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Abstract
Battery energy storage systems (BESSs) are expected to play a major role in the power grid

of the near future. These devices, capable of storing and returning electrical energy, are

valuable assets to a grid that integrates more and more distributed, intermittent and renewable

generation. Compared to renewable energy sources, however, battery storage systems are

still in an early stage of deployment and the way to exploit them in an optimal way is still

subject of research. In this respect, this thesis develops two lines of investigation to reach an

optimal utilisation of these devices. In its first part, the thesis proposes a control framework to

operate a utility-scale BESS connected to a distribution feeder. This control framework allows

to provide a set of services: dispatch of the operation of such feeder, load levelling, frequency

response. It is structured in a period-ahead and a real-time phase. The former plans the BESS

operation for a given time horizon through the solution of optimization problems. These take

into account the BESS state of energy as well as forecast scenarios of quantities such as the

feeder prosumption and of the BESS energy needs due to the frequency response service. The

real-time phase determines the BESS power injections a resolution as fast as 1 second and,

in the case of the dispatch, relies on model predictive control. Moreover, the thesis proposes

the formulation of a framework for the simultaneous deployment of multiple services. The

objective of this is to maximise the BESS exploitation in the presence of uncertainty. All the

proposed methods are validated experimentally, on the 560 kWh/720 kVA BESS installed on

EPFL campus. This extensive validation demonstrates their effectiveness and deployability. In

its second part, the thesis discusses the integration of electrochemical models in the control

of BESSs. Such models, compared to more conventional equivalent circuits or empirical

ones, can provide deeper insight in the processes occurring within Li-ion cells - the founding

elements of BESSs - and by consequence a more effective operation of BESSs. The thesis

proposes a method to identify the parameters of one of such models - the single particle model

- and, again, validates it experimentally. Moreover, in its final chapter, the thesis provides

a proof-of-concept by simulations of the advantages of the integration of electrochemical

models in the control framework proposed in its first part and, in general, in BESS control.
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Résumé
Les dispositifs de stockage électrochimique d’énergie (battery energy storage systems ou BESSs)

sont supposés jouer un role fondamental dans les réseaux électriques du futur. Ces dispositifs,

capables de stocker et fournir de l’energie électrique, sont des atouts de valeur pour les réseaux

qui intègrent de plus en plus de generation distribuée, intermittente et renouvelable. Toutefois,

par rapport aux sources d’énergie renouvelable, les dispositifs de stockage électrochimique

sont encore dans une phase initial de déploiement et la façon optimale de les exploiter est en-

core sujette à de la recherche. A cet égard, cette thèse développe deux directions de recherche

pour atteindre une utilisation optimale de ces dispositifs. Dans sa premiere partie, la thèse

propose une structure de contrôle pour exploiter un dispositif BESS à l’échelle industrielle,

connecté à un réseau de distribution. Cette structure de contrôle permet de fournir un en-

semble de services, à savoir le dispatch du feeder, le nivellement de sa charge, la réponse en

fréquence. C’est organisée en une phase jour d’avant, exécutée à l’avance, et une phase en

temps reel. La premiere planifie l’operation du BESS pour un horizon temporel donné à travers

la solution dun problème d’optimisation. Cela prend en considération l’état de charge du

BESS ainsi que des scenarios de prevision de quantités comme la prosumption du feeder et les

besoins en énergie du BESS dus au déploiement de la réponse à la variation de fréquence. La

phase en temps réel determine les injections de puissance du BESS avec une resolution d’un

second et, pour le cas particulier du dispatch, elle est basée sur du contrôle predictive. De plus,

cette thèse propose la formulation d’une structure de contrôle pour le déploiement simultané

de plusieurs services. L’objectif est de maximiser l’exploitation du BESS vis à vis des sources

d’incertitude. Toutes les méthodes proposés sont validé expérimentalement, grace au BESS de

560 kWh/720 kVA BESS installé sur le campus du EPFL. Cette validation extensive démontre

leur efficacité et leur applicabilité. Dans sa deuxième partie, la thèse discute l’integration

de modèles électrochimiques dans le contrôle du BESS. Ces modèles, comparés à des mo-

dèles plus conventionnels, circuitales ou empiriques, peuvent fournir une compréhension

en profondeur des processus qui ont lieu dans les cellules aux ions de Lithium - les élements

fondamentaux des BESSs - et en consequence un contrôle des BESSs plus efficace. La thèse

propose une méthode pour identifier les paramètres d’un de ces modèles - le single particle

model - et, encore, sa validtion expérimentale. De plus, dans le chapitre finale, la thèse fournit

une preuve de concept à travers des simulations des advantages de l’integration des modèles

électrochimiques dans la structure de contrôle proposée dans la premiere partie de la thèse et,

en general, dans le contrôle des BESSs.
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Introduction

Motivations of the Thesis

In the early two-thousands, power systems went through a revolution, caused by the integra-

tion of distributed renewable energy sources. These are today ubiquitous and cheap. However,

their integration poses considerable challenges, related to the variability of their power output

and the strain that this causes to the grid infrastructure. Storage technologies are seen as

the answer to many of these challenges and a constitutional element of future decarbonized

power systems. Therefore, a similar trend of massive deployment is expected for energy

storage devices in the upcoming years. Among various contenders, battery energy storage

systems (BESSs) - and in particular Li-ion based BESSs - have emerged as a strong candidate

as main energy storage technology. They are reliable, have high efficiency, high power and

power rates capabilities and long lifetime. However, their cost is still high and to enable the

widespread deployment of these devices, several technical improvements are needed. Some

are matter for chemists: build better and cheaper cells. Others are research subjects for power

systems and control engineers. This thesis focuses on the latter ones. It aims at developing

and demonstrating techniques to operate BESSs so that their power and energy capabilities

are maximally exploited, despite the uncertainties related to BESS operation and despite the

ageing that this operation causes to these devices.

The methods proposed and demonstrated throughout this thesis follow two interconnected

lines of research, developed in the two parts of the manuscript. BESSs have limited energy

capacity and the deployment of the services for which their are installed depends heavily on

uncertain variables. These are for example the stochastic prosumption of the resources to

which they are coupled or the regulating signal they follow when providing ancillary services.

Optimal control needs therefore to be planned so to take into account these uncertainties

and, at the same time i) ensure that the services are provided reliably and ii) possibly ensure

that the BESS is exploited as much as possible, so that assets that are so valuable do not

remain unused or partially used. The first part of the thesis deals with this challenge and

proposed and validates several control algorithms to provide grid services in such an optimal

way. Moreover, this thesis aims at integrating in the control of BESS the consideration of their

ageing. Being valuable assets, BESSs should be exploited for as many years as possible, i.e.

their lifetime should be maximised. This thesis considers this issue, by presenting a method
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for the empirical assessment of ageing and integration in control.

The second part of the thesis focuses on another specific (but equally important) aspect of

BESS control. In fact, the algorithms presented in the first part exploit, in various ways, battery

models. These are used, for instance, to predictively determine BESS power trajectories that

satisfy the constraints or for the aforementioned ageing assessment. These models can be

trivial as well as extremely complex and, most often, the models used in control are rather

simple. This allows for their easy integration into the control, at the expense of some accuracy

and some insight in the processes actually governing the storage of energy in BESSs. This

thesis shows how using more complex, advanced electrochemical models can, on the contrary,

bring substantial benefit to BESS operation. Such models allow to increase the operating

domain of BESS and to take into account more accurately the battery dynamics and their

degradation phenomena. The tradeoff is, of course, a higher complexity in the models, their

identification and usage. This thesis, in its second part, discusses this tradeoff and provides a

set of methods to facilitate the integration of such advanced models in BESS control.

Those briefly described above, are some among many aspects in BESS operation that need

thorough and extensive research, in order to achieve truly optimal BESS control and the

widespread deployment of these devices in power systems. While other aspects are briefly

mentioned in the conclusion, we believe that the core chapters of this thesis, with the methods

proposed and their validation, constitute few important steps toward this goal.

Original Contributions of the Thesis

The original contributions of this thesis are:

1. the formulation and experimental validation of a set of algorithms to provide several

services to the grid via BESSs. These services, namely, are i) the dispatch of the operation

of an active distribution feeder, ii) the levelling of the load of the same feeder and iii) the

provision and deployment of enhanced frequency response (EFR). These algorithms rely

on a two-phase structure composed by a period-ahead phase, whose goal is to optimally

plan the BESS operation and a real-time control, determining at a fast time resultion,

the BESS power setpoints. The proposed algorithms are able to manage the BESS state

of energy (SOE) so to ensure continuous operation despite the uncertainty related to the

deployment of such services (i.e. the uncertainty in the feeder load consumption, PV

production and grid frequency). This is done by exploiting forecasts of such quantities,

integrated in the control via robust optimization techniques.

2. The formulation and experimental validation of a framework to provide, simultaneously

all the above mentioned services. This is with the objective of maximizing the exploita-

tion of a precious resource such as a BESS, despite the aforementioned uncertainties.

Services that are different in nature are coupled with one another by defining for each

of them an energy budget and a power budget that can be integrated homogeneously.
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The method is first formulated in generic terms and then applied to the problem of

simultaneously dispatching a distribution feeder and providing EFR to the upper grid

layer. Finally, it is validated both through simulations and experiments carried out with

the BESS installed at EPFL.

3. The formulation of an empirical method to assess the ageing of BESS. This method,

the weighted energy thoughput, takes the BESS power as input variable and takes into

account the effect that different power rates have on ageing. A further contribution is

the assessment, via such method, of the cycling ageing induced in a BESS used to level

the load of a distribution feeder. Finally, we formulate an extension of the framework to

provide such service that, based on the weighted energy throughput method, is able to

constrain the ageing of the BESS to a chosen threshold.

4. A discussion on the integration of advanced electrochemical models of Li-ion cells in

the control of BESSs (and specifically, in the framework outlined in the previous points).

Electrochemical models are potentially very powerful tools to enhance the efficacy of

BESS control and operation. However, besides bringing numerous advantages, their

integration poses several challenges. A chapter of this thesis is dedicated to a throughout

review of these advantages and challenges.

5. The formulation and experimental validation of a method to identify the parameters of

an electrochemical model - the so-called single particle model (SPM) - of Li-ion cells.

First, a reformulation of a SPM from the literature is carried out, with the objective of

reducing the number of parameters necessary to represent the internal dynamics of a Li-

ion cells. These parameters are then clustered in relevant subsets and testing procedures

specifically conceived to identify each subset are formulated. The proposed method is

innovative in the fact that it requires only conventional laboratory equipment, while

it does not require cell teardown nor computationally-heavy optimization processes.

Moreover, for the first time in the Author’s knowledge, such a method is validated both

against a reference model and against experimental data.

6. The illustration, via simulations, of the potential advantages of integrating a SPM in

the control of a BESS dispatching the operation of a distribution feeder via the control

framework mentioned above. Such type of physics-based control has been proposed for

a grid application of BESS for the first time, in the Author’s knowledge. The final chapter

of this thesis demonstrates how this approach could lead to an increased insight in BESS

dynamics, an enhanced BESS operating domain and an accurate ageing assessment and

limitation through explicit modelling of Li-ion cell degradation processes.

Structure of the Thesis

The core of the thesis is divided in six chapters, each elaborating one of the points in the

contributions list. The six chapters are clustered in two parts. The first three focus on the BESS
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control framework developed to provide multiple services, while the second discusses the

improvements that advanced Li-ion battery models could bring to such framework, as well as

to BESS control in general.

The first chapter describes a framework to provide services to power systems using a BESS.

First, it defines the context of this framework by providing a set of definitions on BESSs and a

state of the art on the applications of these devices in power grids. Then it proposes a set of

algorithms to provide the services listed in point 1) of the contribution of this thesis, it describes

in detail their formulation and it provides extensive experimental data demonstrating the

efficacy and deployability of such algorithms.

The second chapter describes and validates experimentally an extension of this framework to

provide and deploy several services simultaneously. As the first chapter did, it provides first

a state of the art defining the context and motivations to provide simultaneously multiple

services. Then, it describes the methods developed to achieve their provision and control

the BESS accounting for different sources of uncertainty. This is done first in a generalized

manner and then casted in the case of dispatching the operation of a MV feeder and providing

EFR. As in the previous chapter, an experimental validation, carried out on the EPFL BESS, is

presented.

The third chapter discusses how strategies to assess and limit the ageing of these devices

can be integrated in such framework. First, it provides a few definitions and a state of the

art on the empirical methods to account for BESS ageing. Based on this, it then formulates

the novel weighted energy throughput method, which improves a set of methods from the

literature. The proposed method is then used to assess the ageing of a BESS carrying out a

load-levelling application. Finally the chapter proposes the integration of a constraint based

on such method in the BESS control framework and demonstrates the effectiveness of this

approach through a set of simulation results.

The fourth chapter analyses the recent efforts made by researchers worldwide to exploit

advanced physics-based models of Li-ion cells for control purposes. First it provides the most

important definitions concerning Li-ion cells and their models. Than it discusses the potential

advantages and the challenges of integrating advanced physics-based models in BESS control.

The fifth chapter describes in detail one of such advanced models - the SPM. It then proposes

a reformulation of such model, with the intent of reducing the number of parameters nec-

essary to fully describe its dynamics. Finally, it proposes and validates, both in a simulation

environment and against experimental data, a procedure to identify the parameters of the

reformulated single particle model.

The sixth chapter proposes the integration of a single particle model in the real-time stage of

the framework described in the first chapter. Via simulation results, it shows the advantages

that such approach may have, both with respect to enhanced operating domain and to ageing

assessment and limitation. In the conclusion, it provides a discussion on the work still needed
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to achieve such goals.

Finally, the conclusion of the thesis sums up the proposed methods, highlights the most

relevant outcomes and discusses the perspectives opened by these contributions.
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PART I

A FRAMEWORK TO PROVIDE GRID SERVICES
VIA BATTERY STORAGE SYSTEMS





1 Experimental validation of algorithms
for a grid-connected BESS

This chapter describes a framework to provide multiple services to power systems via BESSs.

First it presents the state of the art concerning the services that BESSs are able to provide to

power systems and the most relevant aspects that need to be addressed in their control. Second,

it proposes a framework to provide such services and reports a wide set of experimental data

demonstrating its operation. The considered services are i) the dispatch of the operation of

an active distribution feeder, ii) the load levelling of such feeder and iii) primary frequency

regulation. For each of these three services a control algorithm is proposed, detailed theoretically

and validated experimentally on a grid-connected 560 kWh BESS. These algorithms rely on

a two-phase control structure exploiting local measurements, data-driven forecasting and

scenario-based optimization.

1.1 Definition of a battery storage system

A battery storage system is a device that can accumulate electrical energy under the form of

chemical energy and release it in a following phase. We provide here few definitions.

The fundamental components of a BESS are the electrochemical cells. These are the unitary

elements that store and releases energy and will be described more in detail in Chapter 4. In a

BESS, many cells are connected in a modular fashion in series and parallel, so to constitute

modules or packs. All cells and modules are monitored via electronic systems called battery

management systems (BMSs) and, altogether, form a unique energy storage device, that is the

battery. The battery is connected, through a DC bus to a power converter. This transforms

the DC current and voltages of the battery into AC current and voltages. In the case of BESS

connected to distribution grids (as is the case in this thesis) the converter is connected, in

turn, to a step up transformer, connecting the overall system to the grid. Further auxiliary

components, such as air conditioning, lighting and fire extinguishing systems compose the

system. A central electronic system, called energy management system (EMS) controls the

elements of the BESS (battery, converter and auxiliaries) and determines its operation. Figure

1.1 summarizes the structure described here above.
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Figure 1.1 – Schematic representation of a BESS

1.2 State of the Art on BESS Grid Applications

The utilization of battery energy storage systems (BESSs) in power systems has been studied

thoroughly in the recent years. These devices are characterized by a long lifetime, high

round-trip efficiency and high ramping capabilities. For this reason, their utilization has been

envisioned for a wide set of services. The algorithms for their control, the strategies for their

siting and sizing and those for operation planning have been the object of recent research. In

recent years, demonstrator sites, located in several campuses and locations around the world,

have provided experimental validation to the methods presented in scientific literature, which

is - to date - mainly simulation-oriented. This section recalls the main applications for which

BESS usage is envisaged, the main common challenges in BESS deployment and control and

the main solutions proposed by recent research. Finally, the last paragraph of this state of

the art is dedicated to recall the experiences of similar demonstrators installed in universities

across the world. This is with the intent of positioning the work presented in the rest of this

chapter.

Utility-scale BESSs are installed at medium- or high-voltage level of power systems and may

be managed by grid operators [76], operators of power plants (e.g. wind farms [1, 105] or

photovoltaic power plants [153]) or - in the case of energy arbitrage - by energy-merchant

entities [115]. They have power ratings going from hundreds of kW [167] to tens of MW [52].
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1.2. State of the Art on BESS Grid Applications

Exploitation of BESSs has been considered, studied and tested - to date - in several different

contexts and with different goals. First, its deployment and control has been considered in

coupling with a non-dispatchable renewable energy sources, such as wind or solar [2,109,178].

This is to manage and compensate for the intrinsic variability and intermittency of these

generation resources. The power injection from the BESS is modulated to achieve a more

stable and predictable power output of the aggregated system. The operation of the BESS,

in this case, is to compensate fast variation [130] as well as daily variations [120]. Second,

its usage for energy arbitrage (i.e. the control of a BESS so to absorb power when electricity

prices are low and sell it when electricity prices are high, in order to generate revenue) has

been considered in [90, 104, 115]. Third, BESSs can provide grid ancillary services - such as

frequency regulation and others [85, 110, 195] and energy management of local resources (e.g.

load levelling) [84, 129, 132]. In this respect, BESSs can be deployed and operated by system

operators, in order to improve the quality of power system operations, at local and system

level. The usage of BESSs has been investigated for primary frequency regulation [113] or

management of contingencies [121]. BESSs can be deployed as well to manage local grid

issues. [44] proposes for instance the usage of BESSs to address local power quality issues

related to power flickering. [64] proposes the usage of a BESS to control the voltage of a

radial grid characterized by high penetration of distributed generation. [87] proposes the

use of a BESS to alleviate the congestions on distribution lines in a similar case. Finally, it

is worth to mention the deployment and control of BESSs within islanded or grid-coupled

microgrids [53, 99, 123, 200]. In fact, BESSs are fundamental components of microgrids, since

they constitute a buffer that ensure the power supply of small independent grids detached

from the main grid. Works covering the control of BESSs in the context of microgrids are, for

instance, [123, 165, 171].

The control methods developed in the articles mentioned above deal with the peculiar features

of BESSs. These are devices with limited energy capacity. This is the main difference with - for

instance - thermal power plants providing a similar set of services and poses the fundamental

issue of providing a determined service without interruption. This is challenging due to the

limited energy capacity of the BESSs and requires strategies to avoid reaching the depletion

of the stored energy (or, similarly reaching the fully-charged condition, which would prevent

the BESS to absorb additional energy). BESS operation therefore always requires the presence

of a thorough state of charge management strategy, to allow the continuous operation of the

system without degrading the quality of the provided service.

This can be done by integrating SOC constraints in the scheduling problems determining BESS

power injections [126] or superimposing a constant power set-point, computed periodically

to keep an adequate SOC, to the power set-points computed to satisfy a given service. This is

done for example for primary frequency regulation in [195]. Other solutions may be to exploit

activation deadbands [113] or to allow a tolerance around the power set-points determined by

the service provision and to regulate the power within that tolerance band [65].

Several other aspects affect BESS operations and need to be taken into account in the develop-
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ment of their control. A first one is that the control objectives of BESSs are formulated with

respect to quantities that are not known deterministically a priori, but rather uncertain and

stochastic in nature. This is the case for BESSs used to compensate for fluctuations in the

production of intermittent generation [103] as well as BESSs used to perform frequency regu-

lation [85] or react to market prices [86]. The control strategies need to take into account the

inherent variability of these quantities, so that reliable operation (i.e. non attainment of BESS

capacity limits) is granted regardless of the behaviour of the associated uncertain quantities.

This is achieved by methods ranging from stochastic [112] and robust [199] optimization to

rolling horizon scheduling schemes [10].

Considering longer time scales, a further aspect to consider in the development of control

strategies of the batteries is their degradation. Li-ion based BESS are characterised by a

longer lifetime than other storage technologies (typically 3-5000 cycles [50]). Nevertheless,

maximising the lifetime of these devices is a fundamental challenge. The approach typically

used in the literature is to use data-driven empirical models to assess the degradation due

to a given BESS operation [175, 186] and eventually to integrate these models in the control

schemes (see, for instance [15, 69, 97, 196]).

Recent literature has put also the focus on the development of strategies to schedule BESS

operation so to minimize grid losses and to respect the constraints imposed by the surrounding

grid [61, 75, 188] as well as the development of control strategies that coordinate a set of

resources in a distributed fashion [18, 117, 198].

Finally, the scheduling and control problems developed in the literature, exploit different math-

ematical methods to tackle the complexity of considering one or more of the aforementioned

issues in the control. Among these we recall convex optimization [26,167], mixed integer linear

programming [86, 189, 198], fuzzy logic [201], stochastic [112] and robust [199] optimization,

Markov chains [13, 66], rule-based algorithms [83], particle-swarm optimization [8, 40].

With respect to the body of literature presented above, the control methods developed within

this thesis focus on SOC management in presence of uncertainty and - as detailed in section

1.4 as well as in Chapter 4 - on BESS degradation. It will be highlighted that the optimization

problems solved for the scheduling of the BESS power injections are convex, hence ensuring

the determination of optimal schedules for the BESS operation. Grid constraints and losses

and distributed control mechanisms are not covered by this thesis, although these topics have

been developed in the publications [168] and [55], respectively.

Finally, we highlight here that an overwhelming majority of the research papers addressing

the operation and control of BESS relies on computer simulations for the validation of the

proposed algorithms and methods. While this certainly allows a fast development of such

algorithms, the experience provided by physical demonstrators constitutes a valuable element

for the research in this topic, since it provides considerable amount of experimental data,

as well as the opportunity to validate the proposed methods in a realistic environment, i.e.

in a context that is not subject to those assumptions that can be done in simulations. Such
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1.2. State of the Art on BESS Grid Applications

experimental experience and field validation is a relevant contribution of this thesis and we

report here references pointing to similar filed experiences. [88] summarises the experience

with a 1 MW/580 kWh grid-connect BESS installed in Zurich and used to provide primary

frequency control, peak shaving and islanded operation. [174] presents the filed experience

gained from a 1.6 MW/400 kWh Lithium-based BESS installed in Western Denmark, with

specific focus on primary frequency control and assessment of the degradation generated

by such usage. [170] provides an assessment of the environmental impacts of deploying a

3.2 MWh/6 MW BESS in the grid of Graciosa, a Portugese island whose electricity supply is

secured by wind power and diesel generators. [185] and [29] report field experience from

operating a 1 MW/2 MWh BESS within a 10 MW wind park, in Canada, to provide generation

shifting and to respond to automatic generation control (AGC) signals. The work described

in the first Part of this thesis adds to this growing literature in providing field experience

concerning the operation of BESS and the effectiveness of control methods developed to

provide several services. It differentiates however from the above mentioned works in terms

of: i) relying on a BESS with different chemistry - Lithium-titanate and ii) validating a set of

original control algorithms. These are, in particular, algorithms to dispatch the operation

of an active medium voltage feeder, to achieve load levelling of such feeder and to provide,

simultaneously dispatchability and frequency response.
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1.3 The EPFL experimental setup

The experimental setup upon which the work presented in this chapter is based consists in a

720 kW/560 kWh BESS connected to a 20 kV distribution feeder. It is based on the Lithium

titanate technology, which can perform up to 20.000 complete charge-discharge cycles at

their maximum C-rate1 of 4C. The feeder serves five office buildings of the EPFL campus,

which have a peak power consumption of about 300 kW and are equipped with 95 kWp of PV

rooftop installations, as skecthed in Fig. 1.2. It is completely instrumented with a pervasive

real-time PMU-based monitoring infrastructure [138]. The presented algorithms rely on

this infrastructure for the measurement of the aggregated power consumption at the grid-

connection point and of the grid frequency. They are developed in Matlab and run on common

PCs with Debian operative system. The local measurements upon which the algorithms rely,

as well as the most relevant measurements from the BESS (e.g. SOC, DC voltage and current,

etc.) are stored in the time-series database InfluxDB with time resolution of 1 second. Finally,

the PCs implementing the algorithms communicate via Modbus/TCP serial communications

protocol with the internal controller of the BESS, which implements the determined power

setpoints.

EPFL sub-transmission grid

Grid connection point (GCP)
50/21 kV

20 MVA
P (composite power flow)

L (aggregated feeder prosumption)

Office buildings with

95 kWp roof-top PV

installations

21/0.3 kV

0.75 MVA

B (BESS charging demand)

720 kVA/560 kWh BESS

Dispatchable feeder Known power flows

Figure 1.2 – Structure of the EPFL experimental setup

Table 1.1 collects the main parameters of the EPFL BESS and a view of the experimental BESS

is shown in Fig. 1.3.

1The C-rate is rate at which a battery is charged or discharged, normalized over its nominal capacity.
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1.3. The EPFL experimental setup

Table 1.1 – EPFL BESS parameters

Parameter Value

System parameters

Nominal Energy Capacity 560 kWh

Maximum Power 720 kVA

Battery configuration 9p{15s{3p{20s}}}

Communication protocols (cycle time) Modbus (>100 ms), Ethercat (10 ms)

Cell parameters

Nominal capacity 30 Ah

Nominal voltage 2.3 V

Voltage range 1.7-2.7 V

Maximum current 120 A (4C)

Impedance 2 mOhm

Expected cycle life 20000 full cycles

Expected calendar life 20 years

Weight 1100 g

Dimensions (LxWxT) 287x179x12 mm

Inverter parameters

Maximum AC-power 720 kVA

Rated AC-power 615 kVA

Rated grid voltage 300 V, three-phase

Maximum AC-current 1385 A

AC-current distortion (THD) 3%

Nominal DC Voltage 750 V

DC Voltage range 500-890 V

Efficiency >97%

Transformer parameters

Rated power 630 kVA

High voltage 3x21 kV

Low voltage 3x300 V

Group Dd5
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Figure 1.3 – An outside (top picture) and inside view (bottom picture) of the 720 kVA/500 kWh
Lithium Titanate-based BESS installed at EPFL (picture of Alain Herzog, EPFL).
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1.4. Dispatch of the operation of a MV feeder via a BESS

1.4 Dispatch of the operation of a MV feeder via a BESS

The control framework described in this Chapter has been first developed with the objective

of achieving the dispatchability of the active distribution feeder described in section 1.3. This

framework constituted the basis (both conceptually and chronologically) for the work in

Sections 1.5 and 1.6 on the provision of further services as well as the context in which to

integrate advanced battery models (as detailed in Chapter 4 of this thesis). Given the relevance

of this work for the remainder of this thesis, this Chapter describes such control framework,

the concept of dispatchable feeder and its experimental validation extensively.

To dispatch an active distribution feeder means, in simple terms, to determine in advance

(24 hours in advance, in this case) the power profile that the feeder is expected to follow and

then, in real-time, controlling the flexible resources connected to this feeder (in this case, the

EPFL BESS) so that the predetermined profile is respected. The portion of the grid under

consideration, being controlled in such way, won’t need reserve power to be provided by the

upper grid layer to satisfy its demand when this varies from its expected value. Decreasing

the need of reserve power necessary to operate distribution feeder would finally allow for a

greater penetration of intermittent renewable energy sources in power systems. The proposed

approach can be seen as a bottom-up method to achieve this goal, since the feeder dispatch is

reached without the need of a coordinated action at system level, nor of information other

than that locally available.

Formally, the problem consists in dispatching the feeder described in Section 1.3, such that

the composite power transit at the grid-connection point (GCP) follows a power consumption

sequence with 5 minutes resolution, called dispatch plan, which is established the day before

the beginning of the operation. Similarly to the conventional way of planning power system

operation, the control strategies consists in a two-stage process:

• Day-ahead operation. The dispatchable feeder operator determines the dispatch plan

accounting for the forecast of the prosumption and the energy need to restore an

adequate BESS state-of-energy (SOE) to ensure continuous operation. The dispatch

plan is a sequence of average power consumption values with 5 minutes resolution that

the feeder should follow during the next day of operation. The day-ahead procedure is

repeated every day. At the beginning of the next day, the dispatch plan comes into effect

and real-time operation begins.

• Real-time operation. This phase starts at the beginning of each day of operation, and

lasts for the next 24 hours period. The BESS power injection B is adjusted to compensate

for the mismatch between the dispatch plan and the power prosumption realization,

which are likely to occur due to forecasting errors. This is accomplished by applying

model predictive control (MPC), accounting for the dynamic behavior of the BESS volt-

age and SOC thanks to dynamic grey-box models identified from BESS measurements,

and including short-term forecasts of the prosumption.
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The operation timeline is also sketched in Fig. 1.4, which shows the interactions between the

operator of the upper grid layer (as for example described in [11]), the dispatchable feeder

operator (which implement the proposed control strategy) and the BESS.

The choice of the 5 minute dispatch interval is according to the envisaged trend for real-

time electricity markets. Although not specifically discussed in this work, this formulation

potentially allows for day-ahead scheduling considering also dynamic electricity prices, in a

similar way as done in [24, 190, 197].

Time offset (in hours)
with respect to clock-time 00:00 UTC of the day of operation

Grid Operator Dispatchable Feeder Operator BESS

The feeder dispatch plan is
determined.

−1

+0

The feeder is dispatched ac-
cording to the dispatch plan.

The dispatchable feeder op-
erator is committed to fol-
low the dispatch plan.

+24

BESS MPC to track the dis-
patch plan.

Day-ahead opera-
tion

Real-time operation

Figure 1.4 – Dispatchable feeder operation: the day before operation, the dispatchable feeder
operator determines the dispatch plan for the next day.

1.4.1 Day-ahead phase

The objective of the day-ahead phase of the proposed framework is to determine the dispatch

plan, which is the power consumption profile at 5 minutes resolution that the feeder should

follow during the next day operation. The dispatch plan is denoted by the sequence P̂i , i =
0,1, . . . , N −1 where the index i represents the 5-minute interval of the day of operation, and

N = 288 is the number of 5-minute intervals in 24 hours. It is defined as:

P̂i = L̂i +F o
i , i = 0, . . . , N −1, (1.1)

where L̂0, . . . , L̂N−1 are prosumption point predictions and the sequence F o
0 , . . . ,F o

N−1 is called

offset profile (the notation o means “optimal” and denotes the output of an optimization

problem, as detailed hereafter). The latter accounts for the amount of BESS energy necessary

to restore an adequate level of flexibility. For example, at the end of each day of operation, the

BESS residual charge might be close to the upper or lower bounds; the offset plan biases the

dispatch plan such that the BESS will discharge or charge, therefore re-establishing a suitable

energy level to compensate for the mismatch between the dispatch plan and the prosumption

realization. As similarly envisaged in [2], scheduling the BESS energy demand in the dispatch

plan to manage its residual charge intrinsically enables continuous-time operation. Especially,

it avoids the need of assuming an initial state of energy (SOE) level or imposing a dedicated

constraint on the final SOE at the end of the day of operation (see for example [108, 176, 179]).
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1.4. Dispatch of the operation of a MV feeder via a BESS

Although several methods may be alternatively used to calculate the offset plan and imple-

ment this intuitive concept, we here decide to adopt a framework based on robust convex

optimization. The main reason for this choice is that convex optimization is a well-established

discipline for which there exist several mature off-the-shelf software libraries, which guar-

antees a robust and bug-free implementation while allowing to focus only on the problem

formulation.

Day-ahead Prosumption Forecasting

Consumption and generation forecasting at local level is a relatively new topic, as opposed

to forecasting at higher levels of aggregation. For the proposed application, we apply a fairly

simple non-parametric forecasting strategy that is able to capture the prosumption daily and

seasonal components. It consists in selecting and averaging a number of historical power

consumption sequences that are relevant for the period to predict according to the value of

certain prosumption data features.

Formally, we consider a series of historical power prosumption measurements collected at

the GCP at 5 minutes resolution organized in daily sequences of length N (the bold typeface

denotes a sequence of scalars obtained by stacking the time evolving value of the referenced

variable):

l y,d = [ly,d ,0, ly,d ,1, . . . , ly,d ,N−1
]

(1.2)

where y and d respectively denote the calendar year (2015,2016, . . . ) and calendar day-of-year

(1,2, . . . ,365) of the observation. Also, historical measurements of the daily global horizontal

radiation (kWh per day per m2) are available and are denoted by Ry,d . Assuming being on

a given day, the objective is to determine the prosumption forecast at 5 minutes resolution

for the time interval from hour 0 to hour 24 of the incoming day, called target day. The

information associated with the target day are the calendar day-of-year d∗, calendar year y∗

and the forecasted global horizontal radiation R∗. The last information is obtained by applying

the model in [80] starting from forecast of the cloud coverage.The first step to compute the

prosumption forecast is to select from the historical data a number of sequences l y,d with

similar features as those of the target day. This is done by applying the following heuristic:

• a set ΩA is composed by selecting among historical observations the couples (y,d) which

refer to calendar non-working days (weekends and bank holidays) if (y∗,d∗) correspond

to a non-working day, and vice-versa.

