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Abstract
Estimating the 3D poses of rigid and articulated bodies is one of the fundamental problems of

Computer Vision. It has a broad range of applications including augmented reality, surveillance,

animation and human-computer interaction. Despite the ever-growing demand driven by the

applications, predicting 3D pose from a 2D image is a challenging and ill-posed problem due to

the loss of depth information during projection from 3D to 2D. Although there have been years

of research on 3D pose estimation problem, it still remains unsolved. In this thesis, we propose a

variety of ways to tackle the 3D pose estimation problem both for articulated human bodies and

rigid object bodies by learning robust features and latent representations.

First, we present a novel video-based approach that exploits spatiotemporal features for 3D

human pose estimation in a discriminative regression scheme. While early approaches typically

account for the motion information by temporally regularizing noisy pose estimates in individual

frames, we demonstrate that taking into account motion information very early in the modeling

process with spatiotemporal features yields significant performance improvements. We further

propose a CNN-based motion compensation approach that stabilizes and centralizes the human

body in the bounding boxes of consecutive frames to increase the reliability of spatiotemporal

features. This then allows us to effectively overcome ambiguities and improve pose estimation

accuracy.

Second, we develop a novel Deep Learning framework for structured prediction of 3D human

pose. Our approach relies on an auto-encoder to learn a high-dimensional latent pose representa-

tion that accounts for joint dependencies. We combine traditional CNNs for supervised learning

with auto-encoders for structured learning and demonstrate that our approach outperforms the

existing ones both in terms of structure preservation and prediction accuracy.

Third, we propose a 3D human pose estimation approach that relies on a two-stream neural

network architecture to simultaneously exploit 2D joint location heatmaps and image features.

We show that 2D pose of a person, predicted in terms of heatmaps by a fully convolutional

network, provides valuable cues to disambiguate challenging poses and results in increased

pose estimation accuracy. We further introduce a novel and generic trainable fusion scheme,

which automatically learns where and how to fuse the features extracted from two different input

modalities that a two-stream neural network operates on. Our trainable fusion framework selects
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Abstract

the optimal network architecture on-the-fly and improves upon standard hard-coded network

architectures.

Fourth, we propose an efficient approach to estimate 3D pose of object instances from a

single RGB image. Existing methods typically detect 2D bounding boxes in the image and then

predict the object pose using a pipelined approach. The redundancy in different parts of the

architecture makes such methods computationally expensive. Moreover, the final pose estimation

accuracy depends on the accuracy of the intermediate 2D object detection step. In our method,

the object is classified and its pose is regressed in a single shot from the full image using a single,

compact fully convolutional neural network. Our approach achieves the state-of-the-art pose

estimation accuracy without requiring any costly pose refinement step and runs in real-time at 50

frames per second on a modern GPU, which is at least 5X faster than the state of the art.

Keywords: 3D human pose estimation, 3D object pose estimation, 6D pose estimation, 3D

computer vision, motion compensation, deep learning, structured prediction
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Résumé
L’estimation des poses 3D de corps rigides et articulés est l’un des problèmes fondamentaux de

la vision par ordinateur. Les applications pratiques de ces méthodes sont la réalité augmentée,

la surveillance, l’animation et l’interaction homme-machine. Malgré la pression exercée sur

la recherche par les perspectives industrielles, prédire la pose 3D à partir d’une image 2D est

un problème difficile et mal posé en raison de la perte d’informations de profondeur lors de la

projection de la 3D à la 2D. En dépit d’années de recherche sur le problème de l’estimation des

poses en 3D, le problème est loin d’être résolu. Dans cette thèse, nous proposons un ensemble de

méthodes pour aborder le problème de l’estimation de pose 3D, à la fois pour les corps humains

articulés et les corps d’objets rigides. Pour ce faire, nos algorithmes apprennent le plus souvent

des caractéristiques robustes et des représentations latentes.

Premièrement, nous présentons une nouvelle approche basée sur la vidéo qui exploite les

caractéristiques spatiotemporelles pour l’estimation de la posture humaine 3D dans un schéma de

régression discriminatif. Alors que les approches antérieures prennent généralement en compte

les informations de mouvement en régularisant temporellement les estimations de poses bruitées

à partir d’images isolées, nous démontrons que la prise en compte des informations de mouve-

ment, très tôt dans le processus de modélisation, et l’ajout de caractéristiques spatiotemporelles,

améliore significativement les performances de ces algorithmes. Nous proposons en outre une ap-

proche de compensation de mouvement basée sur un CNN, qui stabilise et centre l’image du corps

humain dans l’image et permet d’augmenter la fiabilité des caractéristiques spatio-temporelles.

Cela nous permet alors de surmonter efficacement les ambiguïtés et d’améliorer la précision de

l’estimation.

Deuxièmement, nous développons un nouveau cadre de Deep Learning pour la prédiction

structurée de la pose humaine en 3D. Notre approche repose sur un auto-encodeur pour apprendre

une représentation de pose latente en grande dimension qui tient compte des dépendances

conjointes. Nous combinons les CNN traditionnels pour l’apprentissage supervisé avec des

encodeurs automatiques pour un apprentissage structuré. Nous démon- trons que notre approche

surpasse les méthodes existantes en termes de préservation de la structure et de précision des

prédictions.

Troisièmement, nous proposons une approche d’estimation de pose humaine en 3D qui
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Résumé

repose sur une architecture de réseau de neurones à deux flux pour exploiter simultanément

des cartes de probabilité de localisation et les caractéristiques d’image 2D. Nous montrons

que la pose 2D d’une personne, prédite en termes de probabilités par un réseau entièrement

convolutionnel, fournit des indices précieux pour désambiguer les poses difficiles et améliore

l’estimation de pose. Nous introduisons en outre un schéma de fusion novateur et génératif,

qui apprend automatiquement où et comment fusionner les caractéristiques extraites de deux

modalités d’entrée différentes sur lesquelles un réseau de neurones à deux flux fonctionne. Notre

cadre de fusion, basé sur l’apprentissage, sélectionne l’architecture optimale du réseau à la volée.

Quatrièmement, nous proposons une approche efficace pour estimer la pose 3D d’instances

d’objets à partir d’une seule image couleur. Les méthodes existantes détectent généralement les

cadres de délimitation 2D dans l’image, puis prédisent la pose de l’objet à l’aide d’une approche

séquentielle. La redondance dans différentes parties de l’architecture rend ces méthodes coûteuses

en termes de calcul. De plus, la précision de l’estimation de pose finale dépend de la précision

de l’étape intermédiaire de détection d’objet 2D. Dans notre méthode, l’objet est classé et sa

posture est prédite en une seule fois à partir de l’image complète en utilisant un seul réseau de

neurones compact entièrement convolutionnel. Notre approche permet une précision d’estimation

de pose de maximale à 50 images par seconde sur un GPU moderne, ce qui est au moins 5 fois

plus rapide que l’état de l’art antérieur.

Mots clés : Estimation de pose humaine 3D, estimation de pose d’objet 3D, estimation de pose

6D, vision 3D par ordinateur, compensation de mouvement, apprentissage profond, prédiction

structurée
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1 Introduction

Humans understand the world in 3 dimensions. Through the lenses of our stereo vision, we

perceive the surrounding environment, humans and objects in 3D. This lets us navigate and

interact within the 3D world. Much of the 3D perception has to do with understanding how the

objects and people are positioned in the environment. While understanding the 3D positioning

of an object is effortless for a human being, it is a challenging and ambiguous problem for a

computer analyzing camera images. 3D pose estimation is the field of computer vision that

addresses this problem. Its ultimate goal is to be able to understand the 3D pose of people and

objects from 2D images as well as the human visual system.

3D pose estimation, as depicted by Fig. 1.1, refers to predicting from a 2D image the relative

positioning of a rigid man-made object or an articulated object, such as human body, in the 3D

space. Predicting the 3D pose from images or videos is a long-standing computer vision problem

which has numerous applications including augmented reality, human-computer interaction,

security and telepresence. However, it is a challenging and ill-posed problem. Projection from

3D onto a 2D image results in the loss of depth information and renders the problem of 3D

pose estimation ambigous. A potential solution to resolve some of the ambiguities is to use

multiple camera systems [139]. However, this becomes impractical due to the cost and effort

in setting up a calibrated and synchrounous system of multiple cameras. Another solution to

resolve the ambiguities of 3D pose estimation is to use depth sensors [173]. However, active

RGB-D sensors are power hungry, which makes 3D pose estimation from RGB sensors more

attractive. Monocular RGB cameras are becoming ever more prevelant in the form of mobile

and web cameras and therefore there is a great interest in using them for general-purpose 3D

computer vision applications, and in particular, for 3D pose estimation.

Despite many years of sustained effort, pose estimation remains a difficult problem because

of the challenges due to the variability in visual appearance, variation of viewpoint, changes
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(a) 3D object pose estimation (b) 3D human pose estimation

Figure 1.1: 3D pose estimation of objects and humans. (a) 3D object pose estimation example.

The pose of an object is encoded with a rotation matrix and a translation vector that transorfms

the object from its local coordinate system to the camera coordinate system. The rotation and

translation both have 3 degrees-of-freedom. Therefore the problem is also commonly referred to

as 6 degrees-of-freedom (DOF) object pose estimation. In the example, the 3D bounding box of

objects are projected in the image plane with the estimated rotation matrix and the translation

vector. (b) 3D human pose estimation example. The human pose is usually encoded with the

relative 3D positions of the joints with respect to a root joint. We estimate the configuration of

3D body parts from a single RGB image in the camera coordinate system.

in illumination, occlusions and high dimensionality of the pose representations. In the face of

these challenges, existing approaches are still fragile and error-prone in general unconstrained

scenarios.

To tackle the challenges of 3D pose estimation, strong image features and representative prior

information about the 3D pose play an essential role. In this thesis, we attempt to overcome

the challenges of single-view 3D pose estimation by novel Deep Learning approaches that

automatically learn reliable image features and representative latent pose representations. They

typically involve finding a mapping function from robust image features to disentangled 3D

pose parametrizations. As depicted by Fig. 1.2, we explore several features ranging from

spatiotemporal ones to 2D joint location heatmaps and pose parametrizations ranging from

automatically learned latent pose embeddings to projections of 3D virtual points. Although, the

mapping between the image and the 3D pose is highly complex and entangled, we show that, in

practice, we can reliably and accurately estimate the 3D pose of humans and objects in a broad

range of datasets.

In the remainder of this chapter, we first define the 3D pose estimation problem and then

briefly discuss a few practical applications. We then present several key challenges and summarize

our main contributions. Finally, we give an outline of the thesis.
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1.1. Problem Definition

(a) Features (b) Pose parametrizations

Figure 1.2: Features and pose parametrizations for 3D pose estimation of humans and
objects. (a) The features include spatiotemporal features extracted from short image sequences

(top), and 2D joint location heatmaps (bottom). 2D joint location heatmaps are directly predicted

from images by a model trained on a dataset of images of people with their corresponding 2D

pose annotations. The color code denotes the confidence of a 2D joint being at a specific image

location. (b) Representative pose parametrizations range from learned latent pose embeddings

(top), to projections of the 3D bounding box of an object (bottom). Latent pose embeddings are

learned from a training set of 3D motion capture data and implicitly encode prior information

about the 3D pose.

1.1 Problem Definition

Our goal is to reliably and accurately predict the 3D pose of an object from single-view color

images. The object could be a rigid man-made one or an articulated one, such as human body.

In this thesis, we consider both the 3D object pose estimation and 3D human pose estimation

problems.

3D pose of a rigid object is defined with a rotation matrix and a translation vector that

transforms an object from its local coordinate system to the camera coordinate system. Rotation

and translation of the object both have 3 degrees-of-freedom (DOF), therefore the rigid object

pose estimation problem is also commonly referred to as 6 DOF object pose estimation.

3D human pose can be represented in a variety of ways, including kinematic trees, pictorial

structures, or a set of 3D human body joint locations. We adopt the latter one, in which we

represent the 3D pose of a person in terms of a skeleton, such as the one shown in Fig. 1.1. We

use a 17-joint skeleton representation, therefore our output pose is a 51-dimensional vector. The

output pose is defined in the camera coordinate system and consists of 3D joint locations relative

to that of a root joint, e.g. pelvis. We predict the relative configuration of the 3D joint locations

with respect to a root joint location, and do not consider the absolute 3D joint locations in the

camera coordinate system. Therefore, our pose predictions are person-centric and are not with
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respect to the camera center.

We formulate 3D pose estimation of both rigid and articulated bodies as a regression problem.

Given an image or an image sequence, we aim to find a mapping function from robust image

features to the 3D pose of an object or a human. 3D pose could either be encoded with the raw

representations, as described above, or with latent pose embeddings that disentangle the complex

3D pose space. In our frameworks, we rely on deep networks to learn the regression function

between the images and and their corresponding 3D pose representations.

1.2 Motivation and Applications

Computer Vision’s main subjects of interest are objects and humans. To have a seamless

understanding of a 3D scene, one would need to understand how the objects are situated in the 3D

space and how the people move and pose. 3D pose estimation is an indispensable step towards

bridging the gap between 3D human visual understanding and computer-based image analysis.

Manual acquisition of 3D poses of objects and humans requires painstaking annotation

effort or expensive marker based systems. The annotation of 3D pose data involves clicking on

robust 2D correspondence points on images acquired from a multi-view camera setup. These

2D annotations in multiple views can then be used for triangulation to estimate 3D coordinates

or for predicting the rotation and translation with respect to a reference frame. The overall

approach would typically require days to weeks of tedious work for a large set of images.

Another alternative for obtaining 3D position information would be to use marker-based motion

capture systems. However, expensive and invasive setup of these systems renders this approach

impractical. Automatic and reliable estimation of 3D human pose has therefore emerged as a

pressing need for a variety of industries and finds numerous applications ranging from augmented

reality to surveillance. In the following, we briefly discuss a few prominent applications for 3D

human and object pose estimation.

1.2.1 Applications of 3D Human Pose Estimation

3D human pose estimation has a wide application area in numerous industries and disciplines. A

few examples are described below:

Human-Computer Interaction. 3D pose information is a reliable cue to estimate the activity

and gesture of a person, and ultimately provides a natural computer interface by which computers

can be controlled by human gestures. This allows for a more natural and seamless interaction
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between humans and computers than the traditional means including keyboards and touchscreens.

Animation and Games. Character animation is crucial for realistic animated movies and online

games. Conventional approaches rely on motion capture systems to recover the 3D pose of an

actor and transfer the pose to an avatar. 3D human pose and shape estimation offers a convenient

means to replace this approach, which requires a significant budget and effort.

Augmented Reality and Telepresence. Estimating the 3D human pose and shape is an initial

step towards creating digital 3D avatars in the scene. This allows people to interact virtually in an

augmented reality setting even when they are far apart from each other.

Security and Surveillance. Human pose and motion provides valuable information about the

action and intent of a person in a video-based smart surveillance system. Since manual monitoring

of the video footage in a large network of cameras is impractical and prone to human errors, such

a system can assist a security personnel to detect unusual and anomalous activities.

Gait Analysis and Athletic Training. 3D human pose estimation can be used to measure the

changes in physical activities of people with movement disorders, such as Parkinson’s disease

and Tourette syndrome, or analysing the performance of sport players for athletic training.

1.2.2 Applications of 3D Object Pose Estimation

3D object pose estimation is mainly used for augmented reality, virtual reality and robotics

purposes. We briefly discuss them below.

Augmented Reality. Accurate localization of objects in the 3D space is crucial for augmented

reality purposes. Augmented reality is the technology that allows to superimpose a computer-

generated artifical image on an object in the scene. This is only possible when object’s position in

the world is known. 3D object pose estimation techniques find the rotation and translation of the

object with respect to the camera, thus, allow to localize and composite the objects in the scene.

Camera Localization and Virtual Reality. Localizing the camera in the 3D space is a key

task for virtual reality. The problem of camera localization, also known as camera pose estimation,

is highly intertwined with object pose estimation. Predicting the pose of an object means to
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localize the object in the 3D scene by finding its rotation and translation that transforms it from

the local object coordinate system to the camera coordinate system. When capturing a stable

object with a moving camera, this transformation also gives the rotation and translation of the

camera in the 3D space.

Camera localization methods usually rely on robust image features, such as distinct corners

and edges in the scene. However, when it is difficult to extract reliable features from corners and

edges in the environment, the pose of stable objects could be used to localize the camera in the

3D space.

Robotics. Robot grasping and manipulation require accurate localization of an object in the

3D space. Once the object is localized in the scene, robot could navigate to the object’s position

in the 3D space by utilizing the translation estimate and rotate its arms in accordance with the

rotation estimate.

1.3 Challenges

3D pose estimation of humans and objects is an ambiguous task due to the loss of depth informa-

tion resulting from projection from 3D to 2D. We depict in Fig. 1.3 additional factors that make

the problem even more challenging. We discuss these challenges below and describe common

ways to address them.

Variation in Illumination. Illumination conditions play an important role in the quality of

3D object and human pose estimation. Extracting reliable cues become challenging in dim

light conditions as demonstrated by example images in Fig. 1.3(a). Ultimately, pose estimation

algorithms should generalize to objects captured in arbitrary illumination conditions. The

common approach to gain robustness against different lighting and capturing conditions is to

augment the training set with images whose hue and saturation values are synthetically changed

from those of original images.

Occlusion and Clutter. As demonstrated by the examples in Fig. 1.3(b), when humans or

objects are not fully visible because of occlusions or hard to distinguish from the background

because of clutter, 3D pose estimation algorithms tend to become fragile. To gain robustness

against occlusions and clutter, the training set could be augmented with images containing

sythetically occluded objects and random backgrounds. Furthermore, methods that treat humans

and objects as a combination of several parts and aggregate local part predictions to estimate the
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(a) Variation in illumination (b) Occlusion & Clutter (c) Changes in viewpoint

Figure 1.3: Challenges of 3D pose estimation for objects (top) and humans (bottom). 3D

pose estimation is a challenging problem to solve. The challenges include variation in illumination,

occlusion and clutter, variation of viewpoint and more generally the loss of depth information

resulting from projection from 3D to 2D. Top row: (a) an image showing objects captured at

different illumination conditions from the Phos dataset [212], (b) an image showing objects on

a cluttered office desk from the LINEMOD dataset [69], (c) a 3D object viewed from different

angles (adapted from the slides of [73]). Bottom row: (a) a group of people under low illumination

conditions (retrieved from Flickr, photo credit: Nattu Adnan) (b) an image showing occluded

ultimate frisbee players on a cluttered background (photo credit: Jon Hope), (c) a football player

captured from different viewpoints and its 3D pose estimation result by [197].

global pose are known to be more robust against occlusions [25, 152].

Changes in the Viewpoint. Appearance based cues tend to vary significantly when the objects

or humans are viewed from different angles as in example images shown in Fig. 1.3(c). This, in

turn, negatively impacts the accuracy and robustness of pose estimation algorithms. Therefore, it

is essential to gain invariance against the changes in viewpoint either by collecting a large dataset

of images from different viewing angles or extracting viewpoint-invariant features.

Variability in Appearance. People vary in shape, size and clothing. Therefore, to robustly

predict the 3D body pose, the features extracted from images of people and the pose representa-

tions should be invariant to these factors that change across different people. Model-based 3D
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object pose estimation approaches consider only a fixed known object with its corresponding

3D model, therefore such approaches do not have to account for the variability in appearance.

However, model-free object pose estimation approaches have to categorize each object and be

robust against the varying appearances of the same object. A large dataset covering a wide

range of appearances and statistical techniques that learn appearance-invariant features are key to

address this challenge.

Collecting Ground-Truth Data. As also explained in Sec. 1.2, collecting ground-truth 3D

human or object pose data requires arduous annotation effort or expensive marker-based optical

motion capture systems. The lack of ground-truth annotations necessitates to make the best of

limited data. This would be possible by learning more robust features and representative pose

priors from the already available dataset.

1.4 Contributions

The main goal of this thesis is to develop efficient and accurate methods for 3D pose estimation of

humans and objects by learning robust features and latent pose representations. We demonstrate

the effectiveness and versatility of our approaches in a wide range of datasets while addressing

the aforementioned challenges of 3D pose estimation. We describe below the main contributions

of this thesis.

3D Human Pose Estimation from Spatiotemporal Features. We propose an efficient ap-

proach to exploiting motion information from consecutive frames of a video sequence to recover

the 3D pose of people. Previous approaches that rely on temporal information typically compute

candidate poses in individual frames and then link them in a post-processing step to resolve

ambiguities. By contrast, we directly regress from a spatio-temporal volume of bounding boxes to

a 3D pose in the central frame. We further show that, for this approach to achieve its full potential,

it is essential to compensate for the motion in consecutive frames so that the subject remains

centered. To this end, we propose a CNN-based motion compensation approach that factors

out the global body and camera motion, while preserving nonrigid body motions that serve as

useful cues for 3D pose estimation. This then allows us to effectively overcome ambiguities and

improve upon the state-of-the-art by a large margin on the standard 3D human pose estimation

benchmarks.
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Structured Predicton of 3D Human Pose with Deep Neural Networks. We develop a new

deep structured learning architecture for 3D human pose estimation. Majority of existing

approaches regress to individual joint coordinates independently without considering the structural

dependencies in the human skeleton. By contrast, we propose to learn a structured latent space for

3D human pose by training an autoencoder on motion capture data. Instead of regressing to the

individual coordinates, we regress to the latent space that accounts for the dependencies among

different body parts. We show experimentally that using our algorithm that combines bottom-up

and top-down reasoning yields improved performance in comparison to direct regression and

existing pose estimation approaches.

Learning to Fuse 2D and 3D Image Cues for 3D Human Pose Estimation. State-of-the-art

approaches to monocular 3D human pose estimation rely on Deep Learning. They typically

involve regressing from an image to either 3D joint coordinates directly or 2D joint locations from

which 3D coordinates are inferred. Both approaches have their strengths and weaknesses and we

therefore propose a novel architecture designed to deliver the best of both worlds by performing

both simultaneously and fusing the information along the way. At the heart of our framework

is a trainable fusion scheme that learns how to fuse the information optimally instead of being

hand-designed. This yields significant improvements upon the state-of-the-art on standard 3D

human pose estimation benchmarks.

Real-Time Seamless Single Shot 6D Object Pose Prediction. We propose a single-shot ap-

proach for simultaneously detecting an object in an RGB image and predicting its 6D pose

without requiring multiple stages or having to examine multiple hypotheses. Unlike existing

approaches that only predict an approximate 6D pose that must then be refined, ours is accurate

enough not to require additional post-processing. As a result, it is much faster (50 fps) and more

suitable for real-time processing. The key component of our method is a new single-shot CNN

architecture that directly predicts the 2D image locations of the projected vertices of the object’s

3D bounding box. The object’s 6D pose is then estimated using a PnP algorithm. For single

object and multiple object pose estimation, our approach substantially outperforms other recent

CNN-based approaches.

1.5 Outline

The remainder of this thesis is organized as follows. We begin Chapter 2 with an overview of

the relevant literature on 3D human pose estimation of humans and objects. Chapter 3 presents

our 3D human pose estimation approach from motion-compensated spatiotemporal features.
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We demonstrate that using temporal information along with motion stabilization disambiguates

challenging human poses with self-occlusions and depth ambiguities. Chapter 4 introduces

our structured prediction approach to 3D body pose recovery using deep neural networks. We

demonstrate that our approach outperforms state-of-the-art ones both in terms of structure

preservation and prediction accuracy. In Chapter 5, we present a two-stream convolutional neural

network architecture that learns to fuse image cues with reliable 2D joint location heatmaps. We

show that 2D pose of the person, encoded as joint location heatmaps, provide valuable cues for

3D human pose estimation and guide the 3D pose estimation process. Chapter 6 introduces our

real-time single shot 3D object pose estimation approach. We demonstrate that while providing

state-of-the-art accuracy, our approach is at least 5 times faster than existing approaches. Finally,

Chapter 7 concludes the thesis with a short summary and brief discussion of future research

directions.
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2 Related Work

We start this chapter by reviewing existing approaches to 3D human pose estimation, which has

numerous applications ranging from surveillance to augmented reality. We then give a brief

overview of state-of-the-art 3D object pose estimation techniques.

2.1 3D Human Pose Estimation

3D human pose estimation is one of the key problems in Computer Vision that has been studied

for well over 20 years [4]. Existing approaches to 3D body pose recovery can be classified into

two categories, traditional marker-based motion capture systems and image-based 3D human

pose estimation techniques, which we describe below.

2.1.1 Motion Capture Systems

A motion capture system exploits markers near each body joint to identify the motion by the

positions or angles between them. Inertial, magnetic, acoustic or optical markers, or combinations

of any of these, are tracked to recover the 3D human pose. We describe below 4 different types

of commercially available motion capture systems.

• Inertial motion capture systems rely on specialized suits onto which small gyroscopes

are attached at different body locations. The angular data collected from the gyroscopes

are transmitted to a computer where the 3D positions of the joints are reconstructed.

Examples of such motion capture systems include Meta Motion Gypsy™ [125] and Xsens

MVN™ [220].

• Electromagnetic motion capture systems use an array of receivers placed on different
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body parts. A nearby transmitter generates a low-frequency electromagnetic signal that is

detected by the receiver. This signal is then transmitted to an electronic control unit, where it

is filtered and amplified. Finally it is sent to a central computer where a specialized software

resolves the position and orientation of each receiver. Polhemus Liberty™ [145] and

Ascension trakStar™ [10] are examples of such motion capture systems.

