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Abstract Transportation networks provide an essential contribution to addressing the needs
of reliable and safe mobility in urban environments. The core of these networks is made up
of infrastructure such as roads and bridges that often, have not been designed to meet current
needs. Optimal management requires an accurate knowledge of how existing structures be-
have. This helps avoid unnecessary replacement and expensive interventions when cheaper
and more sustainable alternatives are available. Structural-model updating takes advantage
of measurements and more qualitative observations to identify suitable behaviour model
classes and values for parameters that influence real behaviour. Error domain model falsi-
fication (EDMF) has been proposed as a robust population-based methodology to identify
sets of models by comparing finite-element model predictions with measurements at sensor
locations. This paper introduces a methodology, which is compatible with EDMF, to assess
the reserve capacity of bridges for serviceability and ultimate limit states. A case study —
the structural identification of a reinforced-concrete bridge in S ingapore — illustrates the
framework developed for the estimation of reserve capacity. Several analyses with increas-
ing levels of model detail using design and updated values of relevant parameters are pre-
sented. Traffic-load specifications of design-stage codes (British Code - 1978) and current
codes (Eurocodes) are compared. Results show that typical conservative practices carried
out during design and construction have led to an as-built reserve capacity of 60%. A large
proportion of the as-built reserve capacity has been exploited to accommodate dramatically
increased values of traffic-load specifications that are provided by current Singapore codes
which have caused a reduction in reserve capacity to 20%. Such a reduction may be less
significant in countries where code specifications have not changed as much. Finally, it is
shown that advanced methods of analysis and assessment are more suitable than design-
stage approaches to quantify the reserve capacity.
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1 Introduction

A recent report by the World Economic Forum [S3]] contains the observation that in 2014,
world demand for civil infrastructure exceeded supply by one trillion dollars per year. It
is not likely that in the future, demand will reduce and it is equally unlikely that supply
will be boosted by increased spending on new infrastructure. This situation has led many
countries to study alternatives to replacing existing infrastructure. For instance, a recent
report [49] estimates the backlog of rehabilitation projects for existing bridges in the USA
at $123 billion. This trend is further supported by increased recognition of life-cycle costs,
embodied energy, sustainability and infrastructure resilience in decision making [[17,25].

Fortunately, perceived risks at the design stage, before construction, have led to the in-
troduction of much reserve capacity in civil infrastructure. This reserve often greatly exceeds
the target levels of reliability that are introduced by application of safety factors that are stip-
ulated in design codes. However, reserve capacities have not been quantified for the majority
of civil structures. Such quantification is complicated by changing service loading, critical
limit states involving non-linear behaviour, ageing processes and new traffic requirements
that lead to studies of measures such as widening bridges.

Defining the real behaviour of infrastructure through the use of sensing has much po-
tential to provide significant savings when competing options such as replacement, retrofit
and improvement are available. Also, when the most attractive options are activities such as
retrofit, knowledge of real behaviour results in cheaper and less onerous interventions. Asset
managers have much to gain through a more scientific foundation for decisions related to
the allocation of resources. However, many challenges remain.

Perhaps the most fundamental challenge is that sensors on infrastructure usually mea-
sure effects, not causes. Physics-based models are needed to link effects to causes. Model-
free signal-analysis approaches, for example [30.[12]] are not useful in such situations. Al-
though these techniques may be appropriate for damage detection [10], they provide weak
support for reserve-capacity estimation, and they are of no use for decision-making among
alternative scenarios [46]].

Design-stage behaviour models need first and foremost to be safe — more than accurate
and precise. This means that there are high levels of uncertainty and many sources of sys-
tematic bias. Also, the uncertainties at sensor locations in a structural system are correlated,
and the value of correlations are influenced by the magnitude of the systematic uncertainty.
Once a structure is built, the estimation of reserve capacity for asset management should
involve more enhanced models than those used at the design stage. These models need to
be capable of representing aspects such as as-built geometry, in-situ boundary conditions,
deterioration and real material behaviour.

Since design and existing-structure evaluations are tasks that are performed with vari-
ous goals in a range of contexts, assessment of structures has been formalised specifically
in some codes [47,51.9]]. A review of several international codes for assessment of existing
bridges — updated to 2012 — is available in [52]]. The ISO standard 2394:2015 suggests three
approaches (i.e. risk-based, reliability-based and semi-probabilistic) to performance-based
decision making. However, most current codes give a full operational elaboration only to
semi-probabilistic approaches, while alternative methods may be applied when relevant in-
formation is available [23]]. A review of reliability-based performance criteria that have been
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used to develop current codes for design and assessment can be found in [[18]. For example,
in the USA, information of bridge conditions from inspection is incorporated into the load
and resistance factor rating for the assessment of bridges [27]]. These activities indicate a
growing recognition that advanced methods of analysis and assessment help activate reserve
capacity that remains hidden when conservative design-like approaches are performed.

Structural identification is used to improve knowledge of structural behaviour [11].
When structures are modelled, for instance using finite elements (FE), structural identifi-
cation is often referred to as model updating. In model updating, measurements are carried
out and used to improve the accuracy of model predictions. While measurements provide
additional information for assessment of structures, structural identification involves the use
of models that are based on many assumptions and several sources of important uncertain-
ties. Most approaches, such as traditional applications of Bayesian model updating, involve
the assumption that uncertainties have zero means [[7,{19,24)]. When a systematic uncertainty
is admitted, it is usually treated as a parameter to be identified, assuming that the systematic-
bias value is the same at all measurement locations [45]. Furthermore, additional assump-
tions of uncertainty independence and Gaussian forms are not compatible with the context
of civil infrastructure [34]]. Error-domain model falsification (EDMF) [21]] is a more robust
approach to structural model updating compared with traditional Bayesian updating since
EDMF provides more accurate (albeit less precise) model-parameter identification without
having to make assumptions on values of uncertainty correlations [33].

In order to improve the assessment, advanced models and sophisticated analyses can
be conducted. This procedure is similar to the levels-of-approximation methodology [29] —
used in many codes — that requires further refinements of models if simpler ones are not
satisfactory [38]]. Much literature, for example [48l16] includes evaluations of the strength
of deteriorated structures by adding into the analysis deterioration mechanisms and their
consequences such as reduction of steel diameter, loss of concrete cover and reduction of
stiffness due to cracking. Also, two studies [26,/40]] involving destructive tests on full-scale
bridges highlight the importance of non-linear analyses, material degradation and in-situ
boundary conditions for ultimate capacity assessment.

Non-linear finite element analyses (NLFEA) and model calibration have been employed
to assess the structural safety of concrete bridges [36154]. Use of NLFEA requires the initial
setting of several parameters related to characteristics such as constitutive laws of materi-
als that are seldom known precisely and often calibrated through available databases [37],
indirect experiments and laboratory tests [13], which are not directly related to the real
behaviour of a given structure. Also, model-validation procedures based on minimisation
of residuals between expected and observed behaviour may lead to deceptive conclusions,
since incorrect assumptions in modelling and wrong values of input parameters can compen-
sate each other thus creating situations where bad model predictions fit observations [33]].
Therefore, iterative refinement of FE models [42}35] and strong validation methods based
on extrapolation are preferred [40].