• A set ΩB is obtained by selecting the first 10 couples (y,d) in ΩA chosen in increasing

order of time-distance with respect to the target day. The time-distance is evaluated as

365 · (y − y∗)+|d −d∗|.
• A set ΩC is obtained by selecting the first 5 couples (y,d) in ΩB chosen in increasing

order of distance between the respective observed cumulated irradiance Ry,d and the
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target radiance R∗, evaluated as
∣∣R∗ −Ry,d

∣∣.
Summarizing, the set ΩC is composed of 5 couples of indexes (y,d) which are i) closest in time

to the target-day, ii) same kind as the target day, and iii) closest in amount of radiation to the

GHI forecast for the target-day.

Finally, the couples in ΩC are used to select as many sequences of historical prosumption mea-

surements (1.2), which are regarded to as potential realizations of the next day prosumption.

In particular, the set with the estimates of the prosumption realization is given as:

Li =
{
ld ,y,i ∀(d , y) ∈ΩC

}
, (1.3)

for each time interval i = 0,1,2, . . . , N−1. At the current stage, realizations from the uncertainty

sets are assumed independent in time, in other words, time correlation is not modeled.The

prosumption point predictions L̂0, . . . , L̂N−1 are obtained by averaging the elements in the

respective estimates set:

L̂i = 1

|Li |
∑

l∈Li

l , i = 0,1, . . . , N −1, (1.4)

where |Li | denotes the number of elements in Li (set cardinality).

Determination of the Offset Profile

The BESS injection required during real-time operation to compensate the mismatch between

the dispatch plan and the prosumption realization Li is given as:

Bi = P̂i −Li = L̂i +F o
i −Li , i = 0, . . . , N −1 (1.5)

where (1.1) has been used in the last equality to explicitly express the BESS power Bi as a

function of the consumption forecast uncertainty and offset plan. Since Li is unknown at the

current time, we model it as a random realization li from the uncertainty set Li . Therefore

from (1.5), an estimate B̂i of the BESS compensation action at time interval i is:

B̂i = F o
i + L̂i − li , li ∈ Li . (1.6)

The smallest and largest BESS power realization are respectively:

inf
{
B̂i
}= F o

i + L̂i − sup
li∈Li

{li } = F o
i +L↓

i (1.7)

sup
{
B̂i
}= F o

i + L̂i − inf
li∈Li

{li } = F o
i +L↑

i (1.8)

where the quantities L↓
i = L̂i − l↑i (negative by construction) and L↑

i = L̂i − l↓i (positive by

construction) are introduced.
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1.4. Dispatch of the operation of a MV feeder via a BESS

In this part of the problem, we use the notion of BESS SOE. Its evolution is expressed as the

following linear function of the BESS power:

SOEi+1 = SOEi +β(B̂i ) · B̂i (1.9)

where β(B̂i ) is the charge/discharge efficiency (we neglect at this stage its dependency on

temperature and power magnitude)

β(B̂i ) =
⎧⎨⎩β+ = Ts/3600/En ·η, B̂i ≥ 0

β− = Ts/3600/En ·1/η, B̂i < 0,
(1.10)

En = 560 kW h is the BESS energy capacity, Ts = 300 s (5 minutes) is the length of the dis-

cretization step, and η is the conversion efficiency2, assumed constant and estimated from

measurements considering values of the BESS charge/discharge rate close to the operating

ones (i.e. C/5 in our case). We re-write (1.9) as:

SOEi+1 = SOEi +β+ [B̂i
]+−β+ [B̂i

]−
(1.11)

where the operator [·]+ is

[x]+ =
⎧⎨⎩x, x > 0

0, otherwise
(1.12)

and viceversa for [·]−.

The lowest and highest possible BESS SOE are given by propagating for i = 0, . . . , N −1 the dy-

namic equation (1.9) from a known initial state-of-charge SOE↓
0 = SOE↑

0 = SOE0 (3) accounting

for the smallest and largest B̂i in (1.7) and (1.8), respectively:

SOE↓
i+1 = SOE↓

i +β+
[

F o
i +L↓

i

]++β−
[

F o
i +L↓

i

]−
(1.13)

SOE↑
i+1 = SOE↑

i +β+
[

F o
i +L↑

i

]++β−
[

F o
i +L↑

i

]−
(1.14)

The two expressions above are embedded into the following optimization problem, which has

the objective of determining the offset plan F o = [F o
0 , . . . ,F o

N−1] such that BESS SOE and power

2Throughout the thesis, various techniques to include the efficiency in the proposed algorithms are exploited.
Here, it is modeled via the value η while, for example, in Chapter 2 the BESS is modeled as ideal and its efficiency is
taken into account by adding appropriate back-off terms in the problem constraints. These differences are due
to the peculiarities of the algorithms. Due to these, each time one specific technique becomes preferable over
others. We observe, moreover, that since the BESS roundtrip efficiency is extremely high (η= 0.97), the proposed
algorithms would perform satisfactorily even considering a unitary efficiency, i.e. an ideal BESS. Including a proper
treatment of the efficiency, however, is valuable since it allows the extension of the proposed algorithms to less
efficient energy storage devices.

3Since the dispatch plan is computed one hour before the beginning of the day of operation, the initial BESS
state-of-charge SOE0 is unknown and should be therefore predicted. At the current stage we use a persistent
predictor, namely SOE0 = SOC−5×12.
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are always in the respective allowed bounds (SOEmin,SOEmax) and (Bmin,Bmax) in the worse

case scenarios:

F o = arg min
F∈RN

{
N∑

i=1
F 2

i

}
(1.15)

subject to

SOE↓
i+1 = SOE↓

i +β+
[

F o
i +L↓

i

]++β−
[

F o
i +L↓

i

]−
(1.16)

SOE↑
i+1 = SOE↑

i +β+
[

F o
i +L↑

i

]++β−
[

F o
i +L↑

i

]−
(1.17)

SOE↓
i+1 ≥ SOEmin, (1.18)

SOE↑
i+1 ≤ SOEmax (1.19)

Fi +L↓
i ≥ Bmin (1.20)

Fi +L↑
i ≤ Bmax (1.21)

P̂i ≤ Pmax, (1.22)

for i = 0, . . . , N −1, SOE↓
0 = SOE↑

0 = SOE0 and SOE0 is given. The inequality constraint (1.22) is

to ensure that the dispatch plan is smaller than a tunable threshold. The value of the latter

can be designed by the modeller to peak shave the real power power transit at the GCP (as it

will be shown in the Section 1.4.3). The formulation in (1.15)-(1.22) is nonconvex due to the

relationship (1.16)-(1.17). In the real implementation and experiments, an equivalent convex

formulation, described in Appendix A.1 is solved.

1.4.2 Real-time operation

The objective of the real-time operation is to adjust the BESS real power injection such that

the average power consumption at the end of each 5-minute period matches the respective

set-point from the dispatch plan. The control is actuated with a sample time of 10 s. This

period has been chosen in order to capture early time BESS dynamics and assure good control

performance. In the remainder of this section, the index k = 0,1,2, . . . ,K −1 denotes the rolling

10 seconds time interval of the current day of operation, where K = 8640 is the number of

10 seconds period in 24 hours. At the beginning of each interval k, the real power flow at the

GCP, the BESS flow, and the real power of the prosumption realization for the previous interval

k −1 become known thanks to measurements. They are respectively denoted by Pk−1, Bk−1

and Lk−1. The value of the prosumption set-point to match, denoted by P∗
k , is retrieved from

the dispatch plan P̂0, P̂1, . . . , P̂N−1 as:

P∗
k = P̂ f loor∗ k

30
, (1.23)
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1.4. Dispatch of the operation of a MV feeder via a BESS

where f loor ∗· denotes the nearest lower integer of the argument, and 30 is the number of

10-second intervals in a 5-minute slot. The k-index of the first 10-second interval for the

current 5-minute slot is denoted as k and is:

k = f loor ∗ k

30
·30. (1.24)

For example, at time 00:16, k = 96, P∗
k = P̂3, and k = 90. Similarly, the k-index of the last

10-second interval for the current 5-minute slot is:

k = k +30−1. (1.25)

The control action consists in actuating the set-point for the BESS converter real power

demand (in kilowatt, kW). It is denoted by B o
k and is piecewise constant in the interval k. It is

determined by the model predictive control algorithm detailed herefater.

The nomenclature is also exemplified in Fig. 1.5, which sketches, for example, the situation

at the beginning of the time interval k = 2 (clock-time 00:00:20 UTC): the BESS real power

set-points B o
0 and B o

1 were actuated already in the previous two intervals, B o
2 has been just

determined using the most recent information (namely, the prosumption realizations L0 and

L1), and the average prosumption set-point to achieve in the 5 minute interval is given by the

first value of the dispatch plan, P̂0.

L0 L1 (Power consumption measurements)

Bo
2

P̂0 (from dispatch plan) P̂1

0 1 2 3 4 . . . 29 30 31 Index k

B o
0 B o

1
(Battery set-points)

Figure 1.5 – The first 31 10-second intervals of the day of operation. It is sketched the situation
at the beginning of the time interval 2.

Formulation of the Control Objective

say being at the beginning of the time interval k, the average composite power flow at the GCP

(prosumption + BESS injection) for the current 5 minute slot is given by averaging the available

information until k. If k corresponds to the beginning of a 5 minute period, no information is

available yet, and we say that the average composite consumption is zero. Formally, it is:

Pk =

⎧⎪⎨⎪⎩
0 k = k

1

k −k
·

k−1∑
j=k

(
L j +B j

)
k > k.

(1.26)

We augment the definition in (1.26) by including short-term point predictions of the prosump-
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tion L̂k|k , L̂k+1|k , . . . , L̂k|k . This allows to calculate the expected average composite consumption

for the whole duration of the current 5 minute slot. By exploiting the definition given in (1.26),

the expected average consumption accounting for the short-term point predictions is:

P+
k = 1

30

(
(k −k) ·Pk +

k∑
j=k

L̂ j |k

)
. (1.27)

At the current stage, we use a persistant predictor to model future realizations, namely L̂ j |k =
Lk−1, j = k, . . . ,k.

The energy error, expressed in kWh, between the realizations and the dispatch plan in the

current 5-minute slot (dispatch plan error):

ek = 300

3600
· (P∗

k −P+
k

)
, (1.28)

where 300 and 3600 are respectively the number of seconds in a 5 minutes interval and 1 hour

interval, P∗
k and P+

k are as defined in (1.23) and (1.27), respectively.

Formulation of Model Predictive Control (MPC)

In general, MPC consists in determining the control action for a given system by solving at each

time step an optimization problem with updated information, where the system constraints

are enforced by implementing prediction models in the optimization problem. MPC has been

widely adopted in several engineering fields, and proposed also in application to power system

operation, for example for control of demand response and storage [71, 131]. In this work, the

MPC goal is to determine the BESS real power injection B o
k in order to achieve zero dispatch

plan error (1.28) by the end of each 5-minute slot while obeying to BESS SOC, DC voltage and

current operational limits.

The main reason for implementing the control problem with a MPC framework rather than

a PID-based regulator is the following: for the latter, the control action depends only on

current and past values; MPC allows to schedule the whole power trajectory withing the

targeted time horizon, therefore, it is more suitable to solve an energy management problem.

For example, let us assume that reliable short-term predictions indicate that there will be a

significant mismatch between realization and dispatch plan in the second half of a certain 5-

minute time slot. The predictive control framework could preemptively react while respecting

BESS operational constraints thanks to enforcing them explicitly in the formulation. On

the contrary, a feedback control loop will react only when measurements are available, i.e.

in the second half of the time slot. This myopic approach may have larger chances not to

achieve the control objective, since the compensation for the mismatch will be concentrated

in a shorter time interval and the resulting higher power demand may clash with the BESS

operational constraints. In the MPC optimization problem, there are two potential candidates

for decision variables: i), the real power injection on the AC side, and ii), the current on the
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1.4. Dispatch of the operation of a MV feeder via a BESS

DC side. We adopt the second solution because it admits a convex equivalent formulation of

the optimization problem, as shown in the following. We explicitly seek for convexity because

convex optimization problems, besides having a single minimum point which is the global

one (provided that the solution exists), can be solved efficiently and in a reliable way.

We model the BESS energy throughput (in kWh) on the AC bus in the discretized time period

from k to k:

Ek|k (vk , . . . , vk , ik , . . . , ik ) =α
k∑

j=k
v j i j , (1.29)

where vk and ik are the battery DC voltage and current (positive when charging and vice-

versa), respectively, and the scale factor α= 10/3600 ·0.97 is to convert from power (in kW) in

the discretized 10 seconds time interval to energy (in kWh), and the coefficient 0.97 models

the converter losses (estimated from measurements). The formula above can be expressed as

the following matrix product:

Ek|k (·) =αv T
k|k i k|k , (1.30)

where the bold notation denotes sequences obtained by stacking in column vectors the real-

izations in time of the referenced variables, e.g. v k|k =
[

vk , . . . , vk

]T
. Since the voltage on the

DC bus is modeled by using a linear electrical circuit (as detailed in 1.4.2), its dynamic evolu-

tion can be expressed as a linear function of the battery current. By applying the transition

matrices φv ,ψv
i ,ψv

1 (which are developed starting from the voltage discrete state-space model

representation, as described in Appendix A.2), the battery voltage can be expressed by:

v k|k =φv xk +ψv
i i k|k +ψv

1 1, (1.31)

where xk is the state vector of the voltage model and is known from measurements.

It is to note that the voltage evolution also depends on the BESS SOC. This dependency

is captured by identifying five linear models for as many different SOC ranges. The linear

transition matrices in (1.31) are obtained by selecting the appropriate voltage model according

to the current measured BESS SOC (model scheduling). Moreover, we assume that the BESS

SOC does not vary significantly in the actuation period, so we can write the voltage as a time

invariant linear function of the BESS current, therefore retaining linearity.

Replacing (1.31) into (1.30) yields to:

Ek|k (i k|k ) =α
(
φv xk +ψv

i i k|k +ψv
1 1
)T

i k|k =
=α

(
xT

k φ
v T i k|k + i T

k|kψ
v
i

T i k|k +1T ψv
1

T i k|k
)

,
(1.32)

where 1 denotes the all-ones vector.
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We now explore the requirements for Ek|k (·) in (1.32) being a convex function of i k|k . Since

the nonnegative sum between functions preserves convexity, the convexity of (1.32) requires

that all its three addends are convex. The first and third addend are linear in i k|k , therefore

convex. The second term is a quadratic form of i k|k : the necessary and sufficient condition

for its convexity is given by ψv
i being semidefinite positive. This hypothesis has been verified

numerically for all the BESS identified voltage models, which are presented in Section 1.4.2.

We conclude that Ek|k in (1.32) is convex in i k|k .

The energy tracking problem (given by achieving zero dispatch plan error at the end of the

5-minute slot) could be formulated by minimizing the squared deviation of (1.32) from (1.28),

such as:(
Ek|k (i k|k )−ek

)2
. (1.33)

However, as known from the functions composition rules [23], the convexity of p(x) = q(r (x))

when r (x) is convex requires q convex non decreasing, which is not the case because the

squared function of the difference is convex but not nondecreasing on all its domain. Therefore,

we reformulate the objective and achieve a convex equivalent formulation of the original

problem: it consists in maximizing the BESS DC current while imposing that the convex BESS

energy throughput (1.32) is smaller than or equal to the energy target (1.28); this achieves the

energy throughput to hit the upper bound of the inequality , thus achieving the same value as

the target energy. The combination of a linear cost function with an inequality constraint in

the form “ f (x) ≤ 0, with f convex in x” is a convex optimization problem.

Overall, the formulation of the MPC optimization problem is given by augmenting the just

described formulation with i) constraints on the BESS current and its rate of change and ii)

open open-loop predictive constraints on BESS voltage and BESS state-of-charge (SOC). It is

worth noting that, whereas in the day-ahead problem the constraints on the BESS flexibility

were enforced by considering the BESS power and SOE, in this case we consider BESS current,

SOC and voltage. This allows for a higher degree of modeling detail and is indeed more

suitable for the control problem, where the primary objective is to determine a control decision

compliant with BESS operation constraints.

Formally, the decision problem is:

i o
k|k = arg max

i∈R(k−k+1)

{
1T i k|k

}
(1.34)
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1.4. Dispatch of the operation of a MV feeder via a BESS

subject to

α
(
xT

k φ
v T i k|k + i T

N |tψ
v
i

T i k|k +1T ψv
r

T i k|k
)
≤ ek (1.35)

1 · imin � i k|k � 1 · imax (1.36)

1 ·Δi ,min � H i k|k � 1 ·Δi ,max (1.37)

v k|k =φv vk +ψv
i i k|k +ψv

1 1 (1.38)

1 · vmin � v k|k � 1 · vmax (1.39)

SOCk|k =φSOCSOCk +ψSOC
i i k|k (1.40)

1 ·SOCmin � SOCk|k � 1 ·SOCmax, (1.41)

where i o
k|k ∈R(k−k+1) is the computed control action trajectory, 1 denotes the all-ones column

vector, the multiplication 1 · γ denotes the all-γ column vector, and the symbol � is the

component-wise inequality. The cost function (1.34) consists in maximizing the sum of the

equally weighted current values over the shrinking horizon from k to k. This, in combination

with the inequality (1.35), achieves the BESS energy throughput to be as close as possible to

ek , as introduced earlier. The inequalities (1.36) and (1.37) respectively enforce minimum

and maximum magnitude and rate of change for the BESS current, where (imin, imax) and

(Δi ,min,Δi ,max) are the respective limits and the matrix H ∈R(k−k+1)×(k−k+1) is:

H =

⎡⎢⎢⎢⎢⎣
1 1 0 0 . . . 0

0 1 1 0 . . . 0
...

...
...

...
. . .

...

0 0 0 . . . 1 1

⎤⎥⎥⎥⎥⎦ . (1.42)

The equality (1.38) is the electrical equivalent circuit model of the the BESS according to the

notation previously discussed for (1.31), while (1.39) imposes BESS voltage limits, which are

denoted by the couple (vmin, vmax).

Analogously, the equality constraint in (1.39) is the evolution of the BESS SOC as a linear

function of the variable i k|k , where φSOC,ψSOC
i are transition matrices calculated using the

SOC model in 1.60. Finally, (1.41) imposes the limits on the BESS SOC, which are given by the

couple (SOCmin,SOCmax).

The optimization problem (1.34)-(1.41) is convex since the cost function is linear and all the

inequality constraints are convex in i k|k . It is noteworthy that if the real power injection

had instead being adopted as the optimization variable, the problem would not have been

convex because the BESS voltage evolution is a nonlinear function of the power and thus the

constraints in (1.31) would have been nonconvex. The optimization problem is solved at each

time step k (with updated information) on a shrinking horizon from the index k to k, namely

from current time until the end of the current 5-minute slot. At each k, the control trajectory

for the whole residual horizon is available, however only the first component of the current
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control law is considered for actuation, which we denote by i o
k . Since the BESS power flow

is controlled by using a real power reference signal, it is required to transform from i o
k to the

power set-point B o
k . By using the same model applied in (1.29), it is:

B o
k = vk · i o

k . (1.43)

Since the control decision is re-evaluated every 10 seconds, errors on the voltage predictions

and short-term consumption forecast which arise in the current actuation period are absorbed

in the next cycle, where updated measurements are used. It is noteworthy that the current

implementation does not prevent the tracking problem to fail, for example if the accumulated

mismatch between realizations and dispatch plan is larger than the BESS capacity.

Prediction Models

Battery voltage models for control application are normally based on electric equivalent cir-

cuits, which trade detailed modelling of the electrochemical reactions for increased tractability,

see for example [9,31,98]. A voltage model commonly adopted in the literature is the so-called

two time constants model (TTC): it consists in a linear second order dynamic model, where

the value of the model parameters depend on the battery SOC, temperature and C-rate. In

this work, we augment the classical TTC formulation by implementing grey-box modelling, a

set of rigorous and systematic methods for data-driven dynamic model identification (see for

example [91, 166]). It consists in increasing the complexity of the model (by adding a order,

for example) until reaching a satisfactory behavior of the model prediction errors, which at

the final stage should be i.i.d. (independent and identically distributed) random noise with

zero mean. This is with the main objective of obtaining a prediction model that is tuned to

capture accurately the dynamics of the BESS that is used in the experimental validation of the

control framework. The adopted modelling procedure initially consists in recording a series

of experimental measurements of the BESS DC voltage and current while requiring to the

BESS a random power flow according to a PRBS (pseudo random binary signal). The PRBS is a

two levels square wave (in this case ±200 kW) with on-off periods of random durations. It is

normally adopted in model identification because it is able to excite a wide range of system

dynamics. As mentioned earlier, model parameters normally depend on the BESS SOC: in

order to capture this dependence, a number of PRBS experimental sessions are performed

when the BESS is in different SOC ranges (0-20%, 20-40%, 40-60%, 60-80%, 80-100%). The

dependencies between model parameters and both C-rate and temperature are not modeled

at this stage, and it will the objective of future investigations. Nevertheless, it is worth noting

that the latter dependency is expected to play a minor role because the batteries are installed

in a temperature controlled environment at 20◦C .

The BESS voltage model is formulated by using the continuous time stochastic state-space
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1.4. Dispatch of the operation of a MV feeder via a BESS

model representation:

d x =Ac (θ)xd t +Bc (θ)u(t )d t +Kc (θ)dω (1.44)

vk =C xk +D(θ)uk +G (θ)gk , (1.45)

where x ∈Rn is the system state vector, n the model order, Ac is the system matrix, Bc input

matrix, Kc the input disturbance matrix (used later to implement Kalman filtering for state

reconstruction), C output matrix, D feedforward matrix, G is the measurement noise matrix,

gk is i.i.d. standard normal noise, u input vector, ω a n-dimension standard Wiener process,

and θ is the set of model parameters to estimate. Model parameters are estimated by using the

greyest function in MATLAB and minimizing the sum of the model one-step-ahead prediction

errors. It was found that the model with best performance (namely, with uncorrelated model

residuals) for the considered experimental BESS is a three time constant model (n = 3) with

structure as shown in Fig. 1.6.
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Figure 1.6 – Equivalent circuit model of the BESS. The quantities v and i are respectively the
BESS terminal voltage and DC current, while vC1 , vC2 , vC3 are the components of the state
vector x in (1.44)-(1.45).

The model is given by applying Kirchhoff laws to the circuit in Fig. 1.6 and is:

x =
[

vC1 vC2 vC3

]
,utk =

[
itk 1

]T
(1.46)

Ac =

⎡⎢⎣
−1

R1C1
0 0

0 −1
R2C2

0

0 0 −1
R3C3

⎤⎥⎦ ,Bc =

⎡⎢⎣
1

C1
0

1
C2

0

1
C3

0

⎤⎥⎦ (1.47)

Kc = diag(k1,k2,k3), (1.48)

C =
[

1 1 1
]

,D =
[

Rs E
]

,G =σg . (1.49)

where R1,C1,R2,C2,R3,C3,k1,k2,k3,Rs ,E ,σg is the set of parameters to estimate. The esti-

mated values of the system parameters according to the BESS SOC ranges are summarized in

Table 1.2.

Figure 1.7 shows the autocorrelation function (ACF) of the time series of model prediction

errors (or model residuals), that is the difference between the training set of current/voltage

measurements and the respective model predictions. Checking for model residuals correlation
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Table 1.2 – Estimated BESS voltage model parameters for different SOC ranges

SOC 0-20% 20-40% 40-50% 60-80% 80-100%

E 592.2 625.0 652.9 680.2 733.2

Rs 0.029 0.021 0.015 0.014 0.013

R1 0.095 0.075 0.090 0.079 0.199

C1 8930 9809 13996 9499 11234

R2 0.04 0.009 0.009 0.009 0.010

C2 909 2139 2482 2190 2505

R3 2.5e-3 4.9e-5 2.4e-4 6.8e-4 6.0e-4

C3 544.2 789.0 2959.7 100.2 6177.3

k1 0.639 0.677 0.617 0.547 0.795

k2 -5.31 -0.22 -0.36 -0.28 0.077

k3 5.41 40 0.40 2.83 -0.24

σ2
g -1.31 -0.42 0.3426 3.5784 2.7694

is a test widely adopted in system identification (see for example [92]) to validate the ability

of identified models of capturing the dynamics contained in the training data set. The test

consists in comparing the ACFs of model residuals and white noise (which is i.i.d., therefore

uncorrelated by definition): if all the components of the former ACF falls in the 95% confidence

interval of the latter, the test is successful and the dynamic performance of the model are

considered satisfactory. The situation in Figure 1.7 refers to 50% SOC and shows uncorrelated

model residuals, thus denoting that the identified model is able to capture all dynamics

contained in the training data set. Although not shown here for a reason of space, the same

behavior was observed also for the other SOC ranges of Table 1.2.
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Figure 1.7 – Autocorrelation function (ACF) of model residuals (full line) and white noise
(horizontal lines) at 95% confidence level.
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1.4. Dispatch of the operation of a MV feeder via a BESS

The continuous time model in (1.44) is discretized at Ts = 10 seconds resolution in order to be

implemented in the MPC constraints in (1.38). Discretization is performed with the forward

difference (or forward Euler). However, in order not to incur in numerical instability, the

smallest time constant given by the (R3,C3) branch is dropped in favor of an algebraic state by

using the matched DC gain method. Let Ar ,Br ,Kr be the continuous time system, input and

system noise matrices of the reduced order model, the discretized system and input matrices

are given by:

A = 1+Ar Ts (1.50)

B =Br Ts (1.51)

K =M1M
T
2 , (1.52)

where M1 and M2 are given according to the Van Loan’s method [102] and are matrix ex-

ponentials, which are approximated by the first order truncation of their respective Taylor

expansions:

M1 = eKr Ts = 1+Kr Ts (1.53)

M2 = e AT
r Ts = 1+A T

r Ts . (1.54)

The matrices A ,B,K in (1.50)-(1.52) and C ,D,G in (1.49) constitute the skeleton of the

discrete time state-space of the BESS equivalent circuit model. These are used to generate

the transition matrices φv ,ψv
i ,ψv

1 , which are finally used to implement the MPC voltage

constraints in (1.38).

The components of the system state in (1.44) are a modelling abstraction and cannot be mea-

sured. However, their value must be known in order to compute the BESS voltage predictions.

In turns, the state is estimated from measurements of the battery DC voltage by applying

Kalman filtering (KF, [169]). As known, it consists in a two-stage procedure, repeated at each

discrete time interval: a prediction step to determine the system evolution (state expected

value and covariance matrix P ) solely on the basis of the knowledge on the system

xk|k−1 =A xk−1|k−1 +Buk−1 (1.55)

Pk|k−1 =A Pk−1|k−1A
T +K K T , (1.56)

and an update stage, where the predicted state is corrected accounting for the last measure-

ment vk

xk|k = xk|k−1 +G(yk −C xk|k−1) (1.57)

Pk|k =
(
P−1

k|k−1 +C T σ−1
g C

)−1
. (1.58)
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where G is the Kalman gain:

G = Pk|k−1C
T
(
C Pk|k−1C

T +σ2
g

)−1
, (1.59)

and σg is the measurement noise (known from the parameters estimation). KF requires full

system observability, that in our case is enforced by construction since the model is estimated

from measurements.

The BESS SOC model is:

SOCk+1 = SOCk +
10

3600

ik

Cnom
, (1.60)

where Cnom = 810 Ah (ampere-hour) is BESS capacity from datasheet information. It is worth

noting that we neglect here the dependency of the BESS capacity with respect to the C-rate

and cells temperature, see for example [17]. The discretized state-space matrix are easily

found from (1.60) and are A = 1, B = 10/3600/Cnom, C = 1, D = 0. These are used to generate

the transition matrices φSOC,ψSOC
i for the SOC predictive constraints in (1.39).

On the use of BESS models in the day-ahead and real-time stages

Open-loop constraints on BESS operation are enforced in both day-ahead and real-time stages.

The main differences between the two implementations are the decision variables, the time

resolution and time horizon at which they are computed (5 minutes and 24 hours and 10 s

and 5 minutes, respectively), and the fact that the latter problem is re-evaluated at each time

interval by incorporating new information from real-time measurements. From the point of

view of their practical purpose, BESS models are integrated with the objective of modeling the

storage capacity and constraints. However, while in the day-ahead formulation they are to

represent the long-term flexibility, in real-time operation they model short-term operational

constraints, therefore enabling the computation of reliable control actions which are respectful

of the BESS operational limits. This explains the reason why more accurate BESS models are

implemented in the latter stage than in the former, where a high level of details is not needed,

especially considering that a more conservative plan for the BESS usage can be achieved by

adding back-off terms to SOC and power flow constraints in (1.18)-(1.21).

Temporary We observe here as well that, throughout the thesis both the concepts of state of

charge (SOC) and state of energy (SOE) are used. This distinction is related to the reasons

discussed above. The period-ahead phases of the various proposed control algorithms are

characterised by longer time horizons and lower time resolutions than the real-time controls.

Moreover, while the latter use detailed models, having the BESS DC current as decision variable,

the decision variable of the former is the BESS active power. It follows that the concept of SOE

(the SOE being determined by the integration of a power profile) is exploited in the various

period-ahead problems, while the concept of SOC (determined through the integral of the

BESS DC current) is used in the real-time control.
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1.4. Dispatch of the operation of a MV feeder via a BESS

Implementation of the real-time strategy

The flow of operation during the real-time strategy is sketched in Figure 1.8. Real-time op-

eration is implemented as a Matlab script and executed daily on the same computer as the

day-ahead strategy. Also, information which become available from real-time measurements

(power flow at the GCP, DC voltage, DC current, SOC, AC power flow of the BESS) are acquired

and stored in a time series database with 1 second resolution.

00:00:00 UTC (k=0, beginning of the day of operation)
Retrieve dispatch plan P̂ from database

Realizations of the power flow at the GCP Pk−1
and the BESS demand Bk−1 for the previous 10 s
time interval become known from measurements.

Retrieve dispatch plan set-point P∗
k ,

k and k by applying (1.23)-(1.25)

Compute the short-term pro-
sumption predictions and

used them together with the available
information from k to k to determine

the dispatch plan error ek in (1.28).

Read SOCk and vk from the
BMS, and update Kalman filtering

Select the right BESS voltage model ac-
cording to SOCk (model scheduling) ,

compute the short-term prosumption forecast, and
determine i o

k|k by solving (1.34)-

(1.41) for the time horizon k to k

Extract the first current value from the control
law, find the BESS real power set-point with
(1.43) and send it to the BMS for actuation.

Wait for 10 seconds

k = k +1

Stop at 24:00:00 UTC

Figure 1.8 – Flow chart showing real-time operation during 24 hours.

1.4.3 Experimental Validation

In this section, we show the experimental results obtained by dispatching the operation of the

MV feeder described in Section 1.3. We start by describing three contiguous days of operation
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(denoted by day 0, day 1 and day 2) in order to illustrate the ability of the proposed method

to manage the SOC and achieve continuous time operation. Results are shown in figures

1.9a-1.11c. Each figure consists in three main plots a, b, c, d, which respectively shows:

(a) the extreme values of the prosumption uncertainty sets
(
l↓i , l↑i

)
, the expected prosump-

tion L̂i , i = 0, . . . , N −1, and the offset profile F o . The first two quantities are the outcome

of the forecasting tool discussed in 1.4.1, while the last is computed as detailed 1.4.1.

The second and third quantities are used to generate the dispatch plan according to

(1.1) P̂i ;

(c) the dispatch plan P̂i , the power transit at the GCP realizations Pi and the prosumption

realizations Li ;

(d) the measurements of the BESS SOC, DC current i and voltage v and their respective

limits.

As visible from Fig. 1.9c, the BESS starts the operation in the day 0 experiment with a very

low SOC. In general (and assuming for one moment unbiased prosumption forecast), this

is not a desirable situation because the BESS capacity of absorbing forecasting errors is not

symmetric. The specific objective of the offset profile is to restore a sufficient BESS SOC

in order that enough BESS energy capacity is available along the day to compensate for

forecasting errors, which are modeled in the optimization problem in (1.15)-(1.22) by the

prosumption uncertainty sets (shown in Fig. 1.9a with the shaded band). In this case, the

offset profile is such that the dispatch plan overestimates the prosumption, therefore implicitly

achieving the BESS to absorb the increased level of demand and slowly charge. As visible

from Fig. 1.9b, during operation the power flow at the GCP P follows precisely the dispatch

plan P̂ , thus denoting the good tracking performance of the MPC. A more accurate numerical

comparison is shown later in this section. Fig. 1.9c shows the details of BESS operation. The

BESS is controlled in order to compensate for the mismatch between prosumption realization

and dispatch plan, and, in this case, it slowly charges along the day, as imposed by the offset

plan. The BESS constraints, which are enforced in the MPC are generally respected during

operation.

The BESS terminates the day 0 experiment with a SOC above the 50% level. This is reflected

on the operation of the next day (experiment day 1, in Fig. 1.10), which is characterized by a

slightly negative offset plan (F o in Fig. 1.10a) to restore a lower BESS SOC, as visible in Fig. 1.10c.

As shown in Fig. 1.10b, the algorithm achieves to track the dispatch plan successfully. As visible

by comparing figures 1.9c and 1.10c, the BESS SOC variation in the latter case is smaller than

in the former, thus denoting a smaller accumulated forecasting error.

Fig. 1.11 shows the operation of the experiment on day 3. In this case, the BESS SOC is below

the 50% level since the previous day of operation, and a positive offset profile F o (Fig. 1.11a)

is necessary to raise the SOC. During operation, the algorithm is able to control the BESS in
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(c) Realizations of BESS SOC, DC current and voltage and respective limits.

