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ABSTRACT4

In responsive cities, user feedback and information provided by sensors are combined to im-5

prove urban design and to support asset managers in performing decision making. Optimal man-6

agement of infrastructure networks requires accurate knowledge of current asset conditions, in7

order to avoid unnecessary replacement and expensive interventions when cheaper and more sus-8

tainable alternatives are available. Structural model updating is a discipline that focuses on im-9

proving behaviour-model accuracy by means of measurements taken from the built environment.10

Error-domain model falsification (EDMF) is a simple and practice-oriented methodology that em-11

ploys measurements at sensor locations to identify plausible models among an initial population12

that is generated according to engineering judgment. However, many plausible models are often13

identified, making result interpretations difficult for practising engineers. In this paper, a clustering14

methodology based on bipartite-modularity optimisation (BMO) is employed to clarify identifica-15

tion outputs. Compared with classical clustering methods such as K-means, BMO clustering pro-16

vides more accurate interpretations and better visualization of the results. Moreover, engineers can17

actively interact with the clustering framework to obtain the knowledge that is needed at several18

stages of the decision-making process.19
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INTRODUCTION22

The growth of cities means that demand for fast, reliable and safe mobility in urban environ-23

ments is increasing. Transportation networks provide an essential contribution. The core of these24

networks is made up of infrastructure such as roads and bridges that often have not been designed25

to meet current needs. It has been recently estimated that a one-trillion-dollar gap per year ex-26

ists between infrastructure demand and supply (i.e. existing infrastructure plus new construction)27

(World Economic Forum 2014). Predictions indicate that this supply shortfall will increase in the28

future since demand reduction and a surge in new construction are both unlikely.29

Responsive cities are intended to improve the decision making and to help asset managers30

optimise the allocation of resources. However, complications arise when the Internet of Things is31

scaled up to the level of the city since they have not been designed to be measured and monitored.32

Therefore, several challenges remain in collecting and interpreting the response.33

Probably the most outstanding challenge is that effects, rather than causes, are generally mea-34

sured in the built environment. Data interpretation requires advanced model-based analyses to35

understand the real behaviour of existing infrastructure. Also, design-like approaches often un-36

derestimate reserve-capacity sources, which result from conservative practices carried out during37

design and construction. Therefore, significant savings of resources, time, energy, materials, and38

as a consequence money, are provided when real-behaviour models are used to compare scenarios39

such as replacement, retrofit and improvement of infrastructure.40

Structural model updating involves identifying suitable models as well as values for model41

parameters that determine structure behaviour through comparing measurements with predictions.42

Although sensing provides additional information of structural behaviour, uncertainties and sys-43

tematic bias affect structural models (Catbas et al. 2013; Raphael and Smith 2003; Simoen et al.44

2015). Also, understanding real behaviour is an iterative task (Pasquier and Smith 2016). Engi-45

neers need to make assumptions, generate models, collect measurements, update model parame-46
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ters and eventually use these models for diagnoses and prognoses. This process is repeated several47

times throughout service lives to appraise the structure and fix management priorities. Therefore,48

model-updating methodologies and results need to be understandable to decision makers (Smith49

2016).50

Among several available model-updating techniques, error-domain model falsification (EDMF)51

(Goulet and Smith 2013) is an approach that provides parameter identification without having52

to make assumptions on values of uncertainty correlations between sensor locations. Initially,53

this methodology requires the generation of a model population, which is based on engineering54

judgment and available knowledge. Uncertainties associated with modelling and measurements55

are combined and threshold bounds are evaluated according to a reliability of identification.56

Falsification is performed through comparing model predictions with field measurements. Mod-57

els for which residuals between predictions and measurements exceed threshold bounds, at one58

or more sensor locations, are falsified. Models for which residuals are within these bounds at59

each sensor location are included in the candidate model set (CMS). When candidate models are60

identified, they are then employed to perform predictions, for example, at unmeasured locations61

(Pasquier and Smith 2015) and those predictions may be used to assess the reserve capacity of the62

structure (Pasquier et al. 2014; Proverbio et al. 2018b). Furthermore, reserve capacity estimations63

form the basis for well-engineered interventions, such as retrofitting for capacity improvement.64

Compared with other structural-identification methodologies such as Bayesian model updating,65

EDMF does not require advanced statistics knowledge and, therefore, it is easy to understand for66

practising engineers. However, result interpretation in population-based methods may be demand-67

ing when many equivalently-likely models are identified. Engineers may be overwhelmed with68

managing results consisting of multiple models for the same structure. Therefore, data-mining69

techniques are examined in this paper. The need for such support has been previously highlighted70

in (Smith and Saitta 2008; Saitta et al. 2008a)71

Techniques such as decision trees (Saitta et al. 2005a), neural networks (Yun and Bahng 2000),72

case-based reasoning (Portinale et al. 2004), have already been integrated into diagnostic method-73
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ologies. Other studies describe methods that are specifically tailored to dynamic systems (Abad74

et al. 2002), automatic repair and automatic defect classification (McNamara et al. 2004; Saun-75

ders et al. 2000), consistency-based diagnosis (Alonso et al. 2004), and hierarchical clustering for76

bridge performance (Magalhaes et al. 2009). Preliminary data-fusion aspects such as data prepa-77

ration, combination and data quality for civil infrastructure have been studied in (Soibelman and78

Kim 2002).79

Feature extraction methods such as principal component analysis (PCA) (Smith and Saitta80

2008) and self-organizing maps (SOM) (Flexer 2001) have been applied to reduce dimensionality81

and to visualize clustering results. However, results that are provided in the principal-component82

space provide weak support for engineers. Other data mining techniques such as K-means cluster-83

ing have already been employed to extract knowledge from a set of candidate models (Saitta et al.84

2005b). Although K-means requires that the number of clusters is given as input, methods are85

available to determine reasonable values for this parameter (MacQueen 1967; Pelleg and Moore86

2000; Saitta et al. 2008b). Previous research involving clustering of candidate models mainly fo-87

cused on reducing the number of clusters in the CMS by iteratively adding new sensor locations.88

Previous research mainly focused on allocating candidate models to specific clusters and reducing89

the number of clusters in the CMS by iteratively adding sensors at new locations.90

An alternative way to represent the CMS is to associate each model with a node of a graph,91

and the features of the models (i.e., the values of the parameters analysed) to another set of nodes.92