• Acoustic motion capture systems rely on transmitters attached at body joint locations that

send synchronized acoustic signals. A recevier retrieve timing data from these transmitters

and determines absolute body joint distances by using the differences in time of arrival of

the signals [53].

• Optical motion capture systems use either reflective balls or pulsed LEDs attached to

a specialized suit near body joint locations. Reflective markers reflect Infrared (IR)

signals received from an IR transmitter, whereas pulsed LEDs directly emit light. The

optical signals collected from them are used to track the 3D body joint positions. Such

systems [209] are more popular because of their practical use without the need for cabling

a mocap suit.

2.1.2 Image-Based 3D Human Pose Estimation

The traditional motion capture systems described above require costly hardware setups and

dedicated controlled studio environments. Furthermore, most of the time, they are prone to errors

due to interference from other sensors and marker occlusions, and hence require further manual

post-processing. Their use is cumbersome, restrictive and invasive.

Automated Computer Vision and Machine Learning approaches to 3D human pose estimation,

on the other hand, provide convenient solutions to the challenges of marker-based motion capture

systems. They dispense with the need for controlled studio settings, specialized suits and

expensive hardware setups.

Approaches to estimating the 3D pose of humans and objects from images can be clasiffied

into different taxonomic categories, depending on their modelling choices or their inputs. Fol-

lowing the taxonomy depicted in Fig. 2.1, we present below a detailed analysis of the existing

approaches to image-based 3D human pose estimation.

2.1.2.1 Modelling Choices

Existing 3D human pose estimation approaches have adapted a wide range of different modelling

choices in terms of the pose representations, features and inference frameworks they use. In what

follows, we present an analysis of these modelling choices.
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3D Human Pose 
Estimation Techniques

Modelling Choices Input Data

Inference frameworks
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Edges, Gradient

Spatiotemporal
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Figure 2.1: Taxonomy of 3D human pose estimation methods. Image-based 3D human pose

estimation approaches can be classified into different categories according to their modelling

choices and input data. Existing techniques employed different modelling choices depending

on their pose representations, features and inference frameworks, and operated on either single

images, image sequences, depth images or multi-view images.

Pose Representations. The configuration of the human body can be represented in a variety of

ways. The most direct and common representation is obtained by parameterizing the pose by 3D
joint positions. The 3D locations can be defined with respect to a root joint (e.g. pelvis) [139,195,

197, 231], with respect to the camera center [214, 233], or with respect to the parent joint [192].

Pose can also be represented as a linear combination of a set of basis poses [214, 233], or, as will

be discussed in more detail in Chapter 4, can be embedded into structured latent spaces [195].

Alternatively, one can parametrize the pose as a set of joint angles, x = {τ,θτ,θ1,θ2, . . . ,θN }.

Here, the pose is encoded with the translation (τ) and orientation (θτ) of the root segment, and a

set of relative joint angles ({θi }N
i=1). The relative angles of the joints are defined with respect to

their parents. Directly predicting a pose parametrized by joint angles by defining a cost function

directly on the rotations involve a complex optimization process [232]. Furthermore, with such a

parametrization, the error in parent joints propagates to the other joints and results in inaccurate

pose estimates at skeleton extremities (e.g. lower arms and legs). This representation, therefore,

has been rarely used in direct prediction studies with few exceptions [218, 232].

By contrast, parametrized body shape models are more commonly used to represent 3D

human poses. These detailed models can then be fitted to either 2D image evidence [17, 32, 63,

103, 179] or a rough 3D shape [208] to estimate the pose parameters. Although joint angles are

seldom used for direct prediction purposes, they have been extensively used to parametrize a

body shape [9, 18, 116]. Recently proposed dynamic human shape models [19, 147] also rely on

joint angles to represent the articulation of 3D body parts.
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A typical alternative to joint position and parametrized body model representations is to

model the body as a set of parts, each with its own position and orientation in space that are

connected by a set of physical constraints [178]. This parametrization is often called a part-based
model and has been used by a large number of studies [6, 13, 14, 15, 26, 139].

Features. Accuracy of any 3D human pose estimation method depends heavily on the image

features that are chosen to represent salient parts of the image related to the body pose. Early

approaches on 3D human pose estimation have employed handcrafted image feaures. The

most common ones include silhouettes [12, 32, 54, 56, 63, 82, 135, 146, 177] to separate the

person from the background, edges [3, 55] to model contours of the body, and spatio-temporal

features [197,229,230] to model the motion of body parts. [45] have further exploited shading and

focus features for 3D human pose estimation. These raw feautures have been encoded by various

authors using different feature descriptors, such as SIFT [2, 187], HoG [80, 81], HMAX [16],

HoG3D [197], dense trajectories [229] or shape context [130], to increase robustness to noise.

These features can be further processed to reduce the dimensionality by vector quantization [3]

or bag-of-words [133].

Recent approaches mostly employ convolutional neural networks to automatically learn

the features relevant to 3D human pose estimation [108, 109, 138, 195, 196, 199]. Early deep

learning techniques have directly operated on input RGB images and employed rather shallow

networks [108]. As with many other Computer Vision techniques, deeper networks have proven

more useful to encode high-level features and have significantly increased the pose estimation

accuracy [124, 192, 232]. Current techniques also frequently employ intermediate features, such

as body part segmentations [150], 2D human pose estimates [138, 196, 199] or depth of body

parts [208], and fuse them with image features to get a richer description of the body pose.

Inference Framework. Existing 3D human pose estimation approaches can be roughly cate-

gorized into discriminative and generative methods in terms of their inference frameworks.

Discriminative methods aim at predicting 3D pose directly from the input data, may it be

single images [79, 80, 99, 108, 109, 129, 138, 162, 165, 195, 226], short image sequences [197],

depth images [58,149,174] or multi-view images [16]. Early approaches falling into this category

typically worked by extracting hand-crafted features and learning a mapping from these features

to 3D poses [1, 16, 79, 80, 99, 166, 203], or by retrieving 3D poses from a database based on

similarity with the 2D image evidence [45, 76, 109, 130, 131]. The more recent methods tend to

rely on Deep Networks [108, 195, 197, 232] and reliable 2D joint location estimates obtained

with them. In particular, [108, 195] rely on 2D poses to pretrain the network, thus exploiting the

commonalities between 2D and 3D pose estimation. [137] introduces a network that uses initial
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2D pose estimates for 3D pose estimation in a regression scheme. More recently, [138] and [199]

also used 2D joint location confidence maps as an intermediate representation and combined

them with the image features at certain layers of the network to guide the pose estimation process

in a discriminative framework.

Another popular way to infer joint positions is to use a generative model to find a 3D pose

whose projection aligns well with the image data. In the past, this usually involved inferring

a 3D human pose by optimizing an energy function derived from image information, such as

silhouettes [12,32,54,56,63,82,135,146,177], trajectories [229], feature descriptors [171,184,185]

and 2D joint locations [5, 6, 8, 49, 95, 153, 169, 204, 207]. With the growing availability of large

datasets and the advent of Deep Learning, the emphasis has focused on using discriminative

2D pose regressors [28, 31, 35, 43, 59, 78, 83, 132, 140, 142, 201, 215, 221] to extract the 2D pose

and infer a 3D one from it [17, 46, 223, 233]. The 2D joint locations are usually represented by

heatmaps that encode the confidence of observing a particular joint at any given image location.

A human body representation, such as a skeleton [233], or a more detailed model [17] can then

be fitted to these predictions. Although this takes 2D joint positions and their corresponding

uncertainties into account, it ignores image information during the fitting process. Therefore,

they discard potentially important 3D cues, such as shadow, texture, and color, that could help

resolve ambiguities.

Hybrid approaches [169, 179, 195], on the other hand, combine the advantages of generative

and dicriminative modelling by learning efficient mapping functions from images to 3D poses,

while also accounting for the structural dependencies of the 3D human pose.

2.1.2.2 Input Data

Image-based 3D human pose estimation methods could be classified into 4 different categories

depending on their input types: Single-Image Methods, Video-Based Methods, Depth-Based

Methods and Multi-View Methods. We describe them in detail below.

Single-Image Methods. Although 3D human pose estimation from single images is fraught

with ambiguities due the challenges explained in Section 1.3, in many practical applicatons we

only have a single image to estimate the 3D pose as the vast amount of existing media content is

still just single images. There has been, therefore, extensive research on single image 3D human

pose estimation methodologies.

Early single-image 3D human pose estimation approaches tended to rely on model-fitting

approaches to search the state space for a plausible configuration of the skeleton that would align
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with the image evidence [56,135,177]. These methods remain competitive but require a plausible

pose initialization and are highly sensitive to model parameters. More recent ones [13,26] extend

2D pictorial structure approaches [50] to the 3D domain. However, in addition to their high

computational cost, they tend to have difficulty localizing people’s arms accurately because the

corresponding appearance cues are weak and can be easily confused with the background [172].

By contrast, regression-based approaches [1, 16, 79, 138, 150, 186, 196, 199] build a direct

mapping from the features extracted from a single image to the corresponding 3D pose. Such

methods have been shown to be effective, especially if a large training dataset, such as [81]

is available. Within this context, rich features encoding body part information [112] have

been shown to be effective at increasing the estimation accuracy. More recent approaches to

single-image 3D human pose estimation learn robust features with deep neural networks to

resolve ambiguities caused by weak appearance cues. In particular, [108] trains a convolutional

neural network between RGB images and their corresponding 3D poses. [109] extends the

structured SVM model to the Deep Learning setting by learning a similarity score between

feature embeddings of the input image and the 3D pose. [231] introduces a weakly-supervised

transfer learning method that uses mixed 2D and 3D labels in a unified convolutional neural

network. [123] addresses the problem of lifting a 2D pose to a 3D one within a deep learning

context and demonstrate that 2D pose of the person provides sufficient cues for compelling

pose estimation accuracy. Within a deep learning framework, [192] introduces a different pose

parametrization such that the 3D position of each joint is defined with respect to its parent in

terms of directional bone vectors and achieves impressive pose estimation accuracy.

All these approaches rely on direct regression of individual joint locations and do not account

for the body part dependencies in human skeleton, which, most of the time, results in physically

invalid poses. By contrast to direct regression approaches, in Chapter 4, we propose a new

Deep Learning regression architecture for single-image 3D human pose estimation that combines

traditional CNNs for supervised learning with autoencoders for unsupervised structure learning.

This approach accounts for the 3D joint dependencies, preserves the body statistics and results in

increased pose estimation accuracy [195]. In Chapter 5, we further introduce a discriminative

fusion framework to simultaneously use 2D joint location heatmaps and 3D image cues for single

image 3D human pose estimation. Within this framework, we also introduce a novel trainable

fusion scheme for deep networks, which automatically learns where and how to fuse two different

input modalites (e.g. image features and 2D pose heatmaps) [196].

Video-Based Methods. Human pose estimation from image sequences can be categorized into

two main classes.
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The first class involves frame-to-frame tracking and dynamical models [205] that rely on

Markov dependencies on previous frames. Their main weakness is that they require initialization

and cannot recover from tracking failures.

To address these shortcomings, the second class focuses on detecting candidate poses in

individual frames followed by linking them across frames in a temporally consistent manner. For

example, in [8], initial pose estimates are refined using 2D tracklet-based estimates. In [235],

dense optical flow is used to link articulated shape models in adjacent frames. Non-maxima sup-

pression is then employed to merge pose estimates across frames in [27]. Another approach [22]

estimates a mapping from consecutive ground-truth 2D poses to a central 3D pose.

While spatiotemporal features have long been used for action recognition [102, 217], person

detection [136], and 2D pose estimation [51], they have been underused for 3D body pose

estimation purposes. The only recent approach is that of [229] that involves a computationally

costly procedure of building a set of point trajectories corresponding to high joint responses and

aligning them with the motion capture data.

By contrast, in Chapter 3, we propose an efficient 3D human pose estimation approach that

leverages spatiotemporal features in a discriminative framework [197]. We first compensate for

the residual frame-to-frame global body motion and then directly regress from a spatio-temporal

volume formed by consecutive frames to a 3D pose in the central frame [197].

Depth-Based Methods. Commodity depth sensors, such as Microsoft Kinect™ [176] offer

several advantages over traditional intensity cameras to overcome the ambiguities caused by

projection from 3D to 2D. The advent of such sensors has generated a vast literature [11, 29,

57, 58, 62, 67, 87, 88, 143, 148, 149, 173, 175, 176, 191, 216, 224, 225]. Similarly to RGB-based

techniques, existing approaches can be classified into generative [57, 62, 216, 224, 225], and

discriminative [29, 58, 87, 88, 143, 148, 149, 173, 175, 176] ones.

Generative methods aim to find correspondences between a parametrized body model and

input depth map. In particular, [62] fits a body model consisting of a combination of kinematic

chains to the input depth image. [57] parametrizes the human body by the deformations of a flexi-

ble capsule model and aligns it to the depth map by a constrained articulated ICP algorithm. [224]

retrieves 3D body configurations from a database of exemplars and match them to the input

observed data. [216] formulates the 3D-to-2D registration problem in a Maximum A Posteriori

framework. [225] relates the depth observation with a body model represented as a Gaussian

mixture model.

Depth-based discriminative approaches find a mapping function from the depth data to the 3D

17



Chapter 2. Related Work

pose of the person. Random Forest [38] based methods have achieved impressive accuracy and

efficiency by modelling the 3D human pose estimation problem with body part classification [29,

143, 173, 175, 176], offset regression [58, 88], or random tree walks [87]. [148, 149] further

propose to account for the dependencies between different body joints within a Random Forest

framework. More recently, [65] and [128] have learned the mapping function between depth

maps and 3D poses with convolutional neural networks.

Multi-View Images. While sensors such as Microsot Kinect™ [176] provide valuable cues to

resolve ambiguties caused by the loss of depth information, they can only work within a specific

distance range in indoor environments. RGB sensors, on the other hand, do not have such range

and environment limitations. To overcome depth ambiguities, multiple view imagery have been

extensively used by earlier studies [6, 13, 14, 26, 41, 46, 47, 181, 183, 189]. The data collected

from multiple calibrated RGB sensors could be used to alleviate depth ambiguties by making

use of the relative geometrical positioning of the cameras. Furthermore, if a part of the body

is not visible in some views, but could be distinguished in other views, the images from the

occlusion-free viewpoints provide helpful features to disambiguate the 3D pose. Following these

insights, [41, 181, 183] propose to align a graphical body model to the low-level image evidence

collected from multiple views. [189] also solves the model-to-image alignment problem, however

uses a body model based on mixture of Gaussians. [6,13,14,26] models the human body with 3D

pictorial structure approaches. However, such approaches have difficulty in localizing people’s

arms accurately because the corresponding appearance cues are weak and easily confused with the

background [172]. More recently, [46, 47, 139] have used Deep Learning techniques to increase

the robustness of appearance cues. In particular, they have proposed to fit a 3D body model onto

2D pose predictions obtained by a CNN. Although multi-view approaches yield significantly

higher accuracy than their single-view counterparts [139], they require an impractical and costly

setup consisting of a set of calibrated and synchronous cameras, which heavily limits their use in

unconstrained outdoor settings.

2.2 3D Object Pose Estimation

Estimating the 3D pose of an object in terms of its rotation and translation is key to many aug-

mented reality and robotics applications and has been extensively studied over many years [104].

Directly measuring the pose of an object is possible through magnetic or electromagnetic sensors

that transmit positional and rotational data to a processing unit [10]. However, such methods

require costly and invasive setups. Image-based 3D object pose estimation methods on the other

hand have been more commonly used in industrial applications [39,40,127] due to their accessible
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and practical nature. In what follows, we give an overview of existing work on image-based 3D

object pose estimation ranging from classical feature and template matching methods to newer

end-to-end trainable CNN-based methods.

Classical methods. Traditional RGB object instance recognition and pose estimation works

used local keypoints and feature matching. Local descriptors needed by such methods were

designed to be invariant to changes in scale, rotation, illumination and viewpoints [118, 167, 213].

Such methods are often fast and robust to occlusion and scene clutter. However, they only reliably

handle textured objects in high resolution images [105]. Other related methods include 3D

model-based registration [111, 117, 206], Hausdorff matching [77], oriented Chamfer matching

for edges [114] and 3D chamfer matching for aligning 3D curve-based models to images [156].

RGB-D methods. The advent of commodity depth cameras has spawned many RGB-D object

pose estimation methods [20, 33, 34, 92, 101, 126, 188, 228]. For example, Hinterstoisser et al.

proposed template matching algorithms suitable for both color and depth images [68, 70]. Rios et

al. [161] extended their work using discriminative learning and cascaded detections for higher

accuracy and efficiency respectively. RGB-D methods were used on indoor robots for 3D object

recognition, pose estimation, grasping and manipulation [33, 34, 36, 100, 101, 234]. Brachmann

et al. [20] proposed using regression forests to predict dense object coordinates, to segment the

object and recover its pose from dense correspondences. They also extended their method to

handle uncertainty during inference and deal with RGB images [21]. Zach et al. [227] explored

fast dynamic programming based algorithms for RGB-D images.

CNN-based methods. In recent years, research in most pose estimation tasks has been domi-

nated by CNNs. Techniques such as Viewpoints and Keypoints [202] and Render for CNN [190]

cast object categorization and 3D pose estimation into classification tasks, specifically by dis-

cretizing the pose space. In contrast, PoseNet [93] proposes using a CNN to directly regress from

an RGB image to a 6D pose, albeit for camera pose estimation, a slightly different task. Since

PoseNet outputs a translational and a rotational component, the two associated loss terms have to

be balanced carefully by tuning a hyper-parameter during training.

To avoid this problem, the newer PoseCNN architecture [219] is trained to predict 6D object

pose from a single RGB image in multiple stages, by decoupling the translation and rotation

predictors. A geodesic loss function more suitable for optimizing over 3D rotations have been

suggested in [121]. Another way to address this issue has recently emerged. In [91, 152], the

CNNs do not directly predict object pose. Instead, they output 2D coordinates, 2D masks,
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or discrete orientation predictions from which the 6D pose can be inferred. Because all the

predictions are in the 2D image, the problem of weighting different loss terms for rotation and

translation goes away. As a result, training becomes numerically more stable, resulting in better

object pose estimation performance.

In parallel to these developments, on the 2D object detection task, there has been a progressive

trend towards single shot CNN frameworks as an alternative to two-staged methods such as

Faster-RCNN [159] that first find a few candidate locations in the image and then classify

them as objects or background. Recently, single shot architectures such as YOLO [157, 158]

and SSD [115] have been shown to be fast and accurate. SSD has been extended to predict

the object’s identity, its 2D bounding box in the image and a discrete estimate of the object’s

orientation [91, 144]. In Chapter 6, we go beyond such methods by extending a YOLO-like

architecture [158] to directly predict a few 2D coordinates from which the full 6D object pose

can be accurately recovered [198].
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3 Direct Prediction of 3D Body Poses
from Motion Compensated Sequences

In recent years, impressive motion capture results have been demonstrated using depth cameras,

but 3D body pose recovery from ordinary monocular video sequences remains extremely chal-

lenging. Nevertheless, there is great interest in doing so, both because cameras are becoming ever

cheaper and more prevalent and because there are many potential applications. These include

athletic training, surveillance, and entertainment.

Early approaches to monocular 3D pose tracking involved recursive frame-to-frame tracking

and were found to be brittle, due to distractions and occlusions from other people or objects in the

scene [205]. Since then, the focus has shifted to “tracking by detection,” which involves detecting

human pose more or less independently in every frame followed by linking the poses across the

frames [8, 155], which is much more robust to algorithmic failures in isolated frames. More

recently, an effective single-frame approach to learning a regressor from a kernel embedding of

2D HOG features to 3D poses has been proposed [81]. Excellent results have also been reported

using a Convolutional Neural Net [112].

However, inherent ambiguities of the projection from 3D to 2D, including self-occlusion

and mirroring, can still confuse these state-of-the-art approaches. A linking procedure can

correct for these ambiguities to a limited extent by exploiting motion information a posteriori to

eliminate erroneous poses by selecting compatible candidates over consecutive frames. However,

when such errors happen frequently for several frames in a row, enforcing temporal consistency

afterwards is not enough.

In this chapter, we therefore propose to exploit motion information from the start. To this

end, we learn a regression function that directly predicts the 3D pose in a given frame of a

sequence from a spatio-temporal volume centered on it. This volume comprises bounding boxes
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Figure 3.1: 3D human pose estimation with motion-compensated spatiotemporal features in
Human3.6m, HumanEva and KTH Multiview Football datasets. The recovered 3D skeletons

are reprojected into the images in the top row and shown by themselves in the bottom row. Our

approach can reliably recover 3D poses in complex scenarios by collecting appearance and

motion evidence simultaneously from motion compensated sequences. All the figures in this

chapter are best viewed in color.

surrounding the person in consecutive frames coming before and after the central one. We

will show that this approach is more effective than relying on regularizing initial estimates a

posteriori. We evaluated different regression schemes and obtained the best results by applying

a Deep Network to the spatiotemporal features [96, 217] extracted from the image volume.

Furthermore, we show that, for this approach to perform to its best, it is essential to align the

successive bounding boxes of the spatio-temporal volume so that the person inside them remains

centered. To this end, we trained two Convolutional Neural Networks to first predict large body

shifts between consecutive frames and then refine them. This approach to motion compensation

outperforms other more standard ones [136] and improves 3D human pose estimation accuracy

significantly. Fig. 3.1 depicts sample results of our approach.

The novel contribution of this study is therefore a principled approach to combining ap-

pearance and motion cues to predict 3D body pose in a discriminative manner. Furthermore,

we demonstrate that what makes this approach both practical and effective is the compensation

for the body motion in consecutive frames of the spatiotemporal volume. We show that the

proposed framework improves upon the state-of-the-art [8, 13, 16, 81, 108] by a large margin on

Human3.6m [81], HumanEva [180], and KTH Multiview Football [26] 3D human pose estimation

benchmarks.
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(a) Image stack (b) Motion compensation (c) RSTV (d) 3D HoG (e) 3D pose regression

Figure 3.2: Overview of our approach to 3D pose estimation with spatiotemporal features.
(a) A person is detected in several consecutive frames. (b) Using a CNN, the corresponding

image windows are shifted so that the subject remains centered. (c) A rectified spatiotemporal
volume (RSTV) is formed by concatenating the aligned windows. (d) A pyramid of 3D HOG

features are extracted densely over the volume. (e) The 3D pose in the central frame is obtained

by regression.

3.1 Approach

Our approach involves finding bounding boxes around people in consecutive frames, compensat-

ing for the motion to form spatiotemporal volumes, and learning a mapping from these volumes

to a 3D pose in their central frame.

In the remainder of this section, we first introduce our formalism and then describe each

individual step, depicted by Fig. 3.2.

3.1.1 Formalism

In this work, we represent 3D body poses in terms of skeletons, such as those shown in Fig. 3.1,

and the 3D locations of their D joints relative to that of a root node. As several authors before

us [16, 81], we chose this representation because it is well adapted to regression and does not

require us to know a priori the exact body proportions of our subjects. It suffers from not being

orientation invariant but using temporal information provides enough evidence to overcome this

difficulty.

Let Ii be the i -th image of a sequence containing a subject and Yi ∈ R3·D be a vector

that encodes the corresponding 3D joint locations. Typically, regression-based discriminative

approaches to inferring Yi involve learning a parametric [1, 89] or non-parametric [203] model of

the mapping function, Xi → Yi ≈ f(Xi ) over training examples, where Xi =Ω(Ii ;mi ) is a feature

vector computed over the bounding box or the foreground mask, mi , of the person in Ii . The
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model parameters are usually learned from a labeled set of N training examples, T = {(Xi ,Yi )}N
i=1.

As discussed in Section 1.3, in such a setting, reliably estimating the 3D pose is hard to do due

to the inherent ambiguities of 3D human pose estimation such as self-occlusion and mirror

ambiguity.

Instead, we model the mapping function f conditioned on a spatiotemporal 3D data volume

consisting of a sequence of T frames centered at image i , Vi = [Ii−T /2+1, . . . ,Ii , . . . ,Ii+T /2], that is,

Zi → Yi ≈ f(Zi ) where Zi = ξ(Vi ;mi−T /2+1, . . . ,mi , . . . ,mi+T /2) is a feature vector computed over

the data volume, Vi . The training set, in this case, is T = {(Zi ,Yi )}N
i=1, where Yi is the pose in the

central frame of the image stack. In practice, we collect every block of consecutive T frames

across all training videos to obtain data volumes. We will show in the results section that this

significantly improves performance and that the best results are obtained for volumes of T = 24

to 48 images, that is 0.5 to 1 second given the 50 fps of the sequences of the Human3.6m [81]

dataset.

3.1.2 Spatiotemporal Features

Our feature vector Z is based on the 3D HOG descriptor [217], which simultaneously encodes

appearance and motion information. It is computed by first subdividing a data volume such as

the one depicted by Fig. 3.2(c) into equally-spaced cells. For each one, the histogram of oriented

3D spatio-temporal gradients [96] is then computed. To increase the descriptive power, we use

a multi-scale approach. We compute several 3D HOG descriptors using different cell sizes. In

practice, we use 3 levels in the spatial dimensions—2×2, 4×4 and 8×8—and we set the temporal

cell size to a small value—4 frames for 50 fps videos—to capture fine temporal details. Our final

feature vector Z is obtained by concatenating the descriptors at multiple resolutions into a single

vector.