In previous studies, the employment of EDMF has led to an increase of 30% of reserve
capacity for deflection on the Langensand Bridge [20]. In that paper, the reserve capacity
is defined as the relative difference between the most critical prediction provided by the
updated models with the prediction of a design model. No detail on how model uncertainty
affects the estimation of reserve capacity is provided. Pasquier et al. [311[32] developed an
approach based on EDMF to evaluate the fatigue reserve capacity using the traffic loading
obtained by codes and weigh-in-motion measurements. Although this approach integrates
model uncertainty into remaining-fatigue-life predictions, the capacity of the structure is
assessed by applying partial safety factors and determining the shortest confidence interval
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that includes a probability of 95% for each prediction location. The most conservative (i.e.
the lowest) bound of this interval is the estimated fatigue life. Few probabilistic approaches
have been applied to integrate measurements into assessments of the load carrying capacity
of existing bridges. Furthermore, no general framework is available to convert structural
identification results into serviceability and ultimate capacity assessments.

This paper proposes a data-interpretation approach to assess the reserve capacity (RCap)
of existing bridges. This approach covers serviceability and ultimate limit states and com-
plies with current code guidelines for assessment of existing structures. Moreover, the pro-
posed framework is appropriate when population-based methodologies such as EDMF are
employed for structural identification. In this approach, deterministic design-values of ac-
tions — taken for current codes along with relevant safety factors — are employed, while
structural capacity is computed using standard reliability methods. This helps compare re-
sults with code requirements.

Previous research involving EDMF has not involved the challenge of ultimate-strength
identification behaviour — with the only exception of fatigue since measurement data, which
are used for falsification, have been obtained for situations involving elastic behaviour only.
This paper provides a strategy to meet this challenge and highlights the importance of iden-
tification and advanced simulation for the assessment of ultimate capacity.

First, essential background information on structural reliability and EDMF is presented.
Section [3] contains the proposed framework for RCap assessment. Section [] contains re-
sults of a full-scale case study of a bridge. Finally, limitations of alternative analysis and
modelling approaches for RCap assessment are discussed.

2 Background
2.1 Reliability analysis for existing structures

The most general formulation of structural safety in civil engineering involves two stochastic
quantities: one, representing the effect of actions (E); the other, a corresponding capacity or
resistance (R). Structural safety is verified when:

R>E ey

Traditional checking for structural safety follows deterministic patterns, in which design val-
ues of action effects (F3) and resistance (Rg) are derived from a number of characteristic
values by means of safety factors (7). Resistance safety factors consider material proper-
ties and model uncertainties. Action safety factors take into account uncertainties in load
magnitudes and the type of structural analysis that is conducted. In probabilistic approaches
the quantities that influence the problem are introduced as variables, with their distribution
types and respective parameters; therefore, no safety factors are required.

Although safety factors guarantee a certain structural safety at design stages, they have
not been calibrated for being used in advanced analysis and for assessment purposes. For ex-
ample, when NLFEA are conducted, some authors suggest considering higher modelling un-
certainties than those included in design safety factors [S1,/43]]. Probabilistic approaches help
increase the safety-checking accuracy, through including information on action effects and
resistance collected during the structural appraisal. Therefore, their employment in RCap
estimation is of interest.
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2.1.1 Probabilistic approaches

Safety and serviceability are the two principal design criteria for structures. Both require-
ments are related to a defined period and are traditionally satisfied by minimum-cost strate-
gies. Each requirement is formulated using a limit-state function. The simplest limit-state
function is defined as the safety margin which is the difference between action effects and
resistance:

G(X)=R-E @

where X represents the random variables that describe the problem and the assessment
requirements.
The failure condition can be expressed in terms of probability of failure:

pj = ProblG(X) < 0] 3)

Although the limit state function often involves many variables and the direct calculation
of py is not possible, there are several methods to compute the probability of failure. In
full-probabilistic methods, limit-state functions and distribution functions are introduced
with no approximations and calculations are often carried out using stochastic simulations
such as the Monte Carlo method. Alternatively, the calculation effort can be reduced though
employing approximation methods — usually FORM (First-Order Reliability Method) or
SORM (Second-Order Reliability Method). In semi-probabilistic approaches the variables
X are introduced by a unique value (i.e. the design value). These methods do not calculate
a failure probability, since they only check whether a defined target level is satisfied or not
[44].

Considering the limit-state function in Equation (2)), it is convenient to measure struc-
tural safety in terms of the reliability index (), which is related to the probability of failure:

py =®(=p) “

where & is the standard normal probability density function.
If the variables R and E are normal or log-normally distributed, the reliability index can
be computed directly. Otherwise, the FORM/SORM method may be employed.

2.1.2 Semi-probabilistic approaches

In most practical applications, simple semi-probabilistic methods suffice to perform the
safety evaluation of a structure. In this approach, the requirement is 3 > So, whereby (o is
the safety level prescribed by codes. The design values of resistance (R) and action effects
(E4) — described by their mean values (g, i) and coefficients of variation (vg,vg) — are
computed, and structural safety is verified when:

Rq=pr- (1 —arpfovr) > Eq=pe - (1 + agfove) Q)

The expressions (1 + a,Bovy) are design safety factors, with ap and a g being the so-
called sensitivity factors, expressing the importance of each variable in the determination
of the probability of failure. It is generally conservative to assume the sensitivity factors
AR = 0.8 and ap = 0.7.
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Table 1 Reliability classification according to EN 1990

Reliability classes ~ Consequences of failure ~ Target reliability index 59  Examples of structures

1 year 50 years
RC3 High 52 43 Public buildings
RC2 Medium 4.7 3.8 Residences/Offices
RC1 Low 4.2 33 Agricultural buildings

2.1.3 Global resistance safety factor

One of the simplest stochastic models for the resistance considers R as the product of the
nominal resistance R, by the random variables M, G and F' [43]]:

R=Rn -M-G-F 6)

where M, GG, F are random variables that represent modelling, geometrical and material
uncertainties respectively. Assuming that the bias (systematic variation) is neglected, mean
values of those variables are assumed equal to unity (i.e. upr = pue = pur = 1.0). The
coefficient of variation is given by:

VR =\/Vi +VE + VR @)

where vys,vg and vE being the coefficients of variation of M, G and F', respectively. It is
assumed in the expression above that these variables are statistically independent. However,
the evaluation of uncertainty magnitudes is often challenging. While v, and v are often
taken from the literature, vr can be estimated using the methodology initially proposed in
[[15] and later adopted by the fib Model Code 2010. In this method, the random variation of
material properties is assessed using only two non-linear analyses: one using mean material
properties (R,,), and one using characteristic properties (Rj) — these characteristics are
established according to statistical data as described in [3] . Then, the coefficient of variation
of material uncertainty (vr) is computed according to the following equation:

1 R
VP = qgp I {E] ®

Based on the assumption of a log-normal distribution for resistance, which is often pro-
posed in codes, and using the notation introduced above, the global resistance safety factor
YR is given by:

vr = exp(ar - fo - VR) ©)

2.1.4 Target reliability index

Target reliability levels required in structural codes represents the trade-off between cost
optimization, risk management and quality control. In EN 1990 [3] the target reliability
index (o) is given for two reference periods (1 year and 50 years). These values are related,
for each reliability class, to the same reliability level. However, no explicit link between
the target reliability level and design working life is provided. The values reported in Table
refer to the ultimate limit state (ULS). However, target 8 can be defined for irreversible
serviceability limit states (SLS). For example, for a class RC2 structural member, 3o for the
SLS are equal to 2.9 for 1 year and 1.5 for 50 years [3]. Alternative values are suggested in
[511.
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2.2 Model falsification for structural identification

Error-domain model falsification (EDMF) — initially proposed in probabilistic terms in [21]
— helps identify plausible physics-based models using information provided by measurement
data. Plausible models are defined by parameter values that are instances of a model class.
Each model class has a unique parameterization that includes characteristics such as material
properties, geometry, boundary conditions and actions.