Figure 1.9 – Day 0: experimental results.

order to track the dispatch plan successfully (Fig. 1.11b). However, the BESS SOC slowly drifts

away from the 50% level during the day, as visible in Fig. 1.11c, to compensate for a moderate

overestimation of the average PV production.

Table 1.3 summarizes the tracking performance of the proposed control strategy in the experi-
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mental results. For each day experiment, two cases are considered:

• no dispatch: this corresponds to nowadays conventional operation, namely when

prosumption is not dispatched but simply forecasted (although on a higher aggregation

level than as done here). In this context, the tracking error is defined as the difference

between the prosumption forecast and the prosumption realization;

• dispatch: the operation of the feeder is dispatched as described previously. The error

here is given by the difference between the dispatch plan and the power flow realizations

at the GCP.

Three metrics are considered: the root mean square error (RMSE) along with its mean and

maximum absolute value. As visible from Table 1.3, dispatched operation achieves better

figures than the base case. The tracking performance of the MPC are fairly accurate, with

an RMS value less than 0.5 kW, which is approximately the 0.2% of the feeder average power

consumption (200 kW).

Table 1.3 – Tracking Error Statistics (in kW) for Experiments Day 0 to 2

Experiment RMSE Mean Max

Day 0
no dispatch 19.20 4.68 50.82

dispatch 0.43 < 0.01 1.54

Day 1
no dispatch 18.71 -0.39 72.150

dispatch 0.25 < 0.01 0.740

Day 2
no dispatch 18.06 -4.92 54.45

dispatch 0.42 < 0.01 1.41
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(b) Real-time: dispatch plan vs realization of GCP power transit and prosumption.
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(c) Realizations of BESS SOC, DC current and voltage and respective limits.

Figure 1.10 – Day 1: experimental results.
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(a) Day-ahead: prosumption uncertainty sets and expected value, and offset plan.
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(b) Real-time: dispatch plan vs realization of GCP power transit and prosumption.
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(c) Realizations of BESS SOC, DC current and voltage and respective limits.

Figure 1.11 – Day 2: experimental results.
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1.5. Load-leveling

1.5 Load-leveling

The framework developed to dispatch the operation of a set of prosumers has been extended

to include further objectives beyond the sole dispatchability. The dispatch plan, can indeed

satisfy more stringent conditions and the system will therefore achieve further local objectives

just by tracking a carefully built dispatch plan. In this section, a control scheme that achieves

load levelling of the feeder is formulated. This is done by modifying the optimisation problem

of the day-ahead phase presented in Section 1.4, so to achieve that energy is shifted from hours

of peak load to hours of low demand. This can have an economical value where time-of-use

energy prices are present but in general has a beneficial effect on the grid, since it relieves it of

part of the consumption in the hours of peak demand. Load leveling is similar to peak shaving

unless for the fact that, while the latter aims at reducing the peak consumption, the former has

the primary objective of flattening the consumption profile [84]. Load leveling is relevant to

power systems operation for several reasons, both from a consumer and system perspective: i)

reduced electricity cost, since customers are normally penalized for the peak consumption;

ii) at system level, it reduces peak demand, which is in many cases served by expensive

peaking power plants; iii) reduced distribution and possibly transmission losses [127]; iv)

postponement the grid infrustructure upgrades.

1.5.1 Methods

Problem statement

We consider a group of prosumers, for which we would like to smooth the consumption

profile and dispatch their operation. As in the case of the dispatch operation, the problem is

formulated according to a two-stage procedure: day-ahead and intra-day phase. In the day-

ahead stage, the objective is to determine the dispatch plan, namely the power consumption

profile that the group prosumers is willing to follow during real-time operation. The dispatch

plan is built as the sum of the forecasted power consumption profile, obtained through data-

driven forecasting, and an offset profile. With respect to the dispatching operation, this latter

quantity, which is obtained by solving a convex optimization problem, has the objective of

generating a dispatch plan with minimum variance, namely with minimum variation with

respect to its average value such that, during operation, the BESS will charge (discharge) when

the power profile exceeds (is below) the levelled profile and viceversa.

The intra-day operation consist in controlling the BESS active power injection in order to track

the dispatch plan, namely compensating for deviations between the dispatch plan and actual

consumption, which are likely to differ due to the offset profile and to forecasting errors. This

is accomplished using MPC, as detailed in Section 1.4.24.

4In the problem formulation we do not consider the operational constraints associated to the grid. In other
words, we assume that the battery power rating results in grid voltages and currents within operational bounds.
This is the case for stiff medium voltage grids.
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Day-ahead problem

The objective is to build the dispatch plan, namely the power consumption profile that the

feeder should follow during operation, the day after. The dispatch plan P̂ is defined as the

sequence of N = 288 (i.e., the number of 5-minute intervals in 24 hours) average power

consumption values for the incoming day. The feeder dispatch plan is composed by the sum

of the prosumption forecast profile L̂t and the offset profile Ft :

P̂t = L̂t +Ft t = 1, . . . , N (1.61)

The prosumers forecasted consumption profile, denoted by L̂, is produced through a nonpara-

metric black-box method based on vector auto-regression as described in Section 1.4.1.

The objectives of the offset profile are i) altering the dispatch plan so that it is with mininum

variance and ii) making sure that an adequate level of charge is available in the BESS to achieve

dispatchability during intra-day operation. We define the average daily power consumption

value as:

L̂av g = 1

N

N∑
t=1

L̂t . (1.62)

The offset profile F o =
(
F o

1 , . . . ,F o
N

)
is determined by a constrained optimization problem

that minimizes the movement of the forecasted consumption sequence L̂1, . . . , L̂N around

its average daily value L̂av g . The optimization problem constraints are i) the BESS apparent

power injections should respect the BESS converter nominal power and ii) the BESS state of

energy (SOE) should be within its nominal limits.

The BESS constraints are built by adopting a robust optimization approach: each forecast

consumption scenario (as defined in Section 1.4.1) is implemented in the constraints to model

the fact that it may be actually realized during real-time operation. This is with the objective

of ensuring that enough energy and power capacity are available in the BESS to accomplish

the dispatchability, therefore enforcing the feasibility of the intra-day control objective. The

optimization problem is formulated as:

F o = arg min
F∈RN

N∑
t=1

((
L̂t − L̂av g

)−Ft
)2

(1.63)
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1.5. Load-leveling

subject to:

P̂t = L̂t +Ft (1.64)

B̂ d
t = P̂t −L d

t (1.65)

∣∣∣B̂ d
t

∣∣∣< Bmax (1.66)

SOEd
t = SOE0 +η

ΔT

Cnom

t∑
j=1

B̂ d
j (1.67)

SOEmi n < SOEd
t < SOEmax (1.68)

for t = 1, . . . , N and d = 1, . . . , p, where t is the time step and d is an index denoting the

scenario. The equality constraint (1.64) sets the relationship between dispatch plan, prosumers

consumption forecast and offset profile, (1.65) is the predicted BESS active power injection for

each consumption forecast scenario L d with d = 1, . . . , p, and (1.66) imposes that the BESS

injection is within the nominal power capacity of the BESS converter (BESS operates at unitary

power factor). Finally, (1.67) and (1.68) respectively models the SOE evolution as a function of

the BESS injection for each consumption forecast scenario and imposes that the SOE is within

the limits. The SOE model is from [107].

The parameter Cnom is the rated energy capacity of the BESS. The charging-discharging

efficiency η normally depends on the sign of the battery demand and is normally modeled as:

η=
⎧⎨⎩β B ≥ 0

1/β B < 0.
(1.69)

which is non-linear for β 
= 1 and originates a non-convexity in the optimization problem. In

this respect, we performed a series of cycling experiments on the BESS in the SOE range from

10% to 90%, with power rates from -100 to 100 kW and depth of discharge (DOD) of ±5% and

assessed values of efficency higher than 0.95 for all the operating conditions. It results that

we can assume β= 1 without introducing any relevant error in a 24 hours horizon preserving

therefore the convexity of the problem.

Real-time operation

The real-time operation is performed via the methods described in Section 1.4.2.
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1.5.2 Experimental results

In this section, the performance of the proposed load leveling/dispatching strategy is shown

and analyzed. First, results are presented graphically in order to exemplify the operation of

load levelled dispatchable feeder. Second, a quantitative analysis is provided.

Experimental operation of the proposed strategy

Fig. 1.12 and 1.13 show the BESS experimental results during a typical day of operation. The

experiment refers to March, 14th 2016. Fig. 1.12, shows the forecasted power consumption

profile, the leveled dispatch plan, the offset profile and the predicted BESS SOE, which are

determined in the day-ahead operation.
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Figure 1.12 – Day-ahead scheduling: a) consumption forecast L̂ and leveled dispatch plan P̂ ;
b) offset profile F ; c) forecasted BESS stored energy evolution (�SOE).

Fig. 1.13 shows the loads power consumption, feeder power demand, BESS power injection

and BESS SOE realization in the day of operation. For the sake of comparison, the plots are

obtained through 5-minutes averaging of the measurement data. It is therefore averaged the

effect of the 15 seconds correction, so that the actual 5 minutes profile can be compared with

the one defined the day-ahead operation. It can be observed that while deviating from the

dispatch plan, the SOE remains within feasible boundaries and thus the dispatchability is

maintained along the whole day.

Performance assessment of the proposed strategy for a day of operation

The overall performance of the control strategy is evaluated with respect to three objectives.

The first is the ability of performing load leveling. This is measured by the load peak reduction

max(L1, . . . ,LN )−max(P1, . . . ,PN ), the amount of energy shifted from the peak-demand to

low-demand period Eshi f ted , and the ratio rvar between the consumption profile and load-
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1.5. Load-leveling
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Figure 1.13 – Intra-day operation: a) actual feeder consumption L and leveled feeder power
profile P ; b) actual BESS power injection B ; c) actual BESS SOE evolution. The profiles
forecasted in the day-ahead scheduling are reported in grey color.

leveled profile variance. The second is the ability to dispatch the operation of the feeder,

through evaluating the maximum, mean and root mean square of the tracking error (emax ,

emean and er ms respectively) in the realization of the dispatch plan are numerically presented,

both in absolute and relative terms. The third is the robustness of the dispatch plan. This is

quantified namely by the distance between the BESS SOE and its respective upper and lower

bounds evaluated by measuring the maximum and minimum SOE reached during the day of

operation, SOEmax and SOEmi n , and the portion of the BESS capacity used to perform the

load leveling and the dispatch respectively, i.e. ΔSOELL and ΔSOED . ΔSOELL is computed as

the difference between SOEmax and SOEmi n , whereas ΔSOED corresponds to the maximum

deviation of the SOE along the day from its forecasted evolution. All the metrics calculated for

the performed experiment are summarized in tables 1.4-1.6.

Table 1.4 – Load Leveling Performance Evaluation

Metric Value

Pmax 206 kW
Lmax 277 kW
|L−P |max 81 kW
Eshi f ted 365 kWh
rvar 42.14

It can be observed in table 1.4 that the peak power consumption is reduced from 277 kW to

206 kW and that 365 kW h are shifted from the peak-demand to the low-demand period. The

realized power profile is greatly smoothed, with regard to the actual consumption profile, the

ratio between the variances of these two profiles being rvar = 42.14. Table 1.5 describes the

performance of the feeder dispatch operation. It can be seen that the mean tracking error
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Table 1.5 – Feeder Dispatch Performance Evaluation

Metric Value

emax 13.35 kW
7.16 %

emean 1.43 kW
0.75 %

er ms 2.19 kW
1.13 %

Table 1.6 – Control Strategy Robustness Evaluation

Metric Value

SOEmax 78 %
SOEmi n 15.5%
ΔSOELL 62.5%
ΔSOED 26.7%

along the day is lower than 1%. Finally, it can be seen in table 1.6 how the BESS SOE remains

within its limits along the day of operation.
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1.6. Frequency regulation

1.6 Frequency regulation

This Section proposes an algorithm to control a BESS to provide a frequency response service.

Conventionally, grid frequency is regulated through primary and secondary frequency control

(PFC and SFC, respectively). PFC, performed by conventional generators, implies an adapta-

tion of the generators’ active power output within few tens of seconds after the occurrence of

frequency perturbations. Recently, however, the increasing penetration of renewable energy

sources lowered the grid inertia and increased the need for faster frequency regulation. This

need can be satisfied effectively by BESSs, since these devices are characterized, typically, by

response times faster than those of conventional generators. Several grid operators worldwide

have implemented a new class of ancillary services, to accommodate the fast-response capa-

bilities of these devices. This is the case, for instance, of the the “Regulation D” signal used by

the american grid operator PJM [139] and the “enhanced frequency response” implemented

by National Grid [51], in the United Kingdom. The latter requires the deployment, within

1 seconds, of a power that is proportional to the grid frequency deviations. The control devel-

oped in this Section falls within this class of new “advanced” frequency regulation services. In

particular, it is similar to the one proposed by National Grid5. Therefore, in the remainder of

this section, we will refer to the service provided by the EPFL BESS as enhanced frequency

response (EFR).

The provision and deployment of such service is carried out exploiting a framework similar to

the one already discussed in the previous sections. In fact, similarly to the cases of dispatching

the operation of a feeder and achieving the levelling of its load, providing frequency regulation

requires the managing of the BESS SOC. This can be done by exploiting deadbands [113],

tolerances around the regulation setpoints [65] or other heuristic concepts. These methods,

however, require the BESS not to follow accurately its regulation set-points and are therefore

hardly scalable: what would happen, at system level, if all BESSs participating to the regulation

would use such heuristics? A more viable approach is to exploit a control structure already

presented in the previous sections. This is a two stage structure, in which the SOE management

is carried out in a period-ahead stage that takes into account the current SOE and the energy

needs predicted for the upcoming period. At this stage, a fixed offset power value is determined,

with the objective of maintaining an adequate SOC level. The real time control consists in

the sum of this offset and of the regulating power, which now tracks precisely the frequency

deviation signal. The remainder of this sections presents the details of the proposed frequency

response algorithm as well as the results obtained in its validation. First, it proposes a method

to forecast the energy required to operate the service for a given time horizon. Then it describes

the control algorithm itself, showing how the aforementioned forecast can be integrated

to achieve better performances. Finally, it presents the results of an extensive validation,

performed by means of simulations and experiments.

5In the specific case of National Grid, the minimum power to participate to the provision of EFR is 1 MW.
However, there is a growing trend to allow the participation to the ancillary services markets of distributed yet
smaller devices. The EPFL BESS, while not satisfying the current requirement of 1 MW of power, may be well suited
to provide EFR in such a context.
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1.6.1 Forecast of energy required for the EFR deployment

Since BESSs can store a limited amount of energy, in order to provide a given amount of

regulating power for a predetermined duration, they need to continuously adapt their reser-

voir level. Therefore, in order to maximise the capacity of providing regulating power, it is

important to quantify the energy that the BESS needs to make available to accomplish the EFR

service deployment over a period T . Since regulating power P e f r is proportional to frequency

deviations Δ f from the nominal frequency, we have that regulating energy E e f r is proportional

to the integral of such deviations over the considered time window:

E e f r =
∫

T
P e f r d t =

∫
T
αΔ f d t =α

∫
T
Δ f d t =αWf , (1.70)

where Wf is the integral over a time window T of the deviations of frequency from its nominal

value, and α is the droop coefficient, measured in kW ·H z−1. The quantity Wf , over long time

horizons is equal to zero (considering a power grid with a sufficient amount of secondary

frequency control reserve). However, this is not generally true for shorter time windows, and we

show that it is possible to forecast the value of Wf and use it to achieve efficient EFR strategies.

The analysis detailed in these paragraphs has been carried out on two separate datasets,

composed respectively by two years (2014-2015) of frequency measurements provided by

National Grid Electricity Transmission (NGET)6 and by one year (2016) of on-site frequency

measurements at EPFL [138]. From the frequency timeseries, we have computed several Wf

timeseries, with integration intervals T of increasing length from 1 to 24 hours. We show that

autoregressive (AR) models are capable to forecast Wf (and hence the energy E e f r required

for the service deployment).

The usage of AR models requires the analysis of the probability density function of the variable

Wf and its autocorrelation [106]. Figure 1.14 shows the normal probability plots for two Wf

timeseries respectively from the a) NGET and b) EPFL databases and with different T . Such

plots demonstrate that the data of such timeseries are close to normally distributed and justify

the usage of AR models.

Figure 1.15-a shows the autocorrelation of the timeseries composed by subsequent Wf values

computed for the NGET database and with T =1h as an example. Modelling such timeseries as

a persistent process (i.e. assuming that there are not relevant dynamics that can be captured),

at every timestep we predict the value Ŵf (k) = μ f = 0. For such model (hereafter AR(0)),

the model residual corresponds the value of Wf itself, being rk = Wf (k)−Ŵf (k) = Wf . We

see that the residuals for such model present an autocorrelation that is, for the lower lags,

higher than the one of white noise (indicated by the blue lines in the plot). This suggests

that Wf contains in fact dynamics that can be modelled with an higher order model. Figure

1.15-b shows the autocorrelation of the model residuals obtained, for the same dataset, with

an autoregressive model of order 8 (this being the lowest order that successfully captures

all the relevant dynamics for all the period lengths T ), hereafter referred as AR(8). It can be

6http://www2.nationalgrid.com/Enhanced-Frequency-Response.aspx
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1.6. Frequency regulation

a) b)

Figure 1.14 – Q-Q plot of the residuals of Wf (red) versus the normal standard (blue) built
using a) T = 1h, data from the NGET database and b) T = 6h, data from EPFL database.

a)

b)

Figure 1.15 – Autocorrelation function of the residuals of a) AR(0) and b) AR(8), both computed
with T =1h and data from the NGET database.

seen that the residual autocorrelation does not show, in this case, any value outside the band

identifying white noise. Similar results are obtained for all values of T and for both datasets

considered (not reported here for sake of spare). Table 1.7 compares the standard deviation

of the residuals obtained with the two models (AR(0) and AR(8) respectively) for integration

periods T of increasing duration. It can be observed that this value is lower for the AR(8) model

for all T .

Using such a model provides two results relevant for the EFR control strategy. First, a model

having lower variance allow to use a higher droop coefficient and therefore provide higher

regulating power (as will be detailed in the first subsection of Section 1.6.2, “Droop coefficient

computation”). Second, the predicted value Ŵf , recomputed periodically, can be used to

improve the state of energy management algorithm associated to such droop coefficient (as

detailed in the second subsection of Section 1.6.2, “State-of-Energy Management”).
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Table 1.7 – Residual standard deviation σ for AR(0) and AR(8), data from NGET database.

T [h] 1 2 3 4 6 12 24

AR(0) 96 154 201 243 312 428 575

AR(8) 92 150 197 239 307 408 516

1.6.2 Control strategy

The BESS control consists in a droop-based strategy where the BESS active power output is

given by the sum of the regulating power P e f r and an offset term P o f f set , computed periodi-

cally to keep the SOE within its technical bounds. The optimal value of the droop coefficient

α (i.e. the proportionality coefficient between the frequency deviations and the BESS power

setpoints) is computed a-priori and hereafter called αmax . The determination of αmax for

periods of given duration T , takes into account the statistical properties of Wf . The control is

designed to restore for every subsequent period of duration T the optimal condition of SOE,

so that the service can be deployed without interruptions with a known level of reliability. As

for the other algorithms presented in this Chapter, the present control acts in two stages:

1. the period-ahead operation in which, on the basis of the forecast of the energy required

for one period of operation i of duration T and of the knowledge of the current value

of the BESS SOE, the offset term P o f f set
i is computed. Such task is defined hereafter as

SOE management and is executed periodically (i.e. every T , for each period i );

2. the real-time control, where the regulating action is actuated with 1 second resolution.

The following three paragraphs describe: i) how αmax is computed, ii) the SOE management

mechanism and iii) the real-time control.

Droop coefficient computation

The optimal value of the droop coefficient αmax is computed based on two assumptions.

First, a SOE management mechanism, described in the following section, is in place. This is

to shift, within each period, the SOE to the value that allows for the maximum upward and

downward regulation. Second, the SOE deviations due to EFR depend on the values of Wf ,

which follow the equations defined in Section 1.6.1. The optimal value αmax is defined as the

higher possible value of α, that can be achieved compatibly with the operational constraints

of the battery. This is of course because higher values of α correspond to more regulating

power provided by the BESS to the grid.

αmax is computed so to respect, over each time interval the SOE energy constraints7. In other

7We observe that for the EPFL BESS and for small values of T (e.g. one or two hours), the power limits
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1.6. Frequency regulation

Figure 1.16 – In light grey, the confidence interval of the expected evolution of Wf (t ) in 1-hour
time intervals, NGET dataset.

words, the SOE must always be within its limits SOEmax = 1 and SOEmi n = 0.

We assume that the time evolution of Wf (t ) within each period is in a domain having upper

and lower bounds that are monotonously increasing and decreasing, respectively. This is

proven to be true experimentally. Fig. 1.16 shows, for instance the expected domain for Wf (t )

computed on the NGET dataset and with T = 1 h. This is computed using a model AR(0),

applied at every time step t within the hour. Ŵf (t) is the expected profile of Wf within the

interval, σ f (t ) is standard deviation at each time step and k is equal to 1.96. It is clearly visible

that the upper and lower bounds of this domain are monotonous. With this assumption, we

can impose punctual SOE limits at the end of each period i , rather than explicitly constraining

the SOE evolution along the whole interval. The SOE value at the end of each period i , hereafter

SOEi , should be:

SOEi ≤ SOEmax (1.71)

SOEi ≥ SOEmi n (1.72)

The value of SOEi is determined by several components:

SOEi = SOEi−1 +ΔSOE o f f set
i +ΔSOE e f r

i . (1.73)

[−Pmax ,+Pmax ] are more stringent than the SOE limits used here. However, we can consider that for a generic
BESS providing EFR, power and SOE limits can be chosen coherently in the design phase. In Section 1.6.3 further
details about the specific case of the EPFL BESS are provided.
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Here, SOEi−1 is the SOE at the end of the previous period, ΔSOE o f f set
i is the SOE variation due

to the SOE management mechanism and ΔSOE e f r
i is the SOE variation due to the deployment

of the EFR. The value of ΔSOE e f r
i for each period can be forecasted remembering (1.70) and

remembering that the values of Wf can be predicted via autoregressive models. It is:

ΔSÔE e f r
i ∈

[
α

En

(
Ŵf ,i −kσ f

)
,
α

En

(
Ŵf ,i +kσ f

)]
(1.74)

where Ŵf ,i is the value predicted through the models AR(0) or AR(8) described in the previous

section, σ f is the associated residual variance and k is a coefficient related to the confidence

level chosen for these bounds. Since Wf follows a normal distribution, it is that k = 1.96 for a

95% probability of the bounds to be respected, k = 2.58 for a 99% probability, etc.

Equation 1.73 becomes:

SOEi ∈ SOEi−1 +ΔSOE o f f set
i + α

En
Ŵf ,i ±

α

En
kσ f (1.75)

We observe that, in this expression:

1. the confidence interval ± α
En

kσ f is symmetric;

2. the terms SOEi−1 and α
En

Ŵf ,i are known through measurement8 and prediction, respec-

tively;

3. the term ΔSOE o f f set
i is controllable by definition.

By consequence, ΔSOE o f f set
i can be determined to compensate for the terms SOEi−1 and

α
En

Ŵf ,i and to bring the BESS SOE to the value that ensures the maximum upward and down-

ward regulation. Since the confidence interval ± α
En

kσ f is symmetric, SOE = 0.5. It is therefore:

SOEi−1 +ΔSOE o f f set
i + α

En
Ŵf ,i = 0.5. (1.76)

The value of αmax is found by transforming constraints 1.71 and 1.72 in equalities (describing

the condition in which the operating limits are reached but not exceeded) and using (1.76):

0.5+ αmax

En
kσ f = SOEmax (1.77)

0.5− αmax

En
kσ f = SOEmi n (1.78)

From both (1.77) and (1.78) results that:

αmax = (SOEmax −SOEmi n)En

2kσ f
= En

2kσ f
, (1.79)

8Strictly speaking, the SOE is estimated rather than measured. However, we used here the term “measured”, to
emphasize the difference with the prediction used for α

En
Ŵf ,i .
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1.6. Frequency regulation

assuming SOEmax = 1 and SOEmi n = 0. Theoretically, this is the maximum value of α allowing

to deploy the EFR service without exceeding the selected bounds, with a confidence level k.

We recall, finally, that the value of the standard deviation of the residuals σ f depends on the

autoregressive model used and on the length of the period T . An autoregressive model of

higher order, such as AR(8), has a lower variance of the residuals in comparison with an AR(0)

model. Therefore, the use of the higher-order autoregressive model results in a higher value

for αmax and a higher provision of regulating power.

State-of-Energy Management

As already stated, the objective of the SOE management is to shift the BESS SOE to the value

that ensures the maximum flexibility, i.e. 0.5. To achieve this, it compensates for two terms: i)

the SOE at the beginning of the period i , SOEi−1, which is measured and ii) the prediction of

the SOE variation due to the EFR service, αmax
En

Ŵf ,i . Rearranging (1.76), it is:

ΔSOE o f f set
i = 0.5−

(
SOEi−1 + α

En
Ŵf ,i

)
(1.80)

We chose to provide this SOE variation by a power that is constant over the duration T of the

intervals:

P o f f set
i = ΔSOE o f f set

i

T
(1.81)

This constant power is superimposed in the realtime control to the regulating power P e f r .

Since P o f f set
i is known, predetermined before every period i and constant over i , the contibu-

tions of these two terms can be easily decoupled. This is helpful when assessing the efficacy of

the EFR service and the effect on the grid of the two terms. We observe, moreover, that this

superposition is similar to the one of power plants providing PFC. These, in fact, provide a

baseline power (determined by the unit commitment) and, on the top of it, a power varia-

tion to participate in the regulation. Similarly to this case, the value of P o f f set
i constitutes a

“BESS power baseline”, which could eventually be traded on the day-ahead or intra-day energy

markets (depending on the length T of the intervals for the SOE management mechanism).

The functioning of the SOE management mechanism is shown graphically in Figure 1.17. At

the beginning of each period i , the SOE could assume any value within [0,1], due to the EFR

deployed in the previous period. During period i , without SOE management, the SOE would

vary of a quantity in the interval
[
αmax

En

(
Ŵf ,i +kσ f

)
, αmax

En

(
Ŵf ,i −kσ f

)]
. In figure 1.17-a, the

grey areas represent the domain of all the expected SOE trajectories. The black line represent

the average profile of this domain, as well as the SOE profile that is, statistically, more probable.

In the absence of a SOE management mechanism, and assuming EFR is provided with αmax ,

the SOE at the end of the period may result beyond the BESS SOE limits (dark grey area). In

other words, the deployment of EFR cannot be ensured with the desired reliability level and

may fail due to hitting the BESS SOE limits. Figure 1.17-b shows the expected SOE behavior
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Figure 1.17 – Expected trajectories of the energy stored in the BESS over a period T a) without
and b) with the action of the SOE-M.

when adding a SOE management mechanism. Again the grey areas represent the domain of all

the expected SOE trajectories. The black line represent the average of this domain, while the

dark grey line is such curve in absence of this mechanism (it corresponds to the black line in

figure 1.17-a). We observe that, due to the presence of ΔSOEo f f set , the grey domain is shifted,

so to be completely within the BESS SOE limits. In other words, we expect now to be able to

deploy the EFR service with the desired level of reliability.

Real-time control

In real-time, the frequency deviation Δ f is measured with 1 second resolution and every

second the BESS power set-point is refreshed as:

P BESS
j =Δ f j ·αmax +P o f f set

i . (1.82)

where the subscript i refer to the period of duration T as in the previous sections, the subscript

j refer to the 1 second time step, the value of αmax is determined a priori as defined in

subsection 1.6.2 and the value of P o f f set
i is computed as described in Section 1.6.2 and

updated periodically every T . Figure 1.18 summarizes the functioning of the proposed control
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1.6. Frequency regulation

Figure 1.18 – Block diagram of the proposed control scheme: a) real-time control, operating at
1 second resolution, b) SOE management, operating at time resolution T.

scheme.

1.6.3 Results

In this Section the main results obtained by applying the proposed methods are shown. The

first subsection, “Droop coefficient computation”, shows the values of droop coefficients

determined for the two datasets (EPFL and NGET), the two forecasting models and for various

values of T . The second subsection, “Simulations”, shows the simulation results obtained

for such values and compares the performances of the control based on AR(0) and on AR(8).

Finally, the subsection “Experiments” shows the results obtained by applying the proposed

methods to the control of a 720 kVA/560 kWh grid-connected BESS. These are with the objec-

tive of validating experimentally the proposed methods, evaluating the BESS performances

in performing EFR and validating the simulation environment used to obtain the first sets of

results.

Droop coefficient computation

The algorithm for the computation of the droop coefficient αmax has been used for each of the

considered periods. Tables 1.8 and 1.9 show such results. Notably, Table 1.8 refers to the droop

coefficient values computed from the frequency dataset provided by NGET. Table 1.9, refers to

the data collected in one year at the EPFL campus. These have been used in the experiments

described in last paragraph of this Section.

The method presented in Section 1.6.2 determines the value of αmax on the basis of the energy

capability of the BESS. In the case of the EPFL 720 kVA/560 kWh BESS, the nominal power
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should be considered when determining αmax . The theoretical value of αmax corresponds to

the minimum value between αe
max (i.e. the maximum droop coefficient based on the BESS

energy capability, found as in Section 1.6.2) and α
p
max (i.e. the maximum droop coefficient

compatible with the BESS power ratings). The latter term can be computed as follows:

P o f f set
max = SOE0 ·En

Ti+1 −Ti
, (1.83)

P e f r
max = Pn −P o f f set

max , (1.84)

α
p
max = P e f r

max

Δ fmax
, (1.85)

where P o f f set
max is the maximum possible value of the power offset, Pn is the rated power

of the BESS, and P e f r
max is the maximum regulating power. All the values in Table 1.9 have

been computed considering a grid-connected 720 kVA/560 kWh BESS and the activation of

full reserve power for frequency deviation beyond ±200 mHz, as dictated by ENTSO-E grid

codes [195].

Table 1.8 – Values of αe
max , in [kW /H z], NGET database.

T [h] 1 2 3 4 6 12 24

AR(0),ρ = 95% 5325 3321 2555 2115 1646 1201 893

AR(0),ρ = 99% 4046 2523 1941 1607 1251 913 679

AR(8),ρ = 95% 5567 3415 2607 2144 1674 1259 995

AR(8),99% 4230 2595 1981 1629 1272 957 756

Table 1.9 – Droop coefficient values [kW /H z], EPFL database (ρ = 95%).

T [h] 1 2 3 4 6 12 24

AR(0),αe
max 14807 8524 6278 4959 3623 2270 1270

AR(0),αp
max 2200 2900 3133 3250 3366 3483 3541

AR(8),αe
max 17216 9751 7337 5895 4302 2633 1386

AR(8),αp
max 2200 2900 3133 3250 3366 3483 3541

Table 1.9 shows that for the EPFL 720 kVA/560 kWh BESS and for the T ≤6h, the theoretical

value of αmax is determined by the BESS power ratings rather than its energy capability. In

Section “Experiments”, details are given about the values of T and αmax used to experimentally

validate the proposed methods with the specific ratings of the EPFL BESS.
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1.6. Frequency regulation

Simulations

The performance of the proposed control framework is validated by simulations in Mat-

lab/Simulink. The simulator uses one year of frequency measurements for the NGET database

as input and the BESS state of energy as output. It presents two different models of BESS. In

the ideal model the losses are not taken into account, whereas in the real one the losses are

modeled as in [167]. Specifically the battery is considered as the series of a voltage source

and a resistance and the values of both depend on the battery state of charge (SOC). The

SOE-M performance in the simulation environment has been evaluated for three periods

T , two different confidences levels (95% and 99%), and for the two different autoregressive

models (AR(0) and AR(8)). The results of these simulations are evaluated by quantifying the

failure rate λT . The SOE-M fails in its control when the BESS reaches its capability limits and

cannot provide power for the EFR. The control failure rate λT corresponds to the duration of

the period in which the BESS is not able to perform its tasks, expressed in percentage of the

simulation duration. From the definition of the droop coefficient given in Section 1.6.2, over

one period of operation the expected failure rate is related to the confidence ρ on the control

action as follows:

λ̃T = 1−ρ. (1.86)

Table 1.10 presents the results of the simulations. The failure rate λT is on average equal to

Table 1.10 – Simulation results, NGET Database

AR(0) AR(8)

BESS model ρ T αmax λ̃T αmax λ̃T

[%] [h] [kW /H z] [%] [kW /H z] [%]

Ideal 95% 24 893 3.631 995 4.723

Real 95% 24 893 4.423 995 6.410

Real 99% 24 679 0.358 755 0.358

Ideal 95% 12 1201 4.087 1259 4.609

Real 95% 12 1201 4.779 1259 5.223

Real 99% 12 912 0.616 957 0.799

Ideal 95% 1 5325 2.992 5567 2.472

Real 95% 1 5325 5.086 5567 2.452

Real 99% 1 4045 0.408 4229 0.350
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3.8% for the simulation based on a ρ=95% and a BESS with unitary efficiency and to 4.7% for

the simulation based on a ρ=95% and a BESS with non-unitary efficiency. In both cases the

average failure rate for the simulation is close to the expected value of 5%. Moreover, it can be

observed that the introduction of a more accurate BESS efficiency model does not provide

results considerably different from those obtained for an ideal BESS.

