integration is 
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the use of the open microfluidics (as proposed in Section 4.3.2.1). Even if the 

integration of full SU-8 microfluidics is desired, its fabrication process is not 
compatible with the ISMs, as the bonding process requires relatively high 

temperatures (which would also damage the QRE’s PVB membrane).    
Nonetheless, as concluded in chapter 4 of this work, one layer of SU-8 allows the 

operation of the system with volumes of sweat in the nanoliter range, triggering 
sweat analysis even in low sweat rate conditions.  

The next chapter presents the characterization results for these devices.  

5.4 Summary & discussion  

This chapter has shown the development of a process to allow the detection of 
hydrogen, sodium and potassium electrolytes with the nanoribbon ISFETs 

described in section 3.5 of this thesis. Two methods to achieve this 

functionalization were discussed. First, functionalization with Self Assembled 
Monolayers was tested. The SAM functionalization was first tested with ion 

selective electrodes, which showed high specificity for sodium and potassium 
ions. Nonetheless, the functionalization required the use of a piranha bath that 

damaged the passivation layer of our ISFET devices. The functionalization of 

ISFETs with SAMs was successful for sodium sensing, delivering good 
sensitivities and no cross sensitivity with pH. On the other hand, the 

functionalization with ion sensitive membranes requires no aggressive chemical 
treatment and therefore, a better alternative for electrolyte sensing with wearable 

sweat sensors.  

The integration of a miniaturized Ag/AgCl quasi reference electrode on chip is also 

proposed in this chapter, the critical points for a successful integration of a 
reference electrode was the use of a chromium layer as an adhesion layer to 

improve the mechanical stability of a silver layer on top of SU-8 surfaces. Another 
key point is the spontaneous chlorination of the silver with FeCl3 to obtain the 
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AgCl layer of the reference electrode. We propose the use of this chlorination 

method as it avoids any risk of cross contamination with the FeCl3 as it is directly 
dropcasted on top of the silver. The use of a PVC membrane protecting the 

reference electrode has been used as a way to extend the lifetime of the reference 
electrode, which is shown by the 14 hours of constant potential that the reference 

electrode has kept under constant operation. The lifetime of the reference electrode 
could be extended if a thicker layer of silver is deposited on top of the SU-8 

substrate, however, this step would require a step of electroplating that could pose 

a risk of contamination to the ISFET gate terminal. This is a parameter that should 
be considered, but nevertheless, future work should consider tests with thicker 

layers of silver.   

The successful development of a Lab-on-skin wearable sweat sensing system has 

been achieved by the on chip heterogeneous integration of functionalized 
nanoribbon ISFET devices with a miniaturized reference electrode and a 

microfluidic interface for skin. The next chapter of this thesis will show the 
electrical characterization of the system to show its high specificity to pH, sodium 

and potassium.  

The most important achievements of the system integration development are 

summarized below:   

Technical outcomes:  

 Functionalization for sodium and potassium sensing  

o Self-Assembled Monolayers of crown ethers on ISEs with HfO2 

 Sensitivity [Na+] =22.3mV/dec  
 Sensitivity [K+] =26.1mV/dec  

 No Cross-sensitivity, the response of the sensor to non-
target ion concentration was 91%-100% lower compared to 

the response of the sensor to the target ion.  
 Not compatible for ISFET functionalization  

o Self-Assembled Monolayers of crown ethers on Gold gates 
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 Successful functionalization of ISFETs for sodium sensing 

 ISFET Sensitivity [Na+] =-37.5mV/dec (presented in next 
chapter) 

 Functionalization for K+ was not responsive to variations in 
potassium concentration.  

o Functionalization with ion sensitive polymeric membranes on ISEs 
 Nernstian response to variations of NaCl and KCl  

 Sensitivity [Na+] =56.1mV/dec  

 Sensitivity [K+] =53.9mV/dec  
 Negligible Cross-sensitivity measured  

 Miniaturized Ag/AgCl quasi reference electrode  
o Fabrication of Ag/AgCl QRE on SU-8 substrates  

 Use of Chromium as an adhesion layer showed optimal 

results  
 Simple chlorination with FeCl3  

o Performance  
 14 hours of stable operation in a saturated NaCl 

environment  
 System integration 

o The proposed process allows the successful integration of the 

different modules in the system, while avoiding any risk of damage 
within the polymeric membranes or the ISFET devices.   