Let ny be the number of measurement locations. For each location, ¢ € {1,...,ny},
ﬁ denotes the real response of a structure (unknown in practice) and y; corresponds to
the measured value at location 4. Predictions g (z;, @) are evaluated at location z; through
assigning a vector of parameter values 6 to the selected model class gj. Evaluation of pre-
dictions is usually carried out using FE analyses. Since model-prediction uncertainty U; 4,
and measurement uncertainty U; , are unavoidable, model predictions and measurements
are linked to the real behavior using the following equation:

e(@,0) + Ui g, =Yi=yi+ Uiy Vie{l,... ,ny} (10)

Rearranging the terms and combining the difference between the two sources of uncertainty
Ui;,q and U;  in a unique source and U; ., we obtain:

gr(7i,0) —yi = Ui c (1)

The left-hand side of Equation is the difference between a model prediction and a
measurement at location i, which is often called the residual r; = gi(z:,0) — y;.

The uncertainty related to measurements U, is usually estimated by conducting multiple
series of tests under site conditions. Manufacturer specifications are often optimistic lower
bounds on the in-situ uncertainty. The uncertainty related to the model class U gk ) 1 esti-
mated using values taken from the literature, stochastic methods (to estimate uncertainties
of parameters that are not included in the model-class parametrization), engineering judg-
ment and local knowledge. In real situations, uncertainties associated with the model class
are usually much larger than measurement uncertainties.

EDMF selects plausible behaviour models by falsifying those for which residuals ex-
ceed thresholds that are defined in the uncertainty domain (i.e., the error domain).This fa-
cilitates combination of uncertainties related to parameters with model uncertainty. First, an
initial model set is generated by assigning parameter values to the model class using sam-
pling techniques. Then, threshold bounds are defined at each sensor location, according to
a confidence level fixed at 95% — common practice in many engineering problems. Models
for which residuals are within threshold bounds at each sensor location are included in the
candidate model set (CMS). Models for which residuals exceed these bounds are falsified.

When a candidate model set is identified, prediction tasks involve using the models in
the CMS to assess the reserve capacity of the structure. Predictions (); at ng locations are
given by:

Qj :gk(xiaol/)+Ui,gkv Vi e {17~-~7nq} (12)

Where 8"’ is a set of combinations of parameter values representing the CMS and Uy, is the
model uncertainty. The performance of identification in reducing the initial parameter uncer-
tainties depends on factors such as the initial choice of parameters, the sampling technique
and the sensor configuration.

When all initial model instances generated are falsified, the entire model class is fal-
sified. This means that no model is compatible with observations given model and mea-
surement uncertainties. Thus it is usually a sign of incorrect assumptions in the model-class
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definition. In such situations, practising engineers should i) review initial assumptions on the
adopted model class g — for example, through collecting additional information in situ — ii)
evaluate whether or not uncertainties should be increased and iii) check for the presence of
outliers in measurements. An EDMF-compatible iterative framework for data interpretation
and its application for performance assessments is described in [35]].

3 Population-based reserve-capacity assessment

This paper provides a data-interpretation methodology that is compatible with EDMF to as-
sess the reserve capacity of existing structures. The general framework is depicted in Figure
Initially, EDMF is used to identify the CMS. Then, the reserve capacity is assessed either
through computing the CMS failure probability — when the SLS is investigated — or using
the global resistance safety factor — when the ULS is investigated. The term failure indicates
a condition for which structural safety is not verified (see Equation 1). Such a condition cor-
responds to the structural collapse for the ULS and the infringement of code requirements
for the SLS.

Since reserve-capacity estimation requires the increment of applied loads until a limit
state is reached, several simulations must be computed for each candidate model. In the
elastic behaviour (i.e. for the SLS), the linear relationship between load magnitude and
model predictions allows direct determination of predictions under increasing loads. When
the ultimate RCap is investigated, predictions should be computed using FE solvers for each
candidate model and each load step until failure using non-linear finite element analyses
(NLFEA). However, NLFEA are often computationally demanding and time-consuming.
Therefore, a probabilistic approach, in which all candidate models are used for predictions,
is appropriate for the SLS reserve-capacity estimation while a global safety factor approach,
in which a small subset of candidate models is taken into account, is suitable for the ULS.

Reserve capacity

assessment
v
SLS ULS
¥

CMS probability Global resistance
of failure safety factor

Fig. 1 General framework for reserve-capacity assessment
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3.1 Serviceability limit states — SLS

The proposed probabilistic approach to assess the serviceability-limit-state reserve capacity
RCapsys is depicted in Figure[2]

First, the test load is applied to the FE model class and parameter values, for which
model predictions are compatible with measurements, are identified using EDMF. Then, the
code design loads — which include all load safety factors for the SLS — are assigned to the
CMS and model predictions gsrs(z;,0") are computed for each candidate model. Ac-
cording to Equation (TT), model uncertainty U, 4, and model predictions gsrs(;,0")
are combined using the Monte Carlo method. As a result, the distribution of predictions
®j,9s1.s» Which include model uncertainty, is obtained and the failure probability Pfc MS
can be computed.

In order to estimate the RCap, Pfc MS g compared with the SLS target failure prob-

ability PJ‘? Ls _ typical values are described in Section m As long as the target failure

probability is greater than the CMS failure probability, design loads are increased using a
load factor (LF' > 1), which is applied to the critical variable design load (e.g. the traffic
load). When the CMS failure probability becomes equal to the target probability Pfs LS the
limit state is reached and the value of load factor (L Fsy,s) is taken to be the reserve capacity
of the structure. Since the LF is applied to the design value of critical variable load, the SLS
RCap represents the extra carrying capacity beyond design safety factors.

If the CMS failure probability under design loads (LF' = 1) is greater than P]Zq LS 1o
SLS RCap is found. In this situation, further investigation is needed in order to improve the
initial assumptions on parameter intervals and model uncertainty. Also, weight-in-motion
data may be used to replace code traffic-load specifications with probabilistic traffic-load
distributions.

3.2 Ultimate limit states — ULS

The proposed probabilistic approach to assess the ultimate-limit-state reserve capacity RCapy s
is depicted in Figure[3]

Traditional applications of EDMF employ elastic measurements to update parameters
of FE model classes. When the ultimate behaviour is instigated, the model class should be
modified to consider only elements that are relevant to failure. For example, parameters
related to geometrical properties such as the thickness of a bridge deck are relevant at the
ULS - these parameters are referred to as active parameters in this paper. On the contrary,
boundary conditions (i.e. stiffness of bearing devices) identified in the elastic domain are
likely to be unrealistic at failure — these parameters are referred to as inactive parameters.
Values of active parameters are assigned to the ULS model class, gy s, while values of
other parameters are defined according to design assumptions.