An alternative to encoding motion information in this way would have been to explicitly track

body pose in the spatiotemporal volume, as done in [8]. However, this involves detection of the

body pose in individual frames which is subject to ambiguities caused by the projection from

3D to 2D and not having to do this is a contributing factor to the good results we will show in

Section 3.2.

Another approach for spatiotemporal feature extraction could be to use 3D CNNs directly

operating on the pixel intensities of the spatiotemporal volume. However, in our experiments, we

have observed that, 3D CNNs did not achieve any notable improvement in performance compared

to spatial CNNs. This is likely due to the fact that 3D CNNs remain stuck in local minima due to

the complexity of the model and the large input dimensionality. This is also observed in [90,122].
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(a) No compensation (b) Motion compensation

Figure 3.3: Heatmaps of the gradients across all frames for Greeting action (a) without and
(b) with motion compensation. When motion compensation is applied, body parts become

covariant with the 3D HOG cells across frames and thus the extracted spatiotemporal features

become more part-centric and stable.

3.1.3 Motion Compensation with CNNs

For the 3D HOG descriptors introduced above to be representative of the person’s pose, the

temporal bins must correspond to specific body parts, which implies that the person should

remain centered from frame to frame in the bounding boxes used to build the image volume. We

use the Deformable Part Model detector (DPM) [50] to obtain these bounding boxes, as it proved

to be effective in various applications. However, in practice, these bounding boxes may not be

well-aligned on the person. Therefore, we need to first shift these boxes as shown in Fig. 3.2(c)

before creating a spatiotemporal volume. In Fig. 3.3, we illustrate this requirement by showing

heatmaps of the gradients across a sequence without and with motion compensation. Without it,

the gradients are dispersed across the region of interest, which reduces feature stability.

We therefore implemented an object-centric motion compensation scheme inspired by the

one proposed in [168] for drone detection purposes, which was shown to perform better than

optical-flow based alignment [136]. To this end, we train regressors to estimate the shift of the

person from the center of the bounding box. We apply these shifts to the frames of the image

stack so that the subject remains centered, and obtain what we call a rectified spatio-temporal

volume (RSTV), as depicted in Fig. 3.2(c). We have chosen CNNs as our regressors, as they

prove to be effective in various regression tasks.

More formally, let m be an image patch extracted from a bounding box returned by DPM. An

ideal regressor ψ(·) for our purpose would return the horizontal and vertical shifts δu and δv of

the person from the center of m: ψ(m) = (δu,δv). In practice, to make the learning task easier,

we introduce two separate regressors ψcoar se (·) and ψ f i ne (·). We train the first one to handle

large shifts and the second to refine them. We use them iteratively as illustrated by Algorithm 1.

After each iteration, we shift the images by the computed amount and estimate a new shift. This

process typically takes only 4 iterations, 2 using ψcoar se (·) and 2 using ψ f i ne (·).

25



Chapter 3. Direct Prediction of 3D Body Poses from Motion Compensated Sequences

Figure 3.4: Motion compensation CNN architecture. The network consists of convolution

(dark red), pooling (purple) and fully connected (yellow) layers. The output of the network is a

two-dimensional vector that describes horizontal and vertical shifts of the person from the center

of the patch.

Algorithm 1 Object-centric motion compensation.
Input: image I , initial location estimate (i , j )

ψ∗(·) =
{
ψcoar se (·) for the first 2 iterations,
ψ f i ne (·) for the other 2,

(i 0, j 0) = (i , j )
for o = 1 : M axI ter do

(δuo ,δvo) =ψ∗(I (i o−1, j o−1)), with I (i o−1, j o−1) the image patch in I centered on (i o−1, j o−1)
(i o , j o) = (i o−1 +δuo , j o−1 +δvo)

end for
(i , j ) = (i M axI ter , j M axI ter )

Both CNNs feature the same architecture, which comprises fully connected, convolutional,

and pooling layers, as depicted by Fig. 3.2(b) and Fig. 3.4. Pooling layers are usually used to

make the regressor robust to small image translations. However, while reducing the number of

parameters to learn, they could negatively impact performance as our goal is precise localization.

We therefore do not use pooling at the first convolutional layer, only in the subsequent ones.

This yields accurate results while keeping the number of parameters small enough to prevent

overfitting.

Training our CNNs requires a set of image windows centered on a subject, shifted versions,

such as the one depicted by Fig. 3.4, and the corresponding shift amounts (δu,δv). We generate

them from training data by randomly shifting ground truth bounding boxes in horizontal and

vertical directions. For ψcoar se , these shifts are large, whereas for ψ f i ne , they are small, thus

representing the specific tasks of each regressor.

Using our CNNs requires an initial estimate of the bounding box for every person, which is

given by DPM. However, applying the detector to every frame of the video is time consuming.

Thus, we decided to apply DPM only to the first frame. The position of the detection is then

refined and the resulting bounding box is used as an initial estimate in the second frame. Similarly,

its position is then corrected and the procedure is iterated in subsequent frames. The initial person

detector provides rough location estimates and our motion compensation algorithm naturally

compensates even for relatively large positional inaccuracies using the regressor, ψcoar se .
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3.1.4 Pose Regression

We cast 3D pose estimation in terms of finding a mapping Z → f(Z) ≈ Y, where Z is the 3D HOG

descriptor computed over a spatiotemporal volume and Y is the 3D pose in its central frame. To

learn f, we considered Kernel Ridge Regression (KRR) [74], Kernel Dependency Estimation

(KDE) [37] as they were used in previous works on this task [79, 81], and Deep Networks.

Kernel Ridge Regression (KRR) trains a model for each dimension of the pose vector

separately. To find the mapping from spatiotemporal features to 3D poses, it solves a regularized

least-squares problem of the form,

argmin
W

∑
i
||Yi −WΦZ (Zi )||22 +||W||22 , (3.1)

where (Z j ,Y j ) are training pairs and ΦZ is the Fourier approximation to the exponential-χ2

kernel [81]. This problem can be solved in closed-form by W = (ΦZ (Z)T ΦZ (Z)+ I)−1ΦZ (Z)T Y.

Kernel Dependency Estimation (KDE) is a structured regressor that accounts for correla-

tions in 3D pose space. To learn the regressor, not only the input as in the case of KRR, but also

the output vectors are lifted into high-dimensional Hilbert spaces using kernel mappings ΦZ and

ΦY , respectively [37, 81]. The dependency between high dimensional input and output spaces is

modeled as a linear function. The corresponding matrix W is computed by standard kernel ridge

regression,

argmin
W

∑
i
||ΦY (Yi )−WΦZ (Zi )||22 +||W||22 , (3.2)

To produce the final prediction Y, the difference between the predictions and the mapping of

the output in the high dimensional Hilbert space is minimized by finding

Ŷ = argmin
Y

||WT ΦZ (Z)−ΦY (Y)||22 . (3.3)

Although the problem is non-linear and non-convex, it can nevertheless be accurately solved

given the KRR predictors for individual outputs to initialize the process. In practice, we use an

input kernel embedding based on 15,000-dimensional random feature maps corresponding to

an exponential-χ2 kernel, a 4000-dimensional output embedding corresponding to radial basis

function kernel as in [107].
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Deep Networks (DN) rely on a multilayered architecture to estimate the mapping to 3D

poses. We use 3 fully-connected layers with the rectified linear unit (ReLU) activation function

in the first 2 layers and a linear activation function in the last layer. The first two layers consist of

3000 neurons each and the final layer has 51 outputs, corresponding to 17 3D joint positions. We

performed cross-validations across the network’s hyperparameters and choose the ones with the

best performance on a validation set. We minimize the squared difference between the prediction

and the ground-truth 3D positions to find the mapping f parameterized by Θ:

Θ̂= argmin
Θ

∑
i
||fΘ(Zi )−Yi ||22 . (3.4)

We used the ADAM [94] gradient update method to steer the optimization problem with

a learning rate of 0.001 and dropout regularization to prevent overfitting. We will show in the

results section that our DN-based regressor outperforms KRR and KDE [79, 81].

3.2 Results

We evaluate our approach on the Human3.6m [81], HumanEva-I/II [180], and KTH Multiview

Football II [26] datasets. Human3.6m is a recently released large-scale motion capture dataset

that comprises 3.6 million images and corresponding 3D poses within complex motion scenarios.

11 subjects perform 15 different actions under 4 different viewpoints. In Human3.6m, different

people appear in the training and test data. Furthermore, the data exhibits large variations in terms

of body shapes, clothing, poses and viewing angles within and across training/test splits [81]. The

HumanEva-I/II datasets provide synchronized images and motion capture data and are standard

benchmarks for 3D human pose estimation. We further provide results on the KTH Multiview

Football II dataset to demonstrate the performance of our method in a non-studio environment.

In this dataset, the cameraman follows the players as they move around the pitch. We compare

our method against several state-of-the-art algorithms in these datasets. We chose them to be

representative of different approaches to 3D human pose estimation, as discussed in Section 2.1.

For those which we do not have access to the code, we used the published performance numbers

and ran our own method on the corresponding data.

3.2.1 Evaluation on Human3.6m

To quantitatively evaluate the performance of our approach, we first used the Human3.6m [81]

dataset. On this dataset, the regression-based method of [81] performed best at the time and we

therefore use it as a baseline. That method relies on a Fourier approximation of 2D HOG features
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Method Directions Discussion Eating Greeting Phone Talk Posing Buying Sitting

eχ2 -HOG+KRR [81] 140.00 (42.55) 189.36 (94.79) 157.20 (54.88) 167.65 (60.16) 173.72 (60.93) 159.25 (52.47) 214.83 (86.36) 193.81 (69.29)

eχ2 -HOG+KDE [81] 132.71 (61.78) 183.55 (121.71) 132.37 (90.31) 164.39 (91.51) 162.12 (83.98) 150.61 (93.56) 171.31 (141.76) 151.57(93.84)

CNN-Regression [112] - 148.79 (100.49) 104.01 (39.20) 127.17 (51.10) - - - -

RSTV+KRR (Ours) 119.73 (37.43) 159.82 (91.81) 113.42 (50.91) 144.24 (55.94) 145.62 (57.78) 136.43 (44.49) 166.01 (69.94) 178.93 (69.32)

RSTV+KDE (Ours) 103.32 (55.29) 158.76 (119.16) 89.22 (37.45) 127.12 (76.58) 119.35 (53.53) 115.14 (65.21) 108.12 (84.10) 136.82 (91.25)

RSTV+DN (Ours) 102.41 (36.13) 147.72 (90.32) 88.83 (32.13) 125.28 (51.78) 118.02 (51.23) 112.38 (42.71) 129.17 (65.93) 138.89 (66.18)

Method: Sitting Down Smoking Taking Photo Waiting Walking Walking Dog Walking Pair Average

eχ2 -HOG+KRR [81] 279.07 (102.81) 169.59 (60.97) 211.31 (83.72) 174.27 (82.99) 108.37 (30.63) 192.26 (90.63) 139.76 (38.86) 178.03 (67.47)

eχ2 -HOG+KDE [81] 243.03 (173.51) 162.14 (91.08) 205.94 (111.28) 170.69 (96.38) 96.60 (40.61) 177.13(130.09) 127.88 (69.35) 162.14 (99.38)

CNN-Regression [112] - - 189.08 (93.99) - 77.60 (23.54) 146.59 (75.38) - -

RSTV+KRR (Ours) 247.21 (101.14) 140.54 (56.04) 192.75 (84.85) 156.84 (78.13) 70.98 (22.69) 152.01 (76.16) 91.47 (26.30) 147.73 (61.52)

RSTV+KDE (Ours) 206.43 (163.55) 119.64 (69.67) 185.96 (116.29) 146.91 (98.81) 66.40 (20.92) 128.29 (95.34) 78.01 (28.70) 126.03 (78.39)

RSTV+DN (Ours) 224.9 (100.63) 118.42 (54.28) 182.73 (80.04) 138.75 (77.24) 55.07 (18.95) 126.29 (73.89) 65.76 (24.41) 124.97 (57.72)

Table 3.1: Comparison of our RSTV-Regression approach to the state-of-the-art. 3D joint

position errors in Human3.6m using the metric of average Euclidean distance between the ground

truth and predicted joint positions (in mm) to compare our results, obtained with the different

regressors described in Section 3.1.4, to those of [81] and [112]. Our method achieves significant

improvement over state-of-the-art discriminative regression approaches by exploiting appearance

and motion cues from motion compensated sequences. ‘-’ indicates that the results are not

reported for the corresponding action class. Standard deviations are given in parantheses.

using the χ2 comparison metric, and we will refer to it as “eχ2 -HOG+KRR” or “eχ2 -HOG+KDE”,

depending on whether it uses KRR or KDE. Since then, even better results have been obtained

for some of the actions by using CNNs [112]. We denote it as CNN-Regression. We refer

to our method as “RSTV+KRR”, “RSTV+KDE” or “RSTV+DN”, depending on whether we

use respectively KRR, KDE, or deep networks on the features extracted from the Rectified

Spatiotemporal Volumes (RSTV). We report pose estimation accuracy in terms of average

Euclidean distance between the ground-truth and predicted joint positions (in millimeters) as

in [81, 112] and exclude the first and last T /2 frames (0.24 seconds for T = 24 at 50 fps).

The authors of [112] reported results on subjects S9 and S11 of Human3.6m and those of [81]

made their code available. To compare our results to both of those baselines, we therefore trained

our regressors and those of [81] for 15 different actions. We used 5 subjects (S1, S5, S6, S7, S8)

for training purposes and 2 (S9 and S11) for testing. Training and testing is carried out in all

camera views for each separate action, as described in [81]. Recall from Section 3.1.1 that 3D

body poses are represented by skeletons with 17 joints. Their 3D locations are expressed relative

to that of a root node in the coordinate system of the camera that captured the images.

Table 3.1 summarizes our results1 on Human3.6m and Figs. 3.5-3.6 depict some of them

on selected frames. Overall, our method significantly outperforms eχ2-HOG+KDE [81] for all

actions, with the mean error reduced by about 23%. It also outperforms the method of [79],

1The sequence corresponding to Subject 11 performing Directions action on camera 1 in trial 2 is removed from

evaluation due to video corruption.
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(a) Ground Truth (b) Ionescu et. al [81] (c) Our method

Figure 3.5: Pose estimation results of our RSTV-Regression approach on Human3.6m. The

rows correspond to the Buying, Discussion and Eating actions. (a) Reprojection in the original

images and projection on the orthogonal plane of the ground-truth skeleton for each action. (b,c)
The skeletons recovered by the approach of [81] and our method. Note that our method can

recover the 3D pose in these challenging scenarios, which involve significant amounts of self

occlusion and orientation ambiguity.

which itself reports an overall performance improvement of 17% over eχ2 -HOG+KDE and 33%

over plain HOG+KDE on a subset of the dataset consisting of single images. Furthermore, it

improves on CNN-Regression [112] by a margin of more than 5% for all the actions for which

accuracy numbers are reported. The improvement is particularly marked for actions such as

Walking and Eating, which involve substantial amounts of predictable motion. For Buying, Sitting

and Sitting Down, using the structural information of the human body, RSTV+KDE yields better

pose estimation accuracy. On 12 out of 15 actions and in average over all actions in the dataset,

RSTV+DN yields the best pose estimation accuracy.

In the following, we analyze the importance of motion compensation and of the influence

of the temporal window size on pose estimation accuracy. Additional analyses and qualitative

results can be found in the appendix.

Importance of Motion Compensation. To highlight the importance of motion compensation,

we recomputed our features without it. We will refer to this method as STV. We also tried using a

recent optical flow (OF) algorithm for motion compensation [136].

We provide results in Table 3.2 for two actions, which are representative in the sense that the

Walking Dog one involves a lot of movement while subjects performing the Greeting action tend
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(a) Ground Truth (b) RSTV+KRR (c) RSTV+KDE (d) RSTV+DN

Figure 3.6: 3D human pose estimation with different regressors on RSTVs in Human3.6m.
(a) Reprojection in the original images and projection on the orthogonal plane of the ground truth

skeletons for Walking Pair action class. (b,c,d) The 3D body pose recovered using the KRR,

KDE or DN regressors applied to RSTV.

not to walk much. Even without the motion compensation, regression on the features extracted

from spatiotemporal volumes yields better accuracy than the method of [81]. Motion compensa-

tion significantly improves pose estimation performance as compared to STVs. Furthermore, our

CNN-based approach to motion compensation (RSTV) yields higher accuracy than optical-flow

based motion compensation [136].

Action: [81] STV STV+OF [136] RSTV

Greeting 164.39 144.48 140.97 127.12
Walking Dog 177.13 138.66 134.98 126.29

Table 3.2: Importance of motion compensation. The results of [81] are compared against those

of our method, without motion compensation and with motion compensation using either optical

flow (OF) of [136] or our algorithm introduced in Section 3.1.3.

Influence of the Size of the Temporal Window. In Table 3.3, we report the effect of changing

the size of our temporal windows from 12 to 48 frames, again for two representative actions.

Using temporal information clearly helps and the best results are obtained in the range of 24 to

48 frames, which corresponds to 0.5 to 1 second at 50 fps. When the temporal window is small,

the amount of information encoded in the features is not sufficient for accurate estimates. By

contrast, with too large windows, overfitting can be a problem as it becomes harder to account for

variation in the input data. Note that a temporal window size of 12 frames already yields better

results than the method of [81]. For the experiments we carried out on Human3.6m, we use 24

frames as it yields both accurate reconstructions and efficient feature extraction.

3.2.2 Evaluation on HumanEva

We further evaluated our approach on HumanEva-I and HumanEva-II datasets. The baselines we

considered are frame-based methods of [16, 46, 76, 99, 184, 185, 214], frame-to-frame-tracking
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Action: [81]
RSTV

12 frames 24 frames 36 frames 48 frames

Walking 96.60 58.78 55.07 53.68 54.36

Eating 132.37 93.97 88.83 87.23 85.36

Table 3.3: Influence of the size of the temporal window on the pose estimation accuracy. We

compare the results of [81] against those obtained using our method, RSTV+DN, with increasing

temporal window sizes.

Figure 3.7: Results of our RSTV-Regression approach on HumanEva-I. The recovered 3D

poses and their projection on the image are shown for Walking and Boxing actions. More results

are provided in the appendix.

approaches which impose dynamical priors on the motion [183,194] and the tracking-by-detection

framework of [8]. The mean Euclidean distance between the ground-truth and predicted joint

positions is used to evaluate pose estimation performance. As the size of the training set in

HumanEva is too small to train a deep network, we use RSTV+KDE instead of RSTV+DN.

We demonstrate in Tables 3.4 and 3.5 that using temporal information earlier in the inference

process in a discriminative bottom-up fashion yields more accurate results than the above-

mentioned approaches that enforce top-down temporal priors on the motion.

HumanEva-I: For the experiments we carried out on HumanEva-I, we train our regressor

on training sequences of Subject 1, 2 and 3 and evaluate on the “validation” sequences in

the same manner as the baselines we compare against [13, 16, 46, 99, 183, 184, 185, 194, 214].

Spatiotemporal features are computed only from the first camera view. We report the performance

of our approach on cyclic and acyclic motions, more precisely Walking and Boxing, in Table 3.4

and depict example 3D pose estimation results in Fig. 3.7. The results show that our method

outperforms the state-of-the-art approaches on this benchmark as well.

HumanEva-II: On HumanEva-II, we compare against [8,76] as they report the best monocular

pose estimation results on this dataset. HumanEva-II provides only a test dataset and no training

data, therefore, we trained our regressors on HumanEva-I using videos captured from different

camera views. This demonstrates the generalization ability of our method to different camera
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Walking Boxing
Method: S1 S2 S3 Avg. S1 S2 S3 Avg.

Taylor et al. [194] 48.8 47.4 49.8 48.7 75.35 - - -

Sigal et al. [183] 66.0 69.0 - - - - - -

Simo-Serra et al.’12 [185] 99.6 108.3 127.4 111.8 - - - -

Simo-Serra et al.’13 [184] 65.1 48.6 73.5 62.2 - - - -

Wang et al. [214] 71.9 75.7 85.3 77.6 - - - -

Belagiannis et al. [13] 68.3 - - - 62.70 - - -

Elhayek et al. [46] 66.5 - - - 60.0 - - -

Kostrikov et al. [99] 44.0 30.9 41.7 38.9 - - - -

Bo et al. [16] 45.4 28.3 62.3 45.33 42.5 64.0 69.3 58.6

Ours 37.5 25.1 49.2 37.3 50.5 61.7 57.5 56.6

Table 3.4: Comparison of our RSTV-Regression approach to the state-of-the-art on
HumanEva-I. We report 3D joint position errors (in mm) on the Walking and Boxing sequences

of HumanEva-I. We compare our approach against methods that rely on discriminative regres-

sion [16, 99], 2D pose detectors [184, 185, 214], 3D pictorial structures [13], CNN-based marker-

less motion capture method of [46] and methods that rely on top-down temporal priors [183,194].

‘-’ indicates that the results are not reported for the corresponding sequences.

views. Following [8], we use subjects S1, S2 and S3 from HumanEva-I for training and report

pose estimation results in the first 350 frames of the sequence featuring subject S2. Global 3D

joint positions in HumanEva-I are projected to camera coordinates for each view. Spatiotemporal

features extracted from each camera view are mapped to 3D joint positions in its respective

camera coordinate system, as done in [151]. Whereas [8] uses additional training data from the

“People” [154] and “Buffy” [51] datasets, we only use the training data from HumanEva-I. We

evaluated our approach using the official online evaluation tool. We illustrate the comparison in

Table 3.5, where our method achieves the state-of-the-art performance.

Method: S2/C1 S2/C2 S2/C3 Average

Andriluka et al. [8] 107 101 - -

Howe [76] 81 73 143 99

Ours 79.6 79.0 79.2 79.3

Table 3.5: Comparison of our RSTV-Regression approach to the state-of-the-art on
HumanEva-II. 3D joint position errors (in mm) on the Combo sequence of the HumanEva-

II dataset. We compare our approach against the tracking-by-detection framework of [8] and

recognition-based method of [76]. ‘-’ indicates that the result is not reported for the corresponding

sequence.
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Camera 1 Camera 2 Camera 3

Figure 3.8: Results of our RSTV-Regression approach on KTH Multiview Football II. The

3D skeletons are recovered from Camera 1 images and projected on those of Camera 2 and 3,

which were not used to compute the poses.

Body parts: [26] (Mono) [26] (Stereo) [13](Stereo) Ours (Mono)

Pelvis 97 97 - 99
Torso 87 90 - 100
Upper arms 14 53 64 74
Lower arms 06 28 50 49

Upper legs 63 88 75 98
Lower legs 41 82 66 77

All parts 43 69 - 79

Table 3.6: Comparison of our RSTV-Regression approach to the state-of-the-art on KTH
Multiview Football II. On the KTH Multiview Football II we have compared our method using

a single camera to those of [26] using either single or two cameras and to the one of [13] using

two cameras. ‘-’ indicates that the result is not reported for the corresponding body part.

3.2.3 Evaluation on KTH Multiview Football Dataset

As in [13, 26], we evaluate our method on the sequence containing Player 2. The first half of

the sequence is used for training and the second half for testing, as in the original work [26].

To compare our results to those of [13, 26], we report pose estimation accuracy in terms of

percentage of correctly estimated parts (PCP) score. As in the HumanEva experiments, we

provide results for RSTV+KDE. Fig. 3.8 depicts example pose estimation results. As shown in

Table 3.6, we outperform the baselines even though our algorithm is monocular, whereas they use

both cameras. This is due to the fact that the baselines instantiate 3D pictorial structures relying

on 2D body part detectors, which may not be precise when the appearance-based information is

weak. By contrast, collecting appearance and motion information simultaneously from rectified

spatiotemporal volumes, we achieve better 3D pose estimation accuracy.

3.3 Conclusion

We have demonstrated that taking into account motion information very early in the modeling

process yields significant performance improvements over doing it a posteriori by linking pose

estimates in individual frames. We have shown that extracting appearance and motion cues
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from rectified spatiotemporal volumes disambiguate challenging poses with mirroring and self-

occlusion, which brings about substantial increase in accuracy over the state-of-the-art methods

on several 3D human pose estimation benchmarks. Our proposed framework is generic and could

be used for other kinds of articulated motions.
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4 Learning Structured Latent Represen-
tations of 3D Human Pose with Deep
Neural Networks
In spite of much recent progress, estimating 3D human pose from a single ordinary image remains

challenging because of the many ambiguities inherent to monocular 3D reconstruction. They

include occlusions, complex backgrounds, and, more generally, the loss of depth information

resulting from the projection from 3D to 2D.

Recent regression-based methods can directly and efficiently predict the 3D pose given the

input image [108] or images [197] but often ignore the underlying body structure and resulting

joint dependencies, which makes them vulnerable to ambiguities. Several methods have recently

been proposed to account for these dependencies [81, 109, 170]. In particular, by leveraging the

power of Deep Learning, the method of [109] achieves high accuracy. However, it involves a

computationally expensive search procedure to estimate the 3D pose.