Main contributions to the field:  

 Two functionalization processes for ISFET functionalization for sodium 
and potassium sensing  

 Development of a stable Ag/AgCl reference electrode on SU-8 substrates 

 Successful integration of functionalized ISFETs for sodium and potassium 
sensing with an embedded miniaturized quasi-reference electrode and a 

microfluidic interface for sweat collection on skin.   
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 Experimental results: Electrolyte 
sensing in a wearable system  

 

This chapter collects all the electrical characterization measurements performed 
with the ISFET devices described in Chapter 3. The first section provides the 

electrical characterization of the FinISFETs in a miniaturized environment with 
PSA microfluidics and a miniaturized quasi-reference electrode. The second 

section provides the characterization results of the functionalized FD SOI ISFETs 

for sodium and potassium detection. Afterwards, the sodium sensitivity of the 
ISFET with a miniaturized QRE is reported.  

6.1 pH-responsive FinFETs with PSA microfluidics and 
miniaturized QRE 

In this section, the characterization of the FinISFET sensors (described in section 

3.4) in a miniaturized characterization environment are presented. The 
miniaturized system includes a microfluidic system with an embedded 

miniaturized quasi-reference electrode embedded in a microfluidic channel. 

Biasing the reference electrode at different potentials allows to exploit the different 
operational regions of the transistor. Measurements were performed with a 

precision semiconductor analyzer (Agilent, 4156 A) connected to a low-leakage 
switching matrix (Agilent B2200A).  

 Two sets of experiments were done with the sensors and the integrated reference 
electrode. The first steady-state measurements were performed to obtain the 

transfer characteristic of the devices with the miniaturized quasi reference 
electrode biasing the liquid gate exposed to a liquid to pH=7 at different potentials 

and measuring the variations of the drain current (VD was set at 100 mV while the 

VREF potential was applied from -1 to 3V with steps every 100 mV). IDVG 
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measurements were performed every 5 minutes and as it can be appreciated in 

figure 6.1.  

Surprisingly, the subthreshold slope SS=141 mV/dec was steeper with the 
miniaturized reference electrode than with the external one (SS=180mV/dec). The 

ION/IOFF kept a similar range between 104–105. A small drift in the reference 

electrode (tenths of millivolts) causing a variation in the response of the device was 
observed. However, this drift was almost irrelevant when the sensor was used to 

measure different pH buffers as seen in Figure 6.2.  

 

Figure 6.1 Id-Vg transfer characteristics of liquid gate FinFETs operated in pH=7 with integrated 
miniaturized Reference Electrode. 

The time dependent measurements were performed at a constant drain current by 

fixing the voltage of the reference electrode. Due to the characteristic curve of our 
FinFETs a value of 1.55 V at the reference electrode and a value of 500 pA at the 

drain were chosen (Figure 6). Three pH buffers with a value of 4, 7 & 10 were 

consecutively measured to asses the response in time of the device. Results showed 
an almost linear response of the sensor per pH value, estimating a variation of 

6mV/pH. A very fast and clean response of the sensor (3.1 s from 90% to 10% of 
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the measured voltage) was appreciated with the variation of the pH buffers (figure 

6). An almost linear response was obtained from the measurement of the devices, 
delivering at the output a drain voltage sensitivity of 8 mV/pH. This level of 

voltage obtained from the measurements from our system are designed to be 
integrated with an ADC converter from a commercial microcontroller with 10 bits 

ADC to achieve mV resolution, making our device an option to be integrated in a 
wearable system. 

 

Figure 6.2 Time dependent measurements of the ISFET. a) VD measured while sampling pH buffers at a 
VREF=1.55 and ID=500 pA b) set up schematics for VD measurements with an ISFET. 

 

The proposed microfluidic pH sensing microsystem-on-chip with the PSA 

microfluidics and the liquid gate FinFETs is suitable to be integrated into a 
wearable system since it takes into account essential requirements such as low cost, 

long term stability, biocompatibility and low power consumption. We have 

proposed and demonstrated a full process flow design that is compatible with 
standard semiconductor devices such as FinFETs and which includes a 

miniaturized reference electrode inside a passive microfluidic chip placed on top 
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of the sensing devices. We have reported fully functional sensors and reported 

their electrical characteristics and sensitivity. The small site and low power 
consumption of our sensing microsystem-on-chip makes it a credible candidate as 

a wearable device aimed for pH measurements and other types of ions in sweat.  

6.2 FD UTB SOI nanorribon ISFET characterization for 
sodium and potassium sensing 

This section presents the electrical characterization of the ISFETs presented in 
section 3.5 of this thesis. The characterization methods have been performed as 

shown in section 3.3. The experiments aimed at sodium and potassium sensitivity, 
with the evaluation of important parameters for a sensor, like sensitivity and 

stability.  

