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Abstract

Atomistic/continuum (A/C) coupling schemes have been developed during the past

twenty years to overcome the vast computational cost of fully atomistic models, but have

not yet reached full maturity to address many problems of practical interest. This work

is therefore devoted to the development and analysis of flexible Green function methods

for A/C coupling. Thereby, the Green function of the harmonic crystal is computed a

priori and subsequently employed during the simulation of a fully nonlinear atomistic

problem to update its boundary conditions on-the-fly, based on the motion of the atoms

and without the need of an explicit numerical discretization of the bulk material.

The first part is devoted to the construction of a discrete boundary element method

(DBEM) which bears several advantages over its continuous analog, i.a. nonsingular

Green kernels and direct application to nonlocal elasticity. As is well-known from integral

problems, the DBEM leads to dense system matrices which become quickly unfeasible

due to their quadratic complexity. To overcome this computational burden, an implicit

approximate representation using hierarchical matrices is proposed which have proven

their efficiency in the context of boundary integral equations while preserving overall

accuracy. In order to solve the coupled atomistic/DBEM problem, several staggered and

monolithic solution procedures are assessed. An improvement of the overall accuracy

by several orders of magnitude is found in comparison with naive clamped boundary

conditions.

To further account for plasticity in the continuum domain the coupled atomistic/discrete

dislocations (CADD) method is examined, including the treatment of hybrid dislocation

lines that span between the two domains. In particular, a detailed derivation of a quasi-

static problem formulation is covered and a general algorithm to simulate the motion of

the hybrid dislocations along A/C interfaces is presented. In addition, to avoid solving

the complementary elasticity problem, a simplified solution procedure, which updates

the boundary conditions based on the Green function of the entire dislocation network

for obtaining accurate stress and displacement fields, is introduced and validated. The

test problem consists of the bowout of a single dislocation in a semi-periodic box under an

applied shear stress, and excellent results are obtained in comparison to fully-atomistic

solutions of the same problem.
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Résumé

Plusieurs méthodes de couplage atomique/continu (A/C) ont été développées au cours

des vingt dernières années afin de surmonter l’énorme coût de calcul des modèles entière-

ment atomiques, mais elles sont toujours trop limitées pour permettre de résoudre de

nombreux problèmes d’intérêt pratique. Cette thèse se concentre donc sur le développe-

ment et l’analyse de méthodes flexibles de couplage A/C, basées sur des fonctions de

Green. Ce faisant, la fonction de Green d’un cristal harmonique est calculée et utilisée

pour la mise à jour des conditions aux limites d’un problème atomique non linéaire.

Ce couplage ne discrétise donc pas le continuum qui entoure le domaine atomique et

s’appuie uniquement sur le déplacement des atomes.

La première partie est consacrée à la construction d’une méthode d’éléments de frontière

discrète (DBEM) qui présente plusieurs avantages par rapport à son analogue continu:

les noyaux de Green discrets sont non singuliers et ils peuvent prendre en compte les

problèmes d’élasticité non-locale. Comme cela est bien connu des équation intégrales,

la DBEM contient des matrices denses qui deviennent rapidement trop grandes pour

pouvoir être manipulées (complexités quadratiques de leurs tailles). Pour surmonter ce

coût de calcul, une représentation approximative basée sur des matrices hiérarchiques

est proposée, car, pour des équations intégrales, l’efficacité de ces dernières à été dé-

montrée tout en préservant la précision globale. Afin de résoudre un problème couplé

atomistique/DBEM, plusieurs procédures de résolutions alternées et monolithiques sont

proposées et évaluées. Une amélioration de la précision globale (de plusieurs ordres

de grandeurs) est obtenue par rapport aux résolutions qui utilisent des conditions aux

limites naïves.

Pour tenir compte de la plasticité dans un milieu continu, la méthode de couplage

entre dislocations discrètes et atomiques (CADD) est examinée, y compris concernant

le traitement des lignes de dislocations hybrides qui s’étendent entre les deux milieux.

En particulier, la dérivation détaillée d’une formulation du problème quasi-statique

est présentée ainsi qu’un algorithme général simulant le mouvement des dislocations

hybrides le long des interfaces A/C. De plus, pour éviter de résoudre le problème

d’élasticité complémentaire, une procédure simplifiée est introduite et validée. Cette

dernière met à jour les conditions aux limites du réseau de dislocations complets grâce à

ix



Résumé

une fonction Green, permettant d’obtenir des champs de contrainte et de déplacement

précis. Le problème consistant en une unique boucle de dislocation dans un milieu

semi-périodique évoluant du fait de l’application d’une contrainte de cisaillement est

considéré. D’excellents résultats sont mis en évidence par comparaison à des solutions

entièrement atomiques du même problème.

Mots clés: Modélisation multi-échelle; Réduction de modèle; Couplage atomique/continu;

Conditions aux limites flexibles; Fonction de Green d’un réseau; Méthode d’éléments de

frontière discrète; Matrices hiérarchiques; Plasticité; Dislocations
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Introduction

Motivation

The mechanical behavior of metals underpins the structural performance of components

and systems across the entire spectrum of modern technologies. With new demands

on material performance per unit cost or weight increase, there is a decisive need to

understand the origins of mechanical behavior as well as a need to design new materials

with improved properties (e.g. yield strength, ductility, fatigue or corrosion resistance).

This in turn requires a thorough understanding of the crystalline picture of the metal

which is usually perturbed by “defects”, i.e. vacancies, solutes, dislocations or grain

boundaries, which break the symmetry of the lattice structure. Although the word

defect suggests some negative influence, their presence is highly useful for enabling

plastic flow in manufacturing which can prevent failure of the material due to brittle

fracture. Understanding their fundamental mechanisms is thus inevitable to tune the

material properties, i.e. by controlling the behavior of the defects through solid solution

strengthening or precipitation hardening.

“Crystals are like people, it is the defects in them which tend to make them interesting!”

— Sir Frederick Charles Frank (1911-1998)

Predictive mathematical tools for modeling plasticity at different length scales began

to develop in the beginning of the last century. The current theoretical frameworks can

be hierarchically grouped into nano-, meso-, micro- and macroscale models, describing

phenomena across scales from individual dislocation motion in nanometer specimens to

accumulated plastic flow in large structures (c.f. Figure 1). It is now widely recognized

that “plasticity” depends on the size of the region being deformed, generally obeying

the adage “smaller is stronger”. Such size effects are due to the fundamental structuring

of the dislocation defects over mesoscopic scales on the order of microns.

Classical atomistic modeling has become a highly valuable tool for studying material

properties on the nanoscale (Frenkel and Smit, 1996). With the development of modern

high-performance computer architectures, these methods have seen great attention over

the past 20 twenty years in computational physics and related fields. The fundamental
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Figure 1: Schematic illustration of the hierarchical multiscale approach to plasticity; the
second image from left is reprinted by courtesy of Dr. Stefan Sandfeld; the rightmost
two images are reprinted from (Fritzen and Hodapp, 2016) by courtesy of John Wiley
and Sons

mechanisms for the formation, evolution and annihilation of dislocations are intrinsically

atomistic phenomena which can therefore be considered as an “ab initio” method for

plasticity. However, treating atoms individually comes along with high computational

cost with increasing simulation sizes (which are needed to describe the bulk behavior),

especially in three dimensions, that are beyond the scope of state-of-the-art supercom-

puters. Capturing plasticity at several scales therefore requires the development and use

of multiscale models.

The discrete dislocation dynamics (DDD) method has been developed to study metal

plasticity at the mesoscale by following the collective motion of complex dislocation

arrays. The DDD method must be informed by rules/laws regarding dislocation mo-

bility, dislocation reactions, and interactions of dislocations with metallurgical defects.

Atomistic simulations can be used to provide the necessary input in many simple cases.

This so-called “hierarchical method” relies, however, on the strong assumption that

there exists a clear separation of scales of phenomena. However, dislocation nucleation

and interactions with defects (crack tips, voids, solutes, grain boundaries) involves an

inherently atomistic response that can be difficult to characterize at the level of dis-

crete dislocation line defects. The issue of scale separation requires the development

of so-called “concurrent” methods that seamlessly integrate material descriptions at

several scales within a single computational framework. This can be accomplished by a

systematic coarse-graining of the fully atomistic description to reduce the order of the

problem while retaining fully atomistic refinement only where necessary, e.g. near a

crack tip or an indenter.

2



Introduction

Existing approaches

In order to reduce the prohibitive computational cost of atomistic models order reduction

methods have been developed over the past decades. The two most common approaches

are:

• Reducing the solution space by choosing a subset of representative atoms. Atoms

not considered in this subset are only implicitly defined via interpolation between

neighboring representative atoms.

• Reducing the complexity of the fully nonlinear/nonlocal atomistic model by a

linearization of the atomic interactions.

Both approaches are usually combined in regions where the deformation is homoge-

neous such that the atomistic model behaves like a smooth continuum. The idea of an

atomistic/continuum (A/C) coupling of mechanical fields wherein all inelastic phenom-

ena are contained only in a region with full atomistic resolution goes back to the work of

Sinclair (1971, 1975) who studied the behavior of isolated crystalline defects. In order

to take complex boundary conditions into account Kohlhoff and Schmauder (1989) and

Kohlhoff et al. (1991) coupled a fully atomistic region to a discretized continuum problem

which was solved via the finite element method (FEM). The first fully variational A/C

coupling scheme was introduced by Tadmor et al. (1996) who coined the prominent term

quasicontinuum (QC) method. The original QC method was succeeded by a plethora

of approaches, i.a. by Knap and Ortiz (2001); Xiao and Belytschko (2004); Shimokawa

et al. (2004); Kochmann and Venturini (2014) and Amelang et al. (2015), and continue

to evolve today. These methods mainly differ in their coarse-graining techniques and

numerical treatment.

For isolated defects embedded in an effectively infinite domain the method by Sinclair and

co-workers remains to be among the most popular approaches. Therein, the continuum

domain is evolved by means of predefined Green functions akin to the exterior boundary

element method (BEM, Brebbia, 1978) which was developed around the same period

of time. Contrary to the above-named QC methods it does not require an explicit

discretization of the continuum domain and does therefore not introduce any error due

to mesh coarsening. To date, the method has been successfully applied to dislocation

(Sinclair et al., 1978; Rao et al., 1998) or crack problems (Sinclair, 1975).

Extending the methods to handle dislocation plasticity in the continuum domain, and

with nearly seamless passing of dislocations back and forth between atomistic and

continuum domains, was achieved in the two-dimensional plane strain limit by the

coupled atomistic and discrete dislocations (CADD) method (Shilkrot et al., 2002a, 2004; Miller

et al., 2004). In two dimensions, where the dislocation line direction is perpendicular

to the plane of analysis, the individual dislocations are wholly contained within the
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atomistic domain or the DDD domain. While three dimensional methods can also

handle dislocations solely in both domains, there has been no practical method for

dealing with the full problem wherein individual dislocation lines exist in both domains

simultaneously, so-called hybrid dislocations. Since many dislocation phenomena occur

in three dimensions, the development of a full three dimensional CADD method provides

powerful new capability for realistic multiscale simulation of dislocation plasticity.

Syllabus

In this work, the development of a CADD method in three dimensions (henceforth

CADD-3d) is addressed. This method was first mentioned by Junge (2014) and later

conceptually defined in a series of papers by Anciaux et al. (2018); Hodapp et al. (2018a);

Cho et al. (2018). The transition region of a hybrid dislocation between atomistic and

continuum-line representations is accomplished through a template imposed at the

A/C interface that enriches the continuum-line description with an atomistic descrip-

tion of the dislocation core structure. This template thus approximates the atomistic

environment that the atomistic system would have if embedded in a fully atomistic

domain, and thus minimizes coupling errors at the crucial core region of the dislocation

as the line passes from one description to the other. This enables the atomic region to

experience accurate forces from the dislocation(s) spanning both domains. This key

feature of CADD-3d is discussed within the quasi-static formulation of Hodapp et al.

(2018a) which is rigorously derived and critically assessed. To solve the coupled problem

numerically, a novel semi-monolithic scheme is introduced which iterates between the

physical subproblem (i.e. with respect to the atomistic and continuum displacements)

and the DDD problem. Furthermore, an approximate solution procedure is proposed

which is simple to implement and valid in infinite domains, and when the atomistic

domain only contains dislocations (no other defects).

The semi-monolithic scheme requires a numerical solver for the standard A/C problem.

Since CADD does not require re-meshing, Green function techniques are eminently

suitable, given that one is usually only interested in resolving atomic degrees of freedom

during post-processing. Several Green function methods have been proposed in (Hodapp

et al., 2018c) including a variant of Sinclair’s method and an atomistic problem coupled

with a discrete boundary element method (atomistic/DBEM). These methods will be

analyzed in detail on an abstract and algebraic level. To overcome the problem of memory

consumption due to the dense boundary matrices, hierarchical matrices (H -matrices

Hackbusch, 1999, 2015) are exploited which provide an efficient means for approximating

the system matrices, emerging from the Green function methods, and the corresponding

linear algebraic operations for general interfaces with almost linear complexity. Their

implementation into existing MD codes will be shown.
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The work is organized as follows:

Chapter 1 serves as an introduction to the relevant models which are used throughout

this work. The basic equations for classical continuum mechanics, DDD and atomistics

are presented in detail in Section 1.3-1.5. Their individual role in computational plasticity

is outlined. Weaknesses and strengths of each model are highlighted and a connectivity

between the length scales is established by providing details about individual constitutive

calibration from lower-scale models.

In Chapter 2 several Green function methods for A/C coupling are developed. Attention

is drawn to problems containing a finite atomistic region, surrounded by an infinite

continuum domain. First, a new representation of Sinclair’s method is derived in Section

2.4 by an operator splitting technique which separates the infinite harmonic and the

finite anharmonic subproblem. Starting from Sinclair’s iteration equation for the dis-

placements, the DBEM is rigorously derived and analyzed in Section 2.5. Subsequently,

the algebraic problem is investigated in Section 2.6 and practical guidance regarding

its implementation will be given. Various solution procedures for the coupled problem

are presented in Section 2.7 including a memory efficient version of Sinclair’s method

and a monolithic Newton-Krylov solver. An extension of the methodology to bounded

continuum domains is given in Section 2.5.4.

Chapter 3 covers the implementation of CADD-3d. The notation is self-contained such

that experienced readers who are already familiar with the underlying fundamentals

from Chapter 1 may directly jump here. The necessary ingredients of the method,

namely the dislocation detection algorithm and the construction of the core templates,

are discussed in Section 3.4 and Section 3.5, respectively. The quasi-static boundary value

problem for CADD-3d is derived in Section 3.6 and the corresponding numerical solution

algorithms are presented in Section 3.7 and Section 3.8. Computer implementation

aspects will be discussed in Section 3.10.

In Chapter 4 the methods proposed in Chapter 2 and Chapter 3 are validated with

numerical experiments. The accuracy and efficiency of the general atomistic/DBEM cou-

pling is examined in Section 4.1 by studying various practical test cases for (quasi-)static

equilibration of isolated and moving defects in two and three dimensions. Subsequently,

the simplified solution procedure proposed in Section 3.8 is assessed in Section 4.2 by

quantifying spurious effects on dislocations in the atomistic domain depending on the

complexity of the linear elastic solution used to compute the dislocation fields of the

atomic dislocation. In Section 4.3, the CADD-3d method is applied to a periodic bow-

out problem of a single dislocation, for which reference solutions in essentially infinite

domains can be obtained for both fully atomistic and fully DDD problems. This test

problem allows to isolate the modeling of the evolution of a hybrid dislocation along

the artificial interface and demonstrate minimal errors relative to the reference fully

atomistic solution.
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Notation

Normal letters denote scalars (and zeroth-order tensors), e.g. b, Π . Vectors (first-order

tensors) are defined via lowercase bold letters, e.g. ξ, x, u. Second-order tensors are

defined via uppercase bold letters, e.g. G, K. Fourth-order tensors use the typesetting

C if not stated otherwise. Non-tensorial vectors and matrices are denoted by û, L̂. A

direct notation is preferred throughout this work.

Tensor algebra

Attention is drawn to problems in the d-dimensional Euclidean space Rd (d = 1, ..., 3).

All tensorial quantities will be defined with respect to the orthonormal basis system {ei}.
Using Einstein’s summation convention a vector a and a second-order tensor A are then

defined as

a = aiei, A = Aijei ⊗ ej . (1)

The Euclidean inner product for vectors and the inner product between second- and

higher order tensors are defined

aT · b = aibi, A ·B = AijBij . (2)

The inner products induce the norms

‖a‖ =
√
aT · a, ‖A‖fro =

√
A ·A. (3)

The same notation will be used for non-tensorial vectors and matrices â, Â, ie. âT · â,

Â · Â etc.

The space of Lebesgue-integrable functions f , g with domain Ω ⊆ Rd is denoted Lp(Ω)

for 1 ≤ p ≤ ∞. For p = 2 it is a Hilbert space with inner product and associated norm

〈f, g〉L2(Ω) =

∫
Ω
f(x)g(x) dV, ‖f‖L2(Ω) =

√
〈f, f〉L2(Ω). (4)
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Further, the Hilbert space Hk(Ω), k ≥ 1, is the space of functions f ∈ L2(Ω) with weak

derivatives ∇f ∈ L2(Ω), ...,∇kf ∈ L2(Ω).

For discrete domains Λ the corresponding sequence space is lp(Λ). The space of square-

summable sequences f , g is a Hilbert space with inner product and associated norm

〈f, g〉l2(Λ) =
∑
ξ∈Λ

f(ξ)g(ξ), ‖f‖l2(Λ) =
√
〈f, f〉l2(Λ). (5)

Tensor analysis

Gradient. Let A(x) be an N -th order tensor. The M -th gradient of A at x ∈ Rd is defined

as

∇M
x A(x) =

∂MAi1···iN
∂xj1 · · · ∂xjM

ei1 ⊗ · · · ⊗ eiN ⊗ ej1 ⊗ · · · ⊗ ejM = Ai1···iN ,j1···jM . (6)

Generally, the gradient operator increases the order of a tensor by one.

Divergence. Let A(x) be an N -th order tensor. The divergence of A at x ∈ Rd is defined

as

∇x ·A(x) =
∂Ai1···iN
∂xjN

ei1 ⊗ · · · ⊗ eiN−1 = Ai1···iN ,iN . (7)

Generally, the divergence operator decreases the order of a tensor by one.

Curl. The curl of first and second order tensors a, A is given by

∇x × a(x) = εijkaj,i, ∇x ×A(x) = εijkAlj,i, (8)

with the third-order Levi-Civita permutation tensor ε defined as

εijk =

⎧⎪⎨
⎪⎩

+1 if ijk = 123, 312 or 231,

−1 if ijk = 321, 213 or 132,

0 if i = j, i = k or j = k.

(9)

Variational derivative. Let X be a continuous vector space. The first variation of a

functional F ∈ C2(X ), given by F (u) =
∫
f(u(x)) dV , u ∈ X , is then defined as

∀u, v ∈ X δF ≡ 〈δF (u), v〉L2 =

∫
δuFv dV, (10)

with the variational derivative

δuF = lim
ε→0

f(u(x) + εv(x))− f(u(x))

ε
. (11)
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The second variation of F is

∀u, v, w ∈ X δ2F ≡ 〈δ2F (u)v, w〉L2 . (12)

The definition for discrete vector spaces is analog.

Domain indicators

A superscripted domain indicator is attached to a physical quantity • which belongs to

a certain region, e.g. •a. Following the domain decomposition from Section 2.3.3, the

corresponding domain indicators are listed below:

Index Description

a atomistic domain

c continuum domain

p pad domain

i interface between the atomistic and the continuum domain

i� pad atoms which are coupled to interface atoms according to

a local continuum (only Chapter 2)

i� elements in the atomistic domain which interact with the

interface atoms according a local continuum (only Chapter 2)

i′ elements in the atomistic domain which interact with the

interface atoms according the (nonlocal) atomistic interaction

law (only Chapter 2; not highlighted in Figure 2.2)

A quantity may refer to the actual domain, e.g. the atomic lattice Λa ⊂ Λ. In addition, •
can refer to a vectorized quantity defined on Λ, e.g. the displacement ua : Λa → Rd.

On the other hand, domain indicators can be attached to operators acting on elements

which belong to one domain and produce elements in another. For example, the contin-

uum operator Lc
h (see Section 2.3.3) acts on the entire displacement field u : Λ→ Rd and

produces the force vector f c, defined on Λc, i.e. Lc
h[u] = f c. Since f c is only impacted

by the displacements ui and uc and alternative expression is Lc/i∪c
h [uc/i∪c]. Thereby, the

indicators before and after the forward slash indicate the domain and the co-domain,

respectively.
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1 Modeling plasticity across different

length scales

1.1 Overview

The theoretical framework of today’s engineering sciences can be broadly grouped into

nano-, meso-, micro- and macroscale models, describing phenomena across scales from

the motion of individual dislocations on the nanoscale to accumulated plastic flow on

the scale of meters (see Figure 1.1). Experiments and design of new high-performance

materials show that size plays an important role, e.g. when studying strength or ductility

of materials, and neglecting the mechanical behavior on one length scale can lead to

an incomplete understanding of the overall macroscopic behavior. A key challenge in

modern computational physics is thus the development of accurate multiscale methods,

which exploit the strengths of different models to create a single coherent framework.

This section therefore serves as a basic introduction to computational plasticity at differ-

ent scales, subsequently motivating the coupling of length scales by means of hybrid

multiscale methods.

Macro- and microscale models. Classical continuum models, e.g. phenomenological

models, crystal plasticity etc. (Roters et al., 2011), which represent plastic flow in a ho-

mogenized fashion can not account for size effects in the stress-strain response observed

in real experiments. It has long been recognized that incorporating strain gradients into

the constitutive assumptions gives rise to size effects (e.g. Fleck and Hutchinson, 2001).

This idea was extended only recently via the so-called “micromorphic” approach by

Forest (2009) which allows for additional state or internal variables (e.g. gradients of the

plastic strain) which describe the underlying material behavior. After the discovery of

dislocations occurring on the atomic scale (e.g. Taylor, 1934) as the elementary carriers

of plastic flow in crystalline solids, much effort was also devoted to the development of

a continuum theory of dislocations. The foundation of this theory is largely accredited

to Nye (1953) and Kröner (1958) who postulated the dislocation density tensor as a

continuum measure for the motion of dislocations. The corresponding models require

kinematic and/or kinetic equations to describe the evolution of the dislocation density.
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Figure 1.1: Computational methods for modeling plasticity on various length scales

Notable contributions in this direction are due to Steinmann (1996); Acharya and Bas-

sani (2000); Gurtin (2002); Regueiro et al. (2002); Hochrainer et al. (2007); Forest and

Guéoninchault (2013); Hochrainer et al. (2014).

Mesoscale models. All methods described above share one major drawback in the sense

that they only account for collective dislocation motion. Although the gradient and

micromorphic approaches were introduced in order to model phenomena on different

length scales, the classical continuum theory is inherently scale independent. Hence, artifi-

cial length scales parameters have to be incorporated in the corresponding constitutive

equations to describe the size effects. Calibrating these parameters requires a thorough

understanding of the motion of individual dislocations. Considering single dislocations

as eigenstrains in elastic continua was pioneered during the first half of the twentieth

century by, e.g. Volterra (1907), Leibfried and Lücke (1949) or Eshelby (1949), to just name

a few. Later, this idea was extended by various authors to model large arrangements of

dislocations (e.g. Amodeo and Ghoniem, 1990; Lubarda et al., 1993; Van Der Giessen

and Needleman, 1995) which coined the term Discrete Dislocation Dynamics (DDD).1

Newer approaches consider three-dimensional problems, e.g. Weygand et al. (2002) and

Arsenlis et al. (2007) study complex dislocation networks including topological changes

by taking into account dislocation climb, cross slip etc.

Atomic scale models. Similar to classical continuum mechanics DDD requires “con-

stitutive models” which relate the force exerted on a dislocation to their velocity. This

1Here, the term “discrete dislocation” refers to an explicit description of the dislocation line which shall
not be confused with numerical discretization
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relation can be established by means of educated calibration to finer-scale models, i.e.

atomistics. Although atomistic models were studied as early as the late 1950s (see, e.g.

Alder and Wainwright, 1959), it did not become popular until the 1990s, largely due

to the development of modern supercomputers. Atomistic models rely on the Born-

Oppenheimer approximation (Born and Oppenheimer, 1927) which states that electrons

react instantaneously to the motion of the nuclei. As a consequence, they can be treated

separately. In addition, the nuclei are assumed to be much heavier than the electrons

and may be treated as point particles carrying potential energy. Atoms may therefore

be described in the framework of classical mechanics in terms of their position and mo-

mentum. A great challenge in atomistic modeling is the construction of the interatomic

potentials. These potentials are usually calibrated with respect to a well-defined set

of energetic configurations coming from ab initio calculations, e.g. using the density

functional theory (DFT, Hohenberg and Kohn, 1964).

1.2 Dislocations as the main carrier of plasticity

The origins of the theory of dislocations go back to the ongoing efforts in the beginning of

the 20th century to theoretically predict the strength of materials, i.e. the regime where

the material does not undergo fracture or plastic deformation. One of the first models

was developed by Frenkel (1926) in order to predict the theoretical shear strength of

crystalline materials. However, this early model was based on the assumption of a perfect

crystal without defects — such that plasticity develops by fully shifting neighboring

crystallographic planes with respect to each other — and the theoretical predictions

were several orders of magnitude higher than the material strength observed in real

experiments. In the 1930s Taylor (1934) discovered that plastic slip occurs incrementally,

guided by the motion of dislocation lines which separate slipped an unslipped portions

of the material.

The relative slip between two parts of the crystal is given through the Burgers vector b.

The Burgers vector of a dislocation can be identified as the difference between a circuit

around the center of the dislocation core, shown in Figure 1.2 (a), and its replica in the

undeformed crystal (Frank, 1951; Bilby et al., 1955). If the Burgers vector is parallel to the

line direction the dislocation is referred to as a screw dislocation. On the other hand, an

edge dislocation has a Burgers vector perpendicular to the line direction. A dislocation

with inclined Burgers vector is a mixed dislocation, i.e. a linear combination of a screw

and an edge dislocation. Dislocation motion occurs within preferred slip systems which

depend on the lattice structure. A slip system is defined as

slip system = glide plane + glide direction.

In general, the glide planes on which dislocations move are the energetically-favorable

closed-packed planes of the crystal lattice. The glide direction, i.e the direction in which

13
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the dislocation moves, is usually confined to the given glide plane for edge dislocations

but screw dislocations may also cross-slip between different glide planes.

Figure 1.2: (a) Screw and edge dislocations in a simple cubic lattice. (b) Formation of a
dislocation network in a nanobeam (by courtesy of Dr. Wolfram Nöhring)

Plastic deformation in real materials occurs due to the motion, multiplication and annihi-

lation of thousands of dislocations which can form complex networks as shown in Figure

1.2 (b). Several theoretical models in dislocation-based plasticity will be discussed in the

following sections, ranging from the collective motion of dislocations on the continuum

scale to the motion of individual, atomistically resolved, dislocations.

1.3 Classical continuum mechanics

In this section, the basics of classical continuum mechanics will be reviewed with focus

on the essential kinematics, balance laws and constitutive models for dislocation-based

plasticity. Continuum mechanics is governed by field equations, i.e. partial differential

equations (PDEs) — contrary to atomistic models which are discussed in Section 1.5.

This section shall serve as a concise introduction to the important continuum physics

used throughout this work and to familiarize the reader with the notation. For further

details the reader is referred to the seminal work of Truesdell and Noll (1965) or to one

of the numerous introductory books on the topic (e.g. Jirasek and Bazant, 2002; Bertram,

2012).
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1.3. Classical continuum mechanics

1.3.1 Kinematics and balance equations

In the following the motion of an initially stress-free material body Ω0 ⊆ Rd of dimension

d = 1, ..., 3with boundary ∂Ω0 is considered. Attention is drawn to quasi-static problems,

i.e. only the initial configuration Ω0 and its final placement Ω will be defined. The

elements of Ω0 are denoted as the material points X .

The deformation of X is the motion χ(X) which is assumed to be invertible, that is

interpenetration of matter and fracture are not considered. The motion is identified via

displacements u : Ω0 → Rd such that χ(X) = X + u(X) as shown in Figure 1.3. Then,

the elements x ∈ Ω are uniquely defined via x = χ(X).

Figure 1.3: Schematic illustration of the deformation of a continuous material body

Let Y ∈ Ω0. The motion of Y can be expanded by a Taylor series as

χ(Y ) = χ(X) +∇Xχ(X)dX +O(‖dX‖2). (1.1)

For infinitesimal line elements dX , i.e. for ‖dX‖ → 0, the higher order terms can be

neglected which yields

χ(Y )− χ(X) = y − x = dx = F (X)dX, (1.2)

with the deformation gradient

F (X) = ∇Xχ(X) =
∂x(X)

∂X
. (1.3)

The displacement gradient is defined accordingly as

∇Xu(X) = F (X)− I. (1.4)

Strain energy density. Potential-based models assign energetic quantities to material

points which measure the usable and dissipated work of the material body. For non-
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dissipative solids, the Helmholtz free energy density fully describes the essential ther-

modynamics of the material. The free energy is then defined in terms of the deformation

gradient F as

ψ(X) = ψ
(
F (X)

)
. (1.5)

In the following it is assumed that ψ is a convex function of F .

Remark 1.3.1. Equation (1.5) is valid for local continua, that is if the macroscopic length scale

L (e.g. the size of the material body from Figure 1.3) and the microscopic length scale l (the grain

size or lattice spacing) are well separated, i.e. L� l. However, if L ≈ l, nonlocal effects become

important (c.f. Eringen, 2002). The total energy then depends on an energy density W which

itself depends on the differential displacements u(X)− u(X ′) within a finite interaction range

R ⊂ Rd whose size is associated with the internal length in the sense thatR ∈ O(l). The total

energy of the system can then be written as

Π =

∫
Ω

(∫
R
W

(
u(X)− u(X ′)

)
dV ′

)
dV. (1.6)

A direct relation to gradient continua can be established under the assumption of a sufficiently

smooth displacement field u. A Taylor expansion of u around X then yields

u(X ′)−u(X) = ∇Xu(X)(X−X ′)+
1

2
∇2

Xu(X)
(
(X −X ′)⊗ (X −X ′)

)
+ ... (1.7)

After plugging (1.7) back into (1.6), it can be seen that W now depends on X −X ′ and the

gradients of u at X . Roughly speaking, the total energy can be brought into the form

Π =

∫
Ω
ψ̄(∇Xu(X), l∇2

Xu(X), ...) dV, (1.8)

where ψ̄ is an effective strain energy density energy which is be obtained after integrating W

over R. In the limit of local action, i.e. when |R| → 0, the local strain energy density (1.5) is

recovered.

In the following a local continuum (also: Cauchy continuum) is considered. In this case

the total energy of the mechanical system is defined as

Π(u,F ) = Π int(F ) +Πext(u). (1.9)

The internal and external contributions are given by

Π int(F ) =

∫
Ω0

ψ
(
F (X)

)
dV, (1.10)

Πext(u) = −
∫
Ω0

(fbody)T(X) · u(X) dV −
∫
∂tΩ0

t̄T(X) · u(X) dA, (1.11)
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1.3. Classical continuum mechanics

where fbody ∈ [L2(Ω0)]
d is an additional body force and t̄ is a predefined traction on the

boundary ∂tΩ0 ⊂ ∂Ω0.

For quasi-static problems, an admissible final configurationΩ is the one which minimizes

the total energy Π . That is, for a given set of boundary conditions, e.g.

• prescribed displacements ū on ∂uΩ0 ⊆ ∂Ω0,

• prescribed tractions t̄ on ∂tΩ0 = ∂Ω0 \ ∂uΩ0,

• or Robin-type (mixed) conditions (ū and t̄ simultaneously defined),

(1.12)

admissible minimizers u of Π from a suitably chosen function space

V := { δu ∈ [H1(Ω0)]
d | δu satisfies (1.12) } (1.13)

are sought-after. The optimization problem is then defined as

u := Arg

{
min
δu∈V

Π(δu, δF )

}
, (1.14)

where δF = δ(I +∇Xu) = ∇Xδu.

To solve problem (1.14) the variational method is used. The first variation of Π reads

δΠ =

∫
Ω0

δFΠ
int · δF dV −

∫
Ω0

(fbody)T · δu dV −
∫
∂tΩ0

t̄T · δu dA, (1.15)

where

δFΠ
int = P =

∂ψ(F )

∂F
. (1.16)

Here, P is the first Piola-Kirchhoff stress tensor. In equilibrium the first variation of Π is

zero such that

∀ δu ∈ V δΠ
!
= 0 =

∫
Ω0

P ·(∇Xδu) dV −
∫
Ω0

(fbody)T·δu dV −
∫
∂tΩ0

t̄T·δu dA (1.17)

which is nothing but the weak form of elastostatics. Applying the product rule and

Gauss’ theorem to the first term leads to

∀ δu ∈ V 0 =

∫
Ω0

∇X · (P δu) dV −
∫
Ω0

(∇X · P ) · δu dV

−
∫
Ω0

(fbody)T · δu dV −
∫
∂tΩ0

t̄T · δu dA

=

∫
Ω0

(∇X · P + fbody) · δu dV.

(1.18)
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Chapter 1. Modeling plasticity across different length scales

Due to the arbitrariness of the variation δu the local field problem is deduced: find

u ∈ [H2(Ω0)]
d such that

{
∇X · P + fbody = 0 in Ω0,

+ boundary conditions (1.12).
(1.19)

Small strain limit

In the important limit of small deformations the displacement gradient is assumed to be

sufficiently small, i.e.

‖∇Xu‖fro � 1. (1.20)

If this condition is satisfied a geometric linearization is possible. Hence, the following

limiting cases are obtained

Ω0 −→ Ω,

ψ(F ) −→ ψ(ε),

P (F ) −→ σ(ε),

(1.21)

with the Cauchy stress σ(ε) and the small strain tensor

ε = sym(∇xu). (1.22)

Therefore the deformation of the body is solely described by ε and no distinction is made

between reference and current configurations.

For small strains, the weak form (1.17) becomes

∀ δu ∈ V 0 =

∫
Ω
σ · (∇xδu) dV −

∫
Ω
(fbody)T · δu dV −

∫
∂tΩ

t̄T · δu dA. (1.23)

Since the variations are arbitrary the balance equation for small strains reads: find

u ∈ [H2(Ω)]d such that

{
∇x · σ + fbody = 0 in Ω,

+ boundary conditions (1.12).
(1.24)

1.3.2 Constitutive modeling

Classical continuum theories require a governing relationship between stresses and

strains in order to characterize the reaction of the material body in response to external
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1.3. Classical continuum mechanics

forces. Constitutive models can be broadly grouped into reversible (elastic) and irre-

versible (dissipative) processes which will be discussed in the following for the particular

case of small deformations.

Linear elasticity. If the deformation is purely elastic, i.e. ε = εe, the Cauchy stress

depends linearly on the strain according to Hooke’s law

σ = C[εe], (1.25)

where C is the fourth-order stiffness tensor which possesses the major and both minor

symmetries. Consequently, the free energy density takes the form

ψ(εe) =
1

2
εe · (C[εe]) (1.26)

such that σ = ∂ψ(εe)/∂εe is satisfied. For the special case of isotropic elasticity the

stiffness tensor takes the form

C = λI ⊗ I + 2μIs, (1.27)

where I is the identity tensor and Is is a fourth-order tensor which maps every second

order tensor A onto its symmetric part, i.e. Is[A] = sym(A).

Dissipative processes. Accounting for dissipative processes in classical continuum

models is possible by enriching the mechanical state with a set of internal variables α̂,

e.g. the plastic strain εp, hardening variables etc. (Coleman and Gurtin, 1967). The

free energy density is then assumed to be a function of the total strain ε and α̂, i.e.

ψ = ψ(ε, α̂). A non-negative dissipation rate can be ensured by incorporating the second

law of thermodynamics via the Clausius-Duhem inequality (Truesdell and Toupin, 1960)

(
σ − ∂ψ(ε, α̂)

∂ε

)
· ε̇− ∂ψ(ε, α̂)

∂α̂
· ˙̂α ≥ 0. (1.28)

For reversible processes the entropy production is zero. Thus, it follows

σ =
∂ψ(ε, α̂)

∂ε
. (1.29)

The stress field is assumed to satisfy mechanical equilibrium according to (1.24). In order

to close the system of equations, an evolution law for the internal variables is needed.

This is accomplished by introducing a dissipation potential which relates the rate of the

internal variables ˙̂α to their thermodynamic conjugate driving forces r̂ = ∂ψ/∂α̂ (c.f.

Jirasek and Bazant, 2002). In continuum plasticity the dissipation potential is the flow

function f = f(r̂) such that the plastic strain is given by

ε̇p =
∂f(r̂)

∂r̂
. (1.30)
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Chapter 1. Modeling plasticity across different length scales

If f is a convex function of r̂, unconditional stability of (1.28) is guaranteed a priori.

1.3.3 Phenomenological plasticity models

From the previous discussion it follows that classical plasticity models require the

definition of at least two potentials, namely the free energy density ψ and the flow

function f . Two examples are discussed in the following.

Example 1.1 (Isotropic von Mises plasticity with kinematic hardening). This simple

yet powerful model requires two internal variables, namely the plastic strain εp = ε− εe

and a scalar hardening variable q which can be interpreted as an accumulated plastic

strain. The free energy density is given by

ψ(εe, εp, q) =
1

2
εe · C[εe] + σhq +

1

2
εp ·H[εp], (1.31)

where σh is the hardening modulus and H is a hardening metric. The forces conjugate to

εp and q are consequently defined as

− ∂ψ

∂εp
= σ −H[εp], −∂ψ

∂q
= −σh. (1.32)

The flow function in terms of the conjugate forces reads

f(σ −H[εp], σh) = max{ 0, |dev(σ −H[εp])| −
√
2/3σh }, (1.33)

where dev(•) denotes the deviatoric part of second order tensors. The rates for the

internal variables follow by differentiating f with respect to the conjugate forces

ε̇p = λ̇
dev(σ −H[εp])

‖dev(σ −H[εp])‖ , q̇ =

√
2

3
λ̇. (1.34)

Here, the Lagrange multiplier λ̇ ensures that f < 0 in the elastic regime and f = 0 if

the body deforms plastically. If the parameter k is set to zero no kinematic hardening is

considered. However, for many cases, e.g. cyclic loading ("Bauschinger effect"), it can be

useful to consider kinematic hardening in order to allow the yield surface to translate in

stress space without changing its shape (c.f. Figure 1.4 (a) and (b)).

Example 1.2 (Crystal plasticity). Crystal plasticity models account for the underlying

lattice structure of the material. In metals, plastic flow occurs primarily on slip systems.

For a crystal with N slip systems with vectors normal to glide plane nβ and vectors

parallel to the glide direction mβ , the second order tensors

Mβ = nβ ⊗mβ (1.35)
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1.4. Discrete dislocations dynamics

Figure 1.4: Schematic illustrations of typical stress strain curves for (a) cyclic loading and
an isotropic hardening model, (b) cyclic loading and kinematic hardening and (c) for
uniaxial tension and different specimen sizes

are defined for all β = 1, ..., N to project the local stress state onto the slip system β.

Plastic deformation occurs whenever the resolved shear stress on a slip system exceeds a

threshold parameter τcrit. The corresponding flow function reads

f(σ−H[εp], σh) = max

⎧⎨
⎩ 0,

N∑
β=1

γβ0

(
|sym(Mβ) · (σ −H[εp])| − σh − τcrit

) ⎫⎬
⎭ , (1.36)

where the quantity sym(Mβ) · (σ −H[εp]) is the resolved shear stress on the slip system

and γβ0 is a reference slip rate (c.f. Roters et al., 2011). Differentiating (1.36) with respect

to the conjugate forces gives the evolution of the plastic strain and of the N hardening

variables

ε̇p =

N∑
β=1

λ̇βγβ0 sym(Mβ), q̇β = γβ0 λ̇
β , (1.37)

where the Lagrange multiplier is the accumulated plastic slip with respect to the slip

system β. The reference slip rates γβ0 have to be determined from material models on

lower length scales, e.g. DDD simulations (c.f. Section 1.4.4).

1.4 Discrete dislocations dynamics

1.4.1 Configurational material forces

Configurational mechanics has emerged during the second half of the 20th century as a

side branch of classical mechanics. Since then it has seen great attention in analytical

as well as computational mechanics and has manifested its right to exist in modeling

complex behavior of materials endowed with a microstructure, accompanying other

approaches within the framework of generalized continua (e.g. Cosserat, gradient models

etc., see e.g. Maugin, 2016, for a recent review) which were developed around the same

period of time. Originally the idea was introduced by Eshelby during the 1950s who
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Chapter 1. Modeling plasticity across different length scales

was the first who defined a material force acting on imperfections in an otherwise defect-

free material body. The concept of material forces as the driving force of the considered

defect opened the possibility in studying interactions between defects and evolving

microstructures in a continuum mechanical setting. Starting with Eshelby’s seminal

work on forces acting on singularities in a local linear elastic continuum (Eshelby, 1951)

the method has been applied to wide range of crystalline defects such as dislocations,

cracks or grain boundaries.

Later, this framework became widely used across materials physics in order to study

different phenomena, for instance moving interfaces due to phase transitions (see e.g.

Abeyaratne and Knowles, 1990). Only recently it was found that an evolving material

frame (which can be considered as a generalization of moving defects) can be exploited

for pure computational aspects, e.g. error estimators for numerical methods such as the

finite element method (FEM). For example, Braun (1997) showed that the overall accuracy

of the numerical solution can be improved by redistributing the nodal points of the mesh

corresponding to a vanishing material force. An insightful path was taken by Epstein

and Elzanowski (2007) who generalized the concept of material forces to an abstract

mathematical framework which can be analyzed detached from the particular underlying

physics by introducing “material implants” (i.e. inhomogeneities) attached to the body

manifold. Comprehensive overviews on the topic can be found in the monographs of

Maugin (1993, 2010), which contain a comprehensive physical classification with concise

historical perspective, or the more mathematically motivated work of Gurtin (1999).

In the following the basic equations of configurational mechanics are briefly recalled.

First, it is now assumed that the material body is possibly non-homogeneous due to

the presence of impurities, defects etc. Changing the composition from Ω′
0 → Ω0 con-

sequently results in material forces, acting on the defects, which need to be balanced by

inhomogeneous forces to keep the body in equilibrium. Therefore a material point X ′ is

allowed to displace according to um : Ω′
0 → Ω0 such that its motion can be written as

κ(X ′) = X ′ + um(X ′). (1.38)

Assuming that the mapping κ(X ′) is bijective, a material point in Ω0 can be uniquely

identified via X = κ(X ′). Accordingly, the free energy depends explicitly on the com-

position of Ω0 which can be written as ψ = ψ(F ,X). The total variation of Π is then

carried out with respect to F , u and X such that

δΠ =

∫
Ω0

δFΠ · ∇Xδu dV +

∫
Ω0

δuΠ · δu dV +

∫
Ω0

δXΠ int · δX dV, (1.39)

where δFΠ = P and δuΠ = fbody (c.f. Section 1.3.1).