Experiments

The algorithm has been tested experimentally using 720 kVA/560 kWh EPFL BESS described in

Section 1.3. Frequency measurements are from an on-site PMU-based metering system [138].

A series of experiments has been carried out, to evaluate the ability of the algorithm to ensure

the rated reliability. Experiments have been carried out for T =3h and T =6h and with the αmax

defined as in section 1.6.2, based on the BESS energy capability. The choice of T =3h and T =6h,

although in contrast with the results presented in Table 1.9, is justified by two observations. On

one hand, experiments based on T =12h or T =24h would need a considerably long run-time

to achieve statistically relevant results. On the other side, for smaller T , an αmax computed as

in Section 1.6.2 would generate an ineffective regulation, since even for deviations of relatively

small magnitude, the BESS power would be limited by its power rating and the regulation

signal would not be tracked accurately. For T =3h and T =6h, the power rating of the battery

would limit the BESS power from tracking the regulating signal only in the occurrence of large

and infrequent frequency deviations (Δ f >100mHz). These values of T are therefore suited

to the purpose of validating the proposed method, although the consideration of the power

ratings should be taken into account in the sizing phase of a BESS designed to perform EFR.

The results of this set of experiments are summarised in Table 1.11 and consist of almost

500 hours of EFR divided in four experiments. Experiments 1 and 2 consist in H = 23 consec-

Table 1.11 – Experimental results: reliability and failure rate.

Experiment Model T H αmax λ̂T

[h] [−] [kW /H z] [%]

1 AR(0) 3h 23 6278 5.7596

2 AR(8) 3h 23 7337 5.9871

3 AR(0) 6h 30 4302 2.8565

4 AR(8) 6h 30 3623 5.5144

utive periods of T = 3 h each. Experiments 3 and 4 consists in H=30 consecutive periods of

T = 6 h each. In experiments 1 and 3 a AR(0) model has been implemented, while an AR(8)

model has been implemented in experiments 2 and 4. The observed failure rates λ̂T for each
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1.6. Frequency regulation

experiment are in the neighborhood of the expected value λ̃T = 5%. Experiment 3 is the one

in which λ̂T is the more distant from this value, having a λ̂T = 2.86%. This difference can

be explained by the relatively low number of periods H taken into consideration. Longer

experiments, not carried out due to time limitations, are expected to provide values that are

more close to the theoretical value, the experiments described in this section still present a

non-negligible influence of contingent operating conditions.

Figure 1.19 shows the result of “EXP3”. The control fails every time the SOE is near to the limits

and the battery is not able to implement the set points received from the control logic.

Figure 1.19 – Evaluation of the reliability. Results from experiment 3. Top: power output,
middle: absolute error between setpoint and measurement, bottom: SOE.

57





2 Generic Framework for the provision
of multiple simultaneous services

This chapter proposes a generic formulation of the framework developed in Chapter 1, that is

with the purpose of providing multiple services simultaneously. First, it provides the motivations

and a state of the art summarizing the recent efforts in this direction. Second, it describes a

generic framework to optimize the operation of a BESS providing simultaneously several services.

Third, it applies this framework to the case of dispatching the operation of a MV feeder and

providing simultaneously enhanced frequency response (EFR). Finally it demonstrates via

simulations and experiments the validity of such framework.

2.1 Motivations

Chapter 1 presents a set of control algorithms to provide individually several services via a

BESS, notably dispatchability, load levelling and frequency regulation. These algorithms are

based on a two-stage structure and take into account the uncertainty related to the stochastic

quantities considered in the control (the uncontrollable loads and PV generation in the case

of the dispatch and load levelling and the frequency deviation signal in the case of frequency

regulation). Batteries are normally sized to provide one among said services continuously and

reliably. The actual daily deployment of power and exploitation of energy capacity to achieve

this result vary due to the uncertainty of the aforementioned stochastic quantities. Therefore,

the deployment of such services rarely requires the exploitation of the whole BESS capacity.

When a portion of the BESS energy capacity remains unexploited by the deployment of its

main service, it could be allocated to a secondary service, to be deployed in parallel. In other

words, coupling multiple services together may allow to exploit at best the batteries coupled

with stochastic resources.

Figure 2.1 shows a practical example of this concept. The groups of plots indicated by I and II

refer respectively to two scenarios (referred hereafter as case I and case II) of BESS utilization

to dispatch the operation of a feeder as described in Section 1.4. Subplots I-a) and II-a) show

with a blue line the prosumption forecasts computed for the two considered days, with thin

gray lines the prosumption scenarios considered for the computation and with thick black
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Figure 2.1 – Comparison of the BESS power and energy requirements to dispatch the EPFL
MV feeder in two days characterised by high and low uncertainty in the prosumption forecast
(plot groups I and II, respectively.).

lines the upper and lower worst case prosumption scenarios taken into consideration. The

algorithm developed in 1.4 requires the BESS to be able to compensate for all deviations from

the dispatch plan within the worst case scenarios. Subplots I-b) and II-b) show the maximum

and minimum active power profiles that could be required to the BESS to satisfy this goal.

Subplots I-c) and II-c), finally, show the daily SOC profiles associated to these worst cases. Case

I is characterized by higher uncertainty in the forecasts. The power requirements to ensure

the dispatchability of the feeder, therefore, are higher than those in case II. The latter, in fact,

is characterized by a lower uncertainty in the forecast. This is reflected in the SOC profiles that

the BESS would present in the worst cases and, consequently, in the need of energy capacity

to operate the BESS in the considered day. In case I the BESS needs its complete SOC range. In

fact, at the end of this day, the worst cases generate a BESS SOC that is close to 0 and 100%

respectively. In case II, on the contrary, the SOC range necessary to ensure the dispatchability

is considerably smaller (about the 50% of the complete range). A BESS is installed to provide

exclusively the dispatch service is to be sized to operate in case I, in order to ensure continuous

operation. In any day in which the forecast uncertainty is lower (as in case II), the same level of

reliability is reached without exploiting a considerable portion of the BESS capacity. Allocating

the unexploited capacity to a further service, to be executed simultaneously with the dispatch,

would instead constitute an effective exploitation of such device.
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2.2. State of the art on the simultaneous provision of grid services via BESSs

2.2 State of the art on the simultaneous provision of grid services

via BESSs

The relevance of application sinergies for energy storage devices has been pointed out in

general terms in [54]. Several works, in the recent literature, propose approaches to provide

simultaneously multiple grid services and demonstrate their effectiveness via simulations

[33, 47, 81, 82, 111, 116, 135, 162, 183, 184, 191, 193]. These references differentiate themselves

from one another for the type of services considered, the control techniques exploited and

technical aspects detailed. With respect to the considered services, these can be grouped in

three main categories:

1. Energy arbitrage (EA), which consists in generating revenue by buying or selling energy

depending on energy market prices;

2. Ancillary services (AS), which are a set of services that batteries can provide to grid

operators to enhance the system reliability (e.g. frequency response and regulation).

The provision of these services is regulated by specific markets;

3. BESSs can be finally exploited for objectives specific to a location (i.e. local objectives

(LO) ). Examples of LOs are maximisation of self-consumption, minimisation of PV

curtailement, grid constraint management, etc.

The references listed above aim at providing two or more of such services and with regard to

such categories, they can be divided as in Table 2.1.

Table 2.1 – Recent literature on clustering of BESS applications in power systems

Services provided References
EA + AS [33, 47, 81, 82, 184, 191]
LO + AS [111, 162, 183]

LO + EA + AS [116, 135, 193]

In such references, operation scheduling problems for energy storage systems considering

multiple services are formulated. These aim at maximising the economic revenue generated

for standalone storage systems exploiting multiple revenue streams. This objective is sought

after in different pricing contexts and the common result is that by jointly providing multiple

services, the BESS economic income is increased. Nonetheless, energy storage systems are

often used in two further configurations [82]: i) used by system operators to improve sys-

tem reliability (e.g. [124, 202]) or ii) in conjunction with other resources such as distributed

generation [3], flexible demand [25] or electric vehicles [159].

Besides the objective of the proposed scheduling problems, the references listed in Table

2.1 focus on different aspects of the control framework needed to provide multiple services
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simultaneously. Several references propose specific methods for storage technologies other

than BESSs: compressed air energy storage [47], fleets of thermostatically controlled loads

[183], or fleets of distributed BESSs [111]. References [183] and [162], besides the formulation of

the scheduling problem, describe the real-time control to implement the proposed strategies.

References [81, 82, 162] propose a robust optimization approach to deal with uncertainties

related to price signals and reserve deployment. Finally [81] analyses how providing multiple

services simultaneously affects the BESS lifespan.

2.3 General Problem Formulation

We consider the problem of scheduling the operation of a BESS with energy capacity Enom and

maximum power Pmax , for a time window T . During each time window, the BESS provides J

services, each denoted by the subscript j = 1, . . . , J .

2.3.1 Definition of the power and energy budgets

Each service j is characterized by an energy budget E j and a power budget P j . These are the

shares of the BESS energy capacity and power necessary along the time window T to deploy the

service j . The power and energy budgets P j and E j necessary for each service are functions

of a set of tunable control parameters (composing the decision vector of the scheduling

problem and hereafter denoted by x) as well as of variables modelling the uncertainty of the

operating conditions related to each service (hereafter θ). The dependency of P j and E j on

θ is introduced to account for the fact that the deployment of the considered services need

to be ensured in the occurrence of any scenario of their power demand (practical examples

are provided in Section 2.3). We formulate an optimization problem to determine the value

of decision vector x (and hence the power and energy budgets P j and E j for j = 1, . . . , J ) that

maximizes the portion of BESS energy capacity made available for the provision of the services

in J . We discretize the window of duration T in N time steps of duration T /N , each denoted by

the subscript k, with k = 1, . . . , N . Formally, the power budget of the service j at time step k is

denoted P j ,k and is defined as the interval of the expected power values that the service could

require at k. These are between the minimum and maximum expected power realizations for

that service, namely in the interval P j ,k =
[

P↓
j ,k ,P↑

j ,k

]
. The power budget along a time period

T is defined as the sequence of such intervals:

P j =
{[

P↓
j ,k (x,θ),P↑

j ,k (x,θ)
]

,k = 1, . . . , N
}

. (2.1)

Similarly, the application will require an energy budget

E j = {
[

E↓
j ,k (x,θ),E↑

j ,k (x,θ)
]

,k = 1, . . . , N }. (2.2)

An example of energy and power budets is reported in Fig. 2.2. The set of widths of such
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(a)

(b)

Figure 2.2 – Example of (a) power and (b) energy budgets for a service j .

energy budget trajectory is defined as:

w(E j (x,θ)) = {E↑
j ,k (x,θ)−E↓

j ,k (x,θ),k = 1, . . . , N }. (2.3)

Moreover, we define the operation of sum of budgets of different services (using energy budget

as example) as1:∑
j

E j (x,θ) =

=
{[

J∑
j=1

E↓
j ,k (x,θ),

J∑
j

E↑
j ,k (x,θ)

]
,k = 1, . . . , N

}
.

(2.4)

2.3.2 Formulation of the optimisation problem

The problem of providing multiple concurrent services with a BESS, while ensuring feasible

operation can now be formulated in generic terms. We seek to maximise the set of widths of

the energy budget resulting from the sum of the energy budgets E j with j = 1, . . . , J , within a

given time window T , while respecting the BESS power and energy capabilities. The resulting

decision problem is:

xo = arg max
x

[
w

(
J∑

j=1
E j (x,θ)

)]
(2.5)

1Eq. (2.4) can be interpreted as the computation of the overall energy budget within T required by all services J .
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subject to:

Ei ni t +
J∑

j=1
E j (x,θ) ∈ [Emi n ,Emax ] (2.6)

J∑
j=1

P j (x,θ) ∈ [−Pmax ,Pmax ] , (2.7)

where Emi n and Emax are the minimum and maximum stored energy and Pmax the maximum

istantaneous power of the BESS. It is worth noting that it is possible to have a different objective

function while exploiting the same framework presented here. In Appendix A.3, two variations

seeking respectively for the maximisation of the economical revenue and simple feasibility of

operation are shown. The same appendix, moreover, proposes a formulation of the day-ahead

problem including the load levelling service as well as

2.4 Concurrent dispatch of a MV distribution feeder and provision

of EFR

The scheme proposed in Section 2.3 is now applied to control a BESS to dispatch of a MV

distribution feeder and to provide EFR to the grid. We have observed that the battery capacity

needed to dispatch a MV feeder as in [167] depends on the uncertainty of the forecast of

the connected stochastic resources (loads and stochastic distributed generation). Whereas

in some cases the full battery capacity is barely sufficient to achieve this goal, in others a

considerable portion of the battery capacity remains unutilized when the uncertainty of the

prosumption forecast is small. The choice of EFR as a second stacked service is because i)

large ramping duties of BESSs accomodate the increased demand for fast regulating power in

power systems with a high penetration of production from renewables and ii) EFR is a “power

intensive” application and is well-suited to be coupled with the dispatch service, which is

instead “energy intensive”.

2.4.1 Day-ahead problem formulation

We want to operate a grid-connected BESS to dispatch the active power flow of a MV distribu-

tion system with heterogeneous resources, as in [167], while providing also EFR to the grid.

Figure 2.3 shows the main features of this setup. The operation is performed over a T=24 hour

period and planned every day for the next calendar day. Following the formulation presented

in Section 2.3, we first define the power and energy budgets for the dispatch and EFR, namely

PD , PF R , ED and EF R . Based on these budgets, we formulate an optimization problem as in

(2.5)-(2.7).

The dispatch service requires the battery to compensate for the mismatch between the aggre-

gated prosumers power flow (denoted by Lk = L1, . . . ,LN ) and a pre-established dispatch plan
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Transmission grid
PkBk

Lk

BESS Active MV feeder

Figure 2.3 – Schematic of the experimental setup. The notation of the power flows refers to the
real-time control described in section 2.4.2.

P̂ = P̂1, . . . , P̂N , defined at 5-minutes resolution. The dispatch plan is the sum of two terms: the

forecasted power profile of the feeder prosumption, L̂ = L̂1, . . . , L̂N and an offset power profile,

F = F1, . . . ,FN , computed to keep the BESS stored energy within proper limits:

P̂k = L̂k +Fk for k = 1, . . . , N (2.8)

We obtain, with a forecasting tool from the literature [167], the daily forecasted profile of the

feeder prosumption as well as the deviations from the forecasted profile in the highest and

lowest demand scenarios, denoted by L↑ = L↑
1, . . . ,L↑

N and L↓ = L↓
1, . . . ,L↓

N (a detailed definition

of the terms above is already provided in Section 1.4 of this thesis). The maximum positive

and negative BESS power requirements for the dispatch service are therefore defined as the

sum over k of the offset power Fk and of L↑
k and L↓

k , respectively. With respect to the general

definitions of x and θ given Section 2.3, the terms L↑
k and L↓

k are input quantities (i.e. {L↑,L↓}

are in θ) whereas the offset power F is a decision variable, determined by the optimization

problem defined hereafter (i.e. F is in x). The power budget is therefore defined as:

PD = {
[

P↓
D,k (x,θ),P↑

D,k (x,θ)
]

,k = 1, . . . , N }

= {
[

Fk +L↓
k ,Fk +L↑

k

]
,k = 1, . . . , N }

(2.9)

The associated energy budget is:

ED = {
[

E↓
D,k (x,θ),E↑

D,k (x,θ)
]

,k = 1, . . . , N }

=
[

T

N

k∑
i=1

(Fi +L↓
i ),

T

N

k∑
i=1

(Fi +L↑
i )

]
(2.10)

with k = 1, . . . , N .

The EFR service requires the battery to provide a power proportional to the deviation of

the frequency from its nominal value Δ fk = fk − fn [195], with a proportionality coefficient
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hereafter denoted by α:

PF R,k =αΔ fk =α
(

fk − fn
)

. (2.11)

The unit of measurement of α is kW/Hz. The instantaneous requested power cannot be

forecasted since frequency deviations are difficult to predict. Therefore, the power budget

required by this application will correspond to a constant profile, equal to the maximum power

that frequency regulation may require. Since grid codes typically require complete activation

of primary reserves for frequency deviations of more than Δ fmax = 200 mHz [195], the power

budget can be defined as:

PF R = {
[

P↓
F R,k (x,θ),P↑

F R,k (x,θ)
]

,k = 1, . . . , N }

= [−0.2α ·1,0.2α ·1]
(2.12)

Where 1 is the all-one vector of length N . The energy budget necessary to ensure feasible

operation for this service within a given time interval can be inferred statistically. In particular,

we examined grid frequency data of the European grid from the last 2 years. Data have

been collected by a PMU-based metering system installed on the EPFL campus [138]. Since

frequency regulation requires the injection of a power Pk =αΔ fk , the energy required by the

grid during a given time window T is:

EF R,k = T

N

k∑
i=0

PF R,i = T

N

k∑
i=0

(αΔ fi )

=α

(
T

N

k∑
i=0

Δ fi

)
=αWf ,k

(2.13)

for k = 1, . . . , N and where Wf ,k denotes the integral of frequency deviations over a period

of time and it is to be interpreted as the energy content of the signal given by the frequency

deviation from its nominal value. The upper and lower bounds for Wf ,k for k = 1, . . . , N can

be inferred from a statistical analysis of historical frequency deviation time-series,reported

in Appendix A.4). These are defined hereafter as W↑
f =W ↑

f ,1, . . . ,W ↑
f ,N and W↓

f =W ↓
f ,1, . . . ,W ↓

f ,N .

With regard to the general definitions of x and θ given in Section 2.3, the terms W ↑
k , W ↓

k (as well

as Δ fmax in (2.12)) are input quantities (i.e. {W↑,W↓,Δ fmax } are in θ) whereas α is a decision

variable, determined by the optimization problem defined hereafter (i.e. α is in x). The energy

budget for frequency regulation is then defined as:

EF R = {
[

E↓
F R,k (x,θ),E↑

F R,k (x,θ)
]

,k = 1, . . . , N }

= {
[
αW ↓

f ,k ,αW ↑
f ,k

]
,k = 1, . . . , N }.

(2.14)

Relying on the definitions given in Section 2.3, it is x = [α,F] and θ = [Δ fmax ,W↓
f ,W↑

f ,L↓,L↑]

66



2.4. Concurrent dispatch of a MV distribution feeder and provision of EFR

and the objective function in (2.5), corresponds therefore to:

w

(∑
j

E j

)
= w (ED +EF R )

=
(

T

N

k∑
i=0

(Fi +L↑
i )+αW ↑

f ,k

)
+

−
(

T

N

k∑
i=0

(Fi +L↓
i )+αW ↓

f ,k

)

=
(

T

N

k∑
i=0

(L↑
i )− T

N

k∑
i=0

(L↓
i )

)
+α

(
W ↑

f ,k −W ↓
f ,k

)
with k = 1, . . . , N .

(2.15)

Since α is the only control variable in the above expression, the objective to maximize

w
(∑

j E j
)

in (2.5) reduces to maximizing α, subject to (2.6)(2.7). The problem (2.5)-(2.7)

is as: [
αo ,Fo]= arg max

α∈R+,F∈RN

(α) (2.16)

subject to:

Ei ni t +ED (x,θ)+EF R (x,θ) ∈ [Emi n ,Emax ] (2.17)

PD (x,θ)+PF R (x,θ) ∈ [−Pmax ,Pmax ] (2.18)

By expressing explicitly the dependency of the power and energy budgets on the parameters

and control variables, the problem (2.16)-(2.18) becomes:[
αo ,Fo]= arg max

α∈R+,F∈RN

(α) (2.19)

subject to:

Ei ni t + T

N

k∑
i=1

(
Fi +L↑

i

)
+αW ↑

f ,k ≤ Emax (2.20)

Ei ni t + T

N

k∑
i=1

(
Fi +L↓

i

)
+αW ↓

f ,k ≥ Emi n (2.21)

Fk +L↑
k +0.2α≥ Pmax (2.22)

Fk +L↓
k +0.2α≥−Pmax (2.23)

with k = 1, . . . , N .

The notion of battery round-trip efficiency is incorporated in the decision problem (2.19)-

(2.23) with an empirical two-stage approach by enforcing conservative limits for the battery
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stored energy. This process is explained in the following. First, the problem (2.19)-(2.23)

is solved implementing the nominal battery state-of-energy limits (i.e. Emax = Enom and

Emi n = 0). Second, the following finite impulse response model [62, 167]:

Ek = E0 + T

N

k∑
i=1

ηi Bi , ηi =
⎧⎨⎩β Bi ≥ 0

1/β Bi < 0
, (2.24)

where Bi is the total power injected or absorbed by the BESS at time i andηi the BESS efficiency,

is used to model the stored energy Ek of a non ideal BESS for the set of simulation scenarios

presented in Section 2.5.1. The energy stored at the end of each day in a BESS modeled as ideal

(η = 1) and non ideal (η = 0.972) are compared and the largest difference over the all set of

simulations is used to impose a conservative bound to the minimum stored energy constraint

(2.21). For example, in the case proposed in Section 2.5.1, the largest difference is 4% of Enom ,

therefore we adopt Emi n = 0.05Enom . It is worth noting that this approach allows to define the

energy budgets independently for each service and sum them as in (2.15). In other words, it

achieves a separation of concerns between services, which can be designed independently

from each other and stacked together at the end of the process. Also, it is worth noting that

the round-trip efficiency of modern Li-ion based BESS is generally above 90% [28, 60, 148].

Appendix A.3 proposes a formulation of the day-ahead problem including the load levelling

service, besides the dispatch and EFR already discussed here. It is also to be noted that apply-

ing the proposed generic formulation to provide only one service, would result in problem

formulations very similar to those presented in Chapters 1.4 and 1.6 for dispatch and EFR

respectively. In fact, removing α, W↑
f and W↓

f from the Problem in (2.19)-(2.23), would deter-

mine an offset profile F that ensures the feasibility of the dispatch. Such F, summed to the

prosumption forecast L̂, provides the dispatch plan P̂. On the contrary, removing the terms

L↑ and L↓ (but keeping F, as degree of freedom to manage the BESS state of energy) would

determine the maximum value of the droop coefficient α that can be exploited by a BESS

providing exclusively EFR.

2.4.2 Real-time control

The proposed algorithm consists in two phases: i) the solution of a planning problem for

the next calendar day of operation, determining the values of the coefficient αo and of the

offset profile Fo and ii) a real-time control problem. The latter determines, with higher time

resolution, the setpoint to be requested to the BESS. In the case of the dispatch (see Section

1.4.2), this was done via a the solution of a MPC problem. In the case of frequency regulation,

the power setpoint was the sum of an offset power computed to manage the state of energy

and a regulating power, proportional to the frequency deviation (see Section 1.6.2). The

formulation of a real-time control for the joint deployment of these two services is detailed

hereafter, and illustrated in Figure 2.4. The time resolution of this control is of 1 second. The

2the value of η= 0.97 has been determined experimentally for the 560 kWh/720 kVA BESS used in this work.
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+

+

+− αo

f(·)

P̂k

P1,...,j−1

Bfr,1,...,j−1

Bd,j

Bj

fj Δfj

f0

Bfr,j

Figure 2.4 – Scheme of the BESS real-time control, f (·) corresponds to Equations 2.26 and
2.27.

index j = 0, . . . ,299 denotes hereafter the 1-second time steps within each 5 minutes interval

k defined in the day-ahead phase. The real-time control determines here the battery active

power setpoint B j as the algebraic sum of the setpoints Bd , j and B f r, j determined respectively

for the dispatch and the EFR by two independent control loops:

B j = Bd , j +B f r, j . (2.25)

The power setpoint Bd , j is to compensate the tracking error ε j , which is the difference between

the objectve feeder power P̂k (from the dispatch plan, with 5 minutes resolution) and the

mean deviation from this value within the 5 minutes interval. This deviation is the sum of two

terms. The first is the mean of the feeder power measurements Pi in the instants i from the

beginning of the current 5-minutes period to the present instant j , filtered out of the power

requests due to the EFR, B f r,i . The second is a short-term forecast of the load L̂i over the

remaining five minutes interval (i.e. with i = j , . . . ,299):

ε j = P̂k −
1

300

(
j−1∑
i=0

(Pi −B f r,i )+
299∑
i= j

L̂i

)
. (2.26)

The expression above is an energy objective over a 5 minutes horizon and the power setpoint

to respect it is therefore defined as:

Bd , j =
1

300− j
·ε j . (2.27)

The power setpoint for the frequency regulation B f r, j is calulated as:

B f r, j =αo · ( f j − fn
)

. (2.28)

In order to comply with the constraints imposed by the day-ahead policy, both setpoints are

constrained within saturation thresholds, which are, notably, equal to ±0.2αo for B f r, j and

±(Pmax −0.2αo) for Bd , j . The latter threshold is set such that the dispatch can require, instan-

taneously, all the power not reserved by the frequency regulation. It remains, nevertheless,

69



Figure 2.5 – Simulation results of 31 consecutive days of operation. Blue line: BESS stored
energy; Grey area: total daily energy budget ED +EF R ; Black dashed lines: bounds of the daily
energy budget reserved to the dispatching service ED ; red dots: daily values of αo (referred to
the right-hand y-axis).

that the dispatch power averaged over a 5 minutes period is expected to remain between

L↑ +Fo and L↓ +Fo .

2.5 Results

The proposed planning and control strategy has been validated by simulations and experi-

ments in a real-life grid. The goal of this validation effort is double. The simulations demon-

strate the effectiveness of the proposed control architecture in the determination of the

coefficient αo and the offset profile Fo. The values found for such quantities allow to max-

imise the battery exploitation, while respecting the battery operational limits and therefore

allowing for the continuous operation for a month. The experimental results validate the

assumptions made in the control design and in the simulations and they demonstrate the

practical relevance and deployability of the proposed control architecture.

Both simulations and experiments are based on the setup with a 560 kWh/720 kVA Lithium-ion

BESS installed at the EPFL campus in Lausanne and described in Section 1.3.

2.5.1 Simulations

Thirty-one consecutive days of operation are simulated. These 31 days are characterized by

different initial SOE values3, ranging from 12% to 90%, and determined by the operation of

the previous days (the first day of the simulation the initial SOE has been set to 35%).

Figure 2.5 reports the profile of the energy stored in the battery along the 31 days and the daily

energy budget for the dispatching service ED and the total daily energy budget (ED +EF R ),

calculated as a function the stochastic forecasting model of the demand and frequency (i.e.

on the basis of [L↑,L↓,W↑
f ,W↓

f ]). Figure 2.5 shows as well the values assumed daily by αo . It

3The SOE is here defined as the amount of stored energy normalized over the BESS nominal energy capacity
Enom .
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2.5. Results

Table 2.2 – Simulation results

SOE0 αo Fav g SOEmi n |T SOEmax |T
[%] [kW/Hz] [kW] [%] [%]

Mean 50.8 216.6 0.5 37.4 64.9
Max 90.3 455.7 10.0 61.6 90.7
Min 12.5 0.0 -9.3 12.4 36.0

can be observed that the total daily energy budgets (grey areas) hit the BESS operational limits

(SOE=5% and SOE=100%) in all days except for day 10, 14, 16, 20 and 21. This denotes that

the day-ahead planning problem is able to schedule efficiently the offset profile Fo and the

value αo to exploit the full battery energy capacity accounting for the stochastic behaviour of

frequency and demand. On the other hand, in the five days mentioned above, the grey area

exceeds the SOE limits. This is because the uncertainity related to the demand (reflected by

the sequences L↑ and L↓) prevents the feasibility of problem (2.16)-(2.18). In such days, the

solution of (2.16)-(2.18) provides an αo equal to zero, i.e. no frequency regulation is performed.

In all cases, the activated constraint in the solution of (2.16)-(2.18) has been the one on the

energy budget sum.

Quantitative results from the simulations are collected in Table 2.2: SOE0 is the daily initial

SOE in percentage, αo the daily coefficient for EFR in kW/Hz, Fav g the mean value of the

offset profile and ΔSOE the overall SOE variation during the day due to the simultaneous

deployment of the two services. Table 2.2 shows the average, maximum and minimum

values of such quantities over the 31 days simulation period. The average daily value of αo

is of 216.6 kW/Hz. This corresponds to the provision of up to 43 kW for EFR (considering

Δ fmax = 200 mHz). In comparison to the control scheme described in Section 1.4 of this thesis,

where the control of the BESS aims exclusively at dispatching the operation of a MV feeder, we

are able to provide power both for the dispatch and for EFR, while still ensuring the respect of

the BESS operational constraints. This is done by taking advantage of the BESS capacity that

remains unexploited by the dispatching operation, due to the daily variation of the uncertainty

set of the prosumption defined by
[

L↓
k ,L↑

k

]
for k = 1, . . . , N . The black dashed lines in Figure

2.5 delimit the energy budget reserved to the dispatching service ED . The width of this budget

in days characterized by low uncertainty in the feeder prosumption forecast (e.g. days 5 or 17)

is rather narrow and the unexploited battery capacity is therefore allocated to provide EFR (a

high value of αo is found). In days in which such uncertainty is high (e.g. days 18 to 20) almost

all (or more than all) the battery capacity is needed to perform the dispatch, resulting in a very

wide ED and in a very low value of αo .

2.5.2 Experimental validation

The described algorithm has been implemented in the controller of the 560 kWh/720 kVA

Lithium-ion BESS. The results of 2 days of experiments are reported in this section.
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Figure 2.6 – Experimental results, left: day 1, right: day 2. Upper plots - feeder power profiles.
Thick grey line: dispatch plan, red line: feeder prosumption, dashed black line: feeder real
power (excluded the EFR power injection), blue line: feeder real power (with the EFR). Middle
plots - BESS power injection. Lower plots - BESS SOE evolution.

Table 2.3 – Experimental Results

SOE0 αo Fav g SOEmi n |T SOEmax |T
[%] [kW/Hz] [kW] [%] [%]

Day 1 40 584 0.84 24 40
Day 2 47 127 -0.56 40 53

Figure 2.6 shows the power and SOE profiles for two days of operation, an intra-week day and

a weekend day (hereafter referred to as Day 1 and Day 2). Numerical results are summarized

in Table 2.3 and Table 2.4. In Day 1, the day-ahead optimization procedure has determined

a value of αo of 584 kW/Hz and an offset power of 0.84 kW on average. In Day 2, the αo has

been found equal to 127 kW/Hz and the average offset power equal to -0.56 kW. These values

of αo allow to exploit a portion of the battery capacity that would remain unexploited when

providing power only to dispatch the operation of the MV feeder, as in [167]. In this case,

the maximum amplitude of the energy budget that needs to be reserved for the dispatch,

calculated as in (2.10) on the basis of the upper and lower worst case scenarios of the feeder

prosumption (L↓
k and L↑

k , with k = 1, . . . , N , using the nomenclature introduced in Section

2.4.1), is of about the 54% of the BESS nominal capacity for Day 1 and of about the 10%

for Day 2. The remaining capacity is fully exploited by the EFR application, thanks to the

computation of a proper value of αo , by means of (2.16)-(2.18).

Table 2.4 collects the relevant metrics to evaluate the performance of the dispatch application

when performed in conjunction with frequency regulation, i.e. the mean, RMS and maximum

absolute values of the tracking error in these two days. The RMS value of the tracking error is

about 0.5 kW over a feeder prosumption of about 130 kW on average.
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2.5. Results

Table 2.4 – Dispatch performance metrics (in kW)

εmean εr ms εmax

Day 1 -0.03 0.52 4.45
Day 2 0.02 0.5 6.83

We note that, in both these two days, the energy demand for the two applications has been

of opposite sign. For istance, in Day 1 the daily energy requested for the dispatch operation

is of about 89 kWh, whereas the average power requested for the frequency regulation is of

−24 kWh. The simultaneous deployment of these two services in this case generates a SOE

drift that is lower than the one the dispatch alone would generate. It is worth noting that,

when simultaneously providing multiple services, the saturation (or depletion) of the battery

energy capacity would occur only if the power requests of all services corresponded to the

upper (or lower) bounds of their budgets. If the uncertain processes related to the services are

uncorrelated, as in the case of the dispatch and frequency regulation, the occurrence of this

condition is reduced. Providing multiple services simultaneously, in this regard, may ensure

more reliable operation, in the sense that failure due to complete depletion or saturation

of the battery capacity would be less likely to occur. The downside of this is of course that

an eventual failure would be more deleterious since multiple services would stop at once.

This could be addressed by implementing strategies to prioritize the services in contingency

situations, e.g. by selecting, before hitting the operational limits, which service is to drop and

which to maintain.
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3 Inclusion of ageing policies in the
control of a grid-connected BESS

This Chapter focuses on a further fundamental aspect to take into account in the development

of effective control strategies for BESS. This is the degradation over time of the performances

of such devices, i.e. their ageing. It provides, first, few important definitions and a state of the

art on the methods to empirically assess and account for ageing in BESS control. Second, it

proposes the improvement of one of such methods - the energy throughput - by weighting the

effect that different C-rates have on the ageing of a BESS. Third, it applies the proposed method

to the case of using a BESS to achieve the load levelling of a distribution feeder. It assesses the

ageing generated by this service and shows how integrating the proposed model in BESS control

can limit the rate of this process, thus increasing the BESS lifetime.