The characterization results of two functionalization methods are reported in this 

section. First, the sodium sensing characterization results of the FD SOI ISFET 
sensors with a SAM functionalization on metal gates is presented. Finally, the 

sodium and potassium sensing characterization results of the ISFETs 

functionalized with ISMs is reported.  

6.2.1 Sodium sensing with metal gates ISFETs functionalized 
with SAMs 

This subsection presents the sodium characterization results of the metal gate 
ISFETs functionalized with a self-assembled monolayer. As reported by [172], in 

SAMs, any charged ion have an influence in the gate dielectric, creating a cross 
sensitivity effect. Therefore, the electrical signal generated by the ions on a 

functionalized sensor, will be the superimposition of those generated by both 

selective and non-selective sensing. Gold, has the property of keeping its non-
selective ion sensitivity completely unchanged after thiol functionalization. This 
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allows us to use a second device, the control, in order to subtract the non-selective 

response from the measurement. The differential measurement is the subtraction 
of the response of a functionalized ISFET minus the response of a non-

functionalized ISFET. Figure 6.3 shows a graphical explanation of the concept 
described before.  

 

Figure 6.3 Differential measurements are performed with a functionalized gate and a control gate 

 

The threshold voltage of the functionalized gate and control devices react 
differently to variation in Sodium concentration. This can be observed in Figure 

6.4. The present difference indicates that the differential sensitivity will not be zero.  

 

Figure 6.4 Response of functionalized and control ISFET to variations in the concentration of NaCl 
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In contrast, it is expected that the threshold voltage of the functionalized and 

control sensors react similarly to variations in the concentration of another ion, like 
Hydrogen. If this conclusion is satisfied, it can be concluded that the sensor avoids 

cross sensitivity. (SS=210mV/dec for functionalized sensor and SS=230mV/dec in 
non-functionalized). This is illustrated in Figure 6.5  

 

Figure 6.5 Functionalized and control sensors respond similarly to variation in pH values 

Figure 6.6 shows the extracted sensitivities for both active and control sensors in 
full inversion at a constant current of 1 nA. With a differential measurement it is 

possible to obtain the value of the sodium sensitivity of the sensor, that is finally 
S[NA]=-37.5mV/dec.   

 

Figure 6.6 Sensitivity of ISFET functionalized with SAMs, showing no cross sensitivity with pH detection 
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Next, dynamic measurements of the sodium concentrations were performed. To 

do this a fixed potential of 200mV was fixed in the reference electrode and a fixed 
potential of 400mV was applied in the drain. Figure 6.7 shows the response of the 

sensor, that shows high stability and fast reaction times to variations in the 
concentration of NaCl.  

 

 

Figure 6.7 Dynamic detection of sodium with a functionalized ISFET 

 

SAM functionalization proved to be effective for sodium detection. The same 

procedure was performed for Potassium sensing but the sensors were not 
responsive to the variations in the concentrations of KCl. This could be a 

consequence of the degradation of the HfO2 layer or the SU-8 passivation layer. 
After several tests to functionalize for potassium, we decided to test the Ion 

Sensitive Membranes on ISFETs. The results with ISMs is presented in the 
following section. 
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6.2.2 Sodium and potassium sensing with functionalized ISFETs 
with ISMs.  

This section reports the sodium and potassium sensitivity and cross sensitivity of 
functionalized ISFETs with ISMs. The process to functionalize ISFETs with 

membranes is described in section 5.1.3.  

The sensitivities of the Sodium and Potassium-functionalized sensors to their 

respective ions have been evaluated extracting their transfer characteristics at 
different molar concentration of salts (NaCl and KCl respectively). The results can 

be observed in figure 6.8. For both sensors, a SS=140mV/dec was extracted. A 
negative shift in the transfer characteristic curves can be induced by increasing the 

concentration of the specific salt. In order to show the selectivity of the functional 

membranes for their specific ion (i.e. NaCl), an IDVREF curve is extracted employing 
an analyte with high concentration of non-specific ions (i.e. KCl); for both sensors, 

it can be observed that the negative shift of the curves is negligible, even when 
compared with the minimal specific salt concentration studied. 

 

Figure 6.8 ID-VG characteristics of two different ISFETs functionalized for sodium and potassium 
respectively. 

The sensitivity values were obtained by extracting the VTH values in weak 

inversion corresponding to an ID level of 100 nA. Both Sodium and Potassium 
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sensors show a strong, linear response to increases in their specific ions 

concentration. Excellent sensitivities have been obtained reaching the nearly 
Nernstian value of -54mV/dec as can be seen in figure 6.9.  

