
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. P. Ienne, président du jury
Prof. B. Falsafi, Prof. E. Bugnion, directeurs de thèse

Prof. G. Sohi, rapporteur
Dr P. Faraboschi, rapporteur

Prof. J. Larus, rapporteur

Network-Compute Co-Design for Distributed In-Memory 
Computing

THÈSE NO 8749 (2018)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 7 SEPTEMBRE 2018

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE D'ARCHITECTURE DE SYSTÈMES PARALLÈLES

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS 

Suisse
2018

PAR

Alexandros DAGLIS





Τῆς παιδείας ἔφη τὰς μὲν ῥίζας εἶναι πικράς,

τὸν δὲ καρπὸν γλυκύν.

— Αριστοτέλης

The roots of education are bitter,

but the fruit is sweet.

— Aristotle

To my family





Acknowledgements

My PhD journey has undoubtedly been the most challenging and, at the same time, most rewarding

so far in my life. A journey that transformed me into a better person and taught me the true value

of perseverance, team work, empathy, and patience. I would not have been able to reach the finish

line if it weren’t for the wonderful people around me; people who were always there to magnify

the joy of the best moments; people who would always support and help me push through the

hardest times. To all of these people, I owe my deepest gratitude. It is therefore apposite to start

this thesis by thanking them.

First and foremost, I am grateful to my advisors, Babak and Ed. Babak has been a constant source

of stimulation to keep pushing myself out of my comfort zone, a practice instrumental to my

success. He taught me the importance of asking the right questions and taking a step back to look

at the big picture. Babak’s attention to detail and quest for perfection confirms that the "the path

of virtues goes through toils". I am grateful for the great group culture Babak has inculcated in

the PARSA group, which forms strong ties between students; I truly hope to succeed in achieving

the same with my future research group. Finally, I can’t help but blame Babak for spoiling me

regarding coffee. He made sure that PARSA always had arguably the best espresso at (at least)

EPFL. As a consequence, it has become a real challenge to find passable coffee outside the lab...

On the bright side, if everything else fails, I’ve acquired sufficient knowledge about great espresso

to become a half-decent barista.

It was a true honor to have Ed as a co-advisor. Thanks to Ed, I was involved in a great research

project of much wider breadth than my initial research direction plans, which were limited to a

narrower classic computer architecture scope. His astonishingly strong networking and systems

background and his immense industry experience have been truly inspiring and have played a

i



Acknowledgements

key role in broadening my research horizons. I want to thank Ed for that, and for always being

exceptionally empathetic, generous, and pragmatic.

Next, I would like to thank Jim Larus, Guri Sohi, Paolo Faraboschi, and Paolo Ienne for the

honor of serving in my PhD thesis committee. Hadi Esmaeilzadeh and Abhishek Bhattacharjee

have been selflessly offering me invaluable advice and support in academic matters. Boris Grot

has been a very close collaborator and mentor, from whom I have learned a great lot. In several

ways, he has been like a third advisor to me. Stanko Novakovic and Dmitrii Ustiugov have been

close collaborators in most of the work I did as part of my thesis and other exciting research

projects, but have also been great friends. Thank you for making my PhD journey more fruitful

and exciting!

An integral part of academia is continuous learning and bequeathing that acquired knowledge

through teaching. For my academic inclination I am greatly indebted to the great teachers I’ve

had throughout my life. I have been fortunate enough to have had several great teachers, who

constantly inspired me to pursue knowledge and excellence. I would like to explicitly thank two of

them here. First, my Computer Architecture professor and mentor throughout my undergraduate

studies at NTUA, Nectarios Koziris. In addition to giving me invaluable advice on how to start

building a successful career early on, he is also an excellent teacher whose enthusiasm and

positivity inspired my passion for Computer Architecture. Second, I would like to deeply thank

Giorgos Despotidis. Being an excellent violin teacher was the least of his qualities; a man of

exemplary kindness and dignity, with a deep love for his discipline, he has been a role model for

me in several aspects. Maestro, may you rest in peace. You are deeply missed...

The next group of people that deserves my gratitude is the PARSA lab. The strong collaborative

group culture was among the best experiences during this PhD. My daily interactions with my

peers have been a great source of learning. First, I’d like to thank Javier Picorel, my office mate

for many years, with whom we’ve been through a lot: occasions good and bad, funny and sad.

His positivity and support helped me keep my sanity. We had a really good run; I often reminisce

about all the jokes and fun times we shared. Next, I’d like to thank Mario Drumond and Arash

Pourhabibi for being not only great colleagues, but also awesome friends and neighbors. They

have been a lot of fun to hang out and argue with. I’m grateful to Sotiria Fytraki and the "fantastic

ii



Acknowledgements

four"—Stavros Volos, Onur Kocberber, Cansu Kaynak, and Djordje Jevdjic—who were senior

PhD students when I first joined PARSA. I bugged them a lot, but also learned a lot from them. I

will always very fondly remember our PARSA ski trips together and the legendary Las Vegas

excursion after ASPLOS 2014. Finally, I would like to thank Mark Sutherland—on whom befell

the demanding task of replacing Javier as my office mate, Sid Gupta—also my gym buddy who

made sure I never skipped leg day, Hussein Kassir—our official FPGA prototype-er, Nooshin

Mirzadeh, and Zilu Tian.

I want to thank PARSA’s administrative and technical staff, for always offering top-quality

support above and beyond their duty. Stéphanie has always been extremely friendly and helpful

with every minor or major headache related to bureaucracy, event organization, French translation,

etc., making sure the rest of us can focus on our academic goals and duties. Rodolphe, our

remarkable sysadmin, made sure all lab compute infrastructure was running like clockwork, and

was always available and responsive in the most critical situations (e.g., dealing with the joys of a

whole cluster going down on a Saturday night, just a few days before a deadline).

I’ve been fortunate to have an amazing group of people to spend my limited leisure time with in

Lausanne: enjoying good beer, watching movies, attending the long-established Burger Nights,

or, of course, having our infamous philosophical discussions of critical importance regarding

what constitutes a computer or a root or whether infinite sentences are a thing (yes, this is as

confusing as it sounds). I want to thank Manos, Eleni, Pavlos, Nathalie, and Christos for making

Lausanne feel like home. Of course, nothing would have been the same without the jolly Greek

and EPFL gang: Stefanos, Natassa, Iraklis, Vasilis, Panagiotis, Stella, Matt, Onur, Jean, Farah,

Apostolis, Thodoris, Myrsini, Katerina, Loukia, Iliana.

I am very grateful for to my friends from the good old times back in Greece, who are now spread

out all over the world. Our emotional proximity makes up for the petty inconvenience of physical

distance; the memories of all the great times we’ve had together are lifelong companions and

sources of joy. I want to thank all of of these cherished friends. My dear high-school friends,

Orestis, Vilma, Andreas, and Thodoris. My childhood friends Xenofon and Vasilis. My close

friends and once-upon-a-time neighbors, Nicholas and Despina (a.k.a. Cuervo, and also the

closest I’ve had to a sister) . The "tsouvlia" team from the Rosarte choir: Thanos, Sofia, Sofia

iii



Acknowledgements

Jr., Miranda. The NTUA gang: Leonidas, Mary, Nikos, Ignatios, Ersi. Rea, for her friendship,

wisdom, support, and invaluable advice over the past decade. I am looking forward to happy

get-togethers around the globe for years to come!

Last but not least, I want to thank my family, from the bottom of my heart, for their endless love,

support, and encouragement, during my PhD and my whole life. My parents, Ioannis and Anna,

for eagerly offering me more than I could ever ask for; for bringing me up in a loving environment;

for teaching me all things important: principles, ethics, justice, empathy, gratitude, honesty... and

so much more. I could not have asked for better parents, and for that I am extremely fortunate

and grateful. My dearest brothers, Thanasis and Dimitris, have been the best company to grow up

with. I am very proud of you both and feel blessed to have you. My grandparents—Alexandros,

Anthi, Thanasis, Vasiliki—for living a hard life to provide a better future for their children and

grandchildren. My dear uncles, Stathis, Fotis, and Dimitris; my aunt Maria, who has been like

second mother, and my cousins Eleni and Theofanis for their unconditional love. Finally, my

very own person and partner in crime, Kyveli. You have been my safe haven, inspiration and joy

for the past decade, and I am looking forward to spending a lifetime with you. I love you.

This thesis would not have been possible without numerous funding sources. I am thankful to

Babak for making sure I never had to worry about funding. My PhD research has been partially

supported by an EPFL Fellowship, a Microsoft Research Fellowship, the EuroCloud project of

the 7th Framework Program of the European Commission, the Workloads and Server Architecture

for Green Datacenters project of the Swiss National Science Foundation, the Nano-Tera YINS

project, the Scale-Out NUMA project of the Microsoft-EPFL Joint Research Center, and the

CHIST-ERA DIVIDEND project.

Lausanne, August 1, 2018 A. D.

iv



Abstract

The booming popularity of online services is rapidly raising the demands for modern datacenters.

In order to cope with data deluge, growing user bases, and tight quality of service constraints,

service providers deploy massive datacenters with tens to hundreds of thousands of servers,

keeping petabytes of latency-critical data memory resident. Such data distribution and the

multi-tiered nature of the software used by feature-rich services results in frequent inter-server

communication and remote memory access over the network. Hence, networking takes center

stage in datacenters.

In response to growing internal datacenter network traffic, networking technology is rapidly

evolving. Lean user-level protocols, like RDMA, and high-performance fabrics have started

making their appearance, dramatically reducing datacenter-wide network latency and offering

unprecedented per-server bandwidth. At the same time, the end of Dennard scaling is grinding

processor performance improvements to a halt. The net result is a growing mismatch between the

per-server network and compute capabilities: it will soon be difficult for a server processor to

utilize all of its available network bandwidth.

Restoring balance between network and compute capabilities requires tighter co-design of the

two. The network interface (NI) is of particular interest, as it lies on the boundary of network

and compute. In this thesis, we focus on the design of an NI for a lightweight RDMA-like

protocol and its full integration with modern manycore server processors. The NI capabilities

scale with both the increasing network bandwidth and the growing number of cores on modern

server processors.

Leveraging our architecture’s integrated NI logic, we introduce new functionality at the network

endpoints that yields performance improvements for distributed systems. Such additions include
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Abstract

new network operations with stronger semantics tailored to common application requirements

and integrated logic for balancing network load across a modern processor’s multiple cores.

We make the case that exposing richer, end-to-end semantics to the NI is a unique enabler for

optimizations that can reduce software complexity and remove significant load from the processor,

contributing towards maintaining balance between the two valuable resources of network and

compute. Overall, network-compute co-design is an approach that addresses challenges associated

with the emerging technological mismatch of compute and networking capabilities, yielding

significant performance improvements for distributed memory systems.

Key words: datacenters, servers, network interface, network protocol, integration, co-design,

one-sided operations, RDMA, distributed memory, remote memory
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Zusammenfassung

Die wachsende Popularität von Online-Diensten erhöht die Nachfrage nach modernen Rechenzen-

tren rasant. Um mit Datenflut, wachsenden Benutzerzahlen und strikten Servicequalität-Einschrän-

kungen zurechtzukommen, stellen Service-Provider massive Rechenzentren mit zehntausenden

bis hunderttausenden von Servern bereit, die Petabytes von latenzkritischen Datenspeichern

resident halten. Eine solche Datenverteilung und die mehrstufige Natur der Software, die von

funktionsreichen Diensten verwendet wird, führt zu einer häufigen Inter-Server-Kommunikation

und einem Fernspeicherzugriff über das Netzwerk. Daher steht das Netzwerk in Rechenzentren

im Mittelpunkt.

Als Reaktion auf den wachsenden internen Datenverkehr in Rechenzentren entwickelt sich die

Netzwerktechnologie rasant. Leichte Benutzerebene Protokolle, wie RDMA, und High-Per-

formance-Fabrics haben Einzug gehalten, wodurch die Rechenzentrum-weite Netzwerklatenz

dramatisch reduziert und eine noch nie dagewesene Datenübertragungsrate pro Server geboten

wird. Gleichzeitig bringt das Ende der Dennard-Skalierung die Prozessorleistungverbesserungen

zum Stillstand. Das Endergebnis ist eine wachsende Diskrepanz zwischen den pro-Server Netz-

werkfähigkeiten und Rechenfähigkeiten: Es wird für einen Server-Prozessor bald schwierig sein,

die gesamte verfügbare Datenübertragungsrate des Netzwerks zu nutzen.

Die Wiederherstellung des Gleichgewichts zwischen Netzwerk- und Rechnerleistung erfordert

ein engeres Co-Design der beiden. Die Netzwerkschnittstelle (NS) ist von besonderem Interesse,

da sie auf der Grenze von Netzwerk und Rechner liegt. In dieser Arbeit konzentrieren wir uns

auf das Design einer NS für ein leichtes RDMA-ähnliches Protokoll und dessen vollständige

Integration in moderne Mehrkern-Server-Prozessoren. Die NS-Funktionen skalieren sowohl

mit der steigenden Netzwerk-Datenübertragungsrate, als auch mit der wachsenden Kernanzahl
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Zusammenfassung

moderner Server-Prozessoren.

Den Vorteil der NS-Integration unserer Architektur ziehend, führen wir neue Funktionalität an

den Netzwerkendpunkten ein, die für vertelte Systeme Leistungsverbesserungen bringt. Solche

Ergänzungen beinhalten neue Netzwerkoperationen mit stärkerer Semantik, die auf allgemeine

Anwendungsanforderungen zugeschnitten sind, sowie auch integrierte Logik zum Ausgleichen

der Netzwerklast über die mehreren Kerne moderner Prozessoren. Wir zeigen, dass die Be-

reitstellung umfassenderer End-to-End-Semantiken für NS ein einzigartiger Ermöglicher für

Optimierungen ist, der die Softwarekomplexität reduzieren kann und erhebliche Lasten aus

dem Prozessor entfernen kann. Dadurch kann sich das Gleichgewicht zwischen den beiden

wertvollen Ressourcen Netzwerk und Rechenleistung aufrechterhalten. Das Co-Design von

Netzwerk-Computing ist ein Ansatz, der die Herausforderungen im Zusammenhang mit der

sich abzeichnenden technologischen Diskrepanz zwischen Rechen- und Netzwerkfähigkeiten

anspricht und zu erheblichen Verbesserungen der Rechenzentrumsleistung führt.

Stichwörter: Rechenzentren, Netzwerkschnittstelle, Netzwerkprotokoll, Integration, Co-Design,

einseitige Operationen, RDMA, verteilter Speicher, Remotespeicher
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1 Introduction

Modern online services have gradually become an integral part of everyday life for billions

of users. Web search, email, social networking, and e-commerce are a few examples of such

popular massive-scale services. At the time of writing, Google claims 1 billion Gmail users

and 1.5 billion search engine users, servicing over 3.5 billion search queries per day [42, 84].

Facebook has over 1.4 billion daily and 2.1 billion monthly active users [58], while massive-scale

online retailers Amazon and Alibaba receive online orders corresponding to 3 and 12 million

daily item shipments, respectively [172]. With every user constantly generating data and each

user request probing data services handling petabytes of data, data access demands are growing

dramatically. To cope with such data and userbase deluge, online service providers deploy several

massive-scale datacenters, each populated with tens of thousands of servers.

In addition to the challenge of immense volume, online services have to be interactive, delivering

seamless high-quality experience to all users; failing to do so may result in customer loss.

Prior work has shown that users are sensitive to response latencies in the orders of hundreds

of milliseconds [86, 131]. Experiences from real-life commercial settings corroborate this

observation and highlight the dramatic impact of latency in company revenue: every 100ms of

latency costs Amazon 1% in sales, while an extra 500ms in search page generation time drops

traffic to Google by 20% [77]. It is therefore common for online service providers to set strict

latency boundaries for servicing user requests as part of their service’s quality metric, commonly

1
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referred to as Service Level Objectives (SLO). To deal with such demands for low latency, it has

become common practice for service providers to distribute the data across the memory of the

datacenter’s servers.

Keeping data memory resident removes the bottleneck of disk accesses, accelerating data access

by up to five orders of magnitude (100ns versus 10ms). However, data distribution across

thousands of servers unavoidably results in accesses to data residing in the memory of remote

servers, thus requiring inter-server communication. Using commodity networking technology,

servers and operating systems, communication delays can exceed 100μs [149]; hence, accessing

data in remote memory is 1000× more expensive than accessing local memory (100μs versus

100ns). For the most challenging applications traversing large data structures that cannot be

easily partitioned (e.g., graphs) or accessing many disparate pieces of data (e.g., key-value

stores), distributed computation results in frequent inter-server communication, which may easily

dominate the total time required to process a user request. Therefore, inter-server communication

within the datacenter becomes a first-order performance concern.

The importance of communication has resulted in fast datacenter network infrastructure evolution.

Advanced networking technologies such as high-performance lossless fabrics (e.g., InfiniBand)

and Remote Direct Memory Access (RDMA) [124] that would typically only appear in High-

Performance Computing environments have started penetrating the datacenter space as well,

promising dramatic improvements in network bandwidth and latency. Modern fabrics continue

improving network bandwidth, in contrast to silicon, whose seamless density scaling met an

abrupt slowdown with the end of Dennard scaling. Datacenters already feature 10Gbps Ethernet,

with 40Gbps already ramping up and 100Gbps just around the corner. InfiniBand, while still more

expensive than Ethernet, already offers up to 300Gbps (InfiniBand EDR) and will soon double

that (InfiniBand HDR) [81]. On the latency front, the evolution of optics and introduction of

cut-through switches has enabled datacenter traversals in just a few tens of microseconds. Further

down the line, advancements in silicon photonics foreshadow end-to-end optic communication,

which could enable datacenter-wide communication in just a couple of microseconds, ultimately

approaching fundamental bounds set by the speed of light. Overall, the dramatic improvement of
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1.1. Forms of Inter-Server Communication

raw network performance capabilities lay the groundwork for large-scale distributed memory

systems of unprecedented performance. However, reaping these network capabilities requires a

major rethink of software, network protocols, and hardware architectures. In this thesis, we focus

on protocol and architecture redesign for communication-intensive distributed memory systems.

1.1 Forms of Inter-Server Communication

The majority of modern large-scale distributed memory systems, such as datacenters, is deployed

in a scale-out fashion. The size of the system grows with the addition of more servers that tap into

the system’s network, and each server deploys its own OS instance managing its local resources

(e.g., CPU, memory, storage). The most typical form of inter-server communication in such

scale-out deployments is Remote Procedure Calls (RPCs), invoked over the network. RPCs are

a very versatile form of inter-server communication, which has established them as the lingua

franca of datacenters; all the internal services in modern datacenters communicate via RPCs.

For instance, every user request for a Google service triggers more than 1000 RPCs within the

datacenter [18, 91].

RDMA technology that has recently started appearing in the datacenter space, introduces an

additional form of communication. As the name implies, RDMA—Remote Direct Memory

Access—enables a server to directly read a remote server’s memory. Unlike RPCs, this is a

one-sided operation, i.e., it does not involve the remote end’s CPU. One-sided operations come

with simple memory access semantics and provide the opportunity to expose the aggregate

memory resources of a scale-out deployment as a single global memory pool. The capability of

direct access to a global memory pool brings back to scale-out architectures some of the features

of scale-up architectures, without the drawbacks associated with the latter (e.g., cost, single-OS

limitations, hurdles of verification and fault containment). Memory pooling enables faster access

to remote data, lower memory overprovisioning requirements, and stronger resilience to load

imbalance arising from skewed data popularity distributions [133, 136].

Despite their strengths, one-sided operations are semantically limited to simple remote memory
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access. Hence, they cannot generally replace the versatile RPCs as the sole form of inter-server

communication. Each of the two communication forms has its own merits and drawbacks,

which we discuss in further detail in Section 2.6. We expect that future distributed systems will

eventually deploy an appropriate combination of one-sided operations and RPCs, leveraging the

strengths of each.

1.2 Thesis Goals

The primary goal of this thesis is the drastic acceleration of inter-server communication in

distributed memory environments. We aim to offer substantial improvements for both major

communication models, one-sided operations and RPCs. To that end, we investigate the limits of

inter-server communication latency and the impact of network evolution on the design of future

server chips and the network stack itself, from the protocol layer down to hardware.

We start by focusing on one-sided operations and pursue a holistic system design to approach

the lower latency bounds of remote memory access. We find that the evolution of networks has

shifted the bottlenecks of inter-server communication from the physical network itself to the

higher layers of the stack that comprises networking. Particularly, we identify conventional deep

network stacks and the slow PCIe bus connecting the CPU to the Network Interface (NI) logic

as the last major obstacles to low-latency inter-server communication. To overcome the first

latency obstacle, we design a lightweight user-level and hardware-terminated protocol. In turn,

the protocol’s simplicity enables the design of a simple enough protocol controller that allows

full on-chip of the NI logic, enabling rapid CPU-NI interaction. We show that NI integration

not only accelerates existing forms of communication, but also opens up new opportunities

for network-compute co-design that improves the efficiency of both one-sided- and RPC-based

inter-server communication.
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1.3. Thesis Contributions

Thesis statement:

Network interface integration and co-design with compute logic enables network endpoint

operations with richer functionality and stronger semantics, resulting in significant performance

improvements for distributed memory systems.

In this thesis, we advocate architectures leveraging Integration and CO-design of Network

Interface and Compute logic (ICONIC architectures) as new building blocks capable of signifi-

cantly boosting the performance of communication-intensive distributed memory systems.

1.3 Thesis Contributions

This thesis introduces network-compute co-design and network interface integration as key

design aspects to drastically improve the performance and versatility of communication-intensive

distributed memory systems. We introduce basic design guidelines for an ICONIC architecture

and demonstrate a number of new features such an architecture can deliver. We then implement a

proof-of-concept instance of such an architecture and demonstrate its benefits.

First, we propose Scale-Out NUMA (soNUMA), a new architecture, programming model, and

communication protocol that enables fast remote memory access by eliminating the last remaining

major obstacles to low latency, namely the deep network stack and the slow interface between

the CPU and the network. The heart of soNUMA is its on-chip integrated NI implementing

soNUMA’s protocol controller logic. The NI is not only integrated on chip, but also taps into

its local CPU’s coherence domain, which serves as a mechanism for rapid CPU-NI interaction.

soNUMA is a representative of an ICONIC architecture—featuring an NI tightly coupled with

compute logic—that serves as an appropriate baseline to demonstrate the new opportunities

arising from network-compute integration and co-design.

Second, motivated by the vast semantic gap between one-sided operations and RPCs, we advocate

the introduction of new one-sided primitives with richer semantics. As a concrete proposal of

such a primitive, we identify an operation that is ubiquitously used by modern distributed object
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stores, yet performed in a surprisingly inefficient manner in existing systems: atomic object reads

from remote memory. We introduce SABRe, a new one-sided operation with the semantics of

an atomic remote object read, and detail all the protocol and hardware additions required to

support it. We demonstrate that the new SABRe operation yields significant performance gains

and software simplification for distributed object stores.

Third, we show that the proximity of NI and compute logic in ICONIC architectures opens

opportunities for dynamic load balancing mechanisms integrated as part of the NI logic. Such

hardware support at the NI delivers significant throughput improvements under tight response

time tail latency constraints for the most challenging, short-lived RPCs, where existing software

solutions are unable to react to load imbalances in a timely manner. We show that such a dynamic

load balancing solution outperforms pre-existing adaptive software-based or static hardware-

based load balancing mechanisms, by being the only solution that breaks the tradeoff between

load imbalance resulting from static load distribution decisions and synchronization overheads of

software-based load balancing practices.

Fourth, we address practical chip design challenges that arise when considering practical imple-

mentations of ICONIC architectures, which have to accommodate for the modern technological

realities of growing CPU core counts and network bandwidth per server. We find that obvious

approaches to scaling and integrating the NI in a manycore chip significantly hurt either latency

or bandwidth. In contrast, careful splitting of NI functionality into core-NI interaction and data

transfer, and independent scaling and placement of these two components enables an NI design

that optimizes for both latency and bandwidth. Based on that insight, we propose NIsplit , a

novel scalable NI design that outperforms alternative NI designs in both latency and bandwidth.

Importantly, our NI design study demonstrates that the performance of remote memory access

is primarily dictated by chip design choices rather than the hardware/software interface used

to initiate remote data transfers. A specialized load-store interface for direct remote memory

accesses is neither necessary nor sufficient for high performance. A less intrusive hardware/soft-

ware interface based on a set of memory-mapped queues, when combined with proper chip and

NI design, is equally competitive.
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Finally, we describe a concrete implementation of an ICONIC architecture based on the soNUMA

protocol and our scalable chip design with NIsplit , featuring our new SABRes primitive and

our integrated dynamic load balancing mechanism. Our evaluation of the system demonstrates

significant performance improvements, in terms of both latency and throughput, showcasing the

strengths of tight NI integration and network-compute integration and co-design.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 provides background on key application and

technology trends that necessitate a rethink in the way we design large-scale communication-

intensive distributed memory systems, motivating a network-centric design approach. The rest of

the thesis is organized in three parts:

• Part I introduces the key design principles of an ICONIC architecture, and a set of new

features they offer. Chapter 3 presents the Scale-Out NUMA protocol and its specialized

on-chip integrated NI. Chapter 4 propose SABRes, a new one-sided operation with rich

semantics offering the capability reading objects from remote memory atomically. Chapter

5 introduces a novel dynamic load balancing mechanism of incoming network messages

to CPU cores, integrated in the NI logic, demonstrating unique benefits of ICONIC

architectures in RPCs handling.

• Part II is focused on the implementation and evaluation of an ICONIC architecture,

based on the design presented in Part I. Chapter 6 introduces a novel chip design that

addresses the practical challenges of scaling the performance of an on-chip integrated NI

with the evolving capabilities of modern servers, in terms of CPU core counts and network

bandwidth. Building on top of that chip design, Chapters 7 and 8 implement and evaluate

the performance benefits of our proposed SABRes primitive and dynamic load balancing

mechanism, respectively.

• Part III discusses related work (Chapter 9) and future research directions (Chapter 10).
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Finally, Chapter 11 concludes the thesis.
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(MICRO) in 2016 [40]. Finally, Chapter 6 is based on a conference paper published in the

Proceedings of the 42nd International Symposium on Computer Architecture (ISCA) in 2015
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2 Application and Technology Trends

Modern datacenters are evolving rapidly, being shaped by growing demands for online services.

From a single server’s design to the overall datacenter network architecture, the deployed

platforms evolve in a scale-out fashion to meet the high volume demand at tight latency constraints.

This chapter provides an overview of key software and hardware trends that highlight the role of

networking in the datacenter, and motivate the need for tighter network-compute integration.

2.1 Datacenter Services

Today’s massive web-scale services, such as web search, social networking, e-commerce or

analytics, require tens of thousands of servers and petabytes of storage [175]. Increasingly, the

trend has been toward deeper analysis and understanding of data in response to real-time queries.

To minimize the latency, datacenter operators have shifted hot datasets from disk to DRAM,

necessitating terabytes, if not petabytes, of DRAM distributed across a large number of servers.

Online services typically comprise several software layers, resulting in multi-tiered architec-

tures. In the most basic model, datacenter traffic patterns are north-south, as every user request

propagates through the different service tiers. As services are gradually offering richer features,

inter-server communication patterns in the datacenter become east-west, which are more complex

and unpredictable [168]. Typically, while the amount of north-south traffic is a function of
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incoming user requests, east-west traffic increases as a function of the rapidly increasing offered

functionality per request, causing internal datacenter network bandwidth demands to double

every 12–15 months [57, 157]. Every incoming user request triggers multiple software layer

interactions, involving hundreds of servers. For instance, Amazon reports that the rendering of a

single page typically requires access to over 150 internal services [48], while a single Google

search query uses 1000 servers to retrieve an answer [46]. Latency considerations force Facebook

to restrict the number of sequential data accesses to fewer than 150 per rendered web page [149].

Related work examining sources of network latency overhead in datacenters found that a typical

deployment based on commodity technologies may incur over 100μs in round-trip latency

between a pair of servers [149]. According to the study, principal sources of latency overhead

include the operating system stack, NIC, and intermediate network switches. While 100μs may

seem insignificant, communication time can end up dominating the overall latency of a user

request, mainly for two reasons. First, every request results in long sequences of inter-server

communication, as it goes through several internal datacenter service layers. Second many of

these service layers mainly involve data retrieval with minimal computation per data item loaded

(e.g., key-value stores). For example, read operations dominate key-value store traffic, and

simply return the object in memory. With 1000× difference in data access latency between local

DRAM (100ns) and remote memory (100μs), distributing the dataset, although necessary, incurs

a dramatic performance overhead. In conclusion, inter-server communication is taking center

stage as a major performance determinant of online services.

2.2 Server Architectures

Datacenters employ commodity technologies due to their favorable cost-performance characteris-

tics. The end result is a scale-out architecture characterized by a large number of commodity

servers connected via commodity networking equipment. Two architectural trends are emerging

in scale-out designs.

First, System-on-Chips (SoC) provide high chip-level integration and are a major trend in servers.
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Current server SoCs combine many processing cores, memory interfaces, and I/O to reduce

cost and improve overall efficiency by eliminating extra system components. More recently,

some SoCs went as far as integrating the network endpoints on the chip. For instance, Calxeda

(now defunct) integrated the Ethernet controller on chip [44], a practice that Intel recently also

started following with its Xeon D SoCs [13]. AppliedMicro’s X-Gene2 server SoC [107] and

Oracle’s Sonoma [109] integrated an RDMA controller directly on chip. While the controller

still communicates with the chip’s memory hierarchy over DMA transfers, this is a clear effort to

bridge the gap between the compute and the network.

Second, there is a growing trend for manycore server chips, motivated by the nature of online

services, which operate on massive datasets, exhibiting little data locality and immense request-

level parallelism. These characteristics result in CPU cores processing short-lived independent

requests and spending most time waiting for data retrieval from memory [62, 91, 119]. The net

result is that servers are gradually featuring more and more—potentially leaner—cores. Emerging

server processors, such as Cavium’s ThunderX series [110, 111], AppliedMicro’s X-Gene 3

[115], Phytium’s FT-2000/64 [112], Qualcomm’s Centriq [113], and EZChip’s TILE-Mx [56],

already feature from several dozens to 100 ARM cores. Even the latest Intel and AMD x86 CPUs,

which typically feature brawnier cores, are hitting the 30s range [114, 116]. For example, the

latest Skylake Xeons offer up to 28 cores.

While both trends are beneficial for online services running on modern datacenters, they currently

seem to evolve independently; it is, however, important to reconcile the manycore and network

integration trends. Both are key to server efficiency, thus the two should be co-designed.

2.3 RDMA and Lossless Fabrics

RDMA [124] enables memory-to-memory data transfers across the network without processor

involvement on the destination side. These direct data transfers from remote memory are also

commonly referred to as one-sided operations. By exposing remote memory and reliable connec-

tions directly to user-level applications, RDMA eliminates all kernel overheads. Furthermore,
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one-sided remote memory operations are handled entirely by the adapter without interrupting the

destination core. RDMA is supported on lossless fabrics such as InfiniBand [80] and Converged

Ethernet [79] that scale to thousands of nodes and can offer remote memory read latency as low

as a couple of μs.

Although historically associated with the High-Performance Computing market, RDMA is now

making inroads into web-scale datacenters, such as Microsoft’s and Google’s [155]. Latency-

sensitive key-value stores such as RAMCloud [138], Pilaf [127], FaRM [53, 54], HERD [89], and

DrTM [171] use RDMA fabrics to achieve key-value lookups from remote memory at latencies

as low as 5μs.

There are a number of limitations that are currently blocking the adoption of full datacenter-scale

RDMA, such as the lack of integrated congestion management in the protocol and the difficulty

of scaling lossless fabrics to networks of tens of thousands of nodes, a guarantee RDMA relies on

to achieve high performance. The strong interest of massive online service providers, who also

own the largest datacenters, in RDMA technology, is driving significant resources into research

to address these challenges. However, it should be noted that even if these challenges remain

unsolved, RDMA and RDMA-like solutions, such as the soNUMA architecture proposed in this

thesis (Chapter 3), will remain highly relevant to datacenter architectures, as they can provide

significant performance benefits. We discuss in the following section how such technologies can

be leveraged to offer more powerful building blocks for datacenters.

2.4 Rack-Scale Computing

Rack-scale computing is a young field that recently started gaining traction from both industry

and academia [5]. Rack-scale computing identifies the rack as an architectural block—instead of

the typical server architectural block in today’s datacenters—within which, all components are

tightly integrated to deliver significant compute capacity at high efficiency in a contained scale.

Figure 2.1 represents a high-level view of such a rack-scale computer. In addition to the traditional
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Figure 2.1 – Overview of a rack-scale computer.

