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Evolutionary-guided de novo structure prediction
of self-associated transmembrane helical proteins
with near-atomic accuracy
Y. Wang1 & P. Barth1,2,3

How specific protein associations regulate the function of membrane receptors remains

poorly understood. Conformational flexibility currently hinders the structure determination

of several classes of membrane receptors and associated oligomers. Here we develop

EFDOCK-TM, a general method to predict self-associated transmembrane protein helical

(TMH) structures from sequence guided by co-evolutionary information. We show that

accurate intermolecular contacts can be identified using a combination of protein sequence

covariation and TMH binding surfaces predicted from sequence. When applied to diverse

TMH oligomers, including receptors characterized in multiple conformational and functional

states, the method reaches unprecedented near-atomic accuracy for most targets. Blind

predictions of structurally uncharacterized receptor tyrosine kinase TMH oligomers provide a

plausible hypothesis on the molecular mechanisms of disease-associated point mutations

and binding surfaces for the rational design of selective inhibitors. The method sets the stage

for uncovering novel determinants of molecular recognition and signalling in single-spanning

eukaryotic membrane receptors.
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P
rotein associations regulate the function of a large diversity
of membrane proteins, such as tyrosine kinase (RTK),
cytokine, immune or G protein-coupled receptors1–5.

Single spanning receptors such as RTKs can adopt multiple
conformations and function by extracellular ligand-induced
stabilization of specific receptor homo- or heterodimeric
conformations triggering activation of cytoplasmic signalling
cascades6–9. By changing orientation or oligomerization states,
transmembrane (TM) and juxtamembrane (JM) regions play
critical roles in regulating receptor associations and in
transmitting signals across the membrane7,8,10. Numerous point
mutations in their TM or TM–JM boundary regions perturb the
receptor’s conformations and functions, and are associated with
severe disease1,11,12, hence the importance of determining their
structure for rational drug design applications.

However, compared with multi-pass membrane proteins,
single-pass oligomeric membrane receptors (SPMRs) are highly
flexible and remain very difficult to characterize structurally.
Several extramembrane (EM) and a few TM domains have been
characterized by X-ray crystallography and nuclear magnetic
resonance (NMR) spectroscopy13–18, respectively, but no high-
resolution structure of a full-length SPMR has been solved to
date. Nevertheless, current evidence on widely studied receptors
such as epidermal growth factor receptor (EGFR) and integrin
indicate that TM interactions and structures determined from
isolated domains are consistent with those in full-length
receptors8,9,19–21. Thus, the structural characterization of
isolated TM domains can be considered as a valid first
approach to identify native TM–TM interactions in full-length
receptors. When extensive experimental information is available
on TM interactions (for example, mutational, crosslinking,
infrared spectroscopy and homologue structures), TM
structures can be modelled accurately22 and full-length receptor
structures can be reconstructed by linking EM structures with TM
models19. However, such experimental information is not
available for a large majority of SPMR TMs, which can only be
modelled from sequence.

The first characterized TM homodimer structures were of
right-handed conformations and stabilized by the frequently
occurring GXXXG-binding motif through putative weak CaH–O
hydrogen bonds15. Corroborating these observations, modelling
techniques incorporating a weak CaH–O bond potential allowed
for accurately predicting native right-handed TMH homodimer
(RH) structures in native TMH docking simulation23 or grid
search from ideal helices24. However, a large majority of TMH
homo-oligomers does not bear GASright motifs (that is,
small-XXX-small residue motif identified at right-handed
parallel TMH dimers with small being either Gly, alanine or
serine25) or are stabilized by a much larger diversity of physical
interactions including Van der Waals (VDW), aromatic pi–pi,
cation–pi and polar interactions3,6,26–29. Accurately predicting
TMH oligomeric structures in absence of monomer TMH
structures and of specific binding motifs identifiable from the
sequence remains a daunting task, because of the large
conformational space to be sampled in simultaneously folding
and docking TMHs. Approximating TMHs as ideal helices
usually cannot recapitulate TM dimer structures with near-
atomic accuracy30. As demonstrated by several studies31–34,
because protein interactions are very sensitive to atomic details,
designing selective inhibitors and predicting functional
mechanism or mutational effects require high-resolution models
(that is, typically structural divergence to native structures below
1.5Å and a large fraction of predicted native contacts). A general
method that predicts with high accuracy from sequence
the structure of TMH oligomers with a wide range of
TMH subunits, topologies, conformations and stabilizing

interactions would therefore be of great interest but is currently
lacking.

Rapid expansion of high-throughput sequencing and statistical
methods distinguishing direct couplings from indirect correla-
tions in residue sequence covariation patterns have led to high-
precision residue contact prediction in protein structures35–41.
Applying these predicted contacts as distance constraints in
folding simulations considerably restrict the conformational space
sampled and allowed for the reliable prediction of large
polypeptide chain structures42,43. Co-evolutionary-based protein
modelling approaches have recently been extended towards
characterizing protein conformational diversity including the
structure of transient or hidden functional states44. Residue
contacts controlling important functional protein–protein
interactions can also be identified in sequence co-evolution
patterns of strongly interacting proteins45,46. When combined
with protein surface chemical complementarities, such contacts
can guide the prediction of both stable and transient protein–
protein-associated structures47. However, applying this approach
to homo-oligomers remains a challenge, because it relies on the
ability to discriminate between intra- and inter-monomer
contacts.

To address this problem, we here develop and implement in
RosettaMembrane23,34,48 EFDOCK-TM (Evolutionary-guided
Fold and Dock of TransMembrane proteins), a protocol to
accurately predict self-associated TM protein structures guided by
co-evolutionary signals enriched in true inter-chain contacts
using predicted TMH binding surfaces from sequence. We show
that a very small number (less than three on average) of these
selected contacts are necessary to accurately predict single-
spanning TMH homo-oligomer structures with a wide range of
size, subunit number, conformations and binding interactions.
We apply EFDOCK-TM to blindly predict uncharacterized
members of the KIT and fibroblast growth factor receptor
(FGFR) family of RTK receptors and propose molecular
interpretations of disease-occurring point mutations.