Mean values 6,,, and characteristic values 6y, of each active parameter are computed us-
ing the CMS and two models (g 1,5 (0m) and gu s (O )) are generated through assigning
these values to the ULS model class. The values 6,, and 6, are calculated using the discrete
parameter distributions provided by the CMS. Characteristic values are defined as the 5%
or 95% fractiles using the least favourable value for the current analysis of CMS param-
eter distributions. Then, gy 1.5(6.,) and gy, s(0g) are solved using non-linear analyses in
which the design loads are increased, using a load factor (LF' > 1), until failure. Load fac-
tors for the ULS are applied to the global vertical load of the bridge (i.e. sum of self-weight,
dead loads and variable loads). Compared with linear analyses, NLFEA involves higher
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EDMF Uncertainties and
measurement data

CMS
Code design loads,
LF=1
Design loads - LF }» ———————— » Beedictions ()
5 +Ug

I

Probability of failure of

model predictions, PfCMS

Target failure
probability, PFLS

Increment the load
factor, LF = 1

RCapss = LFsys

No 5LS reserve capacity

Fig. 2 Flow chart for SLS reserve-capacity assessment. Blue boxes represent input data, while red boxes
contain the outputs. The dashed arrows indicate a subpath that is carried out until the SLS is reached.

uncertainties to account for approximations in geometry, material and modelling. These un-
certainties are combined and included in the global resistance safety factor yr. Values of
the load factor at failure, which are referred to as LF,, and LF}, are used to estimate the
material uncertainty. Finally, vz is computed according to Equation (9). The RCapyrs is
computed as the ratio between the load factor at failure using mean parameter values (L F’y,)
and the global safety factor (yr).

Since the ULS reserve-capacity framework requires only two non-linear simulations,
computation times can be reduced. In particular, advantages arise when advanced FE mod-
els, which often require long computation times, are employed.

In Equation (8), R and Ry, are computed through increasing design loads until failure
by means of load factors. Using the symbols adopted in the EN 1990, this can be written as
follows:

Rm _ LFm - (v%9Gi+ P +79Qk) _ LFn
Ry LFy-(vGr+P+7v9Qr)  LFk

(13)

where Q = Q,; + Z#j(@bo,i - Qk,i) is the combination of all variable loads, G}, are
permanent loads, P is the applied prestress, and -y are load safety factors. The term in paren-
theses is the design load (i.e. the sum of self-weight, permanent and variable loads) that
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EDMF e Uncertainties and
measurement data
CMS
& Code design loads,
v LF=1
Updated

parameter values

: :

‘ Active parameters ‘ ‘ Inactive parameters ‘
Engineering judgment
l & or design assumptions

‘ Compute 8,,,, 8, ‘ ‘ Deterministic values ‘

! |

Define the ULS model class gy s and
compute predictions gy;5(@m), 9urs(0x)

Design loads - LF %—-’
'y

Increment the load factors: NO
LE,>1 [
LF,>1

ULS failure reached in
9urs(Om), Jurs(0x) ?

Compute the global safety factor, ¥ H NLFEA uncertainties

l

| RCapyrs = LE, /YR |

Fig. 3 Flow chart for ULS reserve-capacity assessment. Blue boxes represent input data, while the red
box contains the output. The dashed arrows indicate a subpath that is carried out for both g5 (6:m) and
gurs(0x) until failure.

is carried by the structure. In the analyses design loads are constant while both mean and
characteristic values of material properties are included.

In Equation (T3), load factors (L F, and LF}) should be applied to the global vertical
load of the structure (i.e. the sum of self-weight, permanent and variable loads). Otherwise,
the resistance ratio (R, \ Ry) cannot be computed directly as the ratio of the two load fac-
tors. Therefore, the load factor for the ULS is applied to the global vertical load while the
load factor for the SLS is applied only to the critical variable design load.

4 Case study

The case study is used to apply the methodologies presented in Section [3|for SLS and ULS
reserve-capacity assessment. A range of alternative approaches is presented, and their results
are compared.

The flyover, which consists of four prestressed concrete beams, has a single span of 32 m
and is supported at each end by four bearing devices (Figure[h). The beams support and are
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connected to a reinforced concrete slab that is 22 cm thick. The FE model class that has been
used for falsification also includes non-structural elements such as the asphalt pavement and
precast concrete barriers. These elements, which are usually included as permanent loads in
design-stage models, are considered to reduce model-simplification uncertainties.

A static load test involving six trucks, each with a gross weight of 33 tons, is performed.
The measurement system consists of a laser tracker, eight strain gauges (S) and two incli-
nometers (I). In order to increase the accuracy of deflection measurements, four prisms (P)
are placed on the bottom faces of the main beams. Truck configuration and sensor locations
are depicted in Figure @,b.

Guided bearing Fixed bearing

West

a East

a) plan view (top) Free sliding b) bottom view c
s 14.75 m o et 32.00 m i
1 l‘ ‘I | —aWest B East o ci
1.20m % g (g
c) cross-section d) elevation

Fig. 4 Flyover plan view (top) a), bottom view b), cross-section c) and elevation d). The truck configuration
is shown along with the position of two inclinometers (I), four deflection prisms (P) and eight strain gauges

S).

4.1 Uncertainty definition

The parameters are defined according to a sensitivity analysis of parameter impact on model
predictions at measurement locations. Parameter selection is often a trade-off. Although
additional parameters may provide further insights, the sampling quality decreases when
high-dimensional parameter domains are explored. In this study, the five most sensitive pa-
rameters are included for identification and an adaptive sampling methodology is used to
sample the five-dimensional parameter space defined by the Youngs modulus of cast-in-
place concrete, the Youngs modulus of precast concrete, the Youngs modulus of barrier
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concrete, the rotational and the vertical stiffness of the bearing devices. The same approach
has been used in [?]. The initial interval for each parameter is reported in Table[2] Table[3]de-

Table 2 Initial intervals of parameters.

Parameters Lower bound Upper bound

01 - Young’s modulus of cast-in-place concrete 20 GPa 35 GPa

02 - Young’s modulus of precast concrete 25 GPa 50 GPa

03 - Young’s modulus of barrier concrete 3 GPa 40 GPa

04 - Rotational stiffness of bearing devices 9 log(Nmm/rad) 13 log(Nmm/rad)
05 - Vertical stiffness of bearing devices 8 log(N/mm) 11 log(N/mm)

scribes modelling and measurement uncertainty sources. Uniform distributions are adopted
to describe model uncertainty sources. The minimal and maximal bounds defined in Table
[l are expressed as a percentage of the mean value of model predictions for modelling un-
certainties and as a percentage of the measured value or in absolute terms for measurement
uncertainties. The uncertainty associated with model simplifications and the FE method has
been estimated considering the model class characteristics. This source takes into account
that only the most sensitive parameters — according to a sensitivity analysis of the rela-
tive importance of each structural parameter in model predictions — have been selected for
identification. In the FE model of the bridge adjacent interfaces are perfectly connected.
This assumption leads to a model class that is likely to overestimate the real stiffness of the
bridge. Therefore, the FE uncertainty distribution is not centred on zero. Finally, the source
of uncertainty associated with spatial variability originates from strain sensors measuring
behaviour that is affected by the spatial variability of material properties.

Sensor accuracies are based on manufacturer specifications. The measurement repeata-
bility is assessed by taking multiple measurements under the same load case. For strain
gauges, an uncertainty also arises from the imperfect alignment of gauges with respect to
the bridge longitudinal axis. Finally, additional noise associated with sensor installation have
been considered for inclinometers and strain gauges using engineering judgment.