Ethernet connections to a top-of-the-rack (TOR) switch for conventional networking with the

outside world, all SoCs in the rack are directly attached to a secondary high-performance fabric

interconnect. The key strength of rack-scale computers is that they offer high density of cores and

memory that can rapidly communicate via integrated high-performance fabrics. In the near future,

rack-scale computers will feature 1000s of cores and terabytes of memory in a rack form factor,

with glueless fabrics offering high-bandwidth, low-latency interconnection. Such systems will be

capable of replacing large-scale NUMA machines, as they will offer comparable performance at

a fraction of the cost. Early examples of rack-scale systems are AMD SeaMicro [50], Boston

Viridis [24], HP’s The Machine [76], and Oracle’s ExaLogic and ExaData [139]. The aggregate

vast memory pool of a rack-scale computer can be seamlessly accessed using fast one-sided

operations over the fabric, making these systems a great fit for computation on massive datasets

that cannot be easily partitioned, hence remote memory access is unavoidable and frequent.

A rack-scale computer can offer enough resources to be used as a standalone solution for a family

of medium-sized problems, or as even as a building block for future datacenters. For example,

the RackOut architecture [136] demonstrates that organizing the datacenter as collection of rack-

scale computers rather than a collection of servers can yield substantial utilization improvements

under tight response time tail latency guarantees. Thus, even if systems with fully integrated

networking and lightweight protocols will not outgrow current rack-scale solutions, they still

represent excellent building blocks for future datacenter-scale deployments.
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Our main focus on this thesis is on systems of contained scale, such as these rack-scale computers,

where network-compute co-design and tighter integration will have the most dramatic impact. In

such systems, inter-server communication performance is largely determined by the endpoints:

the protocol executed on the CPU and network controller, and the flow of information between

the CPU and the network controller. Furthermore, any software overhead added to the bare

remote memory access latency imposed by the underlying hardware perceivably increases the

end-to-end latency. We take a vertical system redesign approach to holistically tackle these major

sources of inter-server communication overheads in rack-scale computers.

At datacenter scale, there are other factors that significantly affect inter-server communication

performance, such as multi-hop topologies with several switches that add a measurable latency,

oversubscribed network tiers, and long distances. However, these additional overheads of

datacenter-scale communication will be gradually ameliorated. Rapid advancements in datacenter

networking equipment (e.g., adoption of high-performance fabrics like InfiniBand) already offer

datacenter-wide network roundtrips faster than 20μs [28]. End-to-end optic networks at full

datacenter scale are expected in the near future; such networks will allow datacenter traversals in a

single μs, dictated by the speed of light. Thus, whether the performance of datacenter inter-server

communication will converge with that of rack-scale computers, or rack-scale computers will

emerge as building blocks in the datacenter space, we expect the contributions of this thesis to

eventually be highly relevant even at datacenter scale.

2.5 The Emerging Network–Compute Mismatch

We are entering an era of intense technological turmoil, which, among others, will significantly

affect the design of communication-intensive systems. Historically, compute logic has been

dramatically faster than network communication and systems were designed around this basic

assumption. However, technology advancements are bound to disrupt long-established balances.

The slowdown of Moore’s Law and the end of Dennard Scaling are leading to stagnating

performance of general-purpose logic. At the same time, networks are evolving rapidly. On the
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latency front, in-datacenter propagation delays approaching the fundamental limit imposed by

the speed of light, enabling full datacenter traversals in just a couple of μs. On the bandwidth

front, we continuous improvements that are expected to continue in the foreseeable future; the

InfiniBand Trade Association’s roadmap predicts a quadrupling of network bandwidth [81].

The net result is in the near future, balanced communication-intensive systems will have to be

increasingly more frugal in the amount of computation spent per network message.

The emerging imbalance between CPU processing capacity and network capabilities has already

started surfacing. To illustrate, at the time of writing, a high-end Mellanox InfiniBand NIC

delivers 200Gb/s and 200M IOPS; this leaves even the highest-end server CPUs with fewer than

1000 cycles to complete a request associated with a single network packet. For example, the Xeon

Platinum 8176 features 28 cores at 2.1GHz. In a 2-socket configuration, utilizing all the available

network bandwidth using small messages would require spending as few as 600 CPU cycles per

message. It is becoming increasingly more challenging to utilize the growing network bandwidth,

especially with small messages. Therefore, any achieved reduction in computational resources

spent per network message directly contributes towards building more balanced systems. In

this thesis, we put actively put effort towards this direction. Network-compute integration and

co-design opens a range of opportunities to alleviate the emerging network-compute imbalance.

2.6 One-Sided Operations Versus RPCs

Computation in distributed memory systems requires inter-server interaction, which generally

takes one of two forms: either data is pulled from a remote server to a local server, or computation

is pushed from the local server to the remote server, where it is executed on the target data.

We refer to the former interaction form as remote memory access and to the latter as Remote

Procedure Call (RPC).

An RPC is inherently a two-sided operation: RPC-based inter-server interaction implies CPU

involvement of both communicating servers. A remote memory access may of course be per-

formed over an RPC, but can also be performed over a one-sided operation, i.e., an operation
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that does not involve the CPU of the remote end. For most scale-out system deployments that

rely on conventional network stacks such as TCP/IP, one-sided remote memory access is not

possible. However, hardware-terminated protocols like InfiniBand not only offload the bulk of

protocol processing to hardware, leaving a lean user-level protocol to be executed by the CPU, but

also offer such operations. Such technology is commonly referred to as RDMA (Remote Direct

Memory Access). An RDMA NIC has the capability of directly accessing application memory

without CPU involvement at the remote end, offering the fastest path to remote memory. An

additional benefit of one-sided operations over two-sided operations is tighter response latency

distribution, as bypassing software interaction at the remote end removes a major source of

unpredictability [161]. Hardware delivers more predictable latencies than software, resulting

in tighter tails, as also demonstrated by Microsoft’s Catapult project [28]. Several software

frameworks have recently been built to leverage the strengths of these one-sided operations

offered by RDMA technology [53, 54, 89, 127].

However, one-sided operations also have disadvantages, with first and foremost their lack of

flexibility, because each operation is limited to reading/writing a single remote memory location.

The requesting server has to specify exactly the remote memory location to be accessed. Such

requirement is not trivial, as it involves software and use of data structures (e.g., FaRM’s

Hopscotch [53]) specially designed to facilitate location of remote data from the requesting

side. Consequently, legacy software cannot make use of such operations without a major rewrite.

Second, even with specially designed software, locating the target remote data can result in

multiple roundtrips over the network. Adding an extra roundtrip voids the benefit of using a one-

sided operation, as the overall remote data access time ultimately exceeds that of a conventional

two-sided operation.

As a result, conventional wisdom dictates resorting to a two-sided operation (a.k.a. an RPC—

Remote Procedure Call) to conduct any remote memory operation more complicated than a

simple remote memory location read. To illustrate, even systems that are specifically designed

to heavily rely on one-sided operations for fast remote memory reads (e.g., Pilaf [127] and

Microsoft’s FaRM [53]), resort to two-sided operations for writes. The reason for that design
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choice is that writes can trigger complex side-effects that can only be dealt with in software,

such as data structure rebalances, memory allocation, etc. Of course, the flexibility of two-sided

operations does not come for free; it involves CPU involvement at the remote end, which is a

valuable resource (see Section 2.5): a message triggers some arbitrary code to be executed on a

general-purpose CPU core. The involvement of software at the remote end also implies increased

response latency and unpredictability.

Datacenter services still rely mostly on RPCs partially because of their great flexibility of RPCs

and partially because they have been a well-established model for inter-server communication for

decades; RDMA technology that enables one-sided operations started appearing in the datacenter

space only recently. We expect that software layers that deliver very simple but latency-critical

functionality, such as key-value stores, will gradually be restructured to leverage the low latency

of one-sided operations. While the jury is still out as to when each of the two operation types

is preferable, the community seems to be gradually reaching consensus that future systems

using high-performance networking solutions should judiciously use both one- and two-sided

operations, leveraging the merits of each [52]. Several recent well-engineered software stacks for

distributed memory systems are a good example of that direction, as they combine the strengths

of both operation types to maximize performance (e.g., [34, 171, 177]).

The net result is that any high-performance distributed memory architecture should offer support

for rapid one-sided operations and efficient two-sided communication. In this thesis, we propose

a new architecture with co-designed compute and network interface logic, aiming to significantly

improve the performance and scalability of hardware-terminated protocols. We demonstrate that

tightly integrated ICONIC architectures deliver superior performance, scalability, and flexibility

for one-sided operations, and new opportunities for more efficient RPC invocations. Finally, in an

attempt to bridge the semantic gap between one-sided operations and RPCs, we also investigate

new one-operations with richer semantics and propose such a new primitive.
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3 The Scale-Out NUMA Architecture

The rising demand for real-time online services has made it common practice for service providers

to keep all data memory resident, distributed across millions of servers in a datacenter. While

memory residency eliminates disk accesses, shrinking data access latency from 10s of millisec-

onds to 100s of nanoseconds, data distribution across machines results in frequent inter-server

communication. As modern datacenters are built with commodity networking technology run-

ning on top of commodity servers and operating systems, inter-server communication delays can

exceed 100μs [149], a 1000× overhead over the desired memory access latency.

The reasons for the high communication latency are well known and include deep network stacks,

complex network interface cards (NIC), and slow chip-to-NIC interfaces [149, 63]. RDMA

reduces end-to-end latency by enabling memory-to-memory data transfers over InfiniBand [80]

and Converged Ethernet [79] fabrics. By exposing remote memory at user-level and offloading

network processing to the adapter, RDMA enables remote memory read latencies in the range of

a couple of μs; however, that still represents a >10× latency increase over local DRAM.

To mitigate the performance gap between local and remote memory, we introduce Scale-Out

NUMA (soNUMA): an architecture, programming model, and communication protocol for

distributed, in-memory applications that reduces remote memory access latency to within a small

factor (∼3–4x) of local memory. soNUMA leverages two simple ideas to minimize latency. The
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first is to use a stateless request/reply protocol running over a NUMA memory fabric to drastically

reduce or eliminate the network stack, complex NIC, and switch gear delays. The second is to

integrate the protocol controller into the node’s local coherence hierarchy, thus avoiding state

replication and data movement across the slow PCI Express (PCIe) interface.

soNUMA exposes the abstraction of a partitioned global virtual address space, which is useful for

big-data applications with irregular data structures such as graphs. The programming model is

inspired by RDMA [124], with application threads making explicit remote memory read and write

requests with copy semantics. The model is supported by an architecturally-exposed hardware

block, called the remote memory controller (RMC), that safely exposes the global address space

to applications. The RMC is integrated into each node’s coherence hierarchy, providing for a

frictionless, low-latency interface between the processor, memory, and the interconnect fabric.

This chapter describes the soNUMA architecture, programming model and protocol, with a

particular focus on the RMC design.

22



3.1. Obstacles to Fast Remote Memory

0

500

1000

1500

2000

1

10

100

1000

10000
Latency

Bandwidth

Figure 3.1 – Netpipe benchmark on a Calxeda microserver.

3.1 Obstacles to Fast Remote Memory

As datasets grow, the trend is toward more sophisticated algorithms at ever-tightening latency

bounds. While SoCs, glueless fabrics, and RDMA technologies help lower network latencies,

the network delay per byte loaded remains high. Here, we discuss principal reasons behind

the difficulty of further reducing the latency for in-memory applications in modern scale-out

deployments.

Deep network stacks are costly. Distributed systems rely on networks to communicate. Un-

fortunately, today’s deep network stacks require a significant amount of processing per network

packet which factors considerably into end-to-end latency. Figure 3.1 shows the network perfor-

mance between two directly-connected Calxeda EnergyCore ECX-1000 SoCs, measured using

the standard netpipe benchmark [159]. The fabric and the integrated NICs provide 10Gbps

worth of bandwidth. Despite the immediate proximity of the nodes, the integrated NICs and the

lack of intermediate switches, we observe high latency (in excess of 40μs) for small packet sizes

and poor bandwidth scalability (under 2 Gbps) with large packets. These bottlenecks exist due

to the high processing requirements of TCP/IP and are aggravated by the limited performance

offered by Calxeda’s wimpy ARM Cortex-A9 cores.

PCIe/DMA latencies limit performance. I/O bypass architectures have successfully removed

most sources of latency except the PCIe bus. Studies have shown that it takes 400–500ns to

communicate short bursts over the PCIe bus [63], making such transfers 7–8× more expensive,
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in terms of latency, than local direct DRAM accesses. Furthermore, PCIe does not allow for the

cache-coherent sharing of control structures between the system and the I/O device, leading to

the need of replicating system state such as page tables into the device and system memory. In

the latter case, the device memory serves as a cache, resulting in additional DMA transactions

to access the state. SoC integration alone (e.g., integrated RDMA controller in X-Gene 2 and

Oracle’s Sonoma) does not eliminate these overheads, since IP blocks often use DMA internally

to communicate with the main processor [20].

3.2 Scale-Out NUMA Overview

soNUMA is an architecture and programming model for low-latency distributed memory, de-

signed to address each of the obstacles to low-latency described in Section 3.1. soNUMA goes

after a scale-out model with physically distributed processing and memory: (i) it replaces deep

network stacks with a lean user-level, hardware-terminated protocol; (ii) eschews system-wide

coherence in favor of a global partitioned virtual address space accessible via RMDA-like remote

memory operations with copy semantics; (iii) replaces transfers over the slow PCIe bus with

fast cache-to-cache transfers; and (iv) is optimized for rack-scale deployments, where physical

distance (i.e., propagation delays) is minuscule. In effect, our design goal is to borrow the

desirable qualities of ccNUMA and RDMA without their respective drawbacks.

Figure 3.2 identifies the essential components of soNUMA. At a high level, soNUMA combines a

lean memory fabric with an RDMA-like programming model in a rack-scale system. Applications

access remote portions of the global virtual address space through remote memory operations.

A new architecturally-exposed block, the remote memory controller (RMC), converts these

operations into network transactions and directly performs the memory accesses. Applications

directly communicate with the RMC, bypassing the operating system, which gets involved only

in setting up the necessary in-memory control data structures.

Unlike traditional implementations of RDMA, which operate over PCIe, the RMC benefits from

a tight integration into the processor’s cache coherence hierarchy. In particular, the processor and
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Figure 3.2 – soNUMA overview.

the RMC share all data structures via the cache hierarchy. The implementation of the RMC is

further simplified by limiting the architectural support to one-sided remote memory read, write,

and atomic operations, and by unrolling multi-line requests at the source RMC. As a result, the

protocol can be implemented in a stateless manner by the destination node.

The RMC converts application commands into remote requests that are sent to the network

interface (NI). The NI is connected to an on-chip low-radix router with reliable, point-to-point

links to other soNUMA nodes. The notion of fast low-radix routers borrows from supercomputer

interconnects; for instance, the mesh fabric of the Alpha 21364 connected 128 nodes in a 2D

torus using an on-chip router with a pin-to-pin delay of just 11ns [128].

soNUMA’s memory fabric bears semblance (at the link and network layer, but not at the protocol

layer) to the QPI and HTX solutions that interconnect sockets together into multiple NUMA

domains. In such fabrics, parallel transfers over traces minimize pin-to-pin delays, short messages

(header + a payload of a single cache line) minimize buffering requirements, topology-based

routing eliminates costly CAM or TCAM lookups, and virtual lanes ensure deadlock freedom.

Although Figure 3.2 illustrates a 2D-torus, the design is not restricted to any particular topology.

Terminology note: We introduced the RMC as a protocol controller terminating the soNUMA

protocol and directly interfacing the NI. The term NI is usually referred to the entity handling the

network layer. However, in favor of simplicity, we will be using the term NI as an umbrella term

for the hardware entity handling both the protocol and network layers. Hence, in the context of
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soNUMA, the term NI encompasses the RMC, as depicted in Figure 3.2.

3.3 Remote Memory Controller

The foundational component of soNUMA is the RMC, an architectural block that services

remote memory accesses originating at the local node, as well as incoming requests from remote

nodes. The RMC integrates into the processor’s coherence hierarchy via a private L1 cache and

communicates with the application threads via memory-mapped queues. This section describes

the hardware/software interface that is used by the applications to interact with the RMC and

provides a functional overview of the RMC. We then proceed to provide a complete picture of

the soNUMA architecture by presenting the soNUMA communication protocol and required

software support in Sections 3.4 and 3.5, respectively. We shift our focus back to the RMC in

Section 3.6, with an analysis of its microarchitecture and its area/power cost.

3.3.1 Hardware/Software Interface

soNUMA provides application nodes with the abstraction of globally addressable, virtual address

spaces that can be accessed via explicit memory operations. The RMC exposes this abstraction to

applications, allowing them to safely and directly copy data to/from global memory into a local

buffer using remote write, read, and atomic operations, without kernel intervention. The interface

offers atomicity guarantees at the cache-line granularity, and no ordering guarantees within or

across requests.

soNUMA’s hardware/software interface is centered around four main abstractions directly ex-

posed by the RMC: (i) the context identifier (ctx_id), which is used by all nodes participating

in the same application to create a global address space; (ii) the context segment, a range of the

node’s address space which is globally accessible by others; (iii) the queue pair (QP), used by

applications to schedule remote memory operations and get notified of their completion; and (iv)

local buffers, which can be used as the source or destination of remote operations.
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Figure 3.3 – QP interactions and memory access on the remote end for a remote read.

The QP model consists of a work queue (WQ), a bounded buffer written exclusively by the

application, and a completion queue (CQ), a bounded buffer of the same size written exclusively

by the RMC. The CQ entry contains the index of the completed WQ request. Both are stored

in main memory and coherently cached by the cores and the RMC alike. In each operation,

the remote address is specified by the combination of node_id, ctx_id, offset. Other

parameters include the length and the local buffer address.

3.3.2 RMC Overview

The RMC consists of three hardwired pipelines that interact with the queues exposed by the

hardware/software interface and with the NI. These pipelines are responsible for request genera-

tion, remote request processing, and request completion, respectively. Figure 3.3 is a high-level

illustration of a CPU core’s interaction with the three RMC pipelines through a QP. New remote

memory access requests are scheduled from the core by writing into a WQ. The Request Gen-

eration Pipeline (RGP) identifies the new request by polling the head of the WQ. After some

local processing, it sends the request to the target node over the network, where the Remote

Request Processing Pipeline (RRPP) will process the request, access its local memory accordingly

and send a reply message back to the requesting node. Finally, the requesting node’s Request

Completion Pipeline (RCP) processes the reply, matches it to the original request, and notifies

the core of the request’s completion by writing an identifying entry in the CQ. The core identifies

the request’s completion by polling on the CQ’s head.
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The RMC pipelines are controlled by a configuration data structure, the Context Table (CT),

and leverage an internal structure, the Inflight Transaction Table (ITT). The CT is maintained

in memory and is initialized by system software. The CT keeps track of all registered context

segments, queue pairs, and page table root addresses. Each CT entry, indexed by its ctx_id,

specifies the address space and a list of registered QPs (WQ, CQ) for that context. Multi-threaded

processes can register multiple QPs for the same address space and ctx_id. Meanwhile, the ITT

is used exclusively by the RMC and keeps track of the progress of each WQ request.

Figure 3.4 highlights the main states and transitions for the three independent pipelines. Each

pipeline can have multiple transactions in flight. Most transitions require an MMU access, which

may be retired in any order. Therefore, transactions will be reordered as they flow through a

pipeline.

Request Generation Pipeline (RGP). The RMC initiates remote memory access transactions

in response to an application’s remote memory requests (reads, writes, atomics). To detect such

requests, the RMC polls on each registered WQ. Upon a new WQ request, the RMC generates
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one or more network packets using the information in the WQ entry. For remote writes and

atomic operations, the RMC accesses the local node’s memory to read the required data, which it

then encapsulates into the generated packet(s). For each request, the RMC generates a transfer

identifier (tid) that allows the source RMC to associate replies with requests.

Remote transactions in soNUMA operate at cache line granularity. Coarser granularities, in

cache-line-sized multiples, can be specified by the application via the length field in the WQ

request. The RMC unrolls multi-line requests in hardware, generating a sequence of line-sized

read or write transactions. To perform unrolling, the RMC uses the ITT, which tracks the number

of completed cache-line transactions for each WQ request and is indexed by the request’s tid.

Remote Request Processing Pipeline (RRPP). This pipeline handles incoming requests orig-

inating from remote RMCs. The soNUMA protocol is stateless, which means that the RRPP

can process remote requests using only the values in the header and the local configuration state.

Specifically, the RRPP uses the ctx_id to access the CT, computes the virtual address, translates

it to the corresponding physical address, and then performs a read, write, or atomic operation as

specified in the request. The RRPP always completes by generating a reply message, which is

sent to the source. Virtual addresses that fall outside of the range of the specified security context

are signaled through an error message, which is propagated to the offending thread in a special

reply packet and delivered to the application via the CQ.

Request Completion Pipeline (RCP). This pipeline handles incoming message replies. The

RMC extracts the tid and uses it to identify the originating WQ entry. For reads and atomics, the

RMC then stores the payload into the application’s memory at the virtual address specified in the

request’s WQ entry. For multi-line requests, the RMC computes the target virtual address based

on the buffer base address specified in the WQ entry and the offset specified in the reply message.

The ITT keeps track of the number of completed cache-line requests. Once the last reply is

processed, the RMC signals the request’s completion by writing the index of the completed
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WQ entry into the corresponding CQ and moving the CQ head pointer. Requests can therefore

complete out of order and, when they do, are processed out of order by the application. Remote

write acknowledgments are processed similarly to read completions, although remote writes

naturally do not require an update of the application’s memory at the source node.

3.4 Communication Protocol

soNUMA’s communication protocol naturally follows the design choices of the three RMC

pipelines at the protocol layer. At the link and routing layers, our design borrows from existing

memory fabric architectures (e.g., QPI or HTX) to minimize pin-to-pin delays.

Link layer. The memory fabric delivers messages reliably over high-speed point-to-point links

with credit-based flow control. The message MTU is large enough to support a fixed-size header

and an optional cache-line-sized payload. Each point-to-point physical link has two virtual lanes

to support deadlock-free request/reply protocols.

Routing layer. The routing-layer header contains the destination and source address of the

nodes in the fabric (dst_nid, src_nid). dst_nid is used for routing, and src_nid to generate

the reply packet. The router’s forwarding logic directly maps destination addresses to outgoing

router ports, eliminating expensive CAM or TCAM lookups found in networking fabrics.

Protocol layer. The RMC protocol is a simple request-reply protocol, with exactly one reply

message generated for each request. The WQ entry specifies the dst_nid, the command (e.g.,

read, write, or atomic), the offset, the length and the local buffer address. The RMC

copies the dst_nid into the routing header, determines the ctx_id associated with the WQ,

and generates the tid. The tid serves as an index into the ITT and allows the source RMC to

map each reply message to a WQ and the corresponding WQ entry. The tid is opaque to the

destination node, but is transferred from the request to the associated reply packet.

30



3.4. Communication Protocol

dst_nid &lbufflenoffset

offsetctx_id

src_nid tid payloadoffset
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dst_nid ctx_id tidoffsetopsrc_nid
…

Figure 3.5 – Communication protocol for a remote read.

Figure 3.5 illustrates the actions taken by the RMCs for a remote read of a single cache line.

The RGP in the requesting side’s RMC first assigns a tid for the WQ entry and the ctx_id

corresponding to that WQ. The RMC specifies the destination node via a dst_nid field. The

request packet is then injected into the fabric and the packet is delivered to the target node’s RMC.

The receiving RMC’s RRPP decodes the packet, computes the local virtual address using the

ctx_id and the offset found in it and translates that virtual address to a physical address. This

stateless handling does not require any software interaction on the destination node. As soon as

the request is completed in the remote node’s memory hierarchy, its RMC creates a reply packet

and sends it back to the requesting node. Once the reply arrives to the original requester, the

RMC’s RCP completes the transaction by writing the payload into the corresponding local buffer

and by notifying the application via a CQ entry (not shown in Figure 3.5).

3.4.1 Handling Packet Loss

Reliable delivery of packets is commonly enforced at the link and transport layers of the network

stack. In TCP/IP networks, the TCP layer is responsible for flow control, congestion management,

retransmissions in case of packet loss, connection management, etc. Most of TCP processing

is onloaded to the CPU, to which the high latency of network protocol processing is partially

attributed.

The soNUMA protocol is much closer to InfiniBand, where the network protocol is terminated
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by the NIC hardware (known as an HCA). InfiniBand assumes a lossless link layer, namely no

packet can be lost because of buffer overflows. Despite that, packet losses are still possible for

various other reasons, such as FCS errors. Therefore, InfiniBand implements a trivial back-to-0

retransmission mechanism in hardware, for packet retransmission at the transport layer, in the

rare occasion the link layer fails to deliver. Prior work investigating datacenter-scale deployment

of RDMA technology, which relies on lossless fabrics such as InfiniBand or Converged Ethernet,

showed that packet drops indeed occur, and retransmission policies as simple as back-to-0 can

result in severe performance degradation [68]. The authors of [68] conclude that, at datacenter

scale, smarter retransmission mechanisms are required and suggest that doing so, along with the

addition of hardware for better forward error correction, is a technologically sound choice that

can significantly relax the strict requirements for lossless packet delivery placed on the network

fabric.

The soNUMA architecture is built on top of a memory fabric with credit-based link-layer flow

control. The fabric thus guarantees lossless delivery at the link layer, similar to InfiniBand. To

keep the design of the RMC as simple as possible, when a packet drop is detected, the RMC

exposes the failure to the application directly, which then decides what action to take when a

packet sent to a remote node is not matched by a response. The RMC notifies the application

framework via the CQ and passes an error code signaling the packet loss. It should be trivial to

extend the RMC hardware to implement a back-to-0 retransmission, as such mechanism does

not require additional state. However, given that our solution is mainly targeting rack-scale

deployments, such retransmissions are expected to be extremely rare [90], making the software

fallback choice attractive. Finally, the same trade-offs as in InfiniBand apply for soNUMA: better

lossless fabrics versus additional hardware support at the endpoints for improved retransmission

mechanisms and forward error correction. The balance of this tradeoff, however, is different

for soNUMA and InfiniBand, as all RMC logic in integrated on the CPU chip rather than on a

discrete network card.
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3.5 Software Support

Making the RMC hardware accessible and the exported hardware/software interface usable by

programmers, a significant effort is required on the software front. We now briefly describe the

system and application software support required to expose the RMC to applications and enable

the soNUMA programming model. Further details on system and software support for soNUMA

are available in [133].

3.5.1 Device Driver

The role of the operating system on an soNUMA node is to establish the global virtual address

spaces. This includes the management of the context namespace, virtual memory, QP registration,

etc. The RMC device driver manages the RMC itself, responds to application requests, and

interacts with the virtual memory subsystem to allocate and pin pages in physical memory. The

RMC device driver is also responsible for allocating the CT and ITT on behalf of the RMC.

Unlike a traditional RDMA NIC, the RMC has direct access to the page tables managed by the

operating system, leveraging the ability to share cache-coherent data structures. As a result, the

RMC and the application both operate using virtual addresses of the application’s process once

the data structures have been initialized.

The RMC device driver implements a simple security model in which access control is granted

on a per ctx_id basis. To join a global address space <ctx_id>, a process first opens the device

/dev/rmc_contexts/<ctx_id>, which requires the user to have appropriate permissions. All

subsequent interactions with the operating system are done by issuing ioctl calls via the

previously-opened file descriptor. In effect, soNUMA relies on the built-in operating system

mechanism for access control when opening the context, and further assumes that all operating

system instances of an soNUMA fabric are under a single administrative domain.

Finally, the RMC notifies the driver of failures within the soNUMA fabric, including the loss of

links and nodes. Such transitions typically require a reset of the RMC’s state, and may require a
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restart of the applications.

3.5.2 Access Library

The QPs are accessed via a lightweight API, a set of C/C++ inline functions that issue remote

memory commands and synchronize by polling the completion queue. We expose a synchronous

(blocking) and an asynchronous (non-blocking) set of functions for both reads and writes. The

asynchronous API is comparable in terms of functionality to the Split-C programming model [38].

Fig. 3.6 illustrates the use of the asynchronous API for the implementation of the classic PageRank

graph algorithm [141]. rmc_wait_for_slot processes CQ events (calling pagerank_async

for all completed slots) until the head of the WQ is free. It then returns the freed slot where the

next entry will be scheduled. rmc_read_async (similar to Split-C’s get) requests a copy of

a remote vertex into a local buffer. Finally, rmc_drain_cq waits until all outstanding remote

operations have completed while performing the remaining callbacks.

This programming model is efficient as: (i) the callback (pagerank_async) does not require

a dedicated execution context, but instead is called directly within the main thread; (ii) when

the callback is an inline function, it is passed as an argument to another inline function (rmc_-

wait_for_slot), thereby enabling compilers to generate optimized code without any function

calls in the inner loop; (iii) when the algorithm has no read dependencies (as is the case here),

asynchronous remote memory accesses can be fully pipelined to hide their latency.

To summarize, soNUMA’s programming model combines true shared memory (by the threads

running within a cache-coherent node) with explicit remote memory operations (when accessing

data across nodes). In the PageRank example, the is_local flag determines the appropriate

course of action to separate intra-node accesses (where the memory hierarchy ensures cache

coherence) from inter-node accesses (which are explicit).

Finally, the RMC access library exposes atomic operations such as compare-and-swap and fetch-

and-add as inline functions. These operations are executed atomically within the local cache
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float *async_dest_addr[MAX_WQ_SIZE];
Vertex lbuf[MAX_WQ_SIZE];

inline void pagerank_async (int slot, void *arg) {
*async_dest_addr[slot] += 0.85 * lbuf[slot].rank[superstep%2] / lbuf[slot].out_degree;

}

void pagerank_superstep(QP *qp) {
int evenodd = (superstep+1) % 2;
for(int v=first_vertex; v<=last_vertex; v++) {

vertices[v].rank[evenodd] = 0.15 / total_num_vertices;
for(int e=vertices[v].start; e<vertices[v].end; e++) {

if(edges[e].is_local) {
// shared memory model
Vertex *v2 = (Vertex *)edges[e].v;
vertices[v].rank[evenodd] += 0.85 * v2->rank[superstep%2] / v2->out_degree;

} else {
// flow control
int slot = rmc_wait_for_slot (qp, pagerank_async );
// setup callback arguments
async_dest_addr[slot] = &vertices[v].rank[evenodd];
// issue split operation
rmc_read_async (qp, slot,

edges[e].nid, //remote node ID
edges[e].offset, //offset
&lbuf[slot], //local buffer
sizeof(Vertex)); //len

}
}

}
rmc_drain_cq (qp, pagerank_async );
superstep++;

}

Figure 3.6 – Computation of a PageRank superstep in soNUMA through a combination of remote

memory accesses (via the asynchronous API) and local shared memory.
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coherence hierarchy of the destination node.

3.5.3 Synchronization Library

By providing architectural support for only read, write and atomic operations, soNUMA reduces

hardware cost and complexity. The minimal set of architecturally-supported operations is not a

fundamental limitation, however, as standard communication and synchronization primitives can

be built in software on top of these three basic primitives.

For instance, we have implemented a simple barrier primitive such that nodes sharing a ctx_id

can synchronize. Each participating node broadcasts the arrival at a barrier by issuing a write to

an agreed upon offset on each of its peers. The nodes then poll locally until all of them reach the

barrier. Other types of synchronization primitives can also be implemented by leveraging this

trivial mechanism.

3.5.4 Messaging over One-Sided Operations

The soNUMA protocol [134] only offers native support for one-sided remote memory access,

in favor of simplicity. While one-sided operations offer the fastest path to remote memory, they

only represent one form of inter-node communication on distributed memory systems. The

most widespread form of communication is messaging—i.e., two-sided communication—which

involves the participation of the remote end’s CPU. soNUMA’s protocol design can implement

send and receive operations for messaging on top of one-sided operations. To communicate

using send and receive operations, two application instances must first each allocate a bounded

buffer from their own portion of the global virtual address space. The sender always writes

to the peer’s buffer using rmc_write operations, and the content is read locally from cached

memory by the receiver. Each buffer is an array of cache-line sized structures that contain header

information (such as the length, memory location, and flow-control acknowledgments), as well as

an optional payload. Flow-control is implemented via a credit scheme that piggybacks existing

communication.
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Figure 3.7 – Messaging emulation using one-sided operations.

For small messages, the sender creates packets of predefined size, each carrying a portion of the

message content as part of the payload. It then pushes the packets into the peer’s buffer. To receive

a message, the receiver polls on the local buffer. In the common case, the send operation requires

a single rmc_write, and it returns without requiring any implicit synchronization between the

peers. In our implementation, each 64B messaging packet comprises 4B of header/metadata, and

60B of payload (assuming a typical cache line size of 64B). For example, transferring 64B of

data requires packetization into two soNUMA packets: the 1st packet contains a 4B header and

60B of data; the 2nd packet contains a 4B header, 4B of data, and 60B of padding, as all network

packets in soNUMA are cache-block-sized (64B).