Relationships between models and parameter values are represented by edges connecting the cor-93

responding nodes. This produces a bipartite graph because each edge connects nodes belonging to94

two separate groups.95

Bipartite graphs are employed in many domains, for example (Guimera and Amaral 2005;96

Garcia et al. 2018; Good et al. 2010). In the context of recommender systems, where relation-97

ships between users and purchased items are represented, clustering is used for applications such98

as targeted marketing. An emerging technique to find clusters for bipartite graphs is the bipartite99

modularity (Barber 2007). This method is an extension to bipartite graphs introduced in (New-100
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man 2006) and defined as the fraction of edges within clusters minus the expected fraction of such101

edges in a random graph with the same degree distribution. Clustering of bipartite graphs – based102

on bipartite-modularity optimization strategies – can support population-based structural identifi-103

cation frameworks to identify groups of models that share common features. The usefulness of104

bipartite clustering has not yet been studied for improving knowledge related to solution spaces105

that are generated by structural identification.106

This paper introduces an EDMF-compatible framework, based on BMO clustering, to inves-107

tigate properties of the CMS and to improve understanding of measurement data. The proposed108

methodology is not confined to assigning candidate models to clusters. Rather, it originally repre-109

sents the challenge of interpreting population-based structural-identification results as relationships110

in a bipartite network. BMO clustering provides clear result visualization regardless of the number111

of parameters that are involved, resulting in transparent human-computer interaction that supports112

informed decision making. Finally, the methodology supports the iterative nature of measurement,113

interpretation and action within an opportunistic sequence–free framework that includes model–114

based diagnosis and prognosis.115

The remainder of the paper is organized as follows. The next section contains a discussion of116

background information on EDMF and the clustering algorithms. The subsequent section presents117

the new framework for clustering the CMS. Finally, two case-studies are used to compare the118

proposed approach with traditional clustering methods and to suggest subsequent action within an119

iterative identification framework.120

BACKGROUND121

Population-based structural identification (EDMF)122

Error-domain model falsification (EDMF) (Goulet and Smith 2013) is a recently developed123

methodology for structural identification in which finite-element (FE) model predictions are com-124

pared with measurement data in order to identify plausible model instances that are defined by125

assigning unique combinations of parameter values to a model class. Each model class consists of126
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a FE parametric model that includes parameters such as material properties, geometry, boundary127

conditions and actions.128

Let Ri be the real response of a structure – unknown in practice – at a sensor location i, and yi129

be the measured value at the same location. Model predictions at location i, gi(θ), can be evaluated130

through assigning a vector of parameter values θ to the selected FE model class. Model-prediction131

uncertainty Ui,g and measurement uncertainty Ui,y are estimated and linked to the real behavior132

using the following equation:133

gi(θ) + Ui,g = Ri = yi + Ui,y ∀i ∈ {1, . . . , ny} (1)134

The two sources of uncertainty Ui,g and Ui,y can be combined in a unique term Ui,c, while the135

difference between a model prediction and a measurement at location i, is referred to as the residual136

ri = gi(θ)− yi.137

The error in measurements Uy includes sensor accuracy – based on manufacturing specifica-138

tions and site conditions – and measurement repeatability that is usually estimated by conducting139

multiple series of tests on site. The error in the model class Ug, which is usually much larger140

than Uy, is estimated using values taken from the literature, stochastic methods (to estimate un-141

certainties of parameters that are not included in the model class parametrization), engineering142

judgment and local knowledge. Plausible behaviour models are identified indirectly by falsifying143

those for which residuals exceeds thresholds boundaries that are defined in the uncertainty domain144

(i.e., the error domain). Being a falsification approach, EDMF initially requires that a set of model145

instances, which is referred to as the initial model set (IMS), is generated by assigning parameter146

values to the model class. Then, threshold bounds are defined at each sensor location, according147

to a 95% confidence level. Finally, models for which residuals are within threshold bounds at each148

sensor location are included in the candidate model set (CMS). In real situations, considering the149

number of parameters and the computation times to obtain FE model predictions, the IMS can be150

generated using adaptive sampling approaches such as radial-basis-function sampling, an approach151
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that exploits derivative-free optimization techniques to help improve the search of plausible mod-152

els (Proverbio et al. 2018a). Consequently, the CMS may consist of tens or hundreds of models153

that are all equivalently likely and some confusion may arise in interpreting identification results.154

Clustering155

Cluster analysis aims at finding subsets of nodes (called clusters or communities) of a graph,156

where nodes in the same cluster are somehow similar, and those in distinct clusters are differ-157

ent. Indeed, in the literature, many definitions of what is similar and what is different have been158

proposed.159

When nodes are points in the space, the Euclidean distance can be used as a metric for the160

similarity among nodes. This way, when two nodes are close they are considered similar and,161

therefore, they are likely to be assigned to the same cluster. However, in some applications, graphs162

represent relationships between nodes rather than points in the space. These relationships are163

defined by edges connecting nodes, which can be directed or undirected, and they can have weights.164

The task considered in this paper is represented both ways, i.e., as a set of points in the space165

and as two sets of nodes connected by unweighted undirected edges. The methods used to find166

clusters in these two settings are presented below.167

K-means168

Given a set of n points (x1, . . . ,xn) where each point is a d-dimensional vector, clustering169

can be carried out using K-means. This algorithm, already employed in (Saitta et al. 2008b) to170

explain structural identification outcomes, aims to find a set of K clusters C = {C1, . . . , CK}171

which minimizes the following quantity:172

K∑
i=1

∑
xj∈Ci

||xj − µi||2 (2)173

where µi is the d-dimensional vector (called centroid) representing the mean of the points belong-174

ing to cluster Ci. The function to minimize is the sum, for each cluster, of the square distance175

between the points in the cluster and their mean. Finding the optimal solution has been shown to176
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be a NP-hard problem.177

K-means is an iterative heuristic algorithm to efficiently find good quality solutions for this178

problem, and the main steps are briefly summarized next. First, the number of clusters and initial179

values for the means of the clusters (called centroids) are set. Then, the algorithm iteratively180

repeats these two steps:181

• assign each point xi to the cluster containing the nearest centroid;182

• update each centroid with the mean of the points in its cluster.183

The method stops when no new assignment can be performed in Step 1. K-means provides184

a local optimum in general, and the solution can change according to the initial guess for the185

centroids and the number of clusters.186

Bipartite-modularity optimisation (BMO)187

A possible way to model the problem under study is a bipartite graph, where two distinct sets188

of nodes, called red (R) and blue (B), are connected by edges. No edge exists between two nodes189

having the same colour.190

In this situation, clustering can be performed by solving the BMO problem. Bipartite modu-191

larity was introduced in (Barber 2007) as an extension to bipartite graphs of the modularity metric192