Since pose estimation is much better-posed in 2D than in 3D, an alternative way to handle

ambiguities is to use discriminative 2D pose regressors [28, 31, 43, 59, 83, 132, 140, 142, 201, 215,

221] to extract the 2D pose and then infer a 3D one from it [17, 46, 223, 233]. This however also

involves fitting a 3D model in a separate optimization step, and is thus more expensive than direct

regression.

In this chapter, we demonstrate that we can account for the human pose structure within

a deep learning regression framework. To this end, we propose to first train an overcomplete

autoencoder that projects body joint positions to a high dimensional space represented by its

middle layer, as depicted by Fig. 4.1(a). We then learn a CNN-based mapping from the image

to this high-dimensional pose representation as shown in Fig. 4.1(b). Finally, as illustrated in

Fig. 4.1(c), we connect the decoding layers of the autoencoder to the CNN, and fine-tune the

whole model for pose estimation. This procedure is inspired by Kernel Dependency Estimation
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(KDE) in that it can be understood as replacing the high-dimensional feature maps in kernel space

by autoencoder layers that represent the pose in a high-dimensional space encoding complex

dependencies between the different body parts. However, our approach has the advantage over

KDE of directly providing us with a mapping back to the pose space, thus avoiding the need for a

computationally expensive optimization at test time. Altogether, and as will be demonstrated by

our experiments, our framework enforces implicit constraints on the human pose, preserves the

human body statistics, and improves prediction accuracy.

With the growing availability of large training datasets, 2D pose estimation algorithms have

achieved tremendous success [132, 142, 215] by relying on Deep Learning. They exploit the fact

that finding 2D joint locations in a color image is easier than direct 3D pose prediction, which is

fraught with depth ambiguities. To leverage the well-posedness of the 2D localization problem,

we therefore use the reliable 2D joint location heatmaps produced by [132] as input to our

autoencoder-based regression architecture. We show that this improves 3D pose accuracy upon

direct regression from an RGB image. We further show that our autoencoder-based regression

approach scales to very deep architectures and achieves state-of-the-art performance when used

with ResNet architecture [66].

Because we can perform 3D pose-estimation using a single CNN, our approach can easily

be extended to handling sequences of images instead of single ones. To this end, we introduce

two LSTM-based architectures: one that acts on the pose predictions in consecutive images, and

one that models temporal information directly at the feature level. Our experiments evidence the

additional benefits of modeling this temporal information over our single-frame approach.

In short, our contribution is to show that combining traditional CNNs for supervised learning

with autoencoders for structured learning preserves the power of CNNs while also accounting for

dependencies, resulting in increased performance. In the remainder of the chapter, we first briefly

discuss earlier approaches. We then present our structured prediction framework in more detail,

introduce our LSTM-based architectures and finally demonstrate that our approach achieves

competitive performance with the state-of-the-art methods on standard 3D human pose estimation

benchmarks.

Previous work. Following recent trends in Computer Vision, human pose estimation is now

usually formulated within a Deep Learning framework. The switch away from earlier repre-

sentations started with 2D pose estimation by learning a regressor from an input image either

directly to pose vectors [201] or to heatmaps encoding 2D joint locations [83, 140, 200]. This

has been exploited very effectively to infer 3D poses by fitting a 3D model to the 2D predic-

tions [17, 46, 223, 233]. This approach currently yields some of the best results, but involves a

separate, typically expensive model-fitting stage, outside of the Deep Learning framework.
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(a) (b) (c)

Figure 4.1: Our architecture for the structured prediction of the 3D human pose. (a) An

autoencoder whose hidden layers have a larger dimension than both its input and output layers is

pretrained. In practice we use either this one or more sophisticated versions that are described in

more detail in Section 4.1.1 (b) A CNN maps either a monocular image or a 2D joint location

heatmap to the latent representation learned by the autoencoder. (c) The latent representation is

mapped back to the original pose space using the decoder.

In parallel, there has been a trend towards performing direct 3D pose estimation [81, 108],

formulated as a regression problem. In other words, the algorithms output continuous 3D joint

locations, because discretizing the 3D space is more challenging than the 2D one.

Our work fits in that line research, which involves dealing with the ambiguities inherent

to inferring a 3D pose from a 2D input. To resolve them, recent algorithms have sought to

encode the dependencies between the different joints within Deep Learning approaches, thus

effectively achieving structured prediction. In particular, [75] uses autoencoders to learn a

shared representation for 2D silhouettes and 3D poses. This approach, however, relies on

accurate foreground masks and exploits handcrafted features, which mitigates the benefits of

Deep Learning. In the context of hand pose estimation, [134] introduces a bottleneck, low

dimensional layer that aims at accounting for joint dependencies. This layer, however, is obtained

directly via PCA, which limits the range of dependencies it can model.

The work of [109] constitutes an effective approach to encoding dependencies within a Deep

Learning framework for 3D human pose estimation. This approach extends the structured SVM

model to the Deep Learning setting by learning a similarity score between feature embeddings of

the input image and the 3D pose. This process, however, comes at a high computational cost at

test time, since, given an input image, the algorithm needs to search for the highest-scoring pose.

Furthermore, the final results are obtained by averaging over multiple high-scoring ground-truth

training poses, which might not generalize well to unseen data since the prediction can thus only

be in the convex hull of the ground-truth training poses.

To achieve a similar result effectively, we drew our inspiration from earlier KDE-based

approaches [80, 81], which map both image and 3D pose to high-dimensional Hilbert spaces
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and learn a mapping between these spaces. In this study, we show how to do this in a Deep

Learning context by combining CNNs and autoencoders. Not only does this allow us to leverage

the power of learned features, which have proven more effective than hand-designed ones such

as HOG [1] and 3D HOG [217], but it yields a direct and efficient regression between the two

spaces. Furthermore, it also allows us to learn the mapping from high-dimensional space to pose

space, thus avoiding the need of KDE-based methods to solve an optimization problem at test

time.

Using autoencoders for unsupervised feature learning has proven effective in several recog-

nition tasks [98, 211]. In particular, denoising autoencoders [210] that aim at reconstructing

the perfect data from a corrupted version of it have demonstrated good generalization ability.

Similarly, contractive autoencoders have been shown to produce intermediate representations

that are robust to small variations of the input data [160]. All these methods, however, rely on

autoencoders to learn features for recognition tasks. By contrast, here, we exploit them to model

the output structure for regression purposes.

In this study, we further investigate the use of Recurrent Neural Networks (RNNs), and in

particular LSTMs, to model temporal information. RNNs have recently been used in many Natural

Language Processing [97, 193] and Computer Vision [113, 141] tasks, and, at the intersection

of these fields, for image captioning and video description [42, 85]. More closely related to our

work, in [52, 84], RNNs have been employed to model human dynamics. Nevertheless, these

methods do not tackle human pose estimation, but motion capture generation, video pose labeling

and forecasting for [52], and human-object interaction prediction for [84]. To the best of our

knowledge [110] is the only method that exploits RNNs for 3D human pose estimation from

images. However, this approach operates on single images and makes use of RNNs to iteratively

refine the pose predictions of [109]. By contrast we leverage the power of RNNs at modeling

long term temporal dependencies across image sequences.

4.1 Approach

In this work, we aim at directly regressing from an input image or heatmap x to a 3D human

pose. As in [16, 81, 108], we represent the human pose in terms of the 3D locations y ∈R3J of J

body joints relative to a root joint. An alternative would have been to predict the joint angles and

limb lengths. However, this is a less homogeneous representation and is therefore rarely used for

regression purposes.

As discussed above, a straightforward approach to creating a regressor is to train a con-

ventional CNN such as the one used in [108]. However, this fails to encode dependencies
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(a) Autoencoder training

(b) Regression in latent space

(c) Fine-tuning

Figure 4.2: Overview of our structured prediction approach. (a) We train a stacked denoising

autoencoder that learns the structural information and enforces implicit constraints about human

body in its latent middle layer hL . (b) Our CNN architecture maps the raw image or the 2D

joint location heatmap predicted from the input image to the latent representation hL learned

by the autoencoder. (c) We stack the decoding layers of the autoencoder on top of the CNN for

reprojection from the latent space to the original pose space and fine-tune the entire network by

updating the parameters of all layers.

between joint locations. In [109], this limitation was overcome by introducing a substantially

more complex, deep architecture for maximum-margin structured learning. Here, we encode

dependencies in a simpler, more efficient, and, as evidenced by our experiments, more accurate

way by learning a mapping between the output of a CNN and a latent representation obtained

using an overcomplete autoencoder, as illustrated in Fig. 4.2. The autoencoder is pre-trained on

human poses and comprises a hidden layer of higher dimension than its input and output. In effect,

this hidden layer and the CNN-based representation of the image play the same role as the kernel

embeddings in KDE-based approaches [37, 80, 81], thus allowing us to account for structure

within a direct regression framework. Once the mapping between these two high-dimensional

embeddings is learned, we further fine-tune the whole network for the final pose estimation task,

as depicted at the bottom of Fig. 4.2.

In the remainder of this section, we describe the different stages of our single-frame approach.

We then extend this framework to modeling temporal consistency in Section 4.2.
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4.1.1 Structured Latent Representations via Autoencoders

We encode the dependencies between human joints by learning a mapping of 3D human pose to

a high-dimensional latent space. To this end, we use a denoising autoencoder that can have one

or more hidden layers.

Following standard practice [211], given a training set of pose vectors {yi }, we add isotropic

Gaussian noise to create noisy versions {ỹi } of these vectors. We then train our autoencoder to

take as input a noisy ỹi and return a denoised yi . The behavior of the autoencoder is controlled by

the set θae = (Wenc, j ,benc, j ,Wdec, j ,bdec, j )L
j=1 of weights and biases for L encoding and decoding

layers.

We take the middle layer to be our latent pose representation and denote it by hL = g (ỹ ,θae ),

where g (·) represents the encoding function. For example, with a single layer, the latent represen-

tation can be expressed as

hL = g (ỹ ,Wenc ,benc ) = r (Wenc ỹ +benc ) , (4.1)

where r (·) is the activation function. In practice, we use ReLU as the activation function of

the encoding layers. This favors a sparse hidden representation [60], which has been shown to

be effective at modeling a wide range of human poses [5, 153]. For the decoding part of the

autoencoder, we use a linear activation function to be able to predict both negative and positive

joint coordinates. To keep the number of parameters small and reduce overfitting, we use tied

weights for the encoder and the decoder, that is, Wdec, j =W T
enc, j .

To learn the parameters θae , we rely on the square loss between the reconstruction, ŷ , and

the true, noise-free pose, y , over the N training examples. To increase robustness to small pose

changes, we regularize the cost function by adding the squared Frobenius norm of the Jacobian

of the hidden mapping g (·), that is, J (ỹ) = ∂g
∂ỹ (ỹ). Training can thus be expressed as finding

θ∗ae = argmin
θae

N∑
i=1

||yi − f (ỹi ,θae )||22 +λ‖J (ỹi )‖2
F , (4.2)

where f (·) represents the complete autoencoder function, and λ is the regularization weight.

Unlike when using KDE, we do not need to solve a complex problem to go from the latent pose

representation to the pose itself. This mapping, which corresponds to the decoding part of our

autoencoder, is learned directly from data.
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(a) (b)

Figure 4.3: Our (B)LSTM networks to enforce temporal consistency. (a) The (B)LSTM-Pose

approach involves refining 3D human pose predictions by feeding those obtained as described in

Fig. 4.2(c) into a (B)LSTM network, which yields the final 3D poses. (b) The (B)LSTM-Feature

approach maps the features obtained from the last fully-connected layer of a CNN trained to

directly regress 3D pose from monocular images to the latent representation hL of Fig. 4.2(a) via

a (B)LSTM network. The final pose is recovered by the decoder part of the autoencoder.

4.1.2 Regression in Latent Space

Once the autoencoder is trained, we aim to learn a mapping from the input image or heatmap to

the latent representation of the human pose. To this end, and as shown in Fig. 4.2(b), we use a

CNN to regress the image to a high-dimensional representation, which is itself mapped to the

latent pose representation.

More specifically, let θcnn be the parameters of the CNN, including the mapping to the latent

pose representation. Given an input image or heatmap x, we consider the square loss between the

representation predicted by the CNN, fcnn(x,θcnn), and the one that was previously learned by

the autoencoder, hL . Given our N training samples, learning amounts to finding

θ∗cnn = argmin
θcnn

N∑
i=1

|| fcnn(xi ,θcnn)−hL,i ||22 . (4.3)

In practice, we either rely on a standard CNN architecture shown in Fig. 4.2(b), similar to the

one of [108,201] or a very deep network architecture, e.g. ResNet-50 [66]. In our implementation,

the input volume is a three channel image of size 128×128 or a 16 channel heatmap of size

128×128. The last fully-connected layer of the base network is mapped linearly to the latent

pose embedding. Except for this last linear layer, each layer uses a ReLU activation function.

When we use images as input, we initialize the convolutional layers of our CNN from those of a

network trained for the detection of body joints in 2D as in [108, 124].

In the case of 3D pose prediction from 2D joint location heatmaps, we rely on the stacked

hourglass network design [132], which assigns high confidence values to most likely joint

positions in the image. In practice, we have observed a huge performance improvement in

overall 3D pose estimation accuracy when using reliable 2D joint location heatmaps produced

by stacked hourglass networks compared to directly using RGB images as input to our standard

CNN architecture in Fig. 4.2(b).
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4.1.3 Fine-Tuning the Whole Network

Finally, as shown in Fig. 4.2(c), we append the decoding layers of the autoencoder to the CNN

discussed above, which maps the latent pose estimates to the original pose space. We then

fine-tune the resulting complete network for the task of human pose estimation. We take the cost

function to be the squared difference between the predicted and ground-truth 3D poses, which

yields the optimization problem

θ∗f t = argmin
θ f t

N∑
i
|| f f t (xi ,θ f t )− yi ||22 , (4.4)

where θ f t are the model parameters, including θcnn and the decoding weights and biases

(Wdec, j ,bdec, j )L
j=1, and f f t is the mapping function.

At test time, a new input image or heatmap is then simply passed forward through this

fine-tuned network, which predicts the 3D pose via the learned latent representation.

4.2 Modeling Temporal Consistency

We have so far focused on predicting 3D poses from single images or heatmaps. However, it is

well known that accounting for temporal consistency increases robustness. In this section, we

show that our approach naturally allows us to use Long Short-Term Memory Units (LSTMs) to

this end. Below, we first briefly review LSTMs and then introduce two different ways to exploit

them to encode temporal information in our framework.

4.2.1 LSTMs

Recurrent Neural Networks (RNNs) have become increasingly popular to model temporal dynam-

ics. In their simplest form, they map a sequence of inputs to a sequence of hidden states, each

connected to its temporal neighbors, which are in turn mapped to a sequence of outputs. In theory,

simple memory units and backpropagation through time (BPTT) allow RNNs to capture the

temporal correlations between distant data points. However, in practice, longer sequences often

cause the gradients to either vanish or explode, thus making optimization impossible. LSTMs [72]

were introduced as a solution to this problem. Although they have four times as many parameters

as traditional RNNs, they can be trained efficiently thanks to their sharing of parameters across
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time slices. An LSTM unit is defined by the recurrence equations

it =σi (Wxi xt +Whi ht−1 +bi )

ft =σ f (Wx f xt +Wh f ht−1 +b f )

ot =σo(Wxo xt +Whoht−1 +bo)

ct = ft �ct−1 + it �σc (Wxc xt +Whc ht−1 +bc )

ht = ot �σh(ct ) ,

(4.5)

where xt , ct and ht are the input, hidden/cell state and output at time t , respectively, and it , ft

and ot represent gate vectors to forget/select information. σ·(·) are sigmoids and � denotes the

Hadamard or element-wise product.

In practice, we use either LSTMs or Bidirectional LSTMs (BLSTMs). A BLSTM comprises

two LSTMs with information traveling in opposite temporal directions [61]. They have been

shown to boost performance when the quantity to be predicted depends on contextual information

coming from both forward and backward in time [61]. This is typically the case for human pose

estimation, where the estimate at time t is correlated to those at time t −1 and t +1.

4.2.2 Recurrent Pose Estimation

We tested two different ways to incorporate (B)LSTMs into our framework.

4.2.2.1 Constraining the Final Poses

The first is to refine the pose estimates by imposing temporal consistency on the output of the

network introduced in the previous section, as shown in Fig. 4.3(a).

More specifically, let St = [ŷt− T
2 +1, . . . , ŷt , . . . , ŷt+ T

2
] be the input sequence of T predicted

poses centered at time t . The network prediction can be expressed as

ȳt = fp (St ,θp ) , (4.6)

where θp includes all the parameters of the network. During training, these parameters are taken

to be

θ∗p = argmin
θp

N−T /2∑
t=T /2

|| fp (St ,θp )− yt ||22 . (4.7)

We refer to this method as (B)LSTM-Pose.
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4.2.2.2 Constraining the Features

An alternative would be to enforce temporal consistency not on the poses, but earlier in the

network on the features extracted from a direct CNN regressor. To this end, we made use of the

features of the penultimate layer of our base network. This, for example, corresponds to FC3

features for the network shown in Fig. 4.2(b). These features act as input to the model depicted

in Fig. 4.3(b), which stacks two BLSTM layers and maps the features to the latent representation

learned by the autoencoder of Section 4.1.1. This is followed by the decoder to finally predict 3D

poses.

Let Ft = [FCt−T /2+1, . . . ,FCt , . . . ,FCt+T /2] be the sequence of such features. Then, training

this network can be achieved by solving the problem

θ∗f = argmin
θ f

N−T /2∑
t=T /2

|| f f (Ft ,θ f )− yt ||22 , (4.8)

where f f (Ft ,θ f ) represents the complete network mapping, with parameters θ f . We refer to this

method as (B)LSTM-Feature.

4.3 Results

In this section, we first describe the datasets we tested our approach on. We then give implemen-

tation details and describe the evaluation protocol. Finally, we compare our results against those

of the state-of-the-art methods.

4.3.1 Datasets

We evaluate our method on the Human3.6m [81], HumanEva [182], KTH Multiview Football

II [26] and Leeds Sports Pose (LSP) [86] datasets.

Human3.6m comprises 3.6 million image frames with their corresponding 2D and 3D poses.

The subjects perform complex motion scenarios based on typical human activities such as

discussion, eating, greeting and walking. The videos were captured from 4 different camera

viewpoints. Following the standard procedure of [108], we collect the input images by extracting

a square region around the subject using the bounding box present in the dataset and the output

pose is a vector of 17 3D joint coordinates.

46



4.3. Results

HumanEva-I comprises synchronized images and motion capture data and is a standard

benchmark for 3D human pose estimation. The output pose is a vector of 15 3D joint coordinates.

KTH Multiview Football II is a recent benchmark to evaluate the performance of pose esti-

mation algorithms in unconstrained outdoor settings. The camera follows a soccer player moving

around the field. The videos are captured from 3 different camera viewpoints and the output pose

is a vector of 14 3D joint coordinates.

LSP is a standard benchmark for 2D human pose estimation and does not contain any ground-

truth 3D pose data. The images are captured in unconstrained outdoor settings. 2D pose is

represented in terms of a vector of 14 joint coordinates. We report qualitative 3D pose estimation

results on this dataset.

4.3.2 Implementation Details

We trained our autoencoder using a greedy layer-wise training scheme followed by fine-tuning

as in [71, 211]. We set the regularization weight of Eq. 4.2 to λ= 0.1. We experimented with

single-layer autoencoders, as well as with 2-layer ones. The size of the layers were set to

2000 and 300-300 for the 1-layer and 2-layer cases, respectively. We corrupted the input pose

with zero-mean Gaussian noise with standard deviation of 40 for 1-layer and 40-20 for 2-layer

autoencoders. In all cases, we used the ADAM optimization procedure [94] with a learning rate

of 0.001 and a batch size of 128.

The number and individual sizes of the layers of our base architecture are given in Fig. 4.2.

The filter sizes for the convolutional layers are consecutively 9 × 9, 5 × 5 and 5 × 5. Each

convolutional layer is followed by a 2×2 max-pooling layer. The activation function is the ReLU

in all the layers except for the last one that uses linear activation. As for the autoencoders, we

used ADAM [94] with a learning rate of 0.001 and a batch size of 128. To prevent overfitting, we

applied dropout with a probability of 0.5 after each fully-connected layer and augmented the data

by randomly cropping 112×112 patches from the 128×128 image. When using 2D heatmaps

as input, the 64×64 outputs of stacked hourglass network of [132] were upscaled to 128×128

before processing.

To demonstrate that our approach scales to very deep architectures, we also use ResNet-

50 [66] as baseline CNN architecture. More specifically, we use it up to level 5, with the first

three levels initialized on a 2D pose estimation task as in [124] and then kept constant throughout

the 3D pose prediction process. We then use two additional convolutional layers of size 512 and
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128 and a linear layer to regress the 3D pose from the convolutional features of level 4.

To train Ours-LSTM-Feature and Ours-BLSTM-Feature, we relied on the features extracted

from the penultimate layer of a CNN trained to directly predict 3D pose, referred to later as

CNN-Direct. We did not backpropagate the loss of our LSTM-based models through this network,

but rather kept its weights fixed. By contrast, Ours-LSTM-Pose and Ours-BLSTM-Pose take

as input the 3D pose predictions obtained using the network in Fig. 4.2(c). In all cases, we

cascaded two (B)LSTM layers of size 512, whose output sequence was merged into a single

fully-connected layer of size 51. The activation function was t anh for the recurrent layers and

linear for the fully-connected layer at the end. In all architectures, we used a temporal window

of length T = 5 with a stride of 5 covering 0.5 seconds for 50 fps Human3.6m videos. The first

T /2−1 and the last T /2 frames were excluded from the evaluation. We optimized the recurrent

networks using the ADAM optimization procedure [94] with a learning rate of 0.001 and a batch

size of 128.

4.3.3 Evaluation Protocol

On Human3.6m, for the comparison to be fair, we used the same data partition protocol as

in earlier work [108, 109] to obtain the training and test splits. The data from 5 subjects

(S1,S5,S6,S7,S8) was used for training and the data from 2 different subjects (S9,S11) was used

for testing. We trained a single model for all actions. We evaluate the accuracy of 3D human

pose estimation in terms of average Euclidean distance between the predicted and ground-truth

3D joint positions as in [108, 109]. To compare against [17, 171], we further evaluate the pose

estimation accuracy after Procrustes transformation. The accuracy numbers are reported in

milimeters for all actions. Training and testing were carried out monocularly in all camera views

for each separate action.

On HumanEva-I, we trained our model on the Walking sequences of subjects S1, S2 and

S3 as in [184, 233] and evaluate on the validation sequences of all subjects. We pretrained our

network on the Walking sequences of Human3.6m and used only the first camera view for further

training and validation.

On KTH Multiview Football II, we trained our model on the first half of the sequence

containing Player 2 and test on the second half, as in [26]. We report accuracy using the

percentage of correctly estimated parts (PCP) score with a threshold of 0.5 for a fair comparison.

Since the training set is quite small, we pretrained our CNN model on the synthetic dataset

introduced in [30], which contains images of sports players with their corresponding 3D poses.

On LSP, in order to generalize to the unconstrained outdoor settings, we trained our regressor
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on the recently released synthetic dataset of [30] and tested on the actual data from the LSP

dataset.

4.3.4 Evaluation

We first discuss our results on predicting 3D pose from a single image, and then turn to the case

where we use multiple consecutive frames as input.

4.3.4.1 Human Pose from a Single Image

Fig. 4.4 depicts selected pose estimation results on Human3.6m. In Table 4.1, we report our

single-image autoencoder-based results on this dataset along with those of the following state-

of-the-art single image-based methods: KDE regression from HOG features to 3D poses [81],

jointly training a 2D body part detector and a 3D pose regressor [108, 137], the maximum-

margin structured learning framework of [109, 110], the deep structured prediction approach

of [195], pose regression with kinematic constraints [232], pose estimation with mocap guided

data augmentation [163], volumetric pose prediction approach of [138] and lifting 2D heatmap

predictions to 3D human pose [199]. ShallowNet-Autoencoder refers to our autoencoder-based

regression approach using the base architecture depicted in Fig. 4.2, and ResNet-Autoencoder to

the one using the ResNet-50 architecture. For the shallow network architecture, we also evaluate

the pose estimation accuracy using the 2D joint location heatmaps of [132] as input. This is

referred to as ShallowNet-Hm-Autoencoder.

Figure 4.4: Example 3D pose estimation results of our structured prediction approach. Examples

are from the Walking, Eating, Taking Photo, Greeting, Discussion and Walking Dog actions of

the Human3.6m database. In each case, the first skeleton depicts the ground-truth pose and the

second one the pose we recover. Best viewed in color.