For large messages stored within a registered global address space, the sender only provides the

base address and size to the receiver’s bounded buffer. The receiver then pulls the content using a

single rmc_read and acknowledges the completion by writing a zero-length message into the

sender’s bounded buffer. This approach delivers a direct memory-to-memory communication

solution, but requires synchronization between the peers.

At compile time, the user can define the boundary between the two mechanisms by setting a

minimal message-size threshold: push has lower latency since small messages complete through

a single rmc_write operation and also allows for decoupled operations. The pull mechanism

leads to higher bandwidth since it eliminates the intermediate packetization and copy step.
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A similar messaging mechanism was deployed by HERD [89], a software framework that offers

fast RPCs over one-sided RDMA operations. Figure 3.7 illustrates an example deployment of

such a messaging mechanism. Each server registers a receive buffer comprising M×S slots of

size K, where:

• M is the number of the server’s cores.

• S is the number of received buffer slots dedicated to each core.

• K is the receive buffer slot’s size, which defines the maximum acceptable message size.

After the receive buffer is set up, each core periodically polls all of its corresponding buffer slots

for new incoming messages. For a client, sending a message to the server involves explicitly

picking a location within the receive buffer to write to, using a one-sided write operation. An

implicit effect is that the location of the write also dictates which specific core of the server

will service that message. Each client can only write to a statically predefined subset of the

receive buffer slots, to prevent clients from squashing each others’ messages. Consequently,

M×S has to be sufficiently larger than the total number of clients in order to allow multiple

outstanding requests per client. The received message triggers an RPC, which produces the result

corresponding to the incoming request. Sending the result back to the client involves the same

process, with the roles of the server and client inversed.

3.6 RMC Microarchitecture

Section 3.3 introduced the high-level organization and functionality of the RMC. In this section,

we dive into the RMC’s microarchitectural details, and then proceed to evaluate its cost in terms

of area and power.

Figure 3.8 illustrates the implementation of the RMC as a set of three completely decoupled

pipelines, affording concurrency in the handling of different functions at low area and design cost.

The RMC features two separate interfaces: a coherent memory interface to a private cache and a
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Figure 3.8 – RMC interface to the on-chip and off-chip network.

network interface to the on-die router providing system-level connectivity. On the network side,

the three RMC pipelines are connected to distinct queues that interface a low-radix router block

with support for two virtual lanes. The RMC’s integration into the node’s coherence hierarchy is

a critical feature of soNUMA that eliminates wasteful data copying of control structures, and

of page tables in particular. It also reduces the latency of the application/RMC interface by

eliminating the need to set up DMA transfers of ring buffer fragments.

The RMC acts both as a protocol controller and a data manipulator and, as such, handles three

distinct classes of data: system state, application metadata, and application memory (data). Each

of these has different characteristics, which justifies designing the handling of each separately.

System state includes essential protocol-specific metadata that are maintained by the RMC. First,

the RMC needs to maintain the protocol state, i.e., the information related to the registered QPs.

Second, the RMC needs to maintain some additional internal state to keep track of each soNUMA

operation. While the soNUMA protocol is connectionless, a minimal amount of state is still

required per operation, as the protocol supports variable sized requests, which are unrolled at

the source. As a result, the RMC that initiates a multi-block request needs to keep track of the

pending packets that comprise the request in order to track its progress and completion (ITT).

Application metadata includes information that is frequently communicated between the ap-

plication and the RMC: the WQ and CQ entries. The application writes WQ entries to send

new requests to the RMC, while the RMC writes CQ entries to notify the application of request

completions. As the queues are memory-mapped, this information exchange is enabled by the
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combination of a polling-based mechanism and the default coherence protocol cache block

transfers, which guarantees that the most recent version of a requested block is being read.

The third and last category is application memory. While the RMC is handling the movement of

a large amount of application data, it never is the final consumer. The real data consumers are the

applications which send the remote data access requests to the RMC. Therefore, keeping data

close to the RMC provides no benefit—on the contrary, it may unnecessarily increase the access

latency for the original data requester.

For the above reasons, the RMC handles these three classes differently:

1. System state is relatively small, is constantly accessed by the RMC, and is not touched by

the outside system in the steady state. Thus, it should be stored in specialized, dedicated

SRAM structures.

2. Application metadata leverages cache coherence for efficient data transfer between the

RMC and the application. Furthermore, as the minimum transfer unit in a conventional

memory subsystem is a cache block, more than one valid control queue entries can be

fetched in a single transfer, resulting in spatial locality. Thus, the RMC can benefit from a

small private cache, integrated into the coherence domain.

3. Application memory is never used by the RMC, so it should not be stored in any caching

layer private to the RMC. Thus, data corresponding to application memory always bypass

the RMC’s cache.

While each of the three RMC pipelines implements its own datapath and control logic, some

data structures and hardware components are shared across them. The RGP and RCP handle the

same requests at different phases of their lifetime (initiation and completion), hence they share

some state. In contrast, the RRPP is completely independent, as it statelessly processes incoming

requests from remote nodes. We first describe the structures that are shared by the RGP and RCP,

followed by a description of each of the three pipelines.
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3.6.1 Shared SRAM Structures

RMC Cache. The RGP and RCP share a small private cache, which is used for their communi-

cation with the cores that run the application code, via memory-mapped operations. The RMC

cache has a 16-byte interface, optimized for the WQ entry size. Each cache block can fit four

WQ entries or 64 CQ entries.

QP Table. A QP is registered to an RMC by allocating an entry in the RMC’s QP table. A

QP table entry consists of the base physical addresses of the WQ and the CQ (note that, as in

RDMA, all pages involved in soNUMA operations are pinned in memory). In the same QP entry,

the RMC pipelines store their current index to each of the two queues. The RGP accesses the

information related to the WQ, while the RCP accesses the information related to CQ. The QP

table sizing depends on the target maximum number of active QPs in the system.

ITT Table. This structure is used to keep track of each outstanding request’s progress. Its

existence is essential for large requests that get unrolled, as responses may arrive at any order.

For every new request, a new ITT entry is allocated by the RGP, and the allocated entry’s index is

used as the transaction’s id. An ITT entry contains a counter that indicates the number of replies

required for that request, as well as the QP id (the index to the corresponding QP table entry) and

WQ index, required to identify the origin of a request, once it’s completed. The local buffer’s

address is also kept in the ITT, so that every reply packet that carries payload can directly find

the location in which it has to be written. The alternative would have been reading the request’s

corresponding WQ entry from the memory subsystem again, to retrieve the associated buffer

address that is embedded in the request entry. The RCP accesses the ITT table upon every reply

packet arrival, to decrement the counter that tracks the number of block-sized transfers associated

to a request. The ITT table should be sized based on the expected round-trip time of remote

memory accesses so that a new transaction id is always available to avoid RGP stalls.
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3.6.2 Request Generation Pipeline

Figure 3.9 shows the RGP, which initiates soNUMA remote operations. It periodically polls all

the WQs that are registered in the QP table to check for new enqueued requests. A new entry

is identified by a valid bit, set by the application. A unique transaction id is assigned to every

soNUMA request generated by an RGP, in order to identify the originating request, once a reply

arrives. Requests that are larger than a cache block need to be unrolled, which is done in the

unroll stage and requires as many cycles as the request size in terms of cache blocks. In cases of

remote write requests, data needs to be read from a local buffer and attached as payload in the

outgoing packets, before they are forwarded to the network router. In addition to the QP and ITT

table, the RGP uses the following SRAM structures:

• Load Queue for WQ entries. WQ entries are read from remote L1 caches of the same

chip. A remote L1 cache may incur a latency of several tens or hundreds of cycles [43],

depending on the chip size and interconnect. In order to avoid stalling the RGP upon every

remote block read, we provision the RGP with a Load Queue to allow multiple parallel

outstanding WQ reads.

• Data Load Queue. Used exclusively for remote write requests, the Data Load Queue

stores packet headers while it waits for the payload from the local memory hierarchy,

which has to be attached to the packet header before the packet is injected in the network.

This structure is sized according to the expected average memory access latency, to avoid

stalling the RGP.

3.6.3 Request Completion Pipeline

The RCP, shown in Figure 3.10, receives replies from the network, matches them to the original

requests, and notifies the application upon each request’s completion. Upon a reply packet arrival,

the RCP uses the packet’s transaction id field to index the ITT table. The counter in the ITT is

decremented, and the associated QP id, WQ index, and base local buffer address are read out.
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Figure 3.9 – The Request Generation Pipeline (RGP). SRAM structures appear shaded.

If the reply carries payload, it needs to be written in a local buffer. The target virtual address is

computed by adding the packet’s offset field to the buffer base address, that address is translated,

and the data block is sent out to the LLC. If the counter reaches zero, i.e., that packet was the

last of a request, the RCP reads the CQ base address and its current head from the QP table,

writes the request’s corresponding WQ index to the CQ’s head, and increments the CQ head. The

application that polls at the CQ’s tail, will eventually identify the new valid CQ entry, which

indicates the completion of the WQ entry with index “WQ index”. In addition to the QP and ITT

tables, the RCP uses the following SRAM structures:

• Data Store Queue. Used exclusively for packets that contain payload (i.e., remote read

replies), the Data Store Queue temporarily holds data to be written in the LLC. Its depth

should be enough to avoid filling up in the steady operation state, which would result in

pipeline stalls.

• CQ Compaction Buffers. These buffers in the last stage of the RCP are an optimization

to reduce on-chip traffic. Every CQ entry is 1 byte, as it only contains the WQ index of

the WQ entry the request originated from. To amortize the cost of ping-ponging a block

between the RCP and the application core’s L1, we can compact up to 16 CQ entries per

CQ (as the RMC cache has a 16-byte interface) before we flush them to the RMC’s cache.

This is a batching optimization that can be dynamically enabled under high load.
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Figure 3.10 – The Request Completion Pipeline (RCP). SRAM structures appear shaded.

3.6.4 Remote Request Processing Pipeline

The RRPP is the simplest pipeline in terms of protocol processing complexity. It services

incoming remote requests by reading or writing local memory and responding with the appropriate

reply packet. The RRPP only features a single private SRAM structure, the RRPP Memory

Queue. Similar to the RGP’s Data Load Queue, this structure keeps a packet header, while the

corresponding local memory access is in progress. Because soNUMA does not provide ordering

guarantees, the RRPP memory queue is a simple SRAM structure that does not need to be probed

by younger requests. This is in contrast to a processor’s load-store queue, which is organized as a

power-hungry CAM that must be probed on each memory access to handle ordering and memory

reference dependencies.

RRPP address translation. soNUMA provides the abstraction of globally addressable, virtual

address spaces. By adding an extra layer of indirection, a global context is built, and every node

participating in the context exposes a part of its virtual memory as part of the global address

space. The RRPP receives remote requests that address these exposed memory regions of the

local node by specifying (context id, offset) pair. Thus, before the RRPP accesses memory to

serve the incoming request, it needs to a) translate this pair into a virtual address, and b) translate

the resulting virtual address to a physical address. We use context ids as address space identifiers

(ASID) are used in modern TLBs, to directly translate the (context id, offset) pair into a physical

address, thus avoiding a separate first translation stage.
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Structure Name # of Entry Total Area Power DescriptionEntries Size Size (mm2) (mW)

QP table 80 11B 840B 0.004 2.8
Holds QP (WQ and CQ) infor-

mation.

ITT table 120 78b 1.2KB 0.008 1.7 Tracks in-flight transfers.

RGP - Load Queue 8 22B 176B 0.008 4.4 Tracks issued WQ entry reads.

RGP - Data Load Queue 23 81B 1.8KB 0.08 53
Tracks outstanding data loads,

for remote write operations.

RCP - Data Store Queue 23 70B 1.6KB 0.06 40
Tracks outstanding data writes,

for remote read replies.

RCP - CQ Buffers 8 16B 128B 0.005 2.5
Compacts CQ entries before

writing them back to cache.

RRPP - Memory Queue 23 81B 1.8KB 0.08 53

Tracks outstanding reads &

writes, to send back response

upon completion.

Total 7.5KB 0.245 157

Table 3.1 – Estimated area and power for RMC SRAM structures.

3.6.5 RMC Area and Power Estimation

The RMC is a small and simple IP block, purposefully designed so to facilitate its on-chip

integration. Its logic is minimal; the RMC’s area and power dissipation are dominated by its

SRAM structures. In the following SRAM structure sizing analysis, we assume an RMC design

where each pipeline is capable of handling a data transfer bandwidth of 16GB/s. This number

roughly corresponds to the effective bandwidth that can be delivered by a high-end DDR4

channel, and we provision each pipeline to be capable of handling such bandwidth, to cover all

data transfer scenarios: remote reads only (stress on RCP), remote writes only (stress on RGP),

or processing incoming requests only (stress on RRPP).

We use McPAT [100] to estimate the area and power of the RMC’s SRAM structures assuming

a 32nm process technology and a frequency of 2GHz. Table 3.1 summarizes the complete

set of structures, and their capacity, area, and power consumption. In the rest of this section,

we describe an instantiation of the SRAM structures for the RMC under a set of deployment

assumptions, and explain the sizing strategy for each structure, to facilitate recalculation under

different assumptions.
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QP Table. Each QP table entry contains the base physical addresses of a WQ and a CQ, the

WQ’s tail index, and the CQ’s head index. In our current design, a queue index is 8 bits. With a

48-bit physical address space and a 4KB-page alignment of the queues, each QP table entry is

88 bits. Based on the soNUMA protocol, one QP per context per core is required. Provisioning

for 8 cores per RMC and 10 concurrently used contexts, each QP table holds 80 entries. The

logically single QP table consists of two physical structures, in order to reduce the structures’

porting requirements. Note that the QP table sizing does not limit the maximum number of usable

QPs, as it is possible to add a mechanism to spill QP entries to the chip’s last level cache and

memory. While this can have a negative impact on performance, the effects can be ameliorated

by implementing smart mechanisms that cycle through the QP entries and prefetch them from

memory to the QP table in a timely manner.

ITT Table. Each ITT table entry is 78 bits and contains a 19-bit counter, as well as the QP id,

the WQ index, and the local buffer base address of the request to which the ITT entry is assigned.

To avoid RGP stalls, the number of ITT entries needs to match the expected number of in-flight

transactions. Assuming a 256-node 3D torus topology (10-hop diameter), 35ns latency per hop

[165], 120ns of RRPP servicing at the remote node, we account for an average round-trip of

470ns. Using Little’s Law, for 470ns average latency and a target peak bandwidth of 16GB/s,

we provision the RMC with 120 ITT entries. The ITT table is also divided into two physical

structures, for the same reasons described before. The first structure contains the counter, while

the second the rest of the fields.

RGP Load Queue for WQ Entries. As a cache block fits four WQ entries, we provision for

one remote L1 access every four WQ reads. Each entry of the Load Queue is 22 bytes, accounting

for a 48-bit physical address and a 16-byte WQ entry, and we allocate 8 entries in total to hide

the latency of on-chip data transfer latencies and allow polling multiple WQs concurrently.
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RGP Data Load Queue. Each entry contains an address, a packet header, and a field for the

block-sized payload, for a total of 81 bytes. Provisioning for an average latency of 90ns (DRAM

latency + on-chip interconnect), the structure has 23 entries.

RCP Data Store Queue. Similar to the RGP Data Load Queue, we provision the structure

with 23 entries. Each entry is 70 bytes (address + payload).

RRPP Memory Queue. Similar to the RGP Data Load Queue, this structure has 23 entries

and each entry is 81 bytes.

Overall, an RMC sized to deliver a peak bandwidth of 16GB/s and serve 8 cores with 10

concurrently active QPs each, comes at an area cost of ∼0.25mm2 and a peak power dissipation

of 156mW. In comparison, the size and TDP of a low-end server core such as the ARM Cortex-

A57 (64-bit 3-way OoO) estimated at a 32nm technology (projected from reported numbers at

20nm [11, 108]) is 5.3mm2 and 2.4W, ∼ 20× larger and ∼ 15× more power hungry than the

RMC. Note that our estimations for the RMC only include its SRAM structures, which should

dominate the area and power cost as the RMC’s logic is very simple and only performs trivial

computations.

As part of his MSc thesis at EPFL, Hussein Kassir prototyped the soNUMA architecture on the

Intel HARP hybrid CPU-FPGA platform. Synthesis tools reported his RMC implementation’s

area to be 0.35mm2 at a 40nm technology. This roughly corresponds to an area of 0.22mm2 at a

projected 32nm technology, being very close to the above first-order approximation.

In conclusion, soNUMA’s protocol simplicity enables the design of a lean protocol controller

that can easily be integrated on chip. On-chip integration of the RMC removes one of the last

obstacles to fast remote memory access, namely the high PCIe/DMA latency modern systems

incur on CPU-NI interaction (see Section 3.1).
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3.7 Chapter Summary

Scale-Out NUMA (soNUMA) is an architecture, programming model, and communication

protocol for low-latency big-data processing. soNUMA eliminates kernel, network stack, and I/O

bus overheads by exposing a new hardware block—the remote memory controller (RMC)—within

the cache coherent hierarchy of the processor. The RMC is directly accessible by applications and

is a small hardware structure that is connected directly into a NUMA fabric. In the second part of

this thesis (Chapter 6), we describe a concrete implementation of the soNUMA architecture and

demonstrate remote memory access latencies within a small factor of local DRAM access (3–4×).

By bringing shrinking the latency gap between local and remote memory access, soNUMA

enables distributed memory systems with the abstraction of a global memory pool, where the

aggregate memory resources are seamlessly accessible.
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4 Remote Memory Operations with

Richer Semantics

One-sided operations, offered by soNUMA and modern RDMA technology, offer the fastest path

to remote memory by avoiding CPU interaction at the remote end. Several modern software

frameworks for in-memory distributed computing have started making use of these operations

offered by RDMA, showing dramatic performance improvements. Existing RDMA technologies

such as InfiniBand can deliver remote memory access at a latency as low as 10–20× of local

memory access (1–2μs versus 60–100ns). soNUMA further shrinks this gap through tight

integration and a leaner protocol, bringing remote memory access latency just within 3–4× of

local memory access, providing even stronger motivation for the use of one-sided operations.

While fast, existing one-sided operations provided by current RDMA technology have scant

semantics, offering read, write, and limited atomic operations. For any remote memory access

more complicated than that (e.g., simple pointer traversal at the remote end), software either has

to employ a sequence of one-sided operations, or completely give up on the capability of direct

remote memory access and resort to conventional RPCs. The former is rarely a good option;

for the vast majority of remote memory access that cannot complete with a single one-sided

operation, RPC is usually the option of choice. As a result, the usability of one-sided operations

is severely limited.

We argue that one-sided operations need not be as semantically limited as they currently are.
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Extending their semantics to better accommodate common memory operations performed by

software stacks deployed over distributed memory systems can yield significant performance

improvement, software simplification, and reduction in required CPU cycles per operation (an

endeavor strongly motivated by ongoing technology trends, as argued in Section 2.5). Network-

compute co-design, as advocated in this thesis, not only facilitates the introduction of new

one-sided operations with richer semantics, but also enables functionality that would otherwise

not be possible with conventional PCIe-attached NI logic.

A key requirement to justify the introduction of any new one-sided operation, along with the NI

hardware extensions it entails, is the identification of functionality that is ubiquitously needed by

applications, yet is contained and simple enough to implement in hardware. As a case study for

richer remote memory operations, we study the concurrency control aspect of distributed memory

software and identify such a candidate operation. In particular, we study distributed object stores

and identify that a very common operation, reading a data object from remote memory atomically,

is surprisingly inefficient in modern distributed memory systems.

The inefficiency stems from a mismatch between what software needs and what current RDMA

hardware provides. While software data objects have an arbitrary size, often larger than a

single cache block (typically 64B), one-sided operations cannot guarantee atomicity for any

memory access straddling multiple cache blocks—a direct consequence of their DMA-based

implementation. To overcome this limitation, data management systems leveraging one-sided

operations employ software mechanisms such as locks or optimistic concurrency control to

enforce atomic remote object accesses [53, 127, 171].

Providing object atomicity in software in current systems incurs a performance penalty, though

currently acceptable. However, software-provided atomicity will gradually become a performance

limiter as modern fabrics and new architectures such as soNUMA drastically improve inter-server

communication’s latency and bandwidth. Indeed, our study shows that the state-of-the-art

software mechanism delivering atomic object accesses in FaRM [53] accounts for up to 50% of

the end-to-end remote memory access latency for large objects (8KB) on soNUMA. Consequently,
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providing atomic remote object access becomes a first-order performance concern calling for

architectural support to replace the costly software mechanisms.

Since remote object reads represent the most frequent remote memory operation, introducing

a one-sided hardware primitive with the semantics of an atomic remote object read is critical

to the performance distributed memory systems. Motivated by the need to provide hardware

support for the ubiquitous operation of accessing objects from remote memory atomically, we

perform a design space exploration to identify the best approach to offload this functionality

to the NI logic. As a result of this exploration, we introduce SABRe (Single-site Atomic Bulk

Read), a new one-sided primitive with stronger semantics than any existing one-sided primitive.

We then present LightSABRe, a lightweight and high-performance implementation of SABRe

that leverages coherent NI integration for eager detection of object atomicity violations. Our

evaluation of LightSABRe on an instance of an ICONIC system in Chapter 7 shows that the

introduction of hardware support for atomic remote object reads completely removes the software

overhead associated with providing the desired atomicity trait.
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4.1 Atomic Remote Object Reads

In this section, we establish the importance of atomically accessing objects from remote memory

for distributed memory systems, and advocate the introduction of a new one-sided operation with

the semantics of an atomic remote object read. We start with some background on modern in-

memory object stores, underline the inability of existing one-sided operations to accommodate the

need for atomic remote object access, and demonstrate why the negative effect of this limitation

will be amplified on future systems with faster networking.

4.1.1 In-Memory Object Stores

In-memory object stores (or key-value stores) are critical components of many modern cloud

systems. Several large-scale services are powered by well-engineered object store software

stacks, which are designed to scale to thousands of servers and petabytes of data and serve

billions of requests per second [16, 26, 48, 132]. There are several well-known representatives

such as Memcached [2], Redis [4], Dynamo [48], TAO [26], and Voldemort [3], which are

deployed in production environments of large service providers such as Facebook, Amazon,

Twitter, Zynga, and LinkedIn [9, 105, 132, 167]. The popularity of these systems has resulted

in considerable research and development efforts, including open-source implementations [1],

research prototypes [14, 140] and a wide range of sophisticated, highly tuned frameworks that

aspire to become the state-of-the-art solution [53, 101, 103].

An emerging category of software frameworks for in-memory object stores is designed to leverage

the low communication offered by RDMA technology, which recently started penetrating the

datacenters. These object stores take advantage of RDMA one-sided operations to deliver fast

access to remote objects and dramatically improve system performance [53, 89, 127, 171].

For applications that operate on structured data, the granularity of an operation (and also the

minimum unit of transfer when accessing remote memory) is the object. The size of these objects

is application-specific, and can range from a few bytes to several kilobytes [104]. Unfortunately,
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RDMA technology relies on PCIe DMA to transfer data between the memory and the network,

and therefore its remote memory access semantics are limited to read, write, and cache-block-

sized atomic operations, such as remote CAS. The latter only provide atomic access to a memory

region not exceeding a single cache block in size. No existing hardware mechanism can provide

atomic access to larger memory regions; thus, the challenge of accessing objects atomically falls

on the software.

4.1.2 Atomic One-Sided Operations

Several modern frameworks for in-memory distributed computing rely on one-sided RDMA

operations (e.g., Pilaf [127], FaRM [53], DrTM [171]). One-sided operations deliver fast access

to remote memory by completely avoiding remote CPU involvement, but offer limited semantics.

In most cases, one-sided operations are only used for reads, while writes are sent to the data

owner over an RPC. This common design choice simplifies software design and is motivated by

the read-dominated nature of most applications.

To the best of our knowledge, the only system using one-sided operations for both reads and

writes is DrTM [171]. DrTM uses HTM as an enabler for one-sided writes, relying on it to

detect local conflicts with incoming remote writes and abort conflicting local reads. While DrTM

introduces an interesting design point, we focus on the common case of one-sided read operations.

Because HTM functionality is bounded to its local node’s coherence domain, it cannot be directly

used for atomic multi-cache-block remote reads.

Modern frameworks rely on software techniques to complement the limited semantics of one-

sided operations, which only offer cache-block-sized atomicity. A defining characteristic for these

techniques is the employed concurrency control method: locking versus optimistic concurrency

control. Combining locking with one-sided reads is simple. Each object in the data store has an

associated lock. When a node requires atomic access to a remote object, it issues a first one-sided

(cache-block atomic) RDMA CAS operation to acquire the remote object’s lock, followed by

another one-sided operation to access the object atomically—locking prevents any conflicts.
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However, remote lock acquisition comes with two drawbacks. First, it increases the latency of

remote memory access by an additional network roundtrip. Second, it introduces fault-tolerance

concerns, as a node’s failure may result in deployment-wide deadlocks, turning the RDMA cluster

into a single failure domain and thus jeopardizing the traditional high resilience of scale-out

deployments. The latter concern can be addressed for reads by replacing conventional locks with

lease locks, as illustrated by DrTM. Unfortunately, lease locks are sensitive to clock skew across

the deployment’s machines, and their duration can significantly impact concurrency and abort

rates.

Optimistic concurrency control addresses the shortcomings of remote locking. Driven by the

observation that most workloads are read-dominated, and hence the probability of a conflict is low,

optimistic concurrency control relies on conflict detection rather than conflict prevention for high

performance (Pilaf [127], FaRM [53]). Since hardware only provides cache-block-sized atomicity,

remote reads are paired with ad hoc software-based mechanisms for conflict detection, which

do not come for free. For instance, Pilaf [127] embeds a checksum in each object’s header as

additional metadata. The checksum is recomputed after every update, and remote readers compute

the checksum of the object’s data to compare it to the object’s checksum—a mismatch indicates

an atomicity violation. Unfortunately, while conceptually simple, the checksum mechanism is

expensive, as the cost of CRC64 is about a dozen CPU cycles per checksummed byte [127].

For KB-sized objects, this overhead can grow to tens of thousands of CPU cycles (i.e., several

microseconds) per object transfer.

FaRM [53] introduces the more efficient approach of per-cache-line versions: every object has

a 64-bit version in its header, and a number of that header’s least significant bits are replicated

in a per-cache-line header. Writers update all versions upon an object update, and readers

compare all cache-line versions to detect atomicity violations before consuming the data. While

computationally cheaper than checksums, per-cache-line versions still introduce measurable

CPU overhead for both readers and writers. More importantly, per-cache-line versions prevent

zero-copy object transfers: before the application can use the object, the CPU has to extract the

clean data into a buffer by stripping off the embedded per-cache-line versions. This overhead
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applies to all types of read/write accesses, both local and remote. Despite the overhead, FaRM’s

per-cache-line versions mechanism is the state-of-the-art approach to provide optimistic and

atomic one-sided reads from remote memory.

4.1.3 Implications of Faster Networking

While RDMA is the leading product in providing fast inter-node communication and remote

memory access, its performance is ultimately capped by the latency overhead of the PCIe

interface [134]. With single-cache-line RDMA reads exceeding 1μs in latency, the latency of

accessing remote memory alone dwarfs the latency of consequent local memory operations, such

as the post-transfer data extraction and version checks required when using FaRM’s per-cache-

line versions technique, which may only account for a few hundred nanoseconds. Thus, FaRM’s

design choice does not effectively impact the end-to-end latency of one-sided RDMA reads.

However, RDMA technology is evolving, moving away from PCIe and towards tightly integrated

solutions. For instance, AppliedMicro’s X-Gene 2 [107] and Oracle’s Sonoma [109] integrate

an RDMA controller on chip. The trend towards tight integration is not limited to the chip

level. In fact, recent technological advancements have led to the emergence of tightly integrated

chassis- and rack-scale systems, such as HP’s Moonshot [75] and The Machine [76], Oracle

Exadata [139], and AMD SeaMicro [50] (see Section 2.4).. These systems interconnect a large

number of servers, each with an on-chip NI, using a supercomputer-like lossless fabric. NI

integration and short intra-rack communication distances help reduce communication delays. At

the same time, research proposals (e.g., Firebox [15], soNUMA [134]) show how sub-μs remote

memory access is achievable through the combination of lean network protocols, tight integration,

and contained physical scale. We envision that emerging rack-scale systems will soon adopt

such lightweight network stacks, which, combined with tightly integrated SoCs, will significantly

improve the performance of remote memory access in terms of both latency and bandwidth

as compared to existing RDMA solutions. We expect our observations to also apply to larger

systems, such as datacenters, in the near future, when high-performance networking solutions

start getting deployed at large scale.
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4.1.4 The Case for SABRe

In the context of emerging tightly integrated rack-scale systems, we evaluate the performance

impact of software-based atomicity mechanisms. As a case study, we use soNUMA and run a

key-value store on top of FaRM [53]. We simulate two directly connected soNUMA nodes to

measure the latency breakdown of one-sided remote reads. Object atomicity is achieved through

FaRM’s per-cache-line versions mechanism. Methodology and simulation details can be found in

Section 7.2.

Figure 4.1 shows the end-to-end latency breakdown of an atomic remote object read. For every

object size, we break down the latency into three components: the soNUMA transfer time,

the time spent in the FaRM framework and application code, and the time spent by the core

extracting useful data from the transferred object, by stripping off and comparing the per-cache-

line versions to check for atomicity violation. We observe that the latency of one-sided reads

over soNUMA starts at just 3–4× of local memory access and scales sublinearly with object

size, due to soNUMA’s high-bandwidth fabric. In contrast, while the software atomicity check

latency is negligible for small objects (∼10% for 128B objects), it scales almost linearly with

object size and thus quickly outgrows the soNUMA transfer latency, accounting for 50% of

the end-to-end latency for 8KB objects. Furthermore, a fraction of the latency goes to FaRM

buffer management, which is necessary for storing the transferred data, before it is cleaned up

and moved to the application’s buffer. Importantly, the latency overhead of software-provided

atomicity directly corresponds to wasted CPU cycles, which is an increasingly more precious

resource, as we argued in Section 2.5.

We introduce a new Single-site Atomic Bulk Read (SABRe) one-sided primitive in hardware

that removes the atomicity-associated software overhead and enables zero-copy transfers, by

obviating the need for intermediate buffering.
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Figure 4.1 – End-to-end remote object read latency using the per-cache-line-version software

atomicity check mechanism on FaRM over soNUMA.

4.2 SABRe Design Space

In this section, we perform a design space exploration to identify the best design practices for the

realization of SABRe, a new one-sided primitive with the semantics of an atomic remote object

read. We consider architectures that feature an on-chip integrated NI with a protocol controller

supporting one-sided remote memory operations, such as soNUMA.

4.2.1 Destination-Side Concurrency Control

Table 4.1 summarizes the design space for atomic remote object access, with or without hardware

support. In our taxonomy, the terms source and destination refer to the origin of a request rather

than the location of the requested data. Under that definition, all software-based approaches

leveraging one-sided operations essentially implement source-side concurrency control since the

destination side’s CPU is not involved. DrTM relies on acquiring remote locks, with locking

explicitly controlled at the source prior to accessing the remote object’s data. FaRM and Pilaf

implement different optimistic concurrency control mechanisms to enforce atomicity, but as the

source has to perform post-transfer atomicity checks, both are source-side mechanisms.

Introducing hardware support expands the design space, with possible source-side or destination-

side accelerators. For example, one can easily envision source-side hardware accelerators that deal

with hardware checksums or per-cache-line versions. However, such an approach has a number
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Source Destination

Locking DrTM [171]
SABRe

OCC FaRM [53], Pilaf [127]

Table 4.1 – Design space for one-sided atomic object reads.

of weaknesses. First, cache-block-sized replies with payloads can arrive out of order. Depending

on the mechanism, these replies might need to first be reordered, requiring intermediate buffering

(e.g., in the case of checksums). Second, the application’s whole data store needs restructuring

just to embed the necessary per-object metadata that enable atomicity checks for one-sided

remote operations. Such restructuring also affects the performance of all local operations (reads

& writes), as they have to comply with the modified data layout’s rules: readers might need

to unpack data before consumption, writers need to always update corresponding metadata as

well. Ultimately, the weakness of source-side mechanisms is that they are limited to post-transfer

atomicity checks and thus require additional metadata embedded in—and always transferred

with—the requested remote object.

In contrast, destination-side hardware support offers more appealing opportunities. Providing

concurrency control directly at the destination is a natural option; this is where the target data

is located and, thus, where synchronization between concurrent accesses to that data occurs.

Therefore, destination-side concurrency control offers higher flexibility and efficiency, such as

leveraging local coherence for online atomicity violation detection and obviating the need to

maintain and transfer any additional metadata for post-transfer validation at the source. For

instance, locking directly at the destination alleviates both drawbacks of remote locking (i.e.,

increased latency and fault-tolerance concerns). Similarly, reading data optimistically while

actively monitoring atomicity at the destination obviates the need for restructuring the data store

to embed special metadata required by optimistic concurrency control mechanisms (like the ones

discussed in Section 4.1.2), and also allows for early conflict detection.