Results
Inter-chain-contacting residues co-evolve strongly. The
structural interpretation of co-evolutionary signals in protein
sequences folding into homo-oligomers has been a challenge,
because they can in principle reflect both intra-chain and inter-
chain residue contacts. When sequences fold into parallel helical
homo-oligomers, discriminating between intra- and inter-
monomer constraints becomes even more difficult because both
encode short-range contacts (that is, between residues close in
sequence) (Fig. 1a). We define a short-range intra-chain contact,
an interaction between residues i and j close in sequence and on
the same monomer chain A (iA—jAr8). We define a short-range
inter-chain contact, any interaction between residues i and j close
in sequence but belonging to distinct chains A and A0 in a
homodimer formed by two copies of the same monomer
sequence (iA—jA0r8) (Fig. 1a). Since most residues in helices are
involved in short-range intra-chain contacts, we reasoned that the
fraction of residue pairs forming additional inter-chain short-
range interactions should be enriched in strongly co-evolving
residues at the binding interface (Fig. 1b). To test this hypothesis,
we first analysed the strength of residue covariations along the
binding interface of all experimentally characterized TMH
homodimer structures. Residue covariations were calculated using
the widely used and benchmarked method EVfold42. As shown in
Fig. 2a,b and Supplementary Table 1, the average direct
interaction (DI) score (measuring the strength of co-evolution)
and the fraction of strongly co-evolving residues (high DI score)
calculated by EVfold were significantly higher for residue pairs
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involved in inter-chain contacts than for other residues present at
the binding interface. Similar results were obtained when the
same analysis was performed on a large data set of coiled-coil
homodimers selected from diverse protein families (Methods;
Supplementary Table 1). These results validate our hypothesis
and indicate that co-evolutionary signals at homodimer helical
binding interfaces are often stronger for residue pairs involved in
inter-chain contacts than for pairs forming intra-chain contacts
only.

Most single-spanning self-associating receptors, however, are
largely uncharacterized with no information on their binding
interfaces. To address this problem, we assessed whether TMH-
interacting surfaces could be predicted from sequence by the
method LIPid-facing Surface (LIPS)49. On average, 85% of the
residues predicted by LIPS to be the least exposed to lipids were

located at the experimentally characterized binding interface
(Supplementary Fig. 1). As shown in Fig. 2c,d, when combined
with the method EVfold, the method LIPS49 was able to predict
from sequence TMH surfaces that bear a large fraction of strongly
co-evolving contacts. Both average DI score and fraction of
strongly co-evolving contacts were found to be significantly
higher for residues predicted to interact across monomers than
for other residues along the predicted binding interface
(Supplementary Table 1). Our results indicate that the
prediction of interacting TMH surfaces by LIPS is accurate
enough to identify a large majority of the strongly co-evolving
residue pairs involved in inter-chain contacts.

Enrichment of intermolecular contacts in blind predictions. To
take advantage of such signals in blind prediction of TMH
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Figure 1 | Covariation in protein sequences folding as homo-oligomers reflect both intra- and inter-molecular contacts. (a) Covariation patterns in

protein sequences forming homo-oligomeric structures can reflect both intra- (solid red arrow) and inter- (dash red arrow) monomer evolutionary

constraints. (b) The strength of co-evolution signals between residues forming both intra- and inter-chain contacts (red) is expected to be stronger (thicker

arrows) than pairs forming only intra-chain contacts (yellow, thinner arrows at the bottom).
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Figure 2 | Residue pairs making inter-chain contacts have stronger co-evolutionary signals. Comparison between direct interaction score (DI score)

calculated by EVfold42 for residue pairs interacting (blue) or not interacting (red) across the chains of the 14 TM homo-oligomers indicated on the

x axis. Only short-range residue pairs (that is, separated by up to eight amino acids) that belong to either the true binding interface (a,b) or the predicted

binding helical surface by LIPS49 (c,d) are considered in the analysis (Methods). The average DI score for all residue pairs (a,c) or the percentage of high

DI score pairs (b,d) in each interacting category is reported (Methods). DI score differences between the two populations of residue pairs are statistically

significant (paired two-sample T-test P values o4� E�03, see Supplementary Fig. 2).
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homomeric structures, we implemented a computational frame-
work that enriches co-evolving residue pairs in true inter-chain
contacts (Fig. 3). Briefly, (1) contacts between pairs of co-evolving
residues along the entire TM region are predicted from sequence
using the method EVfold42; (2) contacting residues present on
TMH surfaces predicted to face lipids using the method LIPS49

are removed; (3) the remaining contacts with the strongest
co-evolutionary signals, which are often enriched in inter-chain
contacts (Fig. 2), are selected as pairwise distance constraints;
(4) simulations using EFDOCK-TM, a protocol that we developed
in this study and implemented within RosettaMembrane23,34,48

for folding and docking TMH oligomers (Methods) are
performed in parallel with randomly selected subsets of
constraints until all possible combinations of constraints are
enumerated. Representative low-energy models of TMH
homo-oligomers were selected from the best converged
simulations generating the least clusters (Methods).

To assess whether our protocol is effective at enriching
evolutionary constraints in inter-chain contacts, we analysed
the true positive rate of predicted interactions across the binding
interfaces of all characterized TMH homo-oligomer structures as
a function of each selection step described in Fig. 3. As shown in
Supplementary Fig. 2, the rate of true inter-chain contacts
increased from an average of 16 to 74% after filtering by LIPS-
interacting surfaces and DI score. Except for the tetrameric M2
proton channel of influenza B virus (Inf B) and pentameric
phospholamban (PLN), which have too few homologues for
reliable detection of residue co-evolution, at least one true
interacting site was successfully predicted among the top three
strongly co-evolving residue pairs selected for guiding the folding
simulations. The high rate of true positive inter-chain contacts in
the selected constraints suggests that they may be effective at
guiding the de novo structure prediction of TMH oligomers
towards the native state.

Benchmark. EFDOCK-TM was tested on a data set composed of
17 characterized and published TMH homodimer structures and
three representative higher-order homo-oligomeric structures
determined by high-resolution NMR spectroscopy (Methods). All
simulations were performed as in blind predictions: no infor-
mation from native structures was used and the representative
models were selected using the same combination of objective
criteria (that is, by all-atom energy and cluster size, Methods).

Atomic accuracy prediction of right-handed TM homodimers.
The experimentally determined interface structures of all six

receptors forming right-handed TM homodimers (that is,
glycophorin A, Bnip3 and the tyrosine kinase receptors ErbB1,
ErbB2, ErbB4 and EphA1) were predicted with atomic accuracy
using EFDOCK-TM guided by evolutionary constraints. Con-
sistent with our constraint selection strategy, the best-converged
simulations contained a relatively high rate of true inter-chain
contacts (64%) and were selected for model accuracy analysis
(Table 1; Supplementary Fig. 3). For all targets except ErbB1, the
largest cluster of low-energy models in our selected simulations
was a family of accurate ‘near-native’ models, indicating that a
large fraction of the simulations converged towards the native
conformation when guided by evolutionary constraints (Table 1;
Supplementary Fig. 3). The representative selected models
displayed atomic accuracy with an average interface Ca-root
mean squared deviation (r.m.s.d.) of only 0.83±0.38 Å to the
well-defined regions of the NMR structure (Methods; Table 1).
The backbone structures of the selected representative models
in the interacting regions of the homodimers were all super-
imposable to those of the NMR centre model (Fig. 4a–f).
Consistent with atomic accuracy predictions, 84% of the native
contacts stabilizing the homodimer interfaces were predicted
correctly (Table 1). Critical for right-handed homodimer
interactions, inter-monomer weak Ca hydrogen bond networks
were predicted with atomic accuracy and near-native interfacial
side-chain conformations were also consistently observed in these
models (Fig. 5; Supplementary Movies 1–6).