The shallow network architecture provides satisfactory pose estimation accuracy with a fast

computational runtime of 6 ms/frame, which corresponds to 166 fps real-time performance,

whereas ResNet-Autoencoder comes at the cost of a three times slower runtime. Our autoen-
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Method Directions Discussion Eating Greeting Phone Talk Posing Buying Sitting Sitting Down

Ionescu et al. [81] 132.71 183.55 132.37 164.39 162.12 150.61 171.31 151.57 243.03

Li & Chan [108] - 148.79 104.01 127.17 - - - - -

Li et al. [109] - 134.13 97.37 122.33 - - - - -

Li et al. [110] - 133.51 97.60 120.41 - - - - -

Zhou et al. [233] - - - - - - - - -

Rogez & Schmid [163] - - - - - - - - -

Tekin et al. [195] - 129.06 91.43 121.68 - - - - -

Park et al. [137] 100.34 116.19 89.96 116.49 115.34 117.57 106.94 137.21 190.82

Zhou et al. [232] 91.83 102.41 96.95 98.75 113.35 90.04 93.84 132.16 158.97

Tome et al. [199] 64.98 73.47 76.82 86.43 86.28 68.93 74.79 110.19 173.91

Pavlakos et al. [138] 67.38 71.95 66.70 69.07 71.95 65.03 68.30 83.66 96.51

OURS (ShallowNet-Autoencoder) 94.98 129.06 91.43 121.68 133.54 115.13 133.76 140.78 214.52

OURS (ShallowNet-Hm-Autoencoder) 69.64 93.79 69.02 96.47 103.42 83.36 85.22 116.62 147.57

OURS (ResNet-Autoencoder) 57.84 64.62 59.41 62.83 71.52 57.50 60.38 80.22 104.14

Method: Smoking Taking Photo Waiting Walking Walking Dog Walking Pair Avg. (6 Actions) Avg. (All)

Ionescu et al. [81] 162.14 205.94 170.69 96.60 177.13 127.88 159.99 162.14

Li & Chan [108] - 189.08 - 77.60 146.59 - 132.20 -

Li et al. [109] - 166.15 - 68.51 132.51 - 120.17 -

Li et al. [110] - 163.33 - 73.66 135.15 - 121.55 -

Zhou et al. [233] - - - - - - - 120.99

Rogez & Schmid [163] - - - - - - - 121.20

Tekin et al. [195] - 162.17 - 65.75 130.53 - 116.77 -

Park et al. [137] 105.78 149.55 125.12 62.64 131.90 96.18 111.12 117.34

Zhou et al. [232] 106.91 125.22 94.41 79.02 126.04 98.96 104.73 107.26

Tome et al. [199] 84.95 110.67 85.78 71.36 86.26 73.14 84.17 88.39

Pavlakos et al. [138] 71.74 76.97 65.83 59.11 74.89 63.24 69.78 71.90

OURS (ShallowNet-Autoencoder) 121.26 162.17 138.2 65.75 130.53 113.34 116.77 127.07

OURS (ShallowNet-Hm-Autoencoder) 87.17 120.50 95.31 55.87 85.69 64.66 86.89 91.62

OURS (ResNet-Autoencoder) 66.31 80.50 61.20 52.55 69.97 60.08 61.20 67.27

Table 4.1: Comparison of our structured prediction approach with state-of-the-art algo-
rithms on Human3.6m. We report 3D joint position errors in mm, computed as the average

Euclidean distance between the ground-truth and predicted joint positions. ‘-’ indicates that

the results were not reported for the respective action class in the original paper. Note that our

method achieves the best overall accuracy.

Model Directions Discussion Eating Greeting Phone Talk Posing Buying Sitting

Bogo et al. [17] 62.0 60.2 67.8 76.5 92.1 73.0 75.3 100.3

Sanzari et al. [171] 48.82 56.31 95.98 84.78 96.47 66.30 107.41 116.89

OURS (ResNet-Autoencoder) 43.89 48.54 46.57 49.95 53.94 43.77 43.94 60.20

Model Sitting Down Smoking Taking Photo Waiting Walking Walking Dog Walking Pair Average

Bogo et al. [17] 137.3 83.4 77.0 77.3 86.8 79.7 81.7 82.3

Sanzari et al. [171] 129.63 97.84 105.58 65.94 92.58 130.46 102.21 93.15

OURS (ResNet-Autoencoder) 73.64 51.15 59.29 46.30 39.81 52.25 47.18 50.69

Table 4.2: Comparison of our structured prediction approach with state-of-the-art algo-
rithms after Procrustes transformation on Human3.6m. The error is given as the average

Euclidean distance in mm between the ground-truth 3D joint locations and predictions.
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coder-based regression approach using ResNet-50 as base network outperforms all the baselines.

In [17], the reconstruction error was evaluated by first aligning the estimated skeleton to

the ground-truth one by Procrustes transformation, and we confirmed through personal com-

munication that the same protocol was used in [171]. To compare our results to those of these

state-of-the-art methods, we therefore also report in Table 4.2 the joint error after Procrustes

transformation. Altogether, by leveraging the power of deep neural networks and accounting

for the dependencies between body parts, ResNet-Autoencoder significantly outperforms the

state-of-the-art.

We further evaluated our approach on the official test set of Human3.6m for two different

actions. We obtained a pose reconstruction error of 64.38 and 63.86 mm for the Directions

and Discussion actions, respectively. Our method currently ranks second in the leaderboard for

these two actions. Note that the first ranking method [150] relies on the knowledge of body part

segmentations whereas we do not use this additional piece of ground-truth information.

To validate our design choices, we report in Table 4.3, the pose estimation accuracies obtained

with various autoencoder configurations using the shallow network depicted in Fig. 4.2. The

results reported in Tables 4.1 and 4.2 were obtained using a two layer autoencoder. However,

as discussed in Section 4.1.1 our formalism applies to autoencoders of any depth. Therefore,

in Table 4.3(a), we also report results obtained using a single layer one obtained by turning

off the final fine-tuning of Section 4.1.3. For completeness, we also report results obtained by

using a CNN similar to the one of Fig. 4.2(b) to regress directly to a 51-dimensional 3D pose

vector without using an autoencoder at all. We will refer to it as CNN-Direct. We found that

both kinds of autoencoders perform similarly and better than CNN-Direct, especially for actions

such as Taking Photo and Walking Dog that involve interactions with the environment and are

thus physically more constrained. This confirms that the power of our method comes from

autoencoding. Furthermore, as expected, fine-tuning consistently improves the results.

During fine-tuning, our complete network has more fully-connected layers than CNN-Direct.

One could therefore argue that the additional layers are the reason why our approach outperforms

it. To disprove this, we evaluated the baseline, CNN-ExtraFC, in which we simply add one

more fully-connected layer. We also evaluated another baseline, CNN-PCA, in which we replace

our autoencoder latent representation by a PCA-based one. In Table 4.3(b), we show that our

approach significantly outperforms these two baselines on the Taking Photo action. This suggests

that our overcomplete autoencoder yields a representation that is more discriminative than other

latent ones. Among the different PCA configurations, the one with 40 dimensions performs the

best. However, training an autoencoder with 40 dimensions outperforms it.
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Model Discussion Eating Greeting Taking Photo Walking Walking Dog

CNN-Direct 135.36 105.98 133.35 177.62 77.73 153.02

OURS-Autoencoder, 1 layer no FT 134.02 96.01 127.58 158.73 68.55 146.28

OURS-Autoencoder, 2 layer no FT 129.67 98.57 124.80 162.69 73.47 146.46

OURS-Autoencoder, 1 layer with FT 130.07 94.08 121.96 158.51 65.83 135.35

OURS-Autoencoder, 2 layer with FT 129.06 91.43 121.68 162.17 65.75 130.53

Model Joint error

CNN-Direct 177.62

CNN-ExtraFC[2000] 179.29

CNN-PCA[30] 170.74

CNN-PCA[40] 167.62

CNN-PCA[51] 182.64

OURS-Autoencoder[40] 165.11

OURS-Autoencoder[2000] 158.51

(a) (b)

Table 4.3: Ablation studies for our structured prediction approach. Average Euclidean

distance in mm between the ground-truth 3D joint locations and those computed (a) using either

no autoencoder at all (CNN) or 1-layer and 2-layer encoders (OURS-Autoencoder), with or

without fine-tuning (FT), (b) by replacing the autoencoder by either an additional fully-connected

layer (CNN-ExtraFC) or a PCA layer (CNN-PCA) on the sequences of Taking Photo action class.

The bracketed numbers denote the various dimensions of the additional layer we tested. Our

approach again yields the most accurate predictions.

To learn a more powerful latent pose space, we exploit additional motion capture data from

the MPI-INF-3DHP dataset [124] for training the autoencoder. In Table 4.4, we report results

with and without this additional data. We achieve better pose estimation accuracy when we train

on a wider range of poses. As Human3.6m already includes a large variety of poses and the

marker placements between the two datasets do not exactly match each other, we only observe a

slight improvement. However, our results suggest that training an autoencoder on a larger pose

space without any dataset bias would result in an even more representative latent pose space

and, eventually, a higher pose estimation accuracy. We further compare our autoencoder-based

regression approach to a direct regression baseline. The relative contribution of the autoencoder

on very deep neural networks is smaller than that on a shallower network. However, we still

increase the accuracy by applying our autoencoder training on top of the ResNet architecture.

Model Directions Discussion Eating Greeting Phone Talk Posing Buying Sitting

ResNet 56.77 64.73 60.94 63.49 74.98 57.65 61.08 81.29

ResNet-Autoencoder w/o ExtraMocap 57.84 64.62 59.41 62.83 71.52 57.50 60.38 80.22
ResNet-Autoencoder w/ ExtraMoCap 55.87 63.65 59.08 62.64 72.08 56.15 58.88 80.53

Model Sitting Down Smoking Taking Photo Waiting Walking Walking Dog Walking Pair Average

ResNet 102.45 66.65 80.96 60.87 53.26 70.27 60.95 68.29

ResNet-Autoencoder w/o ExtraMoCap 104.14 66.31 80.50 61.20 52.55 69.97 60.08 67.27

ResNet-Autoencoder w/ ExtraMoCap 102.30 65.68 78.25 59.05 51.81 68.44 58.19 66.17

Table 4.4: Evaluation of our structured prediction approach with very deep network archi-
tectures. Average Euclidean distance in mm between the ground-truth and predicted 3D joint

locations of a direct ResNet regressor, ResNet-Autoencoder trained with only motion capture data

from Human3.6m and ResNet-Autoencoder trained with motion capture data from Human3.6m

and MPI-INF-3DHP.

Following [80], we show in Fig. 4.5 the differences between the ground-truth limb ratios and

the limb ratios obtained from predictions based on KDE, CNN-Direct and our autoencoder-based

approach. These results demonstrate that our predictions better preserve these limb ratios, and
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thus better model the dependencies between joints.

In Fig. 4.6, we visualize the latent space learned by the autoencoder after embedding it

in 2D using the t-SNE algorithm [120]. It can be seen that the upper left corner spans the

downward-facing body poses, the diagonal includes mostly the upright body poses and the lower

right corner clusters the forward-facing body poses sitting on the ground. Note that our latent

representation covers the entire low-dimensional space, thus making it well-suited to discriminate

between poses with small variations.

(a) (b)

(c) (d)

Model Lower Body Upper Body Full Body

KDE [81] 1.02 7.18 16.43

CNN 0.57 6.86 14.97

OURS-Autoencoder no FT 0.62 5.30 11.99

OURS-Autoencoder with FT 0.77 5.43 11.90

(e)

Figure 4.5: Analysis on structure preservation ability of our approach. Matrix of differences

between estimated log of limb length ratios and those computed from ground-truth poses. The

rows and columns correspond to individual limbs. For each cell, the ratios are computed by

dividing the limb length in the horizontal axis by the one in the vertical axis as in [80] for (a)
KDE [81], (b) CNN-Direct as in Table 4.3, and (c,d) our method without and with fine-tuning.

An ideal result would be one in which all cells are blue, meaning the limb length ratios are

perfectly preserved. Best viewed in color. (e) Sum of the log of limb length ratio errors for

different parts of the human body. All methods perform well on the lower body. However, ours

outperforms the others on the upper body and when considering all ratios in the full body.

We further report single-image 3D pose estimation accuracy on the HumanEva-I dataset in

Table 4.5 and show qualitative pose estimation results in Fig. 4.7. We follow the protocol adopted

in the state-of-the-art approaches to 3D inference from 2D body part detections [184] and to
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Figure 4.6: Visualization of the learned latent pose space. t-SNE embedding [120] for the

latent representation of the poses from the Sitting Down category in Human3.6m.

(a) Image (b) Prediction (c) GT (d) Image (e) Prediction (f) GT

Figure 4.7: Pose estimation results of our structured prediction approach on HumanEva-I.
(a,d) Input images. (b,e) Recovered pose. (c,f) Ground truth. Best viewed in color.
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3D model-fitting [17, 233]. Following these methods, we measure 3D pose error after aligning

the prediction to the ground-truth by a rigid transformation. Note that [233] uses video instead

of a single frame for prediction. Our method outperforms the state-of-the-art on this standard

benchmark.

Method S1 S2 S3 Average

Simo-Serra et al. [184] 65.1 48.6 73.5 62.4

Bogo et al. [17] 73.3 59.0 99.4 77.2

Zhou et al. [233] 34.2 30.9 49.1 38.07

OURS-Autoencoder 29.32 17.94 59.51 35.59

Table 4.5: Quantitative results of our structured prediction approach on Walking sequences
of the HumanEva-I dataset [182]. S1, S2 and S3 correspond to Subject 1, 2, and 3, respectively.

The accuracy is reported in terms of average Euclidean distance (in mm) between the predicted

and ground-truth 3D joint positions.

On the KTH Multiview Football II dataset, we compare our autoencoder-based approach

against [26], which is the only monocular single-image 3D pose estimation method publishing

results on this dataset so far. As can be seen in Table 4.6, we outperform the PCP accuracy of

this baseline significantly on all body parts except for the pelvis. Fig. 4.8 depicts example pose

estimation results on this dataset.

Method: Pelvis Torso Upper Arms Lower arms Upper Legs Lower Legs All parts

[26] 97 87 14 6 63 41 43

OURS-Autoencoder 66 100 66.5 16.5 83 66.5 63.1

Table 4.6: Evaluation of our structured prediction approach on KTH Multiview Football
II. On this dataset we compare our method that uses a single image to that of [26]. We rely on the

percentage of correctly estimated parts (PCP) score to evaluate performance as in [26]. Higher

PCP score corresponds to better 3D pose estimation accuracy.

In Fig. 5.11, we provide additional qualitative results on the LSP dataset, which features

challenging poses. Our autoencoder-based regression approach nevertheless delivers accurate 3D

predictions.

4.3.4.2 Human Pose from Video

In Table 4.7, we demonstrate the effectiveness of imposing temporal consistency using LSTMs

on Human3.6m, as described in Section 4.2. We compare our results with and without LSTMs

against those of [44,197,233], which also rely on video sequences. On average, our LSTM-based

approaches applied to the 3D pose predictions of ResNet-Autoencoder bring an improvement

over single-image results, with the one of Section 4.2.2.2 that enforces temporal consistency at

pose level being significantly better than the other. Using standard LSTMs instead of BLSTMs
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(a) Image (b) Prediction (c) GT (d) Image (e) Prediction (f) GT

Figure 4.8: Pose estimation results of our structured prediction approach on KTH Multi-
view Football II. (a, d) Input images. (b, e) Recovered pose. (c, f) Ground truth. Best viewed in

color.

(a) Image (b) Prediction (c) Image (d) Prediction

Figure 4.9: Pose estimation results of our structured prediction approach on LSP. (a,c) Input

images. (b,d) Recovered pose. We trained our network on the recently released synthetic dataset

of [30] and tested it on the LSP dataset. The quality of the 3D pose predictions demonstrates the

generalization of our method. In the last row, we show failure cases in the 3D pose prediction of

lower legs due to foreshortening (left) and orientation ambiguities (right).
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degrades the accuracy but eliminates the latency involved in working on image batches, which

can be a worthwhile trade-off if real-time performance is required.

Model Directions Discussion Eating Greeting Phone Talk Posing Buying Sitting

OURS (ResNet-Autoencoder) 57.84 64.62 59.41 62.83 71.52 57.50 60.38 80.22

OURS-LSTM-Pose 55.63 64.55 57.56 62.20 70.71 56.52 57.37 78.93

OURS-BLSTM-Pose 54.93 63.26 57.26 62.30 70.28 56.66 57.08 78.98

OURS-LSTM-Feature 71.34 68.88 67.12 75.87 79.36 66.19 61.49 83.28

OURS-BLSTM-Feature 70.01 68.74 64.64 75.90 78.99 64.21 60.50 83.10

Model Sitting Down Smoking Taking Photo Waiting Walking Walking Dog Walking Pair Average

OURS (ResNet-Autoencoder) 104.14 66.31 80.50 61.20 52.55 69.97 60.08 67.27

OURS-LSTM-Pose 98.47 64.43 77.18 62.32 50.12 67.50 66.77 66.02

OURS-BLSTM-Pose 97.13 64.29 77.40 61.94 49.76 67.11 62.26 65.37

OURS-LSTM-Feature 97.66 71.51 83.93 78.67 63.69 73.23 69.03 74.08

OURS-BLSTM-Feature 96.44 70.29 83.51 77.83 62.02 71.11 69.55 73.52

Table 4.7: Analysis of our different (B)LSTM architectures. Error is given in average Eu-

clidean distance in mm between the ground-truth 3D joint locations and the predictions obtained

by our ResNet-Autoencoder approach evaluated using different LSTM architectures on video

data.

As shown in Table 4.8, our LSTM units improves the pose estimation accuracy on average by

approximately 3% and our ResNet-based results are significantly more accurate than the other

methods, with an average pose estimation accuracy of 65.37 mm vs 124.97 mm for [197], 113.01

mm for [233] and 126.47 mm for [44]. Fig. 4.10 depicts example pose estimation results of our

BLSTM approach compared to our autoencoder-based approach based on a single image.

We further compare our OURS-BLSTM-Pose model with a network where the BLSTM was

replaced by two fully-connected layers, thus giving it a similar capacity as the BLSTM one,

but not explicitly modeling temporal consistency. This model gives an average pose estimation

accuracy on all Human3.6m actions of 77.96 mm, whereas our BLSTM-based model achieves

65.37 mm. Our method significantly outperforms this baseline, thus showing that the better

performance of our LSTM-based networks does not just come from their larger number of

parameters, but truly from their ability to model temporal information.

4.3.5 Comparison Between KDE and Autoencoders

In Table 4.9, we compare two structured 3D human pose estimation methods: Our autoencoder-

based deep network approach and kernel dependency estimation (KDE) [80, 81]. In the earlier

works of [80] and [81], KDE is applied to handcrafted HOG features, whereas in our approach we

rely on deep features. In order to compare the structured regression performance of KDE to our

autoencoder-based approach, we also applied KDE to the deep features extracted from a CNN.

We extract either the features from the last convolutional layer (Conv3) or the last fully-connected

layer (FC3) of the network depicted in Fig. 4.2(b). As can be seen in Table 4.9, we consistently
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Model Directions Discussion Eating Greeting Phone Talk Posing Buying Sitting

Du et al. [44] 85.07 112.68 104.90 122.05 139.08 105.93 166.16 117.49

Tekin et al. [197] 102.41 147.72 88.83 125.28 118.02 112.3 129.17 138.89

Zhou et al. [233] 87.36 109.31 87.05 103.16 116.18 106.88 99.78 124.52

OURS (ResNet-Autoencoder) 57.84 64.62 59.41 62.83 71.52 57.50 60.38 80.22

OURS-BLSTM-Pose 54.93 63.26 57.26 62.30 70.28 56.66 57.08 78.98

Model Sitting Down Smoking Taking Photo Waiting Walking Walking Dog Walking Pair Average

Du et al. [44] 226.04 120.02 135.91 117.65 99.26 137.36 106.54 126.47

Tekin et al. [197] 224.90 118.42 182.73 138.75 55.07 126.29 65.76 124.97

Zhou et al. [233] 199.23 107.42 143.32 118.09 79.39 114.23 97.70 113.01

OURS (ResNet-Autoencoder) 104.14 66.31 80.50 61.20 52.55 69.97 60.08 67.27

OURS-BLSTM-Pose 97.13 64.29 77.40 61.94 49.76 67.11 62.26 65.37

Table 4.8: Comparison of our (B)LSTM-based architectures to the state of the art. Error is

given average Euclidean distance in mm between the ground-truth 3D joint locations and the pre-

dictions obtained by our ResNet-Autoencoder approach with and without BLSTM regularization

on output poses, compared to [44, 197, 233].

(a) t −k (b) t (c) t +k (d) t −k (e) t (f) t +k

Figure 4.10: Pose estimation results with LSTMs on Human3.6m. (a,d) t −kth frame. (b,e)
t th frame. (c,g) t +kth frame. k denotes the stride between consecutive frames. Top row: Input

image, Second row: Our pose estimate from the single image, Third row: Our BLSTM pose

estimate, Last row: Ground truth. Our BLSTM network can correct for the errors made by the

autoencoder by accounting for the temporal consistency. Best viewed in color.
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outperform all the baselines, which demonstrates the power of autoencoding.

Model Directions Discussion Eating Greeting Phone Talk Posing Buying Sitting

HOG + KDE [81] 132.71 183.55 132.37 164.39 162.12 150.61 171.31 151.57

Conv3 Feat. + KDE 99.13 160.84 112.10 137.32 137.97 118.16 137.13 153.79

FC3 Feat. + KDE 99.06 160.39 104.53 132.01 132.35 118.13 144.36 149.80

CNN-Direct 106.23 161.54 108.42 136.15 136.21 123.37 148.68 157.15

OURS-Autoencoder 94.98 129.06 91.43 121.68 133.54 115.13 133.76 140.78

Model Sitting Down Smoking Taking Photo Waiting Walking Walking Dog Walking Pair Average

HOG + KDE [81] 243.03 162.14 205.94 170.69 96.60 177.13 127.88 162.14

Conv3 Feat. + KDE 190.48 137.06 181.77 151.15 93.97 149.81 120.46 138.74

FC3 Feat. + KDE 206.35 133.91 169.31 150.76 86.44 144.83 113.20 136.36

CNN-Direct 217.88 136.59 169.42 157.71 88.75 149.58 115.02 140.85

OURS-Autoencoder 214.52 121.26 162.17 138.2 65.75 130.53 113.34 127.07

Table 4.9: Comparison of our structured prediction approach to KDE. Error is given in

average Euclidean distance in mm between the ground-truth 3D joint locations and those predicted

by competing methods [81] and ours.

Layer Configuration Greeting

[40] 129.49

[500] 123.95

[1000] 121.96

[2000] 121.96
[3000] 123.49

[250-250] 125.61

[300-300] 121.68
[250-500] 128.98

[500-1000] 126.52

[200-200-200] 126.78

[500-500-500] 127.73

Table 4.10: Analysis on the parameter choices for our structured prediction approach. Error

is given in average Euclidean distance in mm between the ground-truth 3D joint locations and

the ones predicted by our approach trained using autoencoders in various configurations, with

different number of layers and number of channels per layer as indicated by the bracketed

numbers. This validation was performed on the Greeting action and the optimal values used for

all other actions.

4.3.6 Parameter Choices

In Table 4.10, we compare the results of different autoencoder configurations in terms of number

of layers and channels per layer on the Greeting action. Similarly to what we did in Table 4.3(b),

the bracketed numbers denote the dimension of the autoencoder’s hidden layers. We obtained the

best result for 1 layer with 2000 channels or 2 layers with 300-300 channels. These values are

those we used for all the experiments described above. They were chosen for a single action and

used unchanged for all others, thus demonstrating the versatility of our approach.
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4.4 Conclusion

We have introduced a novel Deep Learning regression architecture for structured prediction of

3D human pose from a monocular image or a 2D joint location heatmap. We have shown that

our approach to combining autoencoders with CNNs accounts for the dependencies between

the human body parts efficiently and significantly improves accuracy. We have also shown that

accounting for the temporal information with LSTMs further increases the accuracy of our pose

estimates. Since our framework is generic, in future work, we intend to apply it to other structured

prediction problems, such as deformable surface reconstruction.
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5 Learning to Fuse 2D and 3D Image
Cues for Monocular Body Pose Esti-
mation
Monocular 3D human pose estimation is a longstanding problem of Computer Vision. Over the

years, two main classes of approaches have been proposed: Discriminative ones that directly

regress 3D pose from image data [1,16,89,138,166,203] and generative ones that search the pose

space for a plausible body configuration that aligns with the image data [54, 177, 204]. With the

advent of ever larger datasets [81], models have evolved towards deep architectures, but the story

remains largely unchanged. The state-of-the-art approaches can be roughly grouped into those

that directly regress 3D pose from images [81,108,195,197] and those that first predict a 2D pose

in the form of joint location confidence maps and fit a 3D model to this 2D prediction [17, 233].

Since detecting the 2D image location of joints is easier than directly inferring the 3D pose, it

can be done more reliably. However, inferring a 3D pose from these 2D locations is fraught with

ambiguities and the above-mentioned methods usually rely on a database of 3D models to resolve

them, at the cost of a potentially expensive run-time fitting procedure. By contrast, the methods

that regress directly to 3D avoid this extra step but also do not benefit of the well-posedness of

the 2D joint detection location problem.

In this chapter, we propose the novel architecture depicted by Fig. 5.1 designed to deliver

the best of both worlds. The first stream, which we will refer to as the Confidence Map Stream,

first computes a heatmap of 2D joint locations and then infer the 3D poses from it. The second

stream, which we will dub the Image Stream, is designed to produce features that complement

those computed by the first stream and can be used in conjunction with them to compute the 3D

pose, that is, guide the regression process given the 2D locations.