More detail of the uncertainties adopted in this case study and further references can be
found in [?)50].

Table 3 Modelling and measurement uncertainty sources.

Uncertainty source Displacements — (P) Rotations — (I) Strains — (S)
Min Max Min Max Min Max
Model simplifications and FE method (%) -5 13 -5 13 -5 13
Mesh refinement (%) -1 1 -1 1 -1 1
Spatial variability (%) - - - - -5 5
Additional uncertainty (%) -1 1 -1 1 -1 1
Sensor accuracy -0.05mm 0.05mm -1 prad 1 prad -2 pe 2 pe
Repeatability -0.15mm  0.15mm -4 purad 4 prad -4 pe 4 pe
Sensor orientation (%) - - - - 0 6

Sensor installation (%) - - -5 5 0 5
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4.2 Model Falsification and CMS

In order to perform model falsification, for each measurement location, a combined uncer-
tainty is computed, and threshold bounds are determined for a confidence level fixed at 95%.

Figure [3] shows the results of structural identification. The vertical axes represent pa-
rameter values (0;) and predictions at sensor locations, which are referenced in accordance
with FigureEl Each grey line represents an instance of the initial model set along with the
predictions of this instance at each sensor location. Models for which residuals are within
threshold bounds at each sensor location are included in the CMS (red lines). The reduc-

——Initial model set

—— Candidate models
Threshold bounds
Measured values

N

;iru&] ik S5[uel i 5;[:5] 1[urad)

%) 0 2] 6 6, Pimm P3[mm] S1{uel 5 i
3 2 P2[mm] P4[mm] S2[ue] S4[pe] S6[ue] S8[ue] 12[prad]

1 4

Fig. 5 Parallel axis plot of structural identification using EDMF.

tion of parameter ranges after falsification is related to the measurement system adopted.
Some parameters such as the vertical stiffness (65) and the Youngs modulus of precast con-
crete (62) are well identified, while for other parameters such as the Youngs modulus of
site-cast concrete (1), falsification does not reduce the initial interval. The performance of
identification in reducing the initial parameter uncertainties depends on factors such as the
initial choice of parameters, the sampling technique and the sensor configuration. Updated
parameter intervals are reported in TableE[

Table 4 Identified values of parameters

Parameters Identification interval
01 - Young’s modulus of cast-in-place concrete [GPa] 20.00-34.98
02 - Young’s modulus of precast concrete [GPa] 38.31-44.99
03 - Young’s modulus of barrier concrete [GPa] 8.48-39.99
04 - Rotational stiffness of bearing devices [log(Nmm/rad)] 9.02-12.87

05 - Vertical stiffness of bearing devices [log(N/mm)] 8.34-8.67
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4.3 Reserve capacity for SLS

The serviceability assessment of existing structures is often conducted using visual inspec-
tions and experience of end users. This practice is also accepted in some recent codes [4]] if
actions remained unchanged from the design stage to the assessment stage. However, when
live loads are expected to increase, the serviceability limit state should be verified using
current-code requirements [4].

The bridge analysed in this study was designed in the 80s according to the British Codes
(BC) [1L12]], while the current structural codes adopted in Singapore are the Eurocodes (EC)
[5Li6l]. Figure |§| depicts the SLS traffic load adopted in the BC and the Singapore Annex
to EC. Considering a 6-meter-long section across the bridge mid-span, the total EC traffic
load (1,535 kN) is 60% higher than the BC traffic load (946 kN). Therefore, serviceability
requirements should be verified, and updated models can be used to quantify the bridge
reserve capacity, to improve the inspection planning and to optimise maintenance activities.
The SLS requirements indicated in the SS EN 1992-2 include: stresses limitation, crack

a) BS 5400-2:1978 b) SSEN 1991-2 Eurocode 1

6.8 kN/m?

95 kNm? .- 32 kN/m?

Fig. 6 Serviceability limit state (SLS) traffic loads according to the British Standards 1978 a) and the current
Singapore Annex to Eurocode 1 b).

and deflection control. For concrete structures corrosion of reinforcement is often the main
deterioration process [22]; therefore, crack-control is the critical check to be conducted.
More precisely, the EC [6] and the BC [2] require that all concrete within 100 mm of bonded
tendons or their ducts remains in compression under frequent-load combinations. The only
difference between the EC and the BC lies in the specification for design traffic loads.

Table 5] reports the SLS analyses that have been performed. Each analysis is carried out
using either the EC traffic load or the BC traffic load.

Table 5 Summary of SLS reserve-capacity estimations.

Model / Analysis Traffic Load  Parameter values =~ RCap assessment
SLS1  NoFE model / design equations ~ EC/BC Codes Single model
SLS> 3D FE model / linear EC/BC Codes Single model
SLS3 3D FE model / linear EC/BC EDMF Population based

EC= Eurocodes [3]]; BC= British codes [1]
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4.3.1 Single-model methods

In this section the reserve capacity is assessed using a unique model that is defined by
deterministic parameter values, which correspond to the design values.

4.3.1.1 Simplified analysis — S LS
In this simplified analysis, only the most loaded beam of the bridge is studied, and loads
are estimated using the area-of-influence method (Figure [7). SLS: represents the design
approach, in which parameter values are inferred from codes. Design loads are increased
using a load factor (LF' > 1) until the SLS (i.e. tension in the concrete around bonded
tendons) is reached. Load-factor values at the limit state correspond to the SLS reserve-
capacity estimations.

The RCapsrs is equal to 1.53 under the BC traffic-load specifications and 0.98 under
the EC traffic-load specifications.

Y'lel Y- Qy l
Y-qkl\\\\\\\\HHHHIIIIIIIIHHH\H\HHHHHHHHIIIIIIIIIHHHHHH\HHHHH [INRRRNNNNNRRRRNARRRNNNE] qu
Y - Oy [ T T T T T T T T T T [T Y-

8 a
32.00 m i
AW

Fig. 7 Simplified model of the bridge most-loaded beam.

4.3.1.2 3D linear analysis — SLS>
In SLS> the entire bridge structure is analysed. Parameter values are taken from codes, and
the FE model class is based on the design assumptions reported in Table 6. Parameter de-
sign values for A1 and 64 are included in identification intervals, while identified values of
precast-concrete Young-modulus are higher than conservative code values. Moreover, low
values of bearing vertical-stiffness are identified compared with the rigid-support assump-
tion that is common for design-stage models.

The RCapsrs is equal to 1.82 under the BC traffic-load specifications and 1.42 un-
der the EC traffic-load specifications. This example shows that advanced FE models often
provide higher RCap estimations compared with design-stage simplified analyses.

Table 6 Identified and parameter design values for the SLS. Design assumptions refer to original drawings
and the British Codes while design values are taken from the Eurocodes.

Parameters Identification interval ~ Design assumption SLS design values
01 [GPa] [20.00-34.98] BS 5400-4: grade 30/20 E=31 GPa

02 [GPa] [38.31-49.99] BS 5400-4: grade 50/20 E=35 GPa

63 [GPa] [8.48-39.99] Barriers are permanent loads -

04 [log(Nmm/rad)]  [9.00-12.87] Perfect hinge - no friction 9 log(Nmm/rad)
05 [log(N/mm)] [8.34-8.67] Rigid support - no settlement 11 log(N/mm)

E=Young’s modulus
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4.3.2 Population-based method

In this section, the reserve capacity is assessed using the CMS.