(Newman 2006). The bipartite modularity of each cluster can be expressed as the difference be-193

tween the fraction of edges in the cluster and the expected fraction of such edges in a random194

graph whose nodes have the same expected degree. A good partition of a graph into clusters is195

obtained by maximizing the sum of the bipartite modularities of the cluster. This problem can be196

mathematically formulated using binary variables indicating whether a node belongs to a specific197

cluster (Costa and Hansen 2014). However, this would require the knowledge of the optimal num-198

ber of clusters, which is unknown a priori. An alternative formulation of BMO, where the optimal199

number of clusters is not required as input, can be derived by exploiting the definition of bipartite200

modularity presented in (Zhan et al. 2011) and the transitivity conditions of the clique partitioning201

formulation (Grötschel and Wakabayashi 1989). More precisely, defining V as the union of the202
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two sets of nodes (R ∪B), the BMO can be defined as:203

1

m
max

∑
i∈R

∑
j∈B

(
aij −

kikj
m

)
xij

s.t.: ∀i < j < l ∈ V − xij + xil + xjl ≤ 1

∀i < j < l ∈ V xij + xil − xjl ≤ 1

∀i < j < l ∈ V xij − xil + xjl ≤ 1

∀i < j ∈ V xij ∈ {0, 1},

(3)

where xij is a binary variable equal to 1 if nodes i and j belong to the same cluster, 0 otherwise,204

aij is a parameter equal to 1 if nodes i and j are connected by an edge, 0 otherwise, ki is the degree205

of node i (i.e., the number of nodes connected to i), and m is the total number of edges of the206

graph. The objective function is the bipartite modularity, and the constraints of the problem are the207

transitivity conditions imposing that if nodes i and j belong to the same cluster, and nodes j and l208

belong to the same cluster, then nodes i and l must belong to the same cluster.209

There are alternative ways to formalize the bipartite-modularity optimization problem, but the210

one reported here has the advantage of not requiring the number of clusters as input.211

Solution approach for BMO clustering212

Bipartite-modularity maximization is a NP-hard problem (Costa and Hansen 2011; Miyauchi213

and Sukegawa 2015) and it can be solved with Mixed-Integer Linear Programming (MILP) only214

when the size of the instance is not too large. In practice, the model presented by Equation (3)215

can be given as input to a MILP solver like CPLEX (IBM-ILOG 2014), and the output will be the216

optimal values of the variables xij that can be used to derive the optimal partition of the graph into217

clusters.218

Heuristics have been proposed to solve larger instances. Some of them, e.g., (Barber and Clark219

2009; Liu and Murata 2010) are extensions of a label propagation method, where each vertex is220

iteratively assigned to the cluster containing the majority of its neighbours until convergence.221
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The heuristic employed in this paper, which produces good results with medium-size instances,222

is the locally optimal divisive heuristic presented in (Costa and Hansen 2014). Starting from an223

initial partition with one cluster containing all the vertices, the divisive heuristic recursively splits224

each cluster into two new clusters in an optimal way, i.e., by maximizing the resulting bipartite225

modularity. The procedure stops when additional splits do not further improve the bipartite modu-226

larity.227

RESULT-INTERPRETATION METHODOLOGY228

Framework229

A new framework based on bipartite-modularity optimisation (BMO) is described in this sec-230

tion. This framework – shown in Figure 1 – helps extract knowledge from the CMS while providing231

engineering-oriented result visualizations.232

Initially, parameter identification is performed according to the EDMF methodology and plau-233

sible models are included in the CMS. Since engineers may be overwhelmed with managing results234

from multiple models for the same structure, BMO clustering is applied to the CMS in order to235

support the decision-making process.236

Once the CMS is identified, the bipartite graph, which is a network of nodes divided into two237

partitions that are connected by edges, is generated. The first partition is the CMS, which includes238

all models that are identified using EDMF. The second partition consists of ranges for parameters239

θ that define each candidate model. This subdivision of the identified intervals of parameter values240

into ranges is performed by engineers considering: i) the candidate-model parameter distributions,241

and ii) the current stage of the structural identification process. The global performance of iden-242

tification – reduction of parameter initial ranges – varies according to the measurement system243

adopted and the sampling technique used to generate the IMS.244

Parameters that are well identified – updated interval smaller than the initial one – may be di-245

vided into a few (i.e., two or three) parameter ranges for clustering. Alternatively, they may be246

omitted from clustering, since all candidate models have similar values for well-identified param-247

eters. Parameters that are poorly identified – with similar updated and initial intervals – may be248
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divided into several ranges, to represent many behaviours. This situation may happen, for example,249

when few sensors are employed.250

Once the bipartite graph is generated, each node is assigned to a cluster according to the results251

of the bipartite modularity optimization procedure. More precisely, the optimal values of the vari-252

ables xij are used to assign each model to its corresponding cluster, thus allowing the visualization253

step.254

As mentioned in the Background section, when the size of the graph is large solving exactly255

the bipartite modularity optimization problem can be computationally challenging. Therefore, an256

approach based on the locally optimal divisive heuristic (Costa and Hansen 2014) is employed257

when large instances are addressed. This method, other than being computationally more efficient,258

provides accurate results.259

The value of modularity obtained after the optimization is a direct metric of the goodness of260

classification: the higher the value of modularity, the better the classification. However, high261

modularity values do not guarantee the visualization to be effective for engineers. Therefore, if262

the knowledge provided by visualization is not sufficient, engineers may define either alternative263

initial subdivisions of ranges or modify the selection of parameters for clustering. This results in264

a new clustering that can be visualised. Since graph representation is not affected by the number265

of parameters that are involved, feature extraction techniques such as PCA are not required. When266

engineers are satisfied with the results, they can decide to proceed with the next stage of structural267

identification.268

To help engineers perform decision-making tasks – as explained more into details in the next269

section – clustering results can be condensed by defining centroid models – one for each cluster –270

that are able to represent the entire CMS (Saitta et al. 2008a). In BMO clustering, centroid models271

can be easily computed for each cluster in the optimal solution. Centroid-model predictions can272

be subsequently evaluated, using a FE solver, through assigning centroid values to the model class273

that has been employed for falsification. However, care should be taken when the CMS population274

is replaced by few centroid models. For example, inaccurate clustering may generate centroid275
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models whose predictions are not compatible with measurements – and, therefore, should not be276

employed to represent the CMS. To avoid this issue, a centroid-model check is included in the277