 

Figure 6.9 Sensitivity of ISFETs with ISMs 

The dynamic measurements were performed by measuring the ID while fixing 
VREF=100mV and a VD=200mV. As presented before, for increasing molarity values, 

the VTH value is expected to be smaller, meaning that for the same VREF, ID will be 
bigger. This can be observed in Figure 6.10. It is possible to observe the low noise 

with σ≈100pA and resulting averaged SNR≈90. Figure 6.10 also demonstrates 

repeatability when the molarity concentration is exchanged in the opposite 
direction.  
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Figure 6.10 Dynamic response of ISFETs to variations in concentration of NaCl or KCl 

6.2.3 Performance of the system with an Ag/AgCl miniaturized 
quasi-reference electrode 

Once the sensors were characterized with an external reference electrode, their 
performance was evaluated with the miniaturized reference electrode embedded 

in the chip. This test is used to observe if there is any significant degradation in the 
response of the ISFETs in a miniaturized system environment. An ISFET with an 

ISM membrane for potassium was characterized. The transfer characteristic of the 

devices are extracted at different KCl buffer concentrations to extract the 
sensitivity of the device to concentrations of K+ (Fig.1 inset f). The results and the 

extracted sensitivity, extracted at 100nA, are shown in Fig. 6.11.  



Experimental results: Electrolyte sensing in a wearable system 

117 
 

 

Figure 6.11 Characterization of functionalized ISFET with a miniaturized QRE a) IDVREF for different [K+] 
values, inset shows a zoom in constituent demonstrating the low hysteresis in the response of the sensor. B) 
VREF extracted at 100nA for [K+] 

The transfer characteristics show a very low hysteresis (1-10mV) in the response of 
the sensor with excellent linearity and fully-Nernstian with a sensitivity 

S=61mV/dec for changes in the potassium concentration, demonstrating the 

efficacy of our miniaturized QRE and the possibility of acquiring clean data from 
our fully integrated system. A real-time measurement employing the QRE has also 

been performed, with 0V bias applied on the QRE, obtaining the graph shown in 
Fig. 6.12. We can highlight that even with the miniaturized reference electrode, we 

were able to operate the sensors with low power consumption, as 200mV were 
used to bias them.  

 

Figure 6.12 Real-time measurement of the potassium concentration in a liquid with an embedded Quasi-
Reference Electrode  
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It can be observed that, thanks to the low hysteresis of the devices (observed in fig 

11a), equal levels of current are obtained for equal molar concentrations of salts, 
independently from the values of the previous measurements. The response time, 

up to 30s, is clearly not due to the electronic properties of the sensor. We attributed 
it to the gradient-driven salt diffusion taking place inside the microfluidic channels 

and assumed it to be, in any case, absolutely compatible with the physiological 
variation rate of ion concentration in sweat.  

The functionalization of ISFETs with ion sensitive membranes has been proven to 
be effective for sodium and potassium detection. The sensitivity of the devices is 

close to Nernstian values and it shows good selectivity. Thanks to the low 
hysteresis of the devices, equal levels of current are obtained for equal molar 

concentration of salts, independently from the values of the previous 

measurements. The response time, up to 20s, is clearly not due to the electronic 
properties of the sensor. We attributed it to the gradient-driven salt diffusion 

taking place inside the microfluidic channels and assumed it to be, in any case, 
absolutely compatible with the physiological variation rate of ion concentration in 

sweat.  

6.3 Summary  

This chapter has presented the characterization results for the wearable sweat 

sensing systems presented in chapter 5 of this thesis. First, the electrical 
performance of a FinISFET in a miniaturized characterization environment was 

presented. This system design included a 20 nL volume capacity in the PSA 
microfluidics and a miniaturized Ag/AgCl quasi reference electrode. The transfer 

characteristics of the liquid gate FinFETs showed an important drift in VTH, most 

certainly, the reason could have been that the miniaturized reference electrode was 
not able to keep a stable potential for extended periods of operation.  
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Afterwards, the electrical characterization of functionalized nanoribbon ISFETs 

was presented. This results allowed to evaluate the performance of the ISFET with 
a thiol based functionalization and also with a PVC membrane functionalization. 