3.1 Definitions and state of the art

Battery performances degrade over time. From a macroscopic point of view, the factors that

determine the magnitude of this degradation are the value of charging and discharging cur-

rents, the depth of discharge (DOD) reached during operation, the temperature of the cells and

their SOC. The first two factors come into play when the battery is used, i.e. during charges

and discharges. On the contrary, the temperature and SOC of the cell affect the degradation

rates regardless of the operating condition of the battery, i.e. also in “resting” phases. This

distinction led to the definition of two distinct terms to describe the degradation of battery

performances, i.e. calendar and cycle ageing. Calendar ageing describes the degradation of

battery performances that is independent from the way the battery is operated or cycled and

therefore independent of its usage patterns. It is related to battery “shelf life” and it is used

to describe the effect of the temperature and SOC at which the battery is kept. Cycle ageing,

on the contrary, models the degradation of the battery due to its operation. It represents the

irreversible degradation associated to charging and discharging events. This type of degrada-

tion occurs only when operating the battery and can be avoided by not operating it. The main

factors that are taken into account by cycle ageing are the C-rate and DOD characterizing the

BESS operation. Despite this classification, typically, all the above mentioned degradation
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factors come into play simultaneously, and interact with each other in a complex manner1.

Regardless of the triggering factor, the degradation of battery performances consists in two

main macroscopic effects. The first is the capacity fade. This is the decrease of the capacity of

the battery, i.e. the fact that the battery can store less energy. This is due - microscopically -

to the irreversible consumption of active material. The second is the impedance rise. This

is the increase of the battery internal impedance (and internal resistance in particular). The

main practical effect of the impedance rise is a decrease of the capability of the battery to

provide power. This is due - microscopically - to the accumulation of inert material within the

battery electrodes and electrolyte. This is a side product of the reactions that consume the

active material.

The end of life of a battery is the moment, quantified in years from the beginning of its

operation, in which the BESS is shut down and dismantled, due to the fact that its performance

is no more sufficient to provide services effectively. Typically this moment is assumed to be

when the capacity of the battery fades at 80% of its original value. The state of health (SOH)

of a battery is a quantity, expressed in percentage (or in per unit) that indicates the condition

of a battery with respect to its initial condition. Typically, it is defined based on the capacity

at current time with respect to the initial batter capacity: SOH = Qactual
Qi ni ti al

×100%. However,

this definition is not univocal. The SOH is also defined, often, based on the rise of internal

resistance rather than loss of capacity [5].

The literature concerning the assessment of degradation of Li-ion batteries and its considera-

tion in the control of BESS covers several objectives and rely on two main classes of methods.

The research objectives are i) the online estimation of the SOH, ii) the development of ageing

models to be used in the planning phase and in the a-posteriori analysis of application and

control strategies of BESSs and iii) the usage of ageing models to determine operation sched-

ules or control actions taking ageing into account directly in the control and/or scheduling

problems. The latter objective is of our interest. The online estimation of the SOH concerns

the lower level of control (as, for instance, functionalities of battery management systems -

BMSs), while the second and third do apply similar models. We focused on the third, since it is

directly related to the applications developed in Chapters 1 and 2 of this thesis. These applica-

tions, in fact, are structured in a period-ahead scheduling phase and in a real-time control.

Both of these two phases determine the power that the battery should provide (scheduling) or

provides (real-time control) and this decision can take into account considerations related to

ageing.

A further distinction in the scientific literature is about the methods used to assess these

phenomena. The two main classes are i) empirical and heuristic models and ii) physics-based

models. The first family of methods uses rather extensive experimental data to fit empyrical

models of ageing. These are simpler to use in planning methods and integrate in control

1The difficult task of characterizing macroscopically these complex interactions is, in fact, one of the motivations
to adopt physics-based approaches to model battery degradation, as discussed in the second part of the thesis.
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3.1. Definitions and state of the art

algorithms. However, they require extensive, long and expensive experiments, and have

a validity limited to the operating conditions in which these experiments are carried out.

Moreover, these do not provide insight in the physics behind the degradation phenomena

that lead to battery ageing. These methods rely on data - often provided by manufacturers

such as those shown in Figures 3.1 or 3.2. Notably, 3.1 shows how many cycles (at a given

C-rate) can a battery withstand before reaching its end of life. This is usually achieved by long

term experiments made by manufacturers, that cycle the battery with standard cycles and for

thousands of times (i.e. for several years). A second example of data usually provided by the

battery manufacturer is usually that shown in Fig. 3.2. This shows, for various levels of DOD

how many cycles the battery can withstand before reaching end of life (EOL).

Figure 3.1 – Li-ion cell capacity vs. number of full cycles curve. The curve is for a 30Ah
LTO-NCA cell.

The Li-ion cell physics-based models describe battery dynamics via a set of first principle

partial differential equations (PDEs) and algebraic non-linear equations. The degradation

phenomena taking place within Li-ion cells, can then be described as functions of the states

of such models. These models can be quite accurate and are in general valid for a wide range

of operating conditions. However, the development, identification and exploitation of such

models is typically too complex to be practically exploited in the operation and control of

BESSs. Efforts in this sense have been made in the recent literature. These, together with

the contributions of this thesis in this respect will be discussed in Chapters 4 and 6. In this

chapter we will focus on the first class of methods (i.e. empirical and heuristic models). In

the remainder of the chapter, a method - the weighted energy throughput - is presented. We

summarize here some works in the recent literature that can be compared to it.
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Figure 3.2 – Achievable cycle count (ACC) vs. DOD characteristic.

Typically, the methods that exploit the manufacturer’s data are those used to consider ageing

limitations in control. Notably, since battery operation is a complex sequence of charges

and discharges, methods to reconduct these complex usage patterns to the test conditions

represented by figures 3.1 and 3.2 are developed. A set of methods relies on the so called

charge throughput. It assumes that the charge that can be absorbed and provided by a

battery is fixed. By consequence, there is an equivalent depletion of lifetime between a test

composed by the regular sequence of cycles (as that shown in figure 3.1) and a complex usage

pattern whose throughput is the same. This method has been first introduced in [19] and has

been enriched with the consideration of weighting factors [156] that assign higher weight to

more severe events or by proposing a similar method based on energy thorughput [68, 100]

rather than current (the former being the quantity more commonly used in power system

problems). A second common method is the so called rainflow cycle counting. It consists in

grouping charge and discharge events so to obtain a certain number of equivalent cycles. Such

method is exploited, for instance in [128] of state-of-health estimation for electric vehicles or

in [161, 163] in the control of a BESS for the provision of ancillary services (check reference).

Further methods rely on empirical functions of various parameters. [79] and [114], for instance,

propose sets of empirical function to describe cycling and calendar ageing dependence on

SOC, DOD, temperature and charge rate. [93] proposes using an empirical model accounting

for both calendar and cycle ageing when dispatching the operation of a PV power plant. It

proposes to model capacity loss due to calendar ageing as a parabolic function of SOC and

temperature and capacity loss due to cycle ageing as a linear function of used power. [59]

proposes the joint exploitation of an approximation derived from physical laws and empiric

functions to integrate the degradation process in an MPC method. [135] proposes a heuristic
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3.2. The Weighted Energy Throughput method

event-based method to characterize the cycling behavior of a BESS and infere its degradation.

The common denominator of these methods is the reconstruction of cycles that are then

assumed equivalent to reference cycles executed in controlled conditions by manufacturers

and assign therefore a quantity of degradation.

These models are used in scheduling problem as well as real-time control algorithms. For

instance, [49] proposes a scheduling algorithm for power plants with storage, in which a

constraint is added so to limit the degradation generated by a given schedule. Similarly,

[70] proposes an optmisation problem to determine the operation of a BESS to provide

frequency regulation in cooperaton with wind power. This includes constraints based on the

aforementioned methods to limit the degradation of BESSs. Instead of constraining ageing to

a given threshold during a scheduling horizon, [196] proposes the formulation of a penalty

function to be added to the objective of a scheduling problem formulated to provide regulation

response.

3.2 The Weighted Energy Throughput method

The method here described relies on the principle that an eletrochemical cell can exchange a

finite amount of charge during its lifespan, as described in [156]. This value can be assessed

through cycling tests and calculated as the charge that pass through a cell during a complete

discharge-charge cycle (i.e. 2Cr ated ) multiplied by the total number of cycles that a battery

can perform before depletion. This method, known as charge throughput, has the advantage

of relying only on values that are most often given by the manufacturers (rated capacity and

number of cycles). It has to be noted that the depth of discharge (DOD) of the cycles is implic-

itly taken into account in a linear fashion, as a cycle with lower DOD has also proportionally

lower charge throughput. Assessment methods relying on physical models of the cells and of

their degradation phenomena, such as the one proposed in [154] may provide more precise

results, but requires the development and validation of complex models and the knowledge of

a set of physical parameters usually not available to the end-user. The charge throughput, on

the contrary, while being rather simple, neglects a series of factors, such as the influence of

the C-rate on the cycle ageing or the calendar ageing. We propose a method that is similar,

conceptually, to the charge throughput and that we call weighted energy throughput. With

respect to the former, this presents two relevant features that improve its accuracy and its ap-

plicability to problems related to operation planning and control of BESSs. First, it consists in

assessing the energy throughput rather than the charge one. Most of the problems concerning

the planning of the operation of BESSs (included the day-ahead problems formulated in the

previous Chapters of this thesis) have the battery power as decision variable. It is therefore

more convenient to used power (opposed to current) in the ageing assessment as well. This

results in the assessment of an energy (opposed to charge) throughput, that can be treated

with the same assumptions made for the more conventional charge throughput. Second,

the proposed method introduces a set of weighting factors to take into account the fact that

operating the BESS at higher rates provokes more severe ageing. These are determined based

79



solely on data provided my the manufacturer and available on manufacturer’s cell data-sheet.

We consider a finite interval T in which a BESS is operated with a complex pattern of charges

and discharges. Discretizing this interval in k = 1, . . . , N steps of duration ΔT , we define the

energy exchanged by the BESS in this interval, Eexch(T ), as:

Eexch(T ) =ΔT
N∑

k=1
|w(k)B(k)| (3.1)

where B(k) is the BESS power at step k and w(k) is a weighting factor related to the magnitude

of B(k). The exact definition of the weights is provided in the next paragraph of this section.

The ratio between Eexch(T ) and the energy exchanged during a complete cycle by the cell, i.e.

2Ebat t (T ), defines the number of equivalent cycles that the cell has performed in T :

Nc (T ) = Eexch(T )

2Ebat t (T )
(3.2)

It is to be noted that the denominator of Eq. (3.2) evolves with time, since the energy exchanged

during a complete cycle depends on the current energy capacity, which decreases as the cell

ages. Defining the index j = 0, . . . ,T −1, that covers all operating periods since the beginning

of the BESS operation, it is:

Ebat t (T ) = Er ated

(
1−

∑T−1
j=0 Nc ( j )

NM

)
(3.3)

where Er ated is the rated energy capacity of the cell and NM is the nominal number of cycles

that the cell can endure. Both these quantities are usually indicated on cell data-sheets. In the

case of the cells under analysis, it is NM = 20 000 cycles, this value being defined as the number

of cycles at 4C after which the cell capacity falls below 80% of its initial value. Comparing Nc

with the maximum number of cycles for the cell NM , a time in years until the cell end of life

(EOL) can be defined as:

EOL = NM

Nc

1

365
(3.4)

Definition of the weights w(k)

The cells used for the here proposed analysis are 30 Ah lithium-titanate batteries, whose

expected cycling life-time is of 20 000 cycles. The weights are calculated from cycling data

provided by the cell manufacturer on their cell data-sheet. Fig. 3.3 shows the evolution of the

state of health (SOH) of the cell, defined as the cell capacity after a certain time of operation

normalized with its initial one, with the number of cycles and with different current rates.

Notably, the blue dots and line refer to a cycling performed at 4C, whereas the red ones refer

to a 1.5C cycling.
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3.2. The Weighted Energy Throughput method

Figure 3.3 – Experimental data from cycle ageing test at 4C (blue) and 1.5C (red).

Table 3.1 – Weighting factors for the C-rates in Fig. 3.3

C-rate SOH0 m(10−4) w

4C 100.8 5.617 1
1.5C 99.11 4.117 0.73

The data points in Fig. 3.3 are the normalized capacity measured values for different number

of cycles. The lines, are obtained through linear interpolation of the measured data. Their

slopes can be used to define the weights for the energy throughput calculation, and are shown

in Table 3.1. In fact, it can be seen that for a higher rate, a higher slope is present (in agreement

with the fact that cycling at higher rate causes faster degradation of the cell).

The interpolated lines are defined as:

SOH(NoC ) = SOH0 −m ∗NoC (3.5)

where NoC is the number of cycles, m = f (Cr ate ) is the rate of decrease of the state of health,

and is function of the Cr ate at which the cycles are performed. In Fig. 3.3, notably, the behaviors

for the experimental data and the cycling trends of 1.5C and 4C are represented. The weights w

are finally obtained by normalizing the values of m on the value at 4C, given that the maximum

number of cycles for the examined cell is defined at this particular rate.

The above data allow to extract a trend line for the weights at current rates different from the

ones at which the experiments have been performed by the manufacturer. Through linear
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interpolation it is obtained that:

w(Cr ate ) = 0.57+0.11∗Cr ate (3.6)

In equation 3.6, the constant term is relative to a degradation process independent from the

cycling rate whereas the effect of C-rate is found in the second term. This method allows to

obtain a weighting factor for any cycling condition encountered in the operation of the BESS.

3.3 Results based for a BESS providing load leveling services

This section applies the method developed above to the operation of a utility scale BESS. First,

Section 3.3.2 applies the proposed method to assess how a load leveling strategy [127] [133]

[101], implemented with this BESS, affects the degradation of the cells. Second, Section 3.3.3

shows how an additional constraint can be added to this strategy to limit ageing and achieve a

desired lifetime for the BESS.

The load leveling used as a case study is operating in 24 hours periods and formulated as

described in Section 1.5. We recall here the main features of the method. The feeder forecasted

load profile is defined the day ahead of operation through data-driven forecasting. The BESS

power injection is then defined so that the overall feeder power profile is leveled. The MV

feeder power profile is then dispatched through an intra-day operation of the BESS. The

control strategy for the BESS aims at reducing the deviation of the load profile of a MV feeder L̂

from its mean power value L̂av g , through the utilization of the BESS power B . For the BESS it is

therefore determined the profile of the power injections along a 24h period, with a resolution

of 5 minutes. The load profile is built through the averaging of forecast scenarios composed

by historical data and the problem is solved the day ahead of the operation.

arg min
Bi

N=288∑
i=1

((
L̂i − L̂av g

)−Bi
)2

(3.7)

Subject to:

|Bi | < Bmax (3.8)

|Pi | < Pmax (3.9)

0 < SOEi < 1 (3.10)

The constraints for this problem, without taking into account for ageing limitations, bound

the battery power Bi , the power absorbed by the feeder Pi = Bi +Li and the battery state of

energy SOEi [107] built as:

SOEi = SOE0 + ΔT

Cnom

i∑
j=0

B j , (3.11)

82



3.3. Results based for a BESS providing load leveling services

where Cnom is the nominal capacity of the BESS. The energy throughput is calculated on the

BESS usage defined in the day-ahead problem and the constraint imposed on the BESS usage

described in section 3.3.3 limits the load-leveling objective of the control strategy.

3.3.1 Case Study Setup

The methodology described in the previous section has been deployed with a lithium-titanate

BESS of 280 kWh2, connected to a 20 kV active distribution network characterized by a peak

load of about 300 kW and embedding 100 kWp of PV generation [138]. The BESS performs the

leveling of the feeder load. The battery power, current and state of charge are measured in real

time by a tailored battery management system (BMS) with a sampling rate of one second.

3.3.2 Ageing Assessment of the Unconstrained Load Leveling Strategy

In this section the weighted energy throughput method described and characterized above is

used to assess the ageing resulting from the load leveling strategy3. Several scenarios obtained

from historical data of the power consumption of the targeted feeder are considered. Fig. 3.4

shows the power and stored energy profiles of the BESS during 24h from one of the scenarios

taken into account. In the upper image we can see the behavior of the power of the MV feeder

without and with the contribution of the BESS. In the middle figure we can see the daily profile

of the BESS power and in the lower figure we can see the daily evolution of its stored energy.

The power profiles are discretized in 5 minute intervals. The exchanged energy of the BESS

can be therefore calculated as the sum of battery power absolute values within 24h, weighted

with the w factors defined in section 3.2. This energy can then be compared with the rated

energy of a complete cycle to obtain an equivalent number of cycles per day and from this

value an estimation of the battery duration before depletion, if in use with this specific control

strategy. Table 3.2 collects the ageing data obtained for several days of load leveling operation,

taken in various moment of the year and of the week.

It can be seen how, for this specific battery chemistry and this specific application, the EOL

values are very high, i.e. the ageing of the battery due to its cycling takes place in a very long

period. These values are especially high when compared to the calendar lifetime of these

devices, which, for this specific BESS is of 20 years. The BESS itself, in such a long time span

can incur in ageing from many and various causes, such as calendar and mechanical ageing,

defects of individual parts of the BESS or disruptive events. The above analysis, nevertheless,

2The BESS model used in this Section has a capacity that is half of the EPFL BESS, used in most experiments
and simulations throughout the thesis. The reason for this is that we observed that for the cell technology of this
BESS, Lithium titanate, the cycling effect on ageing is really minimal, due to the extremely high number of cycles it
can withstand. We chose therefore to model a BESS having a smaller capacity and therefore injecting power at
higher rates to provide the same services considered in the previous chapters. This BESS, while having ratings that
are still pretty common (see e.g. [88]), constitutes a more interesting case study for the assessment and limitation
of ageing. It holds that the methods described here are general and can be of much higher value for BESSs based
on other - more conventional - types of Li-ion chemistries.

3In Appendix A.5 a similar assessment for other services described throughout this thesis is provided.
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Figure 3.4 – BESS operation in a 24h scenario: a) profile of the feeder consumption without
the BESS (red) and with the BESS (blue); b) Power injection of the BESS c) Energy stored in the
BESS.

remains extremely important, as it assess the ageing that is directly linked to the battery

operation and it assess therefore, if and how the control strategies developed for the BESS

need to be aware of this process.

Table 3.3 reports the average daily values for several relevant metrics, obtained from a simula-

tion of 5 years of operation of the BESS. Notably, var (L) and var (P ) are the variances of the

feeder consumption and of the total power absorption including the BESS contribution. These

values measure the performance of the load leveling objective: it can be seen how var (P ) is

several times smaller than the variance of the consumption profile var (L). Table 3.3 reports as

well the values obtained for the average daily exchanged energy Eexch , number of equivalent

cycles Nc and the expected EOL for the case analyzed. The expected cycling related battery

lifetime for the proposed load leveling strategy is of about 40 years.

This number is considerably higher than the calendar lifetime of the cells, i.e. 20 years,

meaning that, for the considered application and cell chemistry, the cycle ageing is not the
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3.3. Results based for a BESS providing load leveling services

Table 3.2 – Ageing assessment for a load leveling strategy with different scenarios

Eexch Nc EOL

433.18 kWh 1.36 40.36 years
477.08 1.49 36.68
505.91 1.58 34.58
513.19 1.61 34.09
313.34 0.98 55.82
525.7 1.65 33.29
337.03 1.06 51.92
505.54 1.58 34.59
437.79 1.37 39.95

Table 3.3 – Performances for unconstrained BESS operation employing cells with 20000 cycles

Metric Value

var (L) 1.79 ·103 kW 2

var (P ) 396.15 kW 2

Eexch 789 kW h
average Nc 1.41
expected EOL due to cycling 40.1 year s
expected calendar EOL 20 year s

main source of ageing. In such a case, therefore, there is no need to limit with respect to this

aspect the load leveling operation of the BESS, in order to reach the expected calendar lifetime

of 20 years.

3.3.3 Implementation of an additional constraint in the BESS control strategy

The results in the previous section refer to a BESS composed by Lithium-titanate cells, charac-

terised by a very high cycle life. We’ve shown how for such BESS cycle ageing is not a major

concern. For BESSs based on more common Li-ion cell chemistries, however, it may be useful

or even necessary to take into account cycle ageing in their operation. In order to do so, and for

the case of a BESS operated to provide load levelling, the following constraints, which bounds

the exchanged energy Eexch of the BESS, can be added to the control problem described by Eq.

3.7-3.10:

1

2Ebat t

ΔT

3600

i∑
j=0

|w j B j | < NM , i = 1, . . . ,288, (3.12)

where NM is a number of cycles per day chosen in relation to a desired end of life time EOL in

years.
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Table 3.4 – Performances for unconstrained BESS operation and employing cells with 3500
cycles

Metric Value

var (P ) 415.81 kW 2

Eexch 789 kW h
Nc 1.41
expected EOL due to cycling 7 year s
expected calendar EOL 10 year s

Table 3.5 – Performances for BESS operation constrained to a lifetime of 30 years and employ-
ing cells with 3500 cycles

Metric Value

var (P ) 685.83 kW 2

Eexch 401 kW h
Nc 0.96
expected EOL due to cycling 10 year s
expected calendar EOL 10 year s

To quantify the usefulness of the additional constraint, we consider a cell chemistry having a

cycling lifetime of 3500 cycles and a calendar lifetime of 10 years, these values being typical

for classical li-ion cell chemistries. We compare the simulation results obtained operating the

battery while disregarding the ageing limitation and then considering it. Figure 3.5 reports

the feeder consumption profiles, BESS power injection and BESS stored energy for a day of

operation without the contribution of the BESS and in the two considered cases. By measuring

the exchanged energy and average equivalent cycles per day, we see how with such cells, the

expected EOL of the BESS is reached after 7 years. This case illustrates the importance to

integrate the cycle ageing into the control strategy, as the EOL is reached before the calendar

lifetime declared by the manufacturer. Table 3.4 reports the relevant metrics for this case. We

set then an additional constraint to the load leveling minimization algorithm, such that the

battery EOL occurs after 10 years. We can see in Table 3.5 that by applying this constraint the

performances with regard to load leveling are worsened, but the lifetime goal is reached.

3.3.4 Conclusive remarks

This Chapter proposed an empirical method to asses the cycle ageing of a BESS controlled

to level the load of a distribution feeder. Based on this assessment, several key conclusions

can be made. First, cycle ageing is a minor concern for BESSs based on LTO cell technology.

Second, cycle ageing plays instead a role in determining the end of life for BESSs using more

common Li-ion battery technologies. Third, based on the proposed method, it is possible to

extend the control frameworks provided in Section 1.5 to host ageing-limiting constraints, so
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3.3. Results based for a BESS providing load leveling services
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Figure 3.5 – Comparison of a load leveling daily profile without BESS operation (blue), with
BESS operating without ageing constraint (red) and with BESS operating with EOL constrained
to 30 years (yellow).

to ensure the achievement of a specific BESS lifetime.

With respect to the method itself, we observe how this relies on data commonly provided in

battery datasheets and is rather simple to use for ageing assessment and control. However, it

relies on the rather heavy assumption that the degradation due to a complex cycling pattern

is the same as the one due to a regular cycling profile characterized by the same energy

throughput. This assumption allows for a easy although approximate accounting for battery

ageing. In order to remove it and account for battery degradation more accurately, the physical

phenomena occurring in Li-ion cells should be modeled explicitly. This latter approach,

however, is considerably more complex than the methods presented in this Chapter and is

discussed throughout the second part of this thesis.
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PART II

ON THE INTEGRATION OF ADVANCED
BATTERY MODELS IN BESS CONTROL





4 On the Evolution of BESS control
including advanced Li-ion cell models

In the first part of the thesis, an equivalent circuit model and a empirical degradation model

have been used within an MPC framework and to assess cycling ageing of a BESS respectively.

This second part of the thesis aims at substituting these conventional models with advanced

physics-based models.

Circuit models mimic cell dynamics via networks of electrical components. They are efficient

to predict cell voltage and estimate the cell state of charge with low computational burden.

However, they have limited accuracy and capacity to describe the cell behaviour over a wide set of

operating conditions. Similar issues affect the empirical ageing models introduced in Chapter 3

of this thesis. Recent research efforts have tried to substitute both ef these with advanced physics-

based models. These are electrochemical models that describe in detail (rather than mimicking)

Li-ion cell behaviour. They have been initially developed with the purpose of designing the

cells and studying their microscopic behaviour. Only recently, from the late two-thousands,

researchers have tried to use them in control applications.

This chapters provides first an overview on the various classes of battery models and, second,

analyzes the challenges and potential advantages of using physics-based models in the control

of BESS.

4.1 Definitions on Li-ion cells

A Li-ion cell is the constitutive element of a BESS. Li-ion cells store electrical energy through

reversible electrochemical reactions and are connected in series and in parallel in BESSs.

Each cell is composed by two electrodes (the positive one being the cathode and the negative

being the anode), immersed in an electrolyte and isolated electronically by a separator layer

(see Fig. 4.2-a). The electrodes are composed by intercalation materials and have a porous

structure. Typically, the anode is in carbon, although novel materials have been used in

specific applications. For instance, the BESS used in this thesis has an anode composed by

Lithium titanate oxide (Li4Ti5O12, or LTO).). The cathode can be composed by various metal

91



oxides. Examples are Lithium iron phosphate (LiFePO4, or LFP), Lithium cobalt oxide (LiCoO2,

or LCO) or Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2, or NCA). The electrodes are

conductive electronically and connected via metallic connectors to the the exterior of the cell

(and eventually to the external electrical circuit) and can intercalate or de-intercalate Lithium

ions within their lattice structure1. The electronic insulation between the two electrodes is

ensured by a separator layer. All these three components are then immersed in an electrolyte.

This is typically composed by a Lithium salt in an organic solvent and allows the movement of

Lithium ions within the cell.

A typical reaction occuring in a Li-ion cell, having graphite (C ) as anode material and a generic

metal oxide (MO2) as cathode material, can be espressed as follows: The rightwards arrows

Cathode: LiMO2 Li1−x MO2 +Li++xe−

Anode: C+ yLi++ ye− Liy C
Overall: LiMO2 +x/yC x/yLiy C+Li1−x MO2.

(→) refer to the charging process, while the leftwards arrows (←) refer to discharge. x and

y indicate the quantity of Lithium ions that are intercalated respectively in the anode and

cathode materials normalized over their maximum insertion capacity. When charging the cell,

an electric current is injected by a source to the positive electrode of the cell. This corresponds

to electrons flowing out of the positive tab of the cell, through the external circuit and into

the negative tab of the cell. At the same time, within the cell, Lithium ions (Li+) deintercalate

from the active material of the cathode, flow through the electrolyte and intercalate in the

anode active material.

4.2 State of the art on Li-ion cell models

This section briefly discusses the models of battery dynamics that can be used in BESS control.

There are three main classes of models, in order of increasing complexity. The first includes

“bucket” models, that trivially represent batteries as integrators of charge, eventually with

the consideration of their efficiency. The second, equivalent circuit models, represent the

voltage and SOC dynamics via an abstract equivalent network of electric components. The

third, electrochemical models, faithfully represent the cell internal dynamics and phenomena.

While the first two classes are commonly used in a wide set of applications (the primal example

being first part of this thesis), the application of the latter in control applications is subject of

ongoing research. Hereafter we describe the main features of these classes of models, describe

their advantages and flaws. It is not the objective of this Chapter to provide a complete review

of Li-ion cell and battery models, but rather to provide the key points to highlight the potential

benefits of integrating advanced (i.e. electrochemical) models in control. Extensive reviews of

battery models are provided in [78, 155].

1Intercalation is the process of insertion of a molecule (in this case of a Lithium ion) within the layered structure
of a material (in this case the electrode active materials).
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4.2. State of the art on Li-ion cell models

Models of Li-ion cells of increasing complexity and accuracy exist and are used depending

on the application and context. The simplest possible approach is to model a Li-ion cell as a

current integrator. The charge Q stored in the cell, will be a function of its current i :

Q(t ) =Q(t0)+
∫t

t0

i (t )d t . (4.1)

This provides a tool to predict the state of charge. This approach is typically used in planning

and scheduling problems where, given the long time horizons involved and the impossibility

to predict the exact operation of the battery with such advance, an approximate state of

the battery is sufficient for the purposes of such problems. This type of model is used in the

day-ahead problems described in the first part of this thesis, as well as, for instance, in [82,162].

4.2.1 Equivalent circuit models

Increasing in complexity and accuracy, the equivalent electrical circuit models of Li-ion cells

are able to represent the dynamics of external voltage of the cell as a function of the input

current and of a set of model states (typically the battery state of charge and (see for instance

the model represented in Figure 1.6, in Chapter 1) the voltages on the RC branches of the

model). In Section 1.4.2, one of such models has been casted in a MPC framework. Here we

provide a general description of these models in order to be able to highlight, in the remainder

of the chapter, the differences between them and the more complex electrochemical models.

Fig. 4.1-a reports the typical structure of the equivalent circuit model. This is composed

by a voltage source, representing the equilibrium voltage of the cell and by a set of other

components, representing its dynamic behavior. The voltage source is most often a non-linear

function of the state of charge [73]. Among the additional elements, typically, a series resistance

(fig. 4.1-b) is always present, to capture the ohmic losses and the instantaneous voltage drop

that a current generates in the cell. A number of parallel RC branches (fig. 4.1-c) is then used

to represent the diffusive phenomena taking place in the cell. These cause the cell voltage

to stabilize only after a given time after exciting the cell with a current. In principle, a very

high number of such branches is necessary to model accurately diffusive phenomena [180].

However, this makes the model less tractable and in the literature, models with one [98],

two [48] or three [6] branches are typically used2. Finally, further elements (fig. 4.1-d) can

be added to model specific aspects of the battery behavior. For instance [141] proposes to

use a non-linear function to model voltage hysteresis (i.e. the fact that, for some chemistries,

the cell can have different open circuit voltages for a same state of charge, depending on the

cycling path to reach that state3).

The usage of such models for Li-ion BESS simulation and control purposes is well-established

2In Section 1.4.2, we showed that, for the EPFL BESS and for a real-time control operating at 10 seconds
resolution, a model with two RC branches provides satisfactory results.

3Ref. [12] quatifies this phenomenon and finds that it is rather important in LiFePO4 cells, whereas it is less
relevant in LTO-based cells.
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Figure 4.1 – Generic structure of an equivalent circuit model of a Li-ion cell.

in the scientific literature and a comprehensive review and comparison of the various circuit

models is presented in [73].

In the context of Li-ion cell state estimation and in general control, the exploitation of such

models is widespread, due to their simplicity and tractability. However, a major disadvantage

of these models is the lack of representativeness of the physical phenomena happening within

the cells. A direct consequence is that a model that performs well in given operating conditions,

may perform poorly in others. Similarly, since parameters of circuit model don’t have specific

physical meaning, their change due to degradation and ageing of the BESS cannot be predicted

via laws and can only be fitted by using large - and hard to obtain - datasets, as discussed in

Chapter 3.

4.2.2 Electrochemical models

Electrochemical models describe in detail the physical phenomena happening within the cells.

These have been originally developed by electro-chemists to design such cells and analyse their

physical and chemical properties. For instance, [39] compares the performances of Lithium

titanate to graphite anodes, [4] describes the behavior of several cathode materials, [35, 38]

describe cell degradation mechanisms as solid-electrolyte interphase (SEI) formation and

fractures due to material stress.

The main electrochemical model used in the literature to describe Li-ion cells is the one

developed by Newman in the mid-nineties, based on his porous electrode theory [122] and

described in the seminal papers [46] and [63]. This is referred in the literature as the pseudo-2-

94



4.2. State of the art on Li-ion cell models

dimensional (P2D) model or the Doyle-Fuller-Newman (DFN) model, following the names of

the authors of [46].

The P2D model describes the main phenomena taking place within the cells. These are:

1. the intercalation and de-intercalation of Lithium ions in the active material of the

electrodes. This corresponds to the exchange of Lithium between the solid phase (i.e.

the lattice structure of the electrodes) and the liquid phase (i.e. the electrolyte);

2. the movements of ions both in the electrolyte and electrode active material, due to dif-

fusion (i.e. movement driven by concentration gradient) and migration (i.e. movement

driven by electric potential gradient);

3. the conduction and creation of gradients of electric potential both in the electrodes and

electrolyte.

The mathematical description of these simultaneous and interconnected phenomena, is

done by exploiting the porous electrode theory. Following this theory [122], the electrolyte-

impregnated porous structure of the electrodes is modeled as the superposition of two con-

tinua, representing the solid and liquid phase respectively. A Li-ion cell is composed by three

layers of finite area and thickness, each presenting these two continua: an anode, a separator

and a cathode. Referring to the coordinates in figure 4.2-a, it is assumed that the behavior

of the cell is uniform along y and z. The only coordinate in the orthogonal space necessary

to characterize the cell behavior is the one along x that describes the cell states along its

thickness.