The goal is to find an expression for the functional derivative of Π int with respect to X ,

that is the local material force. To this end, note that the total differential of Π int reads

dΠ int = P · ∇Xδu+ δXΠ int · δX. (1.40)
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1.4. Discrete dislocations dynamics

Dividing both sides by the individual components of δX yields the total derivative with

respect to X (:= material derivative)

dXΠ int =
(
∇X(∇T

Xu)
)
P + δXΠ int. (1.41)

Using the product rule the first term on the right hand side can be re-written as

(
∇X(∇T

Xu)
)
P = ∇X ·

(
(∇T

Xu)P
)
− (∇T

Xu)∇X · P︸ ︷︷ ︸
=−fbody

, (1.42)

where the last term is due to the balance of linear momentum. Plugging the latter into

(1.41) gives

dXΠ int = ∇X ·
(
(∇T

Xu)P
)
+ (∇T

Xu)fbody + δXΠ int. (1.43)

With dXΠ int = ∇Xψ, a rearrangement of the terms leads to

δXΠ int = ∇X ·
(
ψI − (∇T

Xu)P
)
− (∇T

Xu)fbody, (1.44)

where the first quantity in the parenthesis on the right hand side is commonly referred

to as the Eshelby stress tensor (c.f. Maugin, 1993)

B = ψI − (∇T
Xu)P . (1.45)

In general, B does not possess any special symmetries. In addition, note that B is purely

defined with respect to the reference configuration. As matter of fact, it could have been

equivalently obtained by a pull-back of the balance equation (1.19) from the physical to

the material frame.

The quantity δXΠ int is usually referred to as the local material force. The material force is

a balanced quantity in the sense that

∇X ·B − (∇T
Xu)fbody + f inh = 0 in Ω0, (1.46)

where f inh can be interpreted as the inhomogeneous force due to the presence of defects.

If, further, the body is in mechanical equilibrium, it holds

∇T
Xu(∇X · P + fbody) + (∇X ·B − (∇T

Xu)fbody + f inh) = 0 in Ω0, (1.47)

which is commonly denoted as Ericksen’s identity (Maugin, 2010).

In the small strain limit the Eshelby stress becomes

B ∼ ψI − (∇T
xu)σ as ‖∇Xu‖fro → 0. (1.48)
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Chapter 1. Modeling plasticity across different length scales

Consequently, the material force balance reads

∇x · (ψI − (∇T
xu)σ)− (∇T

xu)f
body + f inh = 0 in Ω, (1.49)

with fbody being now defined with respect on Ω.

Remark 1.4.1. Equation (1.46) and (1.49) are valid for static inhomogeneities. In the atomistic

picture, atoms move in the vicinity of defects, such as cracks or dislocations, due to an external

stress or the interactions with other defects, giving rise to a rearrangement of the inhomogeneity.

Then, however, δXΠ int must be interpreted as the driving force of the material defects. The

associated mechanical power due to δXΠ int is nothing but the rate of dissipation. Therefore the

inhomogeneous forces must necessarily be used to formulate the corresponding evolution laws to

be consistent with the second law of thermodynamics (see also Remark 1.4.3).

1.4.2 Dislocations as eigenstrains in elastic continua

In the following the application of configurational mechanics to DDD is presented.

Thereby, the driving force on the dislocation, the Peach-Koehler force (Peach and Koehler,

1950), is introduced as a special case of the divergence of the Eshelby stress tensor B.

Attention is drawn to the limiting case of small strains, that is ‖∇u‖fro � 1 is assumed

throughout the remainder of this section.

The evolution of an initially stress-free body Ω ⊆ Rd is considered in the following. It

is assumed that the body Ω contains an initial distribution of (discrete) dislocations.

In order to simplify the notation only a single dislocation on a slip plane S with nor-

mal vector n and Burgers vector b is examined (Figure 1.5). The framework translates

verbatim to arbitrarily many dislocations. By conceiving a continuum model which

describes the evolution of a (discrete) atomistic problem, S can be understood as the

plane centered between two layers of atoms associated with a glide plane corresponding

to the underlying crystal structure (c.f. Figure 1.2 (a)). The motion of the dislocation, i.e.

the motion of S is fully described by the motion of its boundary, namely the dislocation

line γ = ∂S . The dislocation line is defined via a sufficiently smooth parametric function

s(u) : I → span(b, b× n), where I = [0, 1], such that γ := Img{ s(u) |u ∈ I }. Moreover,

the slipped parts of the body are implicitly defined by the line direction t(s). Further, the

glide direction is denoted by m(s) (c.f. Figure 1.5). In the following, attention is drawn to

dislocation glide, i.e. discrete events such as dislocation cross-slip or nucleation, which

may occur in real (atomic) crystals, are not considered.

In order to give the dislocation line a “continuum” sense, an eigenstrain βp (:= plastic

distortion) is imposed on the slip plane. The decomposition of the displacement gradient

into incompatible elastic and plastic parts is adopted here according to (c.f. Mura, 1982)

∇u = βe + βp, (1.50)
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Figure 1.5: Schematic illustration of the motion of a material body for the small strain
DDD problem. The dislocation line γ is depicted as an infinite straight line

where βe is the elastic strain (:= elastic distortion). Note that βe and βp are not gradients

of a displacement field. The symmetric part of the displacement gradient is given by

ε = sym(β) = sym(βe) + sym(βp) = εe + εp. (1.51)

Within the DDD framework the plastic distortion is pre-defined as

βp(x) =

{
−b⊗ n on S ,

0 else
(1.52)

or alternatively

βp(x) = −
∫

S
δ(x− x′)(b⊗ n) dA′. (1.53)

Further, the dislocation density tensor is introduced as (Kröner, 1958)

α = −∇ × βp. (1.54)

Using the definition of the plastic distortion (1.53), the dislocation density can be re-

written as (c.f. Mura, 1982; Maugin, 2010)

−∇ × βp = −
∫

S
∇ ×

(
δ(x− x′)(b⊗ n)

)
dA′

= −
∫

S

(
∇ × (δ(x− x′)b)

)
⊗ da′

= −
∫
γ
δ(x− x′)(b⊗ t) dC ′,

(1.55)

where use was made of Stokes’ theorem in order to transform the surface integral into a

line integral.
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The definition (1.52) imposes restrictions on the displacement field which is not contin-

uous anymore over the entire space, more precisely, u ∈ [C0(Ω \S )]d. Moreover, u is

singular on γ which can directly be deduced from the definition of βp and so are the total

strain and the Cauchy stress — although this can be remedied by smearing the Burgers

vector over the slip plane as shown in the following section. Given the above-mentioned

definitions the total energy is now defined as

Π(u,βe, s) = Πe(u,βe, s) +Πcore(s), (1.56)

where Πe(u,βe, s) is the elastic energy

Πe(u,βe, s) =

∫
Ω
ψ

(
βe(x)

)
dV −

∫
Ω
(fbody)T(x) · u(x) dV. (1.57)

Note that ψ
(
βe(x)

)
= ψ

(
εe(x)

)
due to the symmetry properties of material stiffness

tensor C. The second contribution in (1.56) stems from an additional contribution which

accounts for the mismatch between the elastic energy and the true energy which can be

calculated from first principles, e.g. atomistics. The core energy can formally be defined

as

Πcore(s) =

∫
γ
W core(s) dC, (1.58)

where W core(s) is an energy density (per unit length) which depends on the local line

orientation at s. A precise definition of W core will be given in the following section.

Having Πe and Πcore well-defined, the first variation of Π is then given by

δΠ =

∫
Ω
δuΠ

e · δu dV +

∫
γ
δsΠ

int · δs dC +

∫
γ
δsΠ

core · δs dC, (1.59)

with δuΠ
e = ∇ · σ + fbody and

δsΠ
int = −fpk, δsΠ

core =
∂W core(s)

∂s
= −f core. (1.60)

Remark 1.4.2. In DDD, a variation of the reference configuration is tantamount to a variation

of the plastic distortion

δεβ
p(x) = −

∫
S
δ(δεx− x′)(b⊗ n) dA′, (1.61)

where δεx = x + εδum(x) for some ε > 0. The first variation of Π with respect to s is then

loosely defined as

δsΠ
int ≡ δβpΠ int = lim

ε→0

1

2

(β − δεβ
p) · C [β − δεβ

p]− (β − βp) · C [β − βp]

ε
. (1.62)
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In what follows an explicit expression of the Peach-Koehler force is sought-after. There-

fore recall from the previous section that the second integral in (1.59) can be equivalently

expressed as∫
γ
δsΠ

int · δs dC =

∫
Ω
(∇ ·B) · δx dV −

∫
Ω

(
(βe)Tfbody

)
· δx dC. (1.63)

However, this representation is not immediately useful since the term on the right

hand side of (1.63) requires the integration over the entire volume. Hence, it must be

converted into a line integral representation in order to reveal an explicit expression of

fpk by taking into account that the variations δx are nonzero only on the glide plane.

Using the definition of the strain energy density (1.26) it was shown by Mura (1982) that

the divergence of the Eshelby stress can be written as (see also Maugin, 2010)

∇ ·B = ∇ · (ψI − (βe)Tσ) = ε[σα] + (βe)Tfbody. (1.64)

Plugging the latter into (1.63) yields∫
γ
δsΠ

int · δs dC = −
∫
Ω
ε[σ(∇ × βp)] · δx dV. (1.65)

Using (1.55) and the properties of the delta function one obtains

−
∫
Ω
ε[σ(∇ × βp)] dV = −

∫
Ω
ε

[
σ

(∫
γ
δ(s− s′)(b⊗ t) dC ′

)]
· δx dV

= −
∫
Ω

(∫
γ
δ(s− s′) ε[σ(b⊗ t)] dC ′

)
· δx dV

= −
∫
γ
ε[σ(b⊗ t)] · δs dC.

(1.66)

Consequently, the Peach-Koehler force can be deduced as

fpk = −δsΠ int = ε[σ(b⊗ t)] = (σb)× t, (1.67)

where the latter expression is the one first obtained by Peach and Koehler (1950) in the

absence of body forces.

In what follows it is assumed that the system must be in equilibrium with respect to the

displacement field u and the dislocation line γ. Therefore the following optimization

problem is defined

{u, s} := Arg

{
min
δu

min
δs

Π(δu, δs)

}
. (1.68)

Problem (1.68) is convex with respect tou but likely nonconvex with respect to s, especially

when multiple dislocations are present. Therefore the final solution is usually not unique
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Chapter 1. Modeling plasticity across different length scales

and depends largely on the initial guess, that is the initial position of the dislocation line

γ (see below).

The Euler-Lagrange equations corresponding to (1.68) are the momentum balance equa-

tions in the physical and the material space which are combined here as follows

Pc

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Physical problem Pc/p:

∇ · σ + fbody = 0 in Ω,

+ boundary conditions (1.12),

DDD problem Pc/dd:

fpk + f core = 0 on γ,

+ boundary conditions.

(1.69)

The coupled problem is consequently denoted as Pc := Pc/p ∧ Pc/dd. The physical

problem Pc/p is coupled to Pc/dd via the position of γ which defines the plastic distortion

βp. Vice versa, the material sub-problem Pc/dd is coupled to Pc/p via the Cauchy stress

σ which defines the driving force on the dislocation line. In the following it is tacitly

assumed that a solution γ to (1.69) satisfies the stability requirement

∀ admissible δs 〈δ2sΠ(s)δs, δs〉L2(γ) > 0. (1.70)

It is then guaranteed that solutions to Pc are also minimizers of Π .

Remark 1.4.3. Boundary conditions on the problem Pc/dd usually imply pinning points of γ, i.e.

Dirichlet-type boundary conditions, which mimic obstacles due to precipitation. Neumann-type

boundary conditions could be incorporated via a body force fbody in the physical balance equation

(c.f. equation (1.67)).

Dislocation line evolution

A delicate issue is the evolution of discrete dislocations. At first glance, problem (1.69), as

stated, does not require any precise information about the motion of the dislocation γ —

besides its kinematics which is assumed to be known — since only the final equilibrium

state is sought-after. But, recall that the total energy Π is possibly nonconvex with

respect to the positions of the dislocations. Applying a standard nonlinear solver to

(1.69) can lead to unphysical results since the corresponding search directions may not be

fundamentally energy-minimizing paths.2 More precisely, DDD is inherently event-driven.

Discrete events are based on the interaction with other dislocations when they come

close together (junction formation, annihilation), on the local stress state (dislocation

2Here, “fundamentally energy-minimizing” refers to a comparable atomistic simulation
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1.4. Discrete dislocations dynamics

nucleation) or on stochastics (e.g. cross slip). Hence, a classical energy minimization

may yield deceptive search directions.

The inevitable requirement of a physical motion of the dislocation lines motivates the

definition of an evolution law for γ. For quasi-static problems the evolution of the

dislocation can be formulated as a gradient flow (Bulatov et al., 2006), that is the driving

force on the dislocation and the dislocation velocity v are linearly related through the

dislocation mobility tensor M such that

v = M(fpk + f core) on γ. (1.71)

The dislocation mobility tensor M is defined similarly to (1.35) but is not merely a pro-

jection tensor and can also contain additional information, e.g. temperature dependence.

The general form of the mobility tensor reads (e.g. Arsenlis et al., 2007)

M = mgP g +mcP c, (1.72)

with the projection tensors

P g = m⊗m, P c = n⊗ n. (1.73)

The superscripts •g and •c are related to dislocation glide (normal to the dislocation line)

and climb (normal to the glide plane). Using the properties of projection tensors (i.e.

P gP g = P g, P gP c = 0 etc.) one obtains the more common drag relation (Amodeo and

Ghoniem, 1990)

Dv = (P g + P c)(fpk + f core) with D = dgP g + dcP c, (1.74)

where the drag coefficients dg and dc are the inverted mobility coefficients.

Remark 1.4.4. It can be checked that the evolution law (1.71) is thermodynamically consistent.

Consider the second term in the dissipation inequality (1.28). Since s ∼ εp one may write with

α̂ = s

∂ψ(ε, s)

∂s
· ṡ =

∂ψ(ε, s)

∂s
· v. (1.75)

With ∂ψ/∂s = fpk it follows

(fpk)T · (Mfpk) ≥ 0 (1.76)

since the velocity always points in the direction of the force vector.

1.4.3 Dislocation core energy — how to deal with the singularity

An issue that has been left aside so far is a clear interpretation of the dislocation core

structure. The particular choice of the plastic distortion βp (1.53) effectively terminates
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Chapter 1. Modeling plasticity across different length scales

the slip on the dislocation line and the strain energy density ψ therefore becomes singular.

This is of no concern for two-dimensional problems where the dislocations are treated

as infinite straight lines. In three dimensions, however, dislocation loops are allowed to

expand or shrink, much like a flexible string. Hence, the driving force on a particular

point on the dislocation line depends on the stress field of the loop itself. The computation

of fpk is thus ill-defined since the Cauchy stress diverges as r → 0, where r is the distance

from any field point x to some point s on the dislocation line γ.

Two different approaches which circumvent the singularity problem are addressed in

the following: (1) classical elasticity with core-cut off and (2) a nonsingular solution with

spread Burgers vector. Further, another approach is discussed which assumes an, in

principle arbitrary, regularization of the dislocation core (e.g. (1) or (2)) and introduces

an additional core energy term. Every approach contains a single parameter which has

to be calibrated to atomistics (c.f. Section 1.5.4). The parameters are listed in Table 1.1.

Classical Nonsingular Extra core energy

Plastic distortion βp βp ∗ w any

Free parameter rcorecut a Ecore

Table 1.1: Three modeling approaches for the dislocation core energy corresponding to
Example 1.3, 1.4 and 1.5

Another interesting approach due to Lazar (2013); Po et al. (2014) is not considered

in the following. Their approach uses a generalized continuum (c.f. Remark 1.3.1)

which involves the first gradient of the small strain tensor in the free energy density.

This construction naturally introduces an internal length scale parameter which is then

calibrated to atomistics.

Example 1.3 (Classical elasticity with core cut-off). In the classical theory, the jump

of the displacement field [[u]] is constant over the entire glide plane. This renders all

physical quantities singular on the dislocation line. In order to compute a finite energy, a

standard approach is to exclude a tubular core region Ωcore with radius rcorecut from the

whole body (c.f. Hirth and Lothe, 1982). The total energy then reads

Π =

∫
Ω\Ωcore

ψ(β,βp) dV <∞, (1.77)

with βp given by (1.53). In practice, the total energy is usually cast into a line integral

before introducing rcorecut which simplifies the computation of the stress fields (see, e.g.

Indenbom and Lothe, 1992; Balluffi, 2012). The core cut-off is then interpreted as a

truncation of this line integral. In order to calibrate the continuum energy to atomistic

results, the core cut-off rcorecut is taken as a free parameter in order to match the energies

for a specific configuration. Usually it is expected that rcorecut ∈ O(b) (Hull and Bacon,

2001).
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1.4. Discrete dislocations dynamics

Example 1.4 (Nonsingular elasticity). The classical regularization (1.77) suffers from

several inconsistencies (c.f. Cai et al., 2006). For example, it was shown by LeSar (2004)

that different line integral representations of (1.77) yield different energies, independent

of rcorecut . Another possibility to regularize the energy is to spread the Burgers vector

around the dislocation line. Mathematically this is accomplished by convolving βp with

a spreading function w. The nonsingular plastic distortion is then defined as

βp,ns = βp ∗ w ⇒ β = βe + βp,ns. (1.78)

The elastic energy of a single dislocation in Ω is then given by

Π =
1

2

∫
Ω
σ · βe dV =

1

2

∫
Ω
σ · β dV − 1

2

∫
Ω
σ · βp,ns dV

= −1

2

∫
Ω
σ · βp,ns dV = −1

2

∫
Ω
σ · (βp ∗ w) dV.

(1.79)

In principle, there is great freedom in choosing an appropriate w, e.g. it may be calibrated

to reproduce real atomistic cores structures. However, it is highly desirable from a prac-

tical point of view to obtain simple expressions for the stress fields since the interaction

between dislocations is long-range. The only practical implementation that the author

is aware of was suggested by Cai et al. (2006) for isotropic solids. Their ingenious idea

is illustrated in the following. First, recall that the Cauchy stress can be expressed as

convolution of a linear differential operator L, acting on r =
√

x21 + x22 + x23, with the

dislocation density α (e.g. Mura, 1982) such that

σ = L(r) ∗α = −L(r) ∗ (∇ × βp,ns)

= −L(r) ∗
(
(∇ × βp) ∗ w

)
= −L(r) ∗ w ∗ (∇ × βp).

(1.80)

Plugging the latter into (1.79) and using the differentiation properties of the convolution

operator gives

Π =
1

2

∫
Ω

(
L(r) ∗ w ∗ (∇ × βp)

)
· (βp ∗ w) dV

=
1

2

∫
Ω

(
L(r) ∗ w ∗ w ∗ (∇ × βp)

)
· βp dV

=
1

2

∫
Ω

(
L(r ∗ w ∗ w) ∗ (∇ × βp)

)
· βp dV

=
1

2

∫
Ω

(
L(r ∗ w̃) ∗ (∇ × βp)

)
· βp dV,

(1.81)

where w̃ = w ∗ w. If w = δ, then w̃ = δ and (1.81) yields the classical result. Cai et al.

(2006) choose w̃ in such a way that its convolution with r yields the particular simple

expression

ra = r ∗ w̃ =
√

x21 + x22 + x23 + a2, (1.82)
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where a is a scalar core spreading parameter. Therefore the stress field can be obtained

from the classical solution by simply replacing r with ra. The effective self-stress which

acts on any point of the dislocation, i.e. the stress which appears in the Peach-Koehler

force, is given by

σeff = −L(ra) ∗ (∇ × βp) = σ ∗ w̃ (1.83)

and the same holds true for the stress due to another dislocation with the same isotropic

core spreading.

Despite its simplicity, pre-defining w ∗ w leaves the actual spreading function undefined

a priori as remarked by Po et al. (2014).3 Whenever the dislocation is subject to a non-

homogeneous applied stressσapp (e.g. due to external boundary conditions), the complex

convolution integral σapp ∗ w̃ has to be evaluated. Nevertheless, if the stress gradients

are sufficiently small around the dislocation core it may be sufficient to set σapp ∗ w̃ ≈
σapp.

Example 1.5 (Additional core energy term). Although the cut-off radius rcorecut (or the

spreading parameter a) can be used to calibrate the total energy of a dislocation, the

estimated value might perturb the stress field of the dislocation. This drawback can

be remedied by fixing the core cut-off radius to an educated guess which encompasses

the nonlinear core region (usually O(b)) and adding an additional core contribution

according to (1.56). The total core energy Πcore is assumed to be an integral of the

core energy per unit length W core which depends only on the local line orientation (see

equation (1.58)). Finding the functional structure of W core is a non-trivial task. Here, a

particular simple example, widely used in the DDD community (see, e.g. the works by

Bulatov and Cai (2006); Arsenlis et al. (2007); Fitzgerald and Aubry (2010); Szajewski et al.

(2015)) is discussed which closely resembles the elasticity part. This model is derived in

the following.

Assume a system containing a single dislocation γ. Recall that the elastic energy per unit

length of a dislocation with character angle ϑ within a hollow disk with inner radius

rcorecut and outer radius R is given by (Hirth and Lothe, 1982)

W e = k(C;ϑ) ln

(
R

rcorecut

)
, (1.84)

where k(C;ϑ) is the energy factor which depends on the elastic constants and the character

angle of the dislocation. Under the assumption that the character angle varies smoothly

along γ the total energy Π can be approximated as a line integral over γ (c.f. Bacon et al.,

1980)

Π ≈
∫
γ
W e(s) dC =

∫
γ
k(C;ϑ(s)) ln

(
R

rcorecut

)
dC. (1.85)

3An analytical approximation of w̃ is given in (Cai et al., 2006)
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1.4. Discrete dislocations dynamics

In the following the special case of isotropic solids is considered (for a discussion on

anisotropic solids see Fitzgerald and Aubry, 2010). The energy factor then reads

k(C;ϑ) = k(μ, ν;ϑ) =
μb2

4π

(
sin2 ϑ

1− ν
+ cos2 ϑ

)

=
μ

4π

(
‖b⊥‖2
1− ν

+ ‖b‖‖2
)
,

(1.86)

with the shear modulus μ and the Poisson ratio ν; the vectors b⊥ and b‖ represent the

edge and screw component of the Burgers vector b, respectively. Now assume that the

core cut-off radius is given by rcorecut = r which has been obtained from an atomistic

calculation. The total energy per unit length is then written as

W = W e(r) = k(μ, ν;ϑ) ln

(
R

r

)
. (1.87)

As stated above, it can be beneficial to fix the core cut-off radius to some finite value,

e.g. rcorecut = b,4 such that the far-field behavior, more precisely, the stress field of the

dislocation, remains unaffected. However, the elastic energy alone might not represent

the true atomistic energy anymore. By adding and subtracting the elastic energy due to

rcorecut = b the energy (1.87) can be rearranged as follows

W = W e(r) +W e(b)−W e(b)

= k ln

(
R

r

)
+ k ln

(
R

b

)
− k ln

(
R

b

)
= k ln (R)− k ln (r) + k ln (b)− k ln (b)

= k ln

(
R

b

)
+ k ln

(
b

r

)
.

(1.88)

The first term is nothing but the elastic energy for rcorecut = b. The second term is independent

of R but dependent on the choice of rcorecut and b, the elastic constants and ϑ. A natural

choice is thus to assume that the core energy depends on the character angle in the same

way such that

W core(Ecore; ν;ϑ) = Ecore

(
‖b⊥‖2
1− ν

+ ‖b‖‖2
)
, (1.89)

where Ecore replaces the term (μ/4π) ln (b/rcorecut ).
5 The total energy per unit length then

reads

W = W e(b) +W core(Ecore; ν;ϑ). (1.90)

4this is a common assumption for compact dislocation cores
5This terminology is commonly used in the DDD community (e.g. Bulatov et al., 2006)
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Chapter 1. Modeling plasticity across different length scales

The parameter Ecore must be calibrated to atomistic models. This will be examined in

Section 1.5.4.

In order to compute the forces on the dislocation line due to the additional core energy

contribution first note that a variation in the position vector δs causes an infinitesimal

change only in the direction normal to the dislocation line m. The only parameter in

W core which depends on s is the character angle ϑ and therefore δs = ∂ϑs δϑ = δϑm.

The variation of the total core energy then reads

δΠcore = −
∫
γ

(
(f core)T ·m

)
δϑ dC, (1.91)

where f core = −δsΠcore. In the case of an isotropic elastic solid it can be directly deduced

from (1.89), i.e.

f core = −∂W core(ϑ)

∂ϑ
m = −

(
Ecore 2ν

1− ν
‖b⊥‖‖b‖‖

)
m

= −
(
Ecore 2ν

1− ν
‖b‖‖

)
b⊥,

(1.92)

where ‖b⊥‖m = b⊥.

1.4.4 Informing classical plasticity models from discrete dislocations dynam-

ics simulations

DDD models can be used to characterize the macroscopic behavior due to plastic defor-

mation induced by a collective motion of dislocations (c.f. Figure 1.2 (b)). The output

of DDD simulations can then be used to calibrate continuum/density-based plasticity

models (see Section 1.3.3). To account for a physically correct behavior of the dislocations,

DDD models need to be supplemented with “constitutive” laws dictated by finer-scale

models, e.g. atomistics. The motion of individual dislocations and their long-range

interactions is well-established in the sense that the kinematics (i.e. the slip systems), the

elastic constants and the core energy are reasonably captured by DDD. However, there

exist many situations where a scale-separation between the discrete dislocation and the

atomic scale does not apply. This includes multiple defect interactions such as dislocation

pinning effects induced by precipitation or voids (Bacon et al., 2009), dislocation-crack

interactions etc. One possibility to overcome this issue are concurrent multiscale models

where fully atomistic and elasticity regions exist simultaneously in order to combine

the individual strengths of both models. These methods will be discussed in detail in

Chapter 2 and 3.
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1.5. Atomistic modeling

1.5 Atomistic modeling

1.5.1 Molecular statics

Contrary to the continuum models discussed in the previous sections the topological

space of an atomistic model is a discrete space. That is, instead of evolving a continuous

body the atomistic model only keeps track of a finite number of “material points”, namely

the lattice sites. The properties of the lattice define the nature of the material. Here, the

focus is on crystalline solids such as metals which exhibit a well-defined crystal structure

(lattice structure). Attention is drawn to monoatomic lattices. The computational domain

is then defined as a subset of a Bravais lattice of dimension d

Λ ⊆
{

d∑
i=1

ziai

∣∣∣∣ zi ∈ Z

}
= AZd, (1.93)

where the basis vectors {ai}i=1,...,d, i.e. the column vectors of the matrix A define the

lattice type. The basis vectors are linearly independent such that A is nonsingular. In two

dimensions, typical examples are square and hexagonal lattices which can be defined via

Asq = a0

[
1 0

0 1

]
, Ahex = a0

[
1 1/2

0
√
3/2

]
, (1.94)

where a0 is the lattice constant, i.e. the natural length scale of the material. In three

dimensions, classical examples are face-centered cubic (fcc) and body-centered cubic

(bcc) lattices which can be constructed via

Afcc = a0

⎡
⎢⎣1/2 0 1/2

0 1/2 1/2

1/2 1/2 0

⎤
⎥⎦ , Abcc = a0

⎡
⎢⎣1/2 1/2 1/2

1/2 −1/2 1/2

1/2 1/2 −1/2

⎤
⎥⎦ . (1.95)

The unit cells for fcc and bcc lattices are shown in Figure 1.6 (a). A deformation of the

lattice Λ is described via displacements u ∈ U := {v : Λ → Rd } (possible boundary

conditions will be specified in Section 1.5.3). Every element (atom) ξ ∈ Λ has a site

energy Eξ. It is assumed that the site energy depends on the displacement of atom ξ

relative to all other atoms within its interaction rangeRξ which usually extends over a

few lattice spacings as shown in Figure 1.6 (b) (infinite-range interactions, e.g. Coulomb

interactions, are not considered). This renders the atomistic model nonlocal — but

short-range. This dependence is abbreviated according to {uη −uξ}η∈Rξ\ξ ≡ {uη −uξ}
such that Eξ = Eξ({uη − uξ}), where uξ = u(ξ) and uη = u(η). Examples for Eξ are

given in the following section.

The total energy of the system in terms of the displacements is written as (c.f. Luskin

and Ortner, 2013)

Π(u) = Π0 +Π int(u) +Πext(u), (1.96)
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Figure 1.6: (a) Unit cells for an fcc and a bcc lattice. (b) Schematic illustration of the
interaction rangeRξ of interatomic potentials

where Π0 is the energy of the ground state. For convenience Π0 = 0 is assumed in the

following. The internal and external contributions are then defined as

Π int(u) =
∑
ξ∈Λ

Eξ({uη − uξ}), Πext(u) = −
∑
ξ∈Λ

(f ext
ξ )T · uξ, (1.97)

where f ext(ξ) is an external force. This definition readily includes the entire class of

interatomic many-body potentials. The total energy Π is assumed to be nonlinear and

nonconvex with respect to u. Therefore the atomistic model naturally supports complex

phenomena, i.e. all kinds of crystallographic defects, fracture etc. (c.f. Figure 1.7 (a)).

In molecular statics one seeks for solutions of the optimization problem

u := Arg

{
min
v∈U

Π(v)

}
. (1.98)

In general problem (1.98) is ill-posed due to the nonconvex energy landscape, i.e. multiple

solutions possibly exist. Here, a global optimization of Π is not considered. Rather, one

starts with a suitably chosen initial configuration, e.g. the ideal lattice, subject to an

incrementally applied external loading. Therefore solutions u which solve (1.98) should

be interpreted as local solutions.

The functional derivative of Π(u) at ξ is given by

δξΠ = δξΠ
int + δξΠ

ext =
∂Π int(u)

∂uξ
+

∂Πext(u)

∂uξ

= f ξ − f ext
ξ ,

(1.99)

where f ξ is the internal force on an atom. In the ground state δξΠ
int(0) = 0 holds, i.e.

in the absence of external forces. Solutions to (1.98) solve the Euler-Lagrange equation

Pa

{
f ξ − f ext

ξ = 0 in Λ,

+ boundary conditions.
(1.100)
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It is asserted that the minimizers u are strongly stable in the sense that the second

variation of the energy functional is strictly positive such that

∀v ∈ U \ 0 〈δ2Π(u)v,v〉 > 0. (1.101)

It is then easy to see that solutions to (1.100) are also minimizers of Π .

1.5.2 Interatomic potentials

The choice of the interatomic potential, i.e. the site energy Eξ, underpins the material

behavior at a fundamental level. It is thus key to find an appropriate functional form

which describes the corresponding phenomena such as plasticity and failure. This

process can be thought of as some kind of “constitutive modeling”, similar to classical

continuum mechanics. However, it might be superior to describe it as a calibration to ab

initio calculations (e.g. DFT) since atomistic modeling is a direct approximation of the

Schrödinger equation. The class of interatomic potentials is thus commonly referred to as

(semi-)empirical potentials. A general form of Eξ can be rigorously derived as a sequence

of n-body potential functions whose size equals the total number of atoms in the system

(e.g. Martin, 1975). Most of the time it is yet sufficient to consider only small numbers of

n. Two examples which will be of use in this work are discussed in the following.6

Example 1.6 (Pair potentials). Pair potentials are the simplest type of interatomic po-

tentials. Usually they cannot be employed solely in order to model realistic material

behavior — except for noble gases. However, they are among the most popular toy

models as they are cheap to compute. The site energy of an atom ξ depends only on

pairwise interactions with other atoms in Rξ via a potential function φ(uη − uξ). The

site energy is then given by Eξ({uη − uξ}) = 1/2
∑

η∈Rξ\ξ φ(uη − uξ). The function φ

usually contains an attractive and a repulsive part which becomes dominant if atoms

are far apart or too close together, respectively. One simple pair potential is the Morse

potential (Morse, 1929)

φ(uη − uξ) = De−2a(r(uη−uξ)−r0) − 2De−a(r(uη−uξ)−r0), (1.102)

where r(uη − uξ) = ‖(uη − uξ) + (η − ξ)‖, with D, a and r0 being free parameters. The

Morse potential is illustrated in Figure 1.7 (b).

Example 1.7 (EAM potentials). Pair potentials predict elastic constants which satisfy the

Cauchy relation C12 − C44 = 0, the so-called Cauchy pressure. This relation is intrinsic for

pair potentials. However, for most cubic materials, that is metals, the Cauchy pressure is

non-zero. Hence, pair potentials show their limitation already at the most fundamental

6A great introduction to (semi-)empirical atomistic models can be found in the book of Tadmor and
Miller (2011) which also comprises a large set of references
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Figure 1.7: (a) Schematic illustration of the nonconvex energy landscape of atomistic mod-
els. (b) Morse potential from Example 1.6 as a function of the (here: scalar) differential
displacement

level, i.e. the linear elastic regime. The embedded atom method (EAM Daw and Baskes,

1984) overcomes this limitation by adding an additional term to the site energy, i.e.

Eξ({uη − uξ}) =
1

2

∑
η∈Rξ\ξ

φ(uη − uξ) + F
(
ρ({uη − uξ})

)
, (1.103)

where F is the embedding function which depends on the function ρ given by

ρ({uη − uξ}) =
∑

η∈Rξ\ξ
g(uη − uξ), (1.104)

where g is another function which depends on the differential displacements. The

function ρ is the electron density due to atom ξ which is assumed to be given by a

superposition of the pair-wise contributions g(uη−uξ) from its neighboring atoms inRξ .

The function F represents the required energy to embed ξ into a homogeneous electron

gas. The choice of F is usually physically motivated to mimic the crucial features of the

ab initio model (see Tadmor and Miller, 2011, Chapter 5 for various examples).

1.5.3 Boundary conditions on atomistic problems

The boundary conditions on atomistic problems require special attention. When studying

nanospecimens, e.g. nanobeams (c.f. Figure 1.2 (b)) or nanotubes, the application of

boundary conditions is comparable to PDEs. That is, homogeneous Dirichlet-type

conditions may be imposed to clamp the specimen or Neumann-type conditions to

account for applied forces.

Contrary to classical continuum mechanics, the boundary conditions must be imposed

in a pad region which spans several layers of atoms. This is due to the fact that the
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atomistic model is nonlocal in general and neglecting the additional layers possibly leads

to artificial free surface effects. Care must be taken when choosing the size of the pad

region when using many-body potentials. For the particular case of EAM potentials, the

pad domain must be twice as thick as the cut-off radius of the interatomic potential since

the site energy (1.103) involves an embedding function which depends on the electron

density ρ, which itself depends on another function g(uη − uξ). To see this, consider the

force on an atom ξ derived from the EAM potential from Example 1.7

f ξ =
1

2

∑
ζ∈Rξ

∑
η∈Rζ\ζ

∂φ(uη − uζ)

∂uξ
+

∑
ζ∈Rξ

∂

∂uξ

(
F

( ∑
η∈Rζ\ζ

g(uη − uζ)

))

=
∑

η∈Rξ\ξ

∂φ(uη − uξ)

∂uξ
+

∑
ζ∈Rξ

∂

∂uξ

(
F

( ∑
η∈Rζ\ζ

g(uη − uζ)

))
.

(1.105)

The first term due to the pairwise interactions can be reduced to a form which only

requires the derivatives of φ for all nearest neighbors of ξ. Since the second term depends

on the derivatives of the pair functional F , which depends on the interactions of atom ζ

with all atoms in its rangeRζ via g, with respect to uξ for all atoms in the neighborhood

of ξ, the force on ξ also depends on the positions of the atoms which interact with the

other atoms in its interaction rangeRξ.

Another common application of atomistic models is the investigation of the behavior

of isolated defects, e.g crack tips (brittle/ductile behavior), dislocations (core structure)

etc. For an in-depth understanding of the behavior of defects it is crucial to characterize

their far-field behavior, more precisely, the “regularity” of the solution. Ehrlacher et al.

(2016) have shown that the far-field behavior is accurately described by the following

decay hypothesis:

Hypothesis 1 (Decay hypothesis). Assume that there exists a continuum representation Ω of

Λ (Λ ⊂ Ω) such that u can be continuously extended to u : Ω → Rd. Then, the far-field behavior

of a defect is described by

‖∇iu(x)‖ � ‖x‖1−i−α (i = 0, 1, 2, ...), (1.106)

where the parameter α defines the decay rate of the defect, e.g. α = 1/2 for cracks, α = 1 for

dislocations or α = d for point defects.

A small α gives rise to long-range interactions which are possibly infinite-ranged. For

dislocations it is therefore highly desirable to impose a good predictor of the elastic

far-field on the boundary in order to minimize spurious effects. However, this is not

always possible. For example, if the dislocation moves due to some remote applied stress,

the highly constrained boundary imposes an artificial pinning. This is due to the fact that

a dislocation moves over long distances, even when subject to rather low applied stresses.
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Chapter 1. Modeling plasticity across different length scales

Hence, small deviations in the boundary conditions can have a large impact on the final

result. Periodic boundary conditions (e.g. Osetsky and Bacon, 2003) which provide a

“softer” interface in comparison with clamped boundary conditions can overcome this

problem only partially. This motivates the construction of atomistic/continuum (A/C)

coupling schemes which improve the accuracy while being substantially more efficient

than fully, necessarily larger atomistic calculations. Moreover, A/C coupling methods

can exhibit superior convergence rates over clamped boundary conditions as shown by

Ehrlacher et al. (2016).

So-called “flexible boundary conditions” which can adjust to the displacements of the

atoms near the interface are discussed in detail in Chapter 2 and Chapter 3. In Section

3.8 a flexible Green function method will be introduced which updates the boundary

condition according to the current position of the defect, thus allowing the atoms to evolve

further. A more general coupling scheme is pursued in Chapter 2 where the atomistic

domain is truly coupled to an elasticity problem. This makes the boundary condition

independent of the placement of the defect. Numerical examples will be presented in

Section 4.1.

1.5.4 Calibration of the dislocation core energy to atomistic results

As outlined in Section 1.4.4 the DDD model relies on atomistic data. For the quasi-static

problem in Section 1.4.2 (no dislocation nucleation etc.) it yet suffices to calibrate the

dislocation core energy to atomistics. In principle it is also necessary to determine the

Peierls barrier, however, in all examples considered throughout this work the applied

stress is much higher than the Peierls stress such that a calibration is not essential. In the

following the continuum energy is assumed to be of the form (1.56) and the core energy

density W core (:= core energy per unit length) which depends on the scalar parameter

Ecore is given by (1.89). An isolated edge dislocation is chosen as a representative

configuration.

For a straight dislocation the elastic energy per unit length in a hollow disk with a given

inner radius rcorecut (the core cut-off radius) and outer radius R as predicted by the singular

core model (Example 1.3) is given by

W e(R, rcorecut ) = k ln

(
R

rcorecut

)
, (1.107)

where k is the energy factor. For an edge dislocation it is given by

k =
μb2

4π(1− ν)
. (1.108)
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1.5. Atomistic modeling

It is assumed that the true atomistic energy per unit length of the dislocation is asymptoti-

cally equivalent to the continuum energy in the sense that

W a(R) ∼W c(R) = W e(R, rcorecut ) +W core(Ecore(rcorecut )) as R→∞, (1.109)

with

W core(Ecore(rcorecut )) =
Ecore(rcorecut )b

2

(1− ν)
, (1.110)

where W core has an implicit dependence on the core cut-off through Ecore. In the limiting

case the core energy density is obtained as

W core(Ecore(rcorecut )) = lim
R→∞

(
W a(R)− k ln

(
R

rcorecut

))
(1.111)

from which the parameter Ecore can be deduced. In practice this is done by selecting a

large enough R and computing the energy difference 1.111. For the particular case of an

fcc aluminum potential Ecore is plotted in Figure 1.8 (a) for an increasing outer radius R.

For larger R the parameter becomes essentially a constant as presumed. The estimated

Ecore is then plugged into W core. In Figure 1.8 (b) it is shown that the continuum energy

approximates the atomistic energy very well for R ≥ 2rcorecut .
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Figure 1.8: (a) Ecore as a function of the outer radius R. (b) Total atomistic, elastic and
continuum (:= elastic + core contribution) energies vs. ln (R/rcorecut )

Note that the precise choice Ecore is not unique and depends on the core cut-off radius.

But, the continuum energy is independent of rcorecut . At first this may suggest that the core

cut-off radius is arbitrary. However, the choice of rcorecut influences the value of the Cauchy

stress and thus the Peach-Koehler force. Choosing rcorecut much larger than the core radius

of the real atomistic core, i.e. the regime where nonlinear/nonlocal interactions dominate,
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Chapter 1. Modeling plasticity across different length scales

may perturb the far-field behavior. For partial dislocations (i.e. dislocations with a spread

core) an educated choice is rcorecut ≈half the stacking fault width (c.f. Szajewski et al., 2015).

Remark 1.5.1. The core energy model can also be used in combination with nonsingular elasticity

(Example 1.4). In this case the elastic energy for an edge dislocation takes the form (Cai et al.,

2006)

W e
ns(R, a) =

μb2

4π(1− ν)

(
ln

(
R

a

)
− (2 + ν)

12(1− ν)

)
+O

(
a2

R2

)
. (1.112)

For large R the elastic energy can then be written as a sum of (1.107) and a correction

W e
ns(R, a) ∼W e(R, rcorecut ) +ΔW e

ns(a, r
core
cut ), (1.113)

where

ΔW e
ns(a, r

core
cut ) = lim

R→∞
(W e

ns(R, a)−W e(R, rcorecut ))

=
μb2

4π(1− ν)

(
ln

(
rcorecut

a

)
− (2 + ν)

12(1− ν)

)

= k

(
ln

(
rcorecut

a

)
− (2 + ν)

12(1− ν)

)
.

(1.114)

The choice of a should be in the same range as rcorecut , i.e. half the width of the stacking fault

(Szajewski et al., 2015).
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2 Flexible boundary conditions for

atomistic problems

2.1 Introduction

Atomistic simulations are limited in time and size and are usually highly ill-conditioned

in the sense that small errors in the input/boundary data may have large effects on the

final result. One example is the propagation of defects through the material which are

usually created due to rather high applied stresses but move under relatively low stresses

(several orders of magnitude difference). The most widely-used approach is to restrict

atomic resolution to a finite domain and apply boundary conditions (in general: free,

clamped or periodic; c.f. Section 1.5.3). Many problems, however, require the atomistic

problem to be independent of the precise choice of the boundary since non-negligible

image forces can perturb the final results (for an example involving bowing dislocations

see Szajewski and Curtin, 2015). Choosing the boundary sufficiently far away from the

region of interest results in vast computational cost (e.g. Möller and Bitzek, 2015), even

on state-of-the-art supercomputers.