4.3.2.1 3D linear analysis — SLS3

In SLS3 the model class used for falsification is employed. The methodology to estimate
RCapsrs takes into account the CMS prediction distribution and includes model uncer-
tainties. The number of samples that are taken into account when model uncertainties are
added to model predictions is related to the coefficient of variation of the probability of
failure Py by the following equation:

~o (14)

fo \/Z-Pf

Where vy, is the coefficient of variation of Py and z is the number of samples. Considering

that standard values of failure probabilities for SLS are Pf LS =10~ (for a 50-year period)
and P}g LS = 1073 (for a l-year period), to ensure small coefficient of variation — e.g.,

< 10% — as many as z = 10* and z = 10° samples are required.

Figure [8] shows the application of the framework to assess SLS RCap under the EC
traffic-load specifications. First, the CMS prediction distribution is computed (Figure [8f).
Then, the model uncertainty (Figure [8p) is added to the CMS stress predictions using the
Monte Carlo method. The limit state condition (i.e. tension in concrete around bonded ten-
dons) is represented by the vertical line that corresponds to the null stress (Figure[8f). Since
the discrete distribution of stress predictions lies on the compression side of the limit state,
the reserve capacity can be assessed by increasing design loads.

Figure [9] shows the discrete distribution of stress predictions when a LEF' = 1.29 is
applied to design loads. In this situation, the CMS failure probability equals the target prob-
ability PJ*? LS — 0.1. Therefore, this value of load factor corresponds to the SLS reserve
capacity (RCapsps = LFsps = 1.29).

The same procedure is executed under the BC traffic-load specifications. Results are
reported in Table

4.3.3 Summary of SLS results

Table[7]reports values of RC'apsr.s for the SLS under the BC and the EC. Since BC traffic-
load specifications for the 80s are lower than traffic-load specifications prescribed by the
Singapore-Annex-to-EC1 traffic-load specifications, there is more reserve capacity when
former codes are used.

When conservative design-like analyses (S'LS1) are used for serviceability assessments,
no reserve capacity is found under current EC traffic-load specifications (RCapsrs =
0.98). On the contrary, significant reserve is observed under the BC traffic loads (RC'apsrs =
1.53). This difference is related to increased traffic loads that are specified in the Singapore
Annex to EC1.

When simplified models are replaced by 3D FE models (SLS2, SLSS3), higher RCap
values are found. However, when parameter design values are employed (S L.S2), the RCap
is overestimated compared with the assessment provided by the CMS prediction distribution
(SLS3).

This situation is a consequence of the limit state that is under investigation (i.e. crack
control). The bridge precast beams are connected to a cast-on-site deck. The EC design
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a) CMS stress-prediction distribution
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Fig. 8 CMS stress-prediction distribution (a), model-uncertainty stress distribution (b) and their combination
(c) under the EC traffic load. The serviceability-limit-state condition is shown using the red vertical line.

assumptions (see Table[6)) consist of a unique value of stiffness for the beam cross-section.
Several combinations of Youngs modulus values (i.e. deck and precast beams) results in
alternative load redistributions, neutral-axis depths and, therefore, stress values on beam
cross-sections. Since crack control aims to reduce the tensile stress in concrete around the
tendons, models that show high tensile stresses at beam bottom faces are less conservative.
Since several combinations of updated values of Youngs modulus — parameters 61 and 62
in Table|§|— are considered in SLS3, the CMS prediction distribution includes stress values
close to the limit state. This helps avoid flawed RCap estimations resulting from the wrong
selection of the critical parameter combination.

Taking advantage of measurements and advanced simulations the as-built serviceability
reserve capacity of the bridge is equal to 64% — resulting from conservative practices in
design and construction. Following changes in traffic-load specifications from the British
Code to the Eurocode, the reserve capacity at the SLS went down to 29%.
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Fig. 9 CMS stress-predictions distribution including model uncertainty at failure (i.e. Load Factor=1.29)
under the EC traffic loads. The SLS failure condition is shown using the red vertical line. The area on the
right-hand side of the limit-state condition PfCM S corresponds to the target failure probability P}S L3,

Table 7 RCapsy, s assessments under the British code (BC) and the Eurocode (EC) according to analysis
levels of detail.

Analysis  BC traffic load  EC traffic load

SLS| 1.53 0.98
SLS> 1.82 1.42
SLS3 1.64 1.29

4.3.4 Sampling impact on reserve capacity

In population-based approaches, the distribution of candidate-model predictions is rele-
vant. Advanced sampling techniques such as radial-basis-function sampling (RFBS) are em-
ployed to increase the density of samples in candidate-model subdomains. This results in a
denser CMS and more accurate distributions of candidate model predictions compared with
traditional sampling approaches [39]. Therefore, methodologies for RCap assessment that
involve only the worst-case model — instead of the candidate model distribution — do not
exploit completely the information provided by falsification. In these circumstances, other
identification techniques, such as constrained optimization, are more appropriate [50].

Table El reports RCap assessments using a range of sampling techniques and identifi-
cation methodologies. In order to compare results with optimization approaches, no model
uncertainties are added to model predictions, and only the worst-case scenario is considered
(i.e. the worst prediction of the CMS).

Constrained optimization is the most conservative approach since parameter values are
iteratively selected in order to provide the worst-case prediction with regards to the selected
limit state function, while falsification thresholds are included as constraints. Taking advan-
tage of advanced sampling techniques such as RBFS, the RCap assessed using EDMF is
close to the worst-case scenario. Indeed, the thorough candidate-domain exploration results
in accurate CMS predictions. Traditional sampling techniques, such as Latin hypercube sam-
pling (LHS) may result in poor candidate-domain exploration and sparse CMS predictions.
In these situations, CMS-prediction distributions may omit extreme predictions — which are
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Table 8 Impact of sampling in model identification on worst-case assessment of SLS reserve capacity.

Identification methodology ~ Sampling technique  Reserve capacity for SLS
EDMF LHS 1.38

EDMF RBFS 1.26

Constrained optimization - 1.25

Table 9 Summary of ULS reserve-capacity estimations. Single-model analyses and population-based analy-
ses are shown.

Model / Analysis Parameter values ~ RCap assessment
ULS:1  No FE model / design equations ~ Codes Single model
ULS2 2D FE model / non-linear Codes Single model
ULSs3 3D FE model / non-linear Codes Single model
ULSs 2D FE model / non-linear EDMF Population based
ULSs 3D FE model / non-linear EDMF Population based

essential to computing the failure probability. This results in an overestimation of the real
structural resistance.

When the methodology described in Section .3.2.1]is used to compute the SLS RCap
and the CMS probability of failure is compared with failure target probability, the RCap is
equal to 1.29 (SLS3 in Table[7). This is less conservative than estimating the RCap using
the worst-case scenario of identification and the partial-safety-factor method, which results
in a RCap equal to 1.25. Further reference to the employment of constrained optimization
for RCap estimations can be found in [50].

4.4 Reserve capacity for ULS

In this study, the constitutive law of concrete is assumed to be elastic perfectly-plastic with

no tensile strength. In failures that are governed by shear mechanisms, the contribution of

concrete tensile-strength is non-negligible [47]. Therefore, the assessment of ULS RCap is

valid only when flexural failure of the bridge is more critical than shear failure.
Table[9]lists the ULS analyses that have been performed.