BMO clustering framework. Notice that, since centroid models of each cluster are assigned mean278

values of parameters, extreme values of CMS predictions are likely to be omitted.279

However, the information provided by BMO cluster visualization and centroid-model predic-280

tions can effectively support engineers that are performing structural identification, as explained in281

the next section.282

Decision making283

Structural identification is an iterative process that includes the following six tasks which may284

be executed in any order: modelling, monitoring, in-situ inspection, model falsification, diagnosis,285

and prognosis (Pasquier and Smith 2016). Engineers select the next iteration based on the current286

stage and the knowledge obtained from previous steps. The BMO clustering is a tool that can assist287

practising engineers who perform structural identification using population-based methodologies288

such as EDMF. The contribution of BMO clustering in the structural identification framework,289

which is depicted in Figure 2, is briefly discussed in the following.290

The modelling task consists of building a FE model that describes the structural behaviour and291

a statistical model of the errors associated with the physics-based model. When time-consuming292

non-linear FE analyses are performed, BMO clustering helps reduce the number of model instances293

through providing few centroid models that: i) are compatible with measurements and ii) are able294

to represent the entire CMS.295

At the early stages of structural identification, a subset of measurements is often compared296

with model predictions, thus limiting the computational demand for preliminary comparisons. As297

knowledge is acquired, the size of measurement sets usually increases. BMO clustering can be used298

to improve the sensor configuration by providing information on sensor types and measurement299

locations that are able to falsify entire clusters.300

In-situ inspection comprises visual inspection and other non-destructive testing techniques. It301

allows engineers to improve their basic knowledge – based on structural drawings – with infor-302
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mation such as in-situ boundary conditions, as-built geometry and material deterioration. Visuali-303

sations of BMO-clustering may provide information that helps adjust the focus during future site304

inspections. For example, information on material properties can be employed to falsify a cluster305

that corresponds to a specific behaviour of the structure, thus refining result interpretation.306

In the diagnostic phase, engineers interpret identification results of physical properties of the307

structure and draw conclusions about the structural conditions. BMO clustering helps clarify and308

organise the information provided by the CMS and convert it into knowledge.309

CASE STUDY A – EXETER (UK)310

A case study that involves the structural identification of the Exeter Bascule Bridge in the UK311

is employed to demonstrate the applicability of the proposed framework. The steel bridge, built312

in 1972, has a single span of 17.3 m and is designed to be lifted in order to allow boat passing313

along the canal. The light-weight aluminium deck is connected to several secondary beams that314

are bolted to two longitudinal girders (W36x12 section). The bridge has a total width of about 8.2315

m and carries the carriageway and a footway. A static load test has been performed and deflection316

measurements have been collected by means of a target and a precision camera. Figure 3 shows317

the side elevation and a view of the bridge during the load test. Additional information about the318

Exeter Bascule Bridge can be found in (Kwad et al. 2017).319

Model falsification320

According to a sensitivity analysis, the following three parameters that influence the most the321

structural behaviour are selected for model updating: Youngs modulus of aluminium deck (θ1),322

rotational stiffness of the North-bank hinges (θ2), and axial stiffness of hydraulic jacks (θ3). Table323

1 contains initial intervals for the adopted parameters. Bounds for Youngs modulus are defined324

using engineering judgment, while values for the rotational stiffness cover the full range from a325

constrained to a pinned support in order to include the potential effects of corrosion at the bear-326

ings. The axial stiffness of hydraulic jacks is used to simulate their contribution as additional327

load-carrying supports. An initial model set of 1,000 instances is generated from the uniform328

distribution of each parameter value using Latin hypercube sampling. Model uncertainties are329
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defined considering model class simplifications, mesh refinements and finite-element numerical330

approximations. Measurement uncertainties take into account the sensor accuracy – provided by331

the manufacturer specification – and measurement repeatability, which is estimated by performing332

multiple measurements under site conditions.333

Uncertainty sources are combined using the Monte Carlo method and threshold bounds are334

computed for a confidence level that is fixed at 95%. Residuals between deflection predictions335

and measurements collected using a precision camera are computed. Out of 1,000 initial model336

instances, a CMS consisting of 103 models is identified.Threshold bounds are computed and the337

CMS, consisting of 103 models, is identified. Table 1 reports initial intervals (top rows) and up-338

dated intervals (italics) for the parameters that have been considered for model updating. The339

performance of identification depends on several factors, such as the initial sampling and the sen-340

sor configuration. Using only one sensor, the longitudinal stiffness of the hydraulic jack has been341

clearly identified, while for the Youngs modulus of aluminium deck and the rotational stiffness of342

the bearing devices initial intervals and identified intervals are similar.343

Clustering of bipartite graph344

To represent the CMS a bipartite graph is generated. The first partition consists of the 103345

candidate models that constitute the CMS. The second partition, which consists of ranges for346

candidate-model parameter values, has to be defined according to engineering judgment. Since347

θ3 has been well identified a plausible choice is to cluster the CMS considering only 2 parameters348

(θ1, θ2). The parameter ranges adopted in this study are reported in Table 2.349

Once both partitions are defined, the bipartite graph can be generated as shown in Figure 4. The350

left-hand side partition represents the 103 candidate models and the right-hand side represents the351

parameter ranges according to Table 2. Each edge joins a candidate model with the corresponding352

range for each parameter. Figure 5 shows the partition of the graph into clusters obtained by BMO353

clustering, and clusters are defined using node colours. To improve visualization, clusters are354

vertically separated. While clusters C-3 and C-5 have at least one range for each parameter that has355

been considered for clustering, both C-1, C-2 and C-4 do not include ranges for all parameters. This356
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is a direct consequence of the non-uniform distribution of parameter values in the CMS (see Figure357

6). Since only two parameters have been considered for classification, the cluster visualisation is358

possible in the parameter space (Figure 6). Also, for each cluster, a centroid model is computed.359

According to BMO clustering, models that show high value of θ2 are grouped regardless of their360

values of θ1. On the contrary, when θ2 is low, models are clustered according to θ1-values.361

Comparison with K-means362

In order to highlight the advantages of the suggested approach, a comparison with a traditional363

clustering algorithm (i.e., K-means) is presented. K-means is a popular unsupervised learning364

method, which is already implemented in several engineering analysis tools. Moreover, previous365

studies that focused on interpreting results of model populations – for example (Saitta et al. 2005b)366