In the 1970s Sinclair and co-workers introduced a method based on lattice Green functions

(LGFs), so-called flexible boundary conditions, in a series of papers (Sinclair, 1971; Sinclair

et al., 1978) which partitions the lattice into an anharmonic atomistic region (region 1),

containing the defect(s), surrounded by a harmonic (continuum elasticity) region (region

2), as shown in Figure 2.1. In comparison with other quasicontinuum (QC) approaches

(e.g. Tadmor et al., 1996; Knap and Ortiz, 2001; Miller and Tadmor, 2009; Amelang et al.,

2015) it does not require an explicit discretization of the continuum domain and therefore

does not introduce any error due to mesh coarsening. To date, Sinclair’s method and its

successors have been successfully applied to dislocation and crack problems (see Tewary,

1973; Sinclair, 1975; Sinclair et al., 1978; Gallego and Ortiz, 1993; Rao et al., 1998; Li, 2009)

but not to moving defects, e.g. dislocation-obstacle interactions, crack propagation etc.

These problems require large system sizes which are prohibitive due to the dense system

matrices, used to update the harmonic solution in the interior and the pad region, which

arise from the long-range nature of the LGF. More efficient methods have been proposed,
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Chapter 2. Flexible boundary conditions for atomistic problems

e.g. by Yavari et al. (2007); Pastewka et al. (2012), but they require special periodicity

assumptions on the geometry such that the system matrices admit a certain structure

(e.g. block-Toeplitz) which can be exploited.

Figure 2.1: Partition of an atomistic domain in parts which contain material defects and
parts which undergo small deformations

Only recently, these issues have been overcome by Hodapp et al. (2018c) who were

first to observe that the harmonic solution is merely an initial guess to the atomistic

problem and can be conveniently neglected since the harmonic part is already contained

in the nonlinear interatomic potential. Their modified version of Sinclair’s method thus

requires only the pad atoms near the artificial interface to be updated during one iteration.

The still existing bottleneck of memory consumption has been resolved using hierarchical

approximations of the system matrices which admit a block-wise low-rank structure,

thanks to the asymptotic smoothness of the LGF (c.f. Hackbusch, 1999). This reduces the

former dense problem of quadratic complexity to one with linear-logarithmic complexity.

In addition, it was found in (Hodapp et al., 2018c) that Sinclair’s iteration equation

for the displacements leads, upon convergence, to a boundary summation equation (a

discrete variant of the boundary integral equation, c.f. Brebbia, 1978). The boundary

summation equation yields a discrete boundary element method (DBEM) which can

be employed to formulate a coupled system of equations which solves simultaneously

for all unknowns.

In the following Sinclair’s method and the atomistic/DBEM coupling will be derived for

infinite problems. However, an extension to bounded domains will also be presented

(Section 2.5.4). Their implementation and several numerical solution algorithms, in-

cluding a monolithic Newton-Krylov solver for the atomistic/DBEM coupling, are then

described in detail in Section 2.6 and 2.7.

2.2 Problem statement

The fully atomistic reference problem will be defined in the following. First, assume

that the computational domain is an infinite Bravais lattice Λ = AZd (c.f. Section 1.5.1).

44



2.3. Force-based atomistic/continuum coupling

Further, it is asserted that d = 2 or 3 in the remainder of this Chapter. The space of

admissible displacements is now defined as U�(Λ) := [l2(Λ)]d. This definition ensures

that u(ξ)→ 0 as ‖ξ‖ → ∞.1 Note the equivalence relation u ∼ u+ c, with c ∈ Rd, i.e.

lattice properties are invariant under rigid body shifts. Otherwise the definition of the

site energy and the total energy functional from Section 1.5.1 remain the same.

The optimization problem is then defined as follows

u := Arg

{
min
v∈U�

Π(v)

}
. (2.1)

The Euler-Lagrange equation corresponding to (2.1) is given by

Pa : L[u](ξ) = f ext(ξ) in Λ, (2.2)

where the bijective nonlinear operator L is defined as

L : U�(Λ)→ U�(Λ)

u �→ L[u] such that ∀ ξ ∈ Λ L[u](ξ) = δξΠ
int = f ξ.

(2.3)

In the following the arguments will be dropped if not explicit required.

In addition, the usual strong stability conditions on the minimizers u are presumed, i.e.

positivity of the second variation of the energy functional such that

∀v ∈ U� \ 0 〈δ2Π int(u)v,v〉 > 0. (2.4)

2.3 Force-based atomistic/continuum coupling

2.3.1 Linearization of the atomistic model

The optimization problem (2.1) is infinite dimensional and usually not computable if

Π is nonlinear (which is the case for all realistic interatomic potentials). A common

approximation is thus to assume nonlinearity only in some finite, fully atomistic, region,

e.g. around the defect core. Outside this region the crystal is assumed to behave linearly.

Therefore a linearization of Π is derived which is subsequently used in Section 2.3.3 in

order to define the domain partitioning.

In the following it is assumed that gradients are sufficiently small such that a linearization

of Π with respect to the deformation is admissible. A Taylor expansion of Π to second

order yields the harmonic approximation

Π(u) ≈ Πnle(u) =
∑
ξ∈Λ

δξΠ(0) · uξ +
1

2

∑
ξ∈Λ

∑
η∈Rξ

K(ξ − η) · (uξ ⊗ uη). (2.5)

1This avoids further technicalities due the loss of uniqueness of the solution when u does not vanish at
infinity
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Chapter 2. Flexible boundary conditions for atomistic problems

where K(ξ−η) = δ2ξηΠ(0) is the interatomic force constant tensor (or nodal stiffness tensor

in engineering notation). The quantity Πnle(u) is denoted as the nonlocal elastic energy

functional.

The Euler-Lagrange equation corresponding to the harmonic problem can then be readily

obtained as

Lnle[u] = f ext in Λ, with Lnle[•] =
∑
η∈Rξ

K(ξ − η) • (η), (2.6)

where Lnle is a linear operator since K is evaluated in the ground state and does not

depend on u.

If the deformation is close to homogeneous one can consider a linearization of u. There-

fore it is asserted that u can be continuously extended to u : Rd → Rd. Further, assume

that u(x) is sufficiently smooth for all x ∈ Rd which allows to define its gradient ∇u(x).

A Taylor expansion to first order then yields

uη ≈ uξ +∇u(ξ)(η − ξ) (2.7)

which is commonly referred to as the Cauchy-Born approximation.

The two approaches can be combined, recognizing that the second term in (2.5) can be

written as (summation by parts)

∑
ξ∈Λ

∑
η∈Rξ

K(ξ−η)·(uξ⊗uη) =
∑
ξ∈Λ

∑
η∈Rξ\ξ

∑
ζ∈Rξ\ξ

∂2
ηζEξ(0)·

(
(uη−uξ)⊗(uζ−uξ)

)
, (2.8)

where ∂2
ηζEξ(0) =

∂2Eξ
∂uη∂uζ

∣∣∣
0
, which is obtained by expanding the site energy instead of

the total energy. Using (2.7) in (2.8) one can write

Πnle(u) ≈ Πe(u)

=
1

2

∑
ξ∈Λ

∑
η∈Rξ\ξ

∑
ζ∈Rξ\ξ

∂2
ηζEξ(0) ·

(
(∇u(ξ)(η − ξ))⊗ (∇u(ξ)(ζ − ξ))

)

=
1

2

∑
ξ∈Λ

⎛
⎝ ∑

η∈Rξ\ξ

∑
ζ∈Rξ\ξ

∂2
ηζEξ(0)�

(
(η − ξ)⊗ (ζ − ξ)

)⎞
⎠ ·

(
∇u(ξ)⊗∇u(ξ)

)
,

(2.9)

where the product � between two second order tensors A, B is defined as A�B =

AikBjlei ⊗ ej ⊗ ek ⊗ el. Note that the term in the big parenthesis is nothing but the

fourth-order elasticity tensor

C =
∑

η∈Rξ\ξ

∑
ζ∈Rξ\ξ

∂2
ηζEξ(0)�

(
(η − ξ)⊗ (ζ − ξ)

)
. (2.10)
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2.3. Force-based atomistic/continuum coupling

This yields the classical definition of the linear elastic energy

Πe(u) =
1

2

∑
ξ∈Λ

C · (∇u(ξ)⊗∇u(ξ)) (2.11)

similar to that of a continuous body.

In practice it is usually convenient to define a piecewise constant gradient. That is,

the ideal lattice is partitioned into a periodic set of simplexes and an interpolant ϕξ ∈
H1(Rd)∩C0(Rd) with compact support on a setRloc

ξ ⊂ Rξ is defined which spans to the

nearest neighbors in the adjacent simplexes. Several examples for various lattice types

are given in Appendix A.4.2 which will be used in Section 4.1.1 and 4.1.2. The atomic

displacement field and its gradient can then be defined ∀x ∈ Rd as

u(x) =
∑

ξ∈Rloc
ξ

ϕξ(x)uξ, ∇u(x) =
∑

ξ∈Rloc
ξ

uξ ⊗∇ϕξ(x). (2.12)

The energy can then be written in a format similar to the pure discrete case (2.5)

Πe(u) ≈
1

2

∑
ξ∈Λ

∑
η∈Rloc

ξ

Ke(ξ − η) · (uξ ⊗ uη), (2.13)

with

Ke
ik(ξ − η) =

∑
ζ∈Rloc

ξ

Cijkl

(
∇ϕη(x)

)
j

(
∇ϕζ(x)

)
l
. (2.14)

Thanks to the definition of the gradient the associated Euler-Lagrange reads

Le[u] = f ext in Λ, with Le[•] =
∑

η∈Rloc
ξ

Ke(ξ − η) • (η). (2.15)

Generally, Lh is referred to as a harmonic operator, that is to either Le or Lnle.

If the displacement gradient is defined via (2.12) one may think of Λ as “continuum”-like.

This definition will be liberally used in the following.

2.3.2 Lattice Green function

Consider the harmonic problem

Lh[u] = f ext in Λ. (2.16)

If f ext is a unit point force, a solution to (2.16) can be computed by means of Fourier

transforms (c.f. Appendix A.4.1). The displacement ui due to a point force in direction
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j is denoted as the lattice Green function Glgf
ij which generates the lattice Green tensor

Glgf(ξ) ∈ Rd×d. The definition of Glgf allows to compute the solution for general right

hand sides f ext. For this purpose the lattice Green operator is defined as

G : U�(Λ)→ U�(Λ)

f ext �→ G[f ext] such that ∀ ξ ∈ Λ G[f ext](ξ) = uξ,
(2.17)

with

G[•] =
∑
η∈Λ

Glgf(ξ − η) • (η). (2.18)

Use will frequently be made of the identity relation

G = L−1
h ⇒ (GLh)[u] = I[u] (2.19)

in the following sections, where I is the identity operator such that ∀ ξ ∈ Λ

I[u](ξ) =
∑
η∈Λ

δ(ξ− η)u(η) = u(ξ), with δ(ξ− η) =

{
1 if ξ = η,

0 else.
(2.20)

Throughout the remainder of this work it is assumed that G is given.

2.3.3 Domain decomposition

The A/C coupling scheme will now be defined. First, the entire lattice is split into a

finite inner part Λa ⊂ Λ (the atomistic domain) and an outer infinite continuum domain

Λc := Λ \ Λa. The outermost atomic layer is denoted as the interface region Λi ⊂ Λa as

indicated by the continuous line in Figure 2.2. Henceforth the number of atoms in each

subset Λ• of Λ is referred to as N• = #Λ•, i.e. Na = #Λa, N i = #Λi etc.

The energy in the atomistic domain is given by (1.96) and the linearized continuum

energy relates to (2.11). Real atoms in Λa therefore possibly behave fully nonlinear and

nonlocal and consequently interact with virtual pad atoms in Λp ⊂ Λc (see Figure 2.2 (Pa))

which are driven by the continuum solution. On the other hand, since the continuum

problem is linear and local, only the virtual atoms in Λi� ⊆ Λp interact with real atoms,

namely the interface atoms in Λi, as shown in Figure 2.2 (Pc).

Remark 2.3.1. It is explicitly noted that the proposed method is general in the sense that nonlocal

harmonic interactions are not excluded per se. In fact, all following derivations translate verbatim

to nonlocal elasticity — only the width of the interface regions, e.g. Λi�, change. For example,

if the linearized problem is fully nonlocal (i.e. excluding the Cauchy-Born approximation) the

energy in Λc is given by (2.5) and the domains Λp and Λi� are always equivalent.
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Figure 2.2: Schematic illustration of the problem decomposition (2.21) into a finite
nonlocal/nonlinear atomistic region (here: third nearest neighbor interactions) and an
infinite but local/linear continuum bulk region (the domain Λi will be defined in Section
2.5.2)

A classical force-based coupling between the two domains is asserted (see e.g. Tadmor

and Miller, 2011). The coupled problem can then be stated: find u such that{
Pa : La[u] = f ext in Λa,

Pc : Lc
h[u] = 0 in Λc

(2.21)

in the absence of body forces in Λc. Problem (2.21) is still not very convenient to solve

as it is infinite dimensional. In what follows, therefore, use is made of Green function

techniques to reduce the solution space to finite dimensions by projecting u to the space

of admissible solutions, aka. that fulfill the balance equations in Λc \ Λi (a discrete

variant of the Caldéron operator).

2.4 Revisiting Sinclair’s method

In the 1970s Sinclair and co-workers (Sinclair, 1971; Sinclair et al., 1978) introduced a

practical method to solve (2.21) using the Green operator in order to compute a harmonic

solution in the entire domain which counteracts inhomogeneous forces which build up

at the artificial interface, more precisely, on the virtual pad atoms in Λi . All real and pad

atoms are then displaced according to the harmonic solution. The steps are repeated

until convergence is attained. In this section a new derivation of the method is presented

which is more general and subsequently motivates the definition of a discrete boundary

element method (DBEM).

First, the energy is split into a harmonic and an anharmonic contribution, i.e.

Π(u) = Πh(u) +Πah(u), where Πah(u) = Π(u)−Πh(u). (2.22)
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A solution to (2.21) can then be obtained by optimizing Πh and Πah separately. The

following additive split can be admitted for the operator as well as for the displacement

L = Lh + Lah, (2.23)

u = uh + uah. (2.24)

For convenience, and thanks to the linearity of the harmonic operator Lh, one may define

the following operators per subdomain

La/a
h : U�(Λa)→ U�(Λa), La/c

h : U�(Λc)→ U�(Λa), (2.25)

Lc/a
h : U�(Λa)→ U�(Λc), Lc/c

h : U�(Λc)→ U�(Λc). (2.26)

The coupling operators La/c
h and Lc/a

h satisfy the following relations ∀v ∈ U�

La/c
h [v] = 0 in Λa \ Λi, La/c\i�

h [v] = 0 in Λi, (2.27)

Lc/a
h [v] = 0 in Λc \ Λi�, Lc/a\i

h [v] = 0 in Λi� (2.28)

which follow from the domain decomposition introduced in the previous section (i.e.

displacements of continuum nodesΛc\Λi� away from the interface do not exert a harmonic

force in the atomistic region and vice versa).2

Using (2.23) and (2.24) one can simply re-write the coupled problem as

L[u] = Lh[uh] + Lh[uah] + Lah[u] =

(
f ext

0

)
. (2.29)

This not very attractive from a computational point of view since the anharmonic operator

Lah is not built in practice. Equation (2.23) permits to obtain

Lah[u] = L[u]− Lh[u] (2.30)

and the equivalent problem (2.21) formulation

Lh[uh] + Lh[uah] + L[u]− Lh[u] =

(
f ext

0

)
. (2.31)

To obtain Sinclair’s splitting, note the following notations

Lh =

(
La
h

Lc
h

)
=

(
La/a
h La/c

h

Lc/a
h Lc/c

h

)
⇒ Lh[uah] =

(
La/a
h [uah]

Lc/a
h [uah]

)
, (2.32)

2The superscripts of La/c\i�
h and Lc/a\i

h after the forward slash indicate that the operator only acts on
displacements in Λc \ Λi� and Λa \ Λi

50



2.4. Revisiting Sinclair’s method

[S1] Initialize ua
1 = uh,1 to a convenient analytical solution (or null if not available)

and uah,0 = 0. Set i = 1.

[S2] If i > 1 solve the harmonic problem. Using ua
ah,i−1, obtain forces Lc/a

h [ua
ah,i−1]

near the interface such that the problem reads: find uh,i such that(
La/a
h La/c

h

Lc/a
h Lc/c

h

) [
ua
h,i

uc
i

]
=

(
f ext

−Lc/a
h [ua

ah,i−1]

)
. (2.35)

[S3] Next, "freeze" uh and solve the anharmonic problem, i.e. find ua
i such that

La[ui] = La/a
h [ua

h,i] + L
a/c
h [uc

i ] (2.36)

and set ua
ah,i = ua

i − ua
h,i.

3

[S4] Check if

‖Lc/a
h [ua

ah,i − ua
ah,i−1]‖U� < TOL. (2.37)

If not converged→ set i = i+ 1 and go back to step [S2].

Figure 2.3: Abstract formulation of Sinclair’s algorithm

since uc
ah = 0, such that (2.31) can be re-arranged as follows

Lh[uh] +

(
0

Lc/a
h [uah]

)
+ L[u]− Lh[u] +

(
La/a
h [uah]

0

)
=

(
f ext

0

)
. (2.33)

Using the fact that Lc
h[u] = 0 and grouping some terms the operator split as derived by

Sinclair et al. (1978) is obtained(
La/a
h La/c

h

Lc/a
h Lc

h

) [
ua
h

uc

]
−

(
f ext

−Lc/a
h [ua

ah]

)
︸ ︷︷ ︸

(H)

+

(
La[u]

0

)
−

(
La/a
h [ua

h]+L
a/c
h [uc]

0

)
︸ ︷︷ ︸

(AH)

=

(
0

0

)
, (2.34)

where the harmonic problem (H) and the anharmonic problem (AH) are coupled through

the interface and pad displacements, respectively. Note that the problems (H) and (AH)

could have been equivalently deduced by differentiating the corresponding energy

contributions in (2.22). This operator split was termed flexible boundary conditions since

3The initial guess may not be exact, i.e. when using solutions to a corresponding continuous problem

which are not the exact solutions to the lattice problem. Nevertheless one usually sets La/a
h [ua

h,i]+La/c
h [uc

i ] =
f ext in practice
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Chapter 2. Flexible boundary conditions for atomistic problems

the boundary evolves according to linear elasticity — contrary to clamped displacements

in Λc. The basic solution procedure consists of the steps given in Figure 2.3.

This method effectively decouples the anharmonic atomistic problem from the pure

harmonic problem. The atomistic problem in [S3] is usually solved via a nonlinear solver,

e.g. a nonlinear conjugate gradient method. On the other hand, the solution of the

harmonic problem in [S2] is obtained by application of the Green operator such that(
ua
h,i

uc
i

)
=

(
Ga/a Ga/c

Gc/a Gc/c

) [
f ext

−Lc/a
h [ua

ah,i−1]

]
. (2.38)

However, since [S2] was solved in the previous step, it follows(
ua
h,i−1

uc
i−1

)
=

(
Ga/a Ga/c

Gc/a Gc/c

) [
f ext

−Lc/a
h [ua

ah,i−2]

]
(2.39)

which allows to formulate the convenient incremental formula(
ua
h,i

uc
i

)
=

(
ua
h,i−1

uc
i−1

)
−

(
Ga/a Ga/c

Gc/a Gc/c

) [
0

Lc/a
h [Δua

ah,i−2]

]
. (2.40)

Here, the notation of (Sinclair et al., 1978) is adopted, i.e. f c
inh,i is referred to as an

inhomogeneous force

f c
inh,i = L

c/a
h [Δua

ah,i−2]. (2.41)

In order explain the origin of this name, note that equation (2.35) at step i− 1 gives in

particular

Lc/a
h [ua

h,i−1] + L
c/c
h [uc

i−1] = −L
c/a
h [ua

ah,i−2] (2.42)

and adding Lc/a
h [ua

h,i−1] to (2.42), the inhomogeneous force can be rewritten as

f c
inh,i = L

c/a
h [ua

i−1] + L
c/c
h [uc

i−1]. (2.43)

The idea is to solve (2.35) by computing a force being equal and opposite to this inho-

mogeneous force which is the sum of the forces produced by atomic and continuum

displacements, evaluated on the entire continuum (at convergence this force vanishes).

Hence, the minus sign on the right hand side of (2.40) appears due to the fact that one

seeks for displacements corresponding to a force which counteracts f c
inh.

As such the presented equations are all infinite dimensional. According to (2.28) only

f i�
inh,i = Li�/i

h [Δui
ah,i−2] needs to be computed in practice to operate on a finite dimen-

sional space. Furthermore, it is pointed out that the harmonic solution ua
h,i mainly

serves as an initial guess to the atomistic problem in [S3]. However, the initial guess
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2.5. Discrete boundary element method for atomistic/continuum coupling

to the harmonic part should not affect the final solution ua
i . Therefore it can be conve-

niently neglected, thus saving computational resources (c.f. Section 2.6). Hence, only the

continuum displacements are updated with the iteration equation

up
i = up

i−1 − Gp/i�[f i�
inh,i]. (2.44)

The convergence behavior largely depends on the quality of the initial guess (c.f. Section

4.1.1 and 4.1.2). More precisely, if uh is close to the full solution Sinclair’s method

converges rapidly within a few iterations. Otherwise, if the anharmonic contribution is

large, the staggered procedure may become a bottleneck.

2.5 Discrete boundary element method for atomistic/continuum

coupling

2.5.1 Rigorous derivation of a boundary summation equation for the appli-

cation to monolithic solvers

Despite the simplicity of staggered algorithms, monolithic solution procedures which

iterate simultaneously on all unknowns are usually preferable with respect to computa-

tional efficiency. Therefore an update of the continuum displacements up that accounts

for displacements on the atomistic interface Λi is sought-after. Such an update will be

applied together with the iterations of the non-linear solver.

A priori, the equation (2.44) is a natural candidate as it was used to solve the harmonic sub-

problem [S2]. Furthermore, only a single matrix-vector multiplication (2.44) is necessary,

and it can be computed efficiently (c.f. Section 2.6). However, it is demonstrated in

this section that using (2.44) in a monolithic scheme can lead to unstable solutions

because of the structure of the problem. To be convinced of this, one can consider that

(2.44) optimizes Πh by construction, whereas the coupled problem is not an energy

minimization scheme (it is a “force based” coupling method).

What is really needed is an update up such that the continuum problem Pc is actually

solved (i.e. an optimization of Πc) for a given ui. One straight forward possibility to

solve Pc could be obtained by interpreting (2.40) as a fixed point iteration. To see this,

consider the expression (2.40) expanded with (2.43)

uc
i = uc

i−1 − (Gc/cLc/a
h )[ua

i ]− (Gc/cLc/c
h )[uc

i−1]. (2.45)

Taking the limit lim
i→∞

‖uc
i − uc

i−1‖ = 0 will give a property satisfied at convergence

(Gc/cLc/c
h )[uc] = −(Gc/cLc/a

h )[ua], (2.46)
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with the fixed point uc, which solves (2.21) since it is equivalent as saying that the

inhomogeneous forces are zero, by construction. However, the composition Gc/cLc/c
h is

usually not symmetric and possibly indefinite for reasons that will become clear later.

Hence, a fixed point algorithm based on this iteration is generally ill-posed, especially in

light of the following proposition:

Proposition 1. The incremental displacement update (2.45) satisfies the iteration equation of a

gradient descent method, i.e.

uc
i = uc

i−1 − α∇wΠc(uc
i−1), (2.47)

with α = 1, where ∇w• refers to the gradient with respect to the weighted inner product space

defined by

〈•, •〉w : U� × U� → R | (u,v) = 〈L̃c/c[u],v〉U� , (2.48)

with L̃c/c = (Gc/c)−1.

Proof. First, recall that the continuum energy can be written as

Πc(u) =
1

2
〈Lc

h[u
c],uc〉U� + 〈Lc/a

h [ua],uc〉U� . (2.49)

From (2.49) it follows

∀v ∈ U� 〈∇Πc(uc),v〉U� = 〈Lc/c
h [uc] + Lc/a

h [ua],v〉U� . (2.50)

The definition of a gradient requires that

∀v ∈ U� 〈∇Πc(uc),v〉U� = 〈∇wΠc(uc),v〉w. (2.51)

Thus, the only possibility for (2.51) to hold is that

∇wΠc(uc) = Gc/c[Lc/a
h [ua]] + Gc/c[Lc/c

h [uc]]. (2.52)

Plugging the latter into (2.47) proves the stated proposition.

Proposition 1 demonstrates that (2.45) is a gradient descent iteration. However, (2.46) is

rather a root finding problem, which is linear and thus equivalent to the minimization of

a quadratic form. Its structure depends on Gc/cLc/c
h : if not positive definite the quadratic

form does not possess a minimum and the solution can not be obtained via a gradient

descent method. A novel approach, not being based on (2.45), has to be employed to

solve (2.46). This calls for more general minimal residual methods.

Therefore a practical variant of (2.46) is now developed such that the pad displacements

can be obtained with an appropriate iteration method. An expression of finite dimension
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2.5. Discrete boundary element method for atomistic/continuum coupling

will be derived, aka. involving degrees of freedom in Λi� instead of the whole continuum

space.

Proposition 2 (Boundary summation equation). Assume fixed interface displacements ui.

Under the assumption that Gc/c and Lc/c
h are nonsingular the composition Gc/cLc/c

h is also

nonsingular. Then a unique solution uc to Pc exists which satisfies

uc(ξ) = Fc/i�[ui�](ξ)− Gc/i�[f i�](ξ) in Λc, (2.53)

Here, Fc/i� = Gc/iLi/i�
h is a composition operator defined by

Fc/i�[ui�](ξ) =
∑
η∈Λi�

F (ξ−η)u(η), F (ξ−η) =
∑
ζ∈Λi

Glgf(ξ− ζ)K(ζ−η) (2.54)

and

Gc/i�[f i�](ξ) =
∑
η∈Λi�

Glgf(ξ − η)f(η), f(η) =
∑
ζ∈Λi

K(η − ζ)u(ζ). (2.55)

Proof. From the definition of the Green operator and the domain decomposition the

following identities are obtained

Ga/aLa/a
h + Ga/cLc/a

h = I, Ga/aLa/c
h + Ga/cLc/c

h = 0,

Gc/aLa/a
h + Gc/cLc/a

h = 0, Gc/aLa/c
h + Gc/cLc/c

h = I.
(2.56)

From the last identity it follows

Gc/cLc/c
h = I − Gc/aLa/c

h . (2.57)

and therefore (2.46) can be re-written as

(I − Gc/aLa/c
h )[uc] = −(Gc/cLc/a

h )[ua]. (2.58)

The latter format acts on the entire displacement vectors, i.e. on an infinite dimensional

space.

In order to reduce the continuum space to Λi�, the property (2.27) can be used such that

(Gc/aLa/c
h )[uc] = Gc/a[La/c

h [uc]] = Gc/a[La/i�
h [ui�]] = (Gc/iLi/i�

h )[ui�]. (2.59)

For similar reasons one can write the right hand side of (2.58) by using (2.28) as

(Gc/cLc/a
h )[ua] = Gc/c[Lc/a

h [ua]] = Gc/c[Lc/i
h [ui]] = (Gc/i�Li�/i

h )[ui]. (2.60)

Now the reduced boundary equation reads

I[uc]− (Gc/iLi/i�
h )[ui�] = −(Gc/i�Li�/i

h )[ui] in Λc. (2.61)
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With (2.54) and (2.55) the composition operator on the left hand side can be written as

Gc/iLi/i�
h = Fc/i�. In addition, it holds Li�/i

h [ui] = f i�. Plugging Fc/i� and f i� into (2.61)

and re-arranging the terms (2.53) is obtained.

Remark 2.5.1. Equation (2.53) can be considered as a discrete equivalent of the well-known

boundary integral equation (BIE)

u(x) =

∫
Γ
T cgf(x− x′)u(x′) dA(x′)−

∫
Γ
Gcgf(x− x′)t(x′) dA(x′) (2.62)

for continuous problems. Here, T cgf and Gcgf refer to the fundamental tractions/displacements

on the boundary Γ (≡ Λi�), respectively, t are the applied tractions on Γ and u are the unknowns

which are sought-after. The connection between T cgf , Gcgf and their discrete analogs F , Glgf is

obvious.

The boundary summation equation (BSE) permits to compute the whole displacement

in Λc from the displacements and forces in Λi� under the assumption of equilibrium. In

particular, it can therefore provide an expression for the displacements of the pad atoms

in Λp, and as such provide the basis for a monolithic solution procedure. Recall that

updating up jointly within the iteration of the nonlinear atomic solver is the ultimate

goal, which will be done thanks to (2.53). However, one has to provide the displacements

and forces in the i� layer. While f i� = Li�/i
h [ui] depend on atomic displacements in Λi,

the displacements ui� have to be calculated in order to employ (2.53) to compute the

pad displacements. Since (2.53) also holds in Λi�, it will be used to construct the linear

problem that can provide ui�. Such as procedure is summarized below:

1. Compute the displacements in Λi� due to ui according to

ũi� = Gi�/i�[f i�] = Gi�/i�[Li�/i
h [ui]]. (2.63)

2. Compute the true displacements ui� by solving

(I − F i�/i�)[ui�] = −ũi� in Λi�. (2.64)

The corresponding linear system comes from (2.53) and contains N i� unknowns.

3. Determine the remaining pad displacements up\i� using (2.53), i.e. compute

up\i� = Fp\i�/i�[ui�]− Gp\i�/i�[f i�] in Λp \ Λi�. (2.65)

This boils down to a matrix-vector multiplication with complexity of O(Np\i�N i�).

The steps 1-3 provide a means to compute the pad displacements within a finite number

of operations. More precisely, the linear system which has to be solved in step 2 is now
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2.5. Discrete boundary element method for atomistic/continuum coupling

finite dimensional in comparison with (2.46) which is infinite. The computation of the

linear system requires further discussion. According to Remark 2.5.1 one may think of

the composition operator F i�/i� = Gi�/iLi/i�
h as a discrete analog to the traction operator

T cgf . Noting that Glgf(ξ−ζ) = Glgf(ζ−ξ), the tensor F (ξ−η) can be interpreted as the

force (per unit force) exerted on an atom η by displacements in Λi due to a point force

on ξ. In general F i�/i� is not symmetric for similar reasons that T cgf is not symmetric in

the continuous case (e.g. Bonnet et al., 1998; Sutradhar et al., 2008) in the sense that

∀ui� ∃v ∈ U�(Λi�) such that 〈(Gi�/iLi/i�
h )[ui�],v〉 �= 〈ui�, (Li�/i

h Gi/i�)[v]〉, (2.66)

where Li�/i
h Gi/i� is the adjoint of F i�/i�.

This lack of symmetry applies with exceptions for special geometrical cases for the

fully atomistic region, e.g. with translational invariant interfaces, for instance within

periodic systems. This is well-known from the classical (continuous) BEM and carries

over to the discrete case. Moreover, the linear system associated with (2.64) is possibly

indefinite which has direct consequences on the choice of the linear solver. For this class

of problems, gradient-based methods such as gradient descent or conjugate gradient

methods usually fail to converge which calls for more general minimal residual methods

or direct solvers (c.f. Section 2.7.2). This lack of symmetry also explains why the simple

iteration equation (2.44), which was demonstrated as a gradient descent method, cannot

be used to update the continuum in a semi-monolithic scheme.

2.5.2 Symmetric discrete boundary element method

The issue of a non-symmetric operator F i�/i� can be remedied in the context of the

proposed A/C coupling scheme. Instead of considering the displacements of the i� atoms

as the primary unknowns, one may imagine a shift of the interface such that the forces

on the interface atoms have to be determined. This is because the matrix which defines

the linear system is then associated with the symmetric Green operator G and not with

F . Therefore consider the BSE

uh(ξ) = Fc∪i/i[ui](ξ)− Gc∪i/i[f̃ i](ξ) in Λc ∪ Λi, (2.67)

where

Fc∪i/i[ui](ξ) =
∑
η∈Λi

F (ξ−η)u(η), F (ξ−η) =
∑
ζ∈Λi�

Glgf(ξ− ζ)K(ζ−η) (2.68)

which now involves a summation over Λi� (see Figure 2.2). The situation is slightly

different from the one depicted in Section 2.5.1. Now, the unknowns on the interface

are the forces f̃ i 4 while the displacements ui are known, which led to the following

algorithm:

4The tilde is used here to distinguish it from the real atomic forces in Λi
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1. Compute the self-displacements induced on the interface according to

ũi = (F i/i − I)[ui]. (2.69)

2. Determine the forces on the interface atoms f̃ i by solving

Gi/i[f̃ i] = ũi in Λi. (2.70)

The corresponding linear system contains N i unknowns. It is easy to see that it is indeed

symmetric due to the symmetry of the Green function.

3. Compute the pad displacements up using (2.67), i.e.

up = Fp/i[ui]− Gp/i[f̃ i] in Λp. (2.71)

The complexity of the associated matrix-vector multiplication is of O(NpN i).

Several remarks are in order:

Remark 2.5.2. If more general problems are considered involving other types of boundary con-

ditions, e.g. prescribed displacements and forces, the linear system associated with the DBEM

becomes non-symmetric in any case. In the classical BEM this issue is remedied by solving a mixed

problem, more precisely, a combination of the BIE and its first derivative (since the derivative of

T cgf is again symmetric). However, a symmetric BEM seems only feasible when considering a

Galerkin-type BEM since the second derivatives of T cgf are hypersingular according to (Bonnet

et al., 1998; Sutradhar et al., 2008). Vice versa, a symmetric Galerkin-BEM comes at higher

computational cost for constructing the system matrices since the equilibrium equations have to be

enforced in a weak sense, thus requiring the evaluation of double integrals. This procedure will be

simpler in the discrete case since the LGF is nonsingular. It is speculated that an unconditionally

symmetric DBEM can be constructed similarly to the classical BEM.

Remark 2.5.3. The symmetric DBEM is conceptually equivalent to the method considered by Li

(2009) who solved problem (2.21) using a staggered solution procedure (c.f. Section 2.7.1). To

solve the continuum problem, the starting point in (Li, 2009) is to invert the operator Lc/c
h in Pc

directly and using the identity (2.56) subsequently to obtain

uc = (Gc/a(Ga/a)−1)[ua] in Λc. (2.72)

In (Li, 2009) the problem was not reduced to a BSE-type formulation as shown above and is thus

not practical if the problem size is large. However, the solutions of (2.72) and (2.67) coincide.

Proof of Remark 2.5.3. The idea is to rewrite (2.72) in the form of (2.67). First, an alternative

expression of the inverse of Ga/a denoted by L̃a/a
h is sought-after. Then (Ga/a)−1 is split
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into parts which act on the interface forces and the forces in the remainder Λa \ Λi,

respectively, such that

(
Ga′/a′ Ga′/i

Gi/a′ Gi/i

)−1

=

(
L̃a′/a′
h L̃a′/i

h

L̃i/a′
h L̃i/i

h

)
⇒

(
Ga′/a′ Ga′/i

Gi/a′ Gi/i

) (
L̃a′/a′
h L̃a′/i

h

L̃i/a′
h L̃i/i

h

)
= I. (2.73)

Thereby, the superscript a′ indicates that the domain/co-domain of the corresponding

operator relates to Λa \ Λi. From (2.73) it follows

Ga′/a′L̃a′/a′
h + Ga′/iL̃i/a′

h = I, Ga′/a′L̃a′/i
h + Ga′/iL̃i/i

h = 0,

Gi/a′L̃a′/a′
h + Gi/iL̃i/a′

h = 0, Gi/a′L̃a′/i
h + Gi/iL̃i/i

h = I.
(2.74)

Making use of the same splitting of Ga/a as in (2.56) leads to

⎛
⎜⎝G

a′/a′ Ga′/i Ga′/c

Gi/a′ Gi/i Gi/c

Gc/a′ Gc/i Gc/c

⎞
⎟⎠

⎛
⎜⎝L

a′/a′
h La′/i

h 0

Li/a′
h Li/i

h Li/c
h

0 Lc/i
h Lc/c

h

⎞
⎟⎠ = I. (2.75)

From the latter it can be deduced that

Ga′/a′La′/a′
h + Ga′/iLi/a′

h = I, Gi/a′La′/a′
h + Gi/iLi/a′

h = 0. (2.76)

Since Ga/a is nonsingular the operator L̃a/a
h is unique. Comparing (2.76) with the first

and the third identity in (2.74) yields L̃a′/a′
h = La′/a′

h and L̃a′/i
h = La′/i

h . Noting that Ga/a

is symmetric it can be concluded that(
Ga′/a′ Ga′/i

Gi/a′ Gi/i

) (
La′/a′
h La′/i

h

Li/a′
h L̃i/i

h

)
= I. (2.77)

The operator L̃i/i
h can then be obtained from the fourth identity in (2.74) such that

L̃i/i
h = (Gi/i)−1(I − Gi/a′La′/i

h ). (2.78)

Now, using (2.77) and (2.78) in (2.72), it follows

uc = (Gc/a(Ga/a)−1)[ua]

= (Gc/a′La′/a′
h + Gc/iLi/a′

h )[ua′ ]

+ (Gc/a′La′/i
h + Gc/i(Gi/i)−1(I − Gi/a′La′/i

h ))[ui]
(2.75)
= (Gc/a′La′/i

h + Gc/i(Gi/i)−1(I − Gi/a′La′/i
h ))[ui]

= (Fc/i + Gc/i(Gi/i)−1(I − F i/i))[ui]

(2.79)

which is nothing but (2.67).
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2.5.3 Computation of stresses inside the body

For many applications it is necessary to compute the stress at some (arbitrary) material

point x inside the continuum domain. For example, the coupled atomistic/discrete

dislocations method which is discussed in the following chapter requires the computation

of the stress at any point x on the glide plane(s), in principle. Therefore the displacement

gradient at x must be computed which can be done with the proposed BSE. Indeed,

using (2.53) in the definition of the gradient (2.12), it follows

∇u(x) =
∑

ξ∈Rloc
ξ

(
Fc/i�[ui�](ξ)− Gc/i�[f i�](ξ)

)
⊗∇ϕξ(x). (2.80)

Once the displacement gradient is evaluated, the Cauchy stress tensorσ(x) ∈ [L2(Ωc)]d×d

can be computed

σ(x) = C[∇u(x)], (2.81)

noting that only the symmetric part of ∇u enters in (2.81).

Equation (2.80) requires two algebraic operations at any ξ ∈ Rloc
ξ (i.e. Fc/i�[ui�] and

Gc/i�[f i�]). With Sinclair’s method the computation reduces to one operation. To see this,

consider the iteration equation (2.44) but evaluated at some point ξ ∈ Λc

uc
i (ξ) = uc

i−1(ξ)− Gc/i�[f i�
inh,i](ξ). (2.82)

Upon convergence, supposedly after N steps, the final solution reads

uc(ξ) = uc
0(ξ)− Gc/i�[f i�

inh,tot](ξ), with f i�
inh,tot =

N∑
i=1

f i�
inh,i, (2.83)

where uc
0(ξ) is the initial guess, which only requires to carry out the algebraic operation

Gc/i�[f i�
inh,tot] at ξ ∈ Rloc

ξ .

Another possibility to obtain gradients of uc is by Fourier interpolation (also: band-

limited interpolation, c.f. Trefethen, 2000). Therefore, recall that the lattice Green tensor

(Appendix A.4.1) can in principle be evaluated at any point x (not just on Λc). An

alternative displacement field is then given by

uc(x) = Fc/i�[ui�](x)− Gc/i�[f i�](x) =
∑
η∈Λi�

∑
ζ∈Λi

Glgf(x− ζ)K(ζ − η)u(η) (2.84)

or in index notation

uci (x) =
∑
η∈Λi�

∑
ζ∈Λi

Glgf
ik (x− ζ)Kkl(ζ − η)ul(η). (2.85)
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The components of the gradient then follow as

uci,j(x) =
∑
η∈Λi�

∑
ζ∈Λi

Glgf
ik,j(x− ζ)Kkl(ζ − η)ul(η). (2.86)

This definition requires the Glgf and its gradients to be precalculated, but does not involve

a summation overRloc
ξ .

2.5.4 Bounded problems

An extension of the proposed DBEM to bounded problems is possible. Therefore consider

the (pure) harmonic problem with outer boundary I in Figure 2.4 (a). For simplicity a

Dirichlet problem is considered in the following, i.e. the displacements uI are assumed

to be prescribed throughout this section.5 It can be easily seen that the BSE (2.53) holds

(yet in the reverse way) by inverting the problem description in Section 2.5.1, i.e. by

considering the continuum domain as the interior (bounded) domain. The corresponding

BSE then reads

uc(ξ) = Fc/I�[uI�](ξ)− Gc/I�[f I�](ξ) in Λc, (2.87)

where f I� = LI�/I
h [uI]. The operators Fc/I� and Gc/I� are defined analogously to (2.54)

and (2.55).

Figure 2.4: (a) Bounded domain with interface ΛI. (b) Atomistic/continuum domain
decomposition for bounded problems

If a coupled problem is to be considered, i.e. a finite atomistic domain surrounded by a

bounded continuum (Figure 2.4 (b)), the corresponding BSE now involves a summation

over two boundaries. This is shown in the following. Therefore assume that the addi-

tional boundary condition on the inner boundary Λi is the displacement ui as described

5Mixed boundary conditions (i.e. Dirichlet/Neumann) are also possible but require a modification of
the operator F and are not considered here
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Chapter 2. Flexible boundary conditions for atomistic problems

in the previous sections. The corresponding continuum problem reads

Pc

⎧⎪⎨
⎪⎩
Lc
h[u] = 0 in Λc,

u = ui in Λi,

u = uI in ΛI.

(2.88)

Since there was no special assumption on the location of/or connectivity between the

interfaces a solution to (2.88) can directly be deduced by combing (2.53) and (2.87) as

follows

uc(ξ) = Fc/i�[ui�](ξ)−Gc/i�[f i�](ξ) +Fc/I�[uI�](ξ)−Gc/I�[f I�](ξ) in Λc. (2.89)

The latter form can be condensed such that the general BSE for bounded (Dirichlet)

problems is given by

uc(ξ) = Fc/i�∪I�[ui�∪I�](ξ)− Gc/i�∪I�[f i�∪I�](ξ) in Λc. (2.90)

The pad displacements can subsequently be obtained analogously to the procedure from

Section 2.5.1.