Overall, destination-side concurrency control comes with many desirable properties, which

trump source-side alternatives. Therefore, our hardware extensions for SABRe target Table 4.1’s
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rightmost column, representing the first destination-side concurrency control solution solely

based on one-sided operations.

4.2.2 Design Goals

Given the advantages of destination-side concurrency control, we now define the three design

goals (DG) necessary for an efficient SABRe hardware design:

[DG1] Minimal single-SABRe latency.

[DG2] High inter-SABRe concurrency. The mechanism should be able to utilize all the

available bandwidth even with a multitude of small SABRes.

[DG3] Low hardware complexity/cost (e.g., no modifications to the chip’s coherence proto-

col).

A straightforward and efficient approach to implement SABRe is lock acquisition at the destina-

tion. Since objects typically have a header with a lock for synchronization between local threads,

the controller can acquire the lock as any other local thread. To support high reader concurrency,

shared reader locks are essential, yet only add minimal complexity to the locking logic.

For read-dominated applications, optimistic concurrency control is typically preferable to locking.

For that reason, many modern software frameworks, such as key-value stores and in-memory

DBMSs, do not employ reader locks, but rely on optimistic reads for high reader throughput

(e.g., [53, 103, 122, 166, 170]). To enable optimistic reads, objects have a version in their header,

which is incremented at the beginning and at the end of each update. To determine a read’s

atomicity, the controller simply compares the version’s value before and after the read. Enhancing

the protocol controller at the destination for optimistic reads is also quite simple: instead of

acquiring an object’s lock, the controller can at any time assess the object’s state by reading the

object’s version.

The biggest drawback of a naive implementation of either mechanism for hardware SABRe (lock-

ing, or optimistic concurrency control using version checks) is the requirement for a serialized first

access to read the version or acquire the lock prior to any data access. In the general case when the
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Figure 4.2 – Reader–Writer race example.

target object is in memory, this requirement can significantly increase the object read latency by

exposing the full latency of that first memory access (i.e., ∼60–100ns), incurring a considerable

latency overhead especially for small objects. To illustrate, on a tightly integrated system such as

soNUMA, this serialization can increase the end-to-end latency of a two-cache-block SABRe by

up to 40% (details in Section 7.3.1). In the case of version comparison, an additional serialized

load to re-read the object’s version after all data has been read is also required. However, the

latency overhead of this second load is less critical, as it will likely hit in an on-chip cache.

Violating the read-version-then-data (or acquire-lock-then-read-data) serialization to avoid

exposing that latency penalty can result in undetected atomicity violations. Figure 4.2 illustrates

a potential race condition that may arise if we overlap the version read with data read. In this

example, we assume that the protocol controller receives a remote read request for an object that

spans two cache blocks and that it implements optimistic concurrency control using the object’s

header version (the example equally holds in the case of locking). Cache block 0 contains the

object’s header, with the corresponding lock and version, and a writer currently holds the object’s

lock. If the controller issues a read for cache blocks 0 and 1 concurrently, the read for cache block

1 may complete first, as any reordering can occur in the memory subsystem and on-chip network.

Then, the writer modifies cache block 1, updates the object’s version and frees the lock (cache

block 0). After this intervention, the controller’s read for cache block 0 also completes, finding a

free lock. At this point, the controller has no means of detecting the writer’s intervention and

wrongly assumes that the object has been read atomically, while in practice it has retrieved the

latest value of cache block 0 and an old value of cache block 1. Reading the object’s version
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before issuing any other read operation, though, guarantees that such races causing transparent

atomicity violations cannot occur.

A careful implementation of the simple hardware SABRe mechanisms mentioned above can

satisfy DG2 and DG3 (i.e., high inter-SABRe concurrency and low hardware complexity), but not

DG1 (i.e., minimal single-SABRe latency), because of the serialization limitation. We can break

the read-version-then-data problem by leveraging speculation techniques. The tight integration

of the protocol controllers with the chip also implies integration into the chip’s coherence domain.

This integration enables a variety of options regarding atomicity enforcement mechanisms.

Speculation techniques proposed for relaxing memory ordering (e.g., fence speculation) [22,

67, 130], or conflict detection and resolution mechanisms employed by HTM could be directly

applicable to register and guard a SABRe’s address range during its lifetime. However, those

mechanisms are unnecessarily complex and contradict DG3.

Our key insight is that a SABRe implementation requires considerably simpler functionality than

HTM or other sophisticated speculative structures employed by aggressive cores to relax memory

order. First, a SABRe only involves reads and no writes. Second, SABRes naturally come with

software-provided characteristics that can simplify hardware requirements; that is, a SABRe is

by definition accesses to structured data that comprise objects in a data store rather than accesses

to arbitrary memory locations. Every object typically features a header with associated metadata,

such as a lock and/or a version, and a range of sequential addresses containing data. Writers

update this header accordingly upon each write to the object. We can thus expose these semantics

to the hardware, and rely on a hardware-software contract to simplify the hardware.

4.2.3 Safely Overlapping Lock and Data Access

We now leverage our insights from Section 4.2.2 to design a lightweight hardware mechanism

that safely overlaps an object’s lock/version access and data read, meeting DG1. It is possible

to hide the serialization latency and read all data in parallel instead, thus extracting maximum

memory-level parallelism (MLP), as long as we provide a mechanism to detect any data atomicity
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violation that may occur before the completion of the object’s first version read or lock acquisition.

Since memory accesses can be reordered by the memory subsystem, requested data may return in

any order. We define the time between issuing an access to the SABRe’s first cache block, which

contains the object’s version or lock, and its completion, as that SABRe’s window of vulnerability.

Within that window, all data are speculatively read, as it is unknown whether the read operation

is racing against a concurrent write to the same object, risking a transparent atomicity violation

as in Figure 4.2’s example.

We rely on the integration of the protocol controller in the chip’s coherence domain to detect

atomicity violations during this window of vulnerability. Given that a SABRe comprises a

sequence of reads to consecutive addresses, the mechanism only needs to snoop coherence

traffic for an address range rather than a set of independent addresses. At the high level, such

range tracking can be trivially implemented by a structure that just keeps track of a SABRe’s

starting address and length, allowing for simple indexed lookups through simple base-and-offset

arithmetic. Using this structure, the loads comprising a SABRe can be performed in parallel,

exploiting maximum MLP. The critical addresses are trivially captured as an address range and

are snooped upon each reception of a coherence invalidation message during the window of

vulnerability. An invalidation matching the address of an already read block triggers an abort of

the corresponding SABRe.

Implementing such address range snooping structure in hardware is much simpler than an

out-of-order processor’s load-store queue, or an address resolution buffer [64, 65, 154]: no

dynamic memory disambiguation or associative searches, within or across different address range

snooping structures are required. We provide an implementation of the proposed mechanism in

the following section.

4.3 LightSABRe

In this section we describe LightSABRe, an implementation of a destination-side concurrency

control mechanism for SABRe that performs address range snooping using stream buffers.
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We describe an implementation based on a generic on-chip protocol controller for one-sided

operations integrated into the chip’s coherence domain.

4.3.1 Address Range Snooping Implementation

We implement address range snooping by leveraging an adaptation of stream buffers [87],

illustrated in Figure 4.3. Every inbound SABRe request is associated with a stream buffer;

starting from the SABRe’s base physical address, each SABRe cache block is mapped to an entry

of the associated stream buffer. Since all blocks comprising a SABRe are consecutive, issued

loads for the same SABRe map to consecutive stream buffer slots (with the exception of SABRes

spanning two non-consecutive physical pages). The stream buffer holds the range of addresses

touched by the controller during the window of vulnerability.

Integration of such stream buffers with the protocol controller allows overlapping the object’s

lock/version access and data read, thus enabling maximum MLP for a single SABRe even during

the window of vulnerability. The controller can keep pushing consecutive cache-block-sized read

requests to the memory hierarchy as long as (i) the SABRe’s associated stream buffer is deep

enough to contain all the outstanding loads; and (ii) there is no boundary crossing between two

non-consecutive physical pages. If the controller hits any of these two limitations while issuing

loads for a SABRe, that SABRe simply needs to stall, without any correctness implications. Once

the window of vulnerability is over (i.e., the version/lock is accessed), the stream buffer is not

useful anymore and reading the object’s data can seamlessly continue without the previous two

limitations. Page boundary crossing during the window of vulnerability is an infrequent event that

does not raise performance concerns, especially given the common RDMA/soNUMA practice of

using superpages for the memory regions exposed to the global address space (e.g., [53]).

A stream buffer’s entries represent a sequence of loads to consecutive physical memory addresses.

With the exception of the head entry, stream buffer entries do not store an address. Instead, each

entry’s corresponding address is deduced as a simple addition of the stream buffer’s associated

base address and its location offset. This property provides a cheap lookup mechanism through
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Figure 4.3 – LightSABRe: Leveraging stream buffers to safely overlap lock & data access.

simple indexing rather than associative search. Data replies arriving from the memory hierarchy

are not stored in the stream buffer either, but are directly sent back to the requester by the protocol

controller.

In Figure 4.3’s example, white stream buffer entries are currently unused, gray entries denote

cache-block accesses that have been issued to the memory hierarchy and await a reply, while

black entries have already received a reply and the payload has already been sent back to the

requester. The controller issues the third cache-block read request for SABRe 0. At the same time,

a coherence invalidation message is received for SABRe 1’s fifth cache block. Since SABRe 1’s

head cache block has not yet been accessed, this invalidation indicates a possible race condition

with a writer, so SABRe 1 will abort. In contrast, SABRe n does not abort upon reception of an

invalidation for its last stream buffer entry, as it has already accessed the head entry’s block; this

invalidation must have been triggered by an eviction.

The key insight regarding stream buffer provisioning that makes our mechanism lightweight

and scalable is that both the number and depth of required stream buffers is orthogonal to the

SABRe’s length. Sizing is only a function of the memory hierarchy and the target peak bandwidth

of the controller that is enhanced with LightSABRe. The number of stream buffers defines the

maximum number of concurrent SABRes the controller can handle; there should be enough

stream buffers to allow the controller to utilize its full aggregate bandwidth even for the smallest

SABRes (i.e., two-cache-block SABRes). The depth of the stream buffers affects the latency of
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each SABRe. The controller can keep pushing cache block load requests for a SABRe, as long

as there are available slots in that SABRe’s corresponding stream buffer or the target object’s

version has been read (or, in the case of locking, the object’s lock has been acquired). Thus, the

stream buffer’s depth should be sufficient to allow pushing data load requests to the memory

subsystem at the controller’s maximum bandwidth, until the first request to access the object’s

version/lock completes.

4.3.2 System Integration

As discussed in Section 4.2.2, several modern software frameworks rely on optimistic concurrency

control, allowing readers to optimistically proceed without acquiring any locks, as conflicts

are expected to be rare and retries are cheap. Without loss of generality, we will focus the

implementation description of LightSABRe on an optimistic concurrency control mechanism.

The same principles are applicable to locking; in fact, the same implementation with minimal

modifications can be used for both locking and optimistic concurrency control.

We assume that the software maintains versions for concurrency control similar in philosophy to

Masstree’s [122] object versions. Each object has a version in its header. Writers increment the

version to acquire exclusive access to an object, and increment it again once they are done with

their changes. Thus, an odd version indicates a locked object, and an even version indicates a

free object. This is functionally equivalent to having a lock acquired before updating an object,

and a version incremented before the lock is freed again. Therefore, without loss of generality,

we assume that writers use the odd/even version mechanism for updates.

Figure 4.4 shows a protocol controller pipeline of an NI, enhanced with LightSABRe. The

key entity driving a SABRe’s progress is an SRAM structure, dubbed Active Transfers Table

(ATT). An ATT entry represents a SABRe during its lifetime. Every ATT entry controls an

associated stream buffer, and every stream buffer holds a base address, a length field, and a

bitvector representing a range of consecutive cache blocks following the base address, with each

bit representing a cache block. A set bit indicates that the cache block has been read from the
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Figure 4.4 – Block diagram of a LightSABRe-enhanced NI.

memory subsystem. Each stream buffer also features a subtractor, used to determine whether a

message from the memory hierarchy (reply or snoop) matches an entry in the stream buffer by

subtracting the stream buffer’s base address from the received address to index the bitvector. This

simple lookup mechanism eliminates associative searches within each stream buffer.

Upon the reception of a new SABRe request, the register SABRe stage allocates a new entry

in the ATT; the request carries the SABRe size and base address. The select transfer stage is a

simple SABRe scheduler that selects one of the active SABRes in the ATT and starts unrolling it.

The unroll stage issues load requests for the registered SABRe and increments the issue count

while (i) issue count SABRe size, and (ii) there is a free slot in the associated stream buffer

(StrBufAvail), or the object’s version has already been read, so the SABRe is past its window

of vulnerability (speculation bit cleared). If condition (ii) is not met, the serviced SABRe gets

descheduled and the select transfer stage starts servicing another active SABRe.

For every reply that arrives to the protocol controller, all stream buffers are snooped to check

for an address match in their tracked address range; upon a match, the corresponding bit of the

bitvector is set. A similar match is triggered by received invalidation messages; if the invalidated

address matches a valid entry in a stream buffer (entry’s bit set), the invalidation is propagated to

the stream buffer’s corresponding ATT entry. If the version for that SABRe hasn’t yet been read

(speculation bit set), this event implies a race condition with a writer, and therefore the SABRe

aborts. Otherwise, if the version has already been read (speculation bit cleared), the invalidation

is ignored, as it has to be triggered by a cache block’s eviction from the chip.
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The only ambiguous event is the reception of an invalidation for a stream buffer’s base address,

which represents the block that holds the target object’s version. Such an invalidation message

may be triggered by a real conflict from a writer concurrently writing the same object, or may

be a false alarm triggered by the block’s eviction from the chip. To avoid false conflicts, an

invalidation for the SABRe’s base address does not automatically abort the SABRe. Instead, we

deploy the following mechanism: every cache block read from the memory hierarchy is directly

sent back to the requester, and, after all payload replies for a SABRe have been sent back, the

protocol controller sends a final payload-free packet indicating the transfer’s atomicity success

or failure. Whenever a SABRe’s data accesses finish and the base address entry is still valid

in the corresponding stream buffer, the NI immediately confirms the SABRe’s success. In the

uncommon event of an invalidation reception for the SABRe’s base block, the NI must verify

whether there was a true atomicity violation: after all data blocks for the SABRe have been

read, the NI’s Validate stage reads the object’s header again and checks if the newly read version

matches the ATT entry’s version field (initialized the first time the object’s header was read). A

version match guarantees atomicity, while a mismatch implies atomicity violation and causes a

SABRe abort.

The relative location of the lock/version in each object’s header with respect to its base address

is fixed for a given data store, but may vary across data stores. While LightSABRe require this

information, a device driver can trivially specify that at initialization time, when it registers the

data store’s memory to the protocol controller, thus associating that metadata with the registered

memory chunk.
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4.4 LightSABRe on Scale-Out NUMA

Extending the soNUMA architecture with LightSABRe is straightforward, as the required

protocol and hardware modifications are limited. soNUMA’s specialized NI, the Remote Memory

Controller (RMC), is directly integrated into the chip’s coherence domain, so the basic premise

of the LightSABRe mechanism, the ability to snoop on coherence messages, is inherent in the

architecture. soNUMA has two additional important characteristics to be taken into account when

extending the protocol and architecture with the new SABRe primitive:

(i) Remote accesses spanning multiple cache blocks are unrolled into cache-block-sized

requests at the source node.

(ii) soNUMA’s flow control requires a strict one-to-one request-reply protocol: every request

packet has to be matched by a reply packet.

As detailed in Chapter 3, each soNUMA request is generated at the requesting node, serviced at a

remote node, and completed once it returns to the requesting node. These three logical stages are

handled by the RMC’s three independent pipelines, as illustrated at a high level in Figure 4.5.

Since LightSABRe only involve destination-side processing, we only focus on the remote end’s

pipeline, namely the Remote Request Processing Pipeline (RRPP), which statelessly services

incoming remote requests by reading or writing local memory.
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4.4.1 Integration with RRPP

The LightSABRe-enhanced protocol controller described in Section 4.3.2 subsumes soNUMA’s

baseline RRPP, as the RRPP normally handles independent cache-block-sized requests and just

performs address translation and direct memory access. In the case of SABRes, the independence

property does not hold, as request packets belonging to the same SABRe are related. In the

extended version of the RRPP, the pipeline gradually folds the received request packets belonging

to the same SABRe into a single entry. For that purpose, we add two more fields to the ATT:

the SABRe id and the request counter. A new SABRe is registered in the ATT by a special

SABRe registration packet, with a SABRe id uniquely defined by the set of source node id,

Request Generation Pipeline id, and transfer id, all of which are carried in each request packet. A

registered SABRe’s request counter is incremented for every consequent request packet belonging

to the same SABRe (matching SABRe id). An additional limitation to the unroll stage is that

requests to the memory hierarchy can be issued only if issue count request counter as well, to

guarantee that the number of generated replies never exceeds the number of received requests.

Upon a SABRe abort, the RRPP could transparently retry the failed SABRe. However, we

consciously opt out of this approach for two reasons. First, retrying a failed SABRe in hardware

will directly increase the occupancy of the RRPP and also transparently increase the remote read’s

completion latency for an arbitrary amount of time from the application’s perspective. Second,

unless a conflict is detected on the first data block read, retrying a failed SABRe at the remote

end will result in repeating some reply packets, thus breaking the request-reply flow control

invariant of soNUMA. We choose to make the common case fast and expose the uncommon case

of atomicity violation to software, to provide end-to-end control and flexibility. The application

decides whether to retry an optimistic read after a backoff, or read the object over an RPC. Such

policies are hard to implement solely in hardware, and the expected low abort rates do not justify

the complexity and effort.

Properly sizing the ATT and the stream buffers, both in terms of number and depth, is key to

LightSABRe’s performance. As detailed in Section 4.3.1, sizing is solely determined by the
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chip’s memory hierarchy and the RRPP’s target peak bandwidth. For example, assuming a

16-core system with an average memory access latency of 90ns and a target per-RRPP peak

bandwidth of 20GBps, LightSABRe only require 16 stream buffers (one per ATT entry) with a

depth (bitvector width) of 32, numbers simply derived by our target bandwidth-delay product

(Little’s Law). With 24 bytes per ATT entry and 11 bytes per stream buffer, the total additional

per-RRPP hardware requirement is 560 bytes of SRAM storage, plus a 42-bit subtractor per

stream buffer.

4.4.2 Other Protocol and Hardware Modifications

Enhancing soNUMA with SABRe operations requires a few modifications to the protocol and

the RMC’s two remaining pipelines, namely the Request Generation and Request Completion

Pipeline (RGP and RCP). The hardware-software interface is enhanced with a new SABRe

operation type and an additional success field in the Completion Queue entry. This field is

used by the RCP in the Completion Queue entry to expose SABRe atomicity violations to

the application. At the transport layer, we add two new packet types. The first is the SABRe

registration packet, which precedes the SABRe’s data request packets and contains the SABRe’s

total size; this is essential for the SABRe’s registration at the destination node’s RRPP ATT.

We assume a network that guarantees in-order packet delivery, but the mechanism can be easily

extended to unordered networks, by carrying that information in every request packet. The second

new packet type is the SABRe validation, which is the last reply sent by the RRPP to indicate a

SABRe’s atomicity success or failure.

The RGP and RCP need to comply with the aforementioned protocol changes. The RGP is

extended to recognize the new SABRe request type and send a first SABRe registration packet to

the destination before unrolling the data request packets. The RCP is extended to recognize the

SABRe validation packets carrying the success/failure information for a SABRe, and to encode

the SABRe’s success in the corresponding field of the Completion Queue entry upon reception of

the SABRe’s last reply packet.

70



4.5. Chapter Summary

4.5 Chapter Summary

The emergence of highly integrated rack-scale systems employing lightweight communication

protocols, high-performance fabrics, and integrated NIs brings the remote memory access latency

down to a bare minimum, within a small factor of local memory memory access. In such systems,

any software overheads added on top of the hardware latency for remote memory access are on the

critical path and directly impact the performed operation’s end-to-end latency. This is the case for

modern software mechanisms that provide atomic access to remote objects, which is a ubiquitous

operation. To address this inefficiency, we introduce SABRe, a new one-sided operation with

richer semantics than any pre-existing one-sided operation, that provides atomic object reads

in hardware. Our implementation, LightSABRe, leverages coherent on-chip integration to

completely remove the software overhead for atomicity enforcement, with modest hardware

requirements. We evaluate LightSABRe on an instance of an ICONIC architecture in Chapter

7 and report remote object read throughput improvements of up to 97% for a microbenchmark

and up to 60% for a key-value lookup application running on top of the full software stack of a

modern distributed object store.
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5 Integrated Tail-aware Load Balancing

So far, we focused on protocol and architecture design to improve the performance of direct

remote memory access via one-sided operations. We also proposed a new one-sided operation

with richer semantics than pre-existing ones, to improve the utility and flexibility of the direct

remote memory access form of inter-server communication. While one-sided operations offer

the fastest path to remote memory, their key limitation is lack of flexibility, which will remain

a fundamental limiter even after the introduction of additional commonly used operations in

hardware, such as SABRe. This is where two-sided communication, or Remote Procedure Calls

(RPCs), come into play, as they allow the invocation of arbitrary logic at the end. In fact, due to

their flexibility, two-sided communication is the most widespread communication model used

in modern distributed systems, including datacenters. We therefore now shift our focus from

one-sided to two-sided communication, and show that ICONIC architectures introduce new

opportunities for improved RPC performance as well.

To identify a specific RPC-related optimization target, we consider software deployments on

large-scale distributed systems, the most prominent candidates of which are modern datacenters.

Datacenters deploy a software architecture of distributed multi-tiered services on thousands of

servers. Every software tier exposes a set of APIs, and a software tier’s services are invoked

through these APIs in the form of RPCs. Inter-server communication in the form of RPCs is

very frequent, as every incoming user request fans out to 100s to 1000s of servers to get serviced
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[18, 48, 91, 149]. Such a high fan-out is a direct consequence of data growth and the demand for

low latency, which requires data to remain resident in distributed memory.

The decomposition of large services into multiple layers facilitates modularity and scalability, but

raises some implications. A first side-effect of the high sub-request fan-out every incoming user

request results in, is the increased vulnerability to stragglers. At a high level, the total latency

of a user request is directly affected by the latency variability of its sub-requests. While every

individual sub-request has a small probability of experiencing a latency spike because of a wide

range of hard-to-predict reasons, the probability of one sub-request experiencing such a delay

quickly grows with the system size, ultimately affecting the overarching user request1. This

well-known challenge, commonly referred to as the tail at scale [47], has led service providers

to optimize for worst-case response latencies; it is common practice to evaluate systems based

on their 99th or even 99.9th tail latency. Tail-tolerant computing is one of the major ongoing

challenges in the datacenter space.

A second side-effect of software decomposition is that the service time for several important

software layers is short, in the range of a few microseconds. Distributed in-memory object stores

are a prominent example of a ubiquitously deployed software layer, with service times of just a

couple of μs. For example, the average service time for Memcached [2] is about 2μs [144]. Even

software layers that offer richer functionality than simple data retrieval exhibit μs-scale service

times; for example, the average TPC-C query service time on the Silo in-memory database [166]

is only 33μs [144]. The additional challenge with such short-lived service invocations is that any

small latency disruption significantly affects their service time latency, exacerbating the challenge

of tightly bounding tail latency.

In this chapter, we focus on the challenge of improving the throughput of the most challenging

short-lived services invoked on modern servers from the network (i.e., in the form of an RPC),

under tight response time tail latency goals. As discussed in Section 2.2, modern server processors

are featuring more and more cores, currently in the range of a few tens and approaching 100.

1For example, assuming a 0.1% chance of a latency spike and a fan-out of 1000, the probability of the latency

spike affecting one sub-query and, consequently, its originating user request is 1−0.9991000=∼63%.
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With all this available parallelism on chip, distributing the incoming network load across cores is

a growing challenge that has a direct effect on load balancing, which also implicitly affects tail

latency. In an effort to address this challenge, modern network adapters implement mechanisms

that spread the incoming network load across multiple cores, like Receive Side Scaling (RSS)

[126] and Flow Direction [82]. However, these mechanisms achieve load distribution rather than

load balancing: they are oblivious to the actual load each core ends up with, and instead statically

apply a set of application-agnostic rules to split incoming network packets into multiple receive

queues based on packet headers.

The higher the core count, the higher the fragmentation of the aggregate on-chip compute

resources. As we demonstrated in a related study [135, 136], the probability for load imbalance

across work partitions grows as a function of the number of partitions. In turn, load imbalance

negatively impacts a service’s tail latency. It is therefore important to either provide a secondary

mechanism for load rebalancing across cores, or a smarter, more adaptive dynamic load balancing

mechanism that dispatches load from the NI to cores adaptively. Prior work has demonstrated

this problem in the case of partitioned dataplanes and tackled the inter-core load imbalance

problem by introducing an intermediate layer of work stealing [144]. However, even though work

stealing alleviates the load imbalance problem, it still leaves significant room for throughput

improvements under tight tail latency goals, especially in the case of services with very short

service times, such as Memcached.

We find that ICONIC architectures, such as soNUMA, offer a unique opportunity for implement-

ing dynamic load balancing mechanisms in their tightly coupled NI logic. Unlike existing load

distribution mechanisms in modern NICs (e.g., RSS and Flow Direction), integrated NIs can take

load dispatch decisions dynamically by using live CPU core occupancy information, instead of

applying static rules on network message headers. The key enabler for that is the possibility of

fine-grained, nanosecond-scale communication between an on-chip NI and the CPU cores, which

is not possible with conventional PCIe-attached NICs.
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Figure 5.1 – Different queuing models for 16 serving units (CPU cores). P(λ ) stands for Poisson

arrival distribution.

5.1 Theoretical Load Balancing Implications

To study the effect of load balancing on tail latency, we provide a first-order analysis using basic

queuing theory. We model a hypothetical 16-core server after a queuing system that features a

variable number of input queues and 16 serving units. Figure 5.1 shows three different queuing

system organizations. The notation Model X ×Y denotes a queuing system with X FIFOs where

incoming messages are enqueued and Y serving units per FIFO. The invariant across the three

illustrated models—16×1, 1×16, 4×4—is that # queues × # serving units = 16. The 16×1

system is the least flexible one in terms of load balancing; incoming requests are uniformly

distributed across 16 queues and each queue is solely serviced by a single server. 1×16 is at the

other extreme, being the most flexible option that achieves the best load balancing: all serving

units pull requests to service from a single FIFO. The 4×4 system represents a middle ground:

Incoming messages are uniformly distributed across four FIFOs, and each FIFO is drained by

four serving units. While only three configurations are shown on Figure 5.1, other combinations

of X and Y with the same invariant are possible, such as 8×2 and 2×8.

To evaluate the performance of the different queuing organizations, we perform discrete event

simulations modeling Poisson arrivals and four different service time distributions, demonstrated
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Service time

PD
F

Figure 5.2 – Service time distributions.

in Figure 5.2: fixed, uniform, exponential, and generalized extreme value (GEV).

Figures 5.3a and 5.3b show the relation of throughput and 99th percentile tail latency for the two

extreme queuing system configurations, namely 1×16 and 16×1. The y axis shows tail latency

as a multiple of the mean service time, and we set the acceptable tail latency (upper bound) to

10× the mean service time. The first observation is that 1×16 significantly outperforms 16×1, a

well-known result from queuing theory. 16×1’s inflexibility of assigning requests to serving units

results not only in significantly higher tail latencies, but also a peak throughput 25–73% lower

than 1×16 at our tail latency target. The second observation is that the degree of performance

degradation is affected by the service time distribution. For both queuing models, we observe that

the higher a distribution’s variance, the higher the tail latency (TL) before the saturation point is

reached, hence T L( f ixed) < T L(uni) < T L(exp) < T L(GEV ). Also, the higher the distribution’s

spread, the more dramatic the performance difference between 1×16 and 16×1, as is clearly

seen for GEV.

Unfortunately we cannot easily control the service time distribution, as it is affected by numerous

software and hardware factors. However, we can control the queuing model that is implemented by

the system. The results shown on Figures 5.3a and 5.3b suggest that systems should ideally always

implement a 1×16 model, i.e., use a single queue from which all cores pull requests in order.

The caveat is that in real system implementations, sharing resources requires synchronization,

which introduces complexity and overhead that is not directly captured by the theoretical queuing
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(c) Performance of different queuing models for exponential service time distribution.

Figure 5.3 – Throughput vs. tail latency for different queuing systems and service time distribu-

tions.
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2×8 4×4 8×2 16×1

fixed 4% 6% 16% 25%

uniform 4% 6% 16% 25%

exponential 4% 6% 16% 31%

GEV 6% 20% 46% 73%

Table 5.1 – Throughput loss of different queuing systems at target 99th percentile tail latency as

compared to 1×16, for different service time distributions.

model. Striking a middle ground can therefore be beneficial. We therefore also evaluate queuing

model configurations between 1×16 and 16×1.

Figure 5.3c shows the performance of five different queuing systems X ×Y with (X ,Y ) = (1, 16),

(2, 8), (4, 4), (8, 2), (16, 1), assuming exponential service time distribution. As expected,

performance is proportional to Y . 2× 8 and even 4× 4 are appealing system organizations,

delivering performance within 4% and 6% of the ideal 1×16, respectively.

Finally, Table 5.1 shows the throughput degradation of the same set of queuing systems as

compared to the ideal 1× 16 for different service time distributions. The exponential row

corresponds to the results graphically demonstrated on Figure 5.3c. Qualitatively, these results

indicate that even though the single-queue system is clearly superior to multi-queue systems,

a modest fan-out degree per queue (e.g., 4×4) can significantly ameliorate the impact of load

imbalance arising from Poisson arrival times and service time variability.

5.2 Load Balancing in Practice

Based on the previous queuing analysis, all systems should implement a single-queue load distri-

bution mechanism. However, an implication the theoretical queuing models fail to encompass

is the practical overheads associated with sharing a resource, i.e., the input queue. Allowing all

the cores of a manycore CPU to pull incoming network messages from a single queue requires a

synchronization mechanism. Especially for applications that exchange messages that trigger very
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short-lived RPCs, with service times in the order of a few microseconds, such synchronization

can be very expensive.

An alternative approach for load distribution to multiple cores that recent research efforts have

advocated, is the dedication of a private queue of incoming network messages per core (e.g.,

[19, 142]). While this design choice, from a theoretical queuing perspective, corresponds to the

weakest possible multi-queue system organization, it completely eschews overheads related to

sharing (i.e., synchronization and coherence traffic), delivering significant throughput gains. To

distribute incoming load to multiple input queues, modern NICs offer hardware support, which

takes static decisions at message arrival time: the NIC applies a static hash function to specific

fields of the network message header and that value determines to which network queue that

message will be steered. As this load distribution decision takes no other system information into

account, such as current per-queue occupancy, it can result in arbitrary load imbalance across

queues, which conversely results in reduced throughput and increased tail latency. The pure

effect of this imbalance, as compared to a system with perfectly balanced queues, is accurately

represented by the queuing simulation in the previous section.

In conclusion, the two aforementioned approaches of RPC load distribution to cores introduces a

tradeoff between synchronization overhead and load imbalance. In the rest of this chapter, we

introduce a new load distribution approach that aims to break that tradeoff.

5.3 Towards Dynamic Load Balancing

We advocate that an ICONIC architecture introduces the opportunity to break this tradeoff

between load imbalance and synchronization overheads. By leveraging the fact that on-chip

NI integration enables fine-grained real-time (nanosecond-scale) information of per-core load,

we envision NI functionality for dynamic load balancing decisions. Cores can send periodic

information to the NIs in the form of heartbeats, indicating their current load. Transferring this

information from the cores to the on-chip NIs is fast, as it only involves a few hops on the on-chip

interconnect (10s of nanoseconds) rather than slow microsecond-scale PCIe crossings.

80



5.3. Towards Dynamic Load Balancing

Balancing load adaptively based on real-time information is particularly important, because

accurately predicting an incoming request’s processing time remains an open challenge [72].

Messages can trigger different RPCs, which is a prime reason for execution time variability

across different requests. Even though the NI could potentially "learn" the expected duration of

each RPC and examine each incoming message to deduce which RPC the message will trigger,

there are many unpredictable events that can occur during the RPC’s execution and affect its

execution time, such as caching effects, TLB misses, interrupts, page faults, and context switches.

Therefore, dynamic monitoring of the load and reactive adjustment to it represents the most

flexible and generally applicable load balancing approach.

At a high level, dynamic load balancing decisions by the NI involves three steps: the NI (i)

receives a message that carries an RPC invocation from the network; (ii) determines which core

should handle the received message; and (iii) notifies the core about the message reception.