4.4.1 Single-model methods (U LS ,2,3)

In this section, the ULS reserve capacity is assessed using a unique model that is defined by
single parameter values which correspond to the design values.

4.4.1.1 Simplified analysis — U LSt

In this analysis, only the most loaded beam of the bridge is evaluated and loads are estimated
using the area-of-influence method (Figure[7). In U LS1 design practices are used to estimate
the RCap and parameter values are inferred from code specifications.

Figure[I0]shows the mid-span-section flexural analysis that has been conducted to assess
the bending capacity (M rq). The bending-action effect (M g4) is estimated using the simple
model depicted in Figure[7] Finally, loads are increased by means of a load factor (LF > 1)
until failure (Mgpq = MRgq). Load-factor values at the limit state are taken to be the ULS
reserve capacity.

The RCapy 1 s is equal to 1.68 under the BC traffic-load specifications and 1.05 under
the EC traffic-load specifications. Therefore, more than 60% of the as-built ULS reserve
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capacity has been exploited following changes in traffic-load specifications between BC
and EC. Since bridge assessment should employ state-of-the-art code requirements, in the
remainder of this paper the RCap will be assessed considering only current traffic-load spec-
ifications [3].

Fig. 10 Mid-span section analysis using design practices. Section geometry and area of reinforcements such
as rebars in the deck (A’), rebars at the bottom (Aj), tendons (A¢) and pre-tensioning strands (Ap¢) are
known. Assuming the maximum concrete strain equal to €., , the neutral-axis (n.a.) position is iteratively
calculated until rotational equilibrium is satisfied. The bending moment at equilibrium indicates the section
flexural capacity (M rq). Prestressing effects are included in the analysis.

4.4.1.2 2D non-linear analysis — U LS2

In ULS> a NLFEA is performed using a simplified 2D model that computes fast. Only
the most loaded beam of the bridge is examined and loads are estimated as for the U LSt
analysis.

A non-linear analysis based on elastic-plastic stress fields [28] is performed using the
2D model, which includes rebars and prestressing reinforcement, using the software JCONC
[41]] (Figure @) Since JCONC does not support hollow-core sections, a 1" section with
equivalent inertia has been defined. This approximation has little impact on the stress dis-
tribution since the lower part of the section will be cracked at failure. Parameter values are
taken from codes and loads are increased until failure (i.e. when concrete crushing is reached
or computed solutions do not converge).

ol L]
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Fig. 11 2D FE model of the most-loaded beam (JCONC). The model includes rebars and prestressing rein-
forcement. Prestressing is introduced as an initial self-induced strain in the model. Since JCONC does not
support hollow-core sections, a T section with equivalent inertia (I) has been defined.
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Figure[T2]shows the effects of increasing loads in the results of the 2D NLFEA. At Stage
I, which corresponds to the design loads for the ULS, the parabolic tendons are partially
yielded (dark red areas), and high compressive stresses are observed in the deck (dark grey
mesh elements). Then loads are gradually increased (Stage II), resulting in yielding of rebars
and prestressing reinforcement. At Stage III the collapse is imminent. Compressive stress
in the concrete deck at midspan reaches the maximum compressive strength (black mesh
elements), and reinforcements are yielded at various locations. Further load increments —
depicted in Stage IV — result in structural failure of concrete and analysis solutions do not
converge (see Figure @)

Stage | — code design loads (LF=1.00)

&

A
Ll Stage Il — increment design loads (LF=1.05)

Fig. 12 Effects of increasing loads in the 2D non-linear finite-element analysis (NLFEA) performed using
JCONC. The tension in rebars and prestressing reinforcement is shown in red. Yielding stress is shown in
dark red. Grey-scaled mesh indicates concrete elements in compression, while concrete crushing is reached
in black mesh-elements.

Figureﬂzl shows the solution error of NLFEA. As a rule, increasing the load factor (LF)
results in greater solution errors. For LF higher than 1.13, there is no convergence, while
load factors up to 1.12 provide errors in the range from 0.05 to 0.2. According to JCONC
specifications, solution errors lower than 0.45 at last iterations are deemed to be adequate.
Therefore, the RC'aprr1,s is equal to 1.12.

4.4.1.3 3D non-linear analysis — U LS'3

In ULS3 the 3D model of the bridge is analysed (Figure [T4). Parameter values are taken
from codes and loads are increased until failure. This example involves the most advanced
model of the structure; however, it requires long generation and computation times.

Figure [T4] shows the 3D model where precast beams are simply supported. The stiff-
ness of concrete barriers is neglected while their self-weight loading is applied to the deck.
Reinforcement bars have not been modelled, while parabolic post-tensioning tendons and
pre-tensioning strands are present. Concrete is modelled using a Drucker-Prager plasticity
model. In order to improve convergence performance, prestress is modelled using equivalent
loads and strengths of tendons and poured concrete are adjusted to account for biased stress
conditions obtained after applying the equivalent loads.

Figureﬂ}]shows the maximum bridge deflection with respect to the load factor applied to
design loads. Yielding is observed first in tendons, and then in prestressing strands. Finally,
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Fig. 13 Solution error of non-linear finite-element analysis (NLFEA). Increasing the load factor (L F') the
solution error increases. For LF' > 1.13 solutions do not converge; therefore, a L equal to 1.12 is the ULS
reserve capacity in this case. Solution errors lower than 0.45 at last iterations are deemed to be adequate.

Mesh of the beams:

Beam section at mid-span:

2 post-tensioning tendons:
42 wire strands of 13-mm
diameter each

52 pre-tensioning tendons:
7 wire strands of 13-mm
diameter each

Fig. 14 Mesh and beam cross-section detail of the 3D model employed for NLFEA. Beams are simply
supported, and prestressing reinforcement is modelled. The concrete deck is not displayed for clarity.

concrete crushing is reached in the deck and failure occurs. The RC'apy s is equal to 1.21.

4.4.2 Population-based methods (U LS4, 5)

In this section, the reserve capacity is assessed using the CMS. Tablereports active pa-
rameter values, which are taken from identification, along with additional parameter values,
which are defined using design assumptions.

4.4.2.1 2D non-linear analysis — U LS4
The same model as for the U LS2 analysis is used.
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Fig. 15 Load factor with respect to the maximum bridge deflection.

Table 10 Active and additional parameters for the ULS. Design assumptions originate from drawings and
the British Codes while parameter values are taken from the Eurocodes.

Parameters Status Design assumption ULS parameter values

01 Active - CMS distribution

62 Active - CMS distribution
Cast-in-place concrete  Additional ~ BS 5400-4: grade 30/20 fek = 25 MPa

Precast concrete Additional ~ BS 5400-4: grade 50/20 fer = 40 MPa

Rebars Additional BS 4449: grade 460B E =200 GPa; f 3 = 460 MPa
Prestressing tendons Additional BS 5896:1980 E =195 GPa; fp, = 1860 MPa

E=Youngs modulus; f.x=concrete characteristic compressive strength;
fyk=steel characteristic tensile yield strength

This approach requires the calculation — using Equation (9) — of the global resistance
safety factor vg which includes NLFEA uncertainties (Equation (7). However, estimating
modelling uncertainty is a challenging task. The ECOV (estimate coefficient of variation)
approach suggested in [47] provides a straightforward solution. In the ECOV approach,
first the global safety factor vg is computed according to Equation (@) without considering
geometric and modelling uncertainties (vas = vg = 0), leading to a value of 1.19. Then a
modelling factor (gg) is included in the calculation of resistance according to the following
equation:

RCapyps = —om— (15)
YR " YRd
where R, is equal to the reserve capacity (i.e. the load factor applied to the global vertical
load at failure) when mean values of material properties are used. A modelling factor of
Yrd = 1.06 is suggested for models with well-documented validity [8]. Using Equation
(T3), a RCapyLs equal to 1.10 is obtained.