Of particular interest is the ErbB2 receptor sequence, which,
despite bearing multiple sites for putative weak hydrogen bonds,
is not stabilized by such polar networks in the available
experimental structure. Modelling predicted inter-chain contacts
as direct physical interactions (that is, allowed pairwise Ca
distances from 3 to 6Å as in NMR structure determination, ‘hard
potential’; Supplementary Fig. 3a) allowed large families of
accurate models to be generated by EFDOCK-TM (interface
Ca-r.m.s.d. of 0.56 Å, Table 1; Fig. 4c). Unlike alternative
methods PREDDIMER30 or CATM24, EFDOCK-TM predicted
correctly most side-chain conformations and residue contacts
at this rather unusual right-handed interface (Supplementary
Movie 3).

Near-atomic accuracy prediction of left-handed TM dimers.
Our automated pipeline for constraint selection was also effective
at enriching inter-chain contacts at left-handed homodimeric
binding interfaces. Except for ErbB3 whose binding interface
could not be predicted by LIPS, the most converged simulations
were highly enriched in true positive inter-chain contacts
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Figure 3 | Evolutionary-guided de novo structure prediction of TMH homo-oligomer using EFDOCK-TM. Stepwise selection of inter-chain contacts

and structural models. Step 1: EVfold—this method42 is used to predict co-evolving residue pairs likely in physical contacts in the protein structure

(black lines). Step 2: LIPS—this method49 is used to predict the helical surface that has the highest propensity to self-associate. Predicted contacts which

do not belong to this surface are filtered out. Step 3: DI score—predicted contacts with low co-evolutionary DI scores are filtered out (true interacting sites

are depicted in red, and false interacting sites are in black). Step 4: Convergence and energy-guided selection of models—folding and docking EFDOCK-TM

simulations enumerating all possible combinations of constraints defined by subsets of predicted contacts are performed, leading to different levels of

convergence. A total of 10,000 trajectories and final models are generated per simulation. Representative models are selected among the centres of the

five largest families obtained by clustering the 10% lowest-energy models generated by the most-converged simulation.
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(average true positive rate of 83%), thereby generating large
clusters of accurate models (Table 1; Supplementary Figs 2 and 3).
All representative models had an interface r.m.s.d. smaller than
2Å with an average interface r.m.s.d. of only 1.14±0.45Å over
interface regions spanning an average of 19 amino acids (that is,
covering almost the entire TM helix). The backbone structures of
our selected representative models were all superimposable to
their corresponding NMR structures (Table 1; Fig. 4g–l) and most

buried inter-chain packing interactions and 71% of interfacial
residue contacts were predicted correctly (Fig. 6; Supplementary
Movies 7–11). Of particular interest were DAP12 and zeta–zeta
homodimers, which belong to the immune receptor family,
participate in the assembly of large hetero-oligomers and are
stabilized by several polar interactions. The representative models
of zeta–zeta recapitulated all ion pair and hydrogen bond inter-
action networks with atomic accuracy (interface Ca-r.m.s.d. of

Table 1 | Accurate evolutionary-guided de novo prediction of TMH homo-oligomeric structures using EFDOCK-TM.

Uniprot name EFDOCK-TM
interface

Ca-r.m.s.d.*

EFDOCK-TM
native

contact (%)w

PREDDIMER
interface

Ca-r.m.s.d.z

PREDDIMER
native

contact (%)y

CATM interface
Ca-r.m.s.d.||

HFDOCK-TM
interface

Ca-r.m.s.d.z

HFDOCK-TM
native

contact (%)#

ErbB1 1.36 (0.90) 67 1.38 100 0.78 1.03 100
ErbB1 alt** 1.03 (ND) 89 1.22 60 NA 3.70 0
ErbB2 0.56 (2.22) 83 1.93 17 2.43 1.98 33
ErbB3** 4.55 (4.43) 0 4.31 0 NA 4.50 0
ErbB4 0.80 (0.68) 100 1.32 67 0.81 0.69 100
EphA1 0.73 (1.03) 91 1.65 55 1.26 1.02 91
EphA1 alt 1.62 (ND) 100 2.53 25 1.48 1.54 100
EphA2** 1.45 (1.58) 80 2.08 20 NA 4.77 20
GlyA 0.85 (1.00) 75 2.58 25 1.11 0.89 75
Bnip3 0.56 (0.61) 67 1.71 22 0.56 NA NA
Bnip3 alt1 0.52 (ND) 86 1.84 28 NA NA NA
Bnip3 alt2 0.50 (ND) 75 1.59 17 NA NA NA
FGFR3** 1.99 (4.71) 50 4.66 0 NA 2.01 60
DAP12** 1.24 (3.82) 64 3.74 0 NA 4.31 0
Zeta-Zeta** 0.53 (1.65) 67 1.95 0 NA NA NA
PDGFR** 0.74 (1.02) 91 1.89 36 NA 3.52 0
APP** 1.16 (4.11) 70 4.45 0 NA 4.38 30
APP alt 2.33 (ND) 40 4.36 0 NA 3.59 60

Dimers: transmembrane region and juxtamembrane region
ErbB1 0.81 100 NA NA NA NA NA
APP** 0.99 60 NA NA NA NA NA

Higher-order oligomers: transmembrane region
M2 InfluA 0.70 (1.26) 82 NA NA NA 0.83 71
M2 InfluB 2.40 100 NA NA NA 2.40 100
PLN 0.80 87 NA NA NA NA NA

All TM dimers R.m.s.d. Native contact
(%)

All TM dimersww R.m.s.d. Native contact
(%)

EFDOCK-TM 1.22±0.93 73±24 EFDOCK-TM 1.04±0.52 76±17
PREDDIMER 2.51±1.21 26±28 PREDDIMER 2.40±1.16 28±28
HFDOCK-TM 2.71±1.54 51±40 HFDOCK-TM 2.57±1.51 56±38
Left-handed
dimers

R.m.s.d. Native contact
(%)

Left-handed
dimerszz

R.m.s.d. Native contact
(%)

EFDOCK-TM 1.52±1.21 63±27 EFDOCK-TM 1.14±0.45 71±14
PREDDIMER 3.04±1.39 15±23 PREDDIMER 2.86±1.39 17±24
HFDOCK-TM 3.88±0.94 16±23 HFDOCK-TM 3.78±0.98 18±24
Right-handed
dimers