Unfortunately, ICONIC architectures such as soNUMA that only offer native support for one-

sided operations hinder the introduction of such a mechanism. Messaging emulation over

one-sided operations is possible, as we described in Section 3.5.4, but this emulation comes

with the drawback that the notion of messaging is completely transparent to the NI logic; an NI

cannot distinguish between a conventional one-sided operation and a one-sided operation that is

used as a trigger for two-sided communication. With emulated messaging, clients effectively

determine which particular CPU core at the server will service each message, precluding post-

message-reception load balancing by the NI. Because of this subtle issue, implementing the

aforementioned generic dynamic load balancing mechanism over emulated messaging is very

challenging.

To enable dynamic load balancing of incoming messaging at the NI logic, we need the hardware-

terminated network protocol to support a form of native messaging. In the case of soNUMA, such

native support was not provided in favor of simplicity. In the following section, we investigate

the introduction of native messaging support in a lean hardware-terminated protocol such as

soNUMA, with the ultimate goal of enabling NI-controlled dynamic load balancing.
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Figure 5.4 – Inter-packet interleavings of arriving multi-packet messages.

5.4 Native Messaging

To address the shortcomings of emulated messaging and provide the required building block for

dynamic load balancing decisions at the NI, we devise a lightweight implementation of native

messaging. We show that adding native messaging support does not require significant additional

complexity, hence the simplicity of a protocol that only supports a minimalistic set of one-sided

operations—an enabler for on-chip NI integration—is maintained.

We design a native messaging mechanism with two main goals: enable explicit message dispatch

from the NI to a selected core, and keep hardware additions minimal. A benefit of the emulated

messaging mechanism over one-sided operations is that no hardware support for reassembly

of multi-packet messages is required, as all packets are directly written to a memory location

pre-determined by the sender. The following example illustrates why multi-packet messages are

challenging.

Let’s consider two multi-packet messages, A and B, each comprised of five network packets,

arriving concurrently at the same node. Their packets can arbitrarily interleaved with each other

and with other arriving messages (e.g., messages X, Y, Z). Figure 5.4 graphically demonstrates

this example. The first packet of message A that arrives allocates the next available slot at the

tail of the receive queue, and the queue’s tail advances. The same happens when the first packet

of any of the messages B, X, Y, or Z arrives. As packets of different messages can arbitrarily

interleave in the network, an arbitrary number of other messages’ packets can intervene between
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two consecutive packets of the same message A. Determining the appropriate location for each

subsequent incoming packet of a given message in the receive queue can be expensive, as several

receive queue slots have to be examined. The depth at which this search has to be performed can

be limited by implementing a form of sliding windows in hardware; however, that still requires

dedicated hardware proportional to the number of concurrently operating receive queues.

One workaround to avoid message reassembly complications would be to limit the maximum

message size to the network MTU. Such an approach has been used in related work on an

RDMA/InfiniBand-based system [89] (a design choice motivated by different reasons, however).

Even though a compromise, such a design choice may be an acceptable limitation for InfiniBand

systems, which has a relatively big MTU of 4KB. For fully integrated solutions that will likely

feature small MTUs (e.g., single cache line as in the case of soNUMA), limiting the maximum

message size to MTU is not an option.

We take a different approach to avoid any hardware overhead associated with message reassembly.

We keep the buffer provisioning of the emulated messaging approach, namely the send request’s

source determines the memory location at the destination where the message will be written.

However, we expose the notion of multi-packet messages to the NI, which keeps track of packet

receptions and deduces when a whole message has been received and is ready to be handed off

to a core for processing. To achieve that, we define a new pair of send and receive operations,

which transfer data between dedicated memory-resident send/receive buffers. We detail the

workflow below, using in parallel Figures 5.5 and 5.6 for illustration purposes. Figures 5.5

and 5.6 demonstrate the steps required to complete a message delivery from Node 0 to Node 1.

Completing the message delivery requires the execution of a send operation on Node 0 and a

receive operation on Node 1.

Buffer provisioning. We introduce the concept of a messaging domain, which includes a

number of nodes that can exchange messages and is defined by a pair of buffers allocated in each

node’s memory, the send buffer and the receive buffer. The send buffer comprises N sets of S

send slots, where:

83



Chapter 5. Integrated Tail-aware Load Balancing

c0

c2

c4

c6

c1

c3

c5

c7

NI

Node 0 memory hierarchy

…

Send buffers

N
od

e 
0

N
od

e 
N

-1

WQ0

WQ7

WQ1 …

local buffer

tail

1 2

3

4

5
C

send

Figure 5.5 – Messaging illustration: Sender. Boxes marked as ci represent CPU cores.

• N is the total number of nodes participating in the established messaging domain.

• S is the maximum number of concurrently outstanding requests any pair of nodes can

maintain at any point in time.

Figure 5.5 illustrates a send buffer with S=4 and different shades of gray distinguishing the

send slots per participating node. Each send slot contains bookkeeping information for the local

cores to keep track of their outstanding messages. It contains a valid bit, indicating whether the

send slot is currently being used, a pointer to a buffer in local memory containing the message’s

payload, and a field indicating the size of the payload to be sent. A separate in-memory data

structure maintains the head pointer for each of the N sets of send slots, which the cores use to

atomically enqueue new send requests (not shown).

The receive buffer, illustrated on Figure 5.6, is the dual of the send buffer, where incoming

send messages from remote nodes end up, hence it is sized similarly (N sets of S receive slots).

Unlike send slots, receive slots are sized to accommodate message payloads. Each receive slot

also contains a counter field, used to determine whether all of a message’s packets have arrived.

Even though the counter field should provide just enough bits to represent the number of cache

blocks comprising the largest message, we provision a full cache block (64B), to avoid unaligned

accesses for incoming payloads.
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Overall, the messaging mechanism’s memory footprint is 32×N ×S + (max_msg_size + 64)×
N ×S bytes. We expect that for most applications and system deployments, that number should

not exceed a few tens of MBs. Systems that will most likely adopt fully integrated solutions

will be of contained scale, featuring a few hundreds of nodes, hence bounding the N parameter.

In addition, most communication-intensive latency-sensitive applications send small messages,

bounding the max_msg_size parameter. For instance, the vast majority of objects in object stores

like Memcached are <500B [16], while 90% of all packets sent within Facebook’s datacenters

are smaller than 1KB [148]. Finally, given the extremely low network latencies fully integrated

solutions, such as soNUMA, deliver, the number of concurrent outstanding requests S required to

sustain peak throughput per pair of nodes would be modest (a few tens). We provide a detailed

analysis of the messaging mechanism’s memory requirements in Section 8.3.5.

Importantly, the choice of max_msg_size does not preclude the exchange of larger messages

altogether. A rendezvous mechanism [164] can be used for larger messages, where the sending

node sends a small message specifying the location and size of the data to be sent, and the

receiving node uses a one-sided read operation to directly pull the message’s payload from the

sending node’s memory.
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Send operation. Sending a message to a remote node involves the following steps: First, the

core writes the message in a local buffer (Figure 5.5, step 1 ), then updates the tail entry of the

send buffer set corresponding to the target node (e.g., Node 1) 2 and enqueues a send operation

in its private WQ 3 . The send operation specifies a messaging domain, the target node id, the

address of the remote end’s target receive buffer slot, a pointer to a local buffer containing the

message to be sent, and the message’s size. The address of the target receive buffer slot can be

trivially computed, as the number of participating nodes in the messaging domain, the number

of send/receive slots per node, and the receive buffer slot size are all defined at the messaging

domain’s deployment time. The NI polls on the core’s WQ 4 , parses the command, reads the

message from its local memory’s buffer 5 and sends it to the destination node. At the destination,

the NI writes each send packet directly into the specified receive slot and increments that receive

slot’s counter (Figure 5.6, step 6 ). When the counter matches the send operation’s total packet

count (contained in each packet’s network header), the NI picks a core2 and notifies it by writing

the receive buffer’s index into that core’s corresponding CQ 7 . The core, which is polling on its

private CQ’s head, receives the new send request 8 , then directly reads the message from the

receive buffer and processes it.

Receive operation. A receive operation always follows the receipt of a send operation, with

the purpose of notifying the send operation’s initiating node that the request has been processed,

and hence its corresponding send buffer slot is free and can be reused. In Figure 5.6’s example,

when core 7 is done processing the incoming send request, it enqueues a receive request in its

private WQ A . The request only contains the target node and the target send buffer slot’s address,

trivially deduced from the receive buffer index the serviced message was retrieved from. The

NI, which is polling at the head of the WQ, receives the new receive request B and sends the

message to the target node. Back at the source node (Figure 5.5), when the receive message

arrives, the NI invalidates the target send buffer slot by resetting its valid field C , indicating

its availability to be reused. In practice, a receive operation is just syntactic sugar for a special

remote write operation, which resets the valid field of a send buffer slot.

2For now, assume a simple round-robin policy. We investigate smarter message dispatch policies in Chapter 5.
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5.4.1 Additional Benefits of Native Messaging

We introduced native messaging support as an enabler for NI-controlled dynamic load balancing.

However, it offers additional benefits as compared to emulated messaging, making it an appealing

feature even for systems where load balancing features are not of interest. In fact, a weakness

of emulated messaging is its waste in CPU cycles, which is a precious resource, especially in

face of the growing imbalance in the scaling of network and compute capabilities (see Section

2.5). As compared to native messaging, emulated messaging has two sources of CPU inefficiency.

The first source of inefficiency is the busy polling of each core on multiple memory locations

to check for message reception. A distributed system with 1000 communicating nodes would

require 1000 distinct polling locations. Polling on the head of each location implies that 1000

distinct cache blocks are brought into an L1 data cache, completely thrashing it.

The second source of inefficiency, which is specific to soNUMA, is an additional considerable

processing overhead associated with packetizing the data that is sent in the message, as each of

the message’s cache blocks requires its own message header. The reason per-cache-line headers

are necessary is the fact that the maximum packet payload size in a soNUMA packet is a single

cache block, which is typically 64 bytes. A core receiving an incoming message cannot determine

whether a valid packet has arrived at the location it is polling on or how many packets the full

message comprises, unless (i) each cache block contains metadata indicating its validity as a

newly arrived message; and (ii) the first cache block’s header contains the total message size.

Hence, a message’s packetization involves embedding this required information at the message’s

source, before it is sent to the destination over the network. The cost of this packetization process

is similar to the overhead of software mechanisms used to guarantee atomicity of one-sided reads,

which involve embedding per-cache-line metadata headers in all transfered data. The overhead of

such a software atomicity mechanism was thoroughly analyzed and evaluated in Chapter 4.

Native messaging does not introduce any packetization overheads, as the NI keeps track of a

message’s packet arrivals and determines when a full message has arrived. It also significantly

limits the number of locations each core needs to poll on, as it virtually "collapses" all message
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Figure 5.7 – Messaging mechanism extensions for load balancing.

receive locations into a single memory location per core, namely the head of each core’s CQ.

5.5 Dynamic Load Balancing Design

With the NI’s newly added ability to recognize and manage message arrivals, we can now

proceed to introduce NI-integrated dynamic load balancing capability. Load balancing policies

implemented by the NIs can be sophisticated and can take various affinities and parameters

into account (e.g., certain types of RPCs serviced by specific cores, or data-locality awareness).

Implementations can range from simple hardwired logic to microcoded state machines. However,

we opt to keep a simple proof-of-concept design, to illustrate the feasibility and effectiveness of

load balancing decisions at the NIs.

We design our load balancing functionality as an extension of the messaging mechanism we

introduced in Section 5.4. Figure 5.7 depicts the receiving end of a message, extending Figure 5.6

with the required additions for our load balancing design. In addition to the per-core CQs where

messages are received by cores, we introduce a new in-memory structure, the shared CQ. The

shared CQ is an intermediate memory-resident queue of waiting requests where the NIs enqueue

received requests, before notifying any core of a message’s reception by writing into a specific

CQ.
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As in the case of the baseline messaging mechanism, the NI writes each received send packet

directly into the specified receive slot and increments that receive slot’s counter 1 . With the

addition of the shared CQ, the difference is that when the counter matches the send operation’s

total packet count, the NI enqueues the pointer to the completed entry in a shared CQ instead of

immediately picking a core to dispatch the request to 2 . At a later point in time, as soon as a

core is free and ready to receive a new request to process, the head of the shared CQ is copied

into the free core’s CQ 3 , notifying the core of the next received request to process. The benefit

of this intermediate buffering is that global FIFO order of message arrival is maintained.

In order to implement step 3 , the NI maintains limited state per core: whether the core is

currently busy processing a previous send request. Reception of a receive request from a core

(Figure 5.7’s step B ) implies that the core is done processing the previous send request, so the

NI can dispatch the first send request waiting in the shared CQ to the freed core.

5.6 soNUMA Extensions for Dynamic Load Balancing

We now detail the extensions required to soNUMA’s protocol and RMC hardware to enable the

NI logic to balance load by taking dynamic load dispatch decisions. Load balancing itself is

completely transparent to the protocol and mainly affects soNUMA’s Remote Request Processing

Pipeline (RRPP). Most protocol and RMC pipeline modifications are required to implement

native messaging support.

Additional hardware state. Most of the additional state required for messaging (i.e., the send

and receive buffers) is allocated in memory. The only information that requires constant fast

access—and hence should be kept in dedicated SRAM—is the send and receive buffer metadata:

their location and size. We associate a messaging domain with every registered context. On each

node, the maintained state per registered context originally includes a memory address range

per node and a QP per local core. We extend the context state with the messaging state, which

includes the base virtual addresses for the send and receive buffers, the maximum message size
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Figure 5.8 – Extensions of soNUMA’s RRPP for load balancing support.

(max_msg_size), the total number of nodes participating in the messaging domain (N), and the

number of messaging entries per node (S); in total, a modest premium of 20B per context entry.

RMC logic extensions. We extend soNUMA’s RMC pipelines to support the new messaging

primitives and load balancing functionality. From an RMC perspective, reception of a new send

or receive request through a WQ is very similar to the reception of a remote write operation.

Unlike the baseline soNUMA protocol, the network header of multi-packet messages has to

additionally contain the total message size, which is necessary information for the remote end

to identify when all of a message’s packets have been received. In Chapter 4, we saw the same

requirement for SABRes. The only considerable hardware changes are identified in the RRPP .

Figure 5.8 provides a high-level view of the modified RRPP, with the added stages highlighted

in two shades of gray. Light gray indicates added stages required by messaging, and dark gray

denotes load-balancing-related stages. The RRPP originally handles independent cache-block-

sized requests by (i) parsing the incoming request, (ii) translating the target virtual address,

expressed in the request as a combination of context_id and offset within the context, (iii)

accessing the target memory location, and (iv) creating a response packet and sends it back to the

requesting node. We add five more stages.

The first added stage, "Handle metadata", is after the "Memory access" stage (i.e., after a

send request’s payload has been written to memory). In the case of a receive request, the

RRPP simply resets the valid byte field of the target send buffer slot (see Section 5.4, "Receive

operation"). In the case of a send request, the RRPP performs a fetch-and-increment operation to

the corresponding counter field of the target receive buffer slot (see Section 5.4, "Send operation").
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The following added stage, "Counter incr.", checks if the counter’s incremented value matches

the message’s total length (carried in each packet’s network header). If all of the send operation’s

packets have arrived, the next stage is activated, which enqueues a pointer to the completed send

buffer slot in the shared CQ. "Select core", monitors the occupancy of the cores and maintains

state about their current status to take message dispatch decisions, with the goal of keeping

load balanced. The complexity of this stage can widely vary based on the logic and algorithm

involved in taking load balancing decisions. In our current design, load balancing decisions are

simply based on greedy FIFO message dispatch to the first available core. The state that has to be

maintained per core is minimal: a core’s status is either occupied or available. Whenever there

is an available core and the shared CQ is not empty, the "Select core" dequeues the first entry

from the shared CQ and passes it along with the selected core’s ID to the final stage. Finally,

the "Notify core" stage sends a special message to the Request Completion Pipeline (RCP) and

marks that core as busy. The message carries the selected core’s ID and a pointer to the receive

buffer slot that contains the request ready to be serviced. Upon the message’s reception, the

RCP enqueues an entry in the target core’s CQ, thus notifying the core of the incoming request’s

location. The core is marked again as available as soon as the Request Generation Pipeline (RGP)

receives a subsequent request containing a receive operation.

Overall, the additional hardware complexity is modest, thus compatible with architectures

featuring ultra-lightweight protocols and on-chip integrated NIs, such as soNUMA. Given the

RMC’s fast access to its local memory hierarchy, it is possible to virtualize most of the bulky

state required for the messaging mechanism’s send and receive buffers in the host’s memory.

Hardware requirements are limited to a small additional fraction of dedicated SRAM capacity,

while NI logic extensions are contained and straightforward.

5.7 Chapter Summary

The most challenging distributed applications require rapid inter-node communication with tight

tail latencies. In the case of short-lived RPCs with microsecond-scale service times, a key factor
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determining RPC tail latency on modern manycore server chips is how they are distributed

from the network to the available CPU cores. Modern NICs statically partition and dispatch

network load to cores, being oblivious to the cores’ dynamic load. Such approach achieves

load distribution, but not load balancing: the resulting load per core can significantly vary,

resulting in increased RPC response time tail latencies. In this chapter, we identified that ICONIC

architectures such as soNUMA, which feature on-chip NIs, provide a unique opportunity of

dynamic NI-to-core load dispatch, alleviating inter-core load imbalance that arises from static

load distribution decisions. By allowing the NI to dynamically monitor the load on the CPU

cores and dispatch messages to them accordingly, we enable synchronization-free load balancing

capable of approaching the quality of an ideal queuing system. As a prerequisite for NI-driven

load balancing, we introduced a lightweight native messaging mechanism that can be easily

supported with minimal hardware by on-chip integrated NIs. In addition to being an enabler

for NI-driven load balancing, the native messaging mechanism is also more CPU-friendly than

soNUMA’s original messaging mechanism, which was emulated on top of one-sided operations.

We implement and demonstrate the effectiveness of both native messaging and dynamic load

balancing on an instance of an ICONIC architecture in Chapter 8.
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In the second part of this thesis, we describe a concrete implementation of an ICONIC architecture

based on the Scale-Out NUMA (soNUMA) protocol. We gradually enhance the implemented

system with all the features introduced in Part I, and evaluate their performance impact.

soNUMA was introduced in Chapter 3 as a proof-of-concept architecture showcasing that a

hardware-software co-design of the entire networking stack—lean user-level network protocol,

tight NI integration, and high-performance fabric—can bridge the gap between local and remote

memory. To build a real system based on soNUMA, additional effort in adapting the conceptual

protocol to modern technology trends is necessary. Specifically, given server technology trends,

rack-scale systems will soon feature SoCs with dozens of cores (e.g., Scale-Out Processors [29,

119] or tiled manycores [56]), high-bandwidth memory interfaces supplying well over 100GBps

of DRAM bandwidth per socket, and SerDes or photonic chip-to-chip links, allowing for low-

latency and high-bandwidth intra-rack communication. A rack-scale system features many such

servers, tightly integrated in a supercomputer-like fabric. A key emerging challenge in such

systems is a manycore NI architecture that would enable effective integration of on-chip resources

with supercomputer-like off-chip communication fabrics to maximize efficiency and minimize

cost.

Traditional NIs hang off the chip’s edge, adjacent to the I/O pins. Existing chips with on-chip
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NIs (e.g., [107, 109]) follow the same approach, keeping the NI at the edge, albeit on chip.

Unfortunately, placing NIs at the chip’s edge in a manycore SoC incurs prohibitively high on-chip

coherence and NOC latencies on accesses to the NI’s internal structures. We find that on-chip

latency can be particularly high (up to 80% of the end-to-end latency) for fine-grain (e.g., cache

block size) accesses to remote in-memory objects. Because of the demand for low remote memory

access latency, such edge-based NI placements are not desirable.

Alternatively, there are manycore tiled processors with lean per-tile NIs directly integrated into

the core’s pipeline [20]. While per-tile designs optimize for low latency, they primarily target

fine-grain (e.g., scalar) communication and are not suitable for in-memory rack-scale computing

with coarse-grain objects from hundreds of bytes to tens of kilobytes. Moreover, current per-tile

designs are highly intrusive in microarchitecture, which is undesirable for licensed IP blocks

(e.g., ARM cores) used across many products. Finally, these designs have primarily targeted

single-chip systems rather than distributed in-memory systems, which rely on fast remote memory

access for high performance.

This thesis is the first research effort that evaluates the design space of manycore NIs for emerging

verb-based network protocol stacks1, such as RDMA or soNUMA, which are getting increasing

traction due to the need for frequent fast remote memory access. Our study reveals that: (i) there

is a need for per-tile NI functionality to eliminate unnecessary coherence traffic for fine-grain

requestor-side operations; (ii) given high coherence-related NOC latencies, the software overhead

to trigger one-sided operations is amortized, obviating the need for direct remote load/store

operations in hardware to accelerate them; (iii) bulk transfer operations overwhelm the NOC

resources and as such are best implemented at the chip’s edge; and (iv) response-side operations

(i.e., remote requests to a SoC’s local memory) do not interact with the cores and are therefore

best handled at the chip’s edge.

We use these observations and propose three manycore NI architectures: (1) NIedge, the simplest

design, with NIs along a dimension of the NOC at the chip’s edge, optimizing for bandwidth and

1We use the term verb-based protocol to refer to protocols that rely on memory-mapped queue-based communica-

tion between the CPU and the NI, such as soNUMA’s Queue Pair model.
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low on-chip traffic, (2) NIper−tile, the most hardware-intensive design, with an NI at each tile to

optimize for lower access latency from a core to NI internals, and (3) NIsplit , a novel manycore

NI architecture with a per-tile frontend requestor pipeline to initiate transfers, and a backend

requestor pipeline for data handling plus a response pipeline servicing remote accesses to local

memory, both integrated across the chip’s edge. The NIsplit design optimizes for both latency

and bandwidth without requiring any modifications to the SoC’s cache coherence protocol, the

memory consistency model or the core microarchitecture.

Focusing on a rack-scale deployment, we assume a 512-node 3D-torus-connected rack with

64-core mesh-based SoCs, and use cycle-accurate simulation to compare our three proposed

manycore NI architectures to a NUMA machine of the same size and show that:

• On-chip coherence and NOC latency dominate end-to-end latency in manycore SoCs for in-

memory rack-scale systems, amortizing the software overhead of one-sided operations. As

such, intrusive core modifications to add hardware load/store support for remote operations

are not merited.

• An NIedge design can efficiently utilize the full bisection bandwidth of the NOC while

incurring 16% to 80% end-to-end latency overhead as compared to NUMA.

• An NIper−tile design can achieve end-to-end latency within 3% of NUMA, but can only

reach 25% of the bandwidth that NIedge delivers for large (8KB) objects, due to extra

on-chip traffic.

• An NIsplit design combines the advantages of the two base designs and reaches within 3%

of NUMA end-to-end latency, while matching NIedge’s bandwidth.
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6.1 Key Design Considerations

6.1.1 Application Requirements and Technology Trends

Today’s networking technologies struggle to satisfy the heavy demands of datacenter applications

that query and process massive amounts of data in real time. User data is growing faster than ever,

and providing applications with fast access to it is fundamental. Because datasets commonly

exceed the capacity of a single cache-coherent NUMA server by several orders of magnitude,

distributing data and computation across multiple servers (a.k.a., scale-out) has become the norm.

Unfortunately, most such applications must address large amounts of data in little time [17], with

implications in terms of both latency and bandwidth. Many datacenter applications are hard

to partition optimally as they rely on irregular data structures such as graphs, making the poor

locality of reference a fact of life. Other applications, such as distributed key-value stores, force

clients to go over the network in order to access just a few bytes of user data. Most key-value

stores today operate on object sizes between 16 and 512 bytes, which are typical of datacenter

applications [16, 156]. Similarly, Facebook’s Memcached pools typically have objects close to

500 bytes in size [16]. Accesses to such small objects are bound by the network latency (up

to 100μs), which can increase the overall latency as compared to local memory access latency

(100ns) by three or more orders of magnitude.

The corresponding bandwidth requirements are equally dramatic for datacenter applications. Lim

et al. [104] measure object sizes in file servers, image servers and social networks varying in

size from a few to tens of KBs. Many graph processing and MapReduce applications require

more coarse-grained accesses and thus are mostly bound by the bisection bandwidth. In such

applications, bandwidth requirements grow with the size of the system, as the fraction of data

local to a given node is inversely proportional to the number of nodes.

Overall, application requirements highlight the criticality of providing both low-latency and

high-bandwidth access to remote memory. Given an optimized network stack such as RDMA or

soNUMA for fast remote memory access, the integration of the NI logic, which glues compute
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with the network, introduces significant design considerations. We identify two attributes in

tomorrow’s servers that drive our design choices. First, research results and industry trajectory are

pointing in the direction of server processors with dozens of cores per chip [29, 56, 119]. Thus,

remote memory architectures will have to cope with realities of a fat node with many cores and

non-trivial on-chip communication delays. Second, the emerging System-on-Chip (SoC) model

for server processors favors features that can be packaged as separate IP blocks and eschews

invasive modifications to existing IP (e.g., most licensees of ARM cores do not acquire a costly

ARM architectural license that would allow them to modify core internals).

6.1.2 QP-Based Interface for Remote Memory Access

soNUMA relies on RDMA-inspired one-sided memory operations with architectural support in

a specialized NI to achieve rack-scale low remote memory access latency. In such RDMA-like

protocol implementations, the cores communicate with the NI via in-memory control structures,

typically Queue Pairs (QPs), to schedule remote operations and get notified of their completion.

The QP-based communication of RDMA introduces a non-trivial scheduling overhead for remote

operations, as illustrated in Figure 6.1. Each remote read or write requires the execution of

multiple instructions on the core to create an entry in the Work Queue (WQ). The local NI polls

on the WQ and upon the creation of a new request, the NI reads the corresponding WQ entry,

generates a request and injects it into the network. Upon the response’s arrival, the local NI

takes protocol-specific actions to complete the request and notifies the application by writing to a

Completion Queue (CQ). The QP-based approach is clearly more complex from the programming

perspective than a pure load/store model, but is highly flexible and does not require modifying

the core.

The underlying technology and mechanisms used to connect the controller to the cores play a

significant role for the end-to-end latency and bandwidth. Most existing RDMA-based solutions

rely on PCIe to connect the NI, introducing significant interaction overhead. soNUMA leverages

cache coherence to make this interaction as cheap as possible, but still introduces non-negligible

overhead due to sequences of coherence-related on-chip messages, triggered by each cache block
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Figure 6.1 – QP-based remote read.

transfer.

QP-based communication has the potential to drive remote access latency down to a small factor

of DRAM latency, at rack scale in the near future, and even at datacenter scale in the long run.

The QP-based approach is appealing because it does not require modifying the instruction set to

support remote reads/writes. By using memory-mapped queues, applications can interact with

the NI directly and bypass the OS kernel, which is a major source of overhead. This interaction

between CPU cores and the NI is straightforward for CPUs with small core counts; however,

its scalability and effectiveness with modern server CPUs, which features tens of cores, is

questionable and has not been thoroughly investigated. In this chapter, we identify the challenges

of NI placement and core-NI communication in a QP-based remote memory access model for

such manycore chips.

6.2 Manycore Network Interfaces

In this section, we investigate the design space for scalable network interfaces for manycore

CPUs, their latency and bandwidth characteristics, and the costs and complexities associated with

their integration.
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(a) Core A writing a new WQ entry. (b) NI polling for a new WQ entry.

Figure 6.2 – Core and NI WQ interactions on an NIedge design.

6.2.1 Conventional Edge-Based NI

Recent high-density chassis- and rack-scale systems are based on server processors with a few

cores and an on-chip NI [50, 107, 109]. Although integrated, the whole NI logic is still placed

at the chip’s edge, close to the pins that connect the chip to the network. We refer to this NI

architecture as NIedge.

Emerging scale-out server processors [119] (e.g., Cavium’s ThunderX [110, 111]), and tiled

manycores (e.g., EZChip’s TILE-Mx [56]) already feature from several dozens to up to 100 ARM

cores. Because of this trend toward fat manycores, NIedge may not be optimal for chips that

feature fast remote memory access powered by a QP-based model. In particular, the QP-related

traffic between the cores and the NIs must traverse several hops on the NOC, and as the NOC

grows with the chip’s core count so does the number of hops to reach the chip’s edge. Moreover,

every cache block transfer triggers the coherence protocol, which typically requires several

messages to complete a single transfer. Thus, the QP-related traffic (i.e., WQ/CQ read/write in

Figure 6.1) becomes a significant fraction of the end-to-end latency.

Figures 6.2a and 6.2b illustrate the critical path for reads and writes, respectively, in an example

manycore chip with NIedge. Without loss of generality we assume a manycore chip with a mesh

NOC and a statically block-interleaved shared NUCA LLC with a distributed directory and a

3-hop invalidation-based MESI coherence protocol. As such, a block’s home tile location on the

chip is only a function of its physical address. The NI also includes a small cache to hold the QP

entries, which is integrated into the LLC’s coherence domain and is bypassed by all of the NI’s
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data (non-QP) accesses.

Figure 6.2a shows the sequence of coherence transactions required for core A to write to a WQ

entry. The core sends a message to request an exclusive copy (GetX) of the cache block where

the head WQ entry resides. The message goes to the requested block’s home directory, which

happens to be at core B 1 . Because the NI polls on the WQ head, the directory subsequently

invalidates NI’s copy of the cache block, and concurrently sends the requested block to core

A, notifying it (MissNotify) to wait for an invalidation acknowledgement from the NI 2 . The

NI then invalidates its copy of the requested block and sends an acknowledgement (InvACK) to

resume core A 3 . Once core A resumes, it also sends an acknowledgement concurrently to the

directory to conclude the coherence transaction (arrow omitted in Figure for clarity).

Figure 6.2b shows the sequence of coherence transactions required for the NI to read a new WQ

entry. The NI requests a read-only copy (GetRO) of the block from the directory 1 . Because the

block is modified in core A’s cache, the directory sends a forward request to core A 2 . Core A

forwards a read-only copy of the modified block to the NI 3 , downgrading its own copy, and

resuming the NI. Once the NI resumes, it also sends an acknowledgement to the directory with a

copy of the block to keep the data in the LLC up to date and conclude the coherence transaction

(arrow omitted in Figure for clarity).

The on-chip coherence overhead in terms of message count is similar in the case of CQ interac-

tions. The only difference is that the roles of the core and the NI are reversed, with the NI writing

entries in the CQ, and the core polling on the CQ head.

We quantify the latency cost of these interactions through a case study. Table 6.1 presents a

breakdown of the average end-to-end latency for a remote read operation under zero load in a

QP-based rack-scale architecture featuring 64-core SoCs with a mesh NOC and NIedge. In this

breakdown, we assume communication between two directly connected chips (i.e., one network

hop apart). The details of the modeled configuration can be found in Section 6.4. The table also

includes the latency breakdown for a base NUMA machine (e.g., Cray T3D [94, 152]), which

does not incur any QP-related on-chip communication overheads, as a point of comparison.

102



6.2. Manycore Network Interfaces

Table 6.1 – Latency comparison of a QP-based model and a pure load/store interface.

Table 6.1 indicates that the overhead of the core writing a new WQ entry and the NI reading

it can measure up to ∼200 cycles (entries A1 & A2), while the overhead for NUMA to send a

request to the chip’s edge is only 24 cycles (B1 & B2). The network and memory access at the

remote node incur the same latency in both systems. Finally, the QP-based model requires ∼160

cycles to complete the transfer via a CQ entry that is written by the NI and read by the core (A6

& A7), while for NUMA the response is sent directly to the issuing core (B6).

The overall overhead of the QP-based model over a NUMA machine is almost 80%. The QP-

based interactions that require multiple NOC transfers dominate the end-to-end latency. Moreover,

in this example, the software overhead of creating a WQ entry for a RISC core is roughly a

dozen arithmetic instructions plus two stores to the same cache block. Similarly, reading the CQ

involves four instructions including a load. Therefore, the software overhead of reading/writing

the QP structures is negligible compared to the overall on-chip latency. These results suggest

that supporting a load/store hardware interface for remote accesses as in NUMA machines is an

overkill because its impact would be negligible on the end-to-end latency for manycore chips.

NIedge becomes competitive, however, with an increase in transfer size. The QP-based model

allows for the core to issue a request for multi-cache-block objects through a single WQ entry.

Such a request is subsequently parsed by the NI and “unrolled” directly in hardware, completing

multiple block transfers before having to interact with the core again, thus amortizing the QP-

related overheads over a larger data transfer. The net result is that NIedge exhibits robust bandwidth

characteristics with the QP-based remote access model. In contrast, a NUMA machine primarily
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Figure 6.3 – NIper−tile design.

supports a single cache block transfer and, without specialized NI support, it would suffer in

performance from prohibitive on-chip traffic.