However, for this approach to be beneficial, effective fusion of the two streams is crucial. In

theory, it could happen at any stage of the two streams, ranging from early to late fusion, with no
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Figure 5.1: Overview of our fusion approach for 3D human pose estimation. One stream of

our network accounts for the 2D joint locations and the corresponding uncertainties. The second

one leverages all 3D image cues by directly acting on the image. The outputs of these two streams

are then fused to obtain the final 3D human pose estimate.

principled way to choose one against the other. We therefore also developed a trainable fusion

scheme that learns how to fuse the two streams.

Ultimately, our approach allows the network to still exploit image cues while inferring 3D

poses from 2D joint locations. As we demonstrate in our experiments, the features computed

by both streams are decorrelated and therefore truly encode complementary information. Our

contributions can be summarized as follows:

• We introduce a discriminative fusion framework to simultaneously exploit 2D joint location

confidence maps and 3D image cues for 3D human pose estimation.

• We introduce a novel trainable fusion scheme, which automatically learns where and how

to fuse these two sources of information.

We show that our approach significantly outperforms the state-of-the-art results on standard

benchmarks and yields accurate pose estimates from images acquired in unconstrained outdoors

environments.
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cmim

(a) Early fusion

cm

im

(b) Fusion at a specific layer

im

cm

(c) Late fusion

Figure 5.2: Three different instances of hard-coded fusion for 3D human pose estimation.
The fusion strategies combine 2D joint location confidence maps with 3D cues directly extracted

from the input image.

5.1 Approach

Our goal is to increase the robustness and accuracy of monocular 3D pose estimation by exploiting

image cues to the full while also taking advantage of the fact that 2D joint locations can be reliably

detected by modern CNN architectures. To this end, we designed the two stream architecture

depicted by Fig. 5.1. The Confidence Map Stream shown at the top first computes a heatmap

of 2D joint locations from which feature maps can be computed. The Image Stream shown at

the bottom extracts additional features directly from the image and all these features are fused to

produce a final 3D pose vector.

As shown in Fig. 5.2, there is a whole range of ways to perform the fusion of these two data

streams, ranging from early to late fusion with no obvious way to choose the best, which might
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Figure 5.3: Trainable fusion architecture. The first two streams take as input the image and

2D joint location confidence maps, respectively. The combined feature maps of the image and

confidence map stream are fed into the fusion stream and linearly combined with the outputs of

the previous fusion layer. The linear combination of the streams is controlled by a weight vector

shown at the bottom part of the figure. The numbers below each layer represent the corresponding

size of the feature maps for convolutional layers and the number of neurons for fully connected

ones.

well be problem-dependent anyway. To solve this conundrum, we rely on the fusion architecture

depicted by Fig. 5.3, which involves introducing a third fusion stream that combines the feature

maps produced by the two data streams in a trainable way. Each layer of the fusion stream acts

on a linear combination of the previous fusion layer with the concatenation of the two data stream

outputs. In effect, different weight values for these linear combinations correspond to different

fusion strategies.

In the remainder of this section, we formalize this generic architecture and study different

ways to set these weights, including learning them along with the weights of the data streams,

which is the approach we advocate.

5.1.1 Fusion Network

Let {Il }L
l=0 be the feature maps of the image stream and {Xl }L

l=0 be the feature maps of the

confidence map stream. As special cases, I0 : [1,3]× [1, H ]× [1,W ] → [0,1] is the input RGB

image, and X0 : [1, J ]× [1, H ]× [1,W ] →+ are the confidence maps encoding the probability of

observing each one of J body joints at any given image location. The feature maps Il and Xl at

each layer l must coincide in width and height but can have different number of channels. In the
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following, we denote each feature map at level l as both the output of layer l and the input to

layer l +1.

Let {Zl }L+1
l=0 be the feature maps of the fusion stream. The feature map Zl is the output of

layer l , but, unlike in the data streams, the input to layer l +1 is a linear combination of Zl with

Il and Xl given by

(1−wl ) ·concat(Il ,Xl )+wl ·Zl , 1 ≤ l ≤ L, (5.1)

where concat(·, ·) is the concatenation of the given feature maps along the channel axis, and wl is

the l -th element of the fusion weights w ∈ [0,1]L controlling the mixture. For this mixture to be

possible, Zl must have the same size as Il and Xl and a number of channels equal to the sum of

the number of channels of Il and Xl . As special cases, Z0 = concat(I0,X0), and ZL+1 ∈R3J is the

output of the network, that is, the J predicted 3D joint locations.

In essence, the fusion weights w control where and how the fusion of the data streams occurs.

Different settings of these weights lead to different fusion strategies. We illustrate this with two

special cases below, and then introduce an to automatically learn these weights together with the

other network parameters.

Early fusion. If the fusion weights are all set to one, w = 1, the two data streams are ignored,

and only the fusion one is considered to compute the output. Since the fusion stream takes the

concatenation of the image I0 and the confidence maps X0 as input, this is equivalent to the early

fusion architecture of Fig. 5.2(a).

Fusion at a specific layer. Instead of fusing the streams in the very first layer, one might want

to postpone the fusion point to a later layer β ∈ {0, · · · ,L}. In our formalism, this can be achieved

by setting the fusion weights to wl = I[l > β], where I is the indicator function. For example,

when β= 4, our network becomes equivalent to the one depicted by Fig. 5.2(b). The early and

late fusion architectures of Fig. 5.2(a, c) can also be represented in this manner by setting β= 0

and β= L, respectively.

Ultimately, the complete fusion network encodes a function f (i,x;θ,w) = ZL+1|I0=i,X0=x

mapping from an image i and confidence maps x to the 3D joint locations, parametrized by layer

weights θ and fusion weights w. With manually-defined fusion weights, given a set of N training

pairs (in ,xn) with corresponding ground-truth joint positions yn , the parameters θ can be learnt

by minimizing the square loss expressed as

L(θ) =
N∑

n=1

∥∥ f (in ,xn ;θ,w)−yn
∥∥2

2 . (5.2)
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Trainable fusion. Setting the weights manually, which in our formalism boils down to choosing

β, is not obvious; the best value for β will typically depend on the network architecture, the

problem and the nature of the input data. A straightforward approach would consist of training

networks for all possible values of β to validate the best one, but this quickly becomes impractical.

To address this issue, we introduce a trainable fusion approach, which aims to learn β from

data jointly with the network parameters. To this end, however, we cannot directly use the

indicator function, which has zero derivatives almost everywhere, thus making it inapplicable

to gradient-based optimization. Instead, we propose to approximate the indicator function by a

sigmoid function

wl =
1

1+e−α·(l−β)
, (5.3)

parameterized by α and β. As above, β determines the stage at which fusion occurs and α controls

how sharp the transition between weights with value 0 and with value 1 is. When α→∞, the

function in Eq. 5.3 becomes equivalent to the indicator function1, while, when α= 0, the network

mixes the data and fusion streams in equal proportions at every layer.

In practice, mixing the data and fusion streams at every layer is not desirable. First, by contrast

to having binary weights w, which deactivate some of the layers of each stream, it corresponds to

a model with a very large number of active parameters, and thus prone to overfitting. Furthermore,

after training, a model with binary weights can be pruned, by removing the inactive layers in each

stream, that is all layers l from the fusion stream where wl ≈ 0, and all layers l from the data

streams where wl ≈ 1. This yields a more compact, and thus more efficient network for test-time

prediction.

To account for this while learning where to fuse the information sources, we modify the loss

function of Eq. 5.2 by incorporating a term that penalizes small values of α and favors sharp

fusions. This yields a loss of the form

L(θ,α,β) =
N∑

n=1

∥∥ f (in ,xn ;θ,α,β)−yn
∥∥2

2 +
λ

α2 , (5.4)

with α and β as trainable parameters, in addition to θ, and a hyperparameter λ weighing the

penalty term. Altogether, this loss lets us simultaneously find the most suitable fusion layer β for

the given data and the corresponding network parameters θ, while encouraging a sharp fusion

function to mimic the behavior of the indicator function.

1Except at l =β.
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In practice, we initialize α with a small value of 0.1 and β to the middle layer of the complete

network. We use the ADAM [94] gradient update method with a learning rate of 10−3 to guide the

optimization. We set the regularization parameter to 5 ·103, which renders the magnitude of both

the regularization term and the main cost comparable. We use dropout and data augmentation to

prevent overfitting.

5.1.2 2D Joint Location Confidence Map Prediction

Our approach depends on generating heatmaps of thfe 2D joint locations that we can feed as

input to the confidence map stream. To do so, we rely on a fully-convolutional network with skip

connections [132]. Given an RGB image as input, it performs a series of convolutions and pooling

operations to reduce its spatial resolution, followed by upconvolutions to produce pixel-wise

confidence values for each pixel. We employed the stacked hourglass network design of [132],

which carries out repeated bottom-up, top-down processing to capture spatial relationships in the

image. We perform heatmap regression to assign high confidence values to the most likely joint

positions. In our experiments, we fine-tuned the hourglass network initially trained on the MPII

dataset [7] using the training data specific to each experiment as a preliminary step to training

our fusion network. In practice, we have observed that using the more accurate 2D joint locations

predicted by the stacked network architecture improves the overall 3D prediction accuracy over

using those predicted by a single-stage fully-convolutional network, such as [164]. Ultimately,

these predictions provide reliable intermediate features for the 3D pose estimation task.

5.2 Results

In this section, we first describe the datasets we tested our approach on and the corresponding

evaluation protocols. We then compare our approach against the state-of-the-art methods and

provide a detailed analysis of our general framework.

5.2.1 Datasets

We evaluate our approach on the Human3.6m [81], HumanEva-I [182], KTH Multiview Football

II [26] and Leeds Sports Pose (LSP) [86] datasets described below.

Human3.6m is a large and diverse motion capture dataset including 3.6 million images with

their corresponding 2D and 3D poses. The poses are viewed from 4 different camera angles. The

subjects carry out complex motions corresponding to daily human activities. We use the standard

17 joint skeleton from Human3.6m as our pose representation.

67



Chapter 5. Learning to Fuse 2D and 3D Image Cues for Monocular Body Pose
Estimation

HumanEva-I comprises synchronized images and motion capture data and is a standard bench-

mark for 3D human pose estimation. The output pose is a vector of 15 3D joint coordinates.

KTH Multiview Football II provides a benchmark to evaluate the performance of pose estima-

tion algorithms in unconstrained outdoor settings. The camera follows a soccer player moving

around the pitch. The videos are captured from 3 different camera viewpoints. The output pose is

a vector of 14 3D joint coordinates.

LSP is a standard benchmark for 2D human pose estimation and does not contain any ground-

truth 3D pose data. The images are captured in unconstrained outdoor settings. 2D pose is

represented in terms of a vector of 14 joint coordinates. We report qualitative 3D pose estimation

results on this dataset.

5.2.2 Evaluation Protocol

On Human3.6m, we used the same data partition and evaluation protocol as in earlier work [44,

108,109,110,137,138,163,195,197,199,232,233] for a fair comparison. The data from 5 subjects

(S1, S5, S6, S7, S8) was used for training and the data from 2 different subjects (S9, S11) was

used for testing. We evaluate the accuracy of 3D human pose estimation in terms of average

Euclidean distance between the predicted and ground-truth 3D joint positions. Training and

testing were carried out monocularly in all camera views.

In [17]2 and [171]3 the estimated skeleton was first aligned to the ground-truth one by

Procrustes transformation before measuring the joint distances. This is therefore what we also do

when comparing against [17, 171].

On HumanEva-I, following the standard evaluation protocol [17, 184, 197, 223, 233], we

trained our model on the training sequences of subjects S1, S2 and S3 and evaluated on the

validation sequences of all subjects. We pretrained our network on Human3.6m and used only

the first camera view for further training and validation.

On the KTH Multiview Football II dataset, we evaluate our method on the sequence containing

Player 2, as in [13, 26, 138, 197]. Following [13, 26, 138, 197], the first half of the sequence from

camera 1 is used for training and the second half for testing. To compare our results to those

of [13, 26, 138, 197], we report accuracy using the percentage of correctly estimated parts (PCP)

score. Since the training set is quite small, we propose to pretrain our network on the recent

2The pose estimation network in [17] is not trained on the Human3.6m data, however we also include their

quantitative results for completeness.
3This it is not explicitly stated in [171], but the authors confirmed this to us by email.
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synthetic dataset [30], which contains images of sports players with their corresponding 3D poses.

We then fine-tuned it using the training data from KTH Multiview Football II. We report results

with and without this pretraining.

5.2.3 Comparison to the State-of-the-Art

We first compare our approach with state-of-the-art baselines on the Human3.6m [81], Hu-

manEva [182] and KTH Multiview Football [26] datasets.

Human3.6m. In Table 5.1, we compare the results of our trainable fusion approach with those

of the following state-of-the-art single image-based methods: KDE regression from HOG features

to 3D poses [81], jointly training a 2D body part detector and a 3D pose regressor [108, 137], the

maximum-margin structured learning framework of [109, 110], the deep structured prediction

approach of [195], pose regression with kinematic constraints [232], pose estimation with mocap

guided data augmentation [163], volumetric pose prediction approach of [138] and lifting 2D

heatmap predictions to 3D human pose [199]. For completeness, we also compare our approach

to the following methods that rely on either multiple consecutive images or impose temporal

consistency: regression from short image sequences to 3D poses [197], fitting a sparse 3D pose

model to 2D confidence map predictions across frames [233], and fitting a 3D pose sequence to

the 2D joints predicted by images and height-maps that encode the height of each pixel in the

image with respect to a reference plane [44].

As can be seen from the results in Table 5.1, our approach improves upon the state-of-the-art

in overall pose estimation accuracy. In particular, we outperform the image-based regression

methods of [81, 108, 109, 110, 137, 195, 199, 232], as well as the model-fitting strategy of [109,

110, 233]. This, we believe, clearly evidences the benefits of fusing 2D joint location confidence

maps with 3D image cues, as done by our approach. By leveraging reliable 2D joint location

estimates, [138] also yields accurate 3D pose estimates, however our approach outperforms it

on average across the entire dataset. Furthermore, we also achieve lower error than the method

of [163], despite the fact that it relies on additional training data. Even though our algorithm uses

only individual images, it also outperforms the methods that rely on sequences [44, 197, 233].

Since results are reported in [17, 171] for the average accuracy over all actions using the

Procrustes transformation, as explained in Section 5.2.2, we do the same when comparing against

these methods. Table 5.2 shows that we also outperform these baselines by a large margin.
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Input Method Directions Discussion Eating Greeting Phone Talk Posing Buying Sitting Sitting Down

Single-Image

Ionescu et al. [81] 132.71 183.55 132.37 164.39 162.12 150.61 171.31 151.57 243.03

Li & Chan [108] - 148.79 104.01 127.17 - - - - -

Li et al. [109] - 134.13 97.37 122.33 - - - - -

Li et al. [110] - 133.51 97.60 120.41 - - - - -

Zhou et al. [233] - - - - - - - - -

Rogez & Schmid [163] - - - - - - - - -

Tekin et al. [195] - 129.06 91.43 121.68 - - - - -

Park et al. [137] 100.34 116.19 89.96 116.49 115.34 117.57 106.94 137.21 190.82

Zhou et al. [232] 91.83 102.41 96.95 98.75 113.35 90.04 93.84 132.16 158.97

Tome et al. [199] 64.98 73.47 76.82 86.43 86.28 68.93 74.79 110.19 173.91

Pavlakos et al. [138] 67.38 71.95 66.70 69.07 71.95 65.03 68.30 83.66 96.51

Video

Tekin et al. [197] 102.41 147.72 88.83 125.28 118.02 112.3 129.17 138.89 224.90

Zhou et al. [233] 87.36 109.31 87.05 103.16 116.18 106.88 99.78 124.52 199.23

Du et al. [44] 85.07 112.68 104.90 122.05 139.08 105.93 166.16 117.49 226.94

Single-Image Ours (GM) 53.91 62.19 61.51 66.18 80.12 64.61 83.17 70.93 107.92

Single-Image Ours (ASM) 54.23 61.41 60.17 61.23 79.41 63.14 81.63 70.14 107.31

Input Method: Smoking Taking Photo Waiting Walking Walking Dog Walking Pair Avg. (6 Actions) Avg. (All)

Single-Image

Ionescu et al. [81] 162.14 205.94 170.69 96.60 177.13 127.88 159.99 162.14

Li & Chan [108] - 189.08 - 77.60 146.59 - 132.20 -

Li et al. [109] - 166.15 - 68.51 132.51 - 120.17 -

Li et al. [110] - 163.33 - 73.66 135.15 - 121.55 -

Zhou et al. [233] - - - - - - - 120.99

Rogez & Schmid [163] - - - - - - - 121.20

Tekin et al. [195] - 162.17 - 65.75 130.53 - 116.77 -

Park et al. [137] 105.78 149.55 125.12 62.64 131.90 96.18 111.12 117.34

Zhou et al. [232] 106.91 125.22 94.41 79.02 126.04 98.96 104.73 107.26

Tome et al. [199] 84.95 110.67 85.78 71.36 86.26 73.14 84.17 88.39

Pavlakos et al. [138] 71.74 76.97 65.83 59.11 74.89 63.24 69.78 71.90

Video

Tekin et al. [197] 118.42 182.73 138.75 55.07 126.29 65.76 120.99 124.97

Zhou et al. [233] 107.42 143.32 118.09 79.39 114.23 97.70 106.07 113.01

Du et al. [44] 120.02 135.91 117.65 99.26 137.36 106.54 118.69 126.47

Single-Image Ours (GM) 70.44 79.45 68.01 52.81 77.81 63.11 66.66 70.81

Single-Image Ours (ASM) 69.29 78.31 70.27 51.79 74.28 63.24 64.53 69.73

Table 5.1: Comparison of our fusion approach with the state-of-the-art algorithms on Hu-
man3.6m. We report 3D joint position errors in mm, computed as the average Euclidean distance

between the ground-truth and predicted joint positions. (ASM) refers to an action-specific model

in which a separate regressor is trained for each action and (GM) refers to a single general model

trained on the whole training set. While [138, 199, 232] train single models, the rest carry out

action-specific training.

Method: 3D Pose Error

Sanzari et al. [171] 93.15

Bogo et al. [17] 82.3

Ours 50.12

Table 5.2: Comparison of our fusion approach to the state-of-the-art methods that use
Procrustes transformation on Human3.6m. We report 3D joint position errors (in mm).
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HumanEva. In Table 5.3, we present the performance of our fusion approach on the HumanEva-

I dataset [182]. We adopted the evaluation protocol described in [17, 184, 223, 233] for a fair

comparison. As in [17, 184, 223, 233], we measure 3D pose error as the average joint-to-joint

distance after alignment by a rigid transformation. Our approach also significantly outperforms

the state-of-the-art on this dataset.

Method S1 S2 S3 Average

Simo-Serra et al. [184] 65.1 48.6 73.5 62.4

Bogo et al. [17] 73.3 59.0 99.4 77.2

Zhou et al. [233] 34.2 30.9 49.1 38.07

Yasin et al. [223] 35.8 32.4 41.6 36.6

Tekin et al. [197] 37.5 25.1 49.2 37.3

Ours 27.24 14.26 31.74 24.41

Table 5.3: Quantitative results of our fusion approach on the Walking sequences of the
HumanEva-I dataset [182]. S1, S2 and S3 correspond to Subject 1, 2, and 3, respectively. The

accuracy is reported in terms of average Euclidean distance (in mm) between the predicted and

ground-truth 3D joint positions.

KTH Multiview Football. In Table 5.4, we compare our approach to [13, 26, 138, 197] on the

KTH Multiview Football II dataset. Note that [13] and [26] rely on multiple views, and [197]

makes use of video data. As discussed in Section 5.2.2, we report the results of two instances of

our model: one trained on the standard KTH training data, and one pretrained on the synthetic

3D human pose dataset of [30] and fine-tuned on the KTH dataset. Note that, while working

with a single input image, both instances outperform all the baselines. Note also that pretraining

on synthetic data yields the highest accuracy. We believe that this further demonstrates the

generalization ability of our method.

In Fig. 5.4, we provide representative poses predicted by our approach on the Human3.6m,

HumanEva and KTH Multiview Football datasets.

5.2.4 Detailed Analysis

We now analyze two different aspects of our approach. First, we compare our trainable fusion

approach to early fusion, depicted in Fig. 5.2(a), and late fusion, depicted in Fig. 5.2(c). Then,

we analyze the benefits of leveraging both 2D joint locations with their corresponding uncertainty

and additional image cues. To this end, we make use of two additional baselines. The first one

consists of a single stream CNN regressor operating on the image only. We refer to this baseline

as Image-Only. The second is a CNN trained to predict 3D pose from only the 2D confidence

map (CM) stream. We refer to this baseline as CM-Only.
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Method: [26] [26] [13] [197] [138] Ours-NoPretraining Ours-Pretraining

Input: Image Image Image Video Image Image Image

Num. of cameras: 1 2 2 1 1 1 1

Pelvis 97 97 - 99 - 66 100
Torso 87 90 - 100 - 100 100
Upper arms 14 53 64 74 94 74 100
Lower arms 06 28 50 49 80 100 88

Upper legs 63 88 75 98 96 100 100
Lower legs 41 82 66 77 84 77 88
All parts 43 69 - 79 - 83.2 95.2

Table 5.4: Comparison of our fusion approach to the-state-of-the-art on KTH Multiview
Football II. On this dataset, we compare our method that uses a single image to those of [26,

138, 197] that use either one or two images, the one of [13] that uses two, and the one of [197]

that operates on a sequence. As in [13, 26, 138, 197], we measure performance as the percentage

of correctly estimated parts (PCP) score. A higher PCP score corresponds to better 3D pose

estimation accuracy.

Method: 3D Pose Error

Image-Only 124.13

CM-Only 79.28

Early Fusion 76.41

Late Fusion 74.12

Trainable Fusion 69.73

Table 5.5: Comparison of different fusion strategies and single-stream baselines on Hu-
man3.6m. We report the 3D joint position errors (in mm). The fusion networks perform better

than those that use only the image or only the confidence map as input. Our trainable fusion

achieves the best accuracy overall.

In Table 5.5, we report the average pose estimation errors on Human3.6m for all these

methods. Our trainable fusion strategy yields the best results. Note also that, in general, all

fusion strategies yield accurate pose estimates. Importantly, the Image-Only and CM-Only

baselines perform worse than our approach, and all fusion-based methods. This demonstrates

the importance of fusing 2D joint location confidence maps along with 3D cues in the image for

monocular pose estimation.

In Fig. 5.5, we depict the evolution throughout the training iterations of (a) the parameters α

and β that define the weight vector in our trainable fusion framework as given by Eq. 5.3, and (b)
the weight vector itself. An increasing value of α, expected due to our regularizer, indicates that

fusion becomes sharper throughout the training. An increasing β, which is the typical behavior,

corresponds to fusion occurring in the later stages of the network. We conjecture that this is due

to the fact that features learned by the image and confidence map streams at later layers become

less correlated, and thus yield more discriminative power.
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(a) Image (b) Heatmap (c) Prediction (d) Ground-truth (e) Image (f) Heatmap (g) Prediction (h) Ground-truth

Figure 5.4: Pose estimation results of our fusion approach on Human3.6m, HumanEva and
KTH Multiview Football II. (a, e) Input images. (b, f) 2D joint location confidence maps.

(c, g) Recovered pose. (d, h) Ground truth. Note that our method can recover the 3D pose in

these challenging scenarios, which involve significant amounts of self occlusion and orientation

ambiguity. Best viewed in color.

To analyze this further, we show in Fig. 5.7 the squared Pearson correlation coefficients

between all pairs of features of the confidence map stream and of the image stream at the last

convolutional layer of our trainable fusion network. As can be seen in the figure, the image and

confidence map streams produce decorrelated features that are complementary to each other

allowing to effectively account for different input modalities.

We analyze further the effect of the regularization term that encourages sharp fusion in Eq. 5.4.

In the absence of the regularization term, the network mixes the data and fusion streams without

necessarily fusing them at a specific layer. As discussed in Section 5.1.1, this corresponds to

a model with many active parameters. Therefore it is prone to overfitting and computationally

less efficient at test-time. In Table 5.6, we compare the results of our approach with and without

this regularization term. For the latter, we do not parametrize the weights of the network with a

sigmoid function and do not constrain the network to have a sharp fusion. The results confirm

that encouraging sharp fusion yields both better accuracy and faster prediction.

We carried out our experiments on a machine equipped with an Intel Xeon CPU E5-2680 and

an NVIDIA TITAN X Pascal GPU. It takes 90 ms to compute 2D joint location confidence maps

and 6 ms to predict 3D pose with our fusion network. Therefore, the total runtime of our method

is 0.096 sec/frame (over 10 fps), which compares favorably with the recent model-based methods

ranging from 0.04 fps to 1 fps [171, 223, 233].
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(a) (b)

Figure 5.5: Evolution of (a) α and β, and (b) the fusion weights in Human3.6m during
training. Top row: Directions; Middle row: Discussion; Bottom row: Sitting Down.