The thiol based functionalization on a metal gate nanoribbon ISFET a sensitivity 
of 37 mV/dec to variations in sodium concentration of an analyte, a number that 

could be considered low compared to the Nernst limit. The functionalization with 
a PVC membrane with an ionophore proved to increase this sensitivity value to 

close to Nernstian response of 54 mV/dec to variations in concentration of sodium 

and potassium.  

The last electrical characterization results were obtained by operating the 
nanoribbon ISFETs with a miniaturized reference electrode. The sensors showed a 

Nernstian and linear response to variations in sodium concentration in an analyte. 

The dynamic characterization of this system show stable and repeatable response 
of the sensor to the variations of [Na+].  These results show the high potential of 

the heterogeneous device integration we presented, marking a further step 
forward towards commercial sweat-based wearable diagnostic systems. The 

characterization of this devices with samples of sweat is still pending.  

This last section summarizes the results achieved by the electrical characterization 

of functionalized ISFETs for sodium and potassium detection.  

Technical outcomes:  

 Liquid gate FinFETs in miniaturized system:  

o Subthreshold slope, SS = 141mV/dec 

o Ratio between ION and IOFF, ION/OFF=104 
o Sensitivity, S = 8mV/pH  

 FD SOI ISFETs functionalized with SAMs for Na+ sensing:  
o Subthreshold slope in functionalized device, SS = 210mV/dec 

o Subthreshold slope in non-functionalized device, SS = 230/dec 
o Ratio between ION and IOFF, ION/OFF=104 

o Sensitivity to [Na+], S = -37.5mV/dec 
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o No cross-sensitivity with pH variations  

 FD SOI ISFETs functionalized with ISMs for Na+ sensing: 
o Subthreshold slope, SS = 140mV/dec 

o Sensitivity to [Na+], S = -54mV/dec 
o Ratio between ION and IOFF, ION/OFF=104 

 FD SOI ISFETs functionalized with ISMs for K+ sensing: 
o Subthreshold slope, SS = 140mV/dec 

o Sensitivity to [Na+], S = -54mV/dec 

o Ratio between ION and IOFF, ION/OFF=104 
o No cross sensitivity with [Na+] variations  

 FD SOI ISFET functionalized for K+ sensing, characterized with miniaturized 
QRE: 

o Subthreshold slope, SS = 100mV/dec 

o Sensitivity to [Na+], S = -61mV/dec 
o Ratio between ION and IOFF, ION/OFF=105 

o No cross sensitivity with [K+] variations  

Main contributions to the field:  

 Demonstration of a well-known electronic unit, the ISFET, as a reliable 

sodium and potassium sensor. 
 Demonstration of successful functionalization of ISFETs with Ion Sensitive 

Membranes   

 Demonstration of the operation of the system with an “in-situ” 
miniaturized Ag/AgCl quasi-reference electrode 
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 Conclusions  
 

This thesis has presented an innovative wearable sweat sensing system with 
unique figures of merit regarding low power consumption, Nernstian and 

selective response of sensors to variations in concentrations of electrolytes in a 

solution and offering the possibility to work with ultra-low volumes of sweat.  In 
this chapter, the main achievements of this thesis are summarized. Then, an 

overview to compare our technology with State-of-the-art wearable sweat sensors 
is presented in order to highlight the contributions of this thesis to the field.  

Finally, prospects for further functionalization methods are discussed.  

7.1 Main achievements 

The main achievements of this thesis can be summarized as follows:  

1. Microfluidic interface for low sweat rates 

The realization of a patterned SU-8 microfluidic layer brings many advantages to 
traditional sweat collection methods used in literature. The microfluidic interface 

proposed in this work is able to collect volumes of sweat in the nanoliter range, 
bringing the opportunity to perform sweat analysis even when a person is at rest. 

This characteristic also allows to reduce the amount of dead volume of sweat in 

the interface. The flow control that the interface provides, avoids dilution of the 
sweat sample, making sweat analysis more accurate.  In addition, the fabrication 

method for the microfluidics is compatible with microfabrication techniques, 
making its industrialization possible.  

2. Successful functionalization of ISFETs for electrolyte sensing 

This work has proved that nanoribbon ISFETs are compatible with Ion Sensitive 
Membranes. The sensors provide a Nernstian response for both sodium and 
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potassium sensing (S[Na,K]=54mv/dec). Compared to SAM’s, ISMs provide the 

advantage of being specific to only one ion, avoiding the need to perform 
differential measurements (that would translate in computational power 

consumption).   