6.2.2 Per-Tile NI

An alternative NI design is to collocate the NI logic with each core (NIper−tile, Figure 6.3). Such

a design would mitigate QP-related traffic, thereby using the NOC only for the direct transfer

of network packets between each tile and the network router at the chip’s edge. To eliminate

the coherence traffic between the core and NI, while precluding changes to the core or the LLC

coherence controllers, the NI cache must be placed close to the core with care. We discuss the

details of the NI cache design in Section 6.2.4.

Unfortunately, while NIper−tile minimizes the initiation latency for small transfers, it suffers from

unnecessary NOC traversals for large transfers. To access a large object in remote memory, the

NI issues a separate pair of request and response messages for each cache block. Thus, a large

request is transformed into a stream of cache-block-sized requests, which congests the NOC

on its way to the chip’s edge. Similarly, the responses congest the NOC because every single

response message must be routed to the NI, which the request originated from, before its payload

is sent to its corresponding home LLC tile. Therefore, in contrast to NIedge, NIper−tile optimizes

for latency, while suffering from lower bandwidth. We compare and contrast the latency and

bandwidth characteristics of these two NI designs in Section 6.5.
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Figure 6.4 – NIsplit design.

6.2.3 Split NI

To overcome the limitations of the NIedge and NIper−tile designs, we propose a novel design that

optimizes for both low latency and high bandwidth. Our design is based on the fundamental

observation that an NI implements two distinct functionalities that are separable: (i) a frontend

component including the NI cache, which interacts with the application to initiate a remote

memory access operation, and (ii) a backend component, which accesses data. We therefore

split each NI into these two components. We replicate the NI’s frontend at each tile, so that

each frontend is collocated with the core it is servicing to minimize the QP coherence overhead.

The backend is replicated across the chip’s edge, close to the network router. The split NI

design (NIsplit , Figure 6.4) achieves the best of both NIedge and NIper−tile worlds. It provides

low QP interaction latency without generating unnecessary NOC traffic and optimizes for both

fine-grained and bulk transfers.

6.2.4 NI Cache

In the NIedge design, each NI is attached to an edge tile, extending the mesh as shown in Figure 6.2.

Each NI includes a small cache that holds the QP entries and acts like a core’s L1 data cache

participating in the LLC’s coherence activity. The NI cache has a unique on-chip tile ID, which

is tracked by the coherence protocol much like a core’s L1 cache.

In contrast, NIper−tile and NIsplit collocate their NI cache with a core at each tile to mitigate

coherence traffic induced by QP interactions. Unfortunately, a naive collocation of the NI
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cache at each core does not eliminate the traffic because all QP interactions require consulting

with the home directory in the LLC for the corresponding cache blocks. To guarantee that the

traffic remains local, the system must migrate the home directories for the QP entries to their

corresponding NI tile requiring additional architectural and OS support (e.g., as in R-NUCA [73]).

Alternatively, sharing the L1 data cache between the core and NI would eliminate all traffic but

is highly intrusive because the L1 data cache is on the critical path of the pipeline. Moreover,

commodity ARM cores are licensed as an entire IP block and making changes to the core would

be prohibitively expensive.

Instead, the cache for these two NI designs is attached directly to the back side of L1, at the

boundary of the core’s IP block. Unlike the NIedge cache, this cache directly snoops all traffic

from the L1’s back side (e.g., as in a write-back or victim buffer). The NI cache and the core’s L1

at each tile collectively appear as a single logical entity to the LLC’s coherence domain while

physically decoupled. Such an integration obviates the need to modify the on-chip coherence

protocol and guarantees preserving the base memory consistency model (e.g., Reunion vocal/mute

cache pair [158], FLASH/Typhoon block buffers [74, 96, 147]).

NI Cache Coherence Transition Diagram

Without loss of generality, we assume a non-inclusive MESI-based invalidation protocol with

an inexact directory (i.e., non-notifying protocol). Exact directories are also implementable but

would require a more sophisticated finite-state machine to guarantee that a single shared copy is

tracked by the directory between the NI cache and the L1 data cache.

Much like typical L1 back-side buffers, the NIper−tile (or NIsplit) cache snoops all traffic from

both L1 and the directory, looking for addresses matching the registered QPs. The cache can

provide a block upon a miss in L1 as long as the request message conforms with the cache state.

Otherwise, the request is forwarded to the directory. Similarly, if the directory requests a block

that is currently shared by the cache, the cache acts on the message, forwards it to L1, waits for a

response from L1, and responds back to the directory.
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Figure 6.5 – NI cache coherence state diagram.

Figure 6.5 shows the full coherence state diagram for the NI cache. The NI cache’s coherence

controller is designed to remain invisible to both the core’s L1 cache and the directory, so that the

chip’s coherence mechanism can remain unmodified. To achieve that, it absorbs certain coherence

messages that are related to previous coherence messages generated by itself, acting as a proxy

of the L1 cache or the directory. The coherence state diagrams of the L1 cache and the directory

remain unaffected.

A frequent case that occurs under normal system operation is the NIper−tile (or NIsplit) cache

holding a block in the modified state because of a CQ write, and the core polling on that block,

requesting a read-only copy. Under a MESI-based protocol, the cache cannot respond with a dirty

block to a read-only request, so it would have to write it back to the LLC first. To optimize for

this common case, we introduce an owned state (O on the diagram), only visible to the NI cache
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controller. This way, the cache can directly forward a clean version of the requested block to L1

(M → O transition on the diagram), while keeping track of its modified state, so that the block

eventually gets written back to the LLC upon its eviction.

6.3 A Case Study with Scale-Out NUMA

We use soNUMA to illustrate and instantiate the design points of the previous section, namely

NIedge, NIper−tile, and NIsplit .

6.3.1 soNUMA NI Scaling and Placement

Chapter 3 provided a detailed functional overview for each of the three soNUMA pipelines. We

now revisit each of the three pipelines (Request Generation Pipeline – RGP, Request Completion

Pipeline – RCP, Remote Request Processing Pipeline – RRPP) and illustrate how they can be

scaled and mapped to the different NI designs presented in Section 6.2.

The RRPP pipeline is the only pipeline that does not interact with the cores. Therefore, in all

the designs we consider, it lies at the chip’s edge nearest to the network router. In order to fully

utilize the NOC bandwidth, multiple independent RRPPs are spread out along the edge (e.g., one

per edge tile in a tiled CMP as shown in Figure 6.2).

In an NIedge design, the RGP/RCP scales like the RRPP – one pair per edge tile along a chip edge.

In an NIper−tile design, a full RGP/RCP pair is replicated per tile and collocated with each core to

minimize QP traffic. As described in Section 6.2.2, an essential requirement to reap the benefits

of such a collocation is the proper integration of the NI cache with the chip’s default coherence

protocol and the core’s L1 cache.

Both NIedge and NIper−tile are suboptimal: the former latency-wise and the latter bandwidth-wise.

We next discuss how to overcome the limitations of these designs in soNUMA with the NIsplit

design, which physically splits the RGP and RCP into a frontend and a backend.
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(a) Request Generation Pipeline.

(b) Request Completion Pipeline.

Figure 6.6 – Logical separation of soNUMA’s RGP and RCP into a frontend and a backend.

RGP Frontend/Backend Separation

The frontend/backend split comes naturally in the RGP by separating the stages that interact with

the WQs (frontend) from those that act on WQ requests by generating network packets (backend).

Figure 6.6a details the functionality of RGP in stages. The RGP frontend selects a WQ among

the registered QPs, computes the address of the target WQ, loads the WQ head, and checks if a

new entry is present. The RGP backend initializes the NI’s internal structures to track in-flight

requests, unrolls large requests into cache-block-sized transactions, computes and translates the

address of the target data and reads it from memory (for writes), and finally injects a request

packet in the network.

The Frontend-Backend Interface is the boundary between the frontend and the backend. In the

NIedge and NIper−tile designs, it is simply a pipeline latch. For the NIsplit design, the Frontend-

Backend Interface is an additional stage that generates and sends a NOC packet containing a

valid WQ entry from the RGP frontend to its corresponding backend.

RCP Frontend/Backend Separation

The RCP frontend/backend split follows a similar separation of concerns as that of RGP. The RCP

backend receives network packets and accesses local application memory to store the remote

data. Once all the response packets of a given request have been received, the frontend notifies

the application of the request’s completion by writing to the CQ.
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Figure 6.6b shows the RCP frontend and backend. The backend is responsible for updating the

status of in-flight requests, computing the target virtual address at the local node, and storing the

remote data at the translated address. The RCP frontend updates the CQ head pointer in RCP’s

internal bookkeeping structures and writes a new CQ entry at the CQ’s head.

Similar to the RGP, the Frontent-Backend Interface is a latch in NIedge and NIper−tile designs. For

NIsplit , it is an additional stage that packetizes and pushes a new CQ entry into the NOC from the

RCP’s backend to its corresponding frontend.

In the NIsplit soNUMA design, we integrate the RGP and RCP frontends in each tile (Figure 6.4),

thus minimizing the overhead of transferring the QP entries between the NI and the core. The

interaction between the core and the frontend logic is handled by the mechanism described in

Section 6.2.4. The RGP and RCP backends are replicated across the chip’s edge nearest to the

network router. Scaling the backend across the edge allows utilization of the NOC’s full bisection

bandwidth by locally generated requests.

6.3.2 Other Design Issues

Mapping of Frontends to Backends. There is no inherent limitation in the binding of a

pipeline frontend to a backend. In this work, we consider a simple mapping, whereby all the

frontends of a NOC row map to that row’s backend, minimizing frontend-to-backend distance.

Mapping of Incoming Traffic to RRPPs. Distribution of incoming requests to the chip’s

RRPPs is address-interleaved to minimize the distance to the request’s destination tile. This

functionality can be trivially supported in the network router by inspecting a few bits of each

request’s offset field in its soNUMA header under the following assumptions: (i) the directory

and LLC are statically address-interleaved across the chip’s tiles, and (ii) the address bits that

define a block’s home location in the tiled LLC are part of the physical address (i.e., these bits

fall within the page offset), so this location can be determined prior to translation. Such traffic

distribution minimizes on-chip traffic and latency, as it guarantees a minimal number of on-chip
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hops for each request to reach its home location in the LLC.

On-Chip Routing Implications. In our evaluated chip designs, we place NIs (RRPPs and

RGP/RCP backends) on one side of the chip and memory controllers (MCs) on the opposite

side. We found that on-chip routing is critical to effective bandwidth utilization, and conventional

dimension-order routing, such as XY or even O1Turn [153], can severely throttle the peak data

transfer bandwidth between the chip’s NI and MC edges. Such behavior occurs because most

packets originating at a remote node (i.e., remote requests as well as responses to this node’s

requests) end up as DRAM accesses, since the requested or delivered data is typically not found

in on-chip caches. Under XY routing, all memory requests are first routed to the edge columns,

where the MCs reside, and then turn to reach their target MC. The NOC column interfacing to

the MCs turns into a bottleneck, reducing the overall bandwidth. If YX routing is used instead, a

similar problem arises with responses originating at the MC tiles.

Recent work has proposed Class-based Deterministic Routing (CDR) [6] as a way of overcoming

the MC column congestion bottleneck. CDR leverages both XY and YX routing, with the choice

determined by the packet’s message class (e.g., memory requests use YX routing while responses

XY).

In the soNUMA design, the MC-oriented policy employed by CDR is insufficient, as edge-placed

NIs (such as RGP/RCP backends in the case of NIsplit) can also cause peripheral congestion. To

avoid the edge column with the NIs becoming a hotspot, we modify CDR by defining a new

packet routing class for directory-sourced traffic; all messages of this class are routed YX, while

the rest follow an XY route. This policy results in better utilization of the NOC’s internal links

and reduced pressure on the NOC’s edge links, as directory-sourced traffic never turns at the

chip’s edges.
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Cores
ARM Cortex-A15-like; 64-bit, 2GHz, OoO,

3-wide dispatch/retirement, 60-entry ROB

L1 Caches
split I/D, 32KB 2-way, 64-byte blocks,

2 ports, 32 MSHRs, 3-cycle latency (tag+data)

LLC

Shared block-interleaved NUCA, 16MB total

16-way, 1 bank/tile, 6-cycle latency

Mesh: 1 tile/core, NOC-Out: 8 tiles in total

Coherence Directory-based Non-Inclusive MESI

Memory 50ns latency

Interconnect

16B links. 2D mesh: 3 cycles/hop

NOC-Out: Flattened Butterfly: 2 tiles/cycle

Tree Networks: 1 cycle/hop

NI
3 independent pipelines (RGP, RCP, RRPP)

one RRPP per row (8 in total)

Network Fixed 35ns latency per hop [165]

Table 6.2 – System parameters for simulation on Flexus.

6.4 Methodology

Simulation. We use Flexus [174], a full-system cycle-accurate simulator, to evaluate our 64-

core chip designs. The parameters used are summarized in Table 6.2. The NIs for all NI designs

are modeled in full microarchitectural detail.

We focus our study on a single node, with remote ends emulated by a traffic generator that

matches the outgoing request rate of the node that is simulated by generating incoming request

traffic at the same rate. Incoming requests are address-interleaved among RRPPs as described in

Section 6.3.2.

We assume a fixed chip-to-chip network latency of 35ns per hop [165] and monitor the average

servicing latency of local RRPPs that are simulated in detail. This RRPP latency is added to the

network latency (which is a function of hop count), thus providing the roundtrip latency of a

request once it leaves the local node.

Interface Placement. We evaluate three different placements of the RGP and RCP NIs: NIedge,

NIper−tile, and NIsplit . For all three placements, RRPP NIs are placed across a chip’s edge, next

to the network router. Such placement provides the ensemble of these NIs access to the full chip
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bisection bandwidth for servicing of incoming requests. Memory controllers are placed on the

opposite side of the chip.

Memory and Network Bandwidth Assumptions. The focus in this study is the investigation

of the implications of NI design on manycore chips. As such, we intentionally assume high-

bandwidth off-chip interfaces to both memory and the intra-rack network that do not bottleneck

our studied workloads. Technology-wise, high-bandwidth memory interfaces are emerging in

the form of on-package DRAM [12] and high-speed SerDes. For instance, Micron’s Hybrid

Memory Cube provides 160GBps (15× more than a conventional DDR3 channel) with a quad of

narrow SerDes-based links [85]. On the networking side, the recently finalized IEEE 802.3bj

standard codifies a 100Gbps backplane Ethernet running over a quad-25Gbps interface, with

Broadcom already announcing fully compliant 4×25Gbps PHYs. Beyond that, chip-to-chip

photonics is nearing commercialization [83], with 100Gbps signaling rates demonstrated and

1Tbps anticipated [15].

Network-on-chip. Since we do not throttle the network or memory bandwidth, the NOC

becomes the main bandwidth limiter. We use a mesh as the baseline NOC topology and apply

CDR to route on-chip traffic, as described in Section 6.3.2. We also validate the applicability of

our observations on latency-optimized NOCs through a separate case study with NOC-Out [118],

the state-of-the-art NOC for scale-out server chips.

Microbenchmarks. The goals of this work are to understand the implications of NI design

choices on the latency and bandwidth of remote memory accesses in rack-scale systems. Toward

that goal, our evaluation relies on microbenchmarks as a way of isolating software and hardware

effects in tightly-integrated messaging architectures such as soNUMA while also facilitating

a direct comparison to a hardware-only scheme (i.e., a NUMA architecture with a load/store

interface to remote memory).

We use a remote read microbenchmark to measure the latency and bandwidth behavior of the
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evaluated NI designs. For latency, we study the unloaded case: a single core issuing synchronous

remote read operations. Bandwidth studies are based on a remote read microbenchmark, in which

remote reads are issued asynchronously: as long as there is space left in the WQ, the application

keeps enqueueing new remote read requests, while occasionally polling its CQ for completions.

If the 128-entry WQ is full, the application spins on the CQ until an earlier request’s completion

frees a WQ entry.

We vary the size of the remote reads from 64B to 16KB. Both the soNUMA context, the memory

region accessed by remote requests, and local buffers, where requested remote data are written

to, are sized to exceed the aggregate on-chip cache capacity, forcing all accesses to hit DRAM.

We monitor the metrics of interest (latency, bandwidth) in 500K-cycle windows and run the

simulation until the metric’s value stabilizes (i.e., when the delta between consecutive monitoring

windows is less than 1%).

6.5 Evaluation

6.5.1 Latency Characterization

We first provide a tomography of the end-to-end latency for a single block transfer and show

where time goes for each of the three evaluated NI designs. We then show the latency sensitivity

of a read request to the size of the transfer.

Single-Block Transfer Latency Breakdown

Table 6.3 shows the latency breakdown for a single-block remote read request. The first three

design points show the performance for a messaging-based design, differing in the placement of

the NIs that interact with the cores. The last column of the table is a projection of the performance

of an ideal NUMA machine, which can access remote memory through its load/store interface

without any of the overheads associated with messaging. We optimistically assume that issuing

a load/store instruction only requires a single cycle. The cost of traversing the NOC from the
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Table 6.3 – Zero-load latency breakdown of a single-block remote read.

core to the edge, network latency, and reading the data at the remote end are the same as for the

messaging interface.

A critical observation is that the actual software overhead to issue and complete a remote read

operation is mainly attributed to microarchitectural aspects rather than the number of instructions

that need to be executed. While NIedge suggests that the software overhead is as high as 188

cycles to issue and complete a request (the sum of WQ write and CQ read software overheads in

Table 6.3), the other two designs show that the actual instruction execution overhead is just 23

cycles. The remaining 165 cycles are the result of bouncing a QP block between the core’s and

the NI’s caches via the normal cache coherence mechanisms.

Although modern coherence mechanisms are considered to be extremely efficient for on-chip

block transfers, these results indicate that high-performance NI designs should not rely on the

assumption that coherence-powered transfers are free from a latency perspective. Coherence

protocols intrinsically introduce points of indirection, which can turn a single transfer into a

long-latency sequence of several multi-hop chip traversals. These subtle interactions must be

taken into consideration when architecting a high-performance NI.
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Figure 6.7 – Projection of the end-to-end latency of a cache-block remote read operation for

multiple intra-rack network hops. Bars map to the right y-axis, lines to the left y-axis.

Scaling to More Network Hops

To put the latency numbers in perspective, Figure 6.7 projects the end-to-end latency for reading

a single cache block in large-scale distributed memory system, accounting for multiple network

hops. The projection is based on Table 6.3’s breakdown, accounting for 70 cycles (35ns) of

network latency per hop, per direction. We assume a 512-node deployment in a 3D torus

topology; the average and maximum hop counts between two nodes in such deployment are 6

and 12 respectively. This model is more representative of future large rack-scale systems. A

similar approach could be applied at datacenter scale, assuming future optic datacenter-scale

networks, with a couple of key differences: (i) the network topology would be indirect (typically

a fat tree), meaning that messages would go through a number of intermediate switches (with

their associated added latency), but also the average and maximum number of hops would be

lower; and (ii) the latency per hop would be higher, as a result of longer distances.

Figure 6.7 shows that the additional on-chip transfers related to QP interactions that occur in

the case of NIedge account for a significant fraction of the end-to-end latency, inducing a 28.6%

overhead over NUMA for six network hops. In comparison, NIsplit significantly reduces the

time spent on QP interactions, bringing the end-to-end latency within 4.7% of NUMA. Even

in the worst case of traversing the entire diameter of the modeled 3D torus, the difference in

the end-to-end latency overhead between NIedge and NIsplit is still significant: 16.2% vs. 2.6%
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Figure 6.8 – End-to-end latency for synchronous remote reads.

over NUMA. These results indicate that a high-performance NI design must consider the node’s

microarchitectural features, but highly invasive microarchitectural modifications (such as those

associated with a load/store interface to remote memory) are not warranted.

Latency of Larger Requests

Figure 6.8 shows the end-to-end latency of a synchronous remote read operation in an unloaded

system assuming a single network hop per direction. We project the latency of an ideal NUMA

machine by subtracting the latencies associated with QP interactions in the NIsplit design as

shown in Table 6.3.

We observe that as the transfer size increases, the relative latency difference between NIedge,

NIsplit , and NUMA shrinks because the cost of launching remote requests through QP interactions

is amortized over many cache blocks. However, that is not the case for NIper−tile, which observes

the highest latency among all evaluated designs for the largest transfer sizes. This behavior is

caused by unrolls of large transfers into cache-block-sized transactions which, in the NIper−tile

design, take place at the source tile. Because each network request packet is encapsulated inside

a NOC packet, it requires two flits to transfer from the source tile to the network router at the

chip’s edge. Meanwhile, unrolls happen at a rate of one request per cycle, resulting in queuing at

the source tile. While a wider NOC would alleviate the bandwidth pressure caused by unrolling

at the source tile, the cost-effective solution is to provide hardware support for offloading bulk

transfers to the chip’s edge, as is done in the NIedge and NIsplit designs.
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6.5.2 Bandwidth Characterization

For bandwidth measurements, all 64 cores are issuing asynchronous requests of varying sizes.

Figure 6.9a shows the aggregate application bandwidth for each of the three NI designs. The

bandwidth is measured as the rate of data packets written into local buffers by RCPs for locally

initiated requests, and the rate of data packets sent out by RRPPs in response to remote requests

serviced at the local node. Because of the way remote traffic is generated, these two rates are

always balanced, and the reported aggregate bandwidth is the sum of the two.

Both NIedge and NIsplit reach a peak bandwidth of 214GBps, or 107GBps per direction. It is

unlikely that the bandwidth can be pushed any further using the same NOC; NOC traffic counters

report an aggregate bandwidth of 594GBps, with the bulk of it crossing the bisection whose

bidirectional bandwidth is 512GBps. The aggregate consumed bandwidth is 2.7× higher than the

application bandwidth demand; the difference is attributed to a plethora of NOC packets that are

not carrying application data. These other packets include coherence messages and evicted LLC

blocks requiring a write-back to memory.

As Figure 6.9a shows, NIper−tile and NIsplit reach higher bandwidth than NIedge for small transfer

sizes. NIedge suffers from ping-ponging of the WQ and CQ entries between the cores and the

NIs, particularly when a cache block containing WQ entries gets polled and transferred to the

NI before the application completely fills it with requests; a similar effect occurs with CQ cache

blocks that are invalidated by the core while new completions are processed at the NI. With larger

transfer sizes, QPs are accessed less frequently, thus diminishing their effect on performance.

Whereas NIedge is inefficient for small transfers, the performance of the NIper−tile design degrades

at large transfer granularities. The reason is that the NIs in this design unroll the requests inside

the NOC, resulting in a flood of packets streaming from the tiles to the edges. By the time the

backpressure reaches the source tiles, the network is completely congested. A similar problem

occurs with responses: once they arrive at the network router, they are first sent back to the source

NI, regardless of the final on-chip destination of the payload, thus introducing an unnecessary
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(a) With CDR routing.

(b) With X-Y routing.

Figure 6.9 – Application bandwidth for asynchronous remote reads.

point of indirection, which further increases on-chip traffic. The congestion problems could be

mitigated through smarter (e.g., source-based) flow-control, but the aggregate bandwidth would

still be inferior to the other two designs because of the extra on-chip traffic due to the per-tile NI

placement.

Clearly, efficient handling of large unrolls requires having a block handling engine at the edge,

which receives a single command, does the data transfers, and finally notifies the requester upon

completion. This observation is not limited to messaging, but equally applies to load/store NUMA

systems as well.

Finally, Figure 6.9b shows the same results when X-Y on-chip routing is used instead of our

modified CDR policy baseline (see Section 6.3.2). The bandwidth curves the three NI designs are

qualitatively similar for both CDR and X-Y routing, but the peak bandwidth of the bandwidth-
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(a) NIedge design. (b) NIper−tile design. (c) NIsplit design.

Figure 6.10 – NI design space for NOC-Out-based manycore CMPs. Striped rectangles represent

LLC tiles.

optimized designs (NIedge and NIsplit) is 35% lower with X-Y as compared to CDR (138GBps

versus 214GBps). The reason for that bandwidth degradation is that X-Y routing results in early

congestion of the NOC links on the two edge columns of the chip, where the MCs and the NIs

reside.

6.5.3 Effect of Latency-Optimized Topology

In this section, we show that trends and conclusions derived from the mesh-based study are

equally valid for latency-optimized NOCs. To that end, we evaluate the various NI design options

using NOC-Out [118], a state-of-the-art latency-optimized NOC for scale-out server chips. In the

NOC-Out layout, LLC tiles form a row in the middle of the chip and are richly interconnected

via a flattened butterfly. Cores lie on both sides of the LLC row, and the cores of each column

are chained via a simple reduction/dispersion network that connects them to their column’s

corresponding LLC tile.

Figure 6.10 illustrates the three NI design options in the context of NOC-Out. The LLC tiles are

spread across the middle of the chip and are interconnected via the flattened butterfly to each

other, the MCs, and the network router. In all three designs, the RRPPs (not shown) are placed

across the chip’s LLC tiles rather than the chip’s edge, as the rich connectivity of these tiles

provides access to the full bisection bandwidth. For the same reason, the RGPs and RCPs in the

case of NIedge are collocated with the RRPPs. While NImiddle would be a more accurate term

for this placement, we continue using NIedge for consistency. NIper−tile features full RGP and
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Table 6.4 – Zero-load latency breakdown of a single-block remote read (NOC-Out).

RCP pipelines at each core, while NIsplit has an RGP/RCP frontend per core and an RGP/RCP

backend per LLC tile.

Single-block Transfer Latency Breakdown with NOC-Out

Table 6.3 in Section 6.5.1 showed the end-to-end latency breakdown of a synchronous remote

read for all NI designs on a mesh-based chip. We repeat that latency tomography for a NOC-

Out on-chip interconnect and show the results in Table 6.4. The latency-optimized NOC-Out

noticeably speeds up on-chip interactions both at the local and the remote end. The end-to-end

latency’s reduction for all designs falls in the range of 20–30%, compared to their mesh-based

counterparts. Improvements at the source side originate from accelerated QP interactions and

faster transfers of requests and responses between the NIs located in the inner chip and the

network router at the chip’s edge. The flattened butterfly interconnecting the network router, LLC

tiles, and memory controllers reduces the time spent at the remote end by 37% (132 cycles) as

compared to mesh-based designs (208 cycles).

Despite the fact that significantly less time is spent on on-chip interactions as compared to

the mesh, all of the previously made observations still hold. While the latency gap between

NIedge versus NIper−tile and NIsplit is narrowed, the end-to-end latency improvement of the two

latency-optimized NI designs over NIedge still measures up to ∼30%. This result indicates that

121



Chapter 6. Manycore Chip Design

Figure 6.11 – Latency for synchronous remote reads on NOC-Out.

on-chip QP interactions still account for a considerable fraction of the end-to-end latency, even

on latency-optimized NOC topologies.

Latency and Bandwidth Measurements with NOC-Out

Figure 6.11 shows the end-to-end latency of synchronous remote read operations of various sizes

for all three NI designs. For small transfers, NOC-Out delivers up to 30% lower latency than

mesh (Figure 6.8). Examining the sources of improvement, we find that latency is reduced both

at the source and remote nodes. Improvements at the source node originate from accelerated QP

interactions and faster transfers of requests and responses between the NIs and the network router.

At the remote node, the flattened butterfly speeds up the access latency to the LLC and MCs by

37% compared to mesh-based designs.

Comparing the latency gap between NIedge and the other two designs, we observe that it is

narrowed compared to the mesh topology, yet the latency of NIedge is still up to 30% greater than

that of NIsplit and NIper−tile. This result indicates that on-chip QP interactions still account for a

considerable fraction of the end-to-end latency even in latency-optimized NOC topologies.

Bandwidth results for NOC-Out appear in Figure 6.12. The general trends are identical to those

observed with a mesh (Figure 6.9). However, the peak bandwidth achieved with NOC-Out is

significantly lower than that in mesh-integrated NIs. The reason for the low throughput is the

122



6.6. Chapter Summary

Figure 6.12 – Application bandwidth for asynchronous remote reads on NOC-Out.

highly contended LLC in the NOC-Out organization, which has significantly fewer tiles and

banks than its mesh-based counterpart.

6.6 Chapter Summary

The emergence of manycore server chips in the context of integrated rack-scale fabrics, where

low latency and high bandwidth between nodes is crucial, introduces new challenges for on-chip

NI integration. Because of inherently high on-chip latencies on manycore chips, initiation and

termination of remote operations that take place at the NIs can become a first-order performance

determinant for remote memory access, especially for emerging QP-based models. We investi-

gated three different integrated NI designs for manycores. The classic NIedge integration approach,

where the NIs are placed across a chip’s edge, can utilize the full bisection bandwidth of the

NOC, but suffers from significant latency overheads due to costly on-chip core-NI interactions.

The NIper−tile design integrates the NI logic next to each core, rather than the chip’s edge, and

delivers end-to-end latency for fine-grained remote memory accesses that is within 3% of hard-

ware NUMA’s latency. However, the NIper−tile design generates excess traffic that reduces the

bandwidth for bulk data transfers significantly. To achieve the best of both worlds, we propose a

novel manycore NI design, NIsplit , that delivers the latency of NIper−tile and the bandwidth of

NIedge.
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7 LightSABRe in Action

Chapter 4 introduced SABRe, a new one-sided operation with the rich semantics of an atomic

object read, and LightSABRe, a hardware implementation of SABRe coupled with soNUMA’s

NI. In this chapter we evaluate the performance impact of LightSABRe on distributed sys-

tems. We consider a system featuring manycore servers implementing soNUMA and the NIsplit

architecture, as introduced in Chapter 6. We briefly address the implications arising from apply-

ing the LightSABRe mechanism on a manycore NI architecture, then proceed to describe our

methodology and performance evaluation.

7.1 Manycore NI Architecture Implications on LightSABRe

Figure 7.1 shows a chip implementing a manycore NIsplit architecture. Each of the chip’s

RRPPs features a LightSABRe, which handles incoming SABRes. Multiple RRPPs give rise

to the implication of balancing requests across them, as already discussed in Section 6.3.2 in

the context of basic one-sided operations. However, the load distribution concern is different

for SABRes, as multiple packets of the same request are related to each other; in contrast, for

other one-sided operations, every incoming cache-block-sized request is handled independently.

Since SABRes can be arbitrarily long and can differ in size, distributing a single SABRe across

multiple RRPPs would be desirable for optimal load balancing. Supporting such distribution
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Figure 7.1 – Multicore chip layout based on NIsplit architecture.

would require breaking a SABRe operation into multiple sub-operations that would all together

have to be atomic, introducing additional hardware design complexity to implement distributed

logic to enable that. Furthermore, given that each transfer originates from a single RGP, all reply

packets have to be routed back to that pipeline’s matching RCP, which will ultimately become the

transfer’s bandwidth bottleneck. Therefore, the additional complexity required for inter-SABRe

distribution seems unwarranted and our implementation of LightSABRe for soNUMA maps each

SABRe to a single RRPP.

7.2 Methodology

System organization. We evaluate LightSABRe by modeling two directly connected 16-core

chips that implement soNUMA with LightSABRe-enhanced RMCs. Figure 7.1 shows the layout

of the modeled chips, which implement the NIsplit design introduced in Chapter 6. This means

that RGPs and RCPs are split into frontends and backends; frontends are replicated per core

and handle the memory-mapped queue-based interaction with the cores, while backends are

replicated across the chip’s edge, for efficient data handling. RRPPs, which are the pipelines

implementing the LightSABRe mechanism, are monolithic and replicated across the chip’s edge.

Core-to-RMC-backend and SABRe-to-RRPP mapping. Our design maps each SABRe

to a single RRPP rather than across multiple of them. This design choice has a significant
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Cores
ARM Cortex-A57-like; 64-bit, 2GHz, OoO

3-wide dispatch/retirement, 128-entry ROB, TSO

L1 Caches
32KB 2-way L1d, 48KB 3-way L1i, 64-byte blocks

2 ports, 32 MSHRs, 3-cycle latency (tag+data)

LLC
Shared block-interleaved NUCA, 2MB total

16-way, 1 bank/tile, 6-cycle latency

Coherence Directory-based Non-Inclusive MESI

Memory 50ns latency, 4×25.6GBps (DDR4)

Interconnect 2D mesh, 16B links, 3 cycles/hop

RMC

3 independent pipelines (RGP, RCP, RRPP) @ 1GHz

one RGP/RCP frontend per core (Figure 7.1)

four RGP/RCP backends & RRPPs across edge

LightSABRe 16 32-entry stream buffers per RRPP

Network Fixed 35ns latency per hop [165], 100GBps

Table 7.1 – Flexus simulation parameters for LightSABRe on soNUMA.

advantage in terms of simplicity, but may introduce load-balancing concerns. Assuming uniform

behavior across cores regarding remote memory accesses, we map each row of cores to the row’s

corresponding RGP backend, and all SABRes from a given RCP backend to the matching remote

RRPP. In our setup, this static mapping does not result in any load imbalance issues. A more

flexible, possibly dynamic load-balancing policy might be worth investigating in the future.