At any position along x, and for a time t , the following quantities are defined:

• the ion concentration in the electrolyte ce (x, t );

• the potential of the electrolyte φe (x, t ) and of the electrodes’ active materials φs(x, t );

• the current flowing in the electrolyte ie (x, t ) and in the electrode active materials is(x, t );

• the intercalation current density j Li (x, t ), describing the exchange of ions between the

electrode active material and the electrolyte;

Moreover, for each step along x a further problem is formulated to describe the diffusion

of ions within the electrode solid particles. This is defined in the radial coordinate r and

determines the value of the concentration of ions within said particles, cs(x,r, t ) (see Figure

4.2-b). The corresponding partial differential equation (PDE) is solved in r for every step in x

and is related to the system of equations in x through the exchange current density, which

is defined as a non-linear function of ce (x, t) and cs(x,r, t )|r=R . This system is described by

Equations (4.2)-(4.10), reported from [21]. Such equations describe the behavior of one layer
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and are to be replicated for all three layers composing a cell (adapting the boundary conditions

and considering that in the separator only the equations related to the electrolyte hold). The

meaning of all parameters used in this set of equations is provided in Table 4.1.

x

y

z

a) b)

Figure 4.2 – Schematics for the representation of the P2D model of a Li-ion cell: a) 3-D
representation, b) section showing the spatial coordinates considered in the model.

Solid radial diffusion:

∂cs

∂t
= 1

r 2

∂

∂r

(
r 2Ds

∂cs

∂r

)
(4.2)

with:
∂cs

∂r
|r=0 = 0,

∂cs

∂r
|r=Rs =

− j Li

asF
(4.3)

Charge transfer between solid phase and electrolyte:

j Li = asi0

[
e

αa F
RT η−e

−αc F
RT η

]
, (4.4)

where: i0 = kF
(
cmax

s −cs |r=Rs

)αa
(
cs |r=Rs

)αc (ce )αa , (4.5)

and where: η=φs −φe −Ueq (cs |r=Rs ) (4.6)

where Ueq is the equilibrium voltage of the electrode and is typically a non-linear function of

the ion concentration on the surface of its solid particles, cs |r=Rs .

Electrolyte linear diffusion:

εe
∂ce

∂t
= ∂

∂x

(
De f f

e
∂ce

∂x

)
+ 1− t 0+

F
j Li (4.7)
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Parameter Meaning
Ds solid diffusivity [m2 · s−1]
Rs radius of electrode’s solid particles [m]
as specific surface [m2 ·m−3]

αa ,αc anodic/cathodic transfer coefficients [-]
T temperature [K]
k reaction rate constant [m2.5mol−0.5s−1]
εe porosity of the material [-]

De f f
e electrolyte diffusivity [m2 · s−1]
t 0+ transference number [-]

ke f f
D diffusional conductivity []

σe f f electrode conductivity [S ·m−1]
R Universal gas constant (8.31 J ·K −1 ·mol−1)
F Faraday constant (9.65 ·104 s · A ·mol−1)

Table 4.1 – Paramaters of a P2D model

Ohm’s Law in electrolyte:

ke f f ∂φe

∂x
−ke f f

D

∂ lnce

∂x
+ ie = 0 (4.8)

ke f f
D = RT

F

(
1−2t 0

+
)

ke f f (4.9)

Ohm’s law at the surface of the particles:

σe f f ∂φs

∂x
+ is = 0 (4.10)

This model constitutes the cornerstone of a set of physics-based models of Li-ion cell, both

more complex (e.g. integrating thermal dynamics [56], variable parameters [4], degradation

laws [150] etc.) and simpler than their predecessor. Examples of the latter are [67], where

electrolyte dynamics are neglected, or [172] where a parabolic algebraic function, rather than

a PDE, is used to represent solid diffusion.

4.2.3 First-principle models of Li-ion cell ageing phenomena

Chapter 3 of this thesis, describes a method to characterize ageing of a BESS from a macrosopic

point of view. This, however, is the effect of microscopic processes, altering irreversibly the

materials composing the cells. The electrochemical models described above allow for a

precise description of such mechanisms. Among the most common processes that generates

degradation in Li-ion cells, there are the growth of the solid-electrolyte interphase (SEI)

layer, electrolyte decomposition, cathode dissolution, dendrite formation, lithium plating,

etc. [182]. The most common degradation mechanisms of Li-ion cells are listed, together
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Figure 4.3 – Main degradation mechanisms of Li-ion cells, from [20]

with their causes and effects, in Figure 4.3, while a thorough review of such processes is

provided in [182] or [14]. Most of these degradation mechanisms can be described referring

to the porous electrode theory and exploiting the models based on it. In fact, the rate at

which these mechanisms proceed is determined by the internal state of the cells (i.e. the

variables of the models described in Section 4.2.2) and generate changes in the values of the

parameters of these same models. As an example, we can use the growth of the SEI layer and

the corresponding electrolyte decomposition [150]. This phenomenon is enhanced by high

values of ion concentration in the solid particles of the anode and by high current rates (i.e.,

with respect to equations (4.2)-(4.10) when, in the anode, cs → cs,max and
(
φs −φe

)
is high).

This example will be described more in detail in Chapter 6 of this thesis.

The utilization of electrochemical models to explicitly model, visualize and eventually integrate

in the battery control these physical processes is proposed by several references. As for the

case of electrochemical models to represent cell dynamics, the integration of degradation

processes in these models has been first performed by researchers in electro-chemistry [35,125,

150]. These papers show how some of the most common ageing phenomena, i.e. electrolyte

decomposition and growth of the SEI layer, can be integrated in an electrochemical model

based on porous theory. Similarly, [34, 37, 38] describe material stress due to intercalation and

de-intercalation of Lithium ions in the cell electrodes. Further works, such as [36, 42, 147] have

then exploited this approach to predict the cycle life, capacity fade and impedance rise of a

battery. Finally, [119, 137, 151] have proposed reduced-order formulations to use such models

in real-time control applications.
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4.3. The uses of Li-ion cell models in the control of BESS

4.3 The uses of Li-ion cell models in the control of BESS

A first usage of battery models is to simulate battery behavior so to determine the necessary

characteristics of the batteries themselves and related systems (e.g. electronics or control

loops). This is for example the aim of the model developed in [32]. Battery models are then

used within algorithms to plan BESS operation over time horizons of considerable length.

This is the case, for example, of the day-ahead problems developed in the first part of this

thesis, where an integrator (including a model of the BESS round-trip efficiency) was used.

Problems characterized by such long time-horizons (24 hours) and by such coarse resolution

(5 minutes), in fact, do not require the exact modeling of all battery dynamics.

The following two subsections focus on those control problems where a detailed modeling of

Li-ion cell is instead beneficial or even necessary.

4.3.1 Cell state estimation

Cell state estimation consists in determining an estimate of quantities (states) that are relevant

to cell operation but un-observable (the battery SOC is the most typical example). Knowledge

of such quantities is important to determine the instantaneous power that can be required

from the cell, as well as the available energy and the charge and discharge runtime. Model-

based state estimation is a widespread technique4 to determine the state of Li-ion cells

used in energy storage applications. It is performed by observer and filters that rely on

models of various complexity. The seminal work in this respect is presented in the series of

paper [140–142] by Plett. These formulate and demonstrate the effectiveness of the usage

of an extended Kalman filter (EKF) exploiting an equivalent circuit model for LiPB-based

battery packs. Examples of other works in this directions are [143,144,173] in which unscented

Kalman filters are presented, or [21] that exploits an electrochemical model, rather than an

equivalent circuit one, within an EKF.

4.3.2 Predictive control of BESS

A function that is closely related to SOC estimation and that is fundamental in the management

of Li-ion cell is the determination of the maximum charge and discharge power for any given

point of operation. This is a fundamental function of BMSs also typically done via models [146].

Exploiting the information about the current state and a model of the battery, it is possible to

predict what would be the final cell voltage when requesting a given power for a given duration.

Knowing the maximum and minimum cell voltages, it is therefore possible to assess the values

of the maximum charge and maximum discharge powers.

Recent works, such as [74] or [192] propose to identify, rather than simply the power limit

4Simple methods, not relying on models, can be used but are limited in applicability and accuracy. Coulomb
counting, for example, is affected by sensor biases and its estimate may drift in time from the real cell state, while
the OCV-SOC curve provides an accurate estimate only for operation at quasi-equilibrium conditions [194].
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within an interval, the optimal charging/discharging profile within this same interval, by

means of predictive algorithms. These exploit circuit models within optimization algorithms.

A similar concept is also used in Chapter 1 of this thesis to determine the optimal operation of

the BESS to satisfy the tracking objective of the dispatching service with a 5-minutes horizon.

4.4 Potential advantages of the integration of advanced models in

BESS control

Integrating advanced physics-based models in the control of BESSs and using them in the

same (or at least in a similar) way as circuit models are used nowadays is object of a consistent

- although recent - amount of research.

A consistent - although recent - amount of research aims at integrating advanced physics-

based models in the control of BESSs and using them as nowadays circuit models are being

used. In this section we list and discuss the advantages that this is expected to bring, whereas

in section 4.5, we discuss the challenges that need to be addressed to reach these goals.

4.4.1 Increased accuracy in state estimation, prediction and simulation

A comprehensive comparison of the prediction performances of equivalent circuit and elec-

trochemical models does not exist in the scientific literature (we found however a coarse

comparison in [158]). This is due to the fact that these two classes of models are different in na-

ture and while equivalent circuit models can be extended arbitrarily to represent any dynamic

but have states with no physical meaning, electrochemical models have a predetermined and

rather stiff structure but provide a deeper insight in the actual cell dynamics. This increased

observability is another important advantage of electrochemical models, described in the

following section. A comparison between an equivalent circuit and an electrochemical model

would therefore be limited in validity to the specific structure of the former and to the specific

operating conditions considered. However, few considerations concerning the accuracy in the

voltage predictions and simulations attainable with these two classes of models can be made:

• first, as mentioned, equivalent circuit models are fitted so to predict/simulate battery

behavior with most accuracy around a given operating point rather than in its whole

operating range. On the contrary, the validity of electrochemical models is not limited to

a more or less narrow operating range, but holds for any operating conditions in which

the same phenomena are occurring and the same physical laws apply;

• diffusive processes take place in the electrode as well as in the electrolyte. Circuit models

typically try to capture these phenomena via a series of RC branches. However, in order

to have an accurate representation of such phenomena a very high number of branches

is needed [180]. On the contrary, electrochemical models solve the exact PDEs governing

diffusive phenomena, and represent therefore more precisely the associated dynamics.
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4.4. Potential advantages of the integration of advanced models in BESS control

• it is generally accepted that electrochemical models are more accurate than equivalent

circuit models. Several works in the literature (e.g. [60, 149]) use an electrochemical

model rather than experimental data as a reference to identify the parameters and assess

the performances of simpler models.

4.4.2 Observability of cell dynamics and states

The equivalent circuit model used in Chapter 1 of this thesis is used to estimate the state of

charge of a BESS as well as other “virtual” states (i.e. the voltages across the RC branches of

the circuit). Among these, the SOC is the only relevant information about the actual internal

physical state of the Li-ion cell. Although this may be sufficient for some purposes (e.g., the

predictive constraints in the real-time control algorithm presented in Section 1.2), the SOC

is a poor indicator of the processes occurring within a Li-ion cell during its cycling. As it is

discussed in Section 4.2.2 and in more detail in Chapter 5, potentials and ion concentration

assume non-uniform distributions in the various parts of Li-ion cells. The SOC and the

external voltage are instead lumped quantities that fail to capture these inhomogeneities.

On the contrary, electrochemical models allow to explicitly estimate ion concentrations and

potentials in the various parts of Li-ion cells, thus gaining insight into these unbalances. This

insight is extremely helpful, since it allows for a more efficient exploitation of the cells (see

Section 4.4.3) and for the explicit consideration of most ageing phenomena (see Section 4.4.4).

4.4.3 Enhanced operating domain

A key challenge related to the reliable operation of BESS is the development of control strate-

gies capable to account for both their physical operational constraints and aging factors with

the main objectives of reducing fault occurrences, thermal runways and the magnitude of

degradation phenomena in the cells. The magnitude of these phenomena depends on the

evolution of the cells internal states and, in particular, overpotentials and ion concentra-

tions in the various parts of the cell. Therefore, the knowledge of these quantities allows to

implement efficient battery control policies that avoid electrochemical degradation while

exploiting the full battery potential [30,45,118,136,164]. Since these quantities are not directly

measurable, the operational constraints are normally defined on variables that are directly

measurable (i.e.the battery terminal voltage and the current) or lumped states as the cell

SOC [72, 177]. These quantities, however, are related to the physical states of the cell in a

rather complex (nonlinear and time-dependent) way. In order to operate the BESS in a safe

domain by imposing operational limits on these externally-available and/or lumped quanti-

ties, one should therefore choose conservative constraints. These, besides avoiding operation

in unsafe conditions, may prevent to operate the BESS in non-harmful conditions [136], thus

unnecessarily limiting the performances of Li-ion cells. In other words, these limits reduce

the power and energy capability of a BESS (Fig. 4.4 provides a qualitative representation of

this concept). Estimating the exact physical state of Li-ion cells via an electrochemical model

can avoid this issue: it allows, in fact, to set the operating limits based on these estimated
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Figure 4.4 – Qualitative comparison of the traditional operational constraints for a Li-ion cell,
based on measurable quantities (left) and allowed by the knowledge of actual cell physical
states (right) [118].

quantities so that only operating conditions that are actually harmful to the cells are avoided.

Moreover, as Li-ion batteries age, their behavior evolves. Constraints set on measurable and

lumped quantities that are valid for new non-cycled cells may not ensure safe operation for an

aged ones. This problem can be avoided by imposing limitations on the states estimated via

electrochemical models.

4.4.4 Accounting of ageing via explicit modelling of degradation phenomena

As of today, ageing is taken into account in the control through macroscopic indicators,

such as impedance rise and capacity fade (as detailed in Chapter 3). However, since the

relation of degradation with operating pattern is rather complex, the same capacity fade or

impedance rise could be reached via different patterns or operating strategies. Such indicators,

therefore, are not sufficient to identify the optimal control strategy to operate a BESS (if not

in an approximate way). Physical models provide the basis to enhance the assessment and

limitation of ageing in BESS control, since the intensity of the degradation phenomena can be

quantified on the basis of the cell physical states. These considerations are object of few recent

works. The references [137, 151], for instance, propose to track specific physical quantities

(such as the intercalation current density and ion surface concentration in the anode) rather

than macroscopic ones.

Chapter 6 will provide a practical proof of concept on the advantages described in sections

4.4.2, 4.4.3 and 4.4.4 of using a physics-based model in the control of a BESS.

4.5 Challenges for the integration of advanced Li-ion cell models in

BESS control

Three main challenges can be identified for the implementation of advanced, physics-based

models. First, these are, in their original formulation, computationally demanding, and
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4.5. Challenges for the integration of advanced Li-ion cell models in BESS control

hence not suited for real-time applications. Second, they rely on numerous and hard-to-get

parameters. Third, these models represent the behavior of individual Li-ion cells and they

need therefore to be scaled to be used in BESS control. Hereafter we provide few details on

each of these challenges.

4.5.1 Computational complexity

The computational complexity of the P2D model and its “relatives” lies in their complex

structure, where non-linear algebraic equations (such those modeling the charge tranfser)

are coupled to a set of partial differential equations (modeling diffusion). Notably, the solid

diffusion process need to be solved, on the r coordinate, for each x coordinate that lies

within the electrodes (see Section 4.2.2). Due to this complex structure, iterative processes are

necessary to solve the equations of these models.

This has been addressed and mostly solved by reduced order modeling techniques. Reduced

order models (ROMs) rely on mathematical methods to identify models with a lower number

of states from the "full" models, while maitaining the representativity of a number of physical

states. For instance, [27] exploits proper orthogonal decomposition to build a ROM that

present good agreement with the respective full electrochemical model, while requiring

about one tenth of its computation time. [57] linearizes the model’s algebraic equations and

approximates the spherical diffusion PDEs via Padé approximations, greatly reducing its

number of states. [95] derives a discrete-time state-space model from a P2D model by relying

on the Ho-Kalman algorithm. Other approaches rely on simplifications such as neglection

of electrolyte dynamics (see for instance [67], as well as Chapters 5 and 6 of this thesis) or

the approximation of solid diffusion dynamics via analytical parabolic functions [172]. Such

methods have successfully lightened the computational burden of physics based models,

while preserving their representativity. This thesis, therefore, does not address this issues but

rather focuses on another fundamental challenge, described in the following subsection.

4.5.2 Parameter identification

Besides having a complex structure, physics-based models rely on many parameters. The

seminal P2D model described in [46, 63] and implemented in the DUALFOIL fortran program,

for instance, relies on 74 parameters to completely characterize a Li-ion cell. To run such a

model for a new cell chemistry, each of them need to be known or estimated with reasonable

confidence. Even a much simpler single particle model, such the one described in [67], still

needs 14 parameters, as well as the two open-circuit potential curves to be identified. On the

contrary, a similar problem does not exist for circuit models. Their parameter set, besides

being smaller, does not represent any specific physical phenomena and can therefore be

identified aiming solely at the minimization of the model prediction or simulation error. Since

parameters of physics-based models represent specific properties of the cell, these need to be

identified accurately to correctly represent their dynamics. Typically, these parameters can be
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known by cell designers or can be inferred by cell tear-down and electrochemical and physical

testing. The latter, however, are costly and require specific equipment and competences and

therefore may not be viable methods in most laboratories. Moreover, it may not be possible

to measure all parameter values and some may still need to be fit through an optimization

process [77].

Few papers address the challenge of identifying the parameters of a physics based model via

cycling and, in general, methods that can be executed by control and electrical engineers

with standard laboratory equipment. These are [22, 58, 77, 157]. [58] employs a computational

cluster for several days, to identify the 88 parameters of a P2D model. While this being the more

complex model successfully identified based only on cycling experiments, the computational

requirements for the proposed method are still prohibitive for most cases. [77] and [22] identify

respectively a reduced order P2D model and a SPM by clustering specific sets of parameters to

specific tests. In order to identify the parameters related to diffusive phenomena, however,

these rely on electrochemical impedance spectroscopy (EIS) which is a technique that requires

specific and not-so-widespread equipments. Finally, [157] does use only cycling tests to

identify a SPM, although it does not describe specific cycles optimized for identifiability,

but rather analyses the identifiability of parameters from the available cycles based on a

Fisher-information matrix approach.

4.5.3 Scaling from cell to system models

Finally, the question arises, whether and to what extent cell models can be exploited in the

control of BESS composed of hundreds or thousands of such cells. This is not a concern for

state estimation, where the state of each cell needs to be estimated. However, this is a relevant

question for the case of model predictive control, where, as shown in Chapter 6 of this thesis,

physics-based model may bring relevant performance improvements. However, including the

models of hundred or thousand cells in the predictive control framework is prohibitive.

The Chapter 6 of this thesis, as well as for instance [134], assumes that all cells are equal and

their states evolve coherently. This assumption allows to consider the cell voltage Vcel l and

current Icel l as proportional to the BESS ones (VBESS and IBESS):

Vcel l =VBESS/ns (4.11)

Icel l = IBESS/np (4.12)

where ns and np are respectively the number of cells in series and in parallel in the BESS. This

assumption, however, is not true in general, since the parameters of Li-ion cells vary. [152]

studied a set of 1100 fresh Li-ion cells, in order to quantify the dispersion of the values of

several cell parameters. The results show that the capacity and impedance of the cells present

a relative variation of 0.28% and 0.72% respectively5.

5Such values concern fresh cells, i.e. do not take into account changes in the parameters due to ageing and to
faults. It is reasonable to assume that these variations will gradually increase during BESS operation
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4.5. Challenges for the integration of advanced Li-ion cell models in BESS control

Figure 4.5 – Overemphasized representation of a battery pack composed by two cells in series
having different SOC.

Assuming all cells’ states evolve homogeneously and using an aggregate state to represent

them may cause issues in their control, since the limits of operation of a battery pack are

determined by the “weakest” cells, i.e. those cells that are more distant from the average state.

An overemphasized example is provided in Fig. 4.5. Here, a battery pack is composed by two

cells in series and one is completely full, while one is empty. Considering exclusively the pack

capacity and the stored charge, the pack SOC could be said to be 0.5. However, since one cell

is full, the pack cannot be charged (is then the pack SOC equal to 1?) and since one cell is

empty, the pack cannot be discharged (is then the pack SOC equal to 0?)6. This emphasized

case shows how the individual states of all cells should be considered, in a truly efficient

control. This, however, is a challenging problem, due to the high number of cells present in

BESSs and the consequent dimension of the estimation and/or control problems. Few papers

address the issue of the efficient estimation of Li-ion battery packs. [145] proposes to estimate

the states of such systems via the so called bar-delta filtering. It consists in estimating an

average (bar) state of the pack via an extended Kalman filter (precise and executed with a

fast sampling time) and estimating the variations (deltas) of individual cells from this average

through simpler and slower-paced filters. [96] aims at identifying, within a pack, the two cells

that impose the charge and discharge limits, rather estimating the states of all cells. While

these papers proposes promising approaches for the state estimation of Li-ion cell packs, they

do not address the issue of how to exploit such information in a predictive control framework.

Of the three challenges listed above, we consider the first (i.e. the computational complexity)

as being mostly solved by recent research efforts. In this Thesis, Chapter 5 proposes a novel

approach to tackle the second (i.e. the parameter identification). The third (the coupling of

cell models and BESS control) is relatively unexplored yet and, in the conclusion of this thesis,

few considerations are made about possible approaches to tackle this issue.

6In fact, many works on BESS operation, scheduling and control, use a unique SOC value to represent the state
of the BESS (e.g. [113]). This quantity is not the same as the SOC defined in the works on SOC estimation of Li-ion
cells, where the estimation is performed on single cells. The usage of a BESS SOC in these works is related with the
“proper” definition of SOC only if it is assumed that (4.11) and (4.12) are valid. This assumption, however, is not
true in general.
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5 Parameter identification of a Li-ion
cell single particle model

This chapter addresses one of the challenges related to the integration of battery physics-

based models in control described in Chapter 4: the parameter identification of Li-ion cell

electrochemical models. Specifically, this chapter considers a Li-ion cell single particle model

(SPM). First, it proposes a model reformulation that reduces the number of parameters necessary

to describe the cell dynamics. Second, it proposes a set of experimental tests to identify separately

given subsets of parameters. Third, it demonstrates, via simulations and experiments the

effectiveness of the proposed approach.

5.1 The single particle model

The SPM formulation upon which this Chapter is based is first introduced in [67]. The SPM

describes the main phenomena taking place in a Li-ion cell: solid state diffusion, intercala-

tion and de-intercalation and conduction. It neglects the diffusion in the electrolyte. This

simplification allows for a considerable simplification in the model structure and dimension

and is generally considered to be acceptable as long as the current rates are low and elec-

trodes are thin and highly conductive. Following this assumption, diffusion and intercalation

phenomena occur uniformly in all the anode and cathode volume and the two electrodes

can be therefore modeled by two spherical particles. The model structure and the relevant

phenomena occurring within the cell and modeled by an SPM are represented in Fig. 5.1.

The physical phenomena modeled are: i) the diffusion in the anode active material; ii) the

intercalation at the anode-electrolyte interface; iii) ionic conduction in the electrolyte; iv) in-

tercalation at the cathode-electrolyte interface; v) diffusion within the cathode active material.

This model can incorporate a detailed physical description of ageing processes [125] and a

physical description of thermal behavior [67] of the cells and can be used in SOC estimation

algorithms [43]. We report here the governing equations for the diffusion processes in the two

electrodes and the equation describing the cell voltage. The diffusion within the electrode

active material is modeled through two radial diffusion partial differential equations (PDEs)

such as (5.1). In (5.1)-(5.4), the subscript i = (p,n) indicates the electrode, with p standing for

positive and n for negative electrode. ci is the ion concentration within the single particle,
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Figure 5.1 – a) Structure of a Li-ion cell: I) negative current collector; II) anode; III) separator;
IV) cathode; V) positive current collector. b) single-particle model schematic.

as a function of time t and radial coordinate r . Di indicates the diffusion coefficient of the

electrode, Si its total active surface area, Ri the radius of the particles composing the active

material, Vi the total electrode volume and εi its porosity. Finally, Iapp is the current applied

to the cell and F the Faraday constant.

∂ci (r, t )

∂t
= Di

r 2

∂

∂r

(
r 2 ∂ci (r, t )

∂r

)
(5.1)

with boundary conditions:

Di
∂ci

∂r
|r=0 = 0, Di

∂ci

∂r
|r=Ri =−Ji (t ) (5.2)

and where:

Ji (t ) =± Iapp (t )

F Si
, (5.3)

Si = 3εi Vi

Ri
. (5.4)

In (5.3), the positive sign is for the positive electrode and the negative sign is for the negative

one. These equations define the ion concentration within the two electrodes. The external

voltage of the cell Vcel l is then computed as a sum of several terms, as in (5.5). Up and Un are

the open-circuit potential (OCP) of the cathode and anode respectively and are functions of
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5.1. The single particle model

the ion concentration in the two electrodes. The three remaining terms are the voltage drops

respectively due to i) the intercalation in the cathode, ii) the intercalation in the anode and iii)

the ohmic losses in the electrolyte and the electrodes. The expressions for the voltage drops

due to intercalation processes are obtained by reversing the Butler-Volmer equation for the

intercalation current density, as defined in [181]. In (5.5) and (5.6), R is the gas constant, T

is the absolute temperature, ki is the reaction rate constant for the electrode i , ce is the ion

concentration in the cell electrolyte, ci ,max the maximum ion concentration possible for an

electrode and ci ,sur f the surface concentration of the electrode single particle.

Vcel l = Up (zp,sur f )−Un(zn,sur f )+

+ 2RT

F
l n

⎛⎜⎝
√

m2
p +4+mp

2

⎞⎟⎠+
+ 2RT

F
l n

⎛⎜⎝
√

m2
n +4+mn

2

⎞⎟⎠+ Iapp Rcel l (5.5)

mi =
Iapp

F ki Si ci ,max c0.5
e
(
1−xi ,sur f

)0.5 x0.5
i ,sur f

, (5.6)

where zi ,sur f = ci ,sur f

ci ,max
. We report in Table 5.1, the parameters needed to fully characterize the

model. This formulation of the SPM needs 14 parameters and the two analytical functions

Up (zp,sur f ) and Un(zn,sur f for the two equilibrium potentials to fully describe the cell behavior.

Table 5.1 – Parameters of a full SPM

Parameter Unit Meaning
Dp m2s−1 Cathode solid diffusion coefficient
Dn m2s−1 Anode solid diffusion coefficient
εp - Cathode porosity
εn - Anode porosity
Rp m Cathode Particle radius
Rn m Anode particle radius
Vp m3 Cathode volume
Vn m3 Anode volume

cp,max mol m−3 Cathode maximum solid concentration
cn,max mol m−3 Anode maximum solid concentration

kp m2.5mol−0.5s−1 Cathode reaction rate constant
kn m2.5mol−0.5s−1 Anode reaction rate constant

Rcel l Ω Cell resistance
ce mol m−3 Electrolyte ion concentration
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5.2 Reformulation of the SPM to reduce the number of parameters

It is to be noted that some of the model parameters are always present and only grouped

with other parameters. Examples are the electrode porosities εi or the ion concentration

in electrolyte ce in (5.1) and (5.6) respectively. The isolation and identification of these as

independent parameters, therefore, does not bring any information relevant to the modeling

of the cell dynamics. We define new parameters by lumping those that appear only grouped

and by normalizing the variables in the diffusion equation (5.1). This allows the definition

of an SPM that has exactly the same accuracy and generality as the one in [67] while relying

on the identification of only half of its parameters. Eq. (5.1) can be reformulated, by defining

the normalized coordinate x = ri
Ri

and the normalized concentration z = ci
ci ,max

. Substituting

these newly defined terms in Eq. (5.1) and defining a normalized diffusivity as D∗
i = Di

R2

and an equivalent electrode capacity as Qi = F Ri Si ci ,max , the diffusion processes in the two

electrodes can be described by the equation:

∂z

∂t
= D∗

i
1

x2

∂

∂x

(
x2 ∂z

∂x

)
with boundary conditions:

D∗
i
∂z

∂x
|x=0 = 0, D∗

i
∂z

∂x
|x=1 =

Iapp

3Qi

(5.7)

The description of diffusion in an electrode, depends therefore only on two parameters, D∗
i

and Qi . The parameters in (5.6) can also be grouped in a similar way. By defining k∗
i = ki c0.5

e
Ri

and using the Qi defined above, it can be obtained that:

m∗
i = Iapp

3Qi k∗
i (1− zi ,sur f )0.5z0.5

i ,sur f

(5.8)

The resulting set of parameters is shown in Table 5.2. The dynamics of each electrode, with

this novel SPM formulation are fully described by: i) a capacity Qi , ii) a diffusivity D∗
i , iii) a

reaction rate k∗
i . The additional resistive term Rcel l takes into account the ohmic voltage drop

in the electrolyte and electrodes. Globally, the SPM, reformulated as proposed, can describe

the cell dynamics while relying only on 7 parameters. It is to be stressed that the newly

defined parameters are dependent on those of the original formulation, through the relations

described above. A different value of the electrode active material porosity εi , for example,

will emerge in a different value of Qi . In spite of this, as long as the goal of the modelling

effort is to describe the dynamics of the cell, the newly defined parameters are sufficient: once

these are known, the model equations providing the model state variables and the cell output

voltage are parametrised completely. If one seeks instead a more detailed characterisation of

the cell, and thus the identification of all the parameters of the original model, further tests

beyond those proposed in the present work are needed. With the reformulation presented

above, Eq. 5.5 holds for the cell voltage. The cell SOC can be calculated from the relative ion

concentration in one of the two electrodes. Defining the average ion concentration in the
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5.3. Parameter identification procedure

Table 5.2 – Parameters of the reformulated SPM

Parameter Unit Definition
D∗

p s−1 Cathode normalized diffusivity
D∗

n s−1 Anode normalized diffusivity
Qp C Cathode capacity
Qn C Anode capacity
k∗

p s−1 Cathode reaction rate constant
k∗

n s−1 Anode reaction rate constant
Rcel l Ω Cell resistance

single particle as z̄i , it is:

SOC (t ) = z̄n(t )− zn,mi n

zn,max − zn,mi n

= 1− z̄p (t )− zp,mi n

zp,max − zp,mi n

(5.9)

5.3 Parameter identification procedure

5.3.1 Clustering of parameters based on physical phenomena

The parameters described above can be divided in three groups, each one related to a given

characteristic of the electrodes. Each one of these groups of parameters can be identified by a

specific test, crafted to isolate the relevant phenomena and to be performed on a commercial

cell with non-invasive techniques:

1. Qp and Qn are the capacities of the electrodes and can be found through low-rate tests.

With low-rate tests we mean here a full discharge followed by a full charge of the cell

carried out at constant and low current rate. Such experiment allows to determine the

capacity of the whole cell and its open-circuit voltage characteristic. These elements are

then used to compute the capacities of the two individual electrodes;

2. the subset θpt = [k∗
p ,k∗

n ,Rcel l ] can be identified by performing a series of pulse tests at

various SOCs and with various current rates. Every current pulse is characterized by a

given couple of values of SOC and current rate. By fitting the values of the instantaneous

voltage drops during the pulses, it is possible to identify the triplet θpt ;

3. the subset of parameters related to diffusive phenomena θG I T T = [D∗
p ,D∗

n] can be iden-

tified by performing a series of galvanostatic intermittent titration technique (GITT)

cycles at various SOCs. Every GITT cycle is composed by a constant current discharge of

limited duration followed by a resting phase. The voltage values before the discharge, at

the end of the discharge and after the resting phase provide the experimental data used

to identify θG I T T .
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This set of tests allows for a complete characterization of the SPM of a Li-ion cell. The only prior

knowledge needed is the materials of the two electrodes, as this provides information about

their OCP curves. The results of the first test are necessary to proceed to the following two,

whereas these are independent from each other. The low rate test identifies the equilibrium

properties of the two electrodes, thus allowing to determine the relative ion concentration

and open-circuit potential of the two electrodes for any equilibrium condition of the cell. The

identification of θpt and θG I T T relies on this knowledge, since the electrodes concentrations

at equilibrium and the relative open-circuit potential values are used as data in the analytical

functions used for the fitting problems (5.17) and (5.21). The identification problems for the

three subsets θocv , θpt and θG I T T are formulated as non-linear least-squares fitting problems.

Since these are in general non-convex, multiple runs have been carried out of each of them,

with different starting points, in order to minimize the possibility of being trapped in local

minima. The identification procedure took overall a computational time in the order of few

tens of seconds on a standard laptop.

In the following subsections, the three tests composing the identification procedure are

described in detail.

5.3.2 Identification of the electrode capacities and OCP curves

A low-rate test consists in a constant current (CC) complete discharge at very low rate followed

immediately by a CC complete charge at the same rate. In such experiment, it is assumed that

the reactions at the two electrodes happen in an equilibrium state. Ideally, no diffusion nor

voltage drop due to charge transfer or ohmic losses occur. This experiment is therefore suited

to identify the capacity terms of the two electrodes and the open-circuit voltage (OCV) curve

of the cell as a function of the SOC.

Knowing the materials of the two electrodes, it is possible to determine from the literature

the open-circuit potential curves as functions of the ion concentration in the two materials.

Now, in a commercial cell, these curves are not totally exploited, i.e. the maximum and

minimum cell voltage may be reached when at an electrode the ion concentration is lower

(or higher) than its maximum (minimum) theoretical value. Our aim is to find the maximum

and minimum concentration of the individual electrodes such that the open-circuit voltage

curve measured during the low rate experiment fits at best with the theoretical functions of

the two materials. This can be done by fitting the OCV curve obtained from the two OC P

curves from the literature to the measured one. Formally, we define the parameter vector

θocv = [zp,max , zp,mi n , zn,max , zn,mi n]. The analytical curve ˆOCV is then found as:

ˆOCV (θocv ) =+OC Pp (zp,max , zp,mi n)+
−OC Pn(zn,mi n , zn,max ) (5.10)
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5.3. Parameter identification procedure

The optimal value θo
ocv can be found solving the following least-squares problem:

min
θocv

N∑
j=1

(
OCVj − ˆOCV j (θocv )

)2
(5.11)

where N is the number of equally spaced points (in terms of SOC) in which both the experi-

mental and analytical curve are discretized 1.