Remark 2.5.4. To further clarify the proposed function space setting (see Section 2.2) consider

(2.90) with the inner boundary Λi held fixed and diam(ΛI)→∞, where diam(ΛI) is the diameter

of the outer boundary ΛI. If u ∈ U�, then uI → 0 as diam(ΛI)→∞ such that

lim
diam(ΛI)→0

uc = lim
diam(ΛI)→0

(
Fc/i�[ui�]− Gc/i�[f i�] + Fc/I�[uI�]− Gc/I�[f I�]

)
= Fc/i�[ui�]− Gc/i�[f i�]

(2.91)

which is nothing but (2.53). However, if u /∈ U� the second term does not necessarily go to zero

and therefore depends on the lattice Green function (which is only unique up to a rigid body

motion).

Remark 2.5.5. For large computational domains the outer boundary contains substantially more

degrees of freedom than the inner boundary. Therefore it might be beneficial to further reduce the

solution vector in ΛI (e.g. by interpolation). However, this is not carried out here.

Sinclair’s method for bounded problems

Using the previous results Sinclair’s method can be modified for the application to

bounded problems. This is done by computing the solution for a bounded problem

subject to the inhomogeneous (body) forces. Again, the idea is to first compute a solution

of an infinite problem and subsequently superimpose the solution of an auxiliary problem

which accounts for the displacements on the outer boundary. For this purpose step [S2]

from Figure 2.3 is reconsidered in the following. To account for the outer boundary
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2.6. Implementation of the discrete boundary element method

conditions the displacements due to the inhomogeneous forces, now denoted by u∞ for

clarity, are also computed on ΛI. Subsequently, a corrective problem is solved via (2.87)

using uI − uI,∞ as boundary condition. The total pad displacements are then obtained

by adding up,∞ and the contribution due to the corrective problem.

The steps which eventually replace step [S2] for bounded problems are summarized as

follows:

[S2.1] First, compute the inhomogeneous forces and the displacements on the outer

boundary corresponding to the infinite problem according to

f i�
inh,i = L

i�/i
h [Δui

ah,i−2], uI,∞
i = uI,∞

i−1 − GI/i�[f i�
inh,i]. (2.92)

[S2.2] Solve the corrective problem with boundary condition uI − uI,∞
i in ΛI via (2.87)

with respect to ûI�
i and compute the pad displacements according to

ûp
i = Fp/I�[ûI�

i ]− Gp/I�[LI�/I
h [uI − uI,∞

i ]]. (2.93)

[S2.3] Compute the total pad displacements by superimposing both solutions

up
i = up,∞

i + ûp
i , with up,∞

i = up,∞
i−1 − Gp/i�[f i�

inh,i]. (2.94)

2.6 Implementation of the discrete boundary element method

2.6.1 Algebraic discrete boundary element method

The algebraic representation of the DBEM, introduced in the previous section, is now

derived. The main purpose of this section is to give an illustration of the structure of

the corresponding system matrices. Their construction comes along with prohibitive

computational cost which precludes an exact representation. Nevertheless a two-level

approximation is introduced in Section 2.6.2 and 2.6.3 which permits an approximative

implicit representation which preserves their structure while being computationally

efficient. The focus is exclusively on the symmetric DBEM for the infinite problem in the

remainder of this chapter.

For the sake of clarity the following relations between the differential operators and their

matrix representations are defined

L ↔ L̂, G ↔ Ĝ, F ↔ F̂. (2.95)

The algebraic form of the abstract problem (2.70) then reads: find ûi ∈ RdN i
such that

(Î − F̂ i/i)ûi = −Ĝi/i ˆ̃f i,
ˆ̃
f i ∈ RdN i

, F̂ i/i ∈ RdN i×dN i
, Ĝi/i ∈ RdN i×dN i

(2.96)

63



Chapter 2. Flexible boundary conditions for atomistic problems

and the update equation for the pad displacement follows as

ûp = F̂ p/iûi − Ĝp/i ˆ̃f i, ûp ∈ RdNp
, F̂ p/i ∈ RdNp×dN i

, Ĝp/i ∈ RdNp×dN i
. (2.97)

The corresponding system matrices can be written as

F̂ i/i =

⎛
⎜⎝

F (ξ1 − η1) · · · F (ξ1 − ηN i)
...

. . .
...

F (ξN i − η1) · · · F (ξN i − ηN i)

⎞
⎟⎠ ,

Ĝi/i =

⎛
⎜⎝

Glgf(ξ1 − η1) · · · Glgf(ξ1 − ηN i)
...

. . .
...

Glgf(ξN i − η1) · · · Glgf(ξN i − ηN i)

⎞
⎟⎠ ,

F̂ p/i =

⎛
⎜⎝

F (ξ1 − η1) · · · F (ξ1 − ηN i)
...

. . .
...

F (ξNp − η1) · · · F (ξNp − ηN i)

⎞
⎟⎠ ,

Ĝp/i =

⎛
⎜⎝

Glgf(ξ1 − η1) · · · Glgf(ξ1 − ηN i)
...

. . .
...

Glgf(ξNp − η1) · · · Glgf(ξNp − ηN i)

⎞
⎟⎠ .

(2.98)

These matrices are dense due to the long-range nature of the LGF. It is thus not practical

to build them exactly, especially for larger problems, i.e. when N i ∈ O(104) or higher,

which is usually the limit for the classical BEM on desktop computers. In the following

two necessary and sufficient approximations are introduced to build (2.98) without

losing too much accuracy. That is, approximations of (2.96) and (2.97) are sought-after

such that the solution of the atomistic problem is not affected, i.e. the elasticity error

dominates.

2.6.2 Approximation of the lattice Green functions

In practice, the LGF has to be computed numerically (c.f. Appendix A.4.1). With the

current self-written implementation the computation of Glgf at≈ 2000 lattice points takes

around one day for the 3d problem from Appendix A.4.2 with an estimated relative error

between 10−7 and 10−10. It becomes immediately clear that building any of the matrices

in (2.98) becomes prohibitive for larger problems. Nevertheless it is worth noting that

more efficient methods to compute the LGF exist, i.e. by only meshing the irreducible

part of the Brillouin zone (c.f. Monkhorst and Pack, 1976) accompanied with a partial

analytic integration to eliminate increasing periodic oscillations when computing the

LGF at distant points which otherwise requires a finer discretization (see Trinkle, 2008).

It might also be possible to integrate the LGF partially analytically in one dimension by

64



2.6. Implementation of the discrete boundary element method

using the residue theorem from complex calculus (Martinsson, 2002). However, these

methods are not considered in the current implementation and the author is not aware

of any open-source implementations thereof.

In any case it seems simpler to replace the LGF with an analytic form which is cheap to

compute outside a well-chosen cut-off radius rcut. An obvious choice is the continuum

Green function. Thus, the approximate LGF is defined as

G̃lgf(ξ − η) =

{
Glgf(ξ − η) if r ≤ rcut,

Gcgf(ξ − η) else,
where r = ‖ξ − η‖. (2.99)

In practice the computed values of the LGF are stored within the cut-off radius in a

external file such that it can be looked up during the building process and does not have

to be re-computed each time when a new geometry is considered. The question then

arises: what is the error introduced in (2.97) due to this approximation. To estimate the

error use is made of the following result obtained by Trinkle (2008) which states that

relative difference between Glgf and Gcgf scales as

‖Glgf −Gcgf‖fro
‖Gcgf‖fro

≤ Cr−2 (2.100)

for some C > 0 which is independent of r. The error introduced in (2.97) is a direct

consequence of this result and is manifested in the following proposition:

Proposition 3. The error in the pad displacements (2.97) induced by the approximation (2.99)

is bounded by

‖ûp − ˆ̃up‖ � r
−(d+1)/2
cut (log rcut)

3−d. (2.101)

Proof. The proof is subjected to Appendix A.4.3.

Proposition 3 will prove valuable in Section 2.7.4 for the validation of the proposed

method.

Numerical experiments have shown that the approximation (2.99) does not influence

the structure of Ĝi/i with respect to symmetry and positivity such that (2.96) is uncondi-

tionally well-posed. This statement can presumably be made more rigorous but this is

out of scope of the current work.

2.6.3 Data sparse approximation of the boundary matrices

Solving the linear system (2.96) requires the construction of dense matrices of the order

O((N i)2) which is prohibitive for the problem sizes which are aimed for. For example,

a single layered boundary matrix for a system containing ≈ 1 mio. atoms requires
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Chapter 2. Flexible boundary conditions for atomistic problems

roughly 250 GB of memory. Moreover, the boundary matrices in (2.98) may consist

of several layers (e.g. Ĝp/i) depending on the nonlocality of the interatomic potential

such that the memory consumption can quickly increase to several terabytes. A more

appropriate way to store the boundary matrices can be achieved with data-sparse low-

rank representations. For this purpose the framework of hierarchical matrices (henceforth

H -matrices) by Hackbusch (1999, 2015) is used in the following. H -matrices provide

an efficient means for approximating boundary matrices for general interfaces with

a complexity of O(log (N)N). Furthermore, an “H -arithmetic” for linear algebraic

operations such as matrix-vector and matrix-matrix multiplications as well as matrix

factorization is readily available. This is demonstrated in the following.

Recall that for any matrix Â ∈ RM×N there exist orthogonal matrices Û ∈ RM×O and

V̂ ∈ RN×O, with O := min (M,N), and a diagonal matrix Ŝ ∈ RO×O such that

Â = Û ŜV̂ T =
O∑
i=1

σi(ûi ⊗ v̂i), (2.102)

where the σi’s are the entries of Ŝ, i.e. the singular values of Â, and ûi and v̂i are the i-th

column vectors of Û and V̂ , respectively. Assume that σi > σi+1, then the best rank-k

approximation (:= low-rank approximation) of Â with respect to ‖ • ‖fro is given by the

Eckart-Young theorem (Eckart and Young, 1936)

Âk =

k∑
i=1

σi(ûi ⊗ v̂i) such that ‖Â− Âk‖fro =
O∑

i=k+1

σi < ε. (2.103)

Using this format, the complexity of linear algebraic operations may simplify consider-

ably. For example, consider the matrix-vector multiplication Âk b̂. In order to compute

the matrix-vector product the matrix Âk never has to be stored explicitly since

Âk b̂ =

(
k∑

i=1

σi(ûi ⊗ v̂i)

)
b̂ =

k∑
i=1

σi(û
T
i · b̂)v̂i, (2.104)

that is, only the k column vectors ûi and v̂i have to be stored (assuming that the singular

values are pre-multiplied with either ûi or v̂i). In addition, the necessary number of

operations reduces from O(MN) to O(k(N + M)) when compared to the standard

representation. It can easily be seen that the representation via outer products becomes

very efficient if k � O.

Usually an entire matrix can not be represented directly with a rank-k approximation,

in particular matrices which define a linear system such as (2.96) — which necessarily

must have full rank. Nevertheless, there exist several approaches in order to determine

admissible low-rank sub-blocks in these matrices. Here, the framework of hierarchical

matrices (H -matrices) due to Hackbusch (1999); Bebendorf (2009) is adopted which
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2.6. Implementation of the discrete boundary element method

allows for a flexible block-wise partitioning depending on a particular interface geometry,

unlike other methods which impose a fixed block structure (c.f. Martinsson, 2011). This

is necessary for the problem considered here because a fixed block partitioning does

usually not reveal the low-rank structure of the considered matrices, except for some

special cases such as rectangular geometries in two dimensions. Following Bebendorf

(2009), admissible blocks can be identified using the criterion

min (diam(t), diam(s)) ≤ ηdist(t, s), (2.105)

where η is a free parameter and t, s are subsets of Λ but also refer to the row and column

indices of the matrix. Here, diam(•) denotes the diameter of a single block and dist(•) is

the distance between them. A physical interpretation of (2.105) is given below. Suppose

that the interface atoms in s and t are close-by as shown in Figure 2.5 (a). For an increasing

distance between both sub-blocks the difference in the interaction of two elements in s

with respect to all elements in t becomes sufficiently homogeneous for asymptotically

smooth kernels (e.g. ∝ log r, ∝ 1/r etc., where r is the distance between the application

and the source point). Thus, the corresponding rows of the matrix are nearly linear

dependent and a good low-rank approximation is likely to exist (see Hodapp, 2017, for a

two-dimensional example). Another elucidating example is given in (Bebendorf, 2009,

Example 1.12, p. 22).

(a) (b)

Figure 2.5: (a) Interface and pad region Λi and Λp of a spherical computational domain
(Λa \Λi not shown). (b) A realistic hierarchical partitioning for the matrix corresponding
to the last value in Figure 2.6, where 3N i = 263718

The potential savings made by replacing a full matrix with an H -matrix can be summa-

rized as follows: consider a square matrix of size N defined on a regular grid. By refining

the grid — or equivalently by increasing the size of the domain — the complexity of

relevant matrix operations reduces as (c.f. Hackbusch, 1999; Bebendorf, 2009; Hackbusch,

2015)

O(Nα) −→ O(N log (N)α), (2.106)
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where the parameter α depends on the type of operation, e.g. α = 1 for the storage re-

quirements or matrix-vector multiplications and α = 2 for matrix-matrix multiplications.

The precise pre-factors depend largely on the geometry of the interface.

For the numerical examples Another software library on Hierarchical Matrices for Elliptic

Differential equations (AHMED) from (Bebendorf, 2009) is used. The superior performance

of the hierarchical approximation in the context of integral equations has been proven

in many publications on the topic (e.g. Börm et al., 2003; Bebendorf and Kriemann,

2005; Brunner et al., 2010). For an overview of various numerical examples the reader

is referred to the book of Bebendorf (2009). Here, the main focus is on the memory

consumption of the matrices in (2.98) for three dimensional problems.6 A spherically-

shaped atomistic region with variable radius is selected as a representative domain

(Figure 2.5 (a)). The memory consumption of the matrix Ĝi/i is shown in Figure 2.6.

On a desktop computer with 16 GB random-access memory (RAM), building a full

matrix is only feasible up to ≈ 30000 degrees of freedom (which corresponds to ≈ 10000

real atoms) while the hierarchical memory cost shows the favorable log (N i)N i scaling,

thus allowing for considerably larger atomistic regions. For example, the last value

in Figure 2.6 corresponds to Na ≈ 2.1mio. Of course, for the full problem the other

matrices from (2.96) and (2.97) have to be built as well, though, thanks to the block-wise

partitioning, H -matrices can be distributed on several computing nodes such that the

problem becomes feasible on moderate size clusters (which nowadays usually contain

64-128 GB RAM per node).
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Ĝ
i/

i )
[G

B]

3N i [-]

∝ N i log (N i)

dense
hierarchical

Figure 2.6: Memory consumption for the matrix Ĝi/i when using the hierarchical approx-
imation, opposed to the dense version

6In two dimensions memory consumption is usually not a problem since the number of degrees of
freedom at the boundary scale approximately with O(

√
Na)
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For the sake of clarity the hierarchical partitioning of Ĝi/i for the last value in Figure 2.6

(3N i = 263718) is shown in Figure 2.5 (b). The numbers in the green sub-blocks denote

their rank and the red blocks in the vicinity of the diagonal denote dense parts, i.e. they

do not contain any approximation. That is, the block on the lower left which has a size

of roughly 20000×20000 is approximated with a matrix of rank 19. Thus the ratio of

the memory consumption for the dense and the H -matrix is ≈ 500 for this particular

sub-block.

2.7 Iterative solution procedures for the coupled problem

2.7.1 Staggered schemes

In this section three algorithms to solve the coupled problem (2.21) are described. First,

two staggered schemes are presented which are widely used in the A/C coupling com-

munity, mainly due to their simplicity and less time-consuming implementation.

The first algorithm which is considered is a classical multiplicative alternating Schwarz-

type algorithm for Dirichlet-type problems. This algorithm has been used in (Li, 2009)

to solve (2.21). Other authors, e.g. Parks et al. (2008), have used this type of algorithm

for finite continuum domains, with or without overlapping subdomains. It is well-

known from the theory of domain decomposition methods that this algorithm exhibits

unfavorable convergence properties (c.f. Quarteroni and Valli, 1999). Usually alternating

Schwarz methods are rarely used as single solvers but rather as preconditioners or, if they

do, with improved interface transmission conditions (“optimized Schwarz methods”).

Here, primary aim is to emphasize the need for more efficient schemes which preserve

the necessary efficiency in comparison with a fully atomistic problem (see Section 2.7.4).

The procedure in Algorithm 1 is standard. First, an initial guess is defined and the pad

atoms are “frozen”, followed by a minimization of the atomistic energy with respect to

all real atoms. Subsequently the atomistic problem is held fixed and the outer problem

is solved as done in Section 2.5.2 (step 1-3), that is, the linear system (2.96) is first solved

with respect to ˆ̃
f i
k+1 which is subsequently used to update the pad atoms. The previous

steps are then repeated upon convergence. Convergence is obtained when force vector

in Λa is minimal with respect to some properly chosen norm.

Next, a variant of Sinclair’s algorithm is presented. To the author’s best knowledge all

implementations of this algorithm, e.g. by Rao et al. (1998); Woodward and Rao (2001),

update the entire computational domain, i.e. pad and real atoms, using the LGF applied

to the inhomogeneous point forces at the interface (Rao, 2017). While being reasonable

for the considered problem sizes — the above-named authors considered primarily

isolated dislocations in comparatively small domains — this becomes prohibitive for

larger problems, especially in view of the analysis in Section 2.6.3. In Section 2.4 it was

shown that updating the harmonic solution in the atomistic domain merely serves as an
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Algorithm 1: Staggered Schwarz-type algorithm

Input: Initial guess û0

1 k← 1;

2 repeat

3 ûak+1 ← min
v̂a

Πa(v̂a; ûpk); �� ����� ���	
��
� �
����	

4 ˆ̃uik+1 ← (Î − F̂ i/i)ûik+1; �� ��	���� 
�� �� (2.96)

5
ˆ̃
f i
k+1 ← (Ĝi/i)−1 ˆ̃uik+1; �� ����� ��� �
���
 �����	 (2.96)

6 ûpk+1 ← F̂ p/iûik+1 + Ĝp/i ˆ̃f i
k+1; �� ������ ��� ���	� ����
�
�� �� (2.97)

7 if ‖f̂a(ûk+1)− f̂ ext‖ < TOL then

8 stop (repeat);

9 else

10 k← k + 1;

11 end

12 end

Output: Final state ûk+1

initial guess and neglecting it does not alter the final solution (2.36). Omitting the initial

guess has practical consequences since the matrix Ĝ corresponding to (2.44) does not

need to be defined on Λa. Though the construction of the matrix Ĝp/i� is still expensive,

its storage requirement scales only with the number of boundary atoms and can further

be approximated using H -matrices as shown in the previous section. Algorithm 2

proceeds similar to the Schwarz method. After imposing an initial guess the atomistic

problem is solved with respect to the real atoms. Then the inhomogeneous forces which

have build up in Λi� are computed and Ĝp/i� is applied to update the pad atoms. In

comparison to the Schwarz method, the implementation is even simpler since only a

single matrix-vector multiplication has to be computed to update the pad atoms — in

comparison to a linear system which has to be solved every iteration in Algorithm 1.

In the following the alternating Schwarz and Sinclair’s method are referred to as �����
�

and �
����

, respectively.

2.7.2 Monolithic stabilized Newton-GMRes solver

Despite their simplicity, staggered algorithms usually converge rather slow. Therefore a

monolithic scheme is proposed which iterates on all unknowns simultaneously. Recent

analyses of force-based A/C coupling methods have shown that the coupled problem

can be solved accurately using generalized Krylov subspace methods such as generalized

minimal residual (GMRes) methods. The method was applied in (Dobson et al., 2011) for

a linearized problem in one dimension and here a generalization to the three-dimensional
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Algorithm 2: Staggered Sinclair-type algorithm

Input: Initial guess û0

1 k← 1;

2 repeat

3 ûak+1 ← min
v̂a

Πa(v̂a; ûpk); �� ����� ���	
��
� �
����	

4 f̂ i�
inh,k+1 ← L̂i�/iûik+1 + L̂i�/pûpk; �� ��	���� 
���	�������� ��
���

5 ûpk+1 ← Ĝp/i�f̂ i�
inh,k+1; �� ������ ��� ���	�

6 if ‖f̂a(ûk+1)− f̂ ext‖ < TOL then

7 stop (repeat);

8 else

9 k← k + 1;

10 end

11 end

Output: Final state ûk+1

nonlinear case inside a Newton-Raphson iteration is presented. Nevertheless, it should

be noted that a similar strategy was pursued by Shilkrot et al. (2004) in two dimensions

but their solver is based on a variant of a conjugate gradient method which is likely to

be unstable — even far from any physical instabilities (c.f. Dobson et al., 2011).

In general the roots ˆ̄x of a vector-valued vector function r̂(x̂) are sought-after, i.e. r̂(ˆ̄x) = 0̂.

Recall that the Newton method reads in the k-th iteration as

ĴkΔx̂k = −r̂(x̂k), (2.107)

with the Jacobian matrix Ĵk = ∇xr̂(x̂k) and Δx̂k = x̂k+1 − x̂k.

For the atomistic/DBEM problem the Jacobian matrix and the solution vector are given

by

Ĵk =

⎛
⎜⎜⎜⎝

L̂a/a(ûk) 0̂ L̂a/p(ûk)

0̂ Î − F̂ i/i Ĝi/i 0̂

0̂ −F̂ p/i Ĝp/i Î

⎞
⎟⎟⎟⎠ , x̂k =

⎛
⎜⎜⎜⎜⎝

û
a\i
k

ûik
ˆ̃
f i
k

ûpk

⎞
⎟⎟⎟⎟⎠ (2.108)

which can readily be deduced from (2.96) and (2.97). Here, the matrix L̂a/a(ûk) is the

linearized Hessian of the atomistic problem and L̂a/p(ûk) is the coupling matrix. Both

L̂a/a and L̂a/p depend on the current solution x̂k.

Instead of solving the coupled problem as it is a slightly different approach is pursued in

the following which is usually more convenient for the integration into existing atomistic
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computer codes. In order to exploit the linearity of the continuum problem the procedure

will be as follows: first, the continuum degrees of freedom (i.e. the vectors Δ ˆ̃
f i
k and Δûpk)

are condensed out such that one can write

L̂a/a(ûk)Δûak + L̂a/p(ûk)Δûpk

= L̂a/a(ûk)Δûak + L̂a/p(ûk)(F̂
p/iΔûik − Ĝp/iΔ

ˆ̃
f i
k)

= L̂a/a(ûk)Δûak + L̂a/p(ûk)(F̂
p/i − Ĝp/i(Ĝi/i)−1(F̂ i/i − Î))Δûik.

(2.109)

The reduced Jacobian matrix is then the Schur complement of the lower right 2x2 block

matrix in Ĵk. This can be written as

Ĵ schur
k =

(
L̂a\i′/a\i L̂a\i′/i

L̂i′/a\i ˆ̃Li′/i

)
, (2.110)

with

ˆ̃Li′/i = L̂i′/p(ûk)(F̂
p/i − Ĝp/i(Ĝi/i)−1(F̂ i/i − Î)), (2.111)

where the index i′ refers to the set of atoms which interact with the pad atoms (note that

Λi ⊂ Λi′). The Newton iteration for the Schur complement system can now be stated

Ĵ schur
k Δûak = −f̂a(ûk) + f̂ ext. (2.112)

In practice, building Ĵ schur
k is not necessary since iterative solvers only require the action

of Ĵ schur
k on a vector. Thereby, the matrix-vector product ˆ̃Li′/iΔûik requires a more detailed

discussion since ˆ̃Li′/i requires the inversion of Ĝi/i. In practice (Ĝi/i)−1 is never build

explicitly. In lieu thereof the right hand side vector ˆ̃u = (F̂ i/i − Î)Δûik is computed first.

Subsequently the linear system ˆ̃
f i = (Ĝi/i)−1 ˆ̃u is solved using a factorized representation

of Ĝi/i such that the solution ˆ̃
f i
k can be obtained by an efficient forward/backward

substitution. Factorizing Ĝi/i is possible within the framework of H -matrices with an

arithmetic complexity ofO(N i log (N i)2). The pad displacements then follow by another

matrix-vector multiplication (see Algorithm 1, line 6).

Furthermore, none of the L̂-operators are built in practice. This is because these matrices

would be rather large and dense (since the atomistic problem ins nonlocal). Usually the

action of the Jacobian on a vector can be conveniently approximated via forward finite

differences (c.f. Knoll and Keyes, 2004)

Ĵ schur
k Δûak ≈

f̂a(ûak + εΔûak; û
p
k)− f̂a(ûk)

ε
. (2.113)

That is, first, the pad displacements are updated using the procedure described above

in order to subsequently evaluate the forces in the atomistic domain to compute the

approximation (2.113).
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In order to solve the linearized system (2.112) a Newton-GMRes solver is selected since

the problem is nonlinear and possibly always indefinite (due to the non-symmetric force-

interaction law and the atomistic-DBEM coupling). A GMRes solver has already been

successfully applied for a linear one dimensional toy problem (Dobson et al., 2011). The

construction of a nested Newton-Krylov solver translates verbatim to the nonlinear case

which requires successive applications of the GMRes solver to the linearized problem

(2.112).

The main steps are illustrated in Algorithm 3. In every k-th iteration the linear system

(line 3) is formulated. The GMRes solver is confined to the inner �����-loop. This consists

of the following steps:

1. Compute the m-th basis vector q̂m of the Krylov subspace

Kk,m :=
{
q̂1, Ĵ

schur
k q̂1, (Ĵ

schur
k )2q̂1, ..., (Ĵ

schur
k )m−1q̂1

}
. (2.114)

Note that this is the only time during the �����-loop where atomic forces are

computed to update (2.113).

2. Build the orthonormal basis vector q̂m of the Krylov subspace using the Arnoldi

procedure (Saad, 1980).

3. Minimize the residual over the elements of the Krylov subspace. It is emphasized

that this operation does not require additional computations of the force vector

(for details see Saad and Schultz, 1986).

In its current form the proposed Newton algorithm is not unconditionally stable in a

physical sense. This can be made clear noting the fact that the algorithm minimizes the

residual of the atomic force vector. Therefore it may converge to solutions which are

saddle points of the atomistic Hessian which violates the stability requirement (2.4). If the

problem is unstable for the current Newton step the corresponding search direction is

ill-posed. To identify unsuitable search directions the algorithmic stability condition is

introduced

[STAB] (Δûak)
T·(L̂a/a(ûk)Δûak) = −(Δûak)

T·(L̂a/p(ûk)Δûpk+f̂a(ûk)−f̂ ext) > 0. (2.115)

which can be obtained by multiplying (2.112) with Δûak and isolating the inner product

containing L̂a/a on the left hand side. It is easy to see that L̂a/a(ûk) is indefinite at ûk
if [STAB] is false. In practice the term L̂a/p(ûk)Δûpk can be obtained by, e.g., applying

forward finite differences akin to (2.113) with only the pad atoms being updated based

on Δûpk.

In order to modify the search direction, a standard approach is to modify the atomistic

Hessian by adding a stabilizing term which renders it positive definite. For an overview

73



Chapter 2. Flexible boundary conditions for atomistic problems

Algorithm 3: Newton-Krylov algorithm

Input: Initial guess û0

1 k← 1;

2 repeat

3 define r̂k(v̂) := Ĵk(ûk + v̂) + f̂a(ûk)− f̂ ext;

�� �������	 
���
�

4 set Δû0;

5 q̂0 ← r̂(Δû0)/‖r̂(Δû0)‖;
6 m← 1;

7 while ‖r̂(Δûk,m−1)‖ > TOL do

8 ˆ̃qm ← Ĵkq̂m−1;

9 q̂m ← ��������q̂1, ..., q̂m−1, ˆ̃qm	; 

 ���
��� ���� ����� �� Kk,m (2.114)

10 Δûk,m ← Arg

{
min
v̂∈Km

‖r̂k(v̂)‖
}

; 

 ���
�������� �
����

11 m←m+ 1;

12 end

13 if [STAB] is false then

14 ûk+1 ← ���
����������; 

 �� ������� ���
�� �������� ���
�

15 else

16 ûk+1 ← ûk + αΔûk,m−1; 

 ���� ������

17 end

18 if ‖f̂a(ûk+1)− f̂ ext‖ < TOL then

19 stop (repeat);

20 else

21 k← k + 1;

22 end

23 end

Output: Final state ûk+1

the reader is referred to (Nocedal and Wright, 2006). Here, a simpler approach is followed:

If [STAB] is false the system from the previous iterate is restored and several damped

dynamics steps are carried out in order to overcome the instability. Here, damped

dynamics relates to nothing but solving an “accelerated” version of Newton’s equation of

motion. This will be specified more precisely in Section 4.1.1. In all subsequent numerical

examples this approach was found to work reliably. While presumably being far from

optimal with respect to efficiency — when compared to the stabilized Hessian method —

it currently suffices for demonstration purposes.

The standard Newton-GMRes (without checking [STAB]) and the stabilized version are

referred to as �������� and ��������� in the following.
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2.7. Iterative solution procedures for the coupled problem

2.7.3 Computer implementation

The DBEM is implemented in a self-written library which contains the computations of

the LGF, wrappers to AHMED and the operations needed to compute the continuum

problem. These steps are shown in Figure 2.7 (offline phase). As an atomistic solver

LAMMPS (Plimpton, 1995) is used which is linked with the DBEM library via a .7

Sinclair’s method and the Newton-GMRes solver are implemented using the Python

interface of LAMMPS (Figure 2.7, online phase). For the Newton-GMRes solver Python’s

SciPy library (www.scipy.org) is used. This only requires function calls to f̂a such that

the LAMMPS can be conveniently called before every force computation.

( (((
Figure 2.7: Data processing steps of the A/DBEM coupling. Offline phase: computation
of the system matrices. Online phase: solution of the coupled problem (Algorithm 3)

Even though the aim is to reduce computational cost, solving atomistic problems on

parallel machines is essential, depending on the required system size and the complexity

of the interatomic potential. This requires a parallelization of the coupled problem

to some degree. For the modified version of Sinclair’s method this is straightforward.

Due to the staggered solution procedure the parallelization of the atomistic problem is

readily accomplished within the molecular dynamics program of choice. Subsequently

Sinclair’s method requires only one single, but large, matrix-vector multiplication in

order to update the pad atoms. On a desktop computer with 16 GB RAM the limit

for H -matrices is roughly between 105-106 atoms, depending on the size of the pad

region. Fortunately, efficient parallel algorithms for H -matrices exist for shared and

7In the language of LAMMPS, a is an interface which can be called during a simulations before/after
certain events, e.g. force evaluations. This interface can be used to link LAMMPS with external software
packages
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Chapter 2. Flexible boundary conditions for atomistic problems

distributive memory systems (see e.g. Bebendorf and Kriemann, 2005). Individual low-

rank matrix blocks can be distributed over the processors, thus dividing the work into

smaller portions. A function for parallel matrix-vector multiplications is included in

AHMED and can thus be readily accessed in the current version of the DBEM library.8

An implementation of the monolithic solver on parallel machines is, however, far more

involved and out of scope of the present work (c.f. the following remark).

Remark 2.7.1. A parallelization of the monolithic solver, as derived in the previous section, is not

straight forward. This is due to the proposed computation of the pad displacements by triangular

matrix inversion. More precisely, consider, e.g., the LU factorization of a matrix Â = L̂Û . A

solution to the linear system Âx̂ = b̂ can then be obtained by forward-backward substitution

ŷ = L̂−1b̂ −→ x̂ = Û−1ŷ (2.116)

which is a rather sequential algorithm and almost unparallelizable with L̂, Û being H -matrices

due to the high communication overhead (c.f. Hackbusch, 2015). To overcome this problem

Kriemann and Le Borne (2015) proposed an algorithm to obtain the factors Ŵ, Ẑ of the inverse of

Â, i.e. Â−1 = Ŵ Ẑ, using H -arithmetics. The algebraic problem then comprises two matrix-

vector multiplications

ŷ = Ẑb̂ −→ x̂ = Ŵ ŷ (2.117)

which can be parallelized. This approach seems promising for future application, indicated by the

excellent performance reported in (Kriemann and Le Borne, 2015).

2.7.4 Algorithmic comparison

A brief algorithmic comparison between the different algorithms presented in this section

is carried out to validate the accuracy of the method depending on the cut-off radius rcut.

Therefore let the computational domain be the square lattice Λ := Z2 +
(
1/2 1/2

)T
.

The atomistic domain is a square-shaped subset defined by

Λa := Λ ∩ ([−l, l]× [−l, l]) , (2.118)

with l = 29.5. For simplicity the atomistic problem is assumed to be linear such that

both problems follow the same force interaction law. The continuous extension of the

displacement field is given using the partition presented in Appendix A.4.2. As a test

problem a force quadrupole is chosen. The exact solution to this problems is easy to

compute numerically since the solution dies off quickly. The right hand side for this

8So far parallel scaling has been verified up to 48 cores using the parallel version of AHMED for matrix-
vector multiplications. For further examples see (Bebendorf, 2009)
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2.7. Iterative solution procedures for the coupled problem

problem is then given by

f ext(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 1

)T
if ξ =

(
−1/2 −1/2

)T
,(

−1 −1
)T

if ξ =
(
1/2 −1/2

)T
,(

1 1
)T

if ξ =
(
1/2 1/2

)T
,(

−1 −1
)T

if ξ =
(
−1/2 1/2

)T
,

0 else.

(2.119)

The error in the solution in Λa is discussed in the following. Note that the error can be

bounded from above as

εrel =
‖ua − ũa‖l2
‖ua‖l2

� r
−3/2
cut log rcut, (2.120)

which follows directly from Proposition 3 and the property of bounded linear operators.

The error induced by the three different solution procedures is shown in Figure 2.8. For

the Sinclair method the expected scaling is observed up to a log-factor. For the Schwarz

and the Newton-GMRes method a more pronounced pre-asymptotic regime is observed.

Moreover, the error in the Sinclair method is slightly lower than the one induced by

the other solution procedures. This is expected due to the fact that Sinclair’s method

does not require an intermediate step (i.e. solving a linear system). In addition, the

construction of the DBEM is not exact since the algebraic representation of the identity

(2.57) is only approximate. Nevertheless, for rcut � 15 a0 there is not practical difference

between both methods anymore.

(a) (b)

Figure 2.8: (a) Relative error (2.120) inside the atomistic domain for the force quadrupole
problem defined in Section 2.7.4. (b) Residual vs. global iteration for the Schwarz and
Sinclair’s method for the particular case of rcut = 7
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In addition, the number of global iterations for the two staggered schemes are compared

in Figure 2.8 (b). Here, The Sinclair method clearly outperforms the alternating Schwarz

algorithm in reaching the desired tolerance of 10−7 within three iterations — as opposed

to > 100 for the Schwarz method. Therefore the Schwarz algorithm is not considered in

the numerical examples in Section 4.1.
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3 Coupled atomistic and discrete

dislocations in three dimensions

3.1 Motivation

The coupling method described in the previous chapter assumes a linear elastic bulk ma-

terial. Related Quasicontinuum (QC) schemes may as well employ a Cauchy-Born model

if lattice rotations are non-negligible. Both models are commonly used approximations

of fully atomistic models, giving accurate results in the case of small or homogeneous

deformations, respectively. However, deformations in the vicinity of defects, such as

interstitials, voids, dislocations or grain boundaries, are nonlinear which cannot be

captured by linearized models.

Figure 3.1: (a) Domain decomposition of a material body into an atomic lattice Λa and a
continuum domain Ωc at time t = t0. (b) Domain decomposition after the dislocation
has evolved into the (former) continuum region at t1 > t0

To account for these nonlinear effects, atomistic/continuum (A/C) coupling methods

use re-meshing techniques to evolve the atomistic domain with the defect, as shown

in Figure 3.1 (see, e.g. Shenoy et al., 1999; Amelang and Kochmann, 2015). However,

defects may travel over long distances and can induce long-range fields. Dislocations, in

particular, generate stress fields which decay as 1/r, where r is the distance to the center

of the dislocation core. An evolution of the atomistic domain is thus indispensable to

avoid spurious wave reflections as the dislocations approach the artificial interface. On
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Chapter 3. Coupled atomistic and discrete dislocations in three dimensions

the other hand, if plenty of dislocations have nucleated and distribute over the entire

domain, desirable computational savings reduce dramatically.

Although the capability of QC methods in improving the efficiency in comparison

with fully atomistic problems is indisputable, the above-mentioned trade-off between

accuracy and computational cost necessitates additional approximation schemes in the

coarse-grained region in order to tackle plasticity problems up to several hundreds of

nanometers. But, allowing for dislocations in the coarsened region requires to permit

non-homogeneous deformation in the continuum model, e.g. by means of additional

internal variables.

However, up to now a simultaneous coupling of two models describing the same physical

phenomena but in a different mathematical framework, i.e. a coarse-graining of defects,

remains one of the greatest challenges in multiscale materials modeling (Curtin and

Miller, 2017). Specifically for A/C coupling the problems reads: how to link internal

variables of continuum models describing the plastic flow with the atomistic problem in

a concurrent framework?

3.2 Coupled atomistic and discrete dislocations in two dimen-

sions

In order to overcome the drawback of classical QC methods, Curtin and co-workers

at Brown University introduced an A/C coupling scheme equipped with a non-trivial

continuum model. Their seminal contribution uses the discrete dislocation dynamics

(DDD) framework of Lubarda et al. (1993) and Van Der Giessen and Needleman (1995)

(c.f. Section 1.4.2) allowing for discrete dislocations to exist in the continuum region.

The method was consequently given the name coupled atomistic and discrete dislocations

(CADD, Shilkrot et al., 2002a,b) method (hereafter also referred to as CADD-2d). Figure

3.2 shows a simple one-dimensional illustration of the mathematical structure of CADD.

This illustration is of course not representative since dislocations do not exist in one

dimension but is useful to clarify the main ideas.

Consider the evolution of a chain of atoms in Figure 3.2 a) between some initial time t0
and t1 > t0. For the coupled problem in Figure 3.2 b), which represents the same physical

problem, the nonlinear wave must cross the artificial interface Γi at some time t ∈ (t0, t1).

Beyond Γi, CADD merely keeps track of the wave position neglecting the nonlinear field

at the wave front while preserving the accuracy of the far-field, i.e. the displacement

field and its gradient propagate in Ωc as a discontinuity and a δ-function, respectively.

That is, only the position of the wave front is tracked through the continuum domain.

The motivation behind CADD is the genuine interest in the most accurate description —

which is assumed to be the atomistic description — of field quantities, as displacements,
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3.2. Coupled atomistic and discrete dislocations in two dimensions

Figure 3.2: a) Schematic illustration of the evolution of one-dimensional chain of atoms.
b) The equivalent CADD problem

only in some small part of the computational domain, e.g. near a crack tip or an indenter.

Keeping track of all dislocations through elaborated re-meshing techniques may increase

the computational cost unnecessarily if dislocations reside far away from the region of

interest. It seems therefore sufficient to track only the positions of the dislocations in

the continuum domain, disregarding the nonlinear fields around the core, and provide

boundary conditions on the atomistic problem through their linear elastic far-field.

CADD can thus be seen as a kind of goal-oriented multiscale method.

The most prominent quasi-static implementation of CADD by Shilkrot et al. (2004); Miller

et al. (2004) uses a force-based coupling mechanism to eliminate spurious forces on the

dislocations near the artificial interface which plagued an earlier energy-based version

(Shilkrot et al., 2002a); see also (Tadmor and Miller, 2011) for a detailed discussion on

force-based vs. energy-based methods. Later, the method was successfully extended to

dynamic problems by Qu et al. (2005) and Shiari et al. (2005). The basic formalism of

CADD is generically summarized in the following. Assume an initial distribution of N

dislocations D := {s1, ..., sN}. In two dimensions dislocations are infinite straight lines;

therefore it suffices to characterize each dislocation by its position vector si ∈ D with

respect to the plane spanned by the glide direction m and the slip plane normal n. The

main algorithm can then be written as follows:

[S1] Solve the coupled atomistic/elasticity problem.

[S2] Compute the stresses σ(si) for all si ∈ D and compute fpk
i .

[S3] Using fpk
i , evolve si according to (1.71).
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The steps [S1]-[S3] are repeated until convergence is attained or the final time step is

reached. For quasi-static problems the physical problem in [S1] was solved in (Shilkrot

et al., 2004) via a Schur-complement method by a priori inverting the continuum stiffness

matrix. The only explicit degrees of freedom are then the positions of the real atoms.

However, it should be noted that a naive (:= dense) inversion (or factorization) of the

continuum stiffness matrix can only be done in two dimensions with tolerable effort, yet,

it becomes prohibitive in three dimensions (c.f. Section 2.6.3).

In order to illustrate the characteristic feature of CADD, i.e. the transmission between

atomistic and discrete dislocations, assume that a dislocation has nucleated in the atom-

istic domain and approaches the interface as shown in Figure 3.3. Since the motion of the

dislocation line within the continuum is governed by the evolution of an internal variable,

namely the plastic strain, it does not have a corresponding partner in the atomistic domain

which prevents a direct coupling, more precisely, there exists no explicit representation

of plastic deformation in an atomistic problem. In lieu thereof, an atomistic dislocation

has to be interpreted as a distinct configuration of atoms within the dislocation core

region where the energy of the lattice sites varies strongly from the defect-free state. In

order to transmit atomistic dislocations into the bulk material, the developers of CADD

introduced a heuristic scheme, referred to as dislocation passing. Thereby, a certain part

of the atomistic domain sufficiently near the interface, the detection band, is triangulated

to monitor the Lagrangian strain E of each element (:= triangle) as shown in Figure 3.3

(a). The measured strain is then compared to each element of a set of predefined strain

tensors

E :=

{
1

2
((F p

i )
TF p

i − I)

∣∣∣∣ i = 0, ..., N

}
, where F p

i =
bi ⊗ ni

a0
+ I. (3.1)

Here, F p
i is the plastic deformation corresponding to i-th slip system and N is the total

number of slip systems for the given crystal structure. Note that i = 0 refers to b = 0,

that is no slip is detected in the corresponding element. The plastic strain inside the

element is then defined as the strain which minimizes the distance between E and E

with respect to the Frobenius norm, i.e.

Ep := Arg

{
min
Ep

i ∈E
‖E −Ep

i ‖fro
}
. (3.2)

In essence, this scheme allows for detecting plastic slip near the artificial interface which

implies that a dislocation must reside in the vicinity of the element. The dislocation is

then passed to the continuum as a discrete dislocation, alongside with the creation of

a dipole in Ωa to remove the dislocation in the atomistic domain. In order to further

improve the accuracy of the passing scheme, Dewald and Curtin (2006) introduced

the template method which enriches the displacement field uc within the pad region Ωp

in the vicinity of an atomistic dislocation with a precomputed description of the real

dislocation core structure which eventually reduces spurious effects on the dislocation.
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It was shown in (Dewald and Curtin, 2006) that the passing distance d (c.f. Figure 3.3)

can then be reduced significantly, thus allowing for more realistic boundary conditions

on the atomistic problem.