– employed K-means clustering. Finally, K-means is often applied by practicing engineers since it367

is easy-to-use and does not require an advanced machine-learning background.368

K-means requires that the number of clusters K is given as input. As mentioned in the Back-369

ground section, some techniques are available to help define K. In this case study, a reasonable370

value for the number of clusters was found to be between 2 and 5. Figure 7 shows K-means clus-371

tering while varying the K-value. Resulting clusters are defined by only θ1 and all centroid models372

have almost identical values of θ2.373

The two parameters θ1 and θ2 represent respectively the bending stiffness and the rotational374

retain of a single span bridge. Therefore, in this situation, a negative correlation between these375

parameters is expected. Looking at the centroids in Figure 6, obtained by BMO, such a relationship376

– even though weak - can be identified. On the other hand, the centroids obtained by K-means in377

Figure 7 seem to suggest that the value of θ2 is around its mid-range and the value of θ1 is irrelevant.378

CASE STUDY B – SINGAPORE379

A second case study that involves the structural identification of a reinforced concrete bridge380

in Singapore is presented. The bridge (Figure 8), which consists of 4 precast prestressed beams381

that support a concrete deck, has a single span of 32 m.382
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During a static load test measurements have been collected by means of a laser tracker targeting383

4 prisms (P) and 8 strain gauges (S) which have been attached to the bottom face of the main384

precast beams. Moreover, 2 inclinometers (I) have been positioned on the bridge deck close to the385

expansion joints. A detailed description of the sensor configuration and the case study is available386

in (Proverbio et al. 2018a).387

The initial model set is generated through sampling the five-dimensional parameter space de-388

fined by the Youngs modulus of cast-in-place concrete, the Youngs modulus of precast concrete, the389

Youngs modulus of barrier concrete, the rotational and the vertical stiffness of the bearing devices.390

The initial interval for each parameter, defined according to engineering judgment, is reported in391

Table 3. The initial model set consists of 2,000 instances that are sampled using an adaptive sam-392

pling approach, as described in (Proverbio et al. 2017a). Model uncertainties take into account393

model simplifications, which are estimated using engineering judgment and considering the model394

class features. Moreover, this source takes into account that only the most sensitive parameter395

uncertainties are selected for identification. The uncertainty associated with mesh refinement and396

numerical approximations are also included. Measurement uncertainties are estimated by com-397

paring multiple measurements under site conditions and considering the type of sensors that are398

employed. Sensor accuracies which represent the lowest source of measurement uncertainty are399

based on manufacturer specifications. For strain gauges, an uncertainty also arises from the im-400

perfect alignment of gauges with respect to the longitudinal axis of the bridge. Finally, additional401

noise associated with sensor installation have been considered for inclinometers and strain gauges402

using engineering judgment.403

Model and measurement uncertainties are estimated and, for each measurement location, a404

combined uncertainty is computed and threshold bounds are determined for a confidence level405

fixed at 95%. Table 3 reports initial (top parts of rows) and updated (italics – lower parts of rows)406

intervals for the parameters that have been considered for model updating.407
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Candidate model set B.1 – 80 models408

Out of the 2,000 initial model instances, 80 candidate models are identified using the infor-409

mation provided by all available sensors (i.e. four deflection prisms, eight strain gauges and two410

inclinometers).411

BMO clustering – 4 parameters412

To represent the CMS a bipartite graph is generated. The first partition consists of the CMS413

while the second partition is based on candidate-model parameter ranges that are defined by the en-414

gineer. Parameters which are well identified – updated interval smaller than initial interval – should415

be omitted from the clustering in order to reduce the graph size. Moreover, further subdivisions of416

a well-identified range of parameter values provide weak support for decision making.417

Referring to Table 3, the parameter θ4 is fairly well identified and should be omitted from418

clustering. However, the 53% initial-range reduction for θ5 may suggest that also this parameter419

should be omitted. This choice is part of the active interaction between the engineer and the420

framework. To help clarify the outcomes of such a decision, in this section four parameters (i.e.421

θ1, θ2, θ3, θ5) are employed, while the case involving the selection of θ1, θ2, and θ3 is presented in422

the next section.423

Table 4 reports the decomposition ranges defined by the engineer while the bipartite network424

is depicted in Figure 9, where clusters are identified by different colours.425

The cluster visualization proposed in Figure 9 can be further enhanced by vertically separating426

clusters (see Figure 11) and can be performed regardless the number of parameters that have been427

considered. Moreover, looking at Figure 9 it is possible to notice that the large majority of the 80428

candidate models have values of θ5 in range II, while only few models (5 over 80) have θ5values in429

range I. This observation suggests that a better network representation may be achieved by omitting430

θ5 from clustering. In this way, engineers interact with this clustering framework and update both431

the initial subdivision of ranges and parameter selection until the desired level of knowledge is432

acquired.433
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BMO clustering – 3 parameters434

Given the identification results and according to the visualisation results of the previous itera-435

tion, a plausible choice is to cluster the CMS considering only 3 parameters (i.e. θ1, θ2, θ3). The436

parameter ranges adopted in this study are reported in Table 5.437

Figure 10 shows the graph, and clusters are defined using node colours. Clusters C-3 and C-2438

have at least one range for each parameter that has been considered for clustering, while both C-1439

and C-4 do not include ranges for all parameters. This is a direct consequence of the non-uniform440

distribution of parameter values in the CMS, as shown in Figure 11. More precisely, cluster C-4 is441

associated with values of θ2 in the range (25 to 30 GPa) while values of parameters θ1 and θ3 are442

spread throughout the domain. Similarly, in cluster C-1 values for parameter θ1 and θ3 are clustered443

around one of the ranges defined in Table 2, while values of θ2 are gathered in two groups that are444

at opposite bounds of the domain. Hence, there is no range node for θ2 in cluster C-1. On the other445

hand, both clusters C-2 and C-3 identify ranges for each parameter. Therefore, models that belong446

to these clusters are expected to show distinct trends in the CMS.447

To support result interpretation, clustering can be used to define few models – called centroid448

models (CMs) – that are able to represent the entire CMS. First, centroid coordinates are computed449

for each parameter as the mean of the values of the models belonging to the considered cluster.450

Then, centroid-model predictions are evaluated, using a FE solver. Finally, CMs are checked using451

EDMF threshold bounds and only those that are not falsified can be employed to represent the452