Having obtained the limit values of concentration for the two electrodes we are able to calcu-

late their capacity. The cell capacity is inferred through the experiment by current integration.

As we have performed both a complete charge and a complete discharge, we calculate the

cell capacity Qcell as the average of the two values obtained during the charge and discharge

respectively. With this value and the values of the elements of θo
ocv , we can determine the

capacity of the two individual electrodes as follows:

Qp = Qcell

zp,max − zp,mi n
, Qn = Qcell

zn,max − zn,mi n
(5.15)

5.3.3 Identification of the resistive terms of the SPM

Once the capacities of the two electrodes are identified, we seek the identification of the

parameters in the terms of Eq. 5.5 related to intercalation and conduction. We do so through a

series of pulse tests. A pulse test is here defined as a test in which the cell is in equilibrium

condition and is subjected to a pulse of current, of a given amplitude and for a short duration.

In such a test, the ion concentrations in the electrodes (and thus their OCPs) do not change

considerably as the drained charge is very small, due to the short duration of the pulses.

Additionally, diffusive phenomena does not take place, as these need some time to be activated.

The instantaneous voltage drop ΔVpt occurring when a current pulse is applied is therefore

proportional only to the three latter terms of Eq. 5.5, which are dependent exclusively on k∗
n ,

1The proposed method can be extended to take into account hysteretic behaviour of OCP curves. If, for example,
the anode material has different OCP curves for charge and discharge, one can seek the identification of θo

ocv
through the solution of the following optimisation problem, adapted from (5.10),(5.11):

min
θocv

(
N∑

j=1
OCVch, j − ˆOCV ch, j

)2

+
(

N∑
j=1

OCVd , j − ˆOCV d , j

)2

(5.12)

where:

ˆOCV ch (θocv ) =+OC Pp (zp,max , zp,mi n )+
−OC Pn,ch (zn,mi n , zn,max ) (5.13)

ˆOCV d (θocv ) =+OC Pp (zp,max , zp,mi n )+
−OC Pn,d (zn,mi n , zn,max ) (5.14)

and where the subscripts “ch" and “d" are to differentiate the OCP curves in charge and discharge.
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Figure 5.2 – Experimentally measured current and voltage profiles ( a) and b) respectively)
during a pulse test for a 30 Ah Lithium-titanate cell.

k∗
p and Rcel l and on the already identified Qn and Qp :

ΔVpt =+ 2RT

F
ln

⎛⎜⎝
√

m∗2
p +4+m∗

p

2

⎞⎟⎠
+ 2RT

F
ln

⎛⎜⎝
√

m∗2
n +4+m∗

n

2

⎞⎟⎠+ Iapp Rcel l (5.16)

With m∗
p and m∗

n function of Iapp and zp,sur f and zn,sur f respectively and given by Eq. 5.8.

The experimental protocol for the proposed tests is as follows: i) the cell is completely charged

and in equilibrium conditions; ii) it is subjected to a train of pulses each one with a different

current; iii) it is then discharged of a given ΔSOC and it rests for few hours so that it reaches

equilibrium conditions again; iv) a new set of pulses is performed and the procedure is

repeated until SOC = 0. In this way, a matrix of experimental values for ΔVpt at different

SOCs and current rates is collected. In Fig. 5.2, a detail from such test, carried out on the cell

described in section 5.5, is shown.

Parameters k∗
n , k∗

p and Rcel l can be identified by fitting the resulting ΔVpt data. Formally, we

define θpt = [k∗
n ,k∗

p ,Rcel l ] and we find its optimal value θo
pt by solving:

min
θpt

N∑
j=1

(
ΔVpt , j − Δ̂V pt , j (θpt )

)2
(5.17)

where N is the overall number of pulses, and the circumflex symbol denotes the values found

analytically through Eq. 5.16.
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5.3. Parameter identification procedure
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Figure 5.3 – Experimentally measured voltage profile during a GITT discharge for a 30 Ah
Lithium-titanate cell.

5.3.4 Identification of the diffusive terms of the SPM

The values of the two diffusivities can be found by means of a series of GITT tests. This

technique is commonly used to determine solid diffusion coefficients for single electrodes

[160]. It consists in submitting the targeted cell to a sequence of CC discharge pulses at low

C-rate, followed by resting phases that bring the cell back to equilibrium. In Fig. 5.3 we see

the detail of the voltage profile during one of such pulses, carried out on the cell described in

section 5.5.

The general equation for the diffusion coefficient calculation of a half cell electrode from GITT

measurements, is:

Di = 4

πτ

(
Ri

3

)2 (ΔVs

ΔVt

)2

(5.18)

Where Ri is the radius of the active material particles, τ is the duration of the pulse (set by the

experimenter) and ΔVs and ΔVt are experimentally measured values (see Fig. 5.3). Eq. 5.18

is directly derived from the approximation of the analytical solution of Eq. 5.1, for the case

of a discharge pulse of small duration (such that τ<< R2
i /Di ) as shown in [187]. In the case

of complete cells, an analytical solution is impossible because it is impossible to discern the

contribution of the two individual electrodes to ΔVs and ΔVt . We propose instead to proceed

through the minimization procedure detailed hereafter.

A series of GITT discharge pulses can be perfomed, in order to obtain a set of experimental

values for τ, ΔVs and ΔVt at various SOC levels. As ΔVs is a difference between two open-

circuit potentials, we can determine the values for the individual OCP differences of the two
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electrodes ΔVs,p and ΔVs,n , thanks to the tests performed to identify the electrode capacities.

ΔVt ,p and ΔVt ,n can be then expressed as follows:

ΔVt ,i =
√

4

πτ

1

9

1

D∗
i

ΔVs,i (5.19)

with i = p,n and where D∗
i are the diffusivities reformulated as described in section 5.3.1.

Finally we have:

ΔVt =ΔVt ,p +ΔVt ,n (5.20)

We see that ΔVt can be expressed as a function of known experimental values and of the set

of parameters θG I T T = [D∗
p ,D∗

n]. We can therefore identify the two diffusivities by solving the

following least-squares problem:

min
θG I T T

N∑
j=1

(
ΔVt , j − Δ̂V t , j (θG I T T )

)2
(5.21)

where N is the overall number of GITT pulses and the circumflex symbol denotes the values

found analytically via Eq. 5.20.

For any individual value of ΔVt , multiple different values of θG I T T may generate a good fit:

since one equation is available for the determination of two unkowns, the resulting system is

underdetermined. On the contrary, the system of nonlinear equations obtained by imposing

ΔVt − Δ̂V t (θG I T T ) = 0 to a set of ΔVt values at various SOCs is an overdetermined system, if

the resulting equations are independent. This is the case whenever at least one of the two

electrodes presents a non-linear OCP curve (as is often the case for Li-ion cells). A solution

to this problem is provided by the least-squares method, that identifies a likelihood estimate

of the values of the two diffusivities. Intuitively, provided that at least one electrode OCP

curve is non-linear, the relative weight of ΔVt ,n and ΔVt ,p in the cell ΔVt will be a function

of the SOC. This non-linearity and SOC dependency allows to discern the contribution of

each electrode to the cell ΔVt values and therefore the value of the two diffusivities. This is

exemplified in Fig. 4. We report in blue the values of ΔVt obtained with the optimal set θo
G I T T

for a MCMB-LiCoO2 cell (whose complete parameter identification is discussed in section 5.4).

We show in red the values of ΔVt in the case in which D∗
n is arbitrarily set to 100 s−1. A very

high value of D∗
n results into a very fast diffusion in anode solid particles. The consequence

is that this electrode reaches the equilibrium condition very fast and its contribution to the

overall ΔVt is minimised. The red curve, therefore, shows the contribution of the cathode

alone to the cell ΔVt . Equivalently, in yellow, we show the results in the case of D∗
p = 100 s−1,

i.e. the contribution of the anode alone to the overall ΔVt . It emerges that the peak in the ΔVt

values at low SOC is due to the anode, the peaks at SOC  0.8 are due to the cathode, whereas

the peak at SOC  0.5 is due to both electrodes. Therefore, while values of θG I T T different

from θo
G I T T may result in a good fit for certain ΔVt values, only the latter ensures it across the

complete SOC range.
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5.4. Validation of the proposed method against a reference model
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Figure 5.4 – Values of ΔVt obtained for a MCMB-LiCoO2 cell and for various values of dif-
fusivities. Blue dots: D∗

n = 0.38 ·10−3 s−1,D∗
p = 0.79 ·10−3 s−1, red dots: D∗

n = 100 s−1,D∗
p =

0.79 ·10−3 s−1, yellow dots D∗
n = 0.38 ·10−3 s−1,D∗

p = 100 s−1.

Diffusion coefficients variable with the SOC

Several electrode materials present diffusion coefficients that are dependent on the SOC. In

the case of the Lithium-titanate cell used in section 5.5 of the present work, for example, we

know from the literature that the diffusion coefficient of the Li NiCo AlO2 (NCA) cathode is

variable with the ion concentration [4], with a trend as:

D∗
p = p1 · [(1+ tanh(−p2(zp −p3)))+p4] (5.22)

The diffusion coefficient of the titanate anode is considered constant, in accordance to [39]

and [94]. The procedure described above can be therefore adapted in order to incorporate this

dependency. The experimental test and the fitting problem remain unchanged, but we seek

the identification of the parameter subset θG I T T composed as θG I T T = [D∗
n , p1, p2, p3, p4].

5.4 Validation of the proposed method against a reference model

A first validation of the proposed procedure has been carried out through a controlled “virtual”

experiment, in which the proposed tests and validation cycles have been carried out on the

detailed P2D model of a 30 Ah MCMB-LiCoO2 cell. All the state variables and the parameters

associated to this simulated cell are henceforth referred as true. The SPM parameters have

been identified from the synthetic noiseless voltage and current measurements resulting from

this simulation. This controlled experiment setup provides prior knowledge of the true cell
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parameters and the access to the true cell states during cycling (which are not accessible in the

case of real cells). Therefore, we are able to compare the SPM parameters obtained through

the proposed identification procedure with the true ones as well as the profiles of the internal

states as simulated via the SPM and the true ones, i.e. those from the reference P2D model.

The reference model used in this section and its parameters are from [136]2.

In Table 5.3 the true parameters and those identified via the proposed procedure are reported.

Notably, the set of parameters on the left side of the table is obtained by applying the refor-

mulation described in section 5.3.1 to the original set of parameters of the P2D model. The

parameters on the right are obtained via the identification procedure described in sections

5.3.2 to 5.3.4. It can be observed that the parameters of subset θocv are identified extremely

well, with a mean relative error of 0.02%. Parameters k∗
p , k∗

n and D∗
n are identified with a

relative error below 10%, whereas only D∗
p is identified with a relative error of about 21%.

Table 5.3 – Parameters of the MCMB-LiCoO2 cell

True Identified
Qp 2.4709 ·105 C 2.4703 ·105 C
Qn 1.4463 ·105 C 1.4464 ·105 C
k∗

p 0.9833 ·10−5 s−1 0.9567 ·10−5 s−1

k∗
n 0.3277 ·10−3 s−1 0.3005 ·10−3 s−1

Rcel l [-] 3.497 ·10−4 Ω

D∗
p 1 ·10−3 s−1 0.7857 ·10−3 s−1

D∗
n 0.39 ·10−3 s−1 0.3777 ·10−3 s−1

Figures 5.5 to 5.7 show the outcomes of the three tests composing the proposed identification

procedure. Figures 5.5-a and 5.5-b show the portions of the analytical OCP curves of the

electrodes obtained with the estimated set θo
ocv . Fig. 5.5-c shows the real OCV curve (blue

line) and the one obtained by using θo
ocv (dashed red line). The two curves match very closely,

with a maximum error below 3 mV and an RMSE of about 0.03 mV. Fig. 5.6 shows the results of

the pulse tests. The blue dots are the values of ΔVpt obtained for various C-rates and SOCs by

exciting the reference model with the profile described in section 5.3.3 whereas the red dots

are the values obtained analytically with the optimal set of parameters θo
pt , obtained by solving

Eq. 5.17. Maximum error and RMSE are respectively of 0.4 mV and 0.17 mV. Finally, Fig. 5.7

shows the values of ΔVt at various SOCs as obtained with the reference model and analytically

with the optimal subset of SPM parameters θo
G I T T . The maximum error is of 1.41 mV and the

RMSE is of 0.59 mV.

The reference model and the SPM with the parameters as in the right side of Table 5.3, have

been excited with two current profiles, respectively from a grid-level application and from

an EV cycling test. The first consists of a sequence of constant current steps of the duration

of 15 seconds each and variable amplitude. The duration of a complete test is 24 h and

2At the moment of writing this thesis, April 2018, this is available online at https://github.com/scott-moura/

118



5.4. Validation of the proposed method against a reference model
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optimal set of parameters θo
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Figure 5.7 – Results of GITT experiments. The blue dots are the ΔVt experimental values.
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Figure 5.8 – Detail of the experimental current profiles used as validation dataset: a) current
profile from a real BESS application [167]; b) cycle composed by a sequence of DST profiles.

the maximum current is 18 A (0.6C). This profile and this value have been determined by

scaling down to the cell level the actual current profile during a day of operation of a 560 kWh

BESS composed of 8100 cells identical to that used in this study. The BESS has been used to

dispatch the operation of a medium voltage feeder [26]. The current profile results in the cell

charging with variable current for the first part of the day from a medium to a high SOC and

the discharging again to a lower SOC in the second part of the day. A detail of this cycle is

shown in Fig. 5.8-a. A second validation cycle has been performed by stressing the cell to a

series of DST cycles [35] such that from a condition of SOC = 1 the cell has been discharged

untill SOC = 0.1. The maximum current has been chosen equal to 30 A (1C). Fig. 5.8-b shows a

detail of the current of this second validation cycle.

The profiles of voltage and internal variables (i.e. the ion surface concentration in the two

electrodes) have been compared to those obtained via the reference model for these two
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5.4. Validation of the proposed method against a reference model

Figure 5.9 – Profiles for the cell submitted to a 24 h current profile from the BESS application
of [167]: a) Reference model (red) and SPM (blue) anode surface concentration profiles, b)
instantaneous error, c) sliding RMSE.

cycles. Fig. 5.9-a) shows the behaviour of the anode surface concentration for the profile

from the power system application for the reference model and for the SPM. Plots 5.9-b) and

5.9-c) show respectively the instantaneous voltage error and the sliding root-mean-square

error (sRMSE). The sRMSE is computed as the root-mean-square error (RMSE) of the data

over a sliding time window of 6 minutes. The duration of the sliding window is consistent

with the duration of a DST cycle and similar results can be obtained for other sliding window

lengths. Similar results are obtained for the cathode surface concentration and the output

voltage and for these same quantities in the simulation of the DST profile. Fig. 5.10 shows

a magnified detail of the curves shown in Fig. 5.9-a. In Table 5.4 the maximum, mean and

root-mean-square error (RMSE) for these quantities are reported.

It can be observed that the SPM, identified through the proposed procedure, performs ex-

tremely well. The voltage simulated with it presents an RMS error below the 0.4% with respect

to the voltage simulated with the reference model. Most importantly, it is worth noting that

the RMS error is extremely low also in the case of the surface concentration profiles. These

have an RMS error below 0.5% in all cases. This last information is very relevant. In fact, in the

121



Time (h)
6.4 6.6 6.8 7 7.2

z s,
a
 (

-)

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

Figure 5.10 – Detail of the anode surface concentration profiles shown in Figure 5.9-a: reference
model (red) and SPM (blue).

Table 5.4 – Errors of the SPM with respect to the reference P2D model.

RMS (%) Mean (%) Max (%)
Realistic profile

Vcel l 0.11 0.08 0.96
zs,a 0.33 0.29 1.09
zs,c 0.12 0.10 0.27

DST profile
Vcel l 0.37 0.24 1.57
zs,a 0.46 0.37 1.61
zs,c 0.11 0.09 0.27

case of real Li-ion cells, these quantities cannot be measured. Therefore, it is quite important

to know that these can be effectively determined through the reformulated SPM proposed in

this Chapter.
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5.5. Validation against experimental data

5.5 Validation against experimental data

The proposed procedure has then been used to infer the parameters of an SPM of a 30 Ah

LTO-NCA cell. The relevant open-circuit potential curves for these two materials can be found

in [39, 41, 94]. We describe hereafter the test bench used to perform the identification, then we

show the results of the identification itself and finally we show how the model performs in

the simulation of realistic charging profiles through the comparison of the simulated voltage

profiles with experimental data.

5.5.1 Experimental setup

The experimental test bench is composed of four main elements: (i) a climatic chamber host-

ing the targeted cells and keeping a constant temperature at 25 ◦C; in steady state conditions

the temperature ripple is of 0.2 ◦C; (ii) a power source working in the following V/I ranges:

0-80 V, 0-120 A; (iii) an electronic load working in the following V/I ranges: 0-80 V, 0-200 A;

(iv) a control PC where a suitable realized software developed using the LabView program-

ming environment is able to perform the monitoring and control of the whole system. The

electronic load and the power supply were characterized by an overall bandwidth from DC to

1 kHz. The cell voltage was directly sampled using an analog-to-digital converter operating

at a 16-bit resolution with a maximum sampling frequency of 100 kHz and characterized by

a bandwidth from DC to 100 kHz (3 dB) with an overall accuracy of 1.5 mV. The cell current

was measured using a dedicated Hall-effect sensor characterized by a bandwidth from DC to

100 kHz (3 dB) and an overall accuracy of less than ±0.5% of the measured current. Voltage

and current signals are oversampled and averaged in order to increase the resolution of the

measurement and increase the signal-to-noise ratio. In particular, the dynamics of these

quantities for electrochemical cells are in the range of few Hz and we sample them at 10000

samples/seconds with average over a 100 milliseconds windows. A representation of the

experimental test bench is provided in Figure 5.11.

The low-rate test has been carried out at C/20. Since we have experimentally observed that

even at very low rates the equilibrium condition is not reached for this cell, the OCV curve

has been determined by averaging the two curves obtained through low rate complete CC

discharge and low rate complete CC charge. The pulse tests are performed at C/2, 1C, 3/2C

and 2C at SOC intervals of 1.5%. The current pulses have a duration of 2 seconds. However,

the voltage samples used for the calculation of the experimental values of ΔVpt are those at

100 milliseconds after the occurrence of the current step, i.e. as close as possible to the step

compatibly with the experimental test bench described above. Finally, the GITT discharge

pulses have a duration of 10 minutes followed by a relaxation time of 20 minutes and a constant

current value of 3 A (C /10).
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Figure 5.11 – Graphical representation of the test bench used to carry out the experiments
described in this chapter: a) cell, b) climatic chamber, c) power supply, d) electronic load, e)
voltage sensor, f) temperature sensor, g) current sensor, h) test automation and data acquisi-
tion interface, i) desktop PC.

5.5.2 Cycling tests results

The identification procedure described in section 5.3 has been applied to experimental data

obtained on a 30 Ah LTO-NCA cell. The resulting parameters are listed in Table 5.5.

Table 5.5 – Parameters identified for the LTO-NCA cell

Parameter Value
Qp 2.266 ·105 C
Qn 1.501 ·105 C
k∗

p 6.23 ·10−5 s−1

k∗
n 1.403 ·10−3 s−1

Rcel l 3.048 ·10−4 Ω

D∗
p see Eq. 5.23

D∗
n 0.0011 s−1

D∗
p =+8.738 ·10−5 ∗ [(1+

+ tanh(−74.04 · (zp −0.897)))+1.51 ·10−7] (5.23)

Figures 5.12-a and 5.12-b show the cathode and anode OCP curves respectively, obtained

with the optimal subset of parameters θo
ocv . Fig. 5.12-c shows the OCV curve obtained

experimentally (blue line) and via the model parametrised with the subset θo
ocv (dashed

red line). The root-mean-square error (RMSE) between the two curves is of 18 mV, the mean

error is of 16 mV and the maximum error is in absolute value of 46 mV for a SOC close to zero.

It is important to observe how the best fit of the experimental curve is obtained by considering
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Figure 5.12 – Results of the low rate test for the LTO-NCA cell. a) and b) are the cathode
and anode OCP curves respectively. c) Experimental OCV curve (blue) versus OCV curve
corresponding to the optimal set of parameters θo

ocv (dashed red).

a range of the LTO OCP curve including the nonlinear regions for very low and very high ion

concentrations (as can be seen in Fig. 5.12-b, for zn > 0.8 and, to a lesser extent, for zn < 0.2).

As the LTO OCP curve is almost completely flat in its central part, a precise identification of

the subset θocv would have been problematic for a cell in which only this flat part of the curve

is exploited. Fig. 5.13 shows (in blue) the experimental values of the instantaneous voltage

drops obtained submitting the cell to current pulses of different amplitudes and at different

SOCs over its complete range. The values of the same voltage drop, calculated through the

analytical function in Eq. 5.16 using the optimal set of parameters θo
pt are shown in red. The

root-mean-square error (RMSE) between the two sets of values is of 14.1 mV, the mean error

of 2.3 mV and the maximum error in absolute value of 56.2 mV. Fig. 5.14 shows (in blue) the

experimental ΔVt values obtained submitting the cell to GITT cycles at various SOCs over

its complete range. The red points represent the same ΔVt obtained applying Eq. 5.19 and

5.20 with the optimal set of parameters θo
G I T T . The RMSE between the two sets of values is of

4.8 mV, the mean error of 3.3 mV and the maximum error in absolute value of 14.7 mV.

A validation of the SPM and of the identification procedure has finally been carried out through

the comparison of experimental and simulated voltage profiles for the cell submitted to the

dynamic cycles already described in section 5.4. The experimental and simulated voltage

profiles for these two validation cycles are shown respectively in Fig. 5.15 and 5.17. The plot a)

shows experimental data in blue and the simulated voltage profile in red, plots b) shows the

instantaneous voltage error and plot c) the sRMSE, as defined in section 5.4. Figures 5.16 and

5.18 show a magnified detail of the measured and simulated voltages, again in blue and red

respectively. In the case of the realistic profile for a BESS application, the root-mean-square

and maximum error for a period of 24 h are respectively 12 mV (0.78% in relative terms) and of
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Figure 5.13 – Results of pulse experiments. The blue dots are the instantaneous ΔVpt obtained
experimentally. The red dots are the values of ΔVpt obtained through simulation and with the
optimal set of parameters.

35 mV (1.8%). In the case of the discharge through DST cycling, the root-mean-square and

maximum errors are 11 mV (0.73%) and 45 mV (2.3%). Table 5.6 reports the root-mean-square,

mean and maximum error in the voltage prediction for these two profiles and for the profile

obtained through the GITT experiment. The validation of the SOC provided by the model

Table 5.6 – Errors of the model in voltage simulation

Experiment RMS (%) Mean (%) Max (%)
GITT profile 0.38 0.19 1.54

realistic profile 0.78 0.34 1.84
DST cycling 0.73 0.41 2.28

has been performed against the SOC value computed through the integration of the current.

Fig. 5.19 shows such validation performed with data from the DST cycle. It can be seen that

the values given by the model match closely the SOC values provided by the integration. The

maximum discrepancy is found at SOC = 0.1 and is of 1.91%.

5.6 Conclusive remarks

Chapter 4 discussed the potential advantages and the challenges of integrating advanced

physics-based models in the control of BESSs. This chapter proposes an approach to address

the second of these challenges, i.e. the parameter identification of Li-ion cell physics-based

models.

Notably, it proposes a methodology to identify the parameters of a SPM and demonstrated
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Figure 5.14 – Results of GITT experiments. The blue dots are the ΔVt experimental values.
The red dots are the ΔVt values obtained through simulation and with the optimal set of
parameters.

its effectiveness by applying it to a reference model as well as to a 30 Ah Lithium-titanate cell.

The proposed methodology relies solely on a set of cycling experiments, that can be carried

out with the standard equipment of an electrical engineering laboratory. It does not require

cell tear-down, specific equipment for electrochemical testing nor in-depth knowledge and

skills in chemistry.

The proposed procedure can successfully identify the parameters of an SPM. The identified

model achieves voltage RMSEs below 0.5% and 0.75% with respect to a reference model and

to experimental data respectively. Considering its relative simplicity and its experimental vali-

dation, this method is possibly an important contribution to the efforts aiming at integrating

advanced Li-ion cell models in the control of BESSs.
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Figure 5.15 – Profiles for the cell submitted to a current profile from a BESS application: a)
Experimental (red) and simulated (blue) voltage, b) instantaneous voltage error, c) sRMSE.
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Figure 5.16 – Detail of the Experimental (red) and simulated (blue) voltage profiles shown in
Figure 5.15.
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5.6. Conclusive remarks

Figure 5.17 – Profiles for the cell submitted to a train of DST cycles: a) Experimental (red) and
simulated (blue) voltages, b) instantaneous voltage error, c) sRMSE.
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Figure 5.18 – Detail of the Experimental (red) and simulated (blue) voltage profiles shown in
Figure 5.17.
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one).
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6 Predictive control of a BESS using a
single particle model

This chapter describes the integration of an advanced Li-ion cell model into the real-time

control of a BESS. This is the real-time control stage of the framework described in Chapter 1. It

is based on model predictive control and relies -in its original formulation- on an equivalent

circuit model. This chapter proposes to substitute the latter with a single particle model. It

describes the formulation developed to achieve this goal. Then, it assesses the differences in the

performances obtained using these two battery models in the real-time phase of the control of a

BESS dispatching the operation of an active distribution feeder.

6.1 Recall to the previous chapters

This chapter aims, essentially, to demonstrate some of the advantages of integrating advanced

models in the control of BESSs, discussed in Chapter 4. To this end, we first recall few fun-

damental concepts about the SPM (extensively described in Chapter 5), and about the MPC

framework for the real-time control of a BESS introduced in Chapter 1 of this thesis.

6.1.1 The single particle model

The model used in this Chapter is the so-called single particle model (SPM), extensively de-

scribed in Chapter 5 and based on [67]. The SPM describes the intercalation dynamics of

a Lithium ion cell and its charge transfer phenomena. The two electrodes of a Li-ion cell

are modeled by two spherical particles. The model structure and the relevant phenomena

occurring within the cell and modeled by a SPM are represented in Fig. 5.1. The modeled

physical phenomena (and in parentheses the respective contribution to external voltage) are:

i) the mass transfer (i.e. the diffusion of Lithium ions) within anode active material (anode

equilibrium potential); ii) the charge transfer at the electrode electrolyte interface (anode

charge transfer polarization); iii) the ionic conduction in the electrolyte (ohmic voltage drop);

iv) the charge transfer at the electrode electrolyte interface (cathode charge transfer polar-

ization); v) the mass transfer within cathode active material (cathode equilibrium potential).
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We report here the governing equations for the diffusion processes in the two electrodes and

the equation describing the cell voltage. Let the subscript i = p,n denote the electrode (p

and n respectively refers to the positive and negative), ci denote the ion concentration within

the single particle as a function of time t and radial coordinate r , Di denote the diffusion

coefficient of the electrode, Si denote the electrode total active surface and Ri denote the

radius of the particles composing the active material. Finally, Iapp is the current applied to

the cell, and F is the Faraday constant. The diffusion within the electrode active material is

modeled through two radial partial differential equations:

∂ci (r, t )

∂t
= Di

r 2

∂

∂r

(
r 2 ∂ci (r, t )

∂r

)
(6.1)

with boundary conditions:

Di
∂ci (r, t )

∂r
|r=0 = 0, Di

∂ci (r, t )

∂r
|r=Ri =

Iapp

F Si
, (6.2)

These equations define the concentration of Lithium ions within the two electrodes. The

external voltage of the cell Vcel l is then computed as a sum of several terms:

Vcel l =+Up (cp |r=Rp )+ηp (Iapp ,cp |r=Rp )

−Un(cn |r=Rn )+ηn(Iapp ,cn |r=Rn )

+ Iapp Rcel l .

(6.3)

Up and Un are the open circuit potential (OCP) of the cathode and anode, respectively, and

are functions of the ion concentrations. ηp and ηn are the overpotentials due to the charge

transfer in the cathode and anode respectively and are given by algebraic functions of the

applied current and of the ion concentrations (5.5)-(5.6). Iapp Rcel l describes the ohmic losses

in the electrolyte. The equations and their terms are described in detail in Section 5.1.

6.1.2 The real-time control of a BESS via model predictive control

We consider the problem described in Section 1.4.2 of this thesis. It consists in controlling a

BESS with the objective of achieving an assigned energy throughput in a given time horizon.

This is a common application in the context of BESS energy management, see for example

[2, 109]. Remarkably, by taking advantage of the fact that the objective is achieving an integral

quantity, one could think of implementing a MPC algorithm. MPC consists in determining the

control action for a given system by solving at each time step an optimization problem with

updated information, where the system constraints are enforced by implementing prediction

models in the optimization problem. In the case of the BESS considered here, the algorithm

consists in determining an optimal current trajectory that, within the available time horizon,

satisfy the control objective while obeying to constraints imposed by the battery model.
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6.2. The integration of the SPM in the MPC algorithm

6.2 The integration of the SPM in the MPC algorithm

BESS operational limits are enforced in the MPC by the SPM model described in Section 6.1.1.

The following two subsections describe how the SPM is linearized in order to be casted in the

MPC optimization problem, and the resulting physics-based MPC formulation.

6.2.1 Reformulation of the SPM

For the integration in such context, the SPM is linearized and expressed as the following

state-space form:

xk+1 = Axk +Buk (6.4)

yk+1 =C xk+1 +Duk (6.5)

The state vector xk is composed by the ion concentration profiles in the two electrodes, cn

and cp , provided by the diffusion equations and by the electrode overpotential values ηn

and ηp . The input uk is the current applied to the cell Iapp , and the output yk is the cell

voltage Vcel l . With regard to the SPM equations, diffusion PDEs in (6.1) are discretized through

a forward Euler scheme. The resulting discrete equations are linear and provide the ion

concentrations in the electrodes at each time step and at equally spaced positions along the

particle radial coordinate r . The electrode overpotentials ηn and ηp and the external voltage

are nonlinear algebraic functions of the applied current Iapp and the cn and cp values in the

two electrodes at r = R (see (6.3)). These functions are therefore linearized with a first-order

Taylor approximation around the operating point at each time step, i.e. at each time step the

system matrices of (6.4)-(6.5) are recomputed on the basis of the last known values of the SPM

states.

6.2.2 MPC Formulation

We consider a MPC to achieve an assigned energy throughput in a available time horizon.

Let (1,2, . . . ,k) be the time horizon (of length k and discretized at Ts seconds) for which the

control trajectory is to determine, k = 1, . . . ,k rolling index denoting the current time interval,

ek the reference BESS energy throughput to achieve by the end of the time window, and

i k|k = (ik|k , ik+1|k , . . . , ik|k ) sequence of BESS current values considered at time k. At time k,

the optimization problem underlying the adopted MPC is given by seeking the current profile

to minimize the distance between the battery energy throughput and its reference tracking

error at the end of the control horizon, while subject to constraints on the current magnitude

and concentration. Formally, it is:

i o
k|k = arg min

i k|k∈R(k−k)

⎧⎨⎩
(

k∑
j=k

(P j |k )−ek

)2⎫⎬⎭ (6.6)
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subject to

P j |k = v j |k · i j |k , j = k, . . . ,k (6.7)

v k|k = f (xk|k , i k|k ) (6.8)

xk|k = g (xk|k , i k|k ) (6.9)

ci , j |k ⊂ x j |k j = k, . . . ,k (6.10)

ηi , j |k ⊂ x j |k j = k, . . . ,k (6.11)

ci ,mi n ≤ ci , j |k ≤ ci ,max j = k, . . . ,k (6.12)

ηi ,mi n ≤ ηi , j |k ≤ ηi ,max j = k, . . . ,k. (6.13)

Eq. (6.7) states that the BESS power output P j |k is the product between voltage v j |k and

current i j |k . Eq. (6.8) corresponds to the BESS voltage linearized model and, together with

(6.9) composes the linearized state-space SPM. Equations (6.10) and (6.11) simply denote that

the ion concentrations and the overpotentials in the electrodes are extracted as subsets of

the state vector. Finally, (6.12) and (6.13) constrain concentrations and the overpotentials in

the allowed ranges, denoted by (ci ,mi n ,ci ,max ) and (ηi ,mi n ,ηi ,max )1. The former is imposed

to avoid oversaturation or depletion of Lithium in the active material of the two electrodes,

while the latter bounds the overpotentials in each electrode, since excessive values would lead

to the occurrence of degradation. At each step k, the optimization problem is solved on a

shrinking horizon k to k and only the first portion of the optimal control i o
k|k law is actuated.

The computation of the evolution of the state vector requires the knowledge on the full state,

which is reconstructed by applying a Kalman filter by using the measurements of the BESS DC

voltage.

6.3 Simulation setup

We consider a setup where a BESS is required to compensate for the mismatch between a

dispatch plan at 5 minute resolution and the realization of a group of stochastic prosumers.