R.m.s.d. Native contact
(%)

Right-handed
dimersyy

R.m.s.d. Native contact
(%)

EFDOCK-TM 0.97±0.58 80±18 EFDOCK-TM 0.83±0.38 84±13
PREDDIMER 2.09±0.90 36±30 PREDDIMER 1.84±0.45 40±29
CATM 1.20±0.62 NA CATM 1.20±0.62 NA
HFDOCK-TM 1.53±1.01 80±26 HFDOCK-TM 1.19±0.48 83±26

NA, not applicable; ND, not determined; PLN, phospholamban; r.m.s.d., root mean squared deviation; TM, transmembrane; TMH, transmembrane protein helical structure.
For the method EFDOCK-TM, ‘interface Ca-r.m.s.d.’ numbers are reported for simulations performed with or without (parentheses) evolutionary constraints. The results are compared with those obtained
by the methods PREDDIMER30, CATM24 and HFDOCK-TM (identical to EFDOCK-TM but with homologue template-derived constraints). Averages are provided as the mean value±s.d. R.m.s.d. values
are in Angstrom.
*The lowest interface r.m.s.d. among the centres of the five largest clusters of EFDOCK-TM models.
wThe percent native residue–residue contact correctly predicted in the selected EFDOCK-TM models.
zThe lowest interface r.m.s.d. among the models predicted by the method PREDDIMER.
yThe percent native residue–residue contact correctly predicted in the selected PREDDIMER models.
||The interface r.m.s.d. of the models predicted and reported by the method CATM.
zThe lowest interface r.m.s.d. among the centres of the five largest clusters of HFDOCK-TM models using structural homolog instead of evolutionary-derived constraints (HFDOCK-TM).
#The percent native residue–residue contact correctly predicted in the selected HFDOCK-TM models.
**Left-handed TMH homodimers; others are right-handed TMH homodimers.
wwThe average interface r.m.s.d. and % native contact of all targets, except ErbB3 for which the native binding interface was not correctly predicted by LIPS.
zzThe average interface r.m.s.d. and % native contact of all left-handed targets, except ErbB3.
yyThe average interface r.m.s.d. and % native contact of all right-handed targets, except APP alt for which the native binding interface was not correctly predicted by LIPS.
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GlyA ErbB1 ErbB2 ErbB4 EphA1

EphA2PDGFRBnip3 FGFR3 DAP12

PLNM2 InfluBM2 InfluAAPPZeta-Zeta

Figure 4 | Consistent prediction of near-native homo-oligomeric TMH structures. Backbone superposition between the centre NMR model (blue)

and the representative EFDOCK-TM model (yellow) of the following receptors: GlyA (a), ErbB1 (b), ErbB2 (c), ErbB4 (d), EphA1 (e), Bnip3 (f), PDGFR (g),

EphA2 (h), FGFR3 (i), DAP12 (j), Zeta-zeta (k), APP (l), M2 influA (m), M2 influB (n) and PLN (o).
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Figure 5 | Atomic accuracy in right-handed homodimer structure prediction. (a) Backbone representation of glycophorin A centre NMR model (blue).

(b) Backbone representation of glycophorin A representative EFDOCK-TM model (yellow). The inter-chain weak hydrogen bond network is highlighted

(black dashed lines). The carbon C-alpha root mean square deviation (that is, Ca-r.m.s.d.) of the model over the binding interface region (residues 94–107)

is reported at the bottom. (c) Weak hydrogen bond distances in Angstrom are reported for both the native and modelled structures.
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only 0.5 Å with up to 100% predicted native contacts for the
lowest-energy model; Supplementary Movie 12). While the
near-native models of DAP12 correctly identified Thr 16 and Asp
20 as hot-spot binding sites at the homodimer interface, they
were stabilized by low-energy but non-native polar interaction
networks (Supplementary Movie 9). Detailed inspection of the
NMR structure revealed that the native conformations of these
residues do not form hydrogen bonds according to Rosetta-
Membrane energy function, which may explain why such a
configuration was not selected in our simulations.

Modelling TM–JM domain improves the TM structure accuracy.
JM regions (adjacent to TM domains) in SPMRs have been
shown to modulate the conformations accessible to the TM
domains and to play important roles in propagating signals19,50.
Therefore, we tested the ability of EFDOCK-TM to improve the
prediction of the TM region by folding and docking
simultaneously TM and JM regions of the characterized Erbb1
and APP TM–JM dimers. For both receptors, simulations were
performed with predicted interacting sites in the TM domain and
without any constraints in the JM region. Including the JM region
significantly enriched the simulations in near-native models for
both receptors (that is, additional or higher-ranked clusters of
near-native models, Table 1; Supplementary Fig. 3). Interestingly,
APP’s JM domain prevents the GSA motif located near the
N-terminal end of the homodimer to interact, which is a
low-energy non-native state generated in our simulations of TM
homodimers (Supplementary Fig. 4).

Higher-order TMH homo-oligomers are predicted accurately.
We then tested the ability of our approach to predict the structure
of higher-order symmetric oligomers, that is, the tetrameric
domains of the M2 influenza A and B viroporins and the pen-
tameric domain of PLN. M2 influenza A and PLN were predicted
with atomic accuracy (interface r.m.s.d. r0.80Å) (Table 1).
Although M2 influenza B and PLN exhibit almost no sequence

variation within their homologues, EFDOCK-TM identified the
native conformation without constraints. Our representative
models of all three targets superimposed well to the experimental
structures (Fig. 4m–o) with more than 80% of native interhelical
packing contacts predicted correctly (Table 1; Supplementary
Movies 13 and 14).

Evolutionary contacts improve TM structure prediction. To
assess whether evolutionary constraints improve the accuracy of
the predictions, identical simulations were performed without
constraints. The prediction accuracy of three left-handed and one
right-handed dimers (FGFR3, DAP12, APP and ErbB2) markedly
increased upon addition of evolutionary constraints (the largest
clusters of left-handed models generated without constraints were
all non-native; Table 1). The number of near-native models
among the five largest clusters also largely increased, especially for
left-handed targets (Supplementary Fig. 5).

Alternative experimental TM structures are well predicted.
Conformational regulation is a hallmark of membrane receptor
function, and several TMH homo-oligomers were characterized
in different conformational/functional states. EphA1 TM homo-
dimer structures were solved at low- and high-pH conditions and
differ significantly (Ca-r.m.s.d. of 2.7 Å)51. The top two lowest-
energy clusters among the five largest recapitulated the low- and
high-pH structures with Ca-r.m.s.d. of 0.7 and 1.6 Å, respectively
(Supplementary Movie 15). Therefore, both conformations of
EphA1 would be accurately predicted and selected in a blind
prediction. The EGFR TM sequence bears an N- and a C-terminal
GAS motif, suggesting two possible binding modes. Indeed, the
isolated EGFR TM homodimer was solved in two very different
conformations, each stabilized by one of the two motifs
(pdb codes: 2M20 and 2M0B; Methods). Experimental and
computational studies on the full-length receptor suggest that
these conformations represent an active and inactive state
occupied by the TM region during receptor signalling8,9,21.