CMS.453

Figure 12 shows the parallel-axis plot of parameter values that define centroid-models, along454

with CM predictions. CM-2 and CM-3 show different trends – in agreement with the observations455

made in Figure 10. CM-3 corresponds to a model class with high values of θ2 and relatively low456

values of θ1 and θ3. An opposite trend is observed for CM-2. CM-1 shows parameter values 5%457

to 10% higher than CM-4 and a similar trend. All centroid models have similar values of θ4 and458

θ5, which, indeed, have not been considered for clustering. Moreover, all CMs provide predictions459

that are inside threshold bounds for each sensor locations. Therefore, all CMs can be employed for460
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decision making.461

Understandably, when centroid models are used to represent the entire CMS, information pro-462

vided by extreme parameter values is lost. For example, in Figure 12, no centroid model has463

values of θ1 lower than 0.55 or higher than 0.9. Consequently, CM predictions cannot cover the464

prediction ranges provided by the entire CMS. This drawback may be reduced through employing465

uniform sampling to generate the initial model set to which EDMF is applied. Thus, parameter466

values will be uniformly distributed in the CMS. However, uniform sampling is not efficient since467

good sample density often requires a number of samples that makes the problem computationally468

challenging.469

Decision making470

When the information obtained from result visualisation satisfies the engineer, decision making471

is carried out. As mentioned above, decision making can result in additional testing and in-situ472

inspection, additional FE analyses, and structural diagnosis.473

Considering the visualisation of centroid models in Figure 12, a first option is to employ non-474

destructive testing (NDT) to evaluate identified clusters. For example, CM-2 shows high values of475

θ1 and low values of θ2, while CM-3 is characterised by very high values of θ2. Since θ1 and θ2 rep-476

resent the Youngs modulus of precast barriers and cast-in-place concrete respectively, indications477

of actual values can be obtained by NDT such as ultrasonic pulse velocity. This information can478

help reduce initial uncertainty estimations and increase the precision of identification. Moreover,479

predictions provided by CM-2 and CM-3 are dissimilar at many sensor locations. Therefore, in-480

sights on the true behaviour of the structure can be acquired through analysing these two centroid481

models.482

Centroid models may also be employed to obtain reserve-capacity preliminary estimates. A483

unitary reserve capacity means that the structural safety for a given limit state is verified under484

design load configurations. Table 6 reports reserve-capacity assessments for the serviceability485

limit states (SLS) – computed for each centroid model. CM-2 and CM-3 provide the minimum486

and the maximum reserve capacity respectively. Moreover, the four estimations are close (less487
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than 4% different) from the average reserve capacity computed using the entire CMS. A detailed488

explanation of reserve-capacity assessments for this case study is available in (Proverbio et al.489

2018b).490

Since the estimation of reserve-capacity involves checks of structural safety, extreme predic-491

tions are often determinant. However, fast preliminary estimations – based on CMS average pre-492

dictions – help engineers employ population-based approaches for structural identification. The493

reserve capacity computed using CMs represents a trade-off between the entire CMS complexity494

and the synthesis provided by a unique average behaviour.495

Comparison with K-means496

In order to highlight the advantages of the suggested approach, a comparison with a traditional497

clustering algorithm (i.e., K-means) is presented.498

K-means requires that the number of clusters K is given as input. To simplify the comparison499

with the previous results, the same number of clusters identified by the BMO clustering is selected500

(i.e., K=4).501

Using the Euclidean distance as a metric, K-means provides the classification of candidate502

models into 4 clusters. Since 3 parameters have been considered for clustering, result visualization503

is possible by plotting the models as nodes in a 3D space – Figure 13.504

In Figure 13, each node corresponds to a candidate model and crosses correspond to centroid505

positions. Compared with Figure 10, this visualization provides weak support, since it only allows506

appreciation of cluster distributions in the CMS. Little information on model properties is provided507

and engineers cannot actively interact with the framework or refine the visualization since the only508

parameter that is considered is the number of clusters K.509

To support downstream processes and the decision making, CM predictions are evaluated and510

checked using EDMF threshold bounds. Table 7 shows CM check results for multiple K-values511

since only CMs that are not falsified can be employed to represent the CMS.512

Considering the current choice of K-value (i.e. K=4), CM-4 is falsified. Moreover, Table 7513

shows that two CMs will be falsified even though 5 or 6 clusters are initially considered.514
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Figure 14 shows the parallel-axis plot of parameter values that define centroid-models and515

the corresponding CM predictions. CM-4 is not compatible with measurements; therefore, it is516

rejected and plotted using a dashed line. Compared with Figure 12, values of θ2 and θ3 are gathered517

for all centroid models. This results in a weaker interpretation of the CMS. Moreover, all the518

accepted centroid models show similar trends. In this situation, engineers obtain only one possible519

interpretation of the CMS, since only values for θ1 have been effectively explored.520

Exact solution and divisive heuristic approach521

In case study B.1 the size of the network is relatively small. When larger networks, such as522

those considered here, are evaluated, the optimisation of bipartite modularity can be computation-523

ally challenging. Just to give a reference, those instances could not be solved by the exact method524

in 2 hours on a server with four Intel Xeon E5-4620 CPUs (2.20 GHz, 8 cores, Hyper-Threading525

and Turbo Boost disabled) and 128 Gb of RAM (32 GB for each processor). Therefore, an ap-526

proach based on the locally optimal divisive heuristic (Costa and Hansen 2014) is employed when527

large instances are addressed and solutions could be obtained in a few seconds on a much less528

powerful laptop.529

As shown in Table 8, when both the exact method and the divisive heuristic can be used,530

the difference of bipartite modularity value is minimal and the number of clusters identified is531

the same. Therefore, the divisive-heuristic method, other than being computationally efficient,532

provides accurate results.533

Finally, values of bipartite modularity help engineers estimate the quality of the visualisation534

at the current step. For example, regardless the optimisation approach used, bipartite-modularity535

values are higher when 3 parameters are included in the clustering. Therefore, omitting θ5 from536

clustering has increased the quality of the clustering, which results in a better explanation of iden-537

tification results.538

Candidate model set B.2 – 260 models539

The feasibility of the proposed approach to large CMSs is evaluated through assuming that540

no sensor can be installed below the bridge, thus excluding deflection prisms and strain gauges.541
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Consequently, falsification is carried out using the information provided by the two inclinometers542

positioned on the bridge deck and 260 candidate models are identified.543

In real situations, engineers may deal with large CMSs at initial stages of structural identifica-544

tion, which are characterised by high uncertainty levels, or during preliminary monitoring, when545

only a few sensors are employed.546

BMO clustering – 5 parameters547

Having omitted the information provided by deflection prisms and strain gauges, the CMS548