Figure 3.3: Schematic illustration of the characteristic feature of CADD: a) Detection
of a dislocation in the atomistic domain. b) Passing of the detected dislocation to the
continuum region as a discrete entity. The left figure is reprinted from Warner et al.
(2007) with permission from Springer Nature

The CADD method has proven its capabilities in approximating large-scale fully atomistic

problems with excellent accuracy, e.g. for nanoindentation (Miller et al., 2004), crack tip

behavior (Warner et al., 2007) or fatigue problems (Curtin et al., 2010), at substantially

lower computational cost. To date, the method has yet solely been applied to two-

dimensional problems where dislocations remain straight and therefore reside either in

the atomistic or in the continuum domain. In three dimensions one is usually confronted

with dislocation loops which possibly span both domains. An extension of CADD to

three dimensions therefore requires a reformulation of the method to allow for the

evolution of dislocations residing simultaneously in both domains.

3.3 Challenges

This section serves as an introduction to the basic concepts for a three-dimensional

CADD method (henceforth CADD-3d) in order to outline the main challenges of the

implementation. Thereby, the dislocation detection and the core template correction

will be identified as the essential prerequisites for the systematic derivation of the major

assumptions and fundamental governing equations in Section 3.6.

3.3.1 Concept of hybrid dislocations

In order to illustrate this cornerstone of CADD-3d a computational domain Ω ⊆ R3 is

assumed in the following. The domain is decomposed into a bounded atomistic part

Ωa ⊂ Ω surrounded by a continuum elasticity region Ωc := Ω \Ωa. In order to focus on

the key ideas the notation is simplified by making no formal distinction between discrete
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and continuous domains, including the fields defined on them, if not explicitly required.

Therefore the following equivalence relations

Ω ↔ Λ, Ωa ↔ Λa, Ωc ↔ Λc (3.3)

are assumed in the remainder of this Chapter. The interface between the atomistic

and the continuum domain is denoted by Γi. The interface can be understood as the

equivalent of the set Λi, i.e. the layer of real atoms in Ωa which provides the boundary

condition on Ωc (c.f. Section 2.3.3).

Figure 3.4: Schematic illustration of the boundary value problem for CADD-3d

Assume now that the material body Ω contains a finite number of dislocations. In the

atomistic domain the dislocations can be identified by means of their characteristic

configuration of atoms in the vicinity of the dislocation core (see Section 1.2). In the

continuum domain the dislocations are represented as discrete entities (c.f. Section 1.4).

If there is no restriction on the positions of the dislocations in Ω, a possible general

configuration is schematically depicted in Figure 3.4 on the left which shows numerous

dislocations piercing the A/C interface. Since a dislocation cannot end within the

crystal (neglecting the possibility of dislocation junctions), its atomistic and continuum

representations must have the same characteristics, i.e. the same Burgers vector b, slip

plane S and line orientation t. This yields the following hypothesis.

Hypothesis 2 (Discrete atomistic dislocation). A discrete line representation of an atomistic

dislocation exists and is denoted by γa.

From Hypothesis 2, it follows that a closed1 line representation of the entire dislocation

can be constructed which is denoted as the hybrid dislocation (c.f. Junge, 2014; Anciaux

et al., 2018)

γhyb := γa ∪ γc, (3.4)

where γc is the corresponding portion residing in the continuum domain. The actual

detection of γa will be discussed in Section 3.4.

1Or closed and open if it extends to infinity
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Remark 3.3.1. If a discrete line representation γa exists it will not be unique. This can be

rationalized by considering the definition of a dislocation from Section 1.2 as the incompatibility

of the displacement field. In the atomistic domain the diameter of a closed path is bounded by the

lattice spacing (c.f. Figure 1.2 (a)) and can therefore not be arbitrarily small — as in a continuum.

The volume enclosed by the set of all smallest possible Burgers circuits represents the region of

“uncertainty”. This statement will be made precise in Section 3.4.2.

Having established the notion of hybrid dislocations, the system can now be analyzed

with respect to its stability properties. The atomistic system is constrained by the con-

tinuum problem through the motion of the pad atoms in Ωp. Hence, the atoms in the

vicinity of Γi respond to the displacements up, dictated by the continuum solution uc.

Far away from the defect core the continuum solution is a sufficient approximation to

a solution that a fully atomistic system would attain. However, recall from Section 1.4

that uc may indeed be a very rough representation of the real atomistic dislocation core

structure (c.f. Section 1.4.3 in particular).

Figure 3.5: Spurious forces on boundary atoms in the vicinity of a hybrid dislocation due
to a continuum solution with compact core structure; the atoms are colored according to
their centrosymmetry parameter (CSP, Kelchner et al., 1998)

To illustrate the differences between the atomistic and continuum core structure, assume,

for example, a relaxed edge dislocation in an infinite atomic crystal. The Burgers vector

is assumed to be spread, leading to a separation of the dislocation into two Shockley

partials. Now assume that the atomistic domain is cut somewhere along the glide

direction. One half-crystal gets then replaced by a continuum model such that the

atoms near the interface Γi around the center of the dislocation “see” the compact core

corresponding to the classical Volterra solution (c.f. Appendix A.2.2). After making this

replacement, spurious forces on the interface atoms arise in Ωcore up to the order of eV/Å,

as shown in Figure 3.5. Therefore the atomistic system becomes unstable in the vicinity

of the interface and the atoms relax to new, erroneous, positions to smooth out the

incompatibility between the two different core structures. This leads to a “friction-like”

force on γhyb which can artificially pin the hybrid dislocation. The error induced by the

pinned dislocation may feed back further into the atomistic domain, thus changing the

shape of the entire dislocation network.
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Remark 3.3.2. In principle the continuum solution can be improved by considering eigenstrains

βp calibrated to atomistic results (Section 1.4.3, Example 1.4) or embedding the dislocation in

a gradient continuum (c.f. Lazar, 2013). However, the DDD method may lose its strongest

asset which is the simple and efficient computation of the Cauchy stress. Since the long-range

interactions are well-captured by linear elasticity it seems more useful to encode the short-range

interactions in the core energy term Πcore which only depends on the local line configuration

such that f core is thus rather cheap to evaluate.

3.3.2 Dislocation motion

Based on the previous discussion, CADD-3d adds two further complications regarding

the motion of dislocations, as shown in Figure 3.6 (a) and (b), which are addressed in the

following.

Evolution of hybrid dislocations. CADD-3d requires mutual evolving displacement

boundary conditions at the A/C interface. However, the continuum solution is a rather

poor representation of the dislocation core, possibly perturbing the positions of the atoms

in the vicinity of the interface (c.f. Figure 3.5). Even more important, the continuum

experiences similar spurious artifacts since the DD line “expects” a stress field according

to a linear elastic problem. This can have drastic impacts on the evolution of γc and, as a

consequence, lead to an unphysical motion of the entire hybrid dislocation line since the

continuum solution in turn prescribes the boundary conditions on the atomistic problem.

Therefore the mutual boundary conditions must be augmented with some “correction”.

This correction must provide the atomistic problem with the real core structure, imposed

on the pad atoms in Ωp, and, vice versa, the continuum problem with a description of the

linear elastic core corresponding to the full DDD problem. Such an enriched boundary

condition will be discussed in detail in Section 3.5.

Figure 3.6: (a) Evolution of a hybrid dislocation along Γi. (b) Dislocation moving beyond
Γi, thus eventually becoming a hybrid dislocation

Dislocation line passing. The second complication comes into play when a dislocation,

initially contained fully in Ωa or Ωc, approaches the artificial interface. Seamless motion

of dislocations between both domains is not fundamentally captured by the underlying

theory of the coupled problem since their mathematical descriptions differ in the sense
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that a dislocation has an explicit line representation in Ωc, whereas it is merely a charac-

teristic configuration of atoms in Ωa. Therefore solution algorithms for the governing

equations of CADD-3d must necessarily be equipped with “exceptions” which transmit

the passage of dislocations between both models akin to the two dimensional problem.

3.4 Dislocation detection in atomistic systems

To bridge the gap between atomistic and mesoscale models such as DDD, the detection of

dislocation lines in atomistic systems is indispensable, especially when linking different

types of models in a CADD framework. However, a unique detection of a dislocation line

γa as a one-dimensional object (akin to DDD) is generally not possible (c.f. Remark 3.3.1).

Fortunately, non-uniqueness is not an issue since physically relevant configurations of the

discrete atomistic dislocation line are confined to a tubular region of radius ≈ b around a

(fictitious) center of the dislocation core.

Systematic dislocation detection in atomistic systems is a rather new field. For many

researchers it is sufficient to determine distorted atoms by computing their coordination

numbers, e.g. using the common neighbor analysis (CNA, Honeycutt and Andersen,

1987). The demand for an explicit detection of single dislocation lines mainly stems

from the motivation to utilize well-established continuum concepts for the analysis of

atomistic problems, e.g. the evaluation of the plastic deformation, dislocation densities

etc (e.g. Steinberger et al., 2016). To date, several methods from various research groups

have been developed which can broadly be split into two categories:

• Dislocation detection based on the dislocation density tensor.

• Dislocation detection via discrete Burgers circuit analysis.

Differences and similarities between both schemes are addressed in the following by

means of illustrative examples.

3.4.1 Detection based on continuum kinematics

In the following the existence of a locally incompatible elastic deformation gradient F e

is assumed in the context of multiplicative plasticity according to Teodosiu and Sidoroff

(1976); Nemat-Nasser (1979). Further it is asserted that (F e)−1 pulls back from a current

configuration dx to a stress-free configuration dX (c.f., Teodosiu and Sidoroff, 1976; Le

and Stumpf, 1993; Stukowski and Arsenlis, 2012). Let C be a closed path in the current

configuration. By virtue of Stokes’ theorem the true Burgers vector with respect to the

reference configuration for the corresponding path C0 can then be written as

b =

∮
C0

dX =

∮
C
(F e)−1 dx = −

∫
A
∇ × (F e)−1n dA =

∫
A
αn dA, (3.5)
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with the dislocation density tensor α = −∇ × (F e)−1 and the unit normal vector n with

respect to the area Awhich encloses C.

This derivation is based on the assumption of a continuous (possibly incompatible) body

and is thus not immediately accessible to atomistic problems. Only recently, various

practical techniques have been proposed which aim at extracting the elastic deformation

gradient from atomistic systems (e.g. by Hartley and Mishin, 2005a,b; Begau et al.,

2012). Usually a set of unique ideal lattice vectors corresponding to the perfect lattice

is taken as a reference configuration. An ideal lattice vector is then assigned to the

current lattice vector, e.g. by minimizing the distance between the set of ideal lattice

vectors and the current lattice vector (c.f. Section 3.4.2). An average representation of F e

may then be computed on a per-atom basis with respect to the first coordination shell

(Hartley and Mishin, 2005a,b). Then, an average value for α can be obtained which will

be non-zero where the deformation is inhomogeneous, i.e. in the vicinity of dislocation

cores. Subsequently the integral (3.5) has to be computed over a certain area around a

distorted atom to obtain the Burgers vector. Note that this scheme alone will not detect

a dislocation in terms of a discrete line representation. However, Begau et al. (2011)

introduced a technique to construct dislocation lines via a skeletonization of the distorted

regions.

Remark 3.4.1. Note that the detection scheme used in the two-dimensional version of CADD

(cf. Section 3.2) is based on continuum kinematics as well, yet in a different way. The CADD

detection computes the plastic Lagrangian strain in order to identify the parts of the atomistic

domain which have undergone plastic deformation. However, it does not locate the dislocation

core as will be shown in Example 3.1.

3.4.2 Detection based on discrete Burgers circuits

The second type of methods uses the classical Burgers circuit procedure. To mathemati-

cally define closed paths between (at least three) atoms, the atomistic configuration must

be tessellated. A discrete Burgers loop is then defined by the path along the boundary

of a facet of the tessellation. This procedure is conceptually well-known, yet, an algo-

rithmic development with the purpose of a fully automated dislocation detection has

only recently been established by Stukowski and Albe (2010b). The so-called disloca-

tion extraction algorithm (DXA Stukowski and Albe, 2010a; Stukowski et al., 2012) can

currently be considered as the standard visualization tool for the analysis of complex

dislocation networks among the material science community. However, to the author’s

best knowledge, the DXA has never been applied in the context of a numerical method as

it is aimed for in this work. In the following the key ideas of the algorithm are presented

in a concise format.

The DXA requires the identification of reference lattice vectors corresponding to the lattice

vectors in the deformed configuration, similar to the dislocation density-based method
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from the previous section. For this purpose a simplicial tessellation of the reference

lattice is used. This choice is not unique in the sense that other types of elements could

be used in almost the same manner. However, it is usually more convenient to employ a

simplicial tessellation from a computational point of view since efficient existing tools

for the mesh generation (“Delaunay triangulation”) are available of the shelf, e.g. the

Computational Geometry Algorithms Library (CGAL, The CGAL Project, 2017).

Since the reference lattice is translational invariant, there exists a finite set of lattice

vectors X which correspond to the distinct edge vectors of a simplicial tessellation of

the perfect lattice. The elements v ∈ X are denoted as the ideal lattice vectors. Let T be

the tessellation of a current atomistic domain Ωa. Elements of T , i.e. tetrahedra, faces

and edges, are denoted t, f and e. In order to identify dislocated elements a relation

between an edge vector dxe and a corresponding reference lattice vector dXe ∈ X is

sought-after. This procedure is schematically depicted in Figure 3.7 for a face-centered

cubic (fcc) lattice. For the identification of the reference lattice vectors the criterion of

Stukowski (2014) is adopted in the following such that

∀ dxe dXe := Arg

{
min
v∈X

‖v − dxe ‖
}
. (3.6)

An identification based on the metric properties of single bonds solely is rather simple

and limited to single crystals. Other criteria have been proposed, e.g. by comparing

the angles between lattice vectors (Hartley and Mishin, 2005a) but (3.6) appears to be

sufficiently robust if lattice rotations remain small. For a more general identification

procedure the reader is referred to (Stukowski et al., 2012).

Figure 3.7: Schematic illustration of the identification of the reference lattice vectors
corresponding to the lattice vectors in the current configuration

In the following it is assumed that each reference lattice vector is computed via the

criterion (3.6). The true Burgers vector for each face f ∈ T can then be readily identified

via

bf =
∑
e∈f

dXe. (3.7)
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Elements with bf �= 0 for two or more faces are consequently marked as distorted.

Remark 3.4.2. A particular nice feature of the DXA is the fact that the Burgers vector is uncon-

ditionally conserved (c.f. Stukowski, 2014). To see this, assume a tetrahedron with vertices a-d

and faces f1-f4. A reference lattice vector corresponding an edge e which connects, e.g., a and b

is denoted dXe = dXa/b. Then,

bf1 + bf2 + bf3 + bf4 =
∑
e∈f1

dXe +
∑
e∈f2

dXe +
∑
e∈f3

dXe +
∑
e∈f4

dXe

= dXa/b + dXb/c + dXc/a + dXa/c + dXc/d + dXd/a

+ dXa/d + dXd/b + dXb/a + dXb/d + dXd/c + dXc/b

= 0

(3.8)

since the edge vectors mutually cancel.

Algorithm 4 summarizes the relevant steps of the detection algorithm. The algorithm

essentially iterates over all f ∈ T until a face with non-zero Burgers vector is detected.

Subsequently the dislocation line is tracked through the crystal by repetitively identify-

ing the distorted neighbor of the current tetrahedron which also contains f . For each

distorted tetrahedron its center of mass is stored in a vector p̂. The tracking process

aborts if the initial tetrahedron is re-detected or the dislocation terminates at a boundary

face. A continuous line representation is then constructed by connecting the elements

of the point set p̂ via piecewise linear segments. In practice it suffices to use only every

N -th node from p̂ to prevent the detection of gratuitously many small segments. An

educated guess is to choose N ∈ O(10) (c.f. Chapter 4.3).

Throughout the remainder of this work Algorithm 4 is used to identify a discrete line

representation of atomistic dislocations. A comparison with the algorithm of Begau et al.

(2012) has not been carried out since its additional amount of post-processing steps (the

computation of F e and α etc.) seems far less efficient.

3.4.3 Examples

In the following two examples are considered to illustrate the capabilities of the DXA.

Example 3.1 (Edge dislocations in hexagonal lattices). Consider a hexagonal lattice

spanned by the basis vectors a1 = (a0, 0)
T and a2 =

1
2(a0,

√
a0)

T, as shown in Figure 3.8.

A Lennard-Jones potential is used for this test problem. A dislocation with Burgers vector

b = a1 is introduced in the center of the lattice by applying the Volterra displacements

of an edge dislocation to the lattice sites (c.f. Appendix A.2.2). The total energy is then

minimized and the relaxed configuration is triangulated according to Figure 3.8 (a)

followed by the identification of the ideal lattice vectors. Here, the set of ideal lattice

vectors X is the set of all possible primitive basis vectors, i.e. the six vectors shown in
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Algorithm 4: Dislocation detection algorithm (dislocDetn)

Input: Atomistic domain Ωa

1 X ← define set of ideal lattice vectors;

2 T ← tetrahedralization of Ωa;

3 for all e ∈ T do

4 dXe ← compute the reference lattice vector of edge e using the criterion (3.6);

5 end

6 initialize: P̂ ← {}; �� ��� �����	�	�
 ��� �� ��
��

7 for all f ∈ T do

8 bf ← compute Burgers vector of face f via (3.7);

9 if bf �= 0 then

10 initialize: p̂← {}; �� �� ��
�� �����
	�
 �� ��� ���� 
	������	��

11 while dislocation line not closed do

12 p̂← add center of mass of tf ; �� ���	����� ������� �� ��	� �����

13 tf ← identify distorted neighboring tetrahedra of tf ;

14 end

15 P̂ ← add p̂;

16 eliminate distorted faces from T ;

17 end

18 end

19 initialize: D ← {}; �� ��� �� ��� 
	������	���

20 for all p̂ ∈ P̂ do

21 γa ← generate continuous line representation from the point set p̂;

22 D ← add γa to the set of discrete atomistic dislocations;

23 end

Output: Discrete atomistic dislocations D := {γa1 , ..., γa#D}

Figure 3.8 (b). The detection algorithm detects the dislocated cell which is highlighted

in Figure 3.8 (a). Note the arbitrariness in the detection due to the non-uniqueness of

the Delaunay triangulation, that is if the atoms in the vicinity of the dislocation core are

slightly perturbed the algorithm may identify the adjacent face below the detected one.

In addition, Figure 3.8 illustrates the difference between the DXA and the detection used

in CADD (cf. Section 3.2). The CADD detection only requires an initial triangulation

as the deformation gradient F maps the reference configuration in (b) to the distorted

configuration (c) and compares the Lagrangian strain Ee for each element with the ideal

plastic strains from the set E . Note that the deformed mesh in (c) is not necessarily a

tessellation any more if multiple dislocations have passed the detection region. The

CADD detection cannot localize the dislocation core since the method uses absolute and

91



Chapter 3. Coupled atomistic and discrete dislocations in three dimensions

not relative displacements. Thus, it appears unsuitable for three dimensional problems

as it detects all elements which belong to the entire slip plane as shown in Figure 3.8 (c).

The CADD detection thus requires a rather complicated post-processing step in order to

identify the boundary elements of S which belong to the dislocation line.

Figure 3.8: (a) DXA dislocation detection. (b) Perfect lattice. (c) CADD dislocation
detection

Example 3.2 (Full and partial dislocations in fcc lattices). The second example is chosen

to show the capabilities of the DXA in detecting more complex core structures for three-

dimensional problems. Here, an fcc lattice is considered. The interatomic potential

is the EAM aluminum potential of Ercolessi and Adams (1994). Upon relaxation the

dislocation core is spread over a certain distance. The corresponding stacking fault has

a width of ≈ 15 Å. If the set of ideal lattice vectors contains all first and second nearest

neighbors of the fcc lattice the DXA detects a full dislocation in center of the core as

shown in Figure 3.9 via the green tetrahedra. Vice versa the algorithm may detect the

partial dislocations if X is enriched with the set of ideal lattice vectors corresponding to

a hexagonal closed-packed (hcp) lattice. The distorted region which corresponds to the

two Shockley partial dislocations is highlighted via the dark blue tetrahedra in Figure

3.9.

Figure 3.9: Detection of full and partial dislocations in FCC lattices

Both examples show possible applications of the proposed detection algorithm. How-

ever, the DXA can handle even more complex dislocation networks. For an impressive

collection of examples involving, i.a., crystalline interfaces, grain boundaries etc. the

reader is referred to Stukowski et al. (2012).
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Remark 3.4.3. The examples illustrate clearly why it can be superior to think of the dislocation

as a finite core region, rather than a continuous line. For a deeper mathematical characterization

of dislocations in crystalline lattices the reader is referred to work of Ariza and Ortiz (2005).

3.5 Dislocation core templates

In this section the boundary conditions on the atomistic problem are discussed. The

idea is to define a coupling that is robust in providing a correct atomistic description

when the dislocations intersect the coupling interface, such that the atomistic domain

responds as if embedded in an immense atomistic domain, i.e. atoms do not “know”

that other parts of the material are actually treated by an entirely different method

because the forces on the atoms are (almost) exactly the forces that would be generated

in the immense (computationally unfeasible) atomistic simulation. This is accomplished

through a “template” imposed at the A/C interface that enriches the continuum-line

description with an atomistic description of the dislocation core structure. Formally the

core template correction is defined as a (localized) field Δũcorr which is superimposed

on the continuum solution such that the pad displacements read

up = uc +Δũcorr. (3.9)

The idea of a core template correction has been originally developed by Dewald and

Curtin (2006) in the context of CADD-2d. Junge (2014), Cho et al. (2015) and Anciaux

et al. (2018) have shown that the same concept also applies in three dimensions under the

assumption that the hybrid dislocations remain straight near the interface Γi and other

dislocations stay sufficiently far from γhyb. Their approach is adopted in the following.

To review the main steps for constructing Δũcorr based on infinite straight dislocations

assume a coordinate system, attached to the center of the dislocation, with the usual

basis {ei}i=1,...,3 and axes given by ∗x1, ∗x2 and ∗x3. The axes are chosen such that
∗x1 is the glide direction, ∗x2 is the direction normal to the slip plane and ∗x3 is the

line direction. A physical quantity related to this coordinate system is denoted by ∗•.
Assume an (effectively) infinite atomic lattice Λa. To insert a dislocation an initial guess
∗ũ, corresponding to the continuum solution of an infinite straight dislocation (see

Appendix A.2), is imposed on Λa. The solution ∗ũ is not a minimizer of the atomistic

energy. Therefore a corrective displacement is sought-after which solves

Δ∗ũ := Arg

{
min∗v∈U�

Π(∗ũ+ ∗v)
}
. (3.10)

Problem (3.10) can be efficiently solved using flexible boundary conditions or related

A/C coupling schemes (c.f. Chapter 2).
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In practice it is more convenient to obtain a displacement field independent of the line

direction ∗x3. Therefore the lattice is projected onto the ∗x∗1x2-plane. The corresponding

projection tensor is defined as

P : R3 → R2

∗x �→ P ∗x = ∗x̄ =
(
∗x1 ∗x2

)T (3.11)

such that

Δ∗ ˜̄u(∗ξ̄) = Δ∗ ˜̄u(P ∗ξ) = Δ∗ũ(∗ξ1, ∗ξ2, 0). (3.12)

Since the lattice is translational periodic in the ∗x3-direction it suffices to project only the

lattice sites from the periodic supercell, denoted by Λa
per ⊂ Λa. To make (3.12) compatible

with uc it is asserted that the corrective displacement can be continuously extended to

Δ∗ ˜̄u : R2 → R3. Therefore a nodal interpolant φ∗ξ̄ ∈ W 1,∞(R2) is defined such that

∀ ∗x̄ ∈ R2 it follows

Δ∗ ˜̄u(∗x̄) =
∑

∗ξ̄∈PΛa
per

φ∗ξ̄(
∗x̄)Δ∗ ˜̄u(∗ξ̄). (3.13)

A convenient choice is to assume a piecewise linear displacement field. The function

Δ∗ ˜̄u can then be constructed by triangulating PΛa
per, as shown in Figure 3.10 (a), and φ∗ξ̄

then denotes the standard P1 interpolant. This construction will be used in all numerical

experiments in Section 4.3.5.

Figure 3.10: (a) Projection of the lattice sites according to (3.11) for an fcc lattice. (b)
Application range of the core template

In practice it suffices to superimpose Δ∗ ˜̄u on the continuum solution only in some small

domain around the dislocation core. This domain is denoted as the core region Ωcore. For

simplicity Ωcore is assumed to be a cylindrical region, centered on the dislocation line

(Figure 3.10 (b)). To ensure a smooth transition, the core region is divided into in an

inner region Ωcore
in with radius rcorein , where Δ∗ ˜̄u is fully applied, and a blending region
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Ωcore
blend with inner radius rcorein and outer radius rcore > rcorein , given by

Ωcore
in :=

{
∗x̄ ∈ R2

∣∣ ∗x21 + ∗x22 < (rcorein )2
}
, (3.14)

Ωcore
blend :=

{
∗x̄ ∈ R2

∣∣ ∗x21 + ∗x22 < (rcore)2
}
\Ωcore

in . (3.15)

Appropriate choices for rcorein are discussed below. The smooth “step function” λ ∈
C0(R2), compactly supported on Ωcore, is defined as

λ(∗x̄) :=

⎧⎪⎨
⎪⎩

1 if ∗x̄ ∈ Ωcore
in ,

(0, 1] if ∗x̄ ∈ Ωcore
blend,

0 on else.

(3.16)

The (localized) core template correction is then defined ∀ ∗x̄ ∈ R2 as

Δ∗ ˜̄ucorr(x̄) = λ(∗x̄)Δ∗ ˜̄u(∗x̄). (3.17)

The goal is now to express the core template correction with respect to the general

x1x2x3-space. For this purpose an orthonormal basis {e′i} is defined as

e′1 = m, e′2 = n, e′3 = t (3.18)

for some glide directionm, slip plane normaln and line orientation t. A relation between

a vector v′ with respect to {e′i} and a vector v with respect to {ei} is given by the rotation

tensor R ∈ SO(3), defined by

Rij = e′i · ej , ⇒ R =
(
m n t

)
(3.19)

such that

v′ = Rv. (3.20)

A material point ∗x can then be equivalently expressed in terms of x via a rotation by R

and a translation

∗x = Rx+ c (3.21)

for some c ∈ R2. The core template correction is then generally defined ∀x ∈ R3 as

Δũcorr(x) = λ(PRx+ Pc)RTΔ∗ ˜̄ucorr(PRx+ Pc). (3.22)

Equation (3.22) is now in a suitable form to be superimposed on a general continuum

solution uc in the pad domain in the vicinity of a dislocation core. This application will

be made precise in the following section.
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As a hybrid dislocation traverses the crystal, its character angle ϑ at the artificial interface

Γi may evolve. It is not practical to compute Δũcorr on-the-fly for each new ϑ. The

strategy proposed in (Anciaux et al., 2018), which is adopted here, is to precompute

the core template correction for a given set of N character angles. Given precomputed

solutions for some ϑi ∈ [0◦, ..., 90◦], i = 1, ..., N , the core template correction for any

ϑ ∈ (0◦, ..., 90◦), where ϑi < ϑ < ϑi+1, is obtained by blending the solutions due to its

neighboring angles as follows

Δũcorr(x;ϑ) = αΔũcorr(x;ϑi)+(1−α)Δũcorr(x;ϑi+1), with α =
ϑ− ϑi+1

ϑi − ϑi+1
(3.23)

In the remainder of this work it is tacitly assumed that Δũcorr is known for arbitrary

character angles.

An adequate size of the core region Ωcore can be estimated by analyzing the error between

the fully atomistic and the continuum solutions ua and ũ, respectively. According to

(Ehrlacher et al., 2016, Theorem 5) the pointwise error decays as

‖ua − ũ‖ � r−1 log r, ‖∇ua −∇ũ‖fro � r−2 log r, (3.24)

where r is the distance to the center of the dislocation core. Equation (3.24) holds generally

for straight dislocations and has been verified in (Anciaux et al., 2018) for various character

angles. According to (Anciaux et al., 2018) it suffices in practice to choose an rcorecut slightly

beyond the pre-asymptotic regime, which usually comprises the stacking fault of the

dislocation. For straight interfaces the error in the gradient of the boundary condition

(3.9) can then be readily deduced by integrating ‖∇ua−∇(ũ−Δũcorr)‖fro over the entire

space and using the result (3.24) such that

‖∇ua −∇(uc −Δũcorr)‖L2 =

(∫
R2

‖∇ua −∇(uc −Δũcorr)‖2fro dA
)1/2

(3.25)

�
(∫ 2π

0

∫ ∞

rcorein

r−4 log (r)2r drdθ

)1/2

(3.26)

� (rcorein )−1 log r. (3.27)

As a matter of fact, this decay rate is the same as the one obtained in (Ehrlacher et al.,

2016) for various A/C coupling schemes (clamped, QC etc.) up to a log-factor, when

interpreting rcorein as the size of the fully atomistic region. Therefore there is (at least

theoretically) no advantage of using a costly QC scheme in the bulk material over the

CADD-3d boundary condition, yet, it is remarked that this estimate only holds for

straight and isolated hybrid dislocations.

Remark 3.5.1. It would be interesting to know if (and how) a solution based on a generalized

continuum can improve the convergence rates (3.24). A fully three-dimensional DDD model
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using gradient elasticity has been proposed only recently by Po et al. (2014) which could then

possibly replace the classical model used in the present work.

Remark 3.5.2. Further, it would be highly desirable to characterize the behavior of the error ε

induced in the atomistic region due to the boundary condition (3.9) as a function of the distance d

to the artificial interface Γi. Error estimates of the form

ε(d) � d−β , (3.28)

for some β > 0, could then be used to analyze any spurious effects on the dislocation(s) in Ωa.

Another possibility to apply a corrective displacement field to the continuum solution

which was originally suggested by Junge (2014) is discussed in the following. In (Junge,

2014) a set of N dislocation loops is initially assumed. The continuum solution can then

be obtained by a superposition of the solutions due to the individual dislocation lines ũi

(c.f. Appendix A.1.3)

uc =

N∑
i=1

ũi. (3.29)

Now assume that the j-th dislocation is a hybrid dislocation. The idea of Junge (2014)

is to replace ũj with the atomistic solution ua = ũj + Δũcorr for an infinite straight

dislocation, obtained from the optimization problem (3.10), in the sense that

uc =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N∑
i=1
i 
=j

ũi + ua in Ωcore,

N∑
i=1

ũi else.

(3.30)

However, this method is generally ill-posed. This can be rationalized, considering the

fact that the solution ũj shows a logarithmic divergence with an increasing diameter of

the dislocation loop (Appendix A.3.1). This is shown rigorously in Proposition 4. This

divergence is not contained in ua. Therefore, as the loop expands, a mismatch develops

between the displacements in the core region and the remainder of the pad. Therefore

this approach is not pursued further in the following.

3.6 Problem formulation

3.6.1 Assumptions

In this section the quasi-static boundary value problem for CADD-3d is formulated.

Based on the previous considerations made in Section 3.3-3.5, and to formally define the

range of application of the proposed method, the following assumptions are postulated:
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Chapter 3. Coupled atomistic and discrete dislocations in three dimensions

Assumption 1. A geometric linearization in the continuum domain is appropriate, that is

‖∇uc‖fro ≈ 0 in Ωc. (3.31)

Assumption 2. The evolution of the entire material body Ω := Ωa ∪ Ωc is sufficiently slow

such that the second time derivative of the displacement becomes negligible small∥∥∥∥∂2u

∂t2

∥∥∥∥ ≈ 0 in Ω. (3.32)

Therefore a (quasi-)static problem description will be presumed.

Assumption 3. The dislocation line γa in the atomistic domain can be unambiguously detected

in Ωa using Algorithm 4 in the sense that γa and γc share the same Burgers vector and the same

slip plane with normal n. The line direction t of γa is implicitly defined through γc.

Assumption 4. The core template correction Δũcorr (3.23) is a sufficient approximation to the

exact (hypothetical) fully atomistic solution

uexact = ua ≈ uc +Δũcorr in Ωp. (3.33)

Equation (3.33) holds if the following conditions on the hybrid dislocation line γhyb in the vicinity

of the interface Γi are satisfied:

[C1] The hybrid dislocation line remains sufficiently straight such that ϑ(s) ≈ const.

[C2] Non-glide components of the shear stress acting on the hybrid dislocation, e.g. Escaig

stresses (which are the driving forces for cross-slip; e.g. Escaig, 1968), are negligible such

that the core configuration is consistent with the precomputed Δũcorr, more precisely, the

dislocation dissociation remains constant.

[C3] Individual hybrid dislocation are clearly separated such that junction formation does not

occur.

Assumption 5. The motion of γc, governed by the DDD model, accurately reproduces that of a

(hypothetical) fully atomistic dislocation in Ωc.

According to Assumption 1 the continuum body behaves linear elastic. A formulation

of CADD-3d for geometric nonlinear problems is conceptually possible; research in

this direction has been conducted by Deshpande et al. (e.g. 2003); Irani et al. (e.g. 2015)

who developed a DDD framework at large deformations for plane strain problems.

However, the author is currently not aware of any implementation of a finite strain DDD

for three-dimensional problems.

Assumption 2 may be weakened in the sense that real dynamics can in principle be

considered in the atomistic domain. A version of CADD-3d at finite temperature, using
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a fully dynamic atomistic problem, has been developed by Cho (2017); Cho et al. (2018)

alongside the present work. On the other hand, a fully dynamic problem is unstable

in general due to the force-based coupling mechanism (c.f. Dobson et al., 2010; Junge

et al., 2015) but possible for certain problems with appropriate thermostatting (c.f. Shiari

et al., 2005). However, this requires artificially high damping parameters as shown by

Junge et al. (2015). Thus, if real dynamics must be considered, a different coupling

mechanism based on a well-defined energy functional has to be employed presumably

(see e.g. Dupuy et al., 2005).

With Assumption 1, it follows that the assumption of small deformations presumably

hold in parts of atomistic domain which are close to the artificial interface — except in

regions where the dislocation lines crosses Γi, that is in Ωcore. The influence of lattice

rotations in this region can thus safely be neglected which emphasizes that Algorithm 4

should satisfy Assumption 3.

Further, it is noteworthy that the DXA detects a representation of the atomistic dislocation

line in the current configuration, a fact which has been left aside so far. However, the

continuum problem necessitates a description of the dislocation line in the reference

configuration as the Peach-Koehler force is a force per reference unit length (since the

Eshelby stress tensor is defined with respect to the material frame; c.f. Section 1.4.1).

Hence, in order to identify the reference placement γa0 corresponding to γa it is assumed

that a bijective mapping χ : γa0 → γa must exist such that

γa0 :=
{
χ−1(s) = s− ua(χ−1(s)) | s ∈ γa

}
, (3.34)

Due to Assumption 1 the displacement gradient is small but displacements themselves

can still be large if the net Burgers vector is large. On the other hand, Assumption 1 also

excludes the potential occurrence of large net Burgers vectors which is manifested in the

following remark:

Remark 3.6.1. Statement (3.35) can indeed be justified by considering Assumption 1. Recall that

lattice rotations become negligible if displacement gradients are small. The density of geometric

necessary dislocations (GNDs), which is the measure of lattice curvature2 and depends linearly

on the net Burgers vector, is therefore insignificant. Hence, the net displacement should be small

around some control volume at the A/C interface such that differences between reference and

current configurations γa and γa0 , respectively, can be safely neglected.

Therefore

γa ≈ γa0 (3.35)

is asserted to hold throughout the remainder of this work.

2This is due to the fact that an edge dislocation introduces a bending moment with respect to the center
of the dislocation core
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3.6.2 Governing equations

Anciaux et al. (2018) were first to present a general methodology for the coupling of a finite

atomistic domain Ωa to a (possibly infinite) continuum domain Ωc described by DDD, for

systems containing dislocations spanning both domains, i.e. hybrid dislocations formed

by the intersection of the two lines γa and γc. At any instant or increment of loading, the

atomistic problem involves the interactions of atoms via interatomic potentials subjected

to boundary conditions on a surrounding atomistic pad region Ωp ⊂ Ωc whose atomic

positions are dictated by the solution of the continuum dislocations problem. The associ-

ated continuum problem involves a small-strain elasticity solution of a DDD problem

subjected to the displacement boundary conditions associated with atomic positions at

the A/C interface plus any boundary conditions applied on the external boundaries.

For hybrid dislocations, the continuum displacement field in the pad region is enriched

by the addition of a corrective displacement field Δũcorr(x) = Δũcorr(x;ϑp, b) that ap-

proximates the true atomistic core structure of the hybrid dislocation at the interface

with character angle ϑp and Burgers vector b. An algorithm for the simultaneous evolu-

tion of both atomistic and continuum domains was then presented for the case of full

quasi-dynamic coupling (quasi-static evolution of the dislocation dynamics problem).

Figure 3.11: Schematic illustration of the boundary value problem for CADD-3d

A formulation of CADD-3d for fully quasi-static problems has been presented by Hodapp

et al. (2018a) which is considered in the following. Without loss of generality attention is

drawn to systems containing a single hybrid dislocation γhyb. This can be a closed loop,

as shown in Figure 3.11, or a line which pierces the continuum region with both ends

on the outer boundary. Using Assumption 4, [C3], the framework can be generalized

directly to an arbitrary number of (hybrid) dislocations by merely changing the notation

(i.e. by a summation over all hybrid dislocations in the system).

Here, the creation of hybrid dislocations by the impingement of dislocations onto the

interface region, whether originating from the atomistic or continuum domains, is

not addressed. It is emphasized that a dislocation passing between both domains is

fundamentally an algorithmic question and is thus not relevant for the definition of the

boundary value problem. To be more precise, assume for a moment that the dislocation

100
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loop resides solely in one region. If a portion of the loop is now passed to the other

domain it becomes a hybrid dislocation by construction, i.e. the generic state (Figure

3.11) is then recovered. For a recent discussion on dislocation passing in the context of

CADD-3d the reader is referred to (Cho, 2017; Cho et al., 2018).

In accordance with Assumption 4, [C1] it is appropriate to prescribe the parts of γc in the

pad region with straight segments such that the character angle in Ωp is uniquely defined.

In Figure 3.11 the dislocation loop passes the interface Γi two times. The Burgers vector

remains constant over the whole loop but the character angles may differ, i.e. ϑp
1 �= ϑp

2 .

The total core correction with respect to Ωcore := Ωcore
1 +Ωcore

2 must then be defined as

Δũcorr(x) = Δũcorr(x;ϑp
1) +Δũcorr(x;ϑp

2), (3.36)

with Δũcorr
i (x;ϑp

i ) given

∀x ∈ Ωp Δũcorr
i (x;ϑp

i ) =

{
RTΔ∗ ˜̄ucorr(PRx+ Pc;ϑi) in Ωcore

i ,

0 else,
(3.37)

according to (3.22)/(3.23). The (precomputed) core correction (3.36) is then added to the

continuum elasticity solution. Vice versa, the core correction has to be subtracted from

the interface displacements ui, which provide the physical boundary condition on the

continuum problem. More precisely, since the atomic displacements ui correspond to

the real core structure, the core correction has to be considered in the reverse way in

order to avoid spurious forces on γc in the vicinity of the artificial interface due to the

fact that the DDD problem “expects” Peach-Koehler forces in response to the continuum

elasticity solution (c.f. Section 3.3.2).

Given the Assumptions 1-5 and the above schematic background of the method, the

solution of the quasi-static coupled problem can now more carefully be defined as the

fields ua, uc and γc that solve

Pcadd

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Atomistic problem Pa:

fa − f ext = 0 in Ωa,

ua = uc +Δũcorr in Ωp,

Continuum problem Pc:

∇ · σ + fbody = 0 in Ωc,

uc = ua −Δũcorr on Γi,

fpk + f core = 0 on γc,

γc = γa on Γi,

(3.38)
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where Pc := Pc/p ∧ Pc/dd, as defined in Section 1.4.2. Note that the natural boundary

conditions (displacements/tractions) on the outer boundary ∂Ωc \ Γi are omitted for

compactness.

Remark 3.6.2. The definition of the boundary condition γc = γa on Γi is not a necessary

condition by any means. As a matter of fact, it could have likewise been omitted. However,

evolving discrete dislocations along surfaces may be cumbersome (c.f. Crone et al., 2014). Using

this boundary condition, γc evolves implicitly through the motion of the atoms in the vicinity of

Γi.

The physical subproblemPp := Pa∧Pc/p is nothing but a standard force-based coupling

(c.f. Section 2.3.3). However, the fully coupled problem Pcadd is non-standard due to

the boundary condition γc = γa on Γi. The definition of such a boundary condition

suggests that there exists a coupling operator which relates the displacement of the

atoms to a displacement of the discrete dislocation. However, this cannot be a differential

operator since the dislocation detection, which maps the atomic lattice to a set of discrete

dislocations, is essentially an algorithmic operator. Thus, problem (3.38) cannot be easily

written as a (global) linearized system of equations to analyze its stability properties.

Thus, a fully monolithic solution procedure to Pcadd, which requires such a global

stability analysis, is not considered. Rather, an efficient semi-monolithic algorithm will be

constructed in the following section which circumvents a fully concurrent motion.

3.7 Semi-monolithic solution procedure

In this section an iterative solution procedure for Pcadd is presented. A related algorithm

has been proposed by Hodapp et al. (2018a), however, their method is based on a nested

three-way staggered scheme which iterates between the atomistic problem Pa and the

continuum problem Pc, wherein Pc itself is solved via an alternating procedure between

the physical problem Pc/p and the DDD problem Pc/dd. Despite its simplicity and

excellent stability properties it seems counterproductive to employ such a staggered

scheme for CADD-3d, especially in light of Section 2.7.4, since much of its potential

efficiency is likely to be lost. Therefore a semi-monolithic approach using a two-way

staggered solution procedure is proposed in the following, which iterates between the

entire physical problem and the DDD problem.

Preparation

Applying a fully coupled solver to the physical problem Pp requires some initial discus-

sion of the problem Pc/p. Allowing for discrete dislocations in the continuum domain

imposes a distributive source term (:= the plastic strain) on the momentum balance which

renders the solution uc discontinuous on the slip plane, i.e. u /∈ V(Ωc). At this point
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classical numerical methods, such as the finite element method (FEM), usually fail. More

advanced methods have been proposed by various research groups, i.a. the extended

FEM (XFEM, Moës et al., 1999) which uses special enrichment functions accounting for

the discontinuity of the solution vector (e.g. Gracie et al., 2007, 2008).

Another common approach, which is pursued here, is the superposition method (c.f. Ap-

pendix A.1.3; see also Lubarda et al., 1993; Weygand et al., 2002, in the context of DDD).