Method 3D Pose Error Runtime

Without regularization 68.30 0.013

With regularization 60.17 0.006

Table 5.6: Quantitative results of our fusion approach with and without the regularization
term encouraging sharp fusion. These experiments were carried out on the Eating action class

of Human3.6m. 3D pose error is computed as the average Euclidean distance (in milimeters)

between the predicted and ground-truth 3D joint positions. Runtime denotes the computational

time spent, in sec/frame, during testing for the fusion network with and without the regularization

term. With the regularization term, inactive layers are pruned after training, which yields a more

efficient network for test-time prediction.

74



5.2. Results

In Fig. 5.6, we present qualitative pose estimation results on the Leeds Sports Pose dataset.

We trained our network on the synthetic dataset of [30] and tested on images acquired outdoors

in unconstrained settings. The accurate 3D predictions of the challenging poses demonstrate the

generalization ability and robustness of our method.

Figure 5.6: Pose estimation results of our fusion approach on the Leeds Sports Pose dataset.
We show the input image and the predicted 3D pose for four images. Best viewed in color.

Figure 5.7: Feature correlation between the two streams of the network for our fusion
approach. We report squared Pearson correlation coefficients (R2) between each pair of the

features learned at the last convolutional layer of our trainable fusion network computed from

128 randomly selected images in Human3.6m. As can be seen in the lower left and upper right

submatrices, the feature maps of the image and the confidence map streams are decorrelated.

We provide additional qualitative results for the KTH Multiview Football II [26], Hu-

man3.6m [81] and HumanEva [182] datasets in Figs. 5.8, 5.9 and 5.10, respectively. Finally,

we demonstrate that our regressor trained on the recently released synthetic dataset of [30]

generalizes well to real images obtained from the Leeds Sports Pose dataset [86] in Fig. 5.11.
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(a) Image (b) Heatmap (c) Prediction (d) Ground-truth (e) Image (f) Heatmap (g) Prediction (h) Ground-truth

Figure 5.8: Example pose estimation results of our fusion approach on KTH Multiview
Football II. (a, e) Input images. (b, f) 2D joint location confidence maps. (c, g) Recovered pose.

(d, h) Ground truth. Best viewed in color.

(a) Image (b) Heatmap (c) Prediction (d) Ground-truth (e) Image (f) Heatmap (g) Prediction (h) Ground-truth

Figure 5.9: Example pose estimation results of our fusion approach on Human3.6m. (a, e)
Input images. (b, f) 2D joint location confidence maps. (c, g) Recovered pose. (d, h) Ground

truth. Note that our method can recover the 3D pose in these challenging scenarios, which involve

significant amounts of self occlusion and orientation ambiguity. Best viewed in color.
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(a) Image (b) Heatmap (c) Prediction (d) Ground-truth (e) Image (f) Heatmap (g) Prediction (h) Ground-truth

Figure 5.10: Example pose estimation results of our fusion approach on HumanEva-I. (a,
e) Input images. (b, f) 2D joint location confidence maps. (c, g) Recovered pose. (d, h) Ground

truth. Best viewed in color.
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Figure 5.11: Example pose estimation results of our fusion approach on LSP. We trained our

network on the recently released synthetic dataset of [30] and tested it on the LSP dataset. The

quality of the 3D pose predictions demonstrates the generalization of our method. Best viewed in

color.
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6 Real-Time Seamless Single Shot 6D
Object Pose Prediction

Real-time object detection and 6D pose estimation is crucial for augmented reality, virtual reality,

and robotics. Currently, methods relying on depth data acquired by RGB-D cameras are quite

robust [20, 33, 34, 92, 100]. However, active depth sensors are power hungry, which makes

6D object detection methods for passive RGB images more attractive for mobile and wearable

cameras. There are many fast keypoint and edge-based methods [118, 167, 213] that are effective

for textured objects. However, they have difficulty handling weakly textured or untextured

objects and processing low-resolution video streams, which are quite common when dealing with

cameras on wearable devices.

Deep learning techniques have recently been used to address these limitations [91, 152].

BB8 [152] is a 6D object detection pipeline made of one CNN to coarsely segment the object and

another to predict the 2D locations of the projections of the object’s 3D bounding box given the

segmentation, which are then used to compute the 6D pose using a PnP algorithm [106]. The

method is effective but slow due to its multi-stage nature. SSD-6D [91] is a different pipeline

that relies on the SSD architecture [115] to predict 2D bounding boxes and a very rough estimate

of the object’s orientation in a single step. This is followed by an approximation to predict the

object’s depth from the size of its 2D bounding box in the image, to lift the 2D detections to

6D. Both BB8 and SSD-6D require a further pose refinement step for improved accuracy, which

increases their running times linearly with the number of objects being detected.

In this chapter, we propose a single-shot deep CNN architecture that takes the image as input

and directly detects the 2D projections of the 3D bounding box vertices. It is end-to-end trainable

and accurate even without any a posteriori refinement. And since, we do not need this refinement

step, we also do not need a precise and detailed textured 3D object model that is needed by other

methods [91, 152]. We only need the 3D bounding box of the object shape for training. This can
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S

S

(9x2+1+C)

Figure 6.1: Overview of our single shot 6D object pose estimation approach. (a) The pro-

posed CNN architecture. (b) An example input image with four objects. (c) The S × S grid

showing cells responsible for detecting the four objects. (d) Each cell predicts 2D locations of

the corners of the projected 3D bounding boxes in the image. (e) The 3D output tensor from our

network, which represents for each cell a vector consisting of the 2D corner locations, the class

probabilities and a confidence value associated with the prediction.

be derived from other easier to acquire and approximate 3D shape representations.

We demonstrate state-of-the-art accuracy on the LINEMOD dataset [70], which has become

a de facto standard benchmark for 6D pose estimation. However, we are much faster than

the competing techniques by a factor of more than five, when dealing with a single object.

Furthermore, we pay virtually no time-penalty when handling several objects and our running

time remains constant whereas that of other methods grow proportional to the number of objects,

which we demonstrate on the OCCLUSION dataset [20].

Therefore, our contribution is an architecture that yields a fast and accurate one-shot 6D pose

prediction without requiring any post-processing. It extends single shot CNN architectures for

2D detection in a seamless and natural way to the 6D detection task. Our implementation is based

on YOLO [158] but the approach is amenable to other single-shot detectors such as SSD [115]

and its variants.

6.1 Approach

With our goal of designing an end-to-end trainable network that predicts the 6D pose in real-time,

we were inspired by the impressive performance of single shot 2D object detectors such as
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YOLO [157, 158]. This led us to design the CNN architecture [157, 158] shown in Fig. 6.1.

We designed our network to predict the 2D projections of the corners of the 3D bounding box

around our objects. The main insight was that YOLO was originally designed to regress 2D

bounding boxes and to predict the projections of the 3D bounding box corners in the image,

a few more 2D points had to be predicted for each object instance in the image. Then given

these 2D coordinates and the 3D ground control points for the bounding box corners, the 6D

pose can be calculated algebraically with an efficient PnP algorithm [106]. BB8 [152] takes a

similar approach. However, they first find a 2D segmentation mask around the object and present

a cropped image to a second network that predicts the eight 2D corners in the image. We now

describe our network architecture and explain various aspects of our approach in details.

6.1.1 Model

We formulate the 6D pose estimation problem in terms of predicting the 2D image coordinates of

virtual 3D control points associated with the 3D models of our objects of interest. Given the 2D

coordinate predictions, we calculate the object’s 6D pose using a PnP algorithm. We parameterize

the 3D model of each object with 9 control points. For these control points, we select the 8

corners of the tight 3D bounding box fitted to the 3D model, similar to [152]. In addition, we use

the centroid of the object’s 3D model as the 9th point. This parameterization is general and can be

used for any rigid 3D object with arbitrary shape and topology. In addition, these 9 control points

are guaranteed to be well spread out in the 2D image and could be semantically meaningful for

many man-made objects.

Our model takes as input a single full color image, processes it with a fully-convolutional

architecture shown in Figure 6.1(a) and divides the image into a 2D regular grid containing S ×S

cells as shown in Figure 6.1(c). In our model, each grid location in the 3D output tensor will be

associated with a multidimensional vector, consisting of predicted 2D image locations of the 9

control points, the class probabilities of the object and an overall confidence value. At test time,

predictions at cells with low confidence values, ie. where the objects of interest are not present,

will be pruned.

The output target values for our network are stored in a 3D tensor of size S×S×D visualized

in Fig. 6.1(e). The target values for an object at a specific spatial cell location i ∈ S ×S is placed

in the i -th cell in the 3D tensor in the form of a D dimensional vector vi . When N objects are

present in different cells, we have N such vectors, v1,v2, . . . ,vn in the 3D tensor. We train our

network to predict these target values. The 9 control points in our case are the 3D object model’s

center and bounding box corners but could be defined in other ways as well. To train our network,

we only need to know the 3D bounding box of the object, not a detailed mesh or an associated
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texture map.

As in YOLO, it is crucial that a trained network is able to predict not only the precise 2D

locations but also high confidence values in regions where the object is present and low confidence

where it isn’t present. In case of 2D object detection, YOLO uses for its confidence values, an

intersection over union (IoU) score associated with the predicted (and true 2D rectangles) in the

image. In our case, the objects are in 3D and to compute an equivalent IoU score with two arbitrary

cuboids, we would need to calculate a 3D convex hull corresponding to their intersections. This

would be tedious and would slow down training, as also analyzed in Section 6.3. Therefore, we

take a different approach. We model the predicted confidence value using a confidence function

shown in Figure 6.2. The confidence function, c(x), returns a confidence value for a predicted 2D

point denoted by x bad on its distance DT (x) from the ground truth i.e. target 2D point. Formally,

we define the confidence function c(x) as follows:

c(x) =
⎧⎨
⎩

e
α(1−DT (x)

dth
)
, if DT (x) < dth

0 otherwise
(6.1)

The distance DT (x) is defined as the 2D Euclidean distance in the image space. To achieve

precise localization with this function, we choose a sharp exponential function with a cut-off

value dth instead of a monotonically decreasing linear function. The sharpness of the exponential

function is defined by the parameter α. In practice, we apply the confidence function to all the

control points and calculate the mean value and assign it as the confidence.

As mentioned earlier, we also predict C conditional class probabilities at each cell. The class

probability is conditioned on the cell containing an object. Overall, our output 3D tensor depicted

in Figure 6.1(e) has dimension S ×S ×D, where the 2D spatial grid corresponding to the image

dimensions has S×S cells and each such cell has a D dimensional vector. Here, D = 9×2+C +1,

because we have 9 (xi , yi ) control points, C class probabilities and one confidence value.

Our network architecture follows the fully convolutional YOLO v2 architecture [158]. Thus,

our network has 23 convolutional layers and 5 max-pooling layers. Similar to YOLO v2, we

choose S = 13 and have a 13× 13 2D spatial grid on which we make our predictions. We

also allow higher layers of our network to use fine-grained features by adding a passthrough

layer. Specifically, we bring features from an earlier layer at resolution 26×26, apply batch

normalization and resize the input image during training on-the-fly. As the network downsamples

the image by a factor of 32, we change the input resolution to a multiple of 32 randomly chosen

from the set {320,352, . . . ,608} to be robust to objects of different size.
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Figure 6.2: Confidence c(x) of our control point predictions as a function of the distance
DT (x) between a predicted point and the true point.

6.1.2 Training Procedure

Our final layer outputs class probabilities, (x, y) coordinate locations for the control points, and

the overall confidence score. During training, this confidence value is computed on the fly using

the function defined in Eq. 6.1 to measure the distance between the current coordinate predictions

and the ground-truth, DT (x). We predict offsets for the 2D coordinates with respect to (cx ,cy ),

the top-left corner of the associated grid cell. For the centroid, we constrain this offset to lie

between 0 and 1. However, for the corner points, we do not constrain the network’s output as

those points should be allowed to fall outside the cell. The predicted control point (gx , g y ) is

defined as

gx = f (x)+cx (6.2)

g y = f (y)+cy (6.3)

where f (·) is chosen to be a 1D sigmoid function in case of the centroid and the identity function

in case of the eight corner points. This has the effect of forcing the network to first find the

approximate cell location for the object and later refine its eight corner locations. We minimize
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the following loss function to train our complete network.

L =λpt Lpt +λcon f Lcon f +λi d Li d (6.4)

Here, the terms Lpt , Lcon f and Li d denote the coordinate, confidence and the classification

loss, respectively. We use mean-squared error for the coordinate and confidence losses, and cross

entropy for the classification loss. As suggested in [157], we downweight the confidence loss for

cells that don’t contain objects by setting λcon f to 0.1. This improves model stability. For cells

that contain objects, we set λcon f to 5.0. We set λpt and λi d simply to 1.

When multiple objects are located close to each other in the 3D scene, they are more likely to

appear close together in the images or be occluded by each other. In these cases, certain cells

might contain multiple objects. To be able to predict the pose of such multiple objects that lie

in the same cell, we allow up to 5 candidates per cell and therefore predict five sets of control

points per cell. This essentially means that we assumed that at most 5 objects could occlude each

other in a single grid cell. This is a reasonable assumption to make in practical pose estimation

scenarios. As in [158], we precompute with k-means, five anchor boxes that define the size, ie.

the width and height of a 2D rectangle tightly fitted to a masked region around the object in the

image. During training, we assign whichever anchor box has the most similar size to the current

object as the responsible one to predict the 2D coordinates for that object.

6.1.3 Pose Prediction

We detect and estimate the pose of objects in 6D by invoking our network only once. At

test time, we estimate the class-specific confidence scores for each object by multiplying the

class probabilities and the score returned by the confidence function. Each grid cell produces

predictions in one network evaluation and cells with predictions with low confidence are pruned

using a confidence threshold. For large objects and objects whose projections lie at the intersection

of two cells, multiple cells are likely to predict highly confident detections. To obtain a more

robust and well localized pose estimate, we inspect the cells in the 3×3 neighborhood of the cell

which has the maximum confidence score. We combine the individual corner predictions of these

adjacent cells by computing a weighted average of the individual detections, where the weights

used are the confidence scores of the associated cells.

At run-time, the network gives the 2D projections of the object’s centroid and corners of its 3D

bounding box along with the object identity. We estimate the 6D pose from the correspondences

between the 2D and 3D points using a Perspective-n-Point (PnP) pose estimation method [106].

84



6.2. Implementation Details

In our case, PnP uses only 9 such control point correspondences and provides an estimate of the

3D rotation R and 3D translation t of the object in camera coordinates.

6.2 Implementation Details

We initialize the parameters of our network by training the original network on the ImageNet

classification task. As the pose estimates in the early stages of training are inaccurate, the

confidence values computed using Eq. 6.1 are initially unreliable. To remedy this, we pretrain our

network parameters by setting the regularization parameter for confidence to 0. Subsequently, we

train our network by setting λcon f to 5 for the cells that contain an object, and to 0.1 otherwise,

to have more reliable confidence estimates in the early stages of the network. In practice, we set

the sharpness of the confidence function α to 2 and the distance threshold to 30 pixels. We use

stochastic gradient descent for optimization. We start with a learning rate of 0.001 and divide the

learning rate by 10 at every 100 epochs. To avoid overfitting, we use extensive data augmentation

by randomly changing the hue, saturation and exposure of the image by up to a factor of 1.5.

We also randomly scale and translate the image by up to a factor of 20% of the image size. Our

implementation is based on PyTorch. We will make our code publicly available for the sake of

reproducibility.

6.3 Experiments

We first evaluate our method for estimating the 6D pose of single objects and then we evaluate

it in the case where multiple objects are present in the image. We use the same datasets and

evaluation protocols as in [21, 91, 152], which we review below. We then present and compare

our results to the state of the art methods.

6.3.1 Datasets

We test our approach on two datasets that were designed explicitly to benchmark 6D object pose

estimation algorithms. We describe them briefly below.

LineMod [70] has become a de facto standard benchmark for 6D object pose estimation of

textureless objects in cluttered scenes. The central object in each RGB image is assigned a

ground-truth rotation, translation, and ID. A full 3D mesh representing the object is also provided.

There are 15783 images in LINEMOD for 13 objects. Each object features in about 1200 instances.
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OCCLUSION [20] is a multi-object detection and pose estimation dataset that contains ad-

ditional annotations for all objects in a subset of the LINEMOD images. As its name suggests,

several objects in the images are severely occluded due to scene clutter, which makes pose

estimation extremely challenging. With the exception of [91, 152], it has primarily been used to

test algorithms that require depth images.

6.3.2 Evaluation Metrics

We use three standard metrics to evaluate 6D pose accuracy, namely – 2D reprojection error, IoU

score and average 3D distance of model vertices (referred to as ADD metric) as in [21, 91, 152].

In all cases, we calculate the accuracy as the percentage of correct pose estimates for certain

error thresholds.

When using the reprojection error, we consider a pose estimate to be correct when the mean

distance between the 2D projections of the object’s 3D mesh vertices using the estimate and

the ground truth pose is less than 5 pixels [21]. This measures the closeness of the true image

projection of the object to that obtained by using the estimated pose. This metric is suitable for

augmented reality applications.

To compute the IoU score, we measure the overlap between the projections of the 3D model

given the ground-truth and predicted pose and accept a pose as correct if the overlap is larger

than 0.5, as in [91].

When comparing 6D poses using the ADD metric, we take a pose estimate to be correct if the

mean distance between the true coordinates of 3D mesh vertices and those estimated given the

pose is less than 10% of the object’s diameter [70]. For most objects, this is approximately a 2cm

threshold but for smaller objects, such as ape, the threshold drops to about 1cm. For rotationally

symmetric objects whose pose can only be computed up to one degree of rotational freedom, we

modify slightly the metric as in [21, 70] and compute

s = 1

|M |
∑

x1∈M

min
M

‖(Rx+ t)− (R̂x+ t̂)‖ , (6.5)

where (R,t) are the ground-truth rotation and translation, (R̂, t̂) the predicted ones, and M

the vertex set of the 3D model. We use this metric when evaluating the pose accuracy for the

rotationally invariant objects, eggbox and glue as in [21, 70].
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Method w/o Refinement w/ Refinement

Brachmann BB8 OURS Brachmann BB8

Object [21] [152] [21] [152]

Ape - 95.3 92.10 85.2 96.6
Benchvise - 80.0 95.06 67.9 90.1

Cam - 80.9 93.24 58.7 86.0

Can - 84.1 97.44 70.8 91.2

Cat - 97.0 97.41 84.2 98.8

Driller - 74.1 79.41 73.9 80.9
Duck - 81.2 94.65 73.1 92.2

Eggbox - 87.9 90.33 83.1 91.0

Glue - 89.0 96.53 74.2 92.3

Holepuncher - 90.5 92.86 78.9 95.3

Iron - 78.9 82.94 83.6 84.8
Lamp - 74.4 76.87 64.0 75.8

Phone - 77.6 86.07 60.6 85.3

Average 69.5 83.9 90.37 73.7 89.3

Table 6.1: Comparison of our single shot 6D pose estimation approach with state-of-the-
art algorithms on LINEMOD in terms of 2D reprojection error. We report percentages of

correctly estimated poses. In Tables 6.1, 6.2 and 6.4 bold face numbers denote the best overall

methods, bold italic numbers denote the best methods among those that do not use refinement as

opposed to the ones that use, if different. Note that even though we do not rely on the knowledge

of a detailed 3D object model our method consistently outperforms the baselines.

6.3.3 Single Object Pose Estimation

We first estimate the 6D pose of the central object in the RGB only LINEMOD images, without

reference to the depth ones. We compare our approach to those of [21, 91, 152], which operate

under similar conditions.

In this dataset, the training images are selected such that the relative orientation between

corresponding pose annotations are larger than a threshold. As in [21, 91, 152], to avoid being

influenced by the scene context and overfitting to the background, we segment the training images

using the segmentation masks provided with the dataset and replace the background by a random

image from the PASCAL VOC dataset [48].

We use exactly the same training/test splits as in [152]. We report our results in terms of

2D reprojection error in Table 6.1, 6D pose error in Table 6.2 and IoU metric in Table 6.4. We

provide example pose predictions of our approach in Figure 6.3.

6.3.3.1 Comparative Accuracy

6D Accuracy in terms of projection error. In Table 6.1, we compare our results to those of

Brachmann et al. [21] and to BB8 [152]. Both of these competing methods involve a multi-stage
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pipeline that comprises a 2D detection step followed by pose prediction and refinement. Since

we do not have a refinement stage, we show in the table their results without and with it. In both

cases, we achieve better 6D pose estimation accuracies.

In Table 6.4, we perform a similar comparison with SSD-6D [91], whose authors report their

projection accuracy in terms of the IoU metric. That method also requires a posteriori refinement

and our results are again better in both cases, even though SSD-6D relies on a large training set

of rendered images that are sampled over a wide range of viewpoints and locations.

6D Accuracy in terms of the ADD metric. In Tables 6.2 and 6.3, we compare our methods

against the other in terms of the average of the 3D distances, as described in Section 6.3.2. In

Table 6.2, we give numbers before and after refinement for the competing methods. Before

refinement, we outperform all the methods by a significant margin of at least 12%. After

refinement, our pose estimates are still better than Brachmann et al. [21]. By assuming the

additional knowledge of a full 3D CAD model and using it to further refine the pose, BB8 1 and

SSD-6D 2 boost their pose estimation accuracy.

Without any bells and whistles, our approach achieves state-of-the-art pose estimation ac-

curacy in all the metrics without refinement. When compared against methods that rely on the

additional knowledge of full 3D CAD models and pose refinement, it still achieves state-of-the-art

performance in 2D projection error and IoU metrics and yields comparable accuracy in the ADD

metric. Our approach could be used in conjunction with such refinement strategies to further

increase the accuracy however this comes at a heavy computational cost as we describe below.

6.3.3.2 Accuracy / Speed Trade-off

In Table 6.5, we report the computational efficiency of our approach for single object pose

estimation in comparison to the state-of-the-art approaches [21, 91, 152]. Our approach runs at

real-time performance in contrast to the existing approaches which fall short of it. In particular,

our algorithm runs at least 5 times faster than the state-of-the-art techniques for single object

pose estimation.

As can be seen in Table 6.2, pose refinement in Brachmann et al. increase the accuracy

significantly by 17.9% at an additional run-time of 100 miliseconds per object. BB8 also gets a

substantial improvement of 19.1% in accuracy at an additional run-time of 21 miliseconds per

1The authors do not report results without refinement, however they provided us with the accuracy numbers

reported in Table 6.2.
2The authors were not able to provide their accuracy numbers without refinement for this metric, but made their

code publicly available. We ran their code with provided pretrained models to obtain the 6D pose errors.
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Method w/o Refinement w/ Refinement

Brachmann BB8 SSD-6D OURS Brachmann BB8 SSD-6D

Object [21] [152] [91] [21] [152] [91]

Ape - 27.9 0 21.62 33.2 40.4 65
Benchvise - 62.0 0.18 81.80 64.8 91.8 80

Cam - 40.1 0.41 36.57 38.4 55.7 78
Can - 48.1 1.35 68.80 62.9 64.1 86
Cat - 45.2 0.51 41.82 42.7 62.6 70

Driller - 58.6 2.58 63.51 61.9 74.4 73

Duck - 32.8 0 27.23 30.2 44.3 66
Eggbox - 40.0 8.9 69.58 49.9 57.8 100

Glue - 27.0 0 80.02 31.2 41.2 100
Holepuncher - 42.4 0.30 42.63 52.8 67.2 49

Iron - 67.0 8.86 74.97 80.0 84.7 78

Lamp - 39.9 8.20 71.11 67.0 76.5 73

Phone - 35.2 0.18 47.74 38.1 54.0 79
Average 32.3 43.6 2.42 55.95 50.2 62.7 79

Table 6.2: Comparison of our single shot pose estimation approach with state-of-the-art al-
gorithms on LINEMOD in terms of ADD metric. We report percentages of correctly estimated

poses.

object. Even without correcting for the pose error, our approach outperforms Brachmann et al.

and yields close accuracy to BB8 while being 16 times faster for single object pose estimation.

As discussed also in [91], the unrefined poses computed from the bounding boxes of the SSD 2D

object detector, are rather approximate. We confirmed this by running their publicly available

code with the provided pretrained models. We report the accuracy numbers without the refinement

using the ADD metric in Table 6.3 for different thresholds. While providing a good initialization

for the subsequent pose processing, the pose estimates of SSD-6D without refinement are much

less accurate than our approach. The further refinement increases the pose estimation accuracy

significantly, however at the cost of a computational time of 24 miliseconds per object. Moreover,

in contrast to our approach, the refinement requires the knowledge of the full 3D object CAD

model.

In Figure 6.3, we show example results of our method on the LINEMOD.

6.3.4 Multiple Object Pose Estimation

We use the OCCLUSION dataset to compare our approach to Brachmann et al. [21] for multi-

object detection and report pose estimation accuracy as in [152]. The identity of the objects

cannot be assumed to be known a priori and has to be guessed. To this end, the method of [152]

assumes that it has access to image crops based on the ground-truth 2D bounding boxes 3. We

make no such assumptions. Instead, we jointly detect the object in 2D, estimate its identity and

predict its 6D pose. We generate our training images with the approach explained in Section 6.3.2.