B.2 consists of 260 models – 180 more compared with CMS B.1. Although EDMF succeeded549

in falsifying many out of the initial 2,000 model instances, initial ranges and updated ranges of550

parameters are coincident. Therefore, EDMF has excluded only some parameter combinations551

rather than reducing parameter intervals.552

In this situation, all parameters participate in the clustering and parameter intervals are divided553

into a number of ranges that are equally large. Table 9 shows parameter intervals for each range554

along with cluster assignments obtained through the BMO-clustering method.555

Since this case study involves 5 parameters, the direct visualisation of the parameter domain556

is not possible. Future extraction techniques such as PCA may be employed; however, result557

visualisation is possible only in the principal component space. Thus, clusters need to be mapped558

back in the parameter space to allow result interpretation. Although a bipartite network can be559

represented regardless the parameter domain dimensionality (see, for example, Figure 9), tabular560

representations of results are more appropriate for graphs defined by a large number of nodes.561

A visual representation of the clusters presented in Table 9 is provided in Figure 15. Each562

vertical axis represents a parameter and candidate models are plotted as coloured lines. The dashed563

red line indicates the centroid model for each of the four clusters. Although few models show564

parameter values far from average values – which define centroid models – centroid models exhibit565

trends that are aligned with the ranges in Table 9. Therefore, the tabular format is able to effectively566

condense the information provided by the visualisation of parallel-axis plots.567

Engineers can consider centroid models as a synthesis of the CMS. Although the range of568
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behaviour of 260 models cannot be captured by only four centroid models, it is worth noting569

that common features are found. For example, a negative correlation between parameters θ4 and570

θ5 characterises all centroid models. This observation is confirmed by checking the correlation571

coefficients reported in Table 10, which shows that parameters θ4 and θ5 exhibits a strong negative572

correlation.573

Decision making574

Since initial and identified parameter ranges are similar, little knowledge can be extracted from575

the CMS. Such a situation suggests that additional monitoring – including new sensor configura-576

tions and load cases – and further inspection – involving, for example, non-destructive testing –577

are carried out.578

The goal is to increase the information provided by the real structure to reduce the initial579

uncertainties. However, one of the main advantages of EDMF lies in its emphasis on accuracy580

rather than precision. Adding new sensors can only result in a reducing the number of candidate581

models; therefore, incorrect falsification of plausible models is avoided. In other words, the CMS582

represents the most accurate knowledge given the current level of information available.583

Result-interpretation techniques should follow analogous principles. Centroid models that rep-584

resent the CMS should describe the range of behaviour that is plausible at the current stage while585

simplifying the inclusion of additional information that may become available.586

For example, the CMS B.2 – obtained using 2 sensors – can be seen as an initial stage of587

structural identification, while CMS B.1 results from an improved sensor configuration, which588

consists of 12 sensors. Table 11 represents the updated version of Table 9 when all sensors are589

employed. Clusters indicated in curly brackets are falsified and some parameter ranges are reduced.590

As a result, cluster C4, which includes extreme values for parameters, θ1, θ4 and θ5, is falsified for591

these three parameters and C3 is falsified for θ4 and θ5. Interestingly, all falsified models are in the592

same two clusters; therefore, BMO clustering provided an accurate interpretation of the CMS.593

SUMMARY AND DISCUSSION594

Engineers may be overwhelmed with managing results from multiple models that explain mea-595
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surements taken from the same structure. Clustering can be effectively employed to group entities596

that are similar. However, several definitions of similarity, which come out of different clustering597

strategies are possible.598

K-means in the solution space – one of the most well known algorithm for clustering – is cho-599

sen as a benchmark since it is easy-to-use and already implemented in several data-analysis tools.600

The traditional implementation of K-means, which employs Euclidean distance to cluster similar601

nodes, does not facilitate user interaction since input parameters such as the number of clusters or602

the selection of initial centroids are not specific to the problem at hand. In order to overcome this603

limitation, bipartite networks can be used to describe relationships between plausible behaviour604

models. Moreover, the bipartite-network representation enables use of the BMO approach to high-605

light existing similarities between subsets of models and specific behaviour regardless the number606

of parameters that are taken into account. Therefore, dimensionality reduction techniques such as607

PCA are not necessary. Results show that BMO clustering successfully condenses the information608

provided by the CMS into a few centroid models that are able to represent plausible behaviour.609

While it is possible to modify K-means clustering in order to leverage similar domain represen-610

tations, this strategy may not be easily understandable to engineers who are responsible for asset611

management.612

The following limitations of the framework are recognised. The sampling technique adopted to613

generate the model population and the assessment of uncertainties influence identification results.614

Accurate parameter identification can be achieved only when reliable model classes are adopted.615

Model-class features and model uncertainties should always be verified through visual inspection616

and iterative model-class updating when new information becomes available.617

Although this study focuses on the downstream process of identification – after the CMS is618

defined – new research directions involve applying classification algorithms to perform structural619

identification. For example, logistic regression or support vector machine may be employed to in-620

vestigate hidden relationships between parameter values and model predictions to guide the search621

for additional candidate models when performing falsification.622
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CONCLUSIONS623

BMO clustering effectively helps interpret structural-identification results when population-624

based approaches – such as EDMF – are employed. Specific conclusions are as follows:625

• BMO clustering helps clarify and interpret the candidate model set.626

• The proposed methodology identifies feasible centroid models more successfully than tra-627

ditional applications of K-means.628

• Result visualization is possible regardless of the number of parameters.629

• Large CMSs containing many instances (more than 100) are successfully clustered using630

the divisive heuristic approach.631

• Finally, active interaction with the clustering framework is possible to leverage new knowl-632

edge during several stages of the asset-management decision-making process.633
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TABLE 1. Initial intervals (top parts of rows) and updated intervals (italics – lower
parts of rows) for parameters that have been considered for falsification

Parameters
Lower Upper Initial-range
bound bound reduction

θ1 – Youngs modulus of aluminium deck [GPa]
60.00 80.00

5%
60.53 79.53

θ2 – Rotational stiffness of bearing devices [log(Nmm/rad)]
8.00 12.00

0.7%
8.01 11.98

θ3 – Longitudinal stiffness of hydraulic jack [log(Nmm)]
2.00 8.00

94%
4.02 4.39

31



TABLE 2. Parameter ranges for clustering defined by the engineer

Parameters
Parameter ranges

I II III IV
θ1 [GPa] 60-65 65-70 70-75 75-80
θ2 [log(Nmm/rad)] 8-9 9-10 10-11 11-12
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TABLE 3. Initial intervals (top rows) and updated intervals (italics) for parameters
that have been considered for falsification