4.4.2.2 3D non-linear analysis — U LS
The same model as for the U LS3 analysis is used.
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Table 11 ULS reserve-capacity assessments using single-model methods (U LS1,2,3) and population-based
methods (U LS4, 5) under current traffic-load specifications.

Analysis  RCapyrs

ULS, 1.05
ULSs 1.12
ULS3 1.21
ULSy 1.10
ULSs 1.21

First the global safety factor vyg = 1.15 is computed using (9). Then, the ECOV ap-
proach is adopted considering a modelling factor, yrq = 1.06, which leads to the assess-
ment of a RC'apyrs equal to 1.21.

If the BC traffic-load specification were employed in the U LS5 analysis, the ULS RCap
would be equal to 1.79. Again, about 60% of the as-built reserve capacity has been exploited
by adopting current-code traffic-load specifications (Eurocode with annexes for Singapore).

4.4.3 Summary of ULS results

RCap assessments for the ULS are summarised in Table [TT} Advanced models based on
NLFEA (U LS5 3) provide higher RCap values than simplified models (U LS1) when de-
sign values of parameters are employed, and uncertainties are included in the assessment
using safety factors. The bridge has a ULS reserve capacity of approximately 20% using the
Eurocode (including Singapore annexes).

When the global-safety-factor method is employed to assess RCap (U LS4 5), differ-
ences with models that employ parameter values taken from codes (U LS3 4) are not-significant
in this case. Indeed, a similar value of modelling error is employed in the ECOV method and
the partial safety factor method [43]. Furthermore, although some material properties (e.g.
Youngs modulus) are inferred during identification, values of parameter that are more rele-
vant for ultimate behaviour cannot be identified precisely. Values for those parameters could
be updated through non-destructive testing and laboratory experiments. Such updating has
not been performed in this case study.

4.4.4 Sensitivity to modelling uncertainties

Modelling-uncertainty magnitudes often exceed those associated with the partial-safety-
factor method. However, clear guidelines for uncertainty estimations are not available. Table
[12] compares the assessment of RCap obtained considering a range of assumptions. In Case
I a single source of uncertainty (i.e. material uncertainty) is included since other uncertain-
ties are reduced through model calibration and in-situ observations. Similar assumptions are
made, for example, in [15]. Case II involves the ECOV method described above. Case II1
follows to the assumptions described in [43]], which are reported in Table[T3]

Case I leads to a RCap assessment that is about 15% higher than the assessment in Case
II1. Moreover, the coefficients of variation vr computed using Equation are much lower
than those related to modelling and geometry uncertainties (see Table [I2). Case 11 is the
most conservative approach. In this situation, results do not provide significant advantages
compared with simple calculations (U LS1). Accurate uncertainty estimation is crucial to
provide trustworthy RCap assessments. Much literature has investigated NLFEA modelling
uncertainties. For concrete structures under uniaxial bending, coefficients of variation in the
range (5% to 20%) are suggested in [43]].
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Table 12 Comparison of RCapyr1, s assessments in population-based approaches considering three alterna-
tive assumptions for NLFEA uncertainties.

Case Case Il Case 111
vp vy =vg =0 ECOV(yrq = 1.06) vy = vg = 0.05
Yyr RCapyrs ~Yr-Yra HRCapyrs ~r RCapyrs
ULS,; 0.038 1.12 1.17 1.19 1.10 1.28 1.03
ULSs 0.045 1.15 1.28 1.22 1.21 1.29 1.14

Table 13 Coefficients of variation for log-normal distributed uncertainties of structural resistance (Case III).

Resistance uncertainties  Coefficient of variation

M — modelling vy = 0.05
G — geometry vg = 0.05
F — material vp = Equation(I3)

5 Discussion

The population-based methodologies described in this paper provide a rigorous approach
to reserve-capacity assessment for structural identification. However, structural safety is
ensured by subjective decisions, and this subjectivity often has the greatest impact on re-
liability assessments. Calculations of failure probabilities are linked to assumptions made
during modelling and analysis. Therefore, similar values of the reliability index cannot be
assumed to result in equivalent reserve-capacity estimations when several combinations of
code specifications and analyses are employed. Reserve-capacity evaluations should em-
ploy state-of-the-art specifications and analyses; moreover, they must refer to requirements
of current codes, particularly those that are developed specifically for the evaluation of exist-
ing structures. Nevertheless, in addition to providing indications of as-built reserve capacity,
previously valid codes provide insight into the very conservative nature of design and con-
struction practices when the bridge went into service.

This study introduces two data-interpretation methodologies to assess the reserve capac-
ity of bridges according to SLS and ULS. Results for both limit states and the most advanced
model classes (Table[[4) indicate that worst case estimates of reserve capacity are 60% fol-
lowing design and construction and 20% following adoption of the Eurocode and including
annexes for Singapore. Since these calculations use partial safety factors that have been
intended for use during the design stage and since some modelling uncertainty is already
included in partial safety factors, these values are lower bounds. Moreover, uncertainties in
load effects are included using safety factors for traffic-load configurations that are given in
codes. This ensures that values of reserve capacity are comparable and compliant with code
requirements, which is crucial for asset managers. However, better estimates of real traffic
loading would contribute significantly to increasing reserve-capacity estimations.

The estimation of uncertainties for non-linear analyses is a challenging task. Several
authors [431/44]] agree that further research is needed to recommend appropriate values of
numerical-simulation uncertainties. Model validation techniques, as mentioned in [14], may
provide useful input. Population-based methodologies that employ elastic measurements un-
derstandably provide limited advantages when non-linear finite-element analyses are used,
since updated-parameter sensitivity is low and significant uncertainties remain. Future work
will focus on the employment of non-destructive testing to update parameters that are rele-
vant at the ULS.
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Table 14 Ultimate and serviceability reserve-capacity estimations. The worst case estimates using the most
advanced model classes are reported in bold for each stage.

Stage Design traffic-load RCapsrs RCapyrs
specifications SLSs3 ULS5
Design and construction British code 1.64 1.79
Assessment Eurocode + SS annexes 1.29 1.21

6 Conclusions

Typical conservative practices carried out during design and construction have led to an as-
built reserve capacity of 60%. A large proportion of the as-built reserve capacity has been
exploited to accommodate increased values of traffic-load specifications that are provided
by current Singapore codes. However, the bridge still exhibits serviceability and ultimate re-
serve capacity — above all current safety factors — higher than 20%. At the SLS, the proposed
methodology takes advantage of the information obtained from prediction distributions of
candidate models and helps avoid reserve-capacity overestimation due to inaccurate iden-
tification of the critical parameter-value combination. Also, precise sampling of parameter
domains results in accurate extrapolations. At the ULS, the new approach allows estimation
of the reserve capacity through limiting the number of time-consuming non-linear analyses,
while advanced models have helped exploit reserve sources that are neglected by conserva-
tive models.
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