ResiduePDB

551I

547I

544L

Protein r.m.s.d. (Å)

0.74533–5542L6WPDGFRModel structure

Native NMR structure

Figure 6 | Atomic accuracy in left-handed homodimer structure prediction. (a) Superposition of PDGFR centre NMR model (blue) and representative

EFDOCK-TM model (yellow) with buried side chains in sticks. (b) Local packing interactions are highlighted for a few buried residues in spheres along the

binding interface. (c) Surface representation of the binding interface of one monomer highlighting specific binding grove geometries. The Ca-r.m.s.d. of the

model to the native structure over the binding interface region (residues 533–554) is reported at the bottom.
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Both functionally relevant conformations were accurately
predicted by one of the top five clusters of EFDOCK-TM
models, with Ca-r.m.s.d. of 1.4 Å (67% native contacts) and
1.0 Å (89% native contacts) (Supplementary Movies 1,
2 and 16).

The tetramer M2 proton channel of influenza A virus (M2A)
was crystallized in both open and closed states52,53. Two of the
top five clusters including the largest one accurately captured the
closed state of M2A, and the open state was predicted by the
second and eighth largest clusters with a Ca-r.m.s.d. of 2.90Å
over the TM region, consistent with a lesser-packed and higher-
energy open conformation (Supplementary Fig. 6). APP was
experimentally observed in two very different conformations,
right-handed and left-handed structures which, unlike
PREDDIMER30, were both predicted correctly by EFDOCK-TM
(Table 1). Unlike alternative techniques, our method could also
predict multiple experimentally observed conformations of
BNIP3 with atomic accuracy (Table 1).

EFDOCK-TM outperforms alternative techniques. The
accuracy of our predictions considerably exceeded that of the
method PREDDIMER, which models TM dimer interfaces using
ideal helices30, especially for left-handed dimers (Ca-r.m.s.d. of
2.86Å and 17% correctly predicted contacts compared with
1.14Å and 71% for EFDOCK-TM; Table 1). CATM is another
technique developed to predict the structure of the GAS
motif containing right-handed TM homodimers24. Unlike
EFDOCK-TM with evolutionary constraints, CATM was not
able to predict and select near-native models of the difficult target
ErbB2 (Table 1). With an average Ca-r.m.s.d. of only 0.83Å for
right-handed TM dimers, EFDOCK-TM outperformed CATM
(Ca-r.m.s.d. of 1.20 Å).

EFDOCK-TM outperforms homology-modelling approaches.
In principle, accurate structural models can be generated
from close homologue structures using comparative modelling
techniques31,34. Here we assessed whether available structures are
sufficient to derive accurate sequence alignments, templates
and constraints to complement the evolutionary-derived
EFDOCK-TM approach. Consistent with the very low number
of available TM oligomer structures, close structural homologues
sharing at least 30% sequence identity and aligning well with
target sequences were found for only four receptors (Erbb4,
EphA1, influA and influB) in our benchmark (Supplementary
Table 2). Consequently, structural accuracy of the threaded
templates was low with an average Ca-r.m.s.d. of only 3.4 Å.
When relaxed using RosettaMembrane homology-modelling
techniques34, only four templates could be refined to high
accuracy (Supplementary Table 2). While interhelical interactions
derived from these templates were of high accuracy for right-
handed TM dimers, those derived for left-handed-associated TMs
contained only 14% true positive contacts instead of 93% for
EFDOCK-TM (Supplementary Fig. 7). When these template-
derived contacts were used as constraints in our folding and
docking simulations (HFDOCK-TM), right-handed and left-
handed models displayed interface r.m.s.d. of 1.2 and 3.8 Å
instead of 0.8 and 1.2 Å for EFDOCK-TM models, respectively
(Table 1). These results indicate that while associated TM
structures may be accurately modelled using constraints from
close structural homologues, the scarcity of TMH oligomeric
structures currently prevents the wide application of our
HFDOCK-TM approach.

EFDOCK-TM models are suitable for protein engineering.
To assess whether EFDOCK-TM models provide structural

templates accurate enough for rational protein design applica-
tions, we performed native sequence recovery calculations. If
native interactions are optimized for stability of the binding
interface, then the native sequence should be recapitulated in
design calculations. Since the selection of residues in design cal-
culations is very sensitive to the structural environment, native
sequence recovery can be used as a strong indication of the
accuracy of structural models34. To identify which sites are likely
optimized for stability, we redesigned the experimental NMR
structures and then performed the same calculations using
EFDOCK-TM or PREDDIMER models as starting structures.
Consistent with the higher accuracy of our EFDOCK-TM models,
86% of the native residues recapitulated using the NMR
structures were also recapitulated using the EFDOCK-TM
structures compared with only 47% using PREDDIMER models
(Supplementary Fig. 8). These results indicate that the EFDOCK-
TM models should be accurate enough to guide rational protein
design applications, for example, to redesign the binding affinity/
specificity of TMH oligomers or to design inhibitors regulating
receptor associations and functions.

Blind predictions of disease-associated receptor variants. The
FGFRs and the stem cell growth factor receptor c-Kit are tyrosine
kinase receptors binding to the largest family of growth factor
ligands, for which a large number of point mutations have been
associated with various diseases1. A few of these mutations are
located in the TM and JM regions of these receptors1 and are
discussed below.

Mutations Y372C on the TM–lipid interface and a TM
mutation C379R in FGFR1 were found to be strongly associated
with osteoglophonic dysplasia, a rare genetic disease characterized
by abnormal bone growth. In all five representative FGFR1
models, residues 372 and 379 were predicted to reside on the
interacting interface (Supplementary Fig. 9).

Two mutations S372C and Y375C were identified in FGFR2
in patients with Beare-Stevenson syndrome, an autosomal-
dominant condition characterized by the furrow skin disorder.
Y375C is located in the TM region, while S372C belongs to the
extracellular JM/TM linker. The largest cluster of FGFR2 models
formed a nearly parallel left-handed homodimer with closely
packed S372 and Y375 at the interface (Supplementary Fig. 9).
The mutation G384R reported in patients with craniosynostosis is
located near the middle of the TM region but predicted to be
lipid-exposed in our top-ranked models.

A single TM mutation G388R in FGFR4 is strongly associated
with tumour cell motility. This allele is highly abundant in
patients with advanced tumour metastasis. In the two largest
clusters of models, G388 formed either weak hydrogen bonds or
Van der Waals contacts at the dimer interface (Supplementary
Fig. 9).