The superposition method splits Pc/p into a homogeneous problem (the •̃ fields) in

R3 which accommodates the discontinuity induced by the presence of a dislocation

line γ (:= ∂S ) and is solved exactly (see below), and a corrective problem (the •̂ fields)

which accounts for the boundary conditions on ∂Ωc. The problem then reads: find

ũ(γ) ∈ [C(Ωc \S )]3 and û(γ) ∈ [H2(Ωc)]3 such that

Pc/p

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Infinite problem P̃c/p:

∇ · σ̃(γ) = 0 in R3,

Corrective problem P̂c/p:

∇ · σ̂(γ) + fbody = 0 in Ωc,

û(γ) = ūc − ũ(γ) on ∂uΩ
c,

t̂(γ) = t̄− t̃(γ) on ∂tΩ
c.

(3.39)

The full solution and the stress field are then given by

uc = ũ(γ) + û(γ), σ = σ̃(γ) + σ̂(γ). (3.40)

A general analytical solution ũ(γ) to P̃c/p can be obtained by means of the Burgers equa-

tion for anisotropic media (c.f. Appendix A.3.1). The Burgers equation is a representation

of ũ(γ) as a line integral over γ. In what follows use is made of the fact that, given two

segments γ1 ⊂ γ and γ2 = γ \ γ1, the total solution can be obtained by summing up the

individual contributions ũ(γ1) and ũ(γ2)

ũ(γ) = ũ(γ1) + ũ(γ2). (3.41)

However, it should be noted that ũ(γ1) and ũ(γ2) alone do not have a physical meaning

since a dislocation cannot end within the domain.

The superposition method requires explicit knowledge of the hybrid dislocation in order

to obtain the solution ũ(γhyb). In principle γhyb can be reconstructed by a dislocation

detection of γa in the entire atomistic domain (another algorithm based thereon will in

fact be proposed in the following section). However, this adds gratuitous computational

effort to the problem due to the fact that, even though the solution ũ depends on γa,

the full solution uc does not depend on the precise location of the discrete atomistic

dislocation since the boundary condition on ∂Ωc is unconditionally satisfied due to the
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corrective problem P̂c/p. It is thus more practical to detect the dislocation only in some

small part Ωdetn in the vicinity of the artificial interface (Figure 3.12) to ensure that the

location of the discontinuity is properly captured by γdetn ⊂ γa. In the remainder of the

atomistic domain the dislocation can be artificially closed by a composition of virtual

segments γav (c.f. Anciaux et al., 2018). The “fictitious” dislocation line in the atomistic

domain is the given by γ̃a := γdetn ∪ γav and the entire loop, used to compute the •̃ fields,

will be denoted γ̃hyb := γ̃a ∪ γc.

Figure 3.12: Schematic illustration of the problem decomposition of Pcadd (3.38) corre-
sponding to the semi-monolithic solution procedure from Section 3.7

Description of the algorithm

Before formulating the actual algorithm the two subproblems are discussed as they are

shown in Figure 3.12. Here, the hybrid dislocation line γ̃hyb is composed of straight

segments. Further, it is assumed that the motion of the straight segment in Ωcore is

constrained such the outer node (in Ωc) cannot enter the pad region. Therefore the

core template correction is consistently well-defined. Hence, given γ̃hyb, the physical

subproblem reads: find ua and uc such that

Pp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Atomistic problem Pa:

fa − f ext = 0 in Ωa,

up = ũ+Δũcorr + û in Ωp,

Physical continuum problem Pc/p:

∇ · σ̃ = 0 in R3,

∇ · σ̂ + fbody = 0 in Ωc,

û = ua − ũ−Δũcorr on Γi,

(3.42)
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omitting the external boundary conditions. The physical problem consists of three

balance equations, namely (1) the atomistic force balance Pa, (2) the balance of linear

momentum in R3 P̃c/p due to the presence of the dislocation γ̃hyb and (3) the corrective

problem P̂c/p which accounts for the prescribed boundary conditions. The solution ũ

and the stress field σ̃ are assumed to be known at any instant in the remainder of this

chapter (c.f. Appendix A.3.1). Thus, the only unknowns which have to be determined

numerically are the atomic displacements ua and the corrective solution û. Since weak

solutions to P̂c/p are in V(Ωc) the atomistic/DBEM coupling, introduced in Chapter 2, is

particularly suited to solve Pa ∧ P̂c/p; but any other conventional atomistic/FEM scheme

could be used likewise.

Using a (temporary) output of the physical problem, i.e. the location of γ̃a and the stress

field σ, The DDD problem evolves the dislocation line γc in the continuum domain.

Here, the DDD problem is assumed to be solved together with P̃c/p due to the fact that

the stress field σ̃ on γc has to be recomputed as the dislocation line advances in search

of equilibrium. Thus, it is more adequate to use the stress field due to the momentary

position of γc, rather than the stress field due its initial location. Then, given γ̃a and σ̂,

the problem reads: find γc such that

Pc/∞

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Infinite problem P̃c/p:

∇ · σ̃ = 0 in R3,

DDD problem Pc/dd:

fpk + f core = 0 on γc,

γc = γ̃a on Γi.

(3.43)

If the dislocation line is discretized into straight segments, the force on the dislocation

line is usually interpolated between the nodes. The problem Pc/dd is then solved in a

weak sense with respect to the nodal positions. The precise details on the numerical

treatment can be found elsewhere (e.g. Hirth and Lothe, 1982; Weygand et al., 2002; Cai

et al., 2006; Arsenlis et al., 2007).

The entire solution procedure, designated as Algorithm 5, is presented in detail in the

following. The algorithm is formulated in a multiplicative way, yet an additive procedure

may also be possible. An iteration between the different subproblems is referred to as

a global iteration k. Quantities in the k-th step are consequently denoted •k. A local

iteration, i.e. an iteration of the nonlinear solver corresponding one of the subproblems,

is specified with the index j and a quantity at global iteration k and local iteration j, i.e.

at (k, j), is consequently denoted as •k,j . To make the entire solution procedure precise,

an initial configuration for the entire system is selected first. A schematic illustration is

shown in Figure 3.14 (a) for a dislocation segment in the vicinity of the interface spanning

both domains. This configuration at iteration k is specified by the displacements of both

real atoms in Ωa
k and pad atoms in Ωp

k as well as the nodal positions of the discrete hybrid
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1. Compute the DDD displacements ũ(γck) in Ωp ∪ Γi. [Pre-processing]

2. Assemble the DDD displacements for the closed loop γ̃hybk,j−1 := γ̃ak,j−1 ∪ γck, i.e.
compute

ũ(γ̃hybk,j−1) = ũ(γ̃ak,j−1) + ũ(γck) in Ωp ∪ Γi; . (3.44)

3. Boundary condition on Pa. Set

up
k,j = uc

k,j−1 +Δũcorr
k,j in Ωp, (3.45)

where the continuum displacements are given by

uc
k,j−1 = ũ(γ̃hybk,j−1) + û(γ̃hybk,j−1), (3.46)

with the corrective displacement û(γ̃hybk,j−1) from iteration j − 1.

Boundary condition on P̂c/p. Set

ûk,j = ua
k,j−1 − ũ(γ̃hybk,j−1)−Δũcorr

k,j on Γi. (3.47)

Figure 3.13: Artificial boundary conditions on the physical subproblem Pp from Algo-
rithm 5, line 4, at any iteration j of the numerical solver

dislocation γ̃hybk . The defined physical problem Pc/p is then solved up to a prescribed

tolerance. This problem requires as an input the discrete dislocation γc from the previous

iteration in order to compute the boundary conditions. The boundary conditions that are

imposed on Pc/p in every iteration (k, j) are described in Figure 3.13. Note that γck is held

fixed such that the corresponding displacement field ũ(γck) can be computed a priori.

On the other hand, the contribution ũ(γ̃ak,j) due to γ̃ak,j has to updated in every j-th step.

However, the associated computational cost is assumed to be negligible, compared to an

evaluation of the atomic force vector, since the detection domain Ωdetn is only a small

portion of Ωa.3 As a result the dislocation in the atomistic domain evolves as shown in

Figure 3.14 (b). Subsequently the discrete dislocation problem Pc/dd is solved to evolve

the dislocation nodes residing in the continuum domain, as shown in Figure 3.14 (c).

With the new continuum dislocation line, the boundary conditions on Ωp and Γi are

then updated using the new displacement field of the dislocation network. The above

steps are performed iteratively until convergence is obtained, e.g. when the incremental

differences between two iterates of the solution falls below some tolerance.

3In practice it may actually suffice to recompute γ̃a
k,j only every (k,N)-th step, where N ∈ O(10), but

this remains to be verified
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Algorithm 5: Semi-monolithic algorithm for CADD-3d

Input: Initial state (ua,uc, γ̃hyb)0

1 k← 0;

2 repeat

3 Physical problem Pc/p

4 ũ(γck)← compute the DDD displacements due to γck in Ωp ∪ Γi;

5 (ua, uc, γ̃a)k+1 ← solve (3.42);

6 Infinite problem Pc/∞

7 initialize: j ← 0, γck,j ← γck, γ̃hybk+1/2,j ← γ̃ak+1 ∪ γck,j ;

8 while ‖fpk + f core‖L2(γc) < TOL do

9 compute on γck,j : σ(γ̃hybk+1/2,j)← σ̃(γ̃hybk+1/2,j) + σ̂(γ̃ak+1 ∪ γck);

10 compute on γck,j : fpk ← (σ(γ̃hybk+1/2,j)b)× t, f core;

11 γck,j+1 ← evolve DD line;

12 j ← j + 1, γ̃hybk+1/2,j ← γ̃ak+1 ∪ γck,j ;

13 end

14 γck+1 ← γck,j , set k← k + 1;

15 until convergence;

Output: Final state (ua,uc, γ̃hyb)k

Figure 3.14: Schematic illustration of the semi-monolithic algorithm for CADD-3d

3.8 Simplified solution procedure

3.8.1 Approximation of the coupled problem

In the previous section a general semi-monolithic scheme for CADD-3d has been devel-

oped. At its basis, the proposed algorithm offers the possibility to apply a fully coupled

solver to the physical problem Pp which iterates simultaneously on the atomic and the

corrective displacements ua and û, respectively. For many problems the outer boundary
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of Ωc mainly serves to apply far-field conditions, thus embedding the atomistic region

in an effectively infinite bulk material in order to avoid spurious image effects due to

defect-boundary interactions. The solution for the û fields is numerical, and normally

accomplished using the FEM, which can in three dimensions be computationally very

expensive due to the vast amount of degrees of freedom in a (discretized) Ωc (c.f. Pavia

and Curtin, 2015). For this class of problems boundary element techniques, such as the

one established in Chapter 2 become useful, as they allow for the computation of exterior

problems using only the degrees of freedom on the boundary. Fully coupled solvers

are yet difficult to implement and, to the author’s best knowledge, a publicly available

high-performance implementation is still lacking. For this purpose a simplified solution

procedure is proposed which does not require to solve for the •̂ fields numerically and

is, moreover, relatively simple to integrate into existing molecular dynamics (MD) codes.

The subclass of possible dislocation problems involving dislocations and atoms embed-

ded in an infinite homogeneous elastic domain and subjected to a far-field applied stress

state is considered in the following. This subclass of problems still involves the mechan-

ical coupling at the A/C interface. To eliminate the need to compute the corrective •̂
fields numerically due to the direct A/C coupling, the following additional assumption

is essential:

Assumption 6. The atomistic domain does not contain other defects than dislocations, e.g cracks,

voids or grain boundaries etc.4

Assumption 6 is not yet the suggested approximation, merely a characterization of the

entire problem in terms of the existing dislocation network, which is a prerequisite for

the simplified solution procedure.

Henceforth, it is assumed that the atomistic dislocation line (γa) is detected throughout

the entire atomistic domain, as shown schematically in Figure 3.15. The entire dislocation

network γhyb := γa ∪ γc is then used to define a “fully-continuum” problem Pc within

the infinite continuum elastic domain Ωa∪Ωc ≡ R3; that is, the portion of the dislocation,

residing in the atomistic domain, passed to the continuum problem is now γ̃a = γa. The

solution of this continuum problem is thus the analytic •̃ fields plus the analytic •̂ fields,

linear in x, due to the constant remote applied stress. There are no other corrective •̂
fields. From the displacement field uc = ũ(γhyb) + û, the displacement field of the pad

atoms in Ωp is then computed including the template correction field for the hybrid

dislocations; these displacements then serve, as in the full problem, as the boundary

conditions for the atomistic problem.

4Technically it is possible to incorporate other defects in the atomistic region, provided that their stress
field is self-equilibrated, but this is not considered here
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3.8. Simplified solution procedure

Figure 3.15: Schematic illustration of the problem decomposition of the approximate
problem P̃cadd (3.38) corresponding to the solution procedure from Section 3.8.1

The reduced problem can then be stated as: find ua and γc such that

P̃cadd

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Atomistic problem Pa:

fa = 0 in Ωa,

ua = uc +Δũcorr in Ωp,

Continuum problem Pc:

∇ · σ̃(γhyb) = 0 in R3,

∇ · σ̂ = 0 in R3,

fpk + f core = 0 on γc,

γc = γa on Γi

(3.48)

in the absence of external/body forces. The incremental evolution of the coupled problem

(motion of the DDD nodes in Ωc and motion of the atoms in Ωa) is discussed below.

3.8.2 Updated Green function method

In the following the notation from Section 3.7 is adopted, that is, a physical quantity

at a global iteration k is referred to as •k; if the quantity is furthermore evaluated at a

local iteration j it is denoted •k,j . To solve (3.48) numerically for quasistatic equilibrium

problems, Algorithm 5 can be simplified considerably. Following Algorithm 6 only the

atomistic problem is solved in the first step. The boundary condition on Pa at step k is

obtained by a superposition of DDD displacements ũ(γhybk ) and the (linear) displacement
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Chapter 3. Coupled atomistic and discrete dislocations in three dimensions

field û due to the constant applied stress

up
k = ũ(γhybk ) + û in Ωp. (3.49)

Assume again an initial hybrid dislocation as depicted in Figure 3.16 (a). Solving the

atomistic problem evolves the dislocation line in Ωa, shown in Figure 3.16 (b). Note

that the boundary is now held fixed and the dislocation core does not evolve in the pad.

Using the updated atomic positions, a new dislocation may be detected based on some

convergence condition which will be specified in the following paragraph. Assume now

that a new dislocation line is detected in the atomistic domain and the hybrid dislocation

is updated according to Figure 3.16 (b). Subsequently the continuum problem Pc is

solved. Since σ̂(γhyb) is known analytically at any instant and a numerical evaluation of

(û, σ̂) is not required due to the constant applied stress, only γck+1 is computed iteratively.

These steps are repeated until convergence is attained.

Figure 3.16: Schematic illustration of the updated Green function algorithm for CADD-3d

Recall that the atomistic discrete dislocation, generated by the dislocation detection

algorithm, is not continuous in the displacements ua (cf. Section 3.4.2). Therefore

the algorithm may oscillate around the equilibrium state, more precisely between two

subsequent states (ua, γhyb)k−1 and (ua, γhyb)k. Hence, the weaker convergence criterion

with respect to the subsequence

∀ odd k > 2
(
ua
kl

)
l∈N =

(
ua
1,u

a
3, ...,u

a
k−2,u

a
k

)
(3.50)

is defined. That is, the current state is compared with the state two iterations previous.

Convergence is then attained when

‖ua
l − ua

l−1‖l2(Ωa) < TOLdetn, (3.51)

where TOLdetn is some pre-defined tolerance. If the criterion (3.51) is fulfilled it is easy to

see that the algorithm is converged since the hybrid dislocation line does not get updated

and therefore the pad atoms remain the same as in the previous step. The criterion

(3.51) appeared to be very robust in the conducted numerical experiments in Section

4.3. The proposed algorithm may suggest a rather slow convergence due to the iterative
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3.8. Simplified solution procedure

Algorithm 6: Updated Green function method for CADD-3d

Input: Initial state (ua,uc, γhyb)0

1 k← 0;

2 repeat

3 �� Atomistic problem Pa ��

4 ũ(γhybk )← compute the DDD displacements due to γhybk in Ωp;

5 ua
k+1 ← solve Pa (3.48);

6 �� Continuum problem Pc ��

7 if convergence criterion (3.51) not satisfied then

8 γak+1 ← dislocDetn(Ωa
k+1); �� �������	�
	 ���
�
�	��� 
��� �� Ωa

9 initialize: j ← 0, γck,j ← γck, γhybk+1/2,j ← γak+1 ∪ γck,j ;

10 while ‖fpk + f core‖L2(γc) < TOL do

11 compute on γck,j : σ(γhybk+1/2,j)← σ̃(γhybk+1/2,j) + σ̂;

12 compute on γck,j : fpk ← (σ(γhybk+1/2,j)b)× t, f core;

13 γck,j+1 ← evolve DD line;

14 j ← j + 1, γhybk+1/2,j ← γak+1 ∪ γck,j ;

15 end

16 γck+1 ← γck,j , set k← k + 1;

17 else

18 stop (repeat);

19 end

20 until convergence;

Output: Final state (ua,uc, γhyb)k

procedure and the sharp interface coupling. However, note that the physical problem

Pc/p is effectively solved in the entire domain. Therefore the discrete dislocation in

the continuum can advance much further than if it would "see" a fixed boundary. The

algorithm has therefore analogies with respect to overlapping domain decomposition

methods. In all numerical tests the updated Green function method was found to remain

reasonably fast. Computational savings will be briefly discussed in Section 4.3.5.

There is some freedom in choosing the transmission node strans that merges γa and γc,

corresponding to the uncertainty in the definition of γa due to the non-unique continuum

representation of Ωa. The choice of strans affects the evolution — the dislocation line may

advance rather slowly in the neighborhood of the interface Γi if strans is too close to the

artificial interface. Loosely speaking, the atomistic dislocation in Figure 3.16 (b) cannot
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Chapter 3. Coupled atomistic and discrete dislocations in three dimensions

introduce a “discontinuity” with respect to the discrete dislocation in the continuum

region. Hence, the dislocation segment in the pad may not advance by more than ≈ b

— unlike in the general solution procedure where the pad displacements are updated

on-the-fly (c.f. Figure 3.14). This reveals a possible source for pre-mature convergence,

in particular when the system is close to equilibrium. In the Section 4.3.5 it will be

shown how different choices of strans can influence the equilibrium shape of the hybrid

dislocation.

3.9 Computational complexity compared to related methods

To estimate the computational complexity of CADD-3d in terms of the degrees of freedom,

consider the decomposition of a domain Ω into an atomistic domain Ωa and a continuum

domain Ωc. The region Ωa is assumed to be the irreducible atomistic domain (meaning

no change in size) where nonlinear deformation (e.g. dislocation nucleation) ought to

happen. In the QC method the atomistic region is allowed to grow as defects expand

into the bulk material, whereas in CADD-3d a dislocation becomes discrete beyond the

A/C interface.

In general, the computational complexity of a linear numerical problem can be written

as

C ∝ N, (3.52)

where N is the number of degrees of freedom (precise prefactors are usually strongly

implementation dependent and not considered in the following). For the considered

class of A/C coupling problems the computational complexity reads

Ca/c = Ca + Ccg + Ccore, (3.53)

where Ca is due to the irreducible atomistic domain Ωa, Ccg is the computational com-

plexity of the coarse-grained region Ω \ (Ωa ∪Ωcore) and Ccore is due to the dislocation

core region(s) Ωcore outside Ωa. In the following (almost) linear complexity (3.52) is

tacitly assumed for all coefficients in (3.53) (in the case of CADD-3d this requires special

accelerated solvers as discussed below).

The first term in (3.53) is the same for both methods by construction and is thus not

considered in the following. The parameter Ccg is assumed to be comparable for both

methods if CADD-3d uses a standard FEM discretization in the bulk material (c.f. Pavia

and Curtin, 2015). Additional speed-ups can be obtained when using CADD-3d with the

boundary element method developed in the previous chapter due to the reduced number

of degrees of freedom (c.f. Table 3.1; only the interface and pad atoms are considered

which are assumed to be� N cg). For large dislocation densities Ccg is assumed to be

dominated by Ccore. For this case Ccore is estimated in the following.
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3.9. Computational complexity compared to related methods

QC CADD-3d (w/ FEM) CADD-3d (w/ DBEM)

Ωa Na Na Na

Ωc N cg +N core N cg +N seg logN seg
N i logN i +Np logN i

+N seg logN seg +N seg logN i

Table 3.1: Complexity estimates for the QC method and CADD-3d (with FEM or DBEM);
it is assumed that CADD-3d uses fast summation methods

Assume a dislocation loop with radius R outside Ωa. The third contribution in (3.53)

can then be written as (Anciaux, 2018)

Ccore ∝ NR, (3.54)

where N is now the total number of degrees of freedom per unit length in Ωcore. For the

QC method N corresponds to the number of real atoms N core per unit length around

the dislocation core5 and for CADD-3d it is the number of DD segments N seg per unit

length.

First, the complexity of the QC method is estimated. The total number of atoms in the

vicinity of the dislocation is given by

N coreR =
2π2(rcore)2R

V0
⇒ N core =

2π2(rcore)2

V0
, (3.55)

where rcore is the radius of the core region and V0 is the volume per atom. Writing

rcore and V0 in terms of b, e.g. for the particular case of an fcc lattice V0 = 0.741a30 =

0.741 · 2
√
2b ≈ 2b and rcore = N core

b b (N core
b ∈ Z+), one obtains

N core ≈ π2(N core
b )2

b
. (3.56)

Next, the complexity of CADD-3d is considered. By assuming an average dislocation

segment length l, the total number of DD segments is

N segR =
2πR

l
⇒ N seg =

2π

l
. (3.57)

Again, writing l = N seg
b b (N seg

b ∈ Z+), it follows

N seg =
2π

N seg
b b

. (3.58)

5This is yet an optimistic estimate since efficient adaptive mesh coarsening in QC implementations,
restricting fully atomistic resolution to the defect core, still remains an open research problem (Tembhekar
et al., 2017)

113



Chapter 3. Coupled atomistic and discrete dislocations in three dimensions

The ratio between the number of degrees of freedom for the QC method and CADD-3d

can then readily be deduced as

N core

N seg
≈ π

2
(N core

b )2N seg
b . (3.59)

Note that the (N core
b )2N seg

b proportionality is in fact general and applies to arbitrarily

curved dislocations.

To illustrate the potential savings which can possibly be obtained in practice, consider

the activation of a Frank-Read source in fcc aluminum centered in a cubic domain, as ex-

emplified in Figure 3.17. The box size is≈ 2×2×2μm3 and the diameter of the outermost

loop is ≈ 1μm. The average segment length of a representative DDD simulation for this

problem is ≈ 150b, i.e. N seg
b = 150. For fcc aluminum the stacking fault width is ≈ 15Å.

With b = 2.851Å, it follows (N core
b )2 ≈ 7-10. These values yield a complexity estimate

of O(102)-O(103) for Ccore, which is still conservative since only a single dislocation is

considered.

Figure 3.17: DDD simulation of a Frank-Read source which is subjected to an applied
shear stress τ ; the figure is used by courtesy of Dr. Markus Stricker

The outstanding potential of CADD-3d can be rationalized by considering a coupled

problem where atomic resolution is restricted to the region confined by the dashed

box. If the ratio between the size of Ωc and Ωa is large (in the figure it is roughly 100),

Ca, Ccg � Ccore if many dislocations have passed the A/C interface and propagated far

into the bulk crystal, as shown in Figure 3.17. In this case CADD-3d becomes highly

favorable.

However, it should be noted that this advantage does not come for free. More precisely,

the DDD problem suffers from quadratic complexity due to the interactions between

all segments which may extinguish much of the potential efficiency if implemented

naively. This necessitates accelerated, fast-multipole-based algorithms (c.f. Greengard

and Rokhlin, 1987) to solve the problem with (almost) linear complexity (see below).
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3.10. Computer implementation

3.10 Computer implementation

The implementation of CADD-3d, i.e. Algorithm 5 and Algorithm 6, is accomplished

in the in-house C++ library libMultiscale (LM, Anciaux et al., 2006, lsms.epfl.ch/

libmultiscale). Its key features are summarized below:

• LM was tailored for the purpose of a generic interface between heterogeneous

parts of source code to incorporate extrinsic software in a single parallel computing

framework using collective communication via the Message Passing Interface (MPI,

www.mpich.org) and has been successfully employed for several A/C coupling

problems, e.g. for studying problems in contact mechanics (e.g. Anciaux and Moli-

nari, 2009). Therefore the effort of writing own code can be significantly reduced

by making use of existing, optimized implementations for each subproblem.

• Data exchange in LM between external software is realized via template inter-

faces. This is not only efficient for replacing old/adding new source code, but also

simplifies the pre- and post-processing due to the unifying structure.

CADD-3d harnesses the atomistic code LAMMPS (Plimpton, 1995, lammps.sandia.gov)

and the DDD code ParaDis (paradis.stanford.edu) which have been integrated into the

LM environment by Anciaux and Molinari (2009); Junge (2014). In particular, ParaDis

uses the fast multipole method to compute the elastic far-field interactions such that the

forces on the DD nodes can be computed with linear complexity (Arsenlis et al., 2007).

The library has been extended by the author (Hodapp et al., 2018a) and others (e.g.

Anciaux et al., 2018; Cho et al., 2018) with additional self-written routines to compute the

displacement boundary conditions due to the discrete dislocation network, accompanied

with the dislocation core template correction, and to compute the discrete atomistic

dislocation(s) according to Algorithm 4. The integration of the A/DBEM solver (Chapter

2) is ongoing work and results will be reported in a future publication (Hodapp et al.,

2018b).
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4 Computational results

4.1 Validation of the discrete boundary element method

The goal of this section is to validate the flexible boundary conditions which have been

proposed in Chapter 2. Thereby, special emphasize is given to the total error in the

atomistic region

ε = εh + εlgf + εmat, (4.1)

where εlgf is due to the transition between the LGF and the CGF (Section 2.6.2) and εmat

is the error committed by the approximation of the system matrices via H -matrices

(Section 2.6.3). The error εh is the best possible approximation in the harmonic limit. It is

thus of practical importance that the total error is dominated by εh. Fortunately εlgf and

εmat can be controlled but choosing them too low increases the computational cost.

In section 4.1.1 the influence of εlgf solely is investigated. For the three-dimensional test

problems in Section 4.1.2 some guidance on choosing an optimal εmat without a priori

knowledge of ε will be given by fixing an appropriate cut-off radius, estimating the error

εlgf and choosing the accuracy of the H -matrices in the same range.

4.1.1 Two-dimensional test cases for hexagonal lattices

A hexagonal lattice Λ is considered whose basis vectors are given by

v1 =
(
a0 0

)T
, v2 = 1/2

(
a0

√
3a0

)T
, (4.2)

where a0 is the associated lattice constant. For this class of test problems a Morse potential

is selected (Morse, 1929). The corresponding site energy is given by

Eξ(uη − uξ) =
∑
η∈Rξ

De−2a(r(uη−uξ)−r0) − 2De−a(r(uη−uξ)−r0), (4.3)
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where r(uη − uξ) = ‖(uη − uξ) + (η − ξ)‖, with D, a and r0 being free parameters.

Approximations via H -matrices are not considered in this section as the boundary

matrices introduce negligible computational cost in two dimensions.

4.1.1.1 Vacancy relaxation

As a first test problem a vacancy embedded in the atomistic region is considered. The

atomistic domain is assumed to be a disk with radius r, i.e.

Λa := ({x ∈ R2 | ‖x‖ ≤ r } ∩ Λ) \ 0 (4.4)

as shown in Figure 4.1 (a). The parameters of the Morse potential (4.3) are chosen as

follows

D0 = 1 eV, a = 4.4/Å, r0 = 1Å. (4.5)

Note that these parameters are not based on a specific material. The same set of parame-

ters has been used in other benchmark studies for A/C coupling schemes (e.g. Van Koten

et al., 2012). In the numerical tests a cut-off radius which comprises six nearest neighbor

interactions is used. The corresponding lattice constant is given by a0 = 0.978, i.e. the

atomistic model is slightly non-local.

Figure 4.1: Schematic illustration of the domain decomposition for (a) the vacancy
problem, (b) the dislocation problem

Discussion (accuracy). The decay of error in the total energy as r →∞ is analyzed in

the following. Theoretical decay rates were derived in (Ehrlacher et al., 2016) for clamped

and flexible boundary conditions which read

clamped: |Π − Π̃| � (Na)−1, flexible: |Π − Π̃| � (Na)−2. (4.6)
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Note that this estimate is not necessarily sharp for the current problem due to the

underlying assumption on the atomistic model which includes nearest neighbor many-

body interactions only. However, the upper bound must be satisfied. For the clamped

boundary conditions the precise scaling as predicted by (4.6) is observed. Indeed, for

the atomistic-DBEM coupling a faster decay rate is observed which is proportional

to (Na)−3.1 Also the pre-factor is much larger for the clamped boundary conditions

outlining the superior performance of the flexible boundary conditions. As expected,

the accuracy for the atomistic-DBEM coupling is slightly lower than for the Sinclair

method if the cut-off radius is too small (here: rcut = 3a0). For rcut ≥ 5a0 the results are

essentially the same.

Figure 4.2: (a) Energy error vs. number of real atoms Na for the vacancy problem for
clamped and flexible boundary conditions. (b) Number of force evaluations correspond-
ing to each data point in (a)

Discussion (efficiency). In addition, the number of force evaluations for each solution

procedure is shown in Figure 4.2 (b). As a solver for the atomistic problem, employed for

the clamped boundary conditions and Sinclair’s method, it is decided on FIRE (Bitzek

et al., 2006) which was found comparable to other available solvers (i.a. nonlinear conju-

gate gradients, Hessian-free Newton-Raphson) with respect to the speed of convergence

for the considered problems. FIRE is a damped-dynamics method which requires an

initial timestep. In (Bitzek et al., 2006) it was recommended to set the timestep ≈ 1 order

of magnitude higher than in a usual molecular dynamics calculation. Therefore the

timestep is chosen 0.01 ps. The number of force evaluations scales very weakly with total

number of real atoms in the system. This confirms a similar observation from Dobson

et al. (2011) who have defined a macro-stretch on a one dimensional chain of atoms

which eventually causes bond-breaking. For an increased macro-stretch the system gets

closer to an instability and the required number of iterations approaches a logNa-scaling.

1The same decay rate was also observed in the numerical experiments from (Ehrlacher et al., 2016)
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Since the atomistic configuration in the vicinity of the vacancy is far from an instability

this observation seems reasonable. The total number of force evaluations is ≈ 5-6 times

higher for Sinclair’s method due to the alternating solution procedure. Surprisingly

the Newton-GMRes solver outperforms the clamped boundary conditions for the same

system size in this respect. Note however that one force computation is slightly higher

for the Newton-GMRes solver. The average cost over all simulations from Figure 4.2 for

a single force computation is 0.014 ms for �������� and 0.0041 ms for 	
��
�
�. Thus,

�������� is effectively 1.5-2 times faster than 	
��
�
� with the current implementation.

The time ratio between updating the pad atoms and one computation of the atomic

force vector is approximately between 1/3 and 1/6. The increased computational cost

for �������� is therefore mainly due to the higher complexity of a Newton iteration

(compared to a FIRE iteration). This can potentially be optimized using high performance

libraries, e.g PETSc (www.mcs.anl.gov/petsc).

4.1.1.2 Dislocation core relaxation

Now a single edge dislocation embedded in the atomic crystal, as shown in Figure 4.1

(b), is considered. Since a dislocation has infinite energy the problem description has

to be modified since the displacements are unbounded and therefore u /∈ U�(Λ). For

this purpose the initial configuration is pre-strained using an initial guess u0, i.e. Λ+u0.

Subsequently, the finite energy difference functional ΔΠ(Δu) = Π(u0 + Δu) − Π(u0)

is defined with respect to a correction Δu ∈ U� (c.f. Ehrlacher et al., 2016). That is,

minimizers of ΔΠ are now sought-after, i.e.

Δu := Arg

{
min
v∈U�

ΔΠ(v)

}
. (4.7)

which renders the problem well-posed. The definition of the coupled problem follows{
Pa : La[Δu] = 0 in Λa,

Pc : Lc
h[Δu] = 0 in Λc,

(4.8)

with La and Lc
h being now defined with respect to ΔΠa(Δu) and ΔΠc(Δu).

Since the material stiffness tensor C, obtained from the linearization of the atomistic

model, is isotropic the classical Volterra solution is employed

ũ1(ξ) =
b

2π

(
(ξ1 −Δξ1)(ξ2 −Δξ2)

2(1− ν)‖ξ −Δξ‖2 + arctan
ξ2 −Δξ2
ξ1 −Δξ1

)
, (4.9)

ũ2(ξ) =
b

2π

(
(ξ2 −Δξ2)

2 − (ξ1 −Δξ1)
2

4(1− ν)‖ξ −Δξ‖2 − 1− 2ν

4(1− ν)
ln ‖ξ −Δξ‖2

)
, (4.10)
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with r = ‖ξ −Δξ‖, b = a0 and ν = 0.25. The dislocation is placed slightly off-center at

Δξ = b/4
(
1
√
3
)T

due to the singularity of ũ at ξ = 0. The final solution is then given

by u = u0 +Δu, with u0 = ũ.

Discussion (accuracy). Again, the error in the total energy is investigated. The theoretical

decay rate for both the clamped and the flexible boundary conditions from (Ehrlacher

et al., 2016) reads

|Π − Π̃| � (Na)−1. (4.11)

Slightly faster decay rates for all boundary conditions are observed which might also

be due to the fact that the energy difference is only considered up to a certain radius r

around the dislocation core. The elasticity error clearly dominates such that rcut = 3a0
was found to be sufficient. For the flexible boundary conditions the error shows an

alternating behavior as r is increased by a0/2. This is indicated by the separated error

curves in Figure 4.3 (a) associated with the two possible types of boundaries. Since the

two curves show approximately the same scaling and the upper bound is satisfied in

both cases this might indicate a more subtle issue, especially in light of the final results

corresponding to the Sinclair method and the Newton-GMRes scheme which differ

slightly. Several modifications were investigated, e.g. by choosing a different initial guess

or imposing small perturbations of real atoms upon convergence to overcome a possibly

unstable minimum. However, the final result remained unchanged. This gives rise to

the conclusion that the Volterra solution might not be a suitable far-field predictor, i.e.

Δu �= U�(Λ). However, other solutions are not investigated and a definite answer cannot

be given at this point.

Figure 4.3: (a) Energy error vs. number of real atoms Na for the dislocation problem for
clamped and flexible boundary conditions. (b) Number of force evaluations correspond-
ing to each data point in (a)
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In the present case the Volterra dislocation is already a rather good predictor as the

dislocation core is compact. Thus, a distinctive performance of flexible over clamped

boundary conditions is not observed. Nevertheless, severe differences for dislocations

with spread cores are expected (especially in view of Section 4.1.1.3).

Discussion (efficiency). In Figure 4.3 (b) the corresponding number force evaluations

is shown. It is observed that Sinclair’s method requires roughly between 5-15 times

more force evaluations due to a larger number of outer iterations when compared to the

vacancy problem. The clamped and the flexible boundary conditions are approximately

in the same range which is remarkable. Here, a slightly larger increase of the required

number of total force evaluations is observed which is most likely due to the fact that

the atomistic configuration around the dislocation core is naturally much closer to an

instability, as opposed to the vacancy case. The average cost over all simulations from

Figure 4.3 for a single force computation is 0.004 ms for �������� and 0.0021 ms for

	
��
�
�. The reduced cost in comparison with the vacancy problem is most likely

due to the fact that the sample sizes are much larger, thus reducing the influence of

setup times etc. Therefore �������� is effectively 2.5-5 times faster than 	
��
�
� for

this problem and is expected to be higher for more complex dislocation core structures.

4.1.1.3 Spurious stresses on dislocations near interfaces

In practice, a classical limitation of clamped boundary conditions is their stiff reaction to

atomic fluctuations. When considering defects, subject to an applied loading, the highly

constrained interface reveals a severe issue as defects nucleate and propagate through

the crystal lattice. Since defects move under rather low applied stresses the final result

may be highly perturbed by undesired image effects. Periodic boundary conditions

overcome this problem only partially.

A test problem for probing the “softness” of artificial interfaces was introduced by

Dewald and Curtin (2006) for moving dislocations. Thereby the dislocation is subject to

an applied shear stress σapp
12 which eventually moves the dislocation towards the interface

(see Figure 4.4 (a)). The spurious stress σsp
12(d) = σapp

12 (d)− σpeierls
12 , where σpeierls

12 is the

Peierls stress for the given interatomic potential, as a function of the distance to the

interface d can then be used as a measure for the quality of the continuum solution since

the dislocation must necessarily continue gliding in a perfect infinite crystal. Further

studies have revealed that linear elasticity can substantially improve the accuracy over

clamped boundary conditions as shown by Pavia and Curtin (2015) and Hodapp et al.

(2018a). Here, their setting is adopted as a reference test case for the flexible boundary

conditions.

A rectangular atomistic domain given by

Λa := [−l, l]2 ∩ Λ, with l = 22.5b (4.12)
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Figure 4.4: (a) Schematic view of the dislocation halting at a distance d from the artificial

interface. (b) Spurious stress σsp
12(d) = σapp

12 (d)− σpeierls
12 as a function of d

is considered. The influence of the domain size has been investigated to ensure that the

results do not change qualitatively for larger l. The setup remains the same as in the

previous section, though the parameters of the Morse potential are now chosen to mimic

those of aluminum (Girifalco and Weizer, 1959)

D0 = 0.2703 eV, a = 1.1646/Å, r0 = 3.253Å. (4.13)

The reasoning behind this is to obtain physically realistic estimates of the spurious stress.

The initial guess is modified accordingly, i.e.

u0(ξ) = ũ(ξ) + uapp(ξ), where uapp(ξ) =
σapp
12

μ
ξ2e1. (4.14)

The second term accounts for the applied shear stress σapp
12 .

In this test the stability condition [STAB] becomes inevitable since the lattice becomes

unstable as the dislocation “hops” from one to the next position by one Burgers vector.

The choice of the number of FIRE iterations is a delicate question. If this value is chosen

too low the dislocation cannot overcome a local saddle point and may subsequently

be driven backwards by the Newton-GMRes method. On the other hand, a too large

number slows down the convergence of the solver. It was found that a number of ≈ 1000

ensures rapid convergence for this test problem.

Discussion (accuracy). For the Morse potential with parameters given by (4.13) the

Peierls stress is σpeierls
12 = 5.6MPa. Various applied stresses above the Peierls barrier were

chosen, i.e. σapp
12 ∈ {8.1, 9.3, 11.2, 14.9, 22.4}MPa. From Figure 4.4 (b) one can see that

the final result is rather sensitive to the boundary condition. For a lower cut-off radius

of 5a0 the boundary reaction is much softer such that the dislocation can propagate

very close to the interface, even for the lowest applies stress. For an increasing cut-off

radius the final position converges to that of a reference calculation with rcut = 50a0.
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As expected, the accuracy of the Sinclair method is slightly better in the sense that for

rcut = 5a0 the same results as for ��������	50a0, 0
 are already obtained, except for the

highest applied stress. Moreover, the same scaling d−2 was observed that has already

been obtained in other publications (Pavia and Curtin, 2015; Hodapp et al., 2018a), as

will be shown in Section 4.2 where the same test case is used to validate the updated

Green function method. Moreover this scaling is similar to the recent error estimates

for isolated dislocations in a finite computational domain embedded in an effectively

infinite medium for various artificial boundary conditions (Ehrlacher et al., 2016). The

results in Section 4.2.2 are obtained with an fcc aluminum potential with a spread core,

thus it is expected that the spurious effects are approximately in the same range. Indeed,

by comparing the results of Figure 4.4 (b) with those obtained by (Pavia and Curtin,

2015) (Figure 4.9, ref. calculation) it is observed that for an applied stress of 22.4 MPa the

spurious stress is ≈ 17 MPa and d = 3b. In (Pavia and Curtin, 2015) the distance of the

full dislocation was found to be roughly between 3 and 4b for approximately the same

spurious stress.

Discussion (efficiency). In Table 4.1 the number of force evaluations for

��������	15a0, 0
 and ��
�����	5a0, 0
 are presented. Sinclair’s method requires only

≈ 5-7 times more force evaluations. The average speedup of �������� compared to

��
����� is then ≈ 2.5-3.5 due to the higher complexity of the Newton iteration (c.f.

Section 4.1.1.2). This is remarkable for a staggered method for this class of problems.

However, it is pointed out that switching between different solvers is far from being

optimal and therefore a stabilized Newton-GMRes may improve the convergence consid-

erably.

σapp = 11.2MPa / σsp = 5.6MPa

distance to interface d/b [-] force evaluations [-]

��������	15a0, 0
 5.3 30557

��
�����	5a0, 0
 5.3 134652

σapp = 14.9MPa / σsp = 9.3MPa

distance to interface d/b [-] force evaluations [-]

��������	15a0, 0
 4.2 22747

��
�����	5a0, 0
 4.2 132645

σapp = 22.4MPa / σsp = 16.8MPa

distance to interface d/b [-] force evaluations [-]

��������	15a0, 0
 3.2 15284

��
�����	5a0, 0
 4.3 81851

Table 4.1: Number of force evaluations corresponding to the Newton-GMRes and Sin-
clair’s method for the moving dislocation problem from Figure 4.4
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4.1. Validation of the discrete boundary element method

4.1.2 Three-dimensional test cases for face-centered cubic lattices

As a three dimensional test case a face-centered cubic (fcc) lattice is selected. The basis

vectors are given by

v1 = 1/2
(
0 a0 a0

)T
, v2 = 1/2

(
a0 0 a0

)T
, v2 = 1/2

(
a0 a0 0

)T
. (4.15)

Atomic interactions are prescribed via a homogenized embedded atom model (Varvenne

et al., 2016). Its site energy is given by

Eξ({uη − uξ}) =
∑
η∈Rξ

φavg(uη − uξ) +
∑
X

cXFX(ρ̄ξ(X, {uη − uξ})), (4.16)

where φavg is a pair potential of the average atom, cX is the concentration of atom type X

and FX is the embedding function of the average electron density of atom ξ which itself

depends on the concentration and the differential displacements between the atoms.

In principle, any multiple-element EAM potential can be converted to (4.16). Here the

aluminum-magnesium potential from (Liu et al., 1996) is selected with cMg = 14.7,

intentionally chosen, which yields an effectively isotropic interatomic potential. The

reasoning behind this approach is the fact that the fully anisotropic continuum solution is

not implemented at present. Nevertheless it is emphasized that this is rather a convenient

choice and not a limitation in the sense that it preserves all requirements on realistic

EAM potentials with respect to nonlinearity, nonlocality and the Cauchy relations. That

is, any qualitative changes of the numerical estimates for other, physically motivated,

EAM potentials are not expected.

The numerical parameters remain the same as in the previous section except for the

initial time step which is now set to 0.08 ps which led to an overall faster convergence of

FIRE.