3. Integration of a miniaturized Ag/AgCl quasi reference electrode 

We have demonstrated the performance of a miniaturized quasi-reference 

electrode capable of operating for 14 hours in continuous operation. Such an stable 
QRE allow to keep a very stable potential in the liquid environment of the system, 

reducing a possible source of noise while characterizing ISFET devices. The 

operation of the ISFET with the proposed miniaturized reference electrode 
delivered an impressive value for sensitivity to variations in concentration of 

sodium in an analyte (S [Na+] =61mV/dec).  

4. Heterogeneous integration of technological modules  

This thesis has successfully integrated a functionalized sensing layer, a 

microfluidic layer and a reference electrode in a process that is fully compatible 
with the requirements of each technology. The final module is therefore ready for 

industrialization.  

7.2 Comparison with other sweat sensing systems 

Herein, the experimental results are presented in comparison with other State-of-

the-art sweat sensing systems. The comparison is organized in four fields:  

1. Sensing technology: It reports the technology used for sensing of 

biomarkers and functionalization methods (if applicable).  
2. Power consumption per sensor: It reports the power consumption of a 

single sensor in the system 
3. Biomarker sensitivity: It describes the sensing unit outputs in terms of the 

Nernstian response of the sensors to different analytes in a solution  
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4. Microfluidic interface to the skin: It reports the employment of a 

microfluidic interface to achieve controlled collection of sweat on human 
skin.  

Table 7.1 summarizes the data of all the fields. All data presented in this table are 

reported as maximum achieved values.  

As can be observed in field 1, sweat sensing systems normally employ either ISEs 

[3] [51] [52] or ISFETs [56] [57] [58] as sensing technologies. Field 1 also shows that 
with the exception of the works from Cazale et al [57], the standard 

functionalization method for electrolyte sensing in sweat is the use of ISM 

membranes based on a PVC mixture. The work presented in this thesis offers an 
important advantage considering the miniaturization of the system. Our 

nanoribbon ISFET devices are only 15 μm long, the closest one is presented in the 
works from Sommer, with a 500 μm device length. The size of all other sensors 

used in wearable sweat sensing systems is longer than 2 mm.  

Field 2 of table 7.1 reveals that in most of wearable sweat sensing systems, power 

consumption per sensor is not being considered. As mentioned before in this thesis 
a key limitation of modern wearables is their dependency on batteries as a power 

supply. Using low power consumption sensors can enable longer autonomous 
operation times. The work of Cazale et al [57] is the only that report any values of 

power consumption, they reported 313 nWatts consumed per sensor, which is at 

least 10 times higher than the value reported in this thesis (20 nWatts). With the 
data provided by Nakata [56] it is possible to approximate the power consumption 

of its sensors which would account to values close to 900 nWatts of power 
consumption. The power consumption of ISEs is not reported in the publications 

of Gao [3], Rose [51], Sonner [52], or Choi [53]. Nonetheless, in literature is widely 

accepted that ISFETs provide a clear advantage over ISEs regarding power 
consumption [180].  
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Table 7.1Comparison of the Lab-on-skin wearable sweat sensing system with SOA 
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Field 3 summarizes the sensitivity values to different ions that are targeted in 

sweat.  As discussed in chapter 5 of this thesis, the sensitivity values of 
electrochemical sensors are expected to show a Nernstian response. Field 3 shows 

that all wearable sweat sensing systems achieve values higher than 50 mV/dec for 
different ions. As potentiometric measurements are limited by the Nernst limit, it 

is not expected to have more sensitive chemical sensors, however, for small 
biological entities which are not uniformly distributed in the solution, the 

geometry and the dimension of an ISFET can provide a higher response than other 

devices in case of a very localized change of surface potential [88]. This leads to the 
conclusion that eventually ISFETs will replace ISEs for any potentiometric sensing 

applications. The one remark to be made is that fabrication costs for ISEs are very 
low when compared to the fabrication costs for ISFETs.  

Field 4 exemplifies another of the main advantages of our sweat sensing system, 
which is the microfluidic layer for ultra-low volumes of sweat. In literature, only 

the work from Koh [55] has considered the use of a similar microfluidic device to 
collect sweat and passively displace it with capillary forces. This wearable system 

still had to be tested with a person subject to physical activity (as in all other 

wearable sweat sensing systems in the State-of-the-art). The main reason could be 
that their system requires at least 50 μL of sweat to be filled, this volume can be 

considered is still high for a person at rest (average sweat flow rate at rest: 20 
nL/min/cm2 ).  Our microfluidic device requires almost 200 times less that amount, 

an achievement that could trigger sweat collection at low sweat rates. The works 

developed by Rose et al. [51] consider the use of paper microfluidics to provide a 
control over sweat with a patch, however they do not report any quantification to 

evaluate the performance of their microfluidic system. More recently, Sonner et al. 
[52] has proposed the use of chemical stimulants to trigger sweat analysis with 

individuals at rest and claim no cross sensitivity risk for measurements. This is a 
very relevant study towards continuous sweat analysis. In this work, however, one 

of the main goals was to avoid any kind of external stimuli for sweat acquisition.  
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7.3 Outlook  

In order to improve the platform developed in this thesis, there are some 
technological improvements that should be performed in the short and long term. 