The F522C mutation in the TM domain of c-Kit leads to
ligand-independent autophosphorylation and is associated with
Mastocytosis. Residue F522 is located at the TM/JM junction of
the homodimer and adopt a wide diversity of conformations in
our simulations, that is, buried at the binding interface or exposed
to the lipid hydrophobic/headgroup interface. Another mutation
A533D has been related to diffuse cutaneous mastocytosis. In four
among the five top-ranked models, A533 forms contacts across
the binding interface at the middle of the TM region of the
predicted homodimers (Supplementary Fig. 9).

Among the eight mutated sites analysed, six of them were
located along the receptor predicted binding interface in the top-
ranked models, suggesting a critical role of these positions in
controlling protein inter-monomer interaction, associations and
function. The two mutation sites predicted to be exposed to the
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lipids in a fraction of our models were G384R in FGFR2 and
F522C in c-Kit. While the G384R mutation may not directly
interfere with the interhelical interactions, the presence of an
arginine residue in the middle of a TM domain may perturb the
membrane insertion of the receptor (due to hydrophobic
mismatch that cannot be compensated by lipid deformation
when arginine is located at the centre of the lipid membrane) and
result in non-functional receptor variants. The F522C mutation
may perturb the interhelical interaction or the optimal orienta-
tion of the helices in the membrane and affect the regulation of
the receptor.

Discussion
SPMR functioning as oligomers represent a large fraction of the
human membrane proteome and are involved in crucial functions
which when deregulated can lead to severe diseases1,2,10.
Experimental evidence indicates that TM and JM domains of
many SPMRs participate to signal propagation across the
membrane by changing orientation or oligomerization states
and by coupling extracellular to cytoplasmic domains1,8,9,50. To
properly regulate signal transduction, TMHs must be able to
switch between states without large energy penalties1,7.
Consequently, TM associations are usually weaker, stabilized
by fewer interhelical contacts (Supplementary Fig. 10),
conformationally more flexible in single-pass than in multi-pass
membrane proteins and very challenging to characterize
structurally. In addition, little experimental data on TM–TM or
JM–JM interactions is currently available, making the structure
prediction of SPMR oligomers also a real challenge. To address
this problem, we have developed EFDOCK-TM, a method to
predict TMH homo-oligomeric structures from sequence guided
by co-evolutionary constraints. By combining TMH-binding
surface and residue contact predictions from sequence, we show
that sequence co-evolutionary patterns that reflect both intra- and
inter-monomer constraints in homo-oligomers can be
considerably enriched in inter-chain contacts (Fig. 3; Supple-
mentary Fig. 2). When combined with an efficient technique that
we implemented to fold and dock TMH oligomers, a small
number (2.6 on average) of selected predicted contacts are
sufficient to accurately predict the native structure for 21 of 22
TMH homo-oligomers (average Ca-r.m.s.d. of 1.0 Å; Table 1;
Figs 4–6; Supplementary Movies 1–16). Our benchmark includes
right- and left-handed homodimers and representative higher-
order oligomers spanning a wide range of conformations and
binding interactions. By contrast, accurate predictions of TMH
homo-oligomers so far required numerous experimental
constraints19,22 or were restricted to a limited subclass of right-
handed homodimers (RHs) stabilized by GXXXG motifs24. Left-
handed TM dimers (LHs) are particularly challenging to model
(Table 1) and the near-atomic accuracy predictions achieved by
EFDOCK-TM are unprecedented.

While EFDOCK-TM without constraints was able to predict
near-native structures of most RHs, the addition of constraints
was critical to consistently predict LH structures with high
accuracy (Table 1; Supplementary Fig. 3). Most RH structures in
our benchmark are mainly stabilized by backbone–backbone
contacts through weak hydrogen bonds, while LH-binding
interfaces often involve greater number but weaker VDW/
aromatics contacts between large side chains. Since the latter
samples many more conformational degrees of freedom than
backbone atoms, side-chain/side-chain contacts may be more
difficult to simultaneously optimize. Also, the strong orientational
dependencies of hydrogen bond energies make these interactions
more specific and may greatly facilitate the search for low-energy
native conformations of RH compared with LH structures. Future

work will be needed to assess how such differences in chemical
interactions between LH and RH structures impact the
conformational energy landscape relevant to their function.

Discriminating between intra- and inter-chain contacts from
co-evolutionary sequence patterns of self-associating proteins is
challenging because it requires a systematic and accurate
structural interpretation of constraint violations, which can
become a daunting task when simulations are performed with a
large number of contacts. Interestingly, as shown in
Supplementary Fig. 2, it is the synergistic combination and not
each individual constraint selection step alone (EVfold, LIPS and
high DI score at predicted binding surfaces) that is effective at
enriching for inter-chain contacts. With such a high contact
precision, only a small number of constraints (average of 2.6) are
needed to select sufficient true positive inter-chain contacts
(average of 1.9 per target). Because only very few selected
constraints are necessary, accurate prediction may be achievable
for a large number of TMH homo-oligomers even when, as
observed for many eukaryotic proteins, only relatively few
homologue sequences are available (as low as 3� L with L:
modelled protein length). Close structural homologues could be
identified for a small number of targets, and the constraints and
resulting models derived from these homologue templates
(HFDOCK-TM) were of similar accuracy than those generated
by EFDOCK-TM (Table 1). However, EFDOCK-TM largely
outperformed HFDOCK-TM for most of the targets for which
close structural homologues were not available (Table 1). There-
fore, while HFDOCK-TM may be a useful approach when close
structural homologues can be identified, EFDOCK-TM should be
more widely applicable for characterizing the self-associations of
eukaryotic membrane receptors.

While full-length receptor high-resolution structures have not
been characterized to date, current biochemical evidences suggest
that TM–TM interactions determined from isolated TM domains
and those in full-length receptors are similar8,9,19–21. For
example, seminal studies on the EGFR indicate that the TM
domain during receptor signalling adopts two conformations
(i.e., inactive and active) that are also observed by NMR
spectroscopy on the isolated TM region8,9 (Methods).
Therefore, these data support a model where TM sequences
encode an ensemble of functionally relevant conformations
that are ‘selected’ by extramembrane domains and ligands
during signalling. Because inter-chain contacts at the
TMH-binding interface may have evolved to stabilize multiple
conformations8,9,16,18, performing simulations using a soft
constraint potential allows EFDOCK-TM to populate multiple
minima compatible with similar binding surfaces. Alternative
conformations may correspond to functionally relevant
states of SPMRs as reflected by our ability to predict multiple
TM conformations of the EphA1, EGFR, Bnip3 and APP
receptors.