3This it is not explicitly stated in [152], but the authors confirmed this to us in private email communication.
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Threshold 10% 30% 50%

Object [91] OURS [91] OURS [91] OURS

Ape 0 21.62 5.62 70.67 19.95 88.10
Benchvise 0.18 81.80 2.07 91.07 10.62 98.85

Cam 0.41 36.57 34.52 81.57 63.54 94.80
Can 1.35 68.80 61.43 99.02 85.49 99.90
Cat 0.51 41.82 36.87 90.62 64.04 98.80

Driller 2.58 63.51 56.01 99.01 84.86 99.80
Duck 0 27.23 5.56 70.70 32.65 89.39

Eggbox 8.9 69.58 24.61 81.31 48.41 98.31
Glue 0 80.02 14.18 89.00 26.94 97.20

Holepuncher 0.30 42.63 18.23 85.54 38.75 96.29
Iron 8.86 74.97 59.26 98.88 88.31 99.39

Lamp 8.20 71.11 57.64 98.85 81.03 99.62
Phone 0.18 47.74 35.55 91.07 61.22 98.85

Average 2.42 55.95 31.65 88.25 54.29 96.78

Table 6.3: Comparison of our single shot pose estimation approach with SSD-6D [91] with-
out refinement using different thresholds for the 6D pose metric.

Method w/o Refinement w/ Refinement

SSD-6D OURS SSD-6D

Object [91] [91]

Ape 98.46 99.81 99

Benchvise 100 99.90 100
Cam 99.53 100 99

Can 100 99.81 100
Cat 99.34 99.90 99

Duck 99.04 100 98

Glue 97.24 99.81 98

Holepuncher 98.95 99.90 99

Iron 99.65 100 99

Lamp 99.38 100 99

Phone 99.91 100 100

Average 99.22 99.92 99.4

Driller - 100 99

Eggbox - 99.91 99

Table 6.4: Comparison of our single shot pose estimation approach against the state-of-the-
art [91] on LINEMOD using IoU metric. The authors of [91] were able to provide us the results

of our approach w/o the refinement.

We further augment the LINEMOD training data by adding into the images objects extracted from

other training sequences. We report our pose estimation accuracy in Figure 6.4 and demonstrate

that even without assuming ground-truth information as in the case of [152], our method yields

satisfactory pose accuracy in the case of severe occlusions. For object detection purposes, we

consider an estimate to be correct if its detection IoU is larger than 0.5. Note that here the

detection IoU corresponds to the overlap of the 2D bounding boxes of the object, rather than the

overlap of the projected masks as is the case for the IoU metric defined in Sec 6.3.2. In Table 6.6,

we report a mean average precision (MAP) of 0.48 which is similar to the accuracy reported

by [21] and outperforms the ones reported by [68, 91].

Our approach provides accurate 6D poses with real-time performance. Upon one network
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Method Overall Speed Refinement runtime

Brachmann et al. [21] 2 fps 100 ms/object

Rad & Lepetit [152] 3 fps 21 ms/object

Kehl et al. [91] 10 fps 24 ms/object

OURS 50 fps -

Table 6.5: Comparison of the overall computational runtime of our single shot pose esti-
mation approach in comparison to the state-of-the-art [21, 91, 152]. We further provide the

computational runtime induced by the pose refinement stage of [21, 91, 152]

Figure 6.3: Example results of our single shot pose estimation approach. Note that our

method can recover the 6D pose in these challenging scenarios, which involve significant amounts

of clutter, occlusion and orientation ambiguity. In the last column, we show failure cases due to

motion blur, severe occlusion and specularity (this figure is best viewed on a computer screen).

Method MAP

Hinterstoisser et al. [68] 0.21

Brachmann et al. [21] 0.51

Kehl et al. [91] 0.38

OURS 0.48

Table 6.6: The object detection experiment on the Occlusion dataset [21]. (Left) Precision-

recall plot. (Right)
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Figure 6.4: Percentage of correctly estimated poses as a function of the projection error for
different objects of the Occlusion dataset [21].
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Figure 6.5: The runtime of our approach with increasing number of objects as compared
to the state-of-the-art [91].

invocation, our only computational overhead is an efficient PnP algorithm which operates on just

9 points per object. Furthermore we do not require full 3D colored object models to further refine

our initial pose estimates. Our approach is therefore scalable to handle multiple objects as shown

in Figure 6.5 and has only a negligible computational overhead of PnP (0.2 miliseconds/object)

while the competing approaches [91] have a linear runtime growth.

We also evaluated the accuracy and speed of our approach for different input resolutions.

As explained in Section 6.1.1, we adopt a multi-scale training procedure and change the input

resolution during training randomly as in [158]. This allows us to be able to change the input

resolution at test-time and predict from images with higher resolution. This is especially useful

for predicting the pose of small objects more robustly. As we do not have an initial step for 2D

object detection and produce image crops which are then resized to higher resolutions for pose

prediction as in [152], our approach requires better handling of the small objects. In Table 6.7, we

compare the accuracy and computational efficiency of our approach for different input resolutions.

With only 1% decrease in accuracy the average runtime per image is 94 ms and the runtime
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virtually remains the same for estimating the pose of multiple objects.

Resolution 2D projection metric Speed

416 × 416 89.71 94 fps

480 × 480 90.00 67 fps

544 × 544 90.37 50 fps

688 × 688 90.65 43 fps

Table 6.7: Accuracy/speed trade-off of our single shot pose estimation method on the
LINEMOD dataset. Accuracy reported is the percentage of correctly estimated poses w.r.t

the 2D projection error. The same network model is used for all four input resolutions. Timings

are on a Titan X (Pascal) GPU.

6.3.5 Further Analysis and Visualizations

Training Images. As discussed in Section 6.3.3, we segment the foreground object in the

images of the training set, using the segmentation masks provided and paste the segmented image

over a random image as in [21, 91, 152]. Examples of such images, which are given as input

to the network at training time are shown in Figure 6.6. This operation of removing the actual

background prevents the network from overfitting to the background, which is similar for training

and test images of LINEMOD. When we train a model without eliminating the background, in

practice, we observe about 1% improvement in the 2D projection score.

Figure 6.6: Training images of our single shot pose estimation method. Using segmentation

masks given in LINEMOD, we extract the foreground objects in our training images and composite

them over random images from PASCAL VOC [48]. We also augment the training set by

combining images of multiple objects taken from different training images.

Confidence function. We analyze in Figure 6.7 our confidence function in comparison to

3D cube IoU in terms of its value and runtime. We show that our confidence function closely

approximates the actual 3D cube IoU while being much faster to compute.

Confidence-weighted prediction. In the final step of our method, we compute a weighted sum

of multiple sets of predictions for the corners and the centroid, using associated confidence values

as weights. On LINEMOD, this gave a 1–2% improvement in accuracy with the 2D projection

metric. The first step involves scanning the full 17×17 grid to find the cell with the highest
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3D IoU 5.37

2D Conf. Score 0.18

Figure 6.7: Comparison of the 3D IoU and our 2D confidence score in value (Left) and
runtime (Right). The model for the Cam object is shifted in x-dimension synthetically to produce

a distorted prediction and projected on the image plane with randomly chosen 20 transformation

matrices from LINEMOD. Scores are computed between the ground-truth references and distorted

predictions. Results are averaged over all the trials. The runtime for 3D IoU is computed using

the optimized PyGMO library that relies on [23].

Figure 6.8: Confidence weighted prediction of our single shot pose estimation method. (Left)

The 17×17 grid on a 544×544 image. (Middle) Confidence values for predictions of the ape
object on the grid. (Right) Cropped view of our pose estimate (shown in blue) and the ground

truth (shown in green). Here, three cells next to the best cell have good predictions and their

combination gives a more accurate pose than the best prediction alone (best viewed in color).

confidence for each potential object. We then consider a 3×3 neighborhood around it on the

grid and prune the cells with confidence values lower than the detection threshold of 0.5. On

the remaining cells, we compute a confidence-weighted average of the associated predicted

18-dimensional vectors, where the eight corner points and the centroid have been stacked to form

the vector. The averaged coordinates are then used in the PnP method. This sub-pixel refinement

on the grid usually improves the pose of somewhat large objects that occupy several adjoining

cells in the grid. Figure 6.8 shows an example where the ape object lies between two adjoining

cells and the confidence weighting improves the pose accuracy.

Qualitative Results. We show additional qualitative results from the OCCLUSION [20] and

LINEMOD [70] datasets in Figures 6.9 to 6.14. These examples show that our method is robust to

severe occlusions, rotational ambiguities in appearance, reflections, viewpoint change and scene

clutter.
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Figure 6.9: Results of our single shot pose estimation method on the OCCLUSION dataset
(I). Our method is quite robust against severe occlusions in the presence of scene clutter and

rotational pose ambiguity for symmetric objects. (left) Input images, (middle) 6D pose predictions

of multiple objects, (right) A magnified view of the individual 6D pose estimates of six different

objects is shown for clarity. In each case, the 3D bounding box is rendered on the input image.

The following color coding is used – APE (gold), BENCHVISE (green), CAN (red), CAT (purple),

DRILLER (cyan), DUCK (black), GLUE (orange), HOLEPUNCHER (blue). In addition to the

objects from the OCCLUSION dataset, we also visualize the pose predictions of the Benchvise
object from the LINEMOD dataset. As in [152], we do not evaluate on the Eggbox object, as

more than 70% of close poses are not seen in the training sequence. This image is best viewed on

a computer screen.
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Figure 6.10: Results of our single shot pose estimation method on the OCCLUSION dataset
(II). Our method is quite robust against severe occlusions in the presence of scene clutter and

rotational pose ambiguity for symmetric objects. (left) Input images, (middle) 6D pose predictions

of multiple objects, (right) A magnified view of the individual 6D pose estimates of six different

objects is shown for clarity. In each case, the 3D bounding box is rendered on the input image.

The following color coding is used – APE (gold), BENCHVISE (green), CAN (red), CAT (purple),

DRILLER (cyan), DUCK (black), GLUE (orange), HOLEPUNCHER (blue). In addition to the

objects from the OCCLUSION dataset, we also visualize the pose predictions of the Benchvise
object from the LINEMOD dataset. As in [152], we do not evaluate on the Eggbox object, as

more than 70% of close poses are not seen in the training sequence. This image is best viewed on

a computer screen.
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Figure 6.11: Example results of single shot pose estimation method on the LINEMOD
dataset (I). (left) APE, (middle) BENCHVISE, (right) CAM. The projected 3D bounding boxes

are rendered over the image and they have been cropped and resized for ease of visualization. The

blue cuboid is rendered using our pose estimate whereas the green cuboid is rendered using the

ground truth object pose. Note that the input image dimension is 640 × 480 pixels and the objects

are often quite small. Noticeable scene clutter and occlusion makes these examples challenging.
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Figure 6.12: Example results of single shot pose estimation method on the LINEMOD
dataset (II). (left) CAN, (middle) CAT, (right) DRILLER. The projected 3D bounding boxes are

rendered over the image and they have been cropped and resized for ease of visualization. The

blue cuboid is rendered using our pose estimate whereas the green cuboid is rendered using the

ground truth object pose. Note that the input image dimension is 640 × 480 pixels and the objects

are often quite small. Noticeable scene clutter and occlusion makes these examples challenging.
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Figure 6.13: Example results of single shot pose estimation method on the LINEMOD
dataset (III). (left) DUCK, (middle) EGGBOX, (right) GLUE. The projected 3D bounding

boxes are rendered over the image and they have been cropped and resized for ease of visualiza-

tion. The blue cuboid is rendered using our pose estimate whereas the green cuboid is rendered

using the ground truth object pose. Note that the input image dimension is 640 × 480 pixels and

the objects are often quite small. Noticeable scene clutter and occlusion makes these examples

challenging.
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Figure 6.14: Example results of single shot pose estimation method on the LINEMOD
dataset (IV). (left) HOLEPUNCHER, (middle) IRON, (right) LAMP and PHONE. The pro-

jected 3D bounding boxes are rendered over the image and they have been cropped and resized

for ease of visualization. The blue cuboid is rendered using our pose estimate whereas the green

cuboid is rendered using the ground truth object pose. Note that the input image dimension is

640 × 480 pixels and the objects are often quite small. Noticeable scene clutter and occlusion

makes these examples challenging.
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7 Concluding Remarks

In this thesis, we have presented several solutions to the 3D pose estimation, which is a challenging

problem that finds several applications in augmented reality and human-computer interaction. In

the following, we first give a brief summary of the achievements and contributions presented in

this thesis. We then discuss some limitations of our approaches and identify potential directions

for future research.

7.1 Summary

In Chapter 3, we introduce a novel video-based 3D human pose estimation approach from

spatiotemporal features. Majority of existing video-based approaches rely on pose estimates in

individual frames and regularize them to enforce temporal consistency. When the individual

pose estimates are not accurate enough, regularizing them a posteriori, corrects for the errors

only to a limited extent and results in inaccurate pose estimation performance. By contrast,

we propose to exploit the temporal information very early in the pose estimation process by

extracting spatiotemporal features. This allows us to encode richer and more descriptive features

than the ones that could be obtained from single images. We further develop a CNN-based motion

compensation approach that improves the reliability and stability of spatiotemporal features by

factoring out the camera and global body motion, while preserving nonrigid motions that serve

as useful cues for pose estimation.

In Chapter 4, recent 3D human pose estimation approaches either train a Convolutional Neural

Network to directly regress from image to 3D pose, which ignores the dependencies between

human joints, or model these dependencies via a max-margin structured learning framework,

which involves a high computational cost at inference time. We introduce a Deep Learning

regression architecture for structured prediction of 3D human pose from monocular images that
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relies on an overcomplete autoencoder to learn a high-dimensional latent pose representation and

account for joint dependencies. We demonstrate that our approach outperforms state-of-the-art

ones both in terms of structure preservation and prediction accuracy.

In Chapter 5, we present a two-stream CNN that simultaneously exploits 2D pose estimates

and image features. We demonstrate that the intermediate 2D pose supervision improves the 3D

pose estimation accuracy significantly. We further demonstrate that the choice of where and how

to combine features of a two-stream CNN is critical. We propose a trainable fusion scheme that

learns where to fuse information coming from two different input modalities. This then allows to

select the optimal network architecture on-the-fly and improves the pose estimation accuracy in

comparison to standard hard-coded network architectures.

In Chapter 6, we present a real-time single shot approach for 3D object pose estimation.

Previous approaches typically rely on heavy pipelines that involve consecutive 2D object detection

and 3D pose estimation stages. Instead, we propose to simultaneously detect an object in 2D

and predict its 3D pose in one shot. At the heart of our approach is a new CNN architecture that

directly predicts the 2D image locations of the projected vertices of the object’s 3D bounding

box. The 3D pose of the object is then estimated using a Perspective-n-Point algorithm. While

achieving state-of-the-art accuracy, our approach does not require any post-processing on initial

poses. As a result, it is much faster and performs at real-time speed which existing methods fall

short of.

7.2 Limitations and Future Directions

In this section we discuss the main limitations of the proposed methods and suggest potential

directions for the future work.

Harvesting Ground-Truth 3D Pose Data. State-of-the-art methods for estimating the pose of

objects [91, 198] and humans [192, 196] rely on deep learning techniques that require a large

amount of training data. Currently, motion capture datasets, such as [81], provide large-scale

data, however they are only limited to controlled studio environments. As a result, deep learning

models trained on them do not generalize well enough to in-the-wild images. Because manual

annotation of 3D poses is both tedious and time-consuming, the scale of the datasets captured in

unconstrained outdoor environments is still far from enough to cover a wide range of articulations,

appearances and backgrounds. However, recently there has been some progress in this direction

by the means of automated annotation techniques that exploit multi-view data [139] or large-scale

manual annotation efforts [64].
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Weakly Supervised Learning for Generalizibility. At the lack of 3D ground-truth pose data

in unconstrained outdoor environments, readily available 2D pose estimation datasets provide

valuable mid and high level features for 3D pose estimation. To this end, a weakly-supervised

transfer learning approach that uses mixed 2D and 3D data, as in [124, 231], would allow us to

have additional 2D pose supervision and transfer 3D pose labels in controlled lab environments to

in-the-wild images. One could also use additional depth information from RGB-D data or crude

body part segmentation annotations as a form of weak supervision for the 3D pose estimation

task.

Multiple 3D Human Pose Estimation and Modelling Human-Human Interactions. In

Chapter 3, 4 and 5, we have assumed that we have a rough bounding box around the sub-

ject and estimated the 3D pose of a single person from the image crop. Our algorithms could

directly be used for multi-person 3D pose estimation by operating on individual bounding boxes.

However, this would discard the scene context and interactions of people in the scene which are

valuable cues for 3D human pose estimation. To both benefit from scene context and interactions,

one could jointly predict the pose of multiple people from the full image with a single-shot

architecture [115]. Furthermore, our autoencoder-based algorithm to model the dependencies

among different body parts could be extended to also account for the dependencies between the

poses of multiple interacting people.

3D Human Body Shape Estimation. We have formulated the 3D human pose estimation

problem in terms of predicting the 3D joint locations of a person. Although this captures the

configuration of body parts, it does not encode the shape information. 3D shape information is

important for applications such as augmented reality, virtual try-on and health monitoring. One

exciting direction for future research is to predict the full 3D shape of a person by a voxelized

output representation or fitting a detailed 3D body model to the initial 3D pose predictions.

Modelling Human-Object Interactions. We have so far addressed the human and object pose

estimation problems individually. However, these two problems are highly intertwined. For

example, if we are sitting on a chair, our pose significantly constrains the 3D pose of the chair.

Similarly, the 3D pose of the object provides helpful cues to disambiguate the 3D human pose.

One very promising direction thus is to jointly solve these two problems. It would ultimately

allow us to have a more semantic understanding of the scene, introduce additional constraints on

the pose of interacting entities and improve pose estimation accuracy.
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A Analysis of Spatiotemporal Feature
Regression and Motion Compensation
for 3D Human Pose Estimation
In this appendix, we first describe implementation details of our motion compensation algorithm.

Then, we provide further visualizations and analysis of our 3D human pose estimation approach.

A.1 Analysis on Motion Compensation with CNNs

Centering the body. As explained in Section 3.1.3, we train Convolutional Neural Networks to

predict the shifts of the person from the center of the bounding box. In order to obtain training

images centered on the subject, we use the foreground masks that are part of the datasets to

compute and center the bounding box at the root position of the person.

Scale of the person. We rely on masks’ height to compute the scale of the person. While it

gives only a rough estimate, it is sufficient to handle scale changes when they occur. In the future,

we plan to train a single regressor to compensate for both shift and scale changes.

Initialization. In our approach, DPM (trained on VOC 2010) is used in the first image

of a sequence to provide an initial estimate of the bounding box. The initial person detector

provides rough location estimates of the person and our motion compensation algorithm naturally

compensates even for relatively large positional inaccuracies using the regressor, ψcoar se , as can

be seen in Fig. A.1.

Motion Compensation vs. Centering the Detections at Each Frame. For the alignment

of the body across time, it is also possible to compute the center of the root part of a DPM-based

pose estimator. However, it is time-consuming and computationally heavy to detect body parts at

each frame. Therefore, instead of computing DPM in all the frames of the sequence, we use it

only in the first frame and use motion compensation to iteratively center the body in subsequent

frames. This is a more efficient and elegant solution than detecting body parts at each time
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Figure A.1: Examples of our motion compensation algorithm. For each pair of images, the

left one depicts the initial bounding box, and the right one depicts the aligned bounding box using

our motion compensation algorithm.

instant. In order to justify the efficiency of our CNN-based motion compensation approach

(CNN-MC), we compare its timing to that of DPM detections in Table A.1. Additionally, we

provide comparisons to the timings of conventional optical-flow techniques [24, 119, 136]. We

show that our approach to image alignment is substantially faster than these approaches.

Method: Time (sec)

DPM [50], run sequentially 9.645

Large Displacement Optical Flow [24] 0.967

Lucas-Kanade Optical Flow [119, 136] 0.140

CNN-MC 0.006

Table A.1: Timings (in seconds per image) of our motion compensation algorithm (CNN-
MC) in comparison to DPM body part detector [50] and optical-flow [24, 119, 136]. Our

motion compensation algorithm aligns the body in subsequent frames by shifting the body to the

center of the bounding box. DPM takes the center of the root part of the part detector at each

frame. Our approach to aligning the body is orders of magnitude faster.

Temporal Heuristic. Although we treat each frame independently, we exploit additional

temporal heuristic in our approach by initializing the motion compensation algorithm using

the bounding box from the previous frame. Simultaneous motion compensation in multiple

frames not only increases model complexity but could yield incorrect estimates when the motion

direction changes fast.

A.2 Further Analysis and Visualizations

In this section, we provide additional analysis of our experimental results and further visualiza-

tions for our 3D body pose recovery method.

Evaluation. The parameters of Deep Network regressor are cross-validated on a validation

set and used for all the actions in the dataset. We consider the average error excluding the first

and last T /2 frames (0.24 seconds for T = 24 at 50 fps) to evaluate the performance.
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Additional Comparisons on HumanEva-I. On HumanEva [180], we trained our regressors

on training sequences of subjects S1, S2 and S3 and evaluated on the “validation” sequences

as in [13, 16, 46, 183] as explained in Section 4.2. [6, 222] followed a different experimental

procedure where they use the same subject for training and testing purposes. In order to compare

our results to these baselines as well, we employ the same subject-specific experimental setup

and provide analysis in Table A.2. The results demonstrate that our method yields state-of-the-art

3D human pose estimation accuracy, also with this experimental setting.

Method: S1 S2 S3 Average

Yao et al. [222] 41.6 64.0 46.5 50.7

Amin et al. [6] 56.7 52.1 62.4 57.1

Ours 38.4 27.9 52.1 39.5

Table A.2: Additional comparisons of our RSTV-Regression approach against existing ap-
proaches. We report 3D joint position errors (in mm) on the Walking sequences of HumanEva-I.

We compare our approach against [6, 222].

Additional Comparisons on Human3.6m. [109] is a recently published structured deep

learning method and uses the correlations among joint points for 3D human pose estimation. As

shown in Section 3.2.2, we outperform all pose estimation methods on Human3.6m, HumanEva

or KTH Multiview Football II that do not use structural dependencies. In Table A.3, we further

show that we also outperform [109] on average over the action classes for which the authors

reported accuracy numbers even though our algorithm do not rely on using the dependencies

among the human body parts.

Method: Discussion Eating Greeting Taking Photo Walking Walking Dog Average

Li et al. [109] 136.88 96.94 124.74 168.68 69.97 132.17 121.56

RSTV+DN (Ours) 147.72 88.83 125.28 182.73 55.07 126.29 120.98

Table A.3: Additional comparisons of our RSTV-Regression approach against existing ap-
proaches on HumanEva-I. We report 3D joint position errors (in mm) on Human3.6m. We

compare our approach against [109].

Stability. 3D pose predictions of our approach are stable as can be seen in accompanying

videos, as they are obtained for each overlapping temporal window with 1 frame shift. The

comparison in Fig. A.2 further demonstrates that RSTV+DN obtains the most stable and accurate

predictions.

Generalization. We demonstrate the generalization ability of our approach in the following

ways.

• HumanEva-II provides only a test dataset and no training data, therefore, we trained our
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Figure A.2: 3D joint position errors across frames for our RSTV-Regression approach. We

report our results on the Walking sequence corresponding to Subject 9, Trial 1, Camera 1 in the

Human3.6m dataset and compare our RSTV+KDE and RSTV+DN methods to [81]. RSTV+DN

yields the best accuracy on average with the added advantage of temporal consistency. Best

viewed in color.

regressors on HumanEva-I using videos captured from different camera views;

• Data from Human3.6m exhibit large variations in terms of body shapes, clothing, poses

and viewing angles within and across training/test splits [81]. Also, different people appear

in the training and test data.

• The size of the training set in HumanEva is too small to train a deep network. However,

we tested on HumanEva-I using Deep Network regressors trained on Human3.6m and

report a pose estimation accuracy of 75.4 mm. on Subject 1. As skeleton configurations

for Human3.6m and HumanEva do not exactly match each other, the error contains a

constant offset. However, we still obtain accurate pose estimates and outperform [185],

which reports a 99.6 mm. accuracy, even though it is trained on HumanEva.

Visualization. We provide additional qualitative results for the Human3.6m, HumanEva and

KTH Multiview Football II datasets in Fig. A.5, Fig. A.3 and Fig. A.4.
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(a) Ground Truth (b) Our method

Figure A.3: 3D human pose estimation results of RSTV-Regression on HumanEva. The

rows correspond to the Walking and Box actions. (a) Reprojection in the images and ground-truth

3D pose. (b) The skeletons recovered by our method and their projection on the image plane.

Best viewed in color.

(a) Camera 1 (b) Camera 2 (c) Camera 3 (d) 3D Pose

Figure A.4: Example 3D human pose estimation results of RSTV-Regression on KTH Mul-
tiview Football II. The 3D skeletons are recovered from Camera 1 images and projected on

those of Camera 2 and 3, which were not used to compute the poses. Best viewed in color.
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(a) Ground Truth (b) Our method (c) Ground Truth (d) Our method

Figure A.5: 3D human pose estimation with RSTV-Regression on Human3.6m for several
different action categories. (a,c) Ground-truth 3D poses and their projection in the images.

(b,d) The skeletons recovered by our method and their projection on the image plane. We can

reliably recover the 3D pose of the body in case of ambiguities, such as self-occlusions and

mirroring. Best viewed in color.
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