Parameters
Lower Upper Initial-range
bound bound reduction

θ1 – Young’s modulus of barrier concrete [GPa]
3.00 40.00

14.8%
8.48 39.99

θ2 – Youngs modulus of cast-in-place concrete [GPa]
20.00 35.00

0.8%
20.01 34.98

θ3 – Rotational stiffness of bearing devices [log(Nmm/rad)]
9.00 13.00

3.5%
9.01 12.87

θ4 – Vertical stiffness of bearing devices [log(N/mm)]
8.00 11.00

89%
8.34 8.67

θ5 – Youngs modulus of precast concrete [GPa]
25.00 50.00

53.4%
38.31 49.97
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TABLE 4. Parameter ranges for clustering defined by the engineer

Parameters
Parameter ranges

I II III IV
θ1 [GPa] <20 20-30 >30 –
θ2 [GPa] <25 25-30 >30 –
θ3 [log(Nmm/rad)] <10 10-11 11-12 >12
θ5 [GPa] <45 >45 – –
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TABLE 5. Parameter ranges for clustering defined by the engineer

Parameters
Parameter ranges

I II III IV
θ1 [GPa] <20 20-30 >30 –
θ2 [GPa] <25 25-30 >30 –
θ3 [log(Nmm/rad)] <10 10-11 11-12 >12
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TABLE 6. Preliminary reserve-capacity assessments computed using each cen-
troid model

Centroid model
Reserve capacity

(SLS)
CM-1 1.36
CM-2 1.32
CM-3 1.38
CM-4 1.33

CMS average 1.37
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TABLE 7. Centroid-model check using EDMF threshold bounds. K-means cluster-
ing is employed with values of K from 1 to 6 (3: the CM is a candidate model; 8:
the CM is falsified)

K
Centroid-model check

CM-1 CM-2 CM-3 CM-4 CM-5 CM-6
1 3 - - - - -
2 3 3 - - - -
3 3 3 3 - - -
4 3 3 3 8 - -
5 8 8 3 3 3 -
6 8 3 3 3 8 3
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TABLE 8. Comparison of the exact solution and the divisive heuristic approach

Number of parameters
Approach

Number of Bipartite ∆ bipartite
for clustering clusters modularity modularity

4 Parameters
Exact 4 0.271

1.1%
Divisive heuristic 4 0.268

3 Parameters
Exact 4 0.353

0.3%
Divisive heuristic 4 0.352
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TABLE 9. Parameter ranges used for BMO clustering (CMS B.2). Clustering results
are indicated by different colours and the cluster identification is reported for each
range

Ranges
θ1 θ2 θ3 θ4 θ5

[GPa] [GPa] [log(Nmm/rad)] [log(Nmm)] [GPa]

IV
[30.75;40.00] [31.25;35.00] [12.00;13.00] [10.25;11.00] [43.75;50.00]

C1 C2 C3 C4 C1

III
[21.50;30.75] [27.50;31.25] [11.00;12.00] [9.50;10.25] [37.50;43.75]

C2 C4 C4 C4 C2

II
[12.25;21.50] [23.75;27.50] [10.00;11.00] [8.75;9.50] [31.25;37.50]

C3 C1 C2 C3 C3

I
[3.00;12.25] [20.00;23.75] [9.00;10.00] [8.00;8.75] [25.00;31.25]

C4 C3 C1 C1 C4
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TABLE 10. Parameter correlation matrix (CMS B.2)

θ1 θ2 θ3 θ4 θ5
θ1 1 - - - -
θ2 -0.01 1 - - -
θ3 -0.19 -0.10 1 - -
θ4 -0.13 -0.07 -0.26 1 -
θ5 -0.03 -0.08 -0.20 -0.69 1
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TABLE 11. BMO clustering results considering the CMS B.1. Clusters are indicated
by different colours and bold letters, while falsified clusters are indicated in curly
brackets

Ranges θ1 θ2 θ3 θ4 θ5
IV C1 C2 C3 {C4} C1
III C2 C4 C4 {C4} C2
II C3 C1 C2 {C3} {C3}
I {C4} C3 C1 C1 {C4}
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FIG. 1. Bipartite-modularity optimization (BMO) clustering framework
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FIG. 2. The contribution of BMO clustering in the iterative sequence–free
structural–identification framework. Adapted and enhanced from (Pasquier and
Smith 2016)
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FIG. 3. Side elevation and view of the Exeter Bascule Bridge during the load test
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FIG. 4. Bipartite graph representation. The two partitions consist of candidate
models (left) and parameter ranges (right)
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FIG. 5. BMO clustering visualization (CMS A – 2 parameters)
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FIG. 6. BMO clustering visualization in the parameter space. Five clusters are iden-
tified using different symbols and centroid positions (X)

49



FIG. 7. K-means clustering visualization in the parameter space. Clusters are de-
picted using different symbols and centroid positions (X)
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FIG. 8. Cross-section, longitudinal profile and view of the bridge in Singapore dur-
ing the load test
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FIG. 9. Bipartite network and BMO clustering visualization (CMS B.1 4 parameters)
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FIG. 10. BMO clustering visualization (CMS B.2 3 parameters) c©2017 IEEE
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FIG. 11. Clustering of candidate models for each parameter c©2017 IEEE
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FIG. 12. Parallel-axis plot of parameter values that define centroid models (left)
obtained using BMO clustering. CM predictions are within EDMF threshold bounds
for each sensor location (right)
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FIG. 13. K-means clustering visualization. Each node represents candidate model
and clusters are indicated by different markers. Crosses represent cluster cen-
troids c©2017 IEEE
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FIG. 14. Parallel-axis plot of parameter values that define centroid models (left)
obtained using K-means (K=4). CM-4 is plotted with a dashed line since it is not
compatible with measurements
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FIG. 15. Parallel axis plot of model parameters for BMO clustering (CMS B.2). Each
vertical axis represents a parameter (divided into 4 ranges) and candidate models
that belong to each cluster are plotted as coloured lines. To improve visualisa-
tion clusters are plotted separately and red dashed lines indicate cluster centroid
models
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