4.1.2.1 Void relaxation

Consider a spherical void centered in the origin of the atomistic domain, possibly subject

to a remote applied stress σ22, as shown in Figure 4.5. The atomistic domain is given by

Λa := ({x ∈ R3 | ‖x‖ ≤ r } ∩ Λ) \ Λvoid, (4.17)

where Λvoid = {x ∈ R3 | ‖x‖ ≤ rc } ∩Λ is the region is excluded from the computational

domain.

Discussion (accuracy). First, consider the case σ22 = 0. This problem is similar to the

vacancy case but a slightly slower decay of the error is expected for the coupled problem

as a void generates a field which has a longer range. The method is tested for various

choices of the accuracy of the H -matrices prescribed by the parameter ε. In general it
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Figure 4.5: Illustration of an fcc lattice containing a void subject to a uniaxial remote
tensile stress

can be quite difficult to estimate a proper ε which is accurate enough to satisfy the user

demands while preserving optimal efficiency. Here, the following approach is taken.

From the two-dimensional test cases it can be observed that a cut-off radius of 5a0 is

sufficient. If the relative error depends only weakly on the shape of the domain and the

solution on the boundary, in comparison with the void problem, the necessary accuracy

may be estimated from the force quadrupole problem in Section 2.7.4. For this example

the relative error in the pad displacements is of O(10−4) for rcut = 5a0 (c.f. Figure 2.8

(a)). Indeed, in Figure 4.6 (a) it can be observed that an accuracy of ε = 10−4 is sufficient

to predict a smooth decay proportional to (Na)−2 for both the Newton-GMRes and the

Sinclair method. An accuracy of ε = 10−3 was found to give almost no decay of the

error for Na > 2000, yet it should be noted that it is still much more accurate than the

clamped boundary conditions. In total the error in the energy is always several orders of

magnitude smaller, similarly to the vacancy problem.

Discussion (efficiency). The number of force evaluations is ≈ 10 times higher for

5a0, 10
−4 when compared to 5a0, 10

−4 . It was found that the

number of force evaluations for the flexible boundary conditions does not increase with

the number of atoms in the system while for the clamped boundary conditions it in-

creases slightly. This might be due to the fact that the problem is closer to an instability

than the vacancy but still much further than in the case of a pre-existing dislocation. For

this problem the cost per single force computation is 0.0087 ms for 5a0, 10
−4

and 0.053 ms for 5a0, 10
−4 , i.e. a single force computation is ≈ 6 times more

expensive for 5a0, 10
−4 . The increase by a factor of ≈ 3 in comparison with

the two-dimensional problem stems from the fact that the ratio between updating the

pad atoms and one computation of the entire atomic force vector is now significantly

higher. More precisely, the cost for solving the algebraic problem (c.f. Section 2.6.1) is

now ≈ 2.5-3 times higher than the subsequent evaluation of the atomic forces. Thus, an

overall speedup of ≈ 1.5-2 is obtained by dividing the ratio between the number of force

evaluations and the ratio of the cost per single force computation.
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4.1. Validation of the discrete boundary element method

Figure 4.6: (a) Energy error vs. number of real atomsNa for the void problem for clamped
and flexible boundary conditions. (b) Number of force evaluations corresponding to
each data point in (a)

The matrix-vector multiplication (2.97) has been identified as the most time consuming

part. Future research should thus be devoted to an optimization of the pre-factors of

the scaling law (2.106) to further improve the performance of the H -matrices for three

dimensional problems.

4.1.2.2 Void growth under uniaxial tension

Now, a uniaxial applied stress σ22 > 0 is considered upon relaxation according to

Figure 4.5. Therefore the stress is increased up to a strain of ε22 ≈ 2.5%. At this

stress level, both clamped and flexible boundary conditions predict an instability of the

lattice. However, comparing the two converged solutions in Figure 4.7 reveals a much

richer microstructure for the flexible boundary conditions as shown in Figure 4.7 (a).

Dislocations have nucleated from the void as predicted by the dislocation extraction

algorithm (Stukowski et al., 2012, DXA). The microstructure for the clamped boundary

conditions in 4.7 (b) is far less evolved as it shows only small lattice distortions around

the void. This test is mainly carried out to outline the benefits of flexible boundary

conditions for practical applications. As an example consider plastic shielding of crack

tips. This requires dislocations to nucleate from the crack and to propagate inside the

atomistic domain. If the dislocation motion is perturbed upon nucleation the ductile

behavior of the material might not be predicted correctly.

It is noted explicitly that the intention here is not to model a realistic scenario. Rather, it

is emphasized that the method could also be applied to problems which involve highly

distorted atomistic systems. Moreover, the numerical solver was properly converging to

a residual of ‖f̂a‖ < 10−4 outlining the robustness of the proposed method.
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Figure 4.7: (a) Converged microstructure of a nanovoid under uniaxial tension when
using flexible and clamped boundary conditions; the coloring of the real atoms is ac-
cording to the centro-symmetry parameter CSP (Kelchner et al., 1998) (only atoms with
CSP > 5 are shown in the fully atomistic domain). (b) Corresponding dislocation
network as predicted by the DXA within Ovito (Stukowski, 2010, )

4.2 Validation of the updated Green function method

4.2.1 Reference problem

The updated Green function method (Algorithm 6, Section 3.8) involves two approxima-

tions. First, it assumes that the forces on the continuum DDD nodes due to the atomistic

dislocations can be accurately computed by representing the atomistic dislocations via

the DDD method. Second, it assumes that the displacement fields on the pad atoms due

to the atomistic dislocations can accurately be represented by elastic DDD fields. Use of

the DDD method for both aspects implies that linear elasticity (and, usually, isotropic

linear elasticity) is sufficiently accurate for these fields. Errors can thus arise, relative to

a fully coupled solution, due to the inadequacy of linear, isotropic elasticity.

The DDD method also usually treats dislocations as having compact cores, whereas

dislocations in fcc and hcp metals dissociate into partial dislocations separated by stack-

ing faults. The DDD method can handle partial dislocations and stacking faults (see

e.g. Shenoy et al., 2000) but this adds to the computational load since it doubles the

number of segments and nodes, and greatly reduces the time increments, and hence is

not usually considered in full DDD problems. In CADD-3d, the atomistic dislocation may

be dissociated. The use of the core template mitigates the serious difference between the

continuum line solution and the atomistic solution in the core of the hybrid dislocations
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4.2. Validation of the updated Green function method

but the far-field interactions between dissociated atomistic dislocations and continuum

line dislocations remains approximate.

All of the above approximate aspects are expected to create only small errors for dislo-

cation segments that are sufficiently far from the atomistic/continuum interface. Here,

these errors are assessed quantitatively in terms of any spurious Peach-Koehler forces as

a function of the distance of an atomistic dislocation from the A/C interface. To do so,

following Dewald and Curtin (2006) and Pavia and Curtin (2015), a straight edge dislocation

residing in a semi-periodic fcc atomistic domain is considered which approaches the

atomistic/continuum interface; there are no hybrid dislocations in this problem.

Figure 4.8: Schematic illustration of the numerical test to determine the spurious stress
exerted on an edge dislocation near artificial interfaces. The reference configuration is
given in (a). Subsequently a predictor for an edge dislocation is applied to the reference
configuration in (b). An applied shear stress τapp will eventually move the dislocation to
the stable position in (c)

The problem is initialized by placing one dislocation at the center of a large box by

displacing all atoms according to the continuum Volterra field as shown in Figure 4.8

(a) and (b). A sufficient in-plane size (240 Å × 240 Å) is validated ex post facto by

observing that the initial dislocation motion starts at precisely the Peierls stress measured

independently in a much larger atomistic cell. The box is periodic in the line direction of

the dislocation, enabling use of a minimum periodic distance defined by the atomic unit

cell. The initial box also includes a step consisting of two extra planes of atoms on the

upper half of the box. The ũ field of the dislocation is then imposed, with the jump in

the displacement across the glide plane eliminating the step to leave a smooth boundary.

With the pad atoms held fixed, the atomistic system is then fully relaxed, during which

the dislocation dissociates naturally into two partial dislocations separated by a stacking

fault. For the large box size used here, this relaxation is independent of the ũ field.

A uniform shear stress is then applied to the entire system. The dislocation commences

glide at the Peierls stress τP. In an infinite atomistic system, the dislocation would glide

continuously at the Peierls stress. In the coupled method, errors in the coupling method

give rise to spurious forces τSP on the dislocation; these are found to repel the dislocation

from the boundary. Thus, under an applied stress τPK above the Peierls stress, the
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dislocation will glide until it reaches an equilibrium position (position of the center of

mass of the dislocation) at distance d from the interface at which the total driving force

τPK − τP − τSP = 0 (see Figure 4.8). The spurious force at d is then measured directly as

τSP(d) = τPK − τP.

The spurious stresses are analyzed corresponding to the three relevant approximate

solutions for ũ that could be used in CADD-3d:

(i) Isotropic undissociated (Appendix A.2.2, equation (A.25))

ũ(x) = ũedge2(x) =
b

2π

⎛
⎜⎝

x2x3
2(1−ν)r2

+ arctan x3
x2

x2
3−x2

2
4(1−ν)r2

− 1−2ν
4(1−ν) ln r

2

0

⎞
⎟⎠ , r =

√
x22 + x23. (4.18)

(ii) Anisotropic undissociated (Appendix A.2.4)

ũ(x) = ũaiso(x; b)

=
1

2

3∑
i=1

ln
(
(x2 + rix3)

2 + (qix3)
2
)
ci − arctan

(
qix3

x2 + rix3

)
di.

(4.19)

The real quantities ci, di, ri and qi for b =
(
0 b 0

)T
are computed using the

procedure described in (Hirth and Lothe, 1982, page 444-445).

(iii) Anisotropic partial dislocations

ũ(x) = ũaiso(x1, x2 +Δsplit, x3; ble) + ũaiso(x1, x2 −Δsplit, x3; btr), (4.20)

where 2Δsplit is the atomistic spacing between the leading and trailing partial

dislocations having Burgers vectors ble, btr, respectively,

ble =
1

2
b
(

1√
3

1 0
)T

, btr =
1

2
b
(
− 1√

3
1 0

)T
. (4.21)

To be clear, Algorithm 6 is used for each of the above approximate displacement fields.

There is no discrete dislocation in the continuum domain and so only the atomistic

problem is solved. At each applied stress, the atomistic system is relaxed, the new

position of the dislocation is detected (averaged of the centers of mass of the detected

tetrahedra representing the full dislocation), and the pad atom displacements are updated

according to the new positions according to the approximate displacement field (equation

(4.18), (4.19) or (4.20)). Convergence is obtained when the criterion (3.51) is satisfied with

TOLdetn = 10−6 b.
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4.2. Validation of the updated Green function method

4.2.2 Comparison with a fully coupled scheme

Aluminum as described by the EAM potential of Ercolessi and Adams (1994) is used

as a reference material which is slightly anisotropic (2C44/(C11 − C12) = 1.315). The

partial spacing of the dissociated edge dislocation is 2Δsplit = 15Å and the Peierls stress

is τP = 3MPa. This problem was studied for this same material using the full CADD

atomistic/continuum coupling wherein the linearly elastic continuum domain is coupled

to the fully non-linear atomistic domain (Dewald and Curtin, 2006; Pavia and Curtin,

2015). The results are compared to these full results as a measure of the error of using

the linear elasticity solution.

1

10

100

1 10 100

τ S
K

[M
Pa

]

d [Å]

anisotropy/partials, eq. (7)
anisotropy, eq. (6)

isotropy, eq. (5)
ref. calculation

Figure 4.9: Spurious stress τSP on a stable edge dislocation as a function of its distance to
the artificial interface d

Figure 4.9 shows the spurious stress vs. distance d to the interface for the successively

better approximations to ũ. In all cases, including the fully non-linear solution, the

spurious stresses scale as≈ d−2 as for the test problem considered in Section 4.1.1.3. The

magnitude of the error decreases with increasing accuracy of the approximation for ũ.

The isotropic compact core solution is least accurate while the anisotropic dissociated

core is the most accurate when using elasticity, and the full coupled solution is overall

most accurate. The magnitude of the spurious stresses shown here remain small, on

the order of 10 MPa, with an error of 12 MPa reached at distances of 40, 30, 18, and 7 Å

with increasing fidelity of the numerical method. To further support these results, the

initial dislocation was placed at 10 Å from the interface and Algorithm 6 was applied in

the same way. The final positions of the relaxed dislocation are in agreement with the

results from Figure 4.9 up to ≈ b due to the direction-dependent Peierls stress (which

acts opposite to the direction of motion) and to the non-uniqueness of the dislocation

detection. Overall, these results show that the typical distances over which moderate

spurious coupling errors (>5 MPa) occur is on the order of 30-60 Å when using the

various linear elasticity approximations to ũ. Testing of local details of the hybrid

dislocation coupling in CADD-3d must therefore, when using these approximations,
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ensure that the dislocations remain at these distances or further (see below). For the

CADD-3d methodology described in Section 3.6 and 3.7 with full coupling, the spurious

forces are those corresponding to the reference solution (Dewald and Curtin, 2006; Pavia

and Curtin, 2015), which are negligible at distances beyond 10 Å.

Finally, these tests serve as guidance for the determination of a necessary “passing”

distance, or size of any overlap zone between atomistic and continuum regions, that must

be developed for full operation of CADD-3d to treat dislocations moving in and out of the

atomistic and continuum domains. The approximate updated Green function method

(with spurious forces as shown in Figure 4.9) enables the use of a passing methodology.

However, if the stress on the dislocations in the vicinity of the interface is rather low, the

passing distance may become impracticably large as shown in Figure 4.9. Fortunately,

this may not be an issue for many problems where dislocations mainly glide off into the

bulk material (e.g. cracks under tensile loading). Another practical example is presented

in (Cho, 2017) for a Frank-Read source, subject to a constant applied shear stress. The

stresses on the dislocations approaching the interface are high enough such that the

passing distance can be kept to practical limits, i.e. a few Angstroms of the leading

partial dislocation from the interface. For the fully coupled problem (c.f. Algorithm 5)

a universal passing distance is expected to be in the range 5-10 Å as demonstrated by

Pavia and Curtin (2015) and in many other works on CADD-2d.

4.3 Validation of CADD-3d for hybrid dislocations

4.3.1 Reference problem

As a test problem to assess the accuracy of the CADD-3d treatment of hybrid dislocations,

the quasistatic bow-out of an initially straight planar periodic array of edge dislocations

in an infinite box under an applied resolved shear stress τapp is examined. A schematic

of the problem is shown in Figure 4.10 (a). This problem can be studied accurately in

a full atomistic simulation in a suitable large but finite size box and in a full discrete

dislocation dynamics simulation (see below), which enables (i) careful comparison of

the predictions of the CADD-3d method to the fully atomistic results and (ii) calibration

of DDD to atomistics (see Figure 4.10 (b) and (c)).

A single periodic spacing of the pinning points of l1 ≈ 200Å,2 is chosen which is then

the periodic length of the simulation cell along x1. A finite box size, l2 along the glide

direction and l3 normal to the slip plane, is used with periodicity in x2 and traction

boundary conditions on the x3 surfaces. Following Szajewski and Curtin (2015) for

exactly this problem, the dimensions are chosen l2 ≈ l3 ≈ 400Å. This size is sufficient

to ensure that image effects, due to the traction-free x3 surfaces, of the non-straight

2Note that the real box dimensions can vary slightly from the given values according to the periodic
interatomic spacing
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Figure 4.10: Schematic illustration of the bow-out of a nominal straight dislocation for
(a) the coupled CADD-3d problem, (b) the fully atomistic model (only the atoms in the
core region are visualized), and (c) the continuum DDD model

bowed-out dislocations are minimal and can be neglected relative to the applied loads.

Pinning of the dislocation follows (Szajewski and Curtin, 2015; Szajewski et al., 2015)

and is described in more detail below.

In accordance with the validation study in Section 4.2.2, Aluminum is used, modeled

by an EAM potential (Ercolessi and Adams, 1994). Material parameters needed for

the isotropic continuum DDD simulation are the lattice constant a0 = 4.032Å, Burgers

vector b = 2.851Å, approximate isotropic Poisson ratio ν = 0.35 and shear modulus

μ = 30.8GPa. For this quasistatic problem, results are independent of the dislocation

mobility, although a value for the mobility is used for incrementing the DDD solution

toward equilibrium. Also required is a calibrated dislocation core energy to supplement

the non-singular dislocation field solution in the DDD code ParaDis; this is discussed

below.

Before describing the full test problem in more detail, it is convenient to present the two

corresponding reference problems, the fully atomistic and fully DDD models of the same

test problem geometry. The fully atomistic solution provides the base for assessment

of the CADD-3d algorithms. The fully DDD solution is used to calibrate the DDD core

energy parameter to the fully atomistic solution.

4.3.2 Line tension model

First, an analytical model is used to estimate the stability region of the problem, i.e. the

maximum applied shear stress under which an equilibrium solution exists. In order to
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simplify the problem the influence of the periodic images are neglected. The external

energy due to the applied shear stress is then given by

Πext =

∫ l1/2

−l1/2
τappb s2(x1) dx1. (4.22)

The dislocation tries to minimize its slip surface due to its line tension T which is assumed

to be constant over the entire line. The associated internal energy is therefore given by

Π int = T

∫ l1/2

−l1/2

√
1 + s′2(x1)2 dx1, (4.23)

where s′2(x1) = ∂x1s2(x1). The total energy thus reads

Πtot = Π int +Πext =

∫ l1/2

−l1/2

(
T

√
1 + s′2(x1)2 + τappb s2(x1)

)
dx1. (4.24)

Minimizers s2(x1) to (4.24) solve the Euler-Lagrange equation

T
∂

∂x1

s′2(x1)√
1 + s′2(x1)2

+ τappb = 0. (4.25)

Following Shenoy and Phillips (1997), it is assumed that the final configuration γ has the

form of a catenary. The relationship between the applied stress τapp and the maximal

bow-out h is then given by (see Shenoy and Phillips, 1997)

τapp(h) =
8hT

bl21
. (4.26)

Atomistic models are usually assumed to be stable only up to a bow-out of ≈ 1/4l1, e.g.

due to interactions between the partial dislocations not considered in the continuum

model. Hence, the necessary applied stress producing h = 1/4l1 is sought-after. For the

tension factor T the common assumption from the literature (see e.g. Hirth and Lothe,

1982) is used, i.e. that T ≈ μb2/4. The required applied stress for a bowout of 1/4 of the

distance between the pinning points is then

τapp|h=50Å = 219.527MPa. (4.27)

4.3.3 Atomistic and discrete dislocation dynamics reference solutions

Schematic illustrations of the two reference problems are shown in Figure 4.10 (b) and

(c). The fully atomistic box dimensions l1, l2 and l3 are those given above, with ≈ 2

million atoms and therefore ≈ 6 million degrees of freedom. The introduction of the

periodic array of straight dislocations in the initial structure is accomplished using the

known elastic displacement fields of the so-called periodic array of dislocations (PAD,
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see Appendix A.2.5) given by

ũPAD
1 (x) =0,

ũPAD
2 (x) =− b

4π(1− ν)

Cx3 sin (2Cx2)

(cos (2Cx2)− cosh (2Cx3))

+
b

2π
arctan (coth (Cx3) tan (Cx2)),

ũPAD
3 (x) =− b

4π(1− ν)

Cx3 sin (2Cx3)

(cos (2Cx2)− cosh (2Cx3))

− b(1− 2ν)

8π(1− ν)
ln (| cos (2Cx2)− cosh (2Cx3)|),

(4.28)

where C = π/l2. Note that (4.28) is not truly periodic since it contains the slip step but,

as in the previous section, a reference configuration is chosen that includes the same slip

step so that the deformed configuration has the required in-plane periodicity.

The atom positions are then relaxed to equilibrium subject to the periodic boundary

conditions in x1- and x2-directions and free surfaces on the top and bottom x3 boundaries.

The Hessian-free Newton-Raphson algorithm in LAMMPS is used, with the convergence

criterion ‖fa‖l2(Ωa) < 10−4 eV/Å.

After the initial relaxation, the “pinning points” for the subsequent bow-out (see Figure

4.10 (b)) are established as follows. Atoms in a small rectangle (dimensions: lpin =

24Å, wpin = 12Å, hpin = 6Å) centered on the core of the dislocation and at one end of

the periodic box along x1 are identified. These atoms are then held fixed (zero subsequent

displacement) during subsequent loading of the simulation cell. Forces are then applied

to the atoms on the top along x3 corresponding to a desired applied shear stress τapp

as f ext = A
N τappe2 where A = l1l2 is the area of the top surface and N the number of

atoms in the surface layer, with forces of opposite sign applied on the bottom surface

atoms. The entire system is then again allowed to relax to equilibrium, during which the

dislocation core bows out between the periodic pinning points to reach an equilibrium

configuration characterized by the bow-out height h at the center of the box.

In the corresponding full DDD continuum problem, the pinning points are defined

by fixed segments or length wpin/2 on each end of the dislocation line along x1. The

initial dislocation line is discretized into 16 piecewise linear segments of lengths between

5b−8b. The DDD methodology in ParaDis is employed, which uses a nonsingular theory

(Cai et al., 2006) with parameter a to regularize the singular core. An additional core

energy per unit length is introduced with a dependence on the character angle according

to linear elastic theory

W core(Ecore;ϑ) = Ecore

(
sin2 ϑ

1− ν
+ cos2 ϑ

)
b2, (4.29)
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as defined in Section 1.4.3, Example 1.5. Since the non-singular theory includes some

core energy through the regularization parameter a, the parameter Ecore = Ecore(a) has

an implicit dependence on a if the total DDD core energy is intended to agree with the

true atomistic core energy. Usually W core is calibrated with respect to a representative

atomistic configuration, e.g. straight dislocations in infinite domains. For the bow-out

problem, Szajewski et al. (2015) were calibrating W core for a given amount of bowout and

showed good agreement between fully atomistic and fully DDD solutions in ParaDis

by varying the periodic length l1 between the pinning points. The parameters used in

(Szajewski et al., 2015) are

a = 7.714Å, Ecore(a) = 5GPa. (4.30)

An alternative calibration with respect to an infinite straight edge dislocation, as described

in Section 1.5.4, gives

Ecore(a) = 6.4GPa (4.31)

for the same a.

Solution of the DDD bow-out problem within ParaDis is achieved by computing the

velocities for nodes s ∈ γc using the overdamped mobility law

v = M(fpk + f core). (4.32)

where M is the mobility tensor. Here, the motion is restricted to gliding on the defined

glide plane and quasistatic solutions are sought-after. The numerical solution of (4.32)

is reduced, using a forward-Euler integration scheme with time step Δt, to a steepest

descent method

vk ≈
sk+1 − sk

Δt
⇒ sk+1 = sk +ΔtM(fpk

k + f core
k ), (4.33)

where ΔtM acts as a constrained line search. The steepest descent method is known

to converge rather slowly but here the number of nodes is small and the computational

cost of solving the DDD problem is negligible as compared to the cost of solving the

atomistic problem. Convergence is achieved when the total force on the dislocation line

is

‖fpk + f core‖L2(γc) < 10−3N. (4.34)

Figure 4.11 (a)-(c) show the fully-atomistic and fully DDD configurations with the core

parameters given by (4.30) obtained at applied shear stresses of 50, 100 and 150 MPa

which are below the critical value as predicted by the line tension model. The good

agreement confirms that the choice of the core energy parameter in ParaDis is sufficiently

accurate. At 150 MPa, there is a slight deviation in the maximum bow-out between
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4.3. Validation of CADD-3d for hybrid dislocations

the two models (≈ 34Å for DDD vs. ≈ 30Å for atomistics), which most likely arises

because the core parameters (4.30) were calibrated using different box sizes than those

used here3 but given the simplicity of the approach which only requires the calibration

of one single parameter, the results seem remarkable. As a matter of fact, an almost perfect

match between both models is obtained when using Ecore according to (4.31) as shown

in Figure 4.11 (d).

Figure 4.11: Comparison between fully atomistic calculations and the continuum model
(solid line) for different applied shear stresses

In order to validate CADD-3d the DDD model withEcore = 5GPa is used in the following

sections since a perfect match between both models is not essential to test crucial features

of the coupled problem. In practice small deviations between atomistic and DDD models

are always expected.

4.3.4 CADD-3d problem

Since the atomistic domain does not contain other defects than dislocations the coupled

problem can be approximated with P̃cadd (3.48) which can be conveniently solved using

the updated Green function method presented in Section 3.8.2. Corresponding results

3This is expected and was also observed in the work by Szajewski et al. (2015) (c.f. Figure 6 (a) and (b) in
Szajewski et al., 2015)
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Figure 4.12: Schematic top view of the domain decomposition for the PAD geometry
(a). A side view along the dislocation line direction is shown in (b) to illustrate where
the detection algorithm generates nodal positions of γa (the interface node is located in
region 1, its neighboring node in region 2 etc.)

obtained with the general solution procedure will be reported in a future publication

(Hodapp et al., 2018b).

For the CADD-3d study of the bow-out problem, the entire domain is divided into

atomistic and continuum regions along the x1-direction (see Figure 4.10 (a)). The width

of the atomistic domain is denoted wa. A schematic top view of the coupled problem is

shown in Figure 4.12 (a). The width of the pad domain is conveniently set to the width

of the pinning points wpin which is slightly greater than two times the cut-off radius

rcut = 5.56Å of the interatomic potential. The initial displacements of the atomistic

domain are taken as the relaxed configuration of the periodic array of straight dislocations

from the previous subsection. The initial hybrid dislocation is a straight line along the

origin.

A homogeneous shear stress at infinity is applied, which generates displacements of the

pad atoms given

∀ ξ ∈ Ωp û(ξ) =
τapp

μ
ξ3 e2. (4.35)
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4.3. Validation of CADD-3d for hybrid dislocations

As the dislocation bows out, the additional displacements of the pad atoms are computed

as the sum of the elastic displacements for the periodic array of straight edge dislocations

ũPAD (4.28) plus a correctionΔũ(i,j) due to curved segments for the primary and periodic

images (i, j). The correction is computed using the Barnett formalism (Barnett, 1985;

Barnett and Balluffi, 2007) as described in Appendix A.3.2. Including the core template

correction, the displacements of the pad atoms are thus given

∀ ξ ∈ Ωp ua(ξ) = ũPAD(ξ) +

N2∑
j=−N2

N1∑
i=−N1

Δũ(i,j)(ξ) +Δũcorr(ξ) + û(ξ), (4.36)

where N1, N2 are the number of periodic images considered in the x1- and x2-direction,

respectively. For the application of the core template (Anciaux et al., 2018), a core region

Ωcore is used with rcore = 16Å which covers the stacking fault of the chosen interatomic

potential. The core region comprises a blending region of width ≈ 4Å to guarantee a

smooth transition of Δũcorr to zero at ∂Ωcore (c.f. Section 3.5). Tests with larger core

templates gave no qualitative change in the results. Throughout the simulations, the

displacements of atoms in the pinning regions are held fixed.

After each relaxation of the atomistic system, the discrete dislocation γa is re-detected.

Following the approximate approach (see Section 3.8), the full DDD line γa + γc is used

to compute the forces on γc and the pad displacements. The DDD line γc is then evolved

according to the PK forces on the nodes within ParaDis. The new DDD line is then used

to update the pad displacement field, and the atomistic system is then relaxed again.

As indicated in Section 3.8.2 the choice of the transmission node strans is not unique

and may influence the final converged solution. The algorithms presented in Chapter

3 state that strans should reside in the atomistic domain, and here the effect of strans on

the final solution is demonstrated explicitly. For the selection of the transmission node

a simple scheme is employed which does not require additional efforts with regard to

the implementation. Recall that the dislocation detection algorithm identifies successive

tetrahedral units in the atomistic domain, schematically depicted by the filled triangles

in Figure 4.12 (b). These units are then used to discretize the dislocation into nodes

and segments. The transmission node is then the first node in the atomistic domain,

which could be in the first tetrahedron, the second, the third, etc. Assume for a moment

that strans is in the first tetrahedron (i.e. region 1 in Figure 4.12 (b)). As a consequence

γa would only advance in very small increments in the vicinity of the interface. As a

result, the algorithm may suffer from premature convergence leaving artificial kinks at

the interface. Therefore it might be favorable to ignore the interface node and set strans

to be equal to the detected node in region 2, 3 or even farther in the atomistic domain.

4.3.5 Assessment of CADD-3d

The coupled problem is applied to study the bow-out process at an applied shear stress

of 150 MPa. At this stress level, the reference atomistic and DDD dislocation lines do not
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match perfectly but are sufficiently close to enable assessment of the coupled problem.

Convergence is attained when the criterion (3.51) is satisfied with TOLdetn = 10−2 b. For

all numerical simulations here, convergence is reached after 15-25 global iterations.

In order to judge the accuracy of the coupled problem, the bow-out of the hybrid

dislocation is compared with the atomistic reference calculation. More precisely, the

difference in the displacements Δshyb,2 and Δsrefa,2 is measured along the glide direc-

tion (x2-direction). In practice one is only interested in the error in Ωa. Defining

A(w) = (−l1/2 + wpin,−l1/2 + wpin + w) as an interval along the x1-direction which

encompasses a length w ≤ wa, the relative error with respect to w is then defined as

erel(w) =
‖Δshyb,2 −Δsrefa,2‖L2(A(w))

‖Δsrefa,2‖L2(A(w))

. (4.37)

The coupled problem is analyzed for two different domain decompositions, wa ≈ l1/4

and wa ≈ l1/2, and various choices of the transmission node position. The relative errors

are presented in Table 4.2.

First, the width of the atomistic domain is chosen to be wa ≈ l1/4 of the width of the

domain. This problem represents a crucial test case for the core template approximation

since the character angle must evolve and eventually reach the equilibrium value 0◦ <
ϑp < 90◦ near the atom/continuum interface. The discrete dislocation γc is discretized

into eleven segments (including the one crossing the pad region) such that the segment

length is approximately the same as for the reference DDD problem. The coarsening of

the discrete atomistic dislocation is chosen to match this segment length approximately

such that the total number of segments remains between 14-16 during one simulation.

Tests were then performed using different locations of the transmission node strans.

The final equilibrium configurations are shown in Figure 4.13 (a)-(c). The choice of the

transmission node has a clear influence on the convergence. As stated in Section 3.8,

when the transmission node is at or near the atom/continuum interface, namely in region

1 or 2 (c.f. Figure 4.12 (b)), the algorithm converges pre-maturely to leave a small kink

at the A/C interface. When the transmission node is further from the A/C interface

(region 3), the converged solution is in excellent agreement with the fully-atomistic

solution. Specifically, the hybrid dislocation line coincides nearly perfectly with the

atomistic/continuum descriptions in Ωa and with the DDD description in Ωc, as shown

quantitatively in Table 4.2 by the small error, which is on the order of the difference

between fully atomistic and fully DDD problems. When the transmission node lies

deeper into the atomistic domain (region 4), the results do not change notably. It can be

concluded that it is necessary to choose the transmission node to lie a few atomic layers

inside the atom/continuum interface to obtain accurate results.

More broadly, the result in Figure 4.13 (c) demonstrates the high fidelity of the proposed

CADD-3d treatment of hybrid dislocations. A close inspection of the atomic displace-

ments near the atom/continuum interface shows a very slight shift in the visualized
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4.3. Validation of CADD-3d for hybrid dislocations

Figure 4.13: Solution of the coupled problem for wa = l1/4 for different choices of the
transmission node strans (a)-(c). Real and pad atoms are highlighted with respect to the
centrosymmetry parameter (CSP Kelchner et al., 1998) according to (d)

atomic core structure, but the overall level of agreement is excellent. The atomistic

dislocation away from the interface is experiencing no spurious stresses that cause a

measurable disturbance, so the atomistic system does not know that the dislocation is

represented by DDD in another large portion of the domain. Such atomistic fidelity is

precisely the goal of CADD-3d.

To further validate CADD-3d, the same problem is examined with an atomistic domain

that is approximately the same size as the continuum domain. This captures the region

of the bow-out where the atomistic and DDD reference problems show the largest

differences in equilibrium positions. Seven segments are used to discretize the continuum

dislocation line in Ωc and the transmission node is chosen to be in region 3. Otherwise

the problem remains the same as above. The final configuration at 150 MPa is shown

in Figure 4.14. The hybrid dislocation line now resides between the solution for the

individual problems, with an error (c.f. Table 4.2) of approximately half of the error of

the full DDD reference problem in half of the total domain. Moreover, the analysis shows

that, considering only the error in A(l1/4), improved results are obtained in comparison

with the coupled problem where the width of the atomistic domain was l1/4.
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Figure 4.14: Solution of the coupled problem for wa = l1/2. Real and pad atoms are
highlighted with respect to the centrosymmetry parameter (CSP Kelchner et al., 1998)
according to Figure 4.13 (d)

To demonstrate the benefits of the atomistic core template approximation, simulations

have been performed using solely the Volterra solution in the entire pad region. Results

at 150 MPa are shown in Figure 4.15 for two different positions of the transmission node.

For the transmission node in region 3, there is an artificial pinning of the dislocation

leading to a kink that should not exist. The atoms in region 3 experience the constraint

of the incorrect core template and cannot adjust suitably. Away from the kink, however,

the solution is in reasonable agreement with the previous results. The use of the Volterra

core retains knowledge of the Burgers vector and correct slip displacements, and so

the differences between the Volterra core and the full dissociated core are limited to

short-range fields, and thus cause short-range disturbances. However, those disturbances

do extend into the atomistic region and thus generate unwanted spurious stress fields

that may drive unphysical atomistic behavior even though the atomic displacement

differences are localized.

Figure 4.15: Solution of the coupled problem for wa = l1/4 using the classical Volterra
solution in the core region. Real and pad atoms are highlighted with respect to the
centrosymmetry parameter (CSP Kelchner et al., 1998) according to Figure 4.13 (d)
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width wa of Ωa region of strans w erel(w) [%]

l1/4 1 l1/4 26.9

l1/4 2 l1/4 21.4

l1/4 3 l1/4 5.2

l1/2 3 l1/2 5.8

l1/2 3 l1/4 4.1

full DDD � l1/4 5.7

full DDD � l1/2 9.9

Table 4.2: Error in the bow-out between the hybrid dislocation and the detected atomistic
dislocation from the reference calculation. The third column specifies the width w of the
domain over which the error is measured

In the present approximate model that uses DDD fields to inform the pad atoms, the

atomic disturbances caused by the Volterra solution are not fed back into the pad - there

is no full coupling - and hence the disturbances are likely underestimated when using the

current approximate model. Interestingly, if the transmission node is moved slightly

further from the interface (region 4), then the final hybrid dislocation line is largely

unaffected by the use of the Volterra core. In region 4, the atoms are able to correct slightly

better for the Volterra field error, and the segment connecting the transmission node to the

first DDD node spans across the Volterra solution, smoothening out the DDD description.

While the Volterra solution is attractive for simplicity, the core template approximation

yields a smoother transition between the two descriptions of the dislocation and a far

better description of the atomistic displacements inside the atomistic region near the

atom/continuum interface. The smoother transition can be visualized by comparing

the close-up views in Figure 4.15 (b) and Figure 4.13 (c); the dislocation core becomes

significantly more compact from ≈ 3b to the interface.

A detailed comparison of computational efficiency of the coupled problem is not pre-

sented at this stage of the CADD-3d development. The test problems here are very small

in size, especially the DDD regions, and so CADD-3d is not expected to be notably faster

than a full atomistic solution. Nonetheless, the computational time for the results in

Figure 4.14 (wa = l1/2) were comparable to those for the fully atomistic problem and

the computational time for the results in Figure 4.13 (wa = l1/4) were ≈ 3.5 less than

the fully atomistic problem, thus approaching perfect scaling with the atomistic size.

Thus, even these preliminary tests indicate the high possible efficiency of CADD-3d for

problems when the entire domain is much much larger than the atomistic domain alone.
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Summary

In this work computational methods for coupled atomistic/continuum (A/C) problems,

with emphasize on efficiency and practical application, have been developed. Thereby,

the focus has been set on the systematic derivation of the underlying mathematical

concepts and implementation aspects in order to provide a solid foundation for the

construction of sophisticated numerical algorithms which can potentially lead to a

complexity reduction by several orders of magnitude, compared to (computational

prohibitive) fully atomistic models.

A thorough evaluation of flexible elasticity boundary conditions for atomistic problems

has been presented in Chapter 2. The most widely used scheme for this class of problems

is the method by Sinclair (1971). However, to date it has never been applied to problems

beyond the scope of isolated defects due to practical limitations regarding efficiency and

memory requirements for larger atomistic domains since the pad and the real atoms must

be updated after every equilibration of the atomistic region. The operator split presented

in Section 2.4 revealed that the second step is not necessary and rather serves as an initial

guess to the anharmonic atomistic problem. Nevertheless, the problem still contains a

tremendous amount of atoms near the boundary which is prohibitive for larger problems

due to the quadratic complexity, except on supercomputers. Using the framework of

H -matrices a significant reduction in necessary memory capacity for the boundary

matrices can be obtained as shown in Section 2.6.3 and 4.1.2. This representation admits

a linear-logarithmic scaling for the memory requirements and the algebraic operations,

thus opening the door for large-scale three-dimensional applications.

A second outcome of the analysis of Sinclair’s method has led to the development

of a discrete variant of the boundary element method (DBEM). This has enabled the

construction a monolithic Newton-GMRes solver for the coupled problem presented

in Section 2.7.2. Monolithic solvers are usually preferable over staggered schemes as

they require fewer function evaluations and converge faster in general. It is verified with

145



Chapter 5. Conclusions

numerical examples that the monolithic solver requires fewer force evaluations than

Sinclair’s method, yet at the cost of a much more involved implementation. Especially

for the two-dimensional problems Sinclair’s method was found remarkably efficient,

especially when compared to the classical alternating Schwarz method commonly used

in the A/C coupling community which is found to be unsuitable for the considered class

of problems.

The method has been analyzed for various types of test problems in Section 4.1.1 and

4.1.2. An overall excellent accuracy and improved scaling of the error was found in com-

parison with clamped boundary conditions — at substantially reduced computational

cost. Further, the softer interface allows to study problems involving moving defects

which usually require substantially bigger atomistic systems. In addition, the common

approximation of the LGF, i.e. by replacing it with the CGF outside a cut-off radius, has

been investigated. It was shown that choosing a cut-off radius of a few lattice spacings is

usually enough not to effect the final result qualitatively which yields a reduction of the

offline phase.

To further allow parts of the continuum domain to undergo dislocation-based plasticity

the three-dimensional coupled atomistic/discrete dislocation (CADD-3d, Anciaux et al.,

2018; Hodapp et al., 2018a; Cho et al., 2018) method has been selected. The key concepts

of the method for the intimate coupling of a fully atomistic domain to a surrounding

domain described by a discrete dislocation dynamics (DDD) domain in three dimensions

have been thoroughly reviewed. In particular, the focus was set on the treatment of

hybrid dislocations, with a careful description of the dislocation detection in the atomistic

system, the core template correction for minimizing spurious forces on atoms near the

interface and the formulation of the quasi-static boundary value problem. A semi-

monolithic algorithm for evolving the entire system by iterating between the physical

and the DDD problem has been presented. Thereby, the DBEM developed in Chapter 2

has been identified as highly suitable for solving the associated elasticity problem. In

addition, an approximation of the fully coupled problem has been derived in Section 3.8.1

for infinite problems and when the atomistic region contains only dislocations. Using

the updated Green function method presented in Section 3.8.2 the need to execute three

dimensional finite-element (or related) solutions can then be eliminated through a fully-

DDD representation of the dislocation network at any instant to compute the boundary

conditions on the atomistic domain. Even with this approximation, the atomistic domain

still evolves according to atomistic forces, and so the main new features of the A/C

coupling are preserved here. The accuracy of this approximation has been quantitatively

assessed in Section 4.2.

The validation of CADD-3d is finally presented in Section 4.3. Specifically, it has been

shown that CADD-3d can handle hybrid dislocations that span the atomistic and con-

tinuum domains with high fidelity, approaching the exact fully atomistic solution. The

quasi-static CADD-3d method has been tested by studying the problem of the bow-out
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of a dislocation that is pinned periodically along its length. By comparing CADD-3d

predictions to a fully atomistic solution of the same problem, the accuracy of the method

is demonstrated in all important aspects. It is further shown that two algorithmic details

(the use of the core template correction to accurately represent the true atomistic core

structure of the dislocation and the choice of the transmission node connecting the

continuum and atomistic portions of a hybrid dislocation) are essential for achieving

high accuracy.

The present methodology, including the elasticity approximation for obtaining atomistic

boundary conditions, can be used to enrich the fidelity of existing DDD studies. That is,

during the evolution of a full DDD simulation, a fully-atomistic domain can be inserted

into any region of the DDD simulation in which one wishes to interrogate the atomistic

details specifically. The DDD network is used to define the boundary conditions of

the atomistic domain, and then the CADD-3d algorithm is used to evolve the coupled

problem and resolve atomistic behavior in the selected region. The problem can revert

to a full DDD simulation automatically because the current CADD-3d method can

always restore the entire dislocation network. CADD-3d is therefore the computational

nanoscope that enables on-the-fly atomistic study of any domain of interest as a DDD

system evolves in time.

Outlook

The author thinks that the proposed methodology has promising potential in addressing

and/or supporting novel materials science research. In particular, the proposed modified

version of Sinclair’s method (Section 2.7.1) and the updated Green function method for

the approximate CADD-3d problem (Section 3.8) can in principle be directly applied to

actual research problems. However, covering the entire scope of possible applications

requires further generalizations and new developments with respect to high-performance

implementations.

Regarding the implementation of the DBEM the following topics have to be addressed

shortly:

Parallelization. The parallelization of the A/DBEM coupling is involved. Using a matrix

factorization as proposed in Section 2.7.2 might not be suitable since triangular systems

are not parallelizable due to the high communication overhead for H -matrices (Krie-

mann, 2017). However, other approaches exist, e.g. by factorizing the inverse matrix

directly (Kriemann and Le Borne, 2015). If the factors of the inverse are known the linear

system reduces to two matrix-vector multiplications, essentially. Another possibility

is to solve the coupled problem (2.107) with respect to all unknowns which only re-

quires matrix-vector multiplications. Both approaches have to be tested thoroughly in

prospective future work.
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Bounded problems. The current implementation of the A/DBEM coupling is restricted

to unbounded problems. Therefore it can only be applied in situations where one seeks

for the quasi-static evolution of defects (or arrangements of defects) in an infinite medium.

This is a drastic restriction as in many practical cases the problem might not admit a so-

lution at all. It was found inevitable for testing purposes, however, if far-field conditions

must be prescribed an additional outer boundary needs to be considered. An extension

of the formulation to bounded domains for a Dirichlet problem has been discussed in

Section 2.5.4. The therefrom derived variant of Sinclair’s method for bounded prob-

lems will, moreover, possibly prove useful for future applications. However, additional

reduction in the number of degrees of freedom might be necessary if the boundary is

far from the artificial interface, possibly spanning to several hundred nanometers, thus

potentially leading to variants of multigrid methods.