The tracking problem is performed with the MPC described in Section 1.4.2, which is aug-

mented with the electrochemical predictive constraints (6.12)-(6.13). The mismatch enters

in the problem as the input variable ek , k = 5 min and Ts = 10 s. The considered BESS is

a 560 kWh unit, modelled as composed of Np = 18 parallel branches, each with Ns = 300

Li-ion cells in series. These are 30 Ah MCMB-LiCoO2 cells2, with operating voltage between

3.6 and 4.1 V. At this stage, we assume that all the cells are balanced and have same physical

properties3. For such setup, and for each scenario detailed in the following sections, we

perform two simulations. The first is based on an MPC in which the constrained quantities are

1We recall than in Eqs. (6.10) to (6.13) the first index in the subscript is i = n, p, denoting the negative and
positive electrodes of the cell.

2These cells have been preferred to the LTO cells composing the actual EPFL BESS, because for the former all
the parameters for both the SPM and the reference P2D model are available in [118].

3This allows to define the BESS voltage v and BESS current i as v =Vcel l ∗Ns and i = Iapp ∗Np , respectively.
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the cell output voltage and current. In the second, we constrain the ion concentrations and

electrode overpotentials instead. In both cases the prediction of the constrained quantities is

based on the SPM described in section 6.1.14. In both cases, at each simulation time step, the

following actions are performed: i) a SPM-based Kalman filter reconstructs the state starting

from measured current and voltage values, ii) based on the full knowledge of the state, the

MPC optimization problem is solved and the first portion of the computed control action is

chosen for being actuated, iii) BESS behavior as a function of the actuated current set-point is

simulated through a detailed electrochemical model (described in [118]) at 500 ms resolution.

The cell parameters of both the SPM used in the control and the detailed cell model used to

simulated the battery behavior are from the literature [118].

6.4 Results

6.4.1 Qualitative observation of the increased operational domain

In order to achieve a fair comparison between concentration and voltage limits, these have

been selected in the following way. Concentration limits cn,mi n , cn,max , cp,mi n and cp,max

are given as parameters of the model, i.e. they are the maximum and minimum Lithium

stoichiometry achievable in the electrodes. Voltage limits Vmax and Vmi n are chosen to be

equal to the open circuit voltages in correspondance of the extreme concentration conditions.

Formally, it is Vmi n =Voc (cn,mi n ,cp,max ) and Vmax =Voc (cn,max ,cp,mi n). This is because the

relation between voltage and concentrations is not time-invariant. The selected voltage limits

are chosen so that concentration limits (where the concentration is the quantity that we really

want to constrain) are not violated in any condition, i.e. for any shape of input current profile.

For a fast charge, for example, the instantaneous voltage will be higher than the open circuit

voltage of the cell corresponding to a given set of concentrations. Thus, a voltage limit will be

conservative compared to the concentration limits. For a very slow charge, the instantaneous

voltage will be almost equal to the open circuit voltage and the voltage limit will represent well

the cell concentration limitations.

Figure 6.1 is useful to understand this relationship. It shows the current, voltage and anode

surface ion concentration in a trivial scenario in which the controller requires the cell to

be charged as much as possible at a constant current rate. Red lines refer to the case in

which, in the MPC problem formulation, voltage and current are constrained. A constant-

current charge is interrupted at t ′ and a constant-voltage charge takes place. The blue lines

refer to the case in which concentrations and overpotentials are constrained. The constant-

current charge can therefore continue even for voltages that are higher than the threshold

4The quantities constrained in the conventional MPC (voltage and current), can be predicted both via equivalent
circuit and electrochemical models. In this Chapter, we use an SPM, so that the conventional MPC and the physics-
based control are based on models having exactly the same prediction performances so that the comparison
between the two results is “fair”. It is understood that since equivalent circuit models allow only for the conventional
MPC, the proposed comparison implicitly compares the usefulness of equivalent circuit and electrochemical
models
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Figure 6.1 – Battery charge with a fixed power set-point. Top: cell current, middle: cell voltage,
bottom: anode surface ion concentration. The red lines refer to an MPC based on I-V limits,
the blue lines refer to a physics-based MPC. The yellow dashed lines in the middle and bottom
plots represent the tresholds for the voltage and anode concentration respectively.

of the previous case, as concentration limits are not violated. When these are reached, at

t ′′, a constant-concentration charge takes place. It can be seen, the constant voltage and

constant concentration charges lead to the same cell state for long charging times. The current

decreases and the charge continues closer and closer to an equilibrium condition, at which

the two limits coincide. Nevertheless, it is also evident that in the case where the constrained

quantities are the concentrations rather than the voltage, the constant-current charge can

continue longer. This is an actual improvement in the cell performances, since the range in

which the cell can provide the desired current is expanded.

6.4.2 Increased performance in the charge of the BESS

We first run a set of simulations such the one in Fig. 6.1 for a set of power values, in order

to assess the performances of the new control paradigm at various power rates. For any

power setpoint we run both a simulation using an MPC based on current and voltage (I-V)

limits and one based on the electrochemical constraints defined above. For each couple of

simulations the metrics chosen to perform the comparison are the following: i) ΔT : the delay,

in minutes, between the constraint activation in the case of physics-based control and in

the case of MPC based on I-V limits; ii) ΔE : the increase the energy delivered at the desired

power (i.e. in unconstrained operation), with respect to the cell nominal capacity; iii) oV :

the cell overvoltage in mV, reached in the case of physics-based control, with respect to the

corresponding case with traditional control; iv) C_ratio: anode surface ion concentration

reached at constraint activation with traditional I-V limits (relative to the case of physics-based

control). Table 6.1 shows the results of such simulations for a set of charge values. For all

power rates, the constraints of the physics-based control problem are activated considerably

later than in the case of traditional I-V limits. The energy delivered at the desired power rate,
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therefore, is greater for the case of physics based control. The difference between the two

cases is low/negligible at low power rates (e.g. it is just above 2% at 0.1 p.u.) but becomes quite

important at higher power rates, being of more than the 20% at 1 p.u. of power. It can also be

observed that constraining concentration levels rather than the output voltage results in oV

values of magnitude increasing with the power rate. On the contrary the control based on I-V

constraints results in an anode surface concentration reached at constraint activation lower

than in the case of physics based control. This corresponds to a sub-optimal operation of the

BESS, and it can be observed that this effect increases with higher power rates (as shown by

the decreasing values of C_ratio).

Table 6.1 – Comparison metrics for BESS charge

Power (p.u.) ΔT (min) ΔE (%) oV (mV) C_ratio
0.01 10.2 0.12 1.07 1
0.02 14.8 0.41 2.67 1
0.04 15.5 1.03 5.91 0.99
0.06 15 1.3 8.67 0.99
0.08 15.5 2 12.29 0.99
0.1 15.3 2.43 14.84 0.98

0.15 14.8 3.59 18.44 0.98
0.2 14.2 3.63 22.68 0.97
0.3 15 7.24 35.37 0.95
0.4 17.7 11.03 47.54 0.92
1 10 20.64 81.54 0.9

6.4.3 Results in a representative day of operation

Finally, we simulate a realistic daily scenario of BESS operation, considering the application

described in Chapter 1. The MPC control framework with I-V limits has been used to control

a grid-connected BESS in order to dispatch the operation of a distribution feeder according

to a trajectory with 5 minutes resolution, established the day before the operation. The data

used for this simulation are from the operation of the 15th of January 2016. In such day, the

tracking of the objective dispatch plan failed due to the BESS hitting its upper voltage limits.

We show in this section the results obtained simulating the operation of the BESS, controlled

via an MPC in which classical I-V limits are implemented and one based on a physics-based

control. Notably, Fig. 6.2 shows the tracking performances of the two MPCs. Both achieve per-

fect tracking for most of the analysed day. Nevertheless, due to considerable charing demand

in the first part of the day, around midday both control approaches fail in their objective. Table

6.2 shows the performances relative to the two constrained control implementations. We

observe that, while the BESS fails to track the dispatch plan along the whole day in both cases,

in the case of physics-based control the time interval during which the tracking objective

is not respected decreases. Most importantly, the cumulated tracking error along the day

decreases considerably (of about the 35%), i.e. even when the tracking fails, the tracking error
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Table 6.2 – Comparison of the two control approaches for a day of operation

I-V limits
Tracking fails during: 21 min

Cumulated tracking error: 17.88 kWh
Physics-based control

Tracking fails during: 18 min
Cumulated tracking error: 11.59 kWh

Figure 6.2 – Top: 5-minutes resolution profiles of reference power profile, power realization
and corrected power profile (both conventional and physics-based MPC). Bottom: Tracking
error.

achieved by the physics based control is reduced. Fig. 6.3 shows in the first two panels the

simulated current and voltage profiles during 24 hours of operation (for the case of physics-

based MPC). In the third panel of Fig. 6.3 it is shown the voltage prediction error. It can be seen

that the SPM achieves a good performance in voltage prediction, with a relative maximum

error well below 0.5%. Summarizing, Table 6.2 shows how, for a real-world BESS application

and a realistic scenario, physics-based control can achieve better performances compared to

standard approaches. The advantage of the proposed approach is particularly important for

higher power rates (as shown in Table 6.1) which may provide a considerable advantage in

high-power BESS applications.

6.4.4 Assessment of BESS ageing due to solid-electrolyte interphase (SEI) forma-
tion

Fig. 6.4 shows, in the top panel, the profile of the ion concentration on the surface of the

anode particle together with its respective constraints, and, in the bottom panel, the current
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6.4. Results

Figure 6.3 – Top: BESS current profile simulated through the detailed electrochemical model.
Middle: BESS simulated voltage profile. Bottom: One-step-ahead prediction error of the
voltage predicted through the SPM.

density of the side reaction leading to SEI formation. The latter has been calculated based on

the quantities estimated through the SPM and by implementing the model in [151]. This is

of definite importance because it allows for the inclusion in the MPC of anti-ageing policies

based on the accurate and explicit modelling of degradation phenomena. Knowledge of ion

concentrations and potentials within the cells, besides allowing for their direct limitation,

allows to limit explicitly the magnitude of side reactions that induce capacity fade and increase

in the equivalent series resistance. The magnitude of these side reactions is in fact dependent

on the values of the internal states provided by the physics-based model. Therefore leaning

on a physics-based model, one can as well integrate explicit models of these side reaction,

rather than relying on heuristic approaches to limit degradation. As an example, we discuss

hereafter SEI formation, which is one of the most common of such degradation mechanisms.

SEI formation consists in the irreversible consumption of cyclable Lithium via a side reac-

tion between Lithium and solvent species present in the electrolyte. This takes place at the

surface of the anode active material particles and form compounds such as Li2CO3, LiF, Li2O

depending on the nature of the solvent. In general, referring to the solvent with S and to

the side reaction byproduct with P , this irreversible side reaction can be generalized as

S +2Li++2e− → P . Besides the consumption of Li+ ions (and the correspondent reduction

of the cell capacity), the inert byproduct P accumulates in the so-called SEI layer, increasing

the overall resistance of the the cell (i.e. degrading the cell capability to provide high power

values). This mechanism is common to most Li-ion cell chemistries and has been widely

studied [7], [150]. Reference [151] proposes the formulation of a reduced order model for the

SEI formation process. The current density of the side reaction jSE I is provided by a non-linear

function of the anode intercalation current j Li
n and of the negative electrode equilibrium po-

tential Un . In the SPM the intercalation current j Li
n is proportional to the cell current Iapp and
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Figure 6.4 – Top: Profile of the ion concentration at the anode particle surface (blue line)
and its boundaries (red dashed lines). Bottom: Profile of the current density of the parasitic
reaction leading to SEI formation.

the negative equilibrium potential Un is a function of anode surface concentration cn |r=Rn .

Therefore, via the SPM and the proposed control framework, it is possible to formulate a

constraint to jSE I to remain below a desired treshold. Formally, jSE I is formulated as the

following non-linear function of cn |r=Rn and Iapp :

jSE I = AB + A
√

(B 2 + (1−2C A))

(1−2C A)
(6.14)

with:

A =−i0,s an exp

(
F (U r e f

s −Un(cn |r=Rn ))

2RT

)
(6.15)

B =− Iapp

2i0anV
(6.16)

C = F

2i0an
. (6.17)

All but two parameters for this side reaction model are already defined for the cell SPM. As

mentioned, Un is an empirical non-linear function of cn |r=Rn . i0 is the exchange current

density, defined as in (4.5) and whose formulation is used in the SPM in the denominator

of (5.6). Both Un and i0 are functions of cn |r=Rn , which is obtained by solving the anode

radial diffusion PDE in (6.1). an and V are respectively the specific surface area of the anode

and its volume. The two parameters specific to the degradation model are the equilibrium

potential of the side reaction U r e f
s and the exchange current density for the side reaction

i0,s . In this Section, the first is set U r e f
s = 0.4 V , as commonly done in the literature for this
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6.4. Results

a) b)

Figure 6.5 – SEI formation current density (m A/cm3)

specific side reaction [16, 150]. The latter is set equal to 4 ·10−11 A ·m−2. This value has been

determined assuming SEI formation as the only degradation mechanism for a Li-ion cell

capable to perform 3500 cycles at 1C before having the 20% of its capacity depleted. Figure 6.5

shows the magnitude of the side reaction current density jSE I as a function of the C-rate (i.e.

the cell input current Iapp , divided by the cell nominal current) and cn |r=Rn . In order to be

able to achieve a determined number of cycles before the BESS end of life, a threshold can be

imposed to jSE I . In the case represented in Figure 6.5 this is arbitrarily set to 7 ·10−7 m A/cm35.

Values of jSE I above this threshold are represented in blue, while values below are in red.

Figure 6.5-a provides a 3-D plot, while Figure 6.5-b is a projection, orthogonal to the C-rate

and cn |r=Rn axes, of the same data. It has the purpose of showing more clearly the C-rate and

cn |r=Rn values that cause jSE I to exceed the threshold. It is evident that the most detrimental

operating condition for the cell is the simultaneous occurrence of high values of cn |r=Rn and

high C-rates.

The mapping shown in Figure 6.5 allows for an effective yet simple implementation of a set

of linear constraints limiting SEI formation. By approximating the boundary between the

“acceptable” domain (the blue one) and the “unacceptable” (red) one via a set of l = 1, . . . ,L

lines, it is possible to formulate a set of constraints as:

cn, j |k +ml ik|k ≤Ql (6.18)

where ml and Ql are coefficients of the boundary L lines found from Fig. 6.5-b6. Relying on

this same model, it is also possible to bound the overall loss of cyclable lithium over a given

timespan, rather than the instantaneous value of the side reaction current density jSE I . This

quantity is proportional to the integral of jSE I over the considered period [151]. In this case, a

5This value has been chosen for demonstrative purposes and different values may be determined based on the
lifetime objective of the control.

6In Eqs. (6.18) and (6.19), it is implied that cn, j |k is the concentration at the surface of the particle, i.e. at r = Rn ,
although this is dropped in the subscript.
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non-linear constraint such as

k∑
j=k

jSE I =
k∑

j=k
f (i j |k ,cn, j |k ) <Qlost max, (6.19)

where Qlost max is the maximum loss of cyclable lithium within the considered horizon5, could

be added to the framework exposed in equations 6.6-6.13.

6.4.5 Conclusive remarks

This Chapter has presented a proof of concept of the advantages of including advanced physics-

based models in the control of BESSs, discussed in Sections 4.4. Notably, it shows: i) how it

is possible, relying on a SPM, to estimate the principal internal states of Li-ion cells during

the BESS operation, ii) how the operating domain of the BESS can be increased thanks to this

increased insight in the cell dynamics and iii) how this insight is also at the basis of integrating

policies to limit explicitly degradation phenomena of Li-ion cells. The proposed methods

have been validated through simulations of the real-time control proposed in Chapter 1 of

this thesis.

While the advantages of this approach are made clear, this still presents several challenges, as

discussed in Chapter 4 (4.5, specifically). With respect to these, we observe that a linearized

SPM poses no particular computational effort and that the parameters of an SPM can be de-

termined as proposed in Chapter 5. However, in this Section we are relying on the assumption

that all cells are equal and that the BESS behavior can therefore be modeled by scaling up that

of one cell.
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Conclusion

This thesis proposed a set of novel methodologies to effectively exploit battery energy storage

systems. These methodologies focus on two main axes. First, a set of novel algorithms to

provide via a BESS various grid services has been proposed and validated experimentally.

These include the dispatch of the operation of an active distribution feeder, the levelling of

its load, the provision and deployment of enhanced frequency response. Most notably, a

framework to provide multiple among these services simultaneously has been proposed and

validated. Second, the integration of advanced electrochemical models in BESS control has

been discussed. In this respect, this thesis proposes and validates experimentally a method

to identify the parameters of a single particle model of Li-ion cells and demonstrated the

opportunity to integrate this model in the proposed control framework.

The feeder dispatch consists in computing the dispatch plan, that is the power profile that the

feeder is expected to follow in the following 24 hours. This is done through the solution of a

day-ahead robust optimization problem, considering the forecast and a set of scenarios of

the feeder prosumption and the BESS state of energy. The resulting profile is such that, for all

scenarios considered in the optimization, the state of energy of the battery will remain within

proper bounds, so that the dispatch of the feeder can be achieved over the while 24 hours

period. In real-time, the BESS is controlled so that the dipatch plan computed previously, is

tracked, by means of a model predictive control algorithm. The proposed control strategy has

been tested successfully, for a set of multiple days, on the 560 kWh/720 kVA BESS installed

on the EPFL campus. The effectiveness of the day-ahead problem is demonstrated by the

determination of dispatch plans that are successfully tracked during three different days. The

real-time control achieves as well excellent performances, quantified by tracking errors of less

than 0.5 kW.

The levelling of the feeder’s load consists in extending the aforementioned control framework

so to flatten the prosumption profile of the feeder. This is done by implementing a revised

control objective in the day-ahead stage of the control, so that the resulting dispatch plan

presents minimum variance. The real-time control is the same as before. The experimental

validation demonstrates the effectiveness of the control and the ability of the battery to achieve

the double objective of simultaneously dispatching the operation and levelling the load of

the feeder. In fact, the tracking error remains quite low (about 2 kW) while the BESS shifts as

much as 365 kWh from high- to low-demand period of the day.
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The thesis proposes then an algorithm to provide enhanced frequency response. The quantifi-

cation of the maximum deployable regulating power and the state-of-energy management

mechanism are based on a statistical analysis of historical datasets of the frequency profile.

In this respect, the thesis applies autoregressive models to predict the BESS energy need to

respond to frequency deviations over a determined time interval. It demonstrates, that this

method allows the provision of higher regulating power levels, compared to more traditional

approaches. Moreover, an extensive experimental campaign (more than 250 hours of EFR

provision and deployment) demonstrates how the proposed method is able to provide EFR

with the desired reliability.

The last algorithm proposed in this thesis aims at providing multiple services simultaneously.

This is with the objective of maximizing the utilization of valuable assets as BESSs. A for-

mulation of the day-ahead problem that is agnostic to the considered services and rather

based on energy and power budget is proposed. Its validity is then demonstrated using it to

provide simultaneously dispatch and frequency response service. The framework is tested

both in simulation and experimentally. This validation illustrates how the EPFL BESS, while

dispatching the operation of the feeder, can provide up to 117 kW and 43 kW on average for

EFR.

The methods and algorithms summarized above present some peculiar features, whose valida-

tion is of great importance. First, they exploit forecasting methods, such as those for the feeder

loads and for the energy need required by frequency response. Second, the period-ahead

problems provides operation planning that is robust toward the occurrence of worst case

scenarios of the feeder prosumption and frequency deviations. By doing so, the proposed

algorithm constitutes a promising basis to operate BESSs reliably as well as optimally. We want

to stress that all the algorithms discussed above have been implemented in the control of a

560 kWh/720 kVA BESS installed at EPFL and validated experimentally. This validation proved

their effectiveness and their deployability as well as the aptitude of this device to provide such

services.

In Chapter 3, we take into account in the proposed framework also the ageing of BESSs. We

demonstrate how to exploit an empirical degradation model - the weighted energy throughput

- to assess and possibly reduce the ageing of these devices. We show how cycling ageing is of

relatively little importance for a LTO-based BESS, as is the one installed at EPFL. Such device

could provide load levelling and reach its end of life in as much as 40 years. A BESS based on

a classical Li-ion chemistry, on the contrary may reach its end of life is as little as 7 years. In

such case, we show how adding a constraint based on the weighted energy throughput in the

day-ahead phase of the control framework described in Chapter 1 can ensure the achievement

of a target lifetime.

The second part of the thesis focused on a different yet as important topic for the optimal

operation of BESSs, i.e. the integration of advanced electrochemical models in their control.

First, it has provided an in-depth analysis of the potential benefits and of the challenges of it.
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Conclusion

The main benefits are the increased awareness of the control, the increased operating domain

and the explicit and more precise description and limitation of battery ageing. The main

challenges are the computational complexity of such models, the need of identifying all of

their numerous parameters and the need to scale-up these models from cell to system level.

Second, it proposes a solution to the second of these challenges, i.e. the parameter identifica-

tion of a single particle model of Li-ion cells. The proposed method is based on a reformulation

to reduce the number of parameters necessary to represent the cell dynamics and on a set of

tests that identify separately three subsets of the resulting parameters. These are a low-rate

test, a pulse test and a GITT test. The method developed in this thesis successfully identifies

the parameters of a reference model as well as those of a real LTO cell. The resulting model is

able to simulate the Li-ion cell behavior with great accuracy, with RMS errors as low as 0.75%

in the simulated profiles of the cell voltage and of the cell internal states.

Finally, the thesis “closes the loop” with the algorithms proposed in its first part by casting

a single particle model in the MPC of the real-time phase of the framework to dispatch the

operation of a distribution feeder via a BESS. It demonstrates, through simulations, that this

increases the operating domain of the BESS and allows for the explicit integration of the main

degradation phenomena of Li-ion cells.

Future works

Overall, the methods proposed in the two parts of this thesis allow to exploit BESSs more

effectively and reliably. However, much can and should be still done in this direction. With

respect to the algorithms presented in the first part of the thesis, for instance, several topics

could be deepened. Examples are the sizing of BESSs providing such services, their siting

(both geographically and “vertically”, i.e. determining the voltage level that should host these

devices) and their cooperation with wider sets of controllable resources, such as controllable

demands and PVs.

It is also worth noting that the algorithms presented in this thesis focus on controlling the

BESS active power injection. However, BESSs are typically equipped with four-quadrant

converters and can therefore inject reactive power as well. BESSs could therefore be used

to control the voltage levels of the local network, while also, for instance, dispatching its

active power injection. In other words, the joint control of active and reactive power would

increase the set of services that can be provided simultaneously. Nonetheless, this requires

the careful development of planning and control strategies, since the operational constraints

of the converter couple these two quantities. Developing such active and reactive power

multiservice control framework is a subject surely worth of further investigation.

With respect to the integration in BESS control of physics-based models, we believe that we

addressed and possibly untangled an important obstacle for this to happen: the parameter

identification of such advanced models. However, as discussed in Chapter 4, a further issue
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remains still unsolved. This is the proper coupling of cell-level models with system-level

controls. There are, to date, few works on this issue and simplistic approaches (considering all

cells perfectly homogeneous) are most commonly used. A more rigorous integration would

be possibly based on a robust optimization approach, similar to the one used, in the first

part of this thesis, to control a BESS considering different scenarios of the prosumption. In a

similar way, a robust-MPC could be formulated, where the different cell states of a large set

of inhomogeneous cells are used to formulate the problem constraints.Such an approach is

still unexplored, although it may be a key to reach the complete and effective integration of

physics-based models in the control of BESSs. We consider it therefore a very relevant topic

for future investigations.

As the last two paragraphs have highlighted, much is still to be done to allow the effective and

widespread deployment of BESSs in power systems and to achieve the important benefits that

this integration would bring to these. With this thesis, however, we humbly believe that we

have made few steps toward such an important goal.
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A Appendices

A.1 Convex formulation of the Day-ahead problem for the dispatch

The formulation in (1.15)-(1.22) is nonconvex due to the relationship (1.10), which involves

a nonlinear function of the decision variable. We apply an augmented formulation of what

proposed in [89] to obtain a convex equivalent formulation of the original problem. We

introduce:

Ki = F o
i +L↓

i (A.1)

Gi = F o
i +L↑

i (A.2)

which we decompose into their respective positive and strictly negative parts:

Ki = K +
i −K −

i , K +
i ≥ 0, K −

i < 0 (A.3)

Gi =G+
i −G−

i , G+
i ≥ 0, G−

i < 0. (A.4)

The quantities K +
i ,K −

i ,G+
i ,G−

i , i = 0, . . . , N −1 become the decision variables of the problem.

They are coupled by the relationships (A.1)-(A.2) because the offset plan F o
i must be the same

in the two cases. The coupling equality constraint is given by determining F o
i in (A.1)-(A.2)

and imposing F o
i to be the same in (A.1) and (A.2), which gives:

K +
i −K −

i −L↓
i =G+

i −G−
i −L↑

i . (A.5)

The quantity K +
i

o ,K −
i

o ,G+
i

o ,G−
i

o , i = 0, . . . , N −1 are finally given by the following linear (con-

vex) program:

arg min
K +,K −,G+,G−∈RN

{ N∑
i=1

(
K +

i +K −
i +G+

i +G−
i

)}
(A.6)
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subject to:

K +
i ≥ 0 (A.7)

K −
i ≥ 0 (A.8)

G+
i ≥ 0 (A.9)

G−
i ≥ 0 (A.10)

K +
i −K −

i −L↓
i =G+

i −G−
i −L↑

i (A.11)

SOE↓
i+1 = SOE↓

i +β+K +
i −β−K −

i (A.12)

SOE↑
i+1 = SOE↑

i +β+G+
i −β−G−

i . (A.13)

SOE↑
i ≥ SOEmin (A.14)

SOE↑
i ≤ SOEmax (A.15)

K +
i −K −

i ≤ Bmax (A.16)

K +
i −K −

i ≥ Bmin (A.17)

G+
i −G−

i ≤ Bmax (A.18)

G+
i −G−

i ≥ Bmin (A.19)

for i = 0,1. . . , N −1. The dispatch plan is finally:

F o
i = K +

i
o −K −

i
o −L↓

i , i = 0, . . . , N −1. (A.20)

We also note that the relationship above is also linear, thus it can be used to formulate addi-

tional constraints for the offset plan (to implement for example peak shaving).

A.2 Derivation of the Transition Matrices for the MPC

We consider a linear dynamic model with the following discrete state-space representation (as

those developed in Section 1.4.2 for the BESS SOC and voltage):

xk+1 = Axk +Buk (A.21)

yk =C xk +Duk (A.22)

where xk ∈ Rn is the state vector at discrete time interval k, uk ∈ R is the input, y ∈ R is the

system output, A is the n ×n system matrix, B is the n ×1 input matrix, C is the 1×n output

matrix, and the scalar D is the feed-forward gain. For the moment, we consider the case with

only one input signal: the extension to multiple inputs is shown at the end of this section.

The evolution of the state vector x from a known initial state x0 as a function of a given input
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A.2. Derivation of the Transition Matrices for the MPC

sequence u0,u1, . . . ,uN using (A.21) is

x1 = Ax0 +Bu0 (A.23)

x2 = Ax1 +Bu1 = A(Ax0 +Bu0)+Bu1 =
= A2x0 + ABu0 +Bu1

(A.24)

x3 = Ax2 +Bu2 =
= A3x0 + A2Bu0 + ABu1 +Bu2.

(A.25)

Iterating until the time interval N :

xN = AN x0 + AN−1Bu0 +·· ·+ A0BuN−1. (A.26)

Applying (A.22) to (A.23)-(A.26) yields:⎡⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2
...

yN

⎤⎥⎥⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C

C A

C A2

...

C AN

⎤⎥⎥⎥⎥⎥⎥⎥⎦x0+ (A.27)

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D 0 . . . 0 0

C A0B D . . . 0 0

C A1B C A0B . . . 0 0
...

...
. . .

...
...

C AN−1B C AN−2B . . . C A0B D

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u0

u1
...

uN−1

uN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
which we write in compact form as:

y =φx0 +ψuu. (A.28)

where y = y0, . . . , yN , x = x0, . . . , xN and u = u0, . . . ,uN . For the case of multiple inputs, we add

an input r = r0, . . . ,rN to the state-space model (A.23)-(A.26):

xk+1 = Axk +Buuk +Br rk (A.29)

yk =C xk +Duuk +Durk . (A.30)

The system output is written by applying the transformation ψr to r :

y =φx0 +ψuu +ψr r . (A.31)
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A.3 Alternative formulations for the multi-service scheduling.

The objective of the cost function (2.5) is maximising the battery energy capacity exploited

during a period of operation T. We observe that the same framework can be exploited to

optimise the BESS operation considering different objectives. For instance, one could seek the

value of x that maximises the economical revenue of providing multiple concurrent services

via an multi-objective optimization function such as:

xo = arg max
x

∑
r j (A.32)

subject to (2.6), (2.7) and:

r j = f j (E j ,P j ) (A.33)

where r j is the revenue that the application j can generate in period T, and is a function of the

energy and power budgets reserved for that service. Similarly, if the objective is simply to find

a value for x that ensures feasible operation, one could write:

xo = arg max
x

1 (A.34)

subject to (2.6) (2.7).

With respect to the algorithms presented in Section 1.2, we highlight how, by exploiting a

multi-objective optimization approach such as that in A.32, the framework presented in this

section is suitable to integrate also a load-levelling goal. Notably, we can formulate the energy

and power budgets of the three applications considered as:

PD = {
[

L↓
k ,L↑

k

]
,k = 1, . . . , N }, (A.35)

ED =
[

T

N

k∑
i=1

(L↓
i ),

T

N

k∑
i=1

(L↑
i )

]
, (A.36)

PLL = {[Fk ,Fk ] ,k = 1, . . . , N }, (A.37)

ELL =
[

T

N

k∑
i=1

(Fi ),
T

N

k∑
i=1

(Fi )

]
, (A.38)

PF R = [−0.2α ·1,0.2α ·1] , (A.39)

EF R = {
[
αW ↓

f ,k ,αW ↑
f ,k

]
,k = 1, . . . , N }, (A.40)

with k = 1, . . . , N . The revenues associated to the three services are:

rD = w1 ·0, (A.41)

rLL = w2 ·
[−(L̂k − L̂av g

)−Fk
]

, (A.42)

rF R = w3 ·α, (A.43)
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A.4. Computation of the terms W↓
f and W↑

f used in Section 2.4
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Figure A.1 – Normal probability plot of Wf ,N .

where the subscript LL indicates load-levelling and the remaining subscripts respect the

notation introduced in Section 2.4. An optimization problem including these three services

would have an objective function as A.32 subject to the constraints (2.6), (2.7) and where the

weights w2 and w3 determine the priority given to the deployment of power and energy for

each service.

A.4 Computation of the terms W↓
f and W↑

f used in Section 2.4

The terms W↓
f and W↑

f , used to compute the energy budgets for PFR in Chapter 2, are computed

on the basis of a statistical analysis of past data from the last two years of frequency deviations

and assuming that the BESS under control does not influence the future frequency deviation.

First, the daily profiles composed by W f =Wf ,1, . . . ,Wf ,N have been calculated from hystorical

data, by integrating the frequency deviations measured in a set of 24 h periods. The mean

μW,k and variance σ2
W,k of such values have then been computed for all k = 1, . . . , N . It can

be observed that the set of Wf ,k values is close to normally distributed for any instant k. A

Chi-square goodness-of-fit test on the dataset does in fact not reject the null hypothesis at

the 5% significance level. In Fig. A.1, it is shown that the normal probability plot of the values

assumed Wf ,k for k = N (i.e. at the end of the 24 hours). We then define W ↑
f ,k and W ↓

f ,k for all

k as a function of the mean value μW,k and the standard deviation σW,k as

W ↑
f ,k =μW,k +1.96σW,k

W ↓
f ,k =μW,k −1.96σW,k , for k = 1, . . . , N

(A.44)
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to have a 95% confidence level that the realization of Wf ,k will lie between W ↑
f ,k and W ↓

f ,k .

Similarly, we can define W ↑
f ,k and W ↓

f ,k for any other confidence level.

A.5 Weighted energy throughput for various services

For the sake of completeness, we apply here the weighted energy throughput to assess the

cycling ageing generated by several other BESS services considered throughout Chapter 3.

Notably, we apply this metric to a BESS with the characteristics as above and to experimental

data obtained for i) the dispatch application, shown in section 1.4 and ii) the experimental

data for the EFR, considering a length of the interval for the state of energy management

T = 6 h. For each of these two services, data from one day of operation is used to assess the

stress, in term of cycling ageing, that they cause. Given the short time frame of these data,

these results are to be intended solely as a qualitative assessment. Table A.1 reports the main

metrics. It is worth observing, that the dispatch generates a very limited BESS ageing, with

Table A.1 – Performances for BESS operation constrained to a lifetime of 30 years and employ-
ing cells with 5000 cycles

Eexch [kW h] Nc [−] EOL [years]
dispatch 254 0.45 120.7
pfr, T=6h 1064 1.89 28.8

the BESS EOL being as far as 120 years (not considering calendar ageing). On the contrary,

frequency response provokes a considerable cycling ageing, more than load levelling and

considerably more than the dispatch. In fact, this is an expected result, since EFR is a “power

intensive application” and the high power values that it requires are the cause of faster cycling

ageing.
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