As demonstrated in previous studies34,54 and in our native
sequence recovery calculations (Supplementary Fig. 8), near-
atomic structure accuracy, which allows a majority of binding
contacts to be accurately predicted (Table 1), is sufficient to
design accurate physical interactions. Therefore, engineering
TMH inhibitors binding with high affinity and selectivity to
receptor-binding surfaces modelled using our method should be
feasible. This would extend computed helical anti-membrane
protein (CHAMP)-based approaches1,55 to target a large diversity
of TMHs for which no structural homologues or specific
sequence/structure motifs can be identified.

In summary, we have developed a general method that can
accurately predict from sequence the structure of a large diversity
of TMH homo-oligomers, which to our knowledge is unprece-
dented. Our approach may prove useful for uncovering the
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determinants of molecular recognition and regulatory
mechanisms of SPMR signalling.

Methods
Selection of targets for the benchmark data set. Single-TM helix homodimers
and representative homo-oligomers with solved experimental structure were
selected: right-handed (PDB code: 2M20 (ref. 8), 2JWA16, 2LCX56, 2K1K51 and
2K1L51, 1AFO15, 2J5D57, 2KA1 (ref. 26), 2KA2 (ref. 26) and 2LZ3 (ref. 58)),
left-handed TM homodimers (PDB code: 2M0B, 2L9U59, 2K9Y28, 2LZL27, 2L34
(ref. 60), 2HAC3, 2L6W61 and 2LOH62), tetramers (PDB code: 3LBW M2A closed
state52, 3BKD M2A open state53 and 2KIX63) and pentamer (PDB code: 2KYV64).
Modelled regions included both residues in the TM and residues in the water–lipid
interface regions. The JM region of three targets (amyloid precursor protein, ErbB1
and PLN) was also included in the modelling. The JM regions of ErbB1, APP and
PLN were defined between residues 677–690, 686–698 and 1–22, respectively.

Blind prediction of disease-related receptor variants. Four receptors from the
tyrosine kinase family (FGFR1, FGFR2, FGFR4 and c-Kit) with no experimental
structures were selected that have multiple reported disease-causing mutational
variants in the human population1,65.

Interacting site prediction from protein co-evolution. Co-evolution-based
contacts were predicted using EVfold42, which is based on an inverse covariance
matrix-based statistical model. Multiple sequence alignment (MSA) for each
candidate protein was performed using HHblits66 searching against the entire
Uniprot database with a range of different E-values. Full-length sequences were
used directly as query for small targets (full-length r350 amino-acid residues) but
were truncated for large targets to allow for optimal alignment of the TM regions.
Truncated sequences consisted in the TM region flanked by one conserved
extramembrane globular domain on each side of the TM region. Sequences with
lower than 50% TM region coverage were filtered out. Then, following the
published protocol of the method EVfold42, the E-value that generated the largest
number of sequence homologues with well-aligned TM region was selected for each
target. This procedure ensured that the selected MSAs correspond to the optimal
tradeoff between the number of sequences in the alignment and the coverage of the
region of interest. To infer inter-residue contacts from sequence covariation, the
co-evolution-based direct interaction score DIij between each pair of residues i and
j was calculated using EVfold with default settings (Supplementary Methods). All
residue pairs were ranked by their co-evolutionary coupling strength and filtered
using the following criteria: (1) both residues belong to the TM region; (2) due to
the intrinsic symmetry of homo-oligomers, only ‘short-range’ residue pairs
separated in sequence by eight positions or less were considered; (3) both residues
belong to the helical surface predicted by LIPS49 to be the least likely
lipid-exposed, and the most likely the interacting surface; (4) only residue pairs
with strong co-evolutionary signals (that is, DIijZ0.1) were selected. For targets
with no DIijZ0.1, the top three constraints ranked by DI score were used in the
simulation (Supplementary Fig. 3).

Interacting helical surface and site prediction by LIPS. For each target, MSAs
were selected using E-values as low as those chosen for EVfold that guaranteed a
query sequence coverage of at least 0.5� L (L: query protein length). From the
selected MSAs, sequences with no gaps within the TM region were extracted and
used as input to the method LIPS49, which splits a helix into seven overlapping
surfaces and predicts interacting TMH surfaces based on residue lipophilicity and
sequence entropy. For each target, the surface with the lowest LIPS score was
selected as the predicted binding interface. If the two top-ranked LIPS surfaces did
not differ by more than 0.5 LIPS score, the surface that had the lowest lipophilicity
score (which is the least sensitive to the alignment) was selected. The selected
helical surface was applied to filter co-evolutionary constraints identified using
EVfold. A set of ‘LIPS’-predicted interacting sites was also derived by selecting the
residues with the lowest LIPS score on the predicted interacting surface. To
compare and select simulations based on convergence, the number of residues
selected by the LIPS score was equal to the number of EVfold constraints for the
same target. Since LIPS alone does not provide information on interactions
between different residues, loose distance constraints were simply defined between
the same residues on each monomer (see below).

Co-evolutionary signal analysis at binding interfaces. Co-evolutionary DI
scores were compared for residue pairs making or not inter-chain contacts along
the true or the LIPS-predicted binding interface of all TMH homodimers in the
benchmark. Residue pairs were defined as true interacting if the distance between
at least one of their respective heavy atoms was smaller or equal to 5Å in the NMR
centre model. To mimic the selection of the helix surface by LIPS, the true binding
interface was defined by extrapolating to the entire helix the largest solid angle
between the interacting residues and the helix centre axis. For tetramers, the above-
mentioned procedure would select the entire helix as the interacting surface so only
the subset of residues lying in the centre region of the tetramer, that is, the
hexahedron enclosed by the four helical axes, were selected.

Residue pairs present at the binding interface were separated into two
categories: inter-chain-interacting sites, and inter-chain non-interacting sites. Two
different sequence separation thresholds were applied for residue pairs i and j: (1).
|i—j|r8, which corresponds to the short-range window used to select predicted
interacting sites; (2) |i—j|r4, which allows to compare residue pairs forming inter-
chain contacts to residue pairs always involved in intra-chain contacts. A paired
two-sample T-test was used to evaluate the significance of differences in average DI
score and high DI score percentage between the two sets of residue pairs in all
targets. The high DI score threshold was defined for each target as the lowest DI
score among the top three most strongly co-evolving residue pairs for that target.
ErbB3 was not included for the predicted LIPS-binding interface because LIPS
predicted a non-native binding surface, which did not bear any true interacting
residues. In Fig. 2 panels a and c, the average DI score of both sets of residue pairs
for InfluA were substracted by 0.1 to facilitate illustration.