Dynamics. Another important application are dynamic problems at finite temperature.

Approximating the dynamics of fully atomistic systems usually comes along with severe

challenges. Statistical ensembles usually require the Hamiltonian of the system to be

preserved. A known issue of force-based A/C coupling is the lack of a Hamiltonian

for the coupled system which requires artificial damping to ensure stability (Shiari

et al., 2005). Nevertheless, in (Dobson et al., 2010; Junge et al., 2015) it is shown that

a dynamical system is stable, provided that one of the subproblems — in the present

case the continuum problem — is static, that is, it responds instantaneously to atomic

fluctuations. This is supported by the numerical experiments in Section 4.1 in the sense

that damped dynamics is nothing but solving Newton’s equation of motion — with

artificial trajectories. Therefore the author sees no immediate obstacle in applying the

A/DBEM coupling to this class of problems. Moreover, similar ideas as presented here

may be used in combination with other energy-based coupling schemes.

Further, it is emphasized that, even though it has been proposed in the context of

A/C coupling, the method is general in the sense that it can be applied to any kind of

discrete problem which have an underlying repetitive lattice structure which allows for

an efficient computation of the LGF. The method may thus also be applicable to other

types of discrete problems, e.g. trusses, beams or foams (c.f. Beex et al., 2014).

In addition, for the implementation of CADD-3d there remain some current operational

limits to the coupling of atomistics to discrete dislocation dynamics with full atomistic

fidelity due to the existing open-source DDD methodologies:

DDD model. First, real crystalline materials are elastically anisotropic, and the computa-

tion of both stress fields and, moreover, displacement fields of dislocations in anisotropic

materials remains challenging. Second, real atomistic dislocations have a character-

dependent core energy that may be difficult to represent within continuum DDD models.

Here, the edge dislocation bow-out was calibrated by adjusting the core energy model

in ParaDis (Cai et al., 2006). Recent work (Szajewski et al., 2015) suggests this may be

insufficient, and so new models may be needed.
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Full problem. The numerical solution of the full coupled boundary value problem

remains necessary to solve many problems of interest wherein (i) the atomistic domain

contains other defects (cracks, voids, inclusions, etc.), (ii) the boundary conditions are

essential to the solution of the problem or (iii) stresses on dislocations in the vicinity of

the interface introduce non-negligible spurious forces such that the passing distance

becomes impracticably large with the approximate method. Ongoing research is devoted

to the integration of the DBEM library into libMultiscale and results will soon be reported

(Hodapp et al., 2018b).

Dislocation passing. The passing of dislocations in and out of the atomistic domain, i.e.

the creation of hybrid dislocations, has not been discussed. In Section 3.6 dislocation pass-

ing has been identified as a mere algorithmic problem. Therefore it could be neglected

for the validation of the artificial boundary condition. A method that is suitable for the

approximate CADD-3d problem has been introduced in (Cho et al., 2018). This limit is

quite useful in many cases but more general passing algorithms need to be discussed in

future work.

With the development of the general theoretical and algorithmic framework in Chapter

2 and 3 the author is confident that the preceding tasks can be successfully addressed

within a short period of time, thus opening the possibility for studying forthcoming

problems in materials physics.
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A Appendix

A.1 Green functions in anisotropic media

In the following linear elasticity is presumed. A Green function (fundamental solution)

for the balance of linear momentum is a displacement uk : Rd \ 0→ Rd, which solves

∀ k = 1, ..., d ∇ ·σk = fk in Rd, with fk
i =

{
δ(x) if i = k,

0 else.
(A.1)

In index notation this is written as

σk
ij,j =

(
Cijlmukl,m

)
,j
= Cijlmukl,mj . (A.2)

Equivalently, one may write (A.1) as

L[Gcgf ] = δI in Rd, with (L[•])lk = Cijlm•lk,mj , (A.3)

where Gcgf is refereed to as the continuum Green tensor (Gcgf
ik = uki ).

Problem (A.3) is useful as it can be used to compute the solution for arbitrary right hand

sides, provided that the Green tensor is available. For an arbitrary body force fbody the

balance of linear momentum is given by

∇ · σ = fbody in Rd. (A.4)

Assume that Gcgf is known. The body force is then convolved with (A.3) such that

L[Gcgf ] ∗ fbody =

∫
Rd

L[Gcgf ](x− x′)fbody(x′) dV ′ = δI ∗ fbody = fbody. (A.5)
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The differential operatorL only acts on x and can therefore be pulled out of the integrand

such that

∇x ·
(
C

[
∇x

(∫
Rd

Gcgf(x− x′)fbody(x′) dV ′
)])

= fbody = ∇x · C[∇xu]. (A.6)

By comparing the terms in the square brackets the solution follows as

u(x) =

∫
Rd

Gcgf(x− x′)fbody(x′) dV ′. (A.7)

A.1.1 General solution

A standard procedure to obtain the components of the continuum Green tensor is to

solve (A.3) in Fourier space. The final solution from (Lifshits and Rozentsveig, 1947;

Mura, 1982) is restated here

Gcgf
ij (x) = (2π)−3

∫
Rd

g̃ij
k2

ei(k
T·x) dV (k), (A.8)

with

k =

√√√√ d∑
i=1

k2i , g̃ij = (Cijklkjkl)
−1. (A.9)

In general the integral in (A.8) cannot be solved analytically, except if special symmetry

conditions hold (see below). To compute Gcgf in practice, the integral (A.8) is further

simplified using polar (2d) or spherical (3d) coordinates and then solved numerically

using standard techniques (Mura, 1982).

A.1.2 Isotropic solution

For the special case of isotropic elasticity a closed-form analytical solution exists. The

components of Gcgf for d = 2 and d = 3 are given as follows (e.g. Mura, 1982)

(2d) Gcgf
ij (x) =

1

8πμ(1− ν)

(xixj
r2

− (3− 4ν) ln (r)δij

)
, (A.10)

(3d) Gcgf
ij (x) =

1

16πμ(1− ν)

(
xixj
r3

+
(3− 4ν)δij

r

)
, (A.11)

where r =
√∑d

i=1 x
2
i .
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A.1.3 Principle of superposition

Let fbody = fbody
1 + fbody

2 . By linearity, a solution to (A.4) can be obtained by solving

the individual subproblems with respect to u1 and u2

∇ · σ1 = fbody
1 in Rd, ∇ · σ2 = fbody

2 in Rd. (A.12)

If a finite body Ω ⊂ Rd, subjected to the same body force, is considered, external

boundary conditions can be taken into account by solving the following corrective

problem which does not contain the source term

⎧⎪⎨
⎪⎩
∇ · σ̂ = 0 in Ω,

û = ū− u1 − u2 on ∂uΩ,

t̂ = t̄− t1 − t2 on ∂tΩ.

(A.13)

The total solution u can then be obtained by superimposing the individual solutions

u = u1 + u2 + û, σ = σ1 + σ2 + σ̂. (A.14)

The superposition principle will be heavily used in the following sections in the context

of dislocations.

A.2 Green functions for straight dislocations

A discrete dislocation is defined via a plastic strain

εp(x) =

⎧⎨
⎩

b⊗ n+ n⊗ b

2
on S ,

0 else
(A.15)

which is confined on the slip plane S . In the elastic regime the strains are additive such

that ε = εe + εp. The Cauchy stress thus becomes

σ = C[ε− εp]. (A.16)

By linearity of the divergence operator one has

∇ · σ = ∇ · C[ε− εp]

= ∇ · C[ε]−∇ · C[εp].
(A.17)

Since the plastic strain is defined a priori according to (A.15) a general solution for a

discrete dislocation is a displacement u : R3 \S → R3 which solves

∇ · C[ε] = ∇ · C[εp] in R3, (A.18)
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where ε = ∇symu.

If the Green tensor Gcgf is known analytically (which is the case for isotropic problems)

a solution to (A.18) can directly be given by convolving (A.3) with ∇ · C[εp] such that

ũ(x) =

∫
R3

Gcgf(x− x′)
(
∇x′ · C[εp(x′)]

)
dV ′. (A.19)

Using the product rule and Gauss’ theorem one can write

ũ(x) = −
∫
R3

∇x′
(
Gcgf(x− x′)

)
C[εp(x′)] dS ′. (A.20)

That is, in order to compute a solution ũ one has to evaluate the partial derivatives of

Gcgf followed by an integration over the slip plane (as εp is zero elsewhere).

The solutions for straight dislocations in elastic continua are presented in the following.

A.2.1 Isotropic solution for screw dislocations

In the following it is assumed that the slip plane is given by S := {x ∈ R3 |x1 < 0, x2 =

0 }. Hence, the dislocation line is γ := {x ∈ R3 |x1 = x2 = 0 }. For a screw dislocation

the Burgers vector is given by b =
(
0 0 b

)T
. The plastic strain tensor then reads

εp =
bδ(x2)H(−x1)

2

⎛
⎜⎝0 0 0

0 0 1

0 1 0

⎞
⎟⎠ . (A.21)

Using (A.21) in (A.20) one obtains (c.f. Hirth and Lothe, 1982; Mura, 1982)

ũscrew1 (x) = ũscrew2 (x) = 0,

ũscrew3 (x) =
b

2π
arctan

(
x2
x1

)
.

(A.22)

A.2.2 Isotropic solution for edge dislocations

The definition of S and γ is adopted from the previous section. For an edge dislocation

the Burgers vector is given by b =
(
b 0 0

)T
. The plastic strain tensor then reads

εp =
bδ(x2)H(−x1)

2

⎛
⎜⎝0 1 0

1 0 0

0 0 0

⎞
⎟⎠ . (A.23)
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Using (A.23) in (A.20) one obtains (c.f. Nabarro, 1967)

ũedge1 (x) =
b

4π(1− ν)

x1x2
x21 + x22

+
b

2π
arctan

x2
x1

,

ũedge2 (x) =
b

4π(1− ν)

x22
x21 + x22

− (1− 2ν)b

8π(1− ν)
ln

(
x21 + x22

)
,

ũedge3 (x) = 0.

(A.24)

This solution is referred to as the Nabarro solution. Another solution which can often be

found in literature is the solution by Hirth and Lothe (1982) given by

ũedge21 (x) = ũedge1 (x),

ũedge22 (x) = − b

8π(1− ν)

x21 − x22
x21 + x22

− (1− 2ν)b

8π(1− ν)
ln (x21 + x22),

ũedge23 (x) = 0

(A.25)

which can be obtained by applying certain boundary conditions before evaluating the

integral in (A.20).

A.2.3 Isotropic solution for mixed dislocations

If the character angle of the dislocation is 0◦ < ϑ < 90◦, the Burgers vector of the

dislocation has a screw and an edge component, i.e. b = b
(
sin (ϑ) 0 cos (ϑ)

)T
. Thanks

to principle of superposition, the plastic strains due to the screw and the edge components

can be separated and the solution of a mixed dislocation can directly be given as

ũmixed(x;ϑ) = cos (ϑ)ũscrew(x) + sin (ϑ)ũedge(x). (A.26)

A.2.4 General solution

In the general anisotropic case a closed form expression of (A.20) does not exist. How-

ever, for straight dislocations an analytic formula can be obtained by exploiting certain

symmetry conditions. Then general solution reads (Eshelby et al., 1953)

ũaisoi (x; b) = Re

⎧⎨
⎩

3∑
j=1

Aij ln
(
ηj(x)

)⎫⎬⎭ , with ηj(x) = x1 + pjx2, (A.27)

where the coefficients Aij , pj ∈ C have to be determined numerically. Equation (A.27)

can be re-written as

ũaisoi (x; b) =
1

2

3∑
j=1

Cij ln
(
(x1 + rjx2)

2 + (qjx2)
2
)
−Dij arctan

(
qjx2

x1 + rjx2

)
, (A.28)
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with

Cij = Re{Aij}, Dij = Im{Aij}, rj = Re{pj}, qj = Im{pj}. (A.29)

A.2.5 Periodic arrays of straight dislocations

In what follows a closed-form analytical expression for the displacement field of an

infinite array of isotropic edge dislocations is sought-after. The approach carries over

almost verbatim to the general anisotropic case which is omitted for compactness. Under

certain assumptions infinite sums can be conveniently evaluated via the Residue theorem

from complex analysis:

Theorem A.2.1 (Residue theorem). Let A be an open set containing {w1, ..., wp} and let

further g be holomorphic in A \ {w1, ..., wp}. Then

1

2πi

∫
∂A

g(x) dx =

p∑
k=1

res(g(x), wk), (A.30)

where for an n-th order pole

res(g(x), wk) =
1

(n− 1)!
lim

x→wk

∂n−1

∂xn−1

(
(x− wk)

ng(x)

)
. (A.31)

In order to evaluate infinite sums the function g(x) is multiplied with a function h(x) =

π cotπx. Using the fact that h(x) has simple poles ∀x ∈ A = N yields

1

2πi

∫
∂A

g(x)h(x) dx =

p∑
k=1

res(g(x)h(x), wk) +

∞∑
k=−∞

g(k). (A.32)

It is assumed that the function g(x) goes to zero as x→∞. Therefore the left hand side

of (A.32) is essentially zero. Thus,

∞∑
k=−∞

g(k) = −
p∑

k=1

res(g(x)h(x), wk). (A.33)

In order to evaluate infinite sums it therefore suffices to determine the poles of g(x) and

compute the residues of g(x)h(x).

Consider a periodic array of infinite straight edge dislocations with e2, e3 being the glide

direction and slip plane normal, respectively. The separation between the dislocations is

Δx2 = l2. The position of the dislocations is thus

∀ i ∈ N xi =

⎛
⎜⎝ 0

iΔx2
0

⎞
⎟⎠ =

⎛
⎜⎝ 0

Δxi2
0

⎞
⎟⎠ . (A.34)
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The isotropic displacement field induced by each dislocation is then given by

ũi1(x) = 0,

ũi2(x) =
b

2π

(
(x2 −Δxi2)x3

2(1− ν)((x2 −Δxi2)
2 + x23)

+ arctan

(
x2 −Δxi2

x3

))
,

ũi3(x) = −
b

2π

(
(x2 −Δxi2)

2 − x23
4(1− ν)((x2 −Δxi2)

2 + x23)
+

1− 2ν

4(1− ν)
ln

(
(x2 −Δxi2)

2 + x23
))

.

(A.35)

Henceforth the following compact notation is used

ũi2(x) = a1f
i
11(x) + b1f

i
12(x),

ũi3(x) = a2f
i
21(x) + b2f

i
22(x),

(A.36)

where

a1 =
b

4π(1− ν)
, a2 = −

1

2
a1 b1 =

b

2π
, b2 = (1− 2ν)a2 (A.37)

and

f i
11(x) =

(x2 −Δxi2)x3
(x2 −Δxi2)

2 + x23
, f i

12(x) = arctan

(
x2 −Δxi2

x3

)
,

f i
21(x) =

(x2 −Δxi2)
2 − x23

(x2 −Δxi2)
2 + x23

, f i
22(x) = ln

(
(x2 −Δxi2)

2 + x23
)
.

(A.38)

The total displacement field follows by summing the contributions from the individual

dislocations, that is

ũPAD
2 (x) = a1

+∞∑
i=−∞

f i
11(x) + b1

+∞∑
i=−∞

f i
12(x),

ũPAD
3 (x) = a2

+∞∑
i=−∞

f i
21(x) + b2

+∞∑
i=−∞

f i
22(x).

(A.39)

It is easy to see that the displacement ũPAD
3 diverges with respect to the second term f i

22

as Δxi2 →∞. The divergent term is effectively associated with a rigid body shift — since

the Green function lacks the definition of boundary conditions.

Hence, the sums of the partial derivatives of f i
22(x), given by

∂f i
22(x)

∂x2
=

2(x2 +Δxi2)

(x2 +Δxi2) + x23
,

∂f i
22(x)

∂x3
=

2x3
(x2 +Δxi2) + x23

, (A.40)

converge as sums
∑∞

i=−∞ 1/r converge (whereas
∑∞

i=0 1/r does not). In the follow-

ing the derivation of the closed-form solution for the infinite sum
∑+∞

i=−∞ ∂x2f
i
22(x) is

exemplified.
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First note that the function ∂x2f
i
22(x) has two poles

w1 =
−x2 + ix3

l2
, w2 =

−x2 − ix3
l2

. (A.41)

Applying the residue theorem leads to

+∞∑
i=−∞

∂f i
22(x)

∂x2
= −

2∑
k=1

res(∂x2f
i
22(x)h(k), wk)

= C Re {cot [C(x2 − ix3)] + cot [C(x2 − ix3)]}

= − 2C sin (2Cx2)

(cos (2Cx2)− cosh (2Cx3))
,

(A.42)

with C = π/l2. The infinite sum may then be written as

+∞∑
i=−∞

f i
22(x) ≡

∫ (
+∞∑

i=−∞

∂f i
22(x)

∂x2

)
dx2 + I(x3) <∞. (A.43)

But I(x3) = 0 since∫
∂f i

22(x)

∂x2
dx2 =

∫
∂f i

22(x)

∂x3
dx3. (A.44)

Therefore it follows

+∞∑
i=−∞

f i
22(x) ≡

∫ (
− 2C sin (2Cx2)

(cos (2Cx2)− cosh (2Cx3))

)
dx2

= ln (| cos (2Cx2)− cosh (2Cx3)|).
(A.45)

To compute the remaining infinite sums one can proceed in a similar way. Note that the

residue theorem can be applied directly to
∑+∞

i=−∞ f i
11(x) since the series is convergent

and consists of rational terms.

On the other hand, the sum
∑+∞

i=−∞ f i
12(x) which accounts for the plastic slip is obviously

divergent. Again, its partial derivatives can be used in order to omit the rigid body shift

as for the logarithmic term. In summary,

+∞∑
i=−∞

f i
11(x) ≡ −

Cx3 sin (2Cx2)

(cos (2Cx2)− cosh (2Cx3))
, (A.46)

+∞∑
i=−∞

f i
12(x) ≡ − arctan (coth (Cx3) tan (Cx2)), (A.47)

+∞∑
i=−∞

f i
21(x) ≡

2Cx3 sinh (2Cx3)

(cos (2Cx2)− cosh (2Cx3))
. (A.48)
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The closed-form expression of (A.39) therefore reads

ũPAD
2 (x) = −a1

Cx3 sin (2Cx2)

(cos (2Cx2)− cosh (2Cx3))
− b1 arctan (coth (Cx3) tan (Cx2)),

ũPAD
3 (x) = a2

2Cx3 sinh (2Cx3)

(cos (2Cx2)− cosh (2Cx3))
+ b2 ln (| cos (2Cx2)− cosh (2Cx3)|).

(A.49)

A.3 Green functions for curved dislocations

A.3.1 Triangular dislocation loops

A general expression of the displacement field as a line integral over some arbitrarily-

shaped dislocation loop γ for anisotropic media has been derived in (Indenbom and

Lothe, 1992). Here, only the isotropic solution is presented which is used in Section 4.3.5.

The displacement field (A.20) can then be written as

ũ(x) =− μ

∫
S
∇Gcgf(x− x′)(b⊗ n) dA′ − μ

∫
S
∇Gcgf(x− x′)(n⊗ b) dA′

− λ

∫
S
(bT · n)∇ ·Gcgf(x− x′) dA′,

(A.50)

with the Lamé constant λ. Using (A.11) in (A.50) and rearranging the terms, the dis-

placement field can then be transformed into the following line integral representation

by virtue of Stokes’ theorem (e.g. Balluffi, 2012)

ũ(x) =
Ωs(x)

4π
b+ f(x) + g(x), (A.51)

with

f(x) = − 1

4π

∫
γ

b× t(x)

‖x− x′‖ dC
′, (A.52)

g(x) = − 1

8π(1− ν)
∇

(∫
γ

(
b× (x− x′)

)T · t(x)
‖x− x′‖ dC ′

)
(A.53)

and the solid angle Ωs(x) (see Balluffi, 2012, Chapter 12, for details).

Barnett (1985) and Barnett and Balluffi (2007) introduced a particular convenient for-

malism to obtain a closed-form expression of (A.51) by considering piecewise linear

dislocations composed of triangular loops. Consider a triangular γ�loop with nodes A,

B and C. The vector-valued vector functions f(x) and g(x) for the segment A→ B are
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Figure A.1: Example for a triangular dislocation loop

then given by

fAB(x) =−
1

4π
(b× tAB)

∫ B

A

1

‖x− x′‖ dC
′

=− 1

4π
(b× tAB) ln

(
rA
rB

(
1 + λT

B · tAB

1 + λT
A · tAB

))
,

(A.54)

gAB(x) =−
1

8π(1− ν)
(b× tAB)

∫ B

A

1

‖x− x′‖ dC
′

−
∫ B

A

(b× tAB)
T · (x− x′)

‖x− x′‖ (x− x′) dC ′

=− 1

8π(1− ν)

(
fAB(x)−

bT · (λA × λB)

1 + λT
A · λB

(λA + λB)

)
,

(A.55)

where

rA = xA − x, rA = ‖rA‖, rB = xB − x, rB = ‖rB‖,

λA =
1

rA
rA, λB =

1

rB
rB

(A.56)

from which the remaining terms follow verbatim. The displacement field of a triangular

loop is then given by

ũ�(x) =
Ωs(x)

4π
b+

(
f ′
AB(x)+f ′

BC(x)+f ′
CA(x)

)
+

(
g′
AB(x)+g′

BC(x)+g′CA(x)
)
, (A.57)

with

f ′
AB(x) = −

3− 2ν

8π(1− ν)
(b× tAB) ln

(
rA
rB

(
1 + λT

B · tAB

1 + λT
A · tAB

))
, (A.58)

g′
AB(x) =

1

8π(1− ν)

bT · (λA × λB)

1 + λT
A · λB

(λA + λB) etc. (A.59)
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The isotropic solution for an infinite straight edge dislocation should be recovered in the

limit when the diameter of γ�tends to infinity, more precisely, when the x3 coordinate of

the nodes A and B as well as the x1 coordinate of the node C become very large compared

to x. This is shown in the following.

Proposition 4. Assume that ũ�is a solution to (A.50) for the triangular loop γ�shown in Figure

A.1. Then, in the limiting case when L→∞, i.e. for

xA,3 → −∞, xB,3 →∞, xC,1 → −∞, (A.60)

the isotropic solution (A.26) is recovered. That is, for b =
(
0 0 b

)T

(1) lim
L→∞

ũ�(x;L) = ũscrew (A.61)

and for b =
(
b 0 0

)T

(2) lim
L→∞

(
ũ�(x;L)− f̃ ′

AB(L)
)
= ũedge, (A.62)

with f̃ ′
AB(L) =

1−2ν
8π(1−ν) ln (4L

2)
(
0 b 0

)T
.

Proof. The proof of statement (1) can be found (Balluffi, 2012, Exercise 12.10).

To proof statement (2) the limiting case for ũ�is obtained first. It can be readily checked

that

lim
L→∞

Ωs =
b

2π
arctan

x2
x1

, (A.63)

lim
L→∞

f ′
AB = lim

L→∞

⎛
⎜⎝ 1− 2ν

8π(1− ν)
ln

(
rA + L

rA − L

) ⎛
⎜⎝0

b

0

⎞
⎟⎠

⎞
⎟⎠ =∞, (A.64)

lim
L→∞

f ′
BC = 0, (A.65)

lim
L→∞

f ′
CB = 0, (A.66)

lim
L→∞

g′
AB =

b

4π(1− ν)

x2
x21 + x22

⎛
⎜⎝x1
x2
0

⎞
⎟⎠ , (A.67)

lim
L→∞

g′
BC = 0, (A.68)

lim
L→∞

g′
CB = 0. (A.69)

The precise derivations are left to the interested reader.
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It can be immediately seen that lim
L→∞

ũ�
1 = ũedge1 . The logarithmic term in (A.64) is

divergent and therefore another divergent term must be subtracted in order to obtain

a converged result. Therefore the asymptotic behavior of (A.64) needs to be analyzed.

Since rA =
√
x21 + x22 + L2 one may re-write the logarithmic term as a function

f(u) = ln

(√
r2u2 + 1 + 1√
r2u2 + 1− 1

)
= ln

(√
r2u2 + 1 + 1

)
− ln

(√
r2u2 + 1− 1

)
, (A.70)

with r =
√
x21 + x22 and u = 1/L. A Taylor expansion of

√
r2u2 + 1 around u = 0 yields

√
r2u2 + 1 = 1 +

1

2
r2u2 +O(u3). (A.71)

For small u the higher order terms can be neglected such that f can be written as

f(u) ≈ ln

(
1 +

1

2
r2u2 + 1

)
− ln

(
1 +

1

2
r2u2 − 1

)
(A.72)

= ln 2− ln

(
1

2
r2u2

)
(A.73)

= ln
4

u2
− ln r2, (A.74)

where ln 4/u2 = ln 4L2. Hence, subtracting f̃ ′
AB from f ′

AB in (A.64) leads to

lim
L→∞

(
f ′
AB − f̃ ′

AB

)
= − (1− 2ν)

8π(1− ν)
ln (x21 + x22)

⎛
⎜⎝0

b

0

⎞
⎟⎠ . (A.75)

which proves the stated proposition.

A.3.2 Periodic arrays of bowing dislocations

The previous results can be efficiently used to facilitate the computation of the elastic

displacement field of periodic arrays of curved dislocations. Due to the linearity of the

problem the analytic, closed-form expression (A.49) can be used in order to compute the

displacement field of infinite edge dislocations. Subsequently the displacement field

of the closed loops Δũ(i,j) for a periodic image (i, j) is superimposed which account

for the bowed components of the dislocations as shown in Figure A.2. Note that only

the computation of the contributions from the surface segments and the solid angle are

necessary as the inner segments cancel each other out.

The displacement field converges approximately linearly with respect to the number of

periodic images. Fortunately this is not an issue since a great portion of the full solution

is already captured analytically via ũPAD. If this scheme should be adopted to larger

problems, e.g. to visualize the displacement field in PAD domains containing numerous
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Figure A.2: Schematic illustration of the summation scheme for the computation of the
elastic displacement field of periodic arrays of curved dislocations

dislocations, more efficient summation schemes would have to be developed. However,

this scheme was mainly aimed for the computation of the boundary conditions on the

atomistic problem for the specific test case considered in Section 4.3.

A.4 Lattice Green functions

A.4.1 Construction of Glgf

Theorem A.4.1 (Semi-discrete Fourier transform). For any function f(ξ) ∈ U�(Λ) its

semi-discrete Fourier transform (SDFT), which belongs to L2(B), is given

∀k ∈ B F {f} (k) =
∑
ξ∈Λ

fξe
−i(kT·ξ), (A.76)

where B is the Brillouin zone of Λ. The function f can be recovered using the inverse SDFT as

f(ξ) = F−1 {F {f}} (ξ) = 1

|B|

∫
F {f} (k)ei(kT·ξ) dB (A.77)

To compute the lattice Green function the following problem is defined: find uk : Λ→ Rd

which solves ∀ k = 1, ..., d

Lh[u
k](ξ) =

∑
η∈Rloc

ξ

K(ξ − η)uk(η) = fk(ξ) in Λ, (A.78)

with

fk
i (ξ) = δikδ(ξ) =

{
1 if (i = k) ∧ (ξ = 0),

0 else.
(A.79)
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First, problem (A.78) is written component-wise, i.e.

∀ k = 1, ..., d δikδ(ξ) =
∑

ξ∈Rloc
ξ

Kij(ξ − η)ukj (η) = Kij ∗ ukj , (A.80)

where ∗ is the convolution operator. Now the SDFT is applied on both sides such that

F {δikδ(ξ)} = δik = F
{
Kij ∗ ukj

}
= F {Kij} · F

{
ukj

}
. (A.81)

Note that the convolution operation reduces to a simple multiplication in Fourier space.

The remaining steps are exemplified for d = 2. Rewriting in matrix-vector notation gives[
F {K11} F {K12}
F {K21} F {K22}

] [
F

{
u11

}
F

{
u21

}
F

{
u12

}
F

{
u22

}]
= Î . (A.82)

Inverting the Fourier stiffness matrix gives[
F

{
u11

}
F

{
u21

}
F

{
u12

}
F

{
u22

}]
=

1

det

[
F {K11} −F {K12}
−F {K21} F {K22}

]
, (A.83)

with det = F {K11}F {K22} − F {K12}F {K21}. Transforming F
{
uki

}
back to the real

space gives the components of the lattice Green tensor

G11(ξ) = u11(ξ) = F−1 {(1/det)F {K11}} (ξ) etc. (A.84)

A.4.2 Lattice Green function for linear elasticity

In the numerical examples in Section 2.6, 2.7 and 4.1 the interpolation function ϕξ is the

classical P1 interpolant often used in finite elements (see e.g. (Bathe and Zimmermann,

2002)). An LGF for linear elasticity can then be obtained by periodically partitioning the

lattice into simplices (triangles in 2d and tetrahedrons in 3d). Such a partition is usually

not unique but results are not qualitatively impacted. For the square, hexagonal and the

fcc lattice a possible partitioning is shown in Figure A.3 (a)-(c).

Figure A.3: Simplicial partitioning of various Bravais lattice types
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A.4.3 Error estimates

Preparation

Below, use will be made of the following inequalities, that is for all Â ∈ RN×M , B̂ ∈ RM×O

and x̂ ∈ RM it holds

‖ÂB̂‖fro ≤ ‖Â‖fro‖B̂‖fro, ‖Âx̂‖ ≤ ‖Â‖fro‖x̂‖ (A.85)

which both follow from the Cauchy-Schwarz inequality.
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Figure A.4: Absolute and relative errors of the CGF when compared to the LGF

In (Trinkle, 2008) the difference between the LGF and the CGF ε(ξ) ∈ Rd×d was defined

as

Glgf(ξ)−Gcgf(ξ) = Gcgf(ξ)ε(ξ). (A.86)

Taking norms on both sides one can write

‖Glgf −Gcgf‖fro = ‖Gcgfε‖fro ≤ ‖Gcgf‖fro‖ε‖fro. (A.87)

The total error then reads

‖ε‖fro =
‖Glgf −Gcgf‖fro
‖Gcgf‖fro

. (A.88)

In (Trinkle, 2008) it was shown that, under certain assumptions, ‖ε‖fro ∝ r−2 for d = 3.

It is presumed that the same result holds also for the 2d case. This can be made rigorous

considering the fact that ∀ ξ �= 0 lim
a0→0

Glgf(ξ) = Gcgf(ξ) and using the fact that the scaling

only differs by a log-factor but this is not carried out. Using the fact that ‖Gcgf‖fro ∝ log r

for d = 2 and ‖Gcgf‖fro ∝ r−1 for d = 3 the asymptotic decay rates for the absolute errors
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are obtained

2d: ‖Glgf −Gcgf‖fro � r−2 log r, 3d: ‖Glgf −Gcgf‖fro � r−3. (A.89)

The estimates are verified with numerical experiments in Figure A.4 for the potentials

used in Section 4.1.1 and 4.1.2.

In order to prove Proposition 3 the following preliminary result is required:

Proposition 5. Using the approximation G̃lgf (2.99) the scaling of the error for any matrix

Ĝ = Ĝ•/• and F̂ = F̂ •/• defined in Section 2.6 which acts on two interface domains Λ1 and Λ2
1 can directly be given as

‖Ĝ− ˆ̃G‖fro � r
−(d+1)/2
cut (log rcut)

3−d, ‖F̂ − ˆ̃F‖fro � r
−(d+1)/2
cut (log rcut)

3−d (A.90)

as diam(Λ1) → ∞ or diam(Λ2) → ∞, where diam(•) is the diameter of the corresponding

domain.

Sketch of the proof. Choose Λ1 as the set of application points and Λ2 as the set of source

points. Hence, the norm of the error in Ĝ is given by

‖Ĝ− ˆ̃G‖fro

=

⎛
⎜⎝ ∑

ξ∈Λ1

∑
η∈Λ2,
r>rcut

(
Glgf(ξ − η)− G̃lgf(ξ − η)

)
·
(
Glgf(ξ − η)− G̃lgf(ξ − η)

)⎞
⎟⎠

1/2

(A.91)

Since (
Glgf(ξ − η)− G̃lgf(ξ − η)

)
·
(
Glgf(ξ − η)− G̃lgf(ξ − η)

)
= ‖Glgf − G̃lgf‖2fro � r−2d(log r)2(3−d)

(A.92)

one can write

‖Ĝ− ˆ̃G‖fro �

⎛
⎜⎝ ∑

ξ∈Λ1

∑
η∈Λ2,
r>rcut

r−2d(log r)2(3−d)

⎞
⎟⎠

1/2

. (A.93)

The inner sum is now approximated as an integral over a surface Γ which includes all

lattice points in Λ2, i.e.

∑
η∈Λ2,
r>rcut

r−2d(log r)2(3−d) ≈ 1

A0

∫
Γ\Brcut

r−2d(log r)2(3−d)dA, (A.94)

1More precisely, Λ1/Λ2 refer to Λi, Λp, Λi� or Λi� as defined in Section 2.3.3
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where A0 is some reference area and Brcut = {x′ ∈ Rd | ‖ξ − x′‖ ≤ rcut } is the closed

ball with radius rcut.

First, the integral is estimated for d = 2. Therefore, pick one application point ξ ∈ Λ1.

Since the integrand is always positive the right hand side of (A.94) can be bound by an

integral over the surface of a square domain Γ� which encloses Γ such that∫
Γ\Brcut

r−4(log r)2dA ≤
∫
Γ�\Brcut

r−4(log r)2dA. (A.95)

As diam(Γ�) → ∞ this integral becomes proportional to r−3
cut(log rcut)

2. Plugging this

result into (A.93) and proceeding similarly for the other application points it follows

‖Ĝ− ˆ̃G‖fro �

⎛
⎝ ∑

ξ∈Λ1

r−3
cut(log rcut)

2

⎞
⎠1/2

 r
−3/2
cut log rcut. (A.96)

This procedure translates verbatim to d = 3. Instead of a square domain the surface of a

cubic domain Γ� which encloses Γ is now chosen. Then∫
Γ\Brcut

r−6dA ≤
∫
Γ
�

\Brcut

r−6dA ∝ r−4
cut (A.97)

as diam(Γ�)→∞ since
∫
Γ • dA is now a double integral. Using the estimate (A.97) in

(A.93) yields

‖Ĝ− ˆ̃G‖fro �

⎛
⎝ ∑

ξ∈Λ1

r−4
cut

⎞
⎠1/2

 r−2
cut. (A.98)

The second estimate can be obtained using (A.85) and the fact the representation of L̂ is

exact.

Proof of Proposition 3

Using Proposition 5 the error induced by Sinclair’s method can directly be estimated as

‖ûp − ˆ̃up‖ = ‖(Ĝp/i� − ˆ̃Gp/i�)f̂ i�
inh‖ ≤ ‖Ĝp/i� − ˆ̃Gp/i�‖fro‖f̂ i�

inh‖
� r

−(d+1)/2
cut (log rcut)

3−d.
(A.99)

For the A/DBEM coupling it holds

ûp − ˆ̃up = (F̂ p/i − ˆ̃F p/i)ûi − Ĝp/if̂ i + ˆ̃Gp/i ˆ̃f i.

= (F̂ p/i − ˆ̃F p/i)ûi − Ĝp/i(f̂ i − ˆ̃
f i)− (Ĝp/i − ˆ̃Gp/i)

ˆ̃
f i.

(A.100)
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Taking the norm on both sides and using the triangle and Cauchy-Schwarz inequalities

leads to

‖ûp− ˆ̃up‖ ≤ ‖F̂ p/i− ˆ̃F p/i‖fro‖ûi‖+‖Ĝp/i‖fro‖f̂ i− ˆ̃
f i‖+‖Ĝp/i− ˆ̃Gp/i‖fro‖ ˆ̃f i‖. (A.101)

The first and the third term can be directly estimated as

‖F̂ p/i − ˆ̃F p/i‖fro � r
−(d+1)/2
cut (log rcut)

3−d, (A.102)

‖Ĝp/i − ˆ̃Gp/i‖fro � r
−(d+1)/2
cut (log rcut)

3−d. (A.103)

For the second term use is made of (2.96) to write

f̂ i − ˆ̃
f i = −(Ĝi/i)−1(Î − F̂ i/i)ûi + ( ˆ̃Gi/i)−1(Î − ˆ̃F i/i)ûi

= −((Ĝi/i)−1 − ( ˆ̃Gi/i)−1 − F̂ i/i + ˆ̃F i/i)ûi.
(A.104)

Now define

(Ĝi/i)−1 = Ê1 + ( ˆ̃Gi/i)−1, Î − F̂ i/i = Ê2 + Î − ˆ̃F i/i. (A.105)

Plugging the latter into (A.104) and taking norms yields

‖f̂ i − ˆ̃
f i‖ ≤ ‖Ê1Ê2 + Ê1(Î − ˆ̃F i/i) + Ê2(

ˆ̃Gi/i)−1‖fro‖ûi‖

≤ ‖Ê1‖fro‖Ê2‖fro + ‖Ê1‖fro‖Î − ˆ̃F i/i‖fro + ‖Ê2‖fro‖( ˆ̃Gi/i)−1‖fro.
(A.106)

To estimate ‖Ê1‖fro define Ĝi/i = Ĝi/i(X̂) = ˆ̃Gi/i + X̂ . Applying a Taylor expansion to

(Ĝi/i(X̂))−1 around X̂ = 0̂ such that

(Ĝi/i)−1 − ( ˆ̃Gi/i)−1 =
∂( ˆ̃Gi/i + X̂)−1

∂X̂

∣∣∣∣
X̂=0̂

X̂ + h. o. t.

≈ −(Ĝi/i)−1X̂

(A.107)

from which it follows that

‖Ê1‖fro ≈ ‖(Ĝi/i)−1X̂‖fro ≤ ‖(Ĝi/i)−1‖fro‖X̂‖fro � r
−(d+1)/2
cut (log rcut)

3−d. (A.108)

It is then easy to see that the A/DBEM coupling satisfies (2.101).
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Glossary

Miscellaneous

R Set of real numbers

N Set of natural numbers

Z Set of integers

C Set of complex numbers

Rd d-dimensional Euclidean space

n Unit normal vector

ε Third-order permutation tensor (Levi-Civita tensor)

δ Dirac delta function (or: Kronecker delta with subindices i, j, i.e. δij)

u Displacement

Π Total energy of a mechanical system

Π int, Πext Internal and external energy of a mechanical system (Π = Π int +Πext)

f Force vector

rcut Cut-off radius

Continuum and discrete dislocation mechanics

Ω0, Ω Reference and current placement of a continuous body

Ωcore Dislocation core region

X , Y Material points in the reference configuration

x, y Material points in the current configuration

χ Motion of a material point X

v Dislocation velocity vector

F Deformation gradient

ε Small strain tensor

εe, εp Elastic and plastic part of ε

εns,p Nonsingular plastic strain

β Distortion tensor
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Glossary

βe, βp Elastic and plastic distortion tensors

βp,ns Nonsingular plastic distortion

ψ Helmholtz free energy density

Πe, Πcore Elastic and core energy contribution of Π

W Energy per unit length of the dislocation line

W e, W core Elastic and core energy per unit length of γ (W = W e +W core)

σ Cauchy stress tensor

τ Scalar shear stress

P First Piola-Kirchhoff stress tensor

t Traction vector

B Eshelby stress tensor

fbody Body force

fpk Peach-Koehler force

f core Force on γ due to core energy contribution Πcore

C Material stiffness tensor

μ, λ Lamé constants

ν Poisson ratio

S Slip plane

γ Discrete dislocation line

s Material point on γ

t, m Unit tangent and normal vector of the dislocation line

b Magnitude of the Burgers vector

b Burgers vector

α Dislocation density tensor

rcorecut Dislocation core cut-off radius

ϑ Character angle of the dislocation line

w Isotropic spreading function of the Burgers vector (βp,ns = βp ∗ w)

a Isotropic core spreading width

Ecore Scalar core energy parameter of the isotropic core energy model

M , D Mobility and drag tensor of the dislocation line γ

ũ, σ̃ Displacement and stress field of an isolated dislocation in R3

û, σ̂ Corrective fields due to boundary conditions on ∂Ω

Pc/p Physical continuum problem (:= balance of linear momentum)

Pc/dd DDD problem

Pc Continuum problem (:= Pc/p ∧ Pc/dd)

Gcgf Continuum Green tensor

V Space of square-integrable functions with weak derivative

Atomistic modeling and flexible boundary conditions

Λ Bravais lattice

ξ, η, ζ Atomic indices
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Glossary

ξ, η, ζ Positions of atoms ξ, η, ζ

Eξ Site energy of an atom ξ

f ext External force vector (defined on a lattice)

Rξ Interaction range of atom ξ

a0 Lattice constant

Pa Atomistic force balance

L Differential operator (L[u](ξ) = δξΠ)

Lh, Lah Harmonic and anharmonic operators (L = Lh + Lah)

G Green operator (GLh = I)

F Force operator for boundary forces (e.g. Gi�/iLi/i�
h etc.)

K Nodal stiffness tensor

Glgf Lattice Green tensor

L̂, Ĝ, F̂ Matrix representations of L, G and F
U Space of lattice functions

U� Space of square-summable lattice functions

Coupled atomistic/discrete dislocations

Γi Artificial interface between the atomistic and the continuum domain

Pcadd CADD problem (:= Pa ∧ Pc)

Pp Physical subproblem of Pcadd (:= Pa ∧ Pc/p)

P̃c/p Infinite part of Pc/p

P̂c/p Finite part of Pc/p

Pc/∞ Infinite continuum problem P̃c/p ∧ Pc/dd

P̃cadd Approximate CADD problem

γhyb Hybrid discrete dislocation line (:= γa ∪ γc)

Δũcorr Core template correction

strans Transmission node

Ωdetn Detection domain

γdetn Detected discrete dislocation line Ωdetn

γav Virtual subset of a discrete dislocation line in Ωa \ Ωdetn which is used to

artificially close a loop in Ωa

γ̃a := γdetn ∪ γav
γ̃hyb := γ̃a ∪ γc

Acronyms

A/C coupling atomistic/continuum coupling

bcc body-centered cubic

BEM boundary element method

BIE boundary integral equation
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Glossary

BSE boundary summation equation

CB model Cauchy-Born model

CADD coupled atomistic/discrete dislocations

DBEM discrete boundary element method

DDD discrete dislocation dynamics

DXA dislocation extraction algorithm

EAM embedded atom method

fcc face-centered cubic

FIRE fast inertia relaxation engine

FEM finite element method

GMRes method generalized minimal residual method

CGF, LGF continuum/lattice Green function

LM libMultiscale

MD molecular dynamics

PK force Peach-Koehler force

PAD periodic array of dislocations

QC Quasicontinuum
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