Simulation. We use the Flexus [174] full-system cycle-accurate simulator to evaluate the

LightSABRe-enhanced soNUMA system. Table 7.1 summarizes the used parameters.

Applications. We use a simple microbenchmark to study the performance of LightSABRe in

isolation. Our microbenchmark launches a number of writer threads that update objects in their

local memory, or reader threads that access objects in remote memory using one-sided soNUMA

operations (remote reads or SABRes) in a tight loop.

We also use FaRM [53] to evaluate the effect of LightSABRe on a full software stack. FaRM

is a transactional system for distributed memory with an underlying key-value data store, that

uses RDMA for fast remote memory access. In particular, FaRM uses one-sided reads to access

remote objects over RDMA, while writes are always sent to the data owner over an RPC. FaRM

implements atomic remote object reads via optimistic concurrency control by encoding per-
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cache-line versions in the objects. The framework detects atomicity violations for (local or

remote) reads, should they overlap with a concurrent write to the same object, and retries the

read operation. FaRM provides a fast path for lock-free single-object remote read operations,

which are strictly serializable with FaRM’s general distributed transactions, without invoking

the distributed transactional commit protocol. As discussed extensively in Section 4.1.2, the

per-cache-line versions mechanism imposes CPU overheads related to the extraction of useful

data from the data store by stripping off embedded metadata. An additional consequence of

embedded metadata is the requirement for intermediate system-managed buffering before the

clean data can be exposed to the application, thus giving up on the zero-copy benefit of one-sided

read operations.

We performed the following major modifications to FaRM: (i) we ported the FaRM core from a

standard RDMA interface to soNUMA; and (ii) because of Flexus constraints, we ported FaRM

from Windows/x86 to Solaris/UltraSPARC III. We also replaced a number of system calls in

FaRM, such as timer-related calls, with their most efficient counterparts on Solaris.

We evaluate two implementations of atomic lock-free reads with different object layouts in the

FaRM data store. In the baseline implementation, we use soNUMA’s remote read primitives

combined with the original FaRM data object store (per-cache-line versions layout) and post-

transfer atomicity checks in software. In the SABRe implementation, we remove these per-cache-

line versions from the objects’ layout and use LightSABRe to enforce atomicity. The SABRe

implementation also removes the intermediate buffering for the data transferred from remote

memory; instead, the one-sided operation can directly write the—already clean—data into the

application buffer (zero-copy).
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Figure 7.2 – Microbenchmark with one-sided operations.

7.3 Evaluation

7.3.1 Latency and Throughput Characterization

We first use a single-threaded microbenchmark that issues synchronous operations, remote reads

and SABRes, to assess their latency. To illustrate the benefit of the LightSABRe mechanism

over a basic hardware mechanism for SABRes that serializes the version check before data

access, we evaluate the performance of both mechanisms (LightSABRe versus LightSABRe - no

speculation). Remote data is memory resident and the local buffer at the source is LLC resident.

Figure 7.2a shows the soNUMA transfer latency (from issuing to completion) as a function

of the transfer size. For single-block transfers, remote reads and both types of LightSABRe

achieve the same latency, as expected. For larger transfers, the latency of SABRes using the
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LightSABRe - no speculation mechanism is significantly higher than remote reads, because of the

read-version-then-data serialization. LightSABRe successfully remove this overhead, matching

the latency of remote reads. The latency difference between remote reads and LightSABRe in the

case of large transfers (2KB) is attributed to the load distribution to RRPPs: while remote reads

are balanced on a per-block basis across RRPPs, each SABRe is assigned to a single RRPP.

Figure 7.2b shows the peak throughput of 16 threads issuing asynchronous remote operations

(remote reads and SABRes). The remote reads and LightSABRe have identical throughput curves,

illustrating that (i) peak theoretical bandwidth (20GBps per RRPP) is reached with both operation

types, and (ii) introducing state at the RRPPs does not hurt throughput. The throughput curve of

LightSABRe - no spec. is also identical, and therefore omitted.

7.3.2 Conflict Sensitivity

We extend the synchronous microbenchmark used in Section 7.3.1 to evaluate LightSABRe’s end-

to-end effect in the presence of atomicity violations. We use the per-cache-line versions technique

to provide atomicity in software, using remote reads. After every transfer, the microbenchmark

unpacks the transferred data into an application buffer, checking for atomicity violation in the

process. With LightSABRe, such an atomicity check mechanism is not required. In both cases,

the end result is the same: a remote operation completes when the clean data is read by the core.

We employ 16 reader threads on one chip and vary the number of writers from 0 to 16 on the other,

for a throughput sensitivity analysis as the conflict probability grows. To achieve a perceivable

change in conflict probability, we limit the number of objects to 100, making all accesses LLC

resident. Readers access all remote objects uniformly at random, while each writer repeatedly

writes a predefined subset of the objects (Concurrent Reads Exclusive Writes model [103]). Upon

a conflict detection, readers immediately retry reading the same object.

Figure 7.3 compares the microbenchmark’s throughput for remote atomic reads of 128B, 1KB, and

8KB objects, when using the software per-cache-line versions mechanism versus LightSABRe.

In all cases, we observe a performance degradation as the number of writers, and, consequently,

130



7.3. Evaluation

0

20

40

60

80

0 4 8 12 16

A
p

p
li

ca
ti

on
 th

ro
u

gh
p

ut

(G
B

p
s)

# writer threads

128B LightSABRe 128B perCL versions
1KB LightSABRe 1KB perCLversions
8KB LightSABRe 8KB perCLversions

Figure 7.3 – Application throughput with increasing conflict rate.

conflict probability, increases. The throughput difference between the software and hardware

atomicity enforcement method is a direct result of the reduced end-to-end latency delivered by

LightSABRe. We observe an opposite trend for small and large objects. For 128B objects, the

application throughput gap between LightSABRe and the software mechanism shrinks from

15% to 3% as the conflict probability increases. In contrast, for 1KB and 8KB objects, the

throughput gap grows from 30% to 41%, and from 87% to 97%, respectively. The reason for

these differences is two-fold. First, the benefit from removing the software atomicity check is

proportional to the object size. Second, atomicity success or failure of completed SABRes is

directly exposed to the application through the transfer’s Completion Queue entry. This action is

object-size agnostic. In contrast, the cost of software atomicity detection grows with the object

size. Therefore, the larger the object size and the conflict probability, the greater the benefit for

LightSABRe.

7.3.3 FaRM Key-Value Store

We conclude the evaluation by testing LightSABRe on a read-only key-value store application

running on top of FaRM [53]. The first node allocates a number of FaRM objects in its memory,

which a single reader thread running on the second node accesses continuously by issuing key-

value lookups over synchronous one-sided operations: remote reads versus SABRes. All remote
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Figure 7.4 – FaRM KV store: baseline versus LightSABRe.

memory accesses miss in the remote LLC and go to main memory.

Figure 7.4a shows the latency breakdown for different object sizes and each of the two evaluated

FaRM versions (baseline versus SABRes). LightSABRe considerably reduces the end-to-end

latency for atomic remote object reads for all object sizes. We identify two main sources of

benefit. The direct benefit comes from the fact that the use of SABRes completely removes the

software overhead of version stripping and atomicity checking. The second, implicit, benefit

is that SABRes shrink the total instruction footprint, thus reducing frontend stalls, which are

critical to performance and a major concern in modern server workloads [62]. As pointed out in

the methodology, SABRes not only deprecate the code for software atomicity checks, but also

the FaRM code that deals with intermediate buffering, as SABRes allow soNUMA to directly

write into the application buffer (zero-copy). We found the application’s instruction working
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set to be in the 40–50KB range, which results in L1i conflict misses, even though we deploy

a next-line instruction prefetcher. The use of SABRes reduces the instruction working set by

∼7%, relaxing core frontend pressure. Using SABRes only increases the application’s latency

component (Figure 7.4a), because the accessed object is located in the LLC, as opposed to the

baseline where the software atomicity check implicitly brings the clean object in the L1d.

The application has two distinct phases: a low ILP/MLP phase with an IPC of 0.8 to 1, and

a high-MLP phase, when the transferred remote data is read by the core. In the case of small

objects, the largest fraction of the performance benefit provided by SABRes comes from the first

phase. The combination of reduced instruction footprint (no version stripping or intermediate

buffering code) and a slightly reduced instruction miss ratio results in a 35% overall latency

improvement for 128B remote object accesses.

In contrast, the greatest benefit of SABRes for large objects comes from the high-MLP phase,

increasing the performance benefit to 52% for 8KB objects. We do not model a data prefetcher,

which would be capable of shrinking the gap between SABRes and the baseline for large objects.

However, we significantly optimized the version stripping kernel by hand-tuning assembly code

to maximize the MLP, at 1KB data chunks; thus, our results for object sizes up to 1KB are

guaranteed to get maximum MLP, which a data prefetcher would not improve. Assuming a

perfect data prefetcher that identifies the access to an object and directly brings all of it in the

L1d, so that only the LLC access latency of accessing the first 1KB is exposed, the performance

benefit of using SABRes would shrink from 52% to 30-35% for 8KB objects.

The latency benefit of using LightSABRe also results in throughput improvement. We now use

15 FaRM reader threads that access remote objects using synchronous remote operations (reads

or SABRes). Figure 7.4b shows that LightSABRe delivers a throughput improvement of 30-60%

depending on the object size, as compared to the baseline.

Finally, we evaluate the performance of local reads for the two FaRM object store implementations.

While LightSABRe is not involved in local accesses, it’s an enabler for keeping the object store

unmodified (i.e., no embedded per-cache-line versions), which implicitly results in faster local
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Figure 7.5 – FaRM local reads throughput comparison.

reads. Figure 7.5 shows the application throughput achieved for a read-only key-value lookup

kernel on FaRM, with 15 FaRM reader threads issuing read requests to local memory only. We

observe a throughput increase of 20% for 128B objects, which grows to 53% for 1KB objects, and

a striking 2.1× for 8KB objects. Thus, using SABRes also results in a substantial acceleration of

local reads, which are performance-critical even in distributed memory environments, especially

in the case of locality-aware applications.

7.4 Chapter Summary

Our LightSABRe evaluation demonstrates the benefit of introducing new one-sided operations

with stronger semantics to implement operations that are ubiquitously performed by distributed

systems. The introduction the SABRe atomic remote object read operation results in considerable

software simplification and significant performance improvements. We report remote object read

throughput improvements of up to 97% for a microbenchmark and up to 60% for a key-value

lookup application running on top of the full software stack of a modern distributed object store.
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8 Tail-Aware Balancing of μs-Scale

RPCs

Chapter 5 introduced the opportunity to implement synchronization-free dynamic load balancing

of incoming network messages to cores of a manycore server CPU within the NI logic. Doing so

has the potential of significantly improving the RPC throughput of a manycore server under tight

tail latency constraints, especially for the most challenging short-lived RPCs with a service time

of just a few microseconds. In this chapter, we implement and evaluate our NI-integrated load

balancing mechanism on a server implementing soNUMA the NIsplit architecture, as introduced

in Chapter 6. We also implement and evaluate the lightweight native messaging mechanism we

introduced in Chapter 5, which is a prerequisite for our load balancing implementation. We first

address the design and implementation implications arising when scaling the number of NIs from

a single to multiple, and then proceed with our methodology and performance evaluation.

8.1 Manycore NI Design Implications

Scaling the native messaging mechanism to multiple NIs introduces the same implications that

surfaced in the case of SABRes. We follow the same approach: As multiple packets of the same

message are related with each other (the NI increments the message’s corresponding receive slot

counter), we opt to steer all packets of the same packet to the same RRPP to reduce inter-NI

coherence traffic.
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From the load balancing perspective, the implications of multiple NIs are more challenging.

As multiple NIs handle message receptions, there is a need to dispatch work from multiple

sources to multiple destinations (cores), which inherently implies a multi-queue system. From

our theoretical queuing system analysis in Section 5.1, the performance of multi-queue systems is

inferior to single-queue systems. However, there is a spectrum of resource pooling versus achieved

performance, that—from the queuing system organization perspective—introduces a range of

options. Motivated by Section 5.1’s analysis, we consider implementations of two queuing

systems, each of which strikes a different tradeoff point in the complexity/performance design

space. For our evaluated 16-core chip, illustrated in Figure 8.1, we consider an implementation

of the theoretically ideal single-queue system (1×16) and an implementation of a 4×4 queuing

system, which is modestly inferior in terms of performance to 1×16, but represents a simpler

design. We first describe the 4×4 implementation and then the extensions required to upgrade it

to a 1×16 queuing system.

8.1.1 4×4 Queuing System

A manycore NIsplit architecture enables seamless scalability of networking capabilities with the

number of cores, in terms of latency and bandwidth. However, the distributed nature of the NI

logic introduces a challenge: The otherwise independent NI backends (each of which features an

RRPP taking message dispatch decisions) need to coordinate to balance incoming load across

cores. Driven by the observation that even a multi-queue system with a modest number of serving

units per queue can approach the performance of a single-queue system, we constrain the number

of cores every NI backend can dispatch load to.

Figure 8.1 demonstrates such an example for a 16-core tiled chip with a mesh on-chip interconnect:

an NI backend limits its dispatch decisions to the cores residing on the same mesh row. Such a

decision results in a load balancing configuration that corresponds to a 4×4 queuing system. As

compared to a 1×16 system, 4×4 compromises load balance and, ultimately, tail latency, in

favor of reduced complexity. Each NI backend has its own shared CQ and its own set of cores to

dispatch incoming messages to. Therefore, no inter-NI coordination is required neither when a

136



8.1. Manycore NI Design Implications

N
e

tw
o

rk
 R

o
u

te
rMC

MC

MC

MC

Dispatch group 0

Dispatch group 1

Dispatch group 2

Dispatch group 3

RGP/RCP frontend
RGP/RCP backend and RRPP

MC: Memory Controller

Figure 8.1 – Message dispatch groups on a multicore chip.

new message arrival is enqueued in the shared CQ, nor when a core becomes available, waiting

for a new message to be dispatched to it by an NI. Furthermore, each core only notifies a single

NI about its occupancy (one-to-one instead of one-to-many communication). By assigning a

disjoint set of cores to every NI backend, this 4×4 implementation eschews the need for inter-NI

coordination and maintains the original manycore NI design’s scalability, where all NI backends

operate independently.

8.1.2 1×16 Queuing System

A 4×4 system organization strikes a balance between complexity and performance by eschewing

inter-NI communication. However, given the load dispatch mechanism’s specialized nature and

the predictable inter-component communication patterns it results in, the additional requirements

to implement a single-queue system may prove to be modest and hence justifiable. One option

would be to approach the problem as a small-scale distributed system, with the goal of optimizing

the inter-NI synchronization necessary when an incoming message needs to be enqueued into a

single shared CQ, and when it’s time for a message to be dispatched from the shared CQ to a core.

The solution would not be necessarily limited to purely algorithmic approaches, but could also

involve hardware support, such as dedicated links interconnecting the handful of NI backends

to guarantee fixed-time communication between them (e.g., a similar concept has been used to

enable snoopy coherence over a mesh on-chip interconnect [45]).
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A second option that turns out to lead to a surprisingly simple and effective solution, is to

centralize the last step of message reception and dispatch, instead of handling it in a distributed

fashion. One of the NI backends—henceforth referred to as NI dispatcher—is statically assigned

to handle the last stage of message dispatch to all the available cores. The number of shared CQs

is reduced to one, and it’s only accessible by the NI dispatcher. Network packet and data handling

still benefits from the parallelism offered by the manycore NI architecture, as all NI backends still

independently handle incoming network packets and access memory directly. However, once an

NI backend writes all packets comprising a message in their corresponding receive buffer slots, it

creates a special message completion packet and forwards it to the NI dispatcher over the chip’s

default on-chip interconnect. Once the NI dispatcher receives the message completion packet,

it enqueues the information in its shared CQ, from which point on the dispatch mechanism is

the same as described above for the 4×4 queuing system. Because all the incoming messages

are collected in a single queue, the NI dispatcher can dispatch load to all 16 cores, in contrast to

the 4×4 implementation, which limited load dispatch within four separate dispatch groups. The

ability of the NI dispatcher to dispatch load to all 16 cores is the key characteristic that enables

the transition from a 4×4 to a 1×16 queuing system.

Having a single NI dispatcher introduces a point of centralization that eschews synchronization,

but raises scalability concerns. However, for modern server processor core counts and a simple

dispatch policy, the required dispatch throughput should be easily sustainable by a single central-

ized hardware unit, while the additional latency overhead of indirection (i.e., from any NI backend

to the NI dispatcher) is negligible. From the throughput perspective, even assuming an RPC ser-

vice time as low as 500ns associated with a message’s reception, that translates to a requirement

of a message dispatch every ∼31ns or ∼8ns for a 16-core and a 64-core chip, respectively. Both

dispatch frequencies are modest enough for a single hardware dispatch component to handle.

Latency-wise, the indirection from any NI backend to the NI dispatcher would cost just a couple

of on-chip interconnect hops, adding just a few nanoseconds to the end-to-end message delivery

latency. In conclusion, the centralized dispatch approach seems to be sufficiently flexible for

reasonable system sizes. In case of exotic system deployments where the above assumptions do

138



8.2. Methodology

not hold, alternative dispatch options with limited flexibility, such as the 4×4 design introduced

in Section 8.1.1, remain relevant solutions.

8.2 Methodology

In this section, we detail our methodology for evaluating our design’s effectiveness in balancing

load transparently in hardware. We additionally evaluate the performance of our lightweight

native messaging mechanism, and compare its performance and memory footprint to that of the

emulated messaging mechanism offered by the baseline soNUMA protocol.

8.2.1 Load Balancing

System organization. We model a single 16-core chip with emulated remote ends, imple-

menting soNUMA with a manycore NIsplit design, as illustrated in Figure 8.1. We emulate a

200-node cluster, with remote nodes emulated by a traffic generator generating synthetic send

requests following Poisson arrival rate of configurable lambda from randomly selected nodes of

the emulated cluster. The traffic generator also generates synthetic replies to the modeled node’s

outgoing requests. We model the 16-core chip using Flexus [174] cycle-accurate simulation, with

the same configuration parameters as the ones detailed in Section 7.2.

Microbenchmark. We use a multithreaded microbenchmark that emulates different service

time distributions, where each thread executes the following actions in a loop: (i) spins on its

CQ, waiting for a new send request; (ii) when a new request arrives, emulates the execution

of an RPC by spending processing time X, where X is provided by a service time distribution

generator detailed below; (iii) when the artificial processing time has passed, generates a random

response in a 512B buffer and enqueues a send request as a response to the incoming send; and

(iv) issues a receive request corresponding to the processed send request, marking the end of of

the incoming request’s processing.
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Figure 8.2 – Modeled service time distributions.

Emulated RPC processing time. We develop an RPC processing time generator that generates

values that follow a selected distribution. We experiment with four different distributions: fixed,

uniform, exponential, and generalized extreme value (GEV). Fixed represents the ideal case,

where all requests always take the same processing time. Uniform represents a more challenging

case, assuming that there is a continuous range of service times that are equally probable.

Exponential and GEV represent more realistic expectations for service times, as they exhibit

infrequent long tails, which can be caused by hard to predict events like TLB misses, interrupts,

or page faults. GEV in particular resembles the service time distribution observed in web search

engines [72]. The overall service time for an emulated RPC (i.e., the time a CPU core is occupied

with servicing an incoming RPC request) is the sum of the processing time generated by the

RPC processing time generator, plus the time required to write the response to the RPC in a local

buffer and execute a send and a receive operation.

We focus on emulating the execution profile of latency-sensitive communication-intensive soft-

ware layers with fine-grained requests, such as data stores. For instance, HERD [89] is a key-value

store designed to service every lookup request with only two memory lookups, resulting in an

average service time of ∼ 300ns. We use 300ns as the base service time and add an extra 300ns

on average, following one of the aforementioned four service time distributions. Figure 8.2

illustrates the PDFs of the resulting RPC processing time.
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Compared load balancing implementations. We first compare the performance of three

hardware-based load balancing implementations, which correspond to three different queuing

systems: 1×16, 4×4, and 16×1. 1×16, 4×4 correspond to the implementations described in

Section 8.1. 16×1 is represented by a system with statically partitioned dataplanes, where every

incoming message is statically assigned to a core at the time of its arrival, without any rebalancing

possibility. Next, we compare the best-performing hardware load distribution implementation,

1×16, to a software-based counterpart. In our software implementation, NIs enqueue incoming

send requests into a single CQ from which all 16 threads pull requests in FIFO order. To minimize

the thread synchronization overhead we implement an MCS queue-based lock [125] to poll for

new requests.

We evaluate all configurations in terms of 99th percentile latency as a function of throughput. We

measure each request’s latency as the time from the reception of a send message until the thread

that ends up servicing the request posts a receive operation.

8.2.2 Messaging

System organization. We model two directly connected 16-core servers with the same con-

figuration parameters for Flexus [174] cycle-accurate simulation as the ones detailed in Section

7.2.

Microbenchmark. We build a Netpipe [159] microbenchmark to evaluate the performance

of the two messaging mechanisms, emulated and native, on soNUMA. The emulated messag-

ing mechanism emulates send/receive operations over one-sided operations, as presented in

Section 3.5.4. We use a ping-pong loop between two communicating servers to determine the

end-to-end one-way latency of different message sizes. We use a single thread on each server;

the source and destination buffers are LLC resident.
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Figure 8.3 – Load balancing with three different queuing system implementations in hardware.

8.3 Evaluation

8.3.1 Load Balancing: Hardware Queuing Systems

Figure 8.3 compares the performance of our three evaluated hardware-based load balancing

implementations. We set the Service Level Objective (SLO) in terms of acceptable tail latency at

10μs, which corresponds to 10× the average request service time we measured on the unloaded

system. In favor of clarity, Figure 8.3 only shows two of the four evaluated RPC processing time

distributions: fixed and GEV. These two distributions represent the ones that are the least and

most affected by the underlying queuing configuration (see Section 5.1).

As predicted by Section 5.1’s theoretical queuing results, 1×16 consistently delivers the best

performance, thanks to its superior flexibility in dynamically balancing load across all 16 available

cores. For the same reason, 4×4 outperforms 16×1, the only queuing configuration that offers

no dynamic load balancing flexibility at all. For the fixed distribution, 1×16 delivers 16% and

29% higher throughput under SLO, as compared to 4×4 and 16×1 respectively. For GEV, this

throughput improvement grows to 26% and 76%, respectively.

The flexibility to balance load from a single queue to multiple cores not only results in higher

peak throughput under SLO, but also lower tail latency before reaching saturation load. 1×16

and 4×4 deliver roughly the same tail latency up to 4×4’s earlier saturation point, but the tail
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latency difference of these two systems compared to 16×1 is significant, even for low load. For

example, at a load of 5 million requests/s, which corresponds to only 50% of the 16×1 system’s

peak throughput with a fixed service time distribution, 16×1’s tail latency is almost 2× higher

than 1×16’s.

In conclusion, integrated load balancing support in NI hardware can significantly improve system

throughput under tight tail latency goals. Implementations that enable the full flexibility of

dispatching incoming requests to all available cores (i.e., 1×16) deliver the best performance.

However, even the performance of implementations with limited balancing flexibility, such as the

evaluated 4×4 configuration, is competitive. As the implementation complexity of a true single-

queue system incurs some additional design complexity, such limited-flexibility alternatives

introduce viable options for system designers willing to sacrifice some performance in favor of

simplicity.

8.3.2 Comparison to Queuing Model

The performance results in Section 8.3.1 qualitatively meet the expectations set by the queuing

analysis presented in Section 5.1. We now quantitatively compare the obtained results to the

ones expected from the purely theoretical models, to determine the performance gap between our

implementations and the theoretical best.

To match the queuing system implementations to representative queuing models, we devise the

following methodology. We measure the average service time S of our implementation; a part D

of this service time is synthetically generated to follow the value distribution of choice (fixed,

uniform, exponential, GEV) and the rest, S-D, is spent on the rest of the microbenchmark’s code

(e.g., event loop, execution of a send operation as an RPC response and a receive operation to

free the RPC slot—see Section 8.2.1). We conservatively assume that this S-D part of the service

time follows a fixed distribution. Using discrete-event simulation, we model and evaluate the

performance of theoretical queuing systems with a service time S, where:
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(b) 1×16 – uniform.
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(c) 1×16 – exponential.
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(d) 1×16 – GEV.
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(e) 4×4 – fixed.
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(f) 4×4 – uniform.
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(g) 4×4 – exponential.
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(h) 4×4 – GEV.
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(i) 16×1 – fixed.
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(j) 16×1 – uniform.
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Figure 8.4 – Performance of three hardware load balancing implementations (1× 16, 4× 4,

1×16) as compared to a theoretical queuing model, for four service time distributions: fixed,

uniform, exponential, GEV. Tail latency shown as a multiple of the average service time S.

• D
S of the service time follows a certain distribution (fixed, uniform, exponential, GEV).

• S−D
S of the service time is fixed.

Figure 8.4 compares our implementation to the theoretical queuing model. The graphs show the

99th percentile latency as a function of system load for three different queuing configurations

(1×16, 4×4, 16×1) and four different distributions for the D part of the service time. We set the

SLO in terms of 99th percentile response latency to 10× the average service time S. For the 1×16

and 16×1 configurations (Figures 8.4a–8.4d and 8.4i–8.4l, respectively), our implementations

are as close as 3% to the model, and within 15% in all cases. For the 4×4 configuration (Figures

8.4e–8.4h), the performance gap between the implementation and the model is larger: 16% for

the fixed, uniform, and exponential distributions, and 26%—the largest difference across the

board—in the case of GEV. We attribute the gap between the implementations and the model to
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contention that emerges under high load in the implemented systems, which is not captured by

the model. Furthermore, assuming a fixed service time distribution for the S-D part of the service

time is an optimistic simplifying assumption: modeling variability for this latency component

would have a detrimental effect on the model’s achieved performance, thus shrinking its gap from

the implemented systems.

1×16, being the best-performing configuration, is the system of key interest. As compared to

the other two configurations, 1×16 demonstrates the smallest performance gap with the model,

ranging from 3% to a maximum of 16%. The takeway is that our implementation leaves no

significant room for improvement; the design decisions of centralizing dispatch and maintaining

zero-depth request queues at the cores do not introduce performance concerns.

8.3.3 Hardware Versus Software Load Balancing

Figure 8.5 compares the performance of our hardware-based load balancing implementation to

a software implementation, both of which implement the same theoretically optimal queuing

system (i.e., 1× 16). The key difference between the hardware and software implementation

is the management of load dispatch from the shared CQ to a core. In the case of the software

implementation, a synchronization mechanism, in this case an MCS lock, is necessary for cores

to atomically pull incoming requests from the queue. In contrast, our hardware load balancing

mechanism does not incur any synchronization costs, as the NI itself dispatches requests to

available cores.

The software implementation is directly competitive to the hardware implementation for low

system load, but because of the single lock all cores contend on, it reaches saturation significantly

faster. As a result, our hardware implementation delivers 2.3–2.7× higher throughput under SLO,

depending on the request processing time distribution. A comparison between Figures 8.3 and

8.5 reveals that the 1×16 software implementation is not only inferior to the 1×16 hardware

implementation, but all other evaluated hardware implementations as well. The fact that even

the 16×1 hardware implementation is superior to the software 1×16 implementation indicates
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Figure 8.5 – Load balancing performance of a 1×16 queuing system: Hardware vs. software

implementation.

that the benefit from providing load dispatch flexibility does not offset the synchronization cost

associated with it. That is a direct consequence of the very short-lived nature of the RPCs we

focus on.

8.3.4 Messaging Performance

Figure 8.6 shows the one-way messaging latency for the two evaluated messaging mechanisms:

native and emulated over one-sided operations. As emulated messaging offers two variations

that represent different tradeoff points (push versus pull), we evaluate both to experimentally

determine the optimal boundary between the two mechanisms by setting the push to pull switching

threshold to 0 and ∞ in two separate runs.

For small transfers, the push model outperforms the pull model, as the cost of an additional

network roundtrip outweighs the packetization overhead. The opposite is true for large transfers.

We find 1024 bytes to be the smallest transfer size for which the pull model outperfoms the push

model. A third curve (Emulated, thr=1KB) shows the performance of emulated messaging with

the threshold set to 1KB, representing the best performance of emulated messaging by combining

the two models at their best performing transfer size ranges.

The latency of native messaging is on par with emulated messaging for sub-cache-block transfers
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Figure 8.6 – Messaging latency.

(∼200ns). Cache-block-sized transfers are 20% faster with native messaging, because 64B

transfers require two network packets for the emulated messaging mechanism with the push

model (in addition to the packetization overhead). The latency difference between native and

emulated messaging grows to up to 45% for KB-sized transfers. The sources of this difference

are two. The primary latency overhead for emulated messaging is an additional memcpy of the

data to be moved to a rendezvous location, where it has to remain until the receiver reads it using

a remote read operation. Another latency overhead is the additional network roundtrip that the

pull model’s rendezvous technique introduces, which, in this particular experimental setup of two

directly connected nodes, is of secondary importance.

8.3.5 Messaging Memory Requirements

Our native messaging mechanism heavily relies on in-memory data structures to keep hardware

additions modest. Here, we analytically estimate the memory requirements for these structures,

and compare them to those of emulated messaging.

Table 8.1 shows the number of send/receive buffer slots required per target node for different

message sizes, with the goal of sustaining a messaging bandwidth of 100Gbps per node pair.

The number of slots required is computed via straightforward application of Little’s Law, using

the target bandwidth and the measured roundtrip latency of messages of specific size as inputs.
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Message size (B) Latency (ns) Required slots

64B 397 78

256B 500 25

1024B 827 11

4096B 1716 6

Table 8.1 – Estimation of buffering slots required for a peak target messaging throughput of

100Gbps, as a function of message size.

After computing the number of required slots per participating node, we use it to compute the

messaging mechanism’s overall memory requirements.

Figure 8.7 shows the total memory footprint of our messaging mechanism as a function of the

number of participating nodes and the maximum supported message size. Note the logarithmic

scale on the y axis. The total memory footprint is broken down into three components: (i) the

send buffers; (ii) the receive buffers; and (iii) the counters coupled with the receive buffers to

keep track of incoming packets per message. Of those three components, only (ii) is required

for the emulated messaging mechanism. The memory footprint for each component is trivially

computed as follows:

• Send bu f f ers = 32B×num_slots×num_nodes

• Receive bu f f ers = max_msg_size×num_slots×num_nodes

• Receive counters = 64B×num_slots×num_nodes

The first observation from Figure 8.7 is that even in the case a of maximum message size of 4KB

and a cluster size of 1024 nodes, the total memory required per node for the messaging buffers is

less than 25MB. The memory requirement is acceptable even for more challenging use cases.

For instance, assuming an application that requires native messaging support at peak throughput

for both large (e.g., 4KB) and small (64B) messages, many receive slots of a large size should

be allocated (78 slots of 4KB in this case). Even in this case, the aggregate per-node memory
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footprint for a 1024-node deployment measures up to 319MB. An alternative approach would be

the deployment of more than one messaging contexts to better accommodate different message

sizes. Such an approach is reminiscent of the buddy memory allocation technique, used in various

aspects of memory management. In the previous 1024-node example, allocating two message

contexts instead of a single one—one for 64B messages and one for 4KB messages—reduces the

aggregate memory footprint from 319MB to 37MB.

The second observation from Figure 8.7 is that the additional memory footprint overhead of native

messaging as compared to emulated messaging is modest. In the case of small messages, even

though the relative overhead is significant (2.5× memory footprint increase for 64B messages

and 1.4× for 256B), the absolute values are negligible as compared to the available memory

capacity in modern servers. For 1KB and 4KB messages, the relative memory footprint overhead

of native versus emulated messaging drops to 9% and 2% respectively.

8.4 Chapter Summary

In this chapter, we evaluated a proof-of-concept dynamic load balancing mechanism integrated

in the NI logic. We proposed two implementations that represent different appealing points in

the design plane of implementation complexity versus load balancing flexibility. For the most

challenging RPCs with μs-scale execution times, both implementations significantly outperform
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pre-existing approaches to balancing incoming network load. Our study is limited to a single syn-

thetic application with emulated service time distributions, but our findings promising, motivating

further research efforts on NI-integrated load balancing policies.
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9 Related Work

In this chapter, we discuss prior work related to the topics this thesis touched upon. Section

9.1 discusses work related to the soNUMA architecture and programming model, and network

interface integration; Sections 9.2 and 9.3 discuss topics related to SABRes and on-chip load

balancing of incoming network load, respectively.

9.1 soNUMA and NI Integration

9.1.1 Partitioned Global Address Space

soNUMA exposes the abstraction of a partitioned global virtual address space, but offers a

different interface to access local and remote memory. The programmer has to be aware of data

location and distinguish between local and remote. The notion of such an address space is not

new; the parallel programming model of PGAS (Parallel Global Address Space) has been around

for more than a decade and emerged as a good fit for distributed shared memory architectures.