The same analysis was extended to a representative set of 103 water-soluble
coiled-coils. The 103 coiled-coil structures were selected from the CCþ database
(http://coiledcoils.chm.bris.ac.uk/ccplus/search/) by searching coiled-coil
homodimers with more than 14 residues, and less than 50% redundancy. DI scores
were calculated using EVfold as described above. Coiled-coil binding interface was
predicted using MULTICOIL67. To analyse the statistical significance of DI score
differences between two groups of contacts, a paired two-sample T-test was
performed. This test is justified because the sample sizes (that is, number of
proteins) of the two groups being compared are identical and there is a one-to-one
correspondence between the values in the two samples.

Evolutionary-guided structure prediction (EFDOCK-TM). To predict de novo
the structure of TMH homo-oligomers, we developed EFDOCK-TM, starting from
a protocol to fold and dock symmetric water-soluble oligomers68. Simulations
typically start from a random symmetric coarse-grained conformation generated
by fragment insertion, where torsion angles of randomly selected consecutive
three- or nine-residue fragments are replaced by those of protein homologues with
known structures. For every 1 in 10 fragment insertions, rigid body backbone
movements and docking arrangement perturbations are applied simultaneously to
one monomer and cloned to the other monomer. Then, all-atom refinement of the
coarse-grained models is performed by sampling side-chain conformational
degrees of freedom and applying restrained backbone perturbations. The protocol
was modified as follows to increase the efficiency of conformational sampling and
the accuracy of the membrane protein structural models: (1) TM regions of
each protein predicted using OCTOPUS69 (http://topcons.cbr.su.se/index.php?
about=octopus) are inserted into a membrane plane object approximating the lipid
membrane prior to fragment insertion. (2) Models are scored using a coarse-
grained or all-atom energy function developed for membrane proteins23. Unless
stated otherwise, predicted interacting sites were implemented as ‘soft’ distance
constraints between c-alpha atoms characterized by an equilibrium distance (deq)
and s.d. of 6.5 (2.5 Å) for co-evolutionary constraints and 7.0 (4.0 Å) for LIPS
constraints. Because they are not based on direct contact information, LIPS
constraints are less precise in nature so looser distance constraints were applied.
Any distance outside the range defined by deq±s.d. is penalized using an harmonic
potential. While guiding the simulation towards the native state, ‘soft’ constraints
still allow the TMH oligomeric structure to be refined and selected by the physical
model underlying RosettaMembrane’s all-atom energy function.

For all targets, at least two types of simulations were performed: using all
co-evolution constraints, and LIPS constraints. If three or more co-evolutionary
constraints were selected for a given target, simulations using all possible randomly
selected subsets of constraints (at least two) were also performed. The most
converged simulation (that is, generating the least clusters of low-energy models)
was selected for model analysis. For each simulation, 10,000 trajectories and
models (which guaranteed convergence of the simulations) were generated, and the
lowest-energy 10% models were clustered along the TM region using the Rosetta
clustering method with a cluster radius of 1.5 Å. As in blind predictions, the
representative model selected for each target was the most accurate among the
centres of the five most populated clusters. Following another blind prediction
selection strategy, the clusters were also ranked by the all-atom energy of the cluster
centre. The model for the right-handed alternative conformation of the target APP
was selected as one of the top five lowest-energy cluster centres.

Structure homology-guided structure prediction (HFDOCK-TM). To predict
the structure of TMH homo-oligomers using constraints derived from homologues,
we first performed sequence/structure alignments using HHpred70 to identify the
TMH homo-oligomer homologues with known structures, which align best with a
target sequence, as described previously34. Different target sequence lengths were
tried, and query sequences corresponding to the TM region were found to generate
the best alignments and were used for all targets. The structural homologue whose
sequence aligned best (that is, highest HHpred score and no gap in the aligned TM)
with that of each target was selected as the structural template. To assess the
accuracy of the alignment and the resulting homology models, the target sequence
was threaded onto the homologue structures and relaxed to identify low-energy
conformations using the homology-based modelling technique of
RosettaMembrane34. To extract constraints from these homologues, the closest
contact at each helical turn of the binding interface in the homologue structure
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were selected and implemented as distance constraints in the folding and docking
simulations that we defined as HFDOCK-TM. The total number of template-
derived constraints in the HFDOCK-TM simulations lay between 4 and 7 for each
target. The treatment of constraints and the analysis of the simulations using
HFDOCK-TM were identical than with EFDOCK-TM. The accuracy (that is,
true positive rate) of the template-derived constraints was very similar when
considering a larger set of constraints (that is, top two closest contacts per helical
turn at the homologue-binding interface).

Assessment of homo-oligomer structure prediction accuracy. The r.m.s.d. of
the binding interface region was calculated to assess the accuracy of the predictions.
The interface region was defined by the residues for which experimental
inter-monomeric NMR constraints were obtained (from 9 to 24 residues were
selected for each target). The r.m.s.d. was calculated between the representative
EFDOCK-TM model and the centre NMR model. All calculations were performed
using an open-source python script MATCH (http://boscoh.com/protein/
matchpy.html).

Native contact calculation. Native residue–residue contacts were defined if the
distance between any of the heavy atoms from two residues on each protein
monomer was smaller than 4Å in the experimental structures. Residue–residue
contacts in predicted models were calculated using the same criteria.

Comparison with alternative techniques CATM and PREDDIMER. The
accuracy of published CATM models24 is reported in Table 1. PREDDIMER30

models for all TM dimers in our data set were generated using the webserver:
http://model.nmr.ru/preddimer/. The most accurate among all models output by
the server is reported in Table 1. Accuracy of PREDDIMER and EFDOCK-TM
models was analysed using identical criteria.

Interhelical contact density comparison in TMH proteins. The average number
of interhelical contacts per helix in self-associated single-pass TMH protein com-
plexes was calculated using all 20 native structures constituting the benchmark.
Residue–residue contact was defined if the distance between two heavy atoms is
within a certain threshold. Various distance thresholds were applied (4, 4.5
and 5Å) for comparison. The same calculation was performed on a representative
set of 75 non-redundant multi-pass TM helical domains (sequences identity less
than 30%) with resolution better than 3.5 Å from the Protein Data Bank.

Native sequence recovery. For each target, the NMR structures, EFDOCK-TM
and PREDDIMER models were selected and all residues making contacts (between
two and three residues per helical turn) at the binding interface were randomized
to all 20 amino acids and redesigned to identify the combination that minimizes
the energy of the homo-oligomer structures using the design mode of Rosetta-
Membrane as previously described23. The percentage of native residues recovered
by design at the binding interface was calculated for each starting structure, and the
intersection of these native recovered sites between NMR and EFDOCK-TM or
PREDDIMER models was reported.

Method release. Softwares to run and analyse the EFDOCK-TM simulations
will be released at the time of publication, and detailed information to run the
simulations and reproduce the results is provided in Supplementary Methods.
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