7.3.1 Technology   

 Further work should consider adding a temperature sensor and a flow rate 

measurement tool as certain biomarker concentration in sweat are 
dependent on the sweat rate [19]. 

 There are commercial ionophores for calcium and ammonia that can be 
easily used in our system to increase the catalog of cations to be detected 

in sweat with ISM.    

 For the time being, the membranes have to be drop casted on top of the 
ISFETs directly. Therefore, there is no option but to keep the microfluidics 

open. This would carry the consequence of needing higher volumes of 
liquid to be able to perform measurements. One way to get around the 

problem would be to close the microfluidic channels by other means. PSA 

would be a natural candidate but considerations towards industrial 
processes to pattern it would have to be considered.  

 Research has to be performed to improve the metallic contact pads on the 
chip. It is possible that a thick layer of an oxide has to be deposited below 

the AlSi as it has been observed that wirebonding is piercing the metal 
creating a current leakage to the bulk.   

7.3.2 Perspectives for biomarker detection with ISFETs  

Future research should consider alternative functionalization methods for ISFET 

technology to enable biomarker analysis. This section discusses briefly three 
possible alternatives to ISMs.  



Conclusions 

127 
 

7.3.2.1 Molecularly Imprinted Polymer Membranes for detection of proteins or 
glycoproteins with ISFETs  

Molecularly imprinted polymer (MIP)-based field-effect transistor (MIP-gate FET) 
could be a good solution to detect selectively a targeted analyte as proteins or 

glycoproteins (for example cytokines in aqueous media such as biofluids). The 
Molecularly imprinted polymer membranes are synthesized on the gate surface of 

the FET device through the polymerization of a specific mixture made of 

monomers and chemicals if required in presence of the molecules of interest (Fig. 
7.1).  

The procedure for molecular imprinting involves complexation of functional 
monomers and target molecules of interest sites (Fig 7.1.b), followed by cross-

linking of the monomers (Fig 7.1.c) and subsequent removal of the templates to 

create adsorption sites that are complementary in size and shape to the molecule 
of interest (Fig 7.1.d). The resulting templated polymer matrix is called molecularly 

imprinted polymer membrane and is suitable to selectively adsorb targeted 
molecules. Indeed, when the polymer matrix is put in contact with a solution 

containing the targeted molecules, they adsorb within the imprinted site of the 
template polymer matrix.  

  

 

Figure 7.1 Schematic principle of molecularly imprinted polymer synthesis with (a) solution made of 
functional monomers, template molecules and monomers used to structure the MIP (if needed) (b) 
complexation of the template with one or several functional monomer(s) (c) polymerization of the solution 
to create a polymer matrix (d) removal of the template molecule 
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The molecules of interest adsorption rate and concentration change the physico-

chemical properties of the MIP and can be deduced by monitoring these physico-
chemical properties. For instance, the concentration of the target molecule in the 

liquid medium in contact with the MIP (e.g. on top of the gate of a FET) may 
modify the electrical potential of the MIP (but also the impedance, etc.) at the 

interface with the metal gate and in turn the FET gate potential. Ensuing from the 
working principle of a FET, the modification of the gate potential may change the 

electrical conduction of the FET channel that can be read out, for instance, as a 

variation of drain current or drain voltage. The characteristics of this electrical 
signal are correlated to the concentration of the targeted molecule in the liquid 

medium. Thus, the MIP-gate FET may be used as a biochemical sensor.  
In all embodiments, the transduction surface in contact with the solution 

containing molecules of interest can be: 

 
 The FET gate dielectric fully or partially with a MIP 

 
Figure 7.2 Schematic representation of direct gate FET MIP functionalization 

 
 An extended FET metallic gate covered fully or partially with a MIP 
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Figure 7.3 Schematic representation of an extended gate FET MIP functionalization 

Molecular imprinted polymer membrane usually show less degradation, more 

stability over time, capability to operate in extended medium conditions (e.g. 
variation of pH, temperature, ionic strength) than biological compounds such as 

aptamers and antibodies typically used in the detection of proteins, peptides, 
nucleic acids, etc. 