PGAS relies on compiler and language support to provide the abstraction of a shared address

space on top of non-coherent, distributed memory [36]. Languages such as Unified Parallel

C [36] and Titanium [176] require the programmer to reason about data partitioning and be aware

of data structure non-uniformity. However, the compiler frees the programmer from the burden

of ensuring the coherence of the global address space by automatically converting accesses to
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remote portions into one-sided remote memory operations that correspond to soNUMA’s own

primitives. PGAS also provides explicit asynchronous remote data operations [23], which also

easily map onto soNUMA’s asynchronous library primitives. The efficiency of soNUMA remote

memory access primitives would allow PGAS implementations to operate faster.

9.1.2 Software Distributed Shared Memory

Unlike the memory hierarchies exposed by PGAS and soNUMA, software distributed shared

memory (DSM) systems provide global coherence. Systems such as IVY [99], Munin [27] and

Threadmarks [10] expose a global coherent virtual address space and rely on OS mechanisms

to “fault in” pages from remote memory on access and propagate changes back, typically

using relaxed memory models for performance reasons. Alternatively, software DSM can

be implemented within a hypervisor to create a cache-coherent global guest-physical address

space [33], or entirely in user-space via binary translation [150]. While both software DSM and

soNUMA operate at the virtual memory level, the former typically operates at the page level,

while the latter targets fine-grained accesses. Shasta [150] and Blizzard [151] offer fine-grain

DSM through code instrumentation and hardware assistance, respectively, but in both cases with

non-negligible software overheads. soNUMA’s design for fine-grained access allows accessing

a single cache block from remote memory within a small factor (∼ 3×) over a local memory

access.

9.1.3 Cache-Coherent NUMA

In the 90s, ccNUMA designs emerged as a promising approach to scale shared-memory mul-

tiprocessor performance by interconnecting thin symmetric multiprocessor server nodes with

a low-latency and high-bandwidth network. These machines provided a globally coherent dis-

tributed memory abstraction to applications and the operating system. Examples include academic

prototypes such as Alewife [7], Dash [98], FLASH [74, 96], Fugu [121] and Typhoon [147], and

commercial products such as SGI Origin [97] and Sun Wildfire [60, 70]. While most targeted
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coherence at cache block granularity, machines with programmable controllers also enabled

support for bulk transfers [59, 74] broken down into a stream of multiple cache blocks. Today’s

multi-socket servers are cache-coherent NUMA machines with a few multicore sockets that use

either Intel’s QPI or AMD’s HTX technology.

soNUMA shares the non-uniform aspect of memory with these designs and leverages the lower

layers of the ccNUMA protocols (routing and link), but does not enforce global cache coher-

ence. soNUMA uses a stateless protocol, whereas ccNUMA requires some global state such as

directories to ensure coherence, which limits its scalability. The ccNUMA designs provide a

global physical address space, allowing conventional single-image operating systems to run on

top. The single-image view, however, makes the system less resilient to faults [32]. In contrast,

soNUMA exposes the abstraction of global virtual address spaces on top of multiple operating

system instances, one per coherence domain, thus maintaining the scalability trait of scale-out

architectures. soNUMA leverages the local on-chip coherence within each small coherence

domain to accelerate the exchange of data and metadata between the cores and its NI that executes

the communication protocol, the RMC. We find that moving to fat manycore chips has major

implications on NI placement for both fine-grained and bulk transfers, which were previously not

explored.

9.1.4 User-Level Messaging

User-level messaging eliminates the overheads of kernel transitions by exposing communication

directly to applications. Hybrid ccNUMA designs such as FLASH [96], Alewife [7], FUGU [121],

and Typhoon [59] provide architectural support for user-level messaging in conjunction with

cache-coherent memory. FLASH and Typhoon feature a programmable processor at the NI,

which executes software handlers in response to a message’s reception, implementing a form of

Active Messages [169]. Alewife features memory-mapped network registers, where messages

are queued waiting for the CPU to execute a software handler, which either directly loads the

message contents or sets up a DMA transfer from the network registers to the host’s memory. The

messaging implementation in FUGU is based on Alewife’s mechanism. In contrast, soNUMA’s
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original protocol design allows for an efficient implementation of message passing entirely in

software using one-sided remote memory operations. Even in the native messaging mechanism we

introduced in Chapter 5, the NI is not involved in any handler execution. In contrast, all message

destinations are fixed in advance (setup of a messaging domain as introduced in Section 5.4) and

registered with the NI. The NI directly writes messages into these destinations allocated in the

destination host’s memory, and creates a message arrival notification for the CPU once all of a

message’s packets have arrived.

Our messaging mechanism bears semblance to SHRIMP’s user-level messaging [21]. SHRIMP’s

NI maps physical memory ranges of two nodes to each other, and sending a message from node A

to node B boils down to the NI copying data from node A’s memory region to the corresponding

mapped memory location on node B. This roughly corresponds to our messaging mechanism’s

memory allocation policy, where each set of send buffer slots on the source node has a one-to-one

correspondence to receive buffer slots on the destination node.

9.1.5 Remote Memory Access

Hardware support for direct remote memory access has been commercialized in the past in Cray

supercomputers [94, 152]. Cray T3D/T3E implemented put and get instructions that applications

could use to directly access a global memory pool. RDMA technology is the modern incarnation

of remote memory access and is available in commodity clusters equipped with host channel

adapters such as Mellanox ConnectX-series [123] that connect into InfiniBand or Converged

Ethernet switched fabrics [79]. To reduce complexity and enable SoC integration, soNUMA

only provides a minimal subset of RDMA operations; in particular, it does not support reliable

connections, as they require keeping per-connection state in the adapter.

Unlike the Cray machines, RDMA and soNUMA do not rely on a load/store interface to access

remote memory, but deploy explicit remote memory access commands written into memory-

mapped queues (QPs). For PCIe-attached RDMA adapters, transferring information through the

QPs between the CPU and adapter card is costly mainly because of the DMA operations over the
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PCIe interface. In contrast, for properly integrated controllers as in the case of soNUMA, the

overhead of QP-based communication is a negligible fraction of the end-to-end latency. Therefore,

extending commercial CPUs with a special load/store interface for direct remote memory access

is an unnecessary hardware cost and complexity.

SHRIMP [21] uses a specialized NI, which creates a mapping between physical memory regions

of different machines and automatically keeps their contents synchronized by performing direct

remote writes. Cashmere [162] leverages DEC’s Memory Channel [66], a remote-write network,

to implement a software DSM. Unlike SHRIMP and Cashmere, soNUMA also allows direct

reads from remote memory.

9.1.6 Coherent NI Integration

One advantage of soNUMA over prior proposals on fast remote memory access is the tight

integration of the NI into its local CPU’s coherence domain. The advantage of such an approach

was previously demonstrated in Coherent Network Interfaces [129], which leverage the coherence

mechanism to achieve low-latency communication of the NI with the processors, using cacheable

work queues. That work, however, did not consider NI integration with large manycore chips

where on-chip data transitions represent a significant fraction of the end-to-end latency.

More recent work showcases the advantage of integration, but in the context of kernel-level

TCP/IP optimizations, such as a zero-copy receive [20, 78, 102]. Our RMC is fully integrated into

the local cache coherence hierarchy and does not depend on local DMA operations. Furthermore,

these efforts on NI optimization were focused on traditional networking and were thus inevitably

engaged with expensive network protocol processing. In contrast, we focus on specialized NIs

for RDMA-like communication, in which execution of remote operations only requires low-cost

user-level interactions with memory-mapped queues and minimal protocol processing. As the

base assumptions about the protocols are different, so are the main bottlenecks and key design

considerations for each type of NI.

While the soNUMA protocol is similar in style to RDMA, it represents a much simplified version
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of it, making the integration of the RMC into the local cache-coherence domain practical. Such

integration provides substantial latency benefits, not only because the coherence mechanisms

enable the fastest bouncing of QP entries between the cores and the RMC, but also because all

control data structures, such as the QPs and page tables, can be kept in large on-chip caches

shared with the CPU. Coherent integration also allows soNUMA to provide global atomicity

by implementing atomic operations within a node’s cache hierarchy; global atomicity cannot be

delivered by modern RDMA controllers (i.e., atomicity of concurrent writes by a CPU and its

RDMA NIC to the same cache block is not guaranteed). For example, that limitation has led

the designers of DrTM [171] to perform all writes (local and remote) to data objects in local

memory through the local RDMA NIC. Coherent integration can also be leveraged to introduce

new operations with stronger semantics and richer functionality. An example of such an extension

is the SABRe operation introduced in Chapter 4 of this thesis. Our NI hardware support for

SABRes, LightSABRe, leverages the on-chip coherence mechanism to guarantee atomic reads

of data objects straddling multiple cache blocks, extending atomicity of remote memory access

beyond the limit—for both RDMA and baseline soNUMA—of a single cache line.

9.2 Hardware Support for Atomic Remote Object Reads

Chapter 4 introduced SABRe, a novel one-sided operation with the semantics of an atomic remote

object read. The implemented NI hardware extension that supports SABRes, LightSABRe, relies

on the protocol controller’s (e.g., soNUMA’s RMC) coherent integration and on the software

contract of a standardized object layout in memory to simplify hardware requirements.

9.2.1 Hardware-Software Contract

The hardware simplicity of LightSABRe stems from the insight that objects in data stores are

structured, and this software-provided guarantee can be harnessed. A similar observation has been

made and leveraged before in the context of HTM: object-aware HTM relies on the organization

of data as software objects to tackle the capacity limitations of traditional HTM [95].
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9.2.2 Atomic Chunk Operations

A large body of work has been done in providing atomic access to memory chunks in shared-

memory architectures [22, 30, 31, 49, 71, 145, 146, 173]. While these mechanisms can be used

in a distributed memory environment to provide SABRes, they deliver broader functionality than

simple atomic range reads at the cost of increased hardware complexity and intrusive hardware

modifications. In contrast, LightSABRe only requires simple and contained extensions to the

integrated network protocol controller, without any further chip modifications (e.g., caches, cache

and coherence controllers); thus, integration into commercial chips with conventional block-based

coherence protocols is more practical.

9.2.3 Memory Subsystem Support

Tagged memory has been extensively investigated in the context of security and data integrity [37,

41, 163, 178]. Variations of such architectures can also be found on real machines, such as the

Soviet Elbrus processors in the 70s [106], the J-machine in the 90s [160], and Oracle’s more

recent M7 chip [8]. The hardware tags embedded in memory can be leveraged as a mechanism

for concurrency control, e.g., as a hardware implementation of per-cache-line versions. The

destination-side protocol controller could use these versions to identify atomicity violations while

servicing a SABRe. While functionally similar to its software counterpart, such a hardware

mechanism would be significantly more efficient, with the added benefit of leaving the data

store’s layout unmodified.

HICAMP [35] effectively provides snapshot isolation for all software objects through hardware

multiversioning, thus preventing read-write conflicts. Integration of protocol controllers for

one-sided operations with HICAMP is an interesting case where SABRes are provided by default,

without any special hardware extensions.
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9.2.4 SABRe: One-Sided Operation or RPC?

In the broader sense of RPCs, extending the network protocol controller with one-sided operations

with stronger semantics (such as SABRes) and the addition of destination-side accelerators is

semantically as much of an RPC mechanism as it is a one-sided operation. LightSABRe can

be perceived as a simple fixed-functionality hardware RPC unit that reaps all the benefits of

one-sided operations, and addresses the shortcomings of software RPCs at the price of limited

flexibility: minimized latency for atomic object reads from remote memory and massive MLP,

which is, in general, unattainable with RPCs, as their concurrency is fundamentally limited by

the number of available cores.

9.2.5 Destination-Side Concurrency Control

In Section 4.2.1, we discussed different approaches to concurrency control in distributed systems,

reaching the conclusion that destination-side concurrency control mechanisms are superior to

source-side. Microsoft FaRM’s original design [53] implements a source-side concurrency

control to achieve atomic remote object reads. Every cache line of an object is enhanced with a

version. Once a remote object is read using a one-sided read operation, the CPU strips off these

per-cache line versions and compares them against each other to verify object read atomicity.

This operation incurs a considerable overhead in terms of latency and wasted CPU cycles, which

motivated the introduction of the new SABRe operation and its corresponding NI extensions to

provide hardware support for atomici remote object reads.

Soon after we proposed SABRe, Microsoft introduced a similar operation by leveraging its

Catapult architecture [28]. In the Catapult architecture, an FPGA is attached in front of every

server’s NIC as a "bump-in-the-wire", which can be used as a programmable accelerator for

inter-server communication, network flow transformations, and application code. Microsoft used

Catapult’s FPGA to accelerate FaRM’s atomic object read mechanism by exposing an interface

for a new "atomic object read operation" (i.e., a SABRe) [51]. While the operation’s semantics are

essentially those of a SABRe, their implementation is significantly different. The FPGA strips
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off the read object’s per-cache-line versions and verifies object read atomicity at the destination

server. Switching to this destination-side concurrency control mechanism alleviates several of

the original source-side atomicity check mechanism: it removes the CPU overhead of version

stripping at the request’s source, and reduces bandwidth usage (no versions or inconsistently read

objects are put on the wire). However, the object store remains modified, as objects are still stored

with embedded per-cache-line versions, negatively affecting the performance of all local read and

write operations. In contrast, LightSABRe does not require any modifications of the object store.

9.3 Load Balancing

9.3.1 Load Distribution and Imbalance

The emergence of manycore CPUs and growing networking capabilities have necessitated

mechanisms to efficiently spread network load (both network-layer processing for TCP/IP and

application-layer processing) to all available cores. Most modern NICs provide such support in

the form of Receive Side Scaling (RSS) [126] or Flow Director [82], which split the incoming

network load into multiple queues, each of which can be privately assigned to a core. Systems

like IX [19] and MICA [103] leverage these mechanisms to significantly boost their throughput

under tail latency constraints. However, the disadvantage of RSS/Flow Director is that they

blindly spread load across multiple receive queues based on specific network packet header fields,

being oblivious to load imbalances that may arise at the CPU level, which can significantly hurt

tail latency. MICA has load-imbalance-aware optimizations (CREW mode), which however are

handled at the software level and requires an application restart to take effect.

ZygOS [144] is a recent effort to address the shortcomings of statically partitioned dataplanes

like IX, which suffer from increased tail latencies when load imbalance across dataplanes arises.

ZygOS introduces an intermediate shuffling layer for network messages to enable CPU threads

to perform work stealing whenever load imbalance across their incoming request queues arises.

In effect, ZygOS moves from the shared-nothing architecture of partitioned dataplanes to a

shared-something architecture to strike a tradeoff: pay the price of infrequent synchronization
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to enable load rebalancing. For short-lived tasks, with service times on the order of a few tens

of microseconds, ZygOS improves throughput under tight tail latency goals by up to 25% as

compared to the state-of-the-art IX dataplane. However, because of the added synchronization

overhead added by the shuffling layer, there is still significant room for improvement, which is

inversely proportional to the target application’s service time. For service times of 25μs and 10μs,

ZygOS achieves 88% and 75%, respectively, of an ideal queuing system’s throughput under tail

latency constraints. Its efficiency is expected to drop further for service times of only a couple of

microseconds, which are common for simple—yet ubiquitous—software layers such as distributed

object stores (e.g., Memcached). Our proposed dynamic load balancing design, integrated in the

NI logic, takes advantage of low-latency core-NI interactions enabled by on-chip NI integration

to monitor on-chip load in real time and dynamically distribute load to cores, offering strong

resilience to load imbalance without any added synchronization overhead. The key conceptual

difference from ZygOS is that our approach does not attempt to approach the performance of

a theoretically better queuing system through a secondary mechanism that rebalances load, but

rather directly implements a queuing system superior to partitioned dataplanes, without any

associated synchronization overheads.

9.3.2 Load Balancing Policies

The merits of controlling message dispatch to cores at the NI to eschew software synchronization

and balance load for throughput gains have been identified in the past, mainly in the context

of parallel protocol handler execution for DSMs [61, 143]. Programming abstractions such as

the Parallel Dispatch Queue [61] can be deployed as smarter, programmable load balancing

implementations at our NI design’s penultimate pipeline stage, which takes the message dispatch

decisions.

A large body of work has been investigating load balancing in the context of web services running

on datacenters. In such a setting, the problem of distributing incoming load from one or more

dispatching units to serving units takes the form of distributing load from a number of frontend

servers to multiple backend servers. The high-level problem is the same as distributing load
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from one or more NIs to multiple CPU cores on chip; however, the challenges and scale are

radically different, leading to dissimilar solutions. The key difference between datacenter-scale

and on-chip load balancing is the communication latency between the dispatcher (frontend servers

for datacenter, NI for on-chip) and the serving units (backend servers for datacenter, CPU cores

for on-chip). In the former case, communication incurs high latency and should be used sparingly,

hence, from a performance perspective, it is not possible for the dispatcher to always wait for a

serving unit to become free to dispatch a new request.

Examples of load distribution algorithms in datacenter-scale systems are Join-Shortest-Queue

(JSQ) [69], Power-of-d (SQ(d)) [25], and Join-Idle-Queue (JIQ) [120]. JSQ is a simple greedy

dispatch policy, based on which the frontend server sends every new incoming request to the

backend server with the smallest queue of waiting requests. Despite its simplicity, JSQ has

been shown to outperform algorithms with higher complexity. However, it does not scale well

with a large number of dispatching frontends, as maintaining globally consistent state of every

backend’s load is expensive. SQ(d) is a more scalable approach that better suits datacenter-scale

deployments. At each request arrival, the frontend samples d backends, obtains the number of

queued requests at each of them, and dispatches the new request to the backend with the least

number of queued requests among the d sampled. While more scalable, the main drawback of

SQ(d) is that frontend-backend communication is on the critical path of a request’s assignment,

significantly contributing to the request’s end-to-end response time. Finally, JIQ strikes a balance

between JSQ and SQ(d) by decoupling discovery of lightly loaded backend servers from the

assignment of incoming requests to backend servers. As soon as a backend server becomes idle,

it informs a subset of the frontends of its availability, an operation that occurs off the critical path.

The JIQ algorithm is designed to strike a balance between overloading and underutilizing each of

the backend servers as they advertise idle work slots, by properly balancing the advertisement of

available backends to frontends.

Because on-chip core-NI communication latencies are 1–2 orders of magnitude lower than the

service time of the fastest RPCs, the challenges of (i) overlapping communication latency with

useful computation, (ii) without resulting in unevenly distributed load across serving units, and
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(iii) without excessive communication between the dispatchers and serving units, all of which

are significant considerations for large-scale distributed systems, are of minor importance in the

context of on-chip load distribution across cores. It is therefore possible to achieve load balancing

behavior approaching that of the ideal single-queue system by deferring request dispatch from

the dispatcher (NI) to the serving units (cores) until a core becomes free, as demonstrated by our

results.

9.3.3 Programmable NIs

Adding programmable compute capabilities to NIs to offload high-level functionality closer to

the network is an old idea that has recently seen rekindled interest. For example, FLASH [96]

and Typhoon [147] in the 90s featured fully programmable processors at the network interface,

enabling custom handler execution upon the reception of a network message. The renewed interest

in programmable NIs, marketed as "SmartNICs", is partially motivated by recent technological

trends leading to the stagnation of general-purpose logic. The goal of such NIs is the acceleration

of networking or even high-level application functionality, to reduce CPU load.

The programmable logic offered by modern NIs comes in the form of either general-purpose

cores or FPGA logic. Examples of the former are Mellanox’s BlueField, Cavium’s LiquidIO, and

Netronome’s Agilio-CX. Examples of the latter include Mellanox’s InnovaFlex, the NetFPGA

project [179], and Microsoft’s widely successful Catapult project [28]. Another relevant recent

line of work that does not strictly fall into any of the above two categories is FlexNIC [92, 93].

FlexNIC draws inspiration from SDN switches, deploying a reconfigurable match table (RMT)

processing model, which processes packets through a sequence of match plus action stages. The

RMT model has limitations, but its simplicity enables line-rate processing.

The programmable logic offered by these SmartNICs could be leveraged to implement smarter

load distribution/balancing decisions than RSS or Flow Director. For example, assuming a

key-value store application, rules could be installed in the NI’s logic to steer requests to cores

based on the content they wish to access. However, the flexibility of existing SmartNICs is
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limited compared to the fully integrated NIs we focused on in this thesis, as the CPU logic and

the NI logic are segregated by the high-latency PCIe interface. The NI-integrated dynamic load

balancing mechanism we proposed relies on nanosecond-scale interaction between the NI and

CPU logic, which is only attainable through tight NI integration and CPU-NI co-design.
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10 Future Research Directions

10.1 Hardware Heterogeneity in Datacenters

Technological scaling trends contrast starkly with the exponential growth in demand for compu-

tational resources. With Dennard scaling and Moore’s Law grinding to a halt, the continuous

performance improvements, conventionally delivered by general-purpose logic, have stagnated.

At the same time, new die-stacked memory devices deliver significant bandwidth improvements,

while the InfiniBand Trade Association’s roadmap predicts a quadrupling of network bandwidth

in the foreseeable future [81]. To illustrate, coupling a modern top-of-the-line manycore server

with an InfiniBand network adapte results in a processing budget of fewer than a thousand CPU

cycles per packet. By solely relying on general-purpose logic, this imbalance will only become

more pronounced.

We need major innovation in hardware/software system design to keep improving datacenter

performance and efficiency. The former is a prerequisite for the continuously better and richer

services we have become accustomed to. The latter is crucial for environmental reasons: modern

datacenters already consume three percent of global electricity and are responsible for two percent

of total greenhouse gas emissions. These implications herald an era where logic specialization

and heterogeneity are essential features in the design of next-generation datacenter systems.
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It is time to depart from the long-established, “one-size-fits-all” CPU-centric view of computing

and decentralize functionality, by distributing it to heterogeneous specialized components. As the

end of silicon scaling signifies the end of free performance improvements, pushing the envelope

of computing requires tailoring hardware to types of computation executed in the most apposite

location. Such a major transition requires a deep rethink of the whole system stack, including

algorithms, software and hardware architectures. While layering is a fundamental principle we

rely upon to build complex systems, most layers and interfaces in modern systems have been

established decades ago. With rapidly changing technologies, some of these abstractions are

becoming opaque and detrimental to performance. It is, therefore, important to take cross-layer

approaches (i.e., view the system stack holistically rather than focus on a single layer) and

revisit long-standing assumptions, especially under the upcoming reality of larger datacenters,

comprising a broad diversity of heterogeneous compute units.

The transition from general-purpose computing to the era of heterogeneity is an exciting topic

to work on, particularly in the context of datacenters—the largest computing systems ever built.

Such a transition requires rethinking long-established layers, interfaces, and abstractions to best

accommodate new technologies and computing paradigms, and can affect the whole system stack

up to the application layer. It is time for system designers to take a step back from the prevalent

CPU-centric view of computing systems, and consider network-centric and memory-centric

approaches. Examples of such alternative approaches are the present thesis, for the former, and

systems designed with the goal of providing efficient near-memory processing capabilities, for

the latter (e.g., [55]).

Most datacenter services today are solely handled by CPUs; in some cases, they are specially

restructured to also make use of specific accelerators like FPGAs, GPUs or TPUs [88], with

the CPU still playing the role of the central coordinator. In a future with servers comprising a

multitude of heterogeneous units, it will be critical to remove the CPU from the critical path and

allow all units to tap into the network and directly initiate and receive network messages. Enabling

heterogeneous units to directly expose remotely invocable services offers (i) performance scalabil-

ity; (ii) latency improvements, especially critical for the most communication-intensive software
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layers relying on fine-grained remote memory access; and (iii) improved tail latency robustness,

as a large fraction of the major sources of long tail effects are attributed to unpredictable software

events (e.g., interrupts, context switches, garbage collection, etc.). The latter largely depends on

the software layers deployed on each of the heterogeneous units, which is a major open research

question.

Extreme heterogeneity comes with management complexity that hurts usability; it is crucial to

ease programmability of such systems through interface unification, an endeavor that engenders

many open questions. What interface should accelerators expose to the network—is it a specific

device, a service, or capability to manipulate specific data? What operating system and hardware

modifications are required to completely remove the CPU from the critical path but preserve

all the important operating system guarantees (e.g., isolation and protection)? These questions

introduce an exciting, broad and challenging research direction that requires cross-layer thinking,

and successfully addressing them will play a key role in the success of future network-centric

systems harnessing diverse hardware heterogeneity.

From the hardware organization perspective, the novel scalable on-chip NI design introduced

in Chapter 6 represents an appealing starting point. NI backends can seamlessly handle data

movement between the homogeneous network and the server’s memory hierarchy, while each

heterogeneous compute unit can feature its own NI frontend, responsible for the direct initiation

and completion of network transfers and tailored to the compute unit’s unique characteristics.

10.2 Dynamic Load Balancing Extensions

In Chapter 5 we introduced a proof-of-concept design of a mechanism for dynamic load bal-

ancing, integrated in the NI logic. While the current simple implementation demonstrates the

opportunity for dynamic load balancing, there is significant room for improvement in terms of

utility, flexibility, and system integration.
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10.2.1 Advanced Load Balancing

In its current form, our dynamic load dispatch mechanism only considers homogeneous compute

units (i.e., same CPU cores) and a single application running on all compute units, while it

distributes incoming network messages to all units, solely based on their current load. To enable

deployment of such a load dispatch mechanism on a real system, these limitations should be

addressed.

First, it is essential to support multi-tenancy. Multiple applications will be concurrently executing

on the same server, each of which will expose its own set of RPCs that can be invoked from

the network. The NI should be able to distinguish among them, and match incoming RPCs to

computation units that are in a state capable of servicing every given RPC (e.g., in the context

of conventional multicore CPUs, distinguish the core currently running a thread that belongs

to the right process). Achieving that would require OS involvement: exposing the NI’s load

dispatch logic to the OS and making it part of the thread scheduling process (e.g., notify the NI

of a thread’s migration).

Second, it is worth considering smarter load distribution policies than just the currently im-

plemented "first-available" policy. For example, an alternative load distribution policy could

be data-locality-aware. Such a policy would be a great fit for software stacks like the MICA

key-value store [103], which offers a shared-nothing data access mode (EREW—Exclusive

Reads/Exclusive Writes) where each fraction of the dataset is only accessible by a single CPU

core.

Finally, in the face of emerging intra-server heterogeneity (see Section 10.1), it is important to

extend the load dispatch mechanism to extend beyond the notion of service logic running on

homogeneous CPU cores and cover different types of units with different computational and

memory access characteristics. Heterogeneity broadens the range of interesting load dispatch

policies and exacerbates the challenge of the load dispatch mechanism’s system integration (i.e.,

(operating system and high-level architecture aspects).
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10.2.2 Proactive Versus Reactive Load Balancing

Our proposed NI-driven load balancing mechanism relies on rapid on-chip core-NI communica-

tion to optimize for cross-core load balance proactively. Because accurately predicting the service

time of an incoming RPC at arrival time is a difficult open problem [72, 117], our approach

to tackling load imbalance is the deference of a request’s processing assignment until a core

becomes free. An alternative approach to such proactive load balancing would be a reactive

policy that assigns incoming requests to cores eagerly, but offers a rebalancing mechanism that is

triggered whenever load imbalance across cores is detected. As mentioned in Section 9.3.1, one

such approach of reactive load balancing is work stealing, implemented in the similar context of

balancing RPCs to cores by the ZygOS system [144]. Each approach, proactive and reactive, has

its own benefits and drawbacks.

A reactive load balancing mechanism, such as work stealing, offers high flexibility, as it can be

dynamically modified and controlled in software. However, it introduces performance overheads

in the form of "task migrations", which can be considerable for RPCs with very short service

times. Task reassignments also result in priority reordering (out-of-order processing) of incoming

requests, which negatively impacts tail latency. For example, such an implementation of work

stealing in ZygOS results in 25% performance drop as compared to perfect load balance for

RPCs with a 10μs service time, a performance gap expected to be larger for shorter RPCs. Our

implementation of proactive load balancing introduces latency overhead related to propagating

core occupancy information to the NI and dispatching a new request from the NI to the core.

However, the physical core-NI proximity, which is a direct consequence of on-chip NI integration,

renders this overhead negligible, as our comparison to the theoretical queuing model demonstrates

in Section 8.3.2. Because our implementation’s proactive dispatch decisions are based in hardware,

the flexibility in terms of dispatch policies are limited as compared to software-controlled reactive

rebalancing techniques, such as work stealing.

The efficiency of each approach, proactive versus reactive, is largely determined by the workload.

For RPCs that execute for several 10s of μs and demonstrate low service time variability, the need
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for load rebalancing will be infrequent enough to make the mechanism’s overhead negligible.

In such cases, software-based load rebalancing implementations are good enough. For more

challenging workloads, with service times of a couple of μs and high service time variability, the

performance superiority of proactive load balancing will be pronounced. A detailed quantitative

analysis of these key tradeoffs of the two load balancing approaches, as well as their sensitivity

to workloads characteristics, are worth investigating in the future.

10.2.3 Scaling to CPUs with Hundreds of Cores

Our evaluation of NI-driven dynamic load balancing was based on a modestly sized CMP of 16

cores, because of practical considerations related to the scalability of cycle-accurate simulation.

Our results indicate that centralizing RPC dispatch decisions to a single NI does not introduce

considerable overheads for the evaluated 16-core chip, and we expect this to apply to most

modern server-grade CPUs. As discussed in Section 8.1.2, even in an extreme case scenario

of a CPU servicing RPCs with service time as low as 500ns, the requirements for message

dispatch from a single NI to the cores is one every ∼31ns or ∼8ns for a 16-core and a 64-core

chip, respectively. Both dispatch frequencies are modest enough for a single hardware dispatch

component to handle.

Centralizing the load dispatch decision is, however, not a universal solution. In a potential

future CPU with 100s of cores, the overhead of centralizing dispatch decisions can become

considerable, necessitating a more scalable approach. One possible approach could be the

partitioning of resources, by statically limiting the number of cores each NI can dispatch load

to, similar in concept to the 4× 4 queuing configuration presented in Section 8.1.1. While in

our evaluated 16-core system the performance difference between 4× 4 and a single-queue

system implementation is considerable, grouping a larger number of cores per dispatch group

(e.g., a 4× 64 configuration for a 256-core chip) may approach the performance of a single-

queue configuration. We demonstrated this effect in a different context in [136]: our study

demonstrates that pooling the memory of multiple servers together can absorb the inherent

inter-object popularity skew of distributed object stores. The larger the server group, the more
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capable it is of successfully re-distributing the load within the group, absorbing the negative

impact of load imbalance across individual servers. The same observation is applicable to our

context of balancing load across cores of a single manycore chip: with large enough dispatch

groups, the effects of load imbalance can be significantly mitigated.

A second approach to balancing load on a CPU with 100s of cores would be the design of a

hierarchical mechanism with several stages, with each stage reducing the number of candidate

cores. Such an approach eschews the need for centralizing all dispatch decisions at the cost

of slightly increased dispatch decision latency. Finally, beyond a certain system scale, a third

plausible approach would be to revisit load balancing policies investigated in the context of

datacenter-scale web services, such as the ones discussed in Section 9.3.2.

10.2.4 Load Balancing Opportunities with PCIe-Attached NIs

Tight NI integration with the CPU enables nanosecond-scale interaction of NI and compute

logic, enabling unprecedented flexibility in terms of dynamic load balancing decisions. While

integrated NIs represent ideal candidates for such a mechanism, dynamic load balancing could

also be applicable, in a constrained form, to discrete PCIe-attached NIs. As several modern

NIs offer programmable logic in a bump-on-the-wire architecture (e.g., Mellanox BlueField and

Innova Flex), which can be leveraged to implement adaptive load dispatch policies. An interesting

research question is to what extent such added flexibility can improve performance over static

load distribution mechanisms like RSS and Flow Direction. Because of the microsecond-scale

communication delays between the CPU cores and the NIC, introduced by the PCIe interface, the

opportunity will be limited as compared to integrated NIs, but will have broader applicability.

For the same reason, the design constraints and dispatch policies will be significantly different

from the ones investigated in Chapter 5 (e.g., going after single-request queue depth per core

would dramatically hurt throughput).
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11 Conclusion

The conventional boundaries of network and compute are blurring. Increasing performance

demands in communication-intensive datacenter environments require network and compute to

start fusing, bringing the NI—the bridge between the two—to the epicenter of such integration

efforts. The NI in future servers should be part of the CPU as much as part of the network:

effectively leveraging the increasing network bandwidth resources will require the NI and CPU

to be co-designed and tightly integrated. Tight integration enables offloading application-level

functionality from the CPU to the NI, offering opportunities for vertical optimization of modern

rich application software stacks. This thesis demonstrated the importance of proper NI integration

in server chips and its co-design with CPU resources, the potential of introducing new network

operations with richer semantics, and the new opportunities that arise from extending the network

endpoints with richer functionality.
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