Additionally, the reversibility of MIP can be controlled through its oxidation by 
passing a current through the gate surface, leading to an easy and accurate way of 

recalibration and resetting of the biosensor. The use of MIP would permit the 

development of miniaturized and re-usable biosensors efficiently operating over 
various conditions.   

7.3.2.2 Protein receptor functionalization for cholesterol sensing  

In biochemistry, a receptor is a protein molecule from the cellular membrane, the 

cytoplasm or the cell nucleus that recognize and bind a specific ligand inducing 

physiological modifications. Ligands can be proteins or peptides, or another small 
molecule such as example hormone, toxin, neurotransmitters, etc. For example the 

receptor (LDL-R) is a cell surface receptor that recognizes the apoprotein B100 
present in the outer phospholipid layer of LDL particles that could be used to 

detect cholesterol, which has a high concentration of LFL particles.  
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The functionalization of the FET gate can be done through the coupling of low 

density lipoprotein receptors or mimicking sequences of its recognition site or 
binding site made of proteins or amino acids to complex/bind/coordinate 

specifically the apoprotein B100 and/or the complex apoprotein B100/cholesterol 
and thus to determine the concentration of LDL in biofluids.  

7.3.2.3 Sensor functionalization with Aptamers for cholesterol sensing  

Aptamer are oligonucleotide or peptide molecules with an engineered sequence 

(such as DNA or RNA nucleotide sequence) that can be used as a probe to bind 

(reversibly and) selectively with a specific target molecule -usually 
complementary to the aptamer probe- typically through hybridization, thus 

enabling label-free detection. Aptamers can be an alternative process to sense the 
LDL receptors that can be found in cholesterol.  

The aptamer is usually immobilized on the surface of the FET gate with a given 
concentration via the concentration of aptamers added to a functionalization 

solution with which the sensor is contacted and the amount of time this contact 
occurs. In order to immobilize the aptamer on the metal gate of a FET sensor made 

with gold (or other noble metals such as platinum), the aptamer sequence may be 

terminated (at the extremities) with thiol groups that will bind with the gold gate 
of each FET sensor via gold-thiol interactions/binding [200]. 

In order to immobilize the aptamer on the gate dielectric of a FET sensor (without 

metal gate) made with an oxide (e.g. silicon dioxide, hafnium dioxide), the aptamer 

sequence may be terminated (at the extremities) with silane groups that will bind 
with the gate oxide of each FET sensor via silane – hydroxyl group interactions.  

The aptamer-target binding is usually not electrochemically active. In order to 

make the aptamer-target binding electrochemically active, the aptamer sequence 

may include an electrochemical redox reporter (e.g. methylene blue). Such 
electrochemical redox reporter is usually not necessary when using a FET sensor. 
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The principle of sensing is an indirect detection: the electrochemical activity (by 

extension the measured current) of the reporter varies as a function of the aptamer-
target binding rate. 

Once the aptamer is coupled to the gate electrode surface of the ISFET, it becomes 

sensitive to the presence of LDL. Indeed, the coordination or complexation of the 

aptamer with the targeted ligand (LDL) leads to changes in the electronic 
environment of the sensor surface which can be monitored through for example 

open circuit potential or impedance measurements. The changes are proportional 
of the LDL concentration. 

7.4 Concluding remarks  

With the results presented in Section 7.1, we can conclude that the integrated 

system is suitable for wearable sweat sensing applications. The sensing units 

provide high sensitivity and specificity for sensing, sodium and potassium sensing 
while assuring a small form factor. While the sensitivity that traditional ion sensing 

electrodes is similar to the sensitivity of ISFETs, in terms of miniaturization ISFETs 
have a clear advantage. Moreover using ISFETs provide a clear advantage over 

traditional ISEs as they allow to work with non-linear output characteristics. This 

gives the possibility to detect a single ion or molecule but also allowing to measure 
large changes in concentration of the analyte. A condition that cannot be satisfied 

by Ion Sensing Electrodes.  

Traditional wearable sweat sensing systems rely on high sweat rate conditions, 

limiting the applications to the field of sports. Here, the integration in the wearable 
system of a patterned microfluidic interface for sweat collection is another 

important contribution to the field. This incorporation allows to collect as little as 
200 nL of sweat, a condition that could enable sweat analysis when a person is at 

rest. 
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The thesis has presented the needed technological processes and optimizations, 

together with their characterization, to achieve the first of its kind Lab-On-Skin 
system.  
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