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Tokamak plasmas with Internal Transport Barriers (ITBs) can attain a high fraction of 

bootstrap current and improved  confinement [1]. This scenario is attractive for the 

contemporary thermonuclear fusion research, whose main objective is the fully 

non-inductive operation of high performance plasmas. In this work we investigate for the 

first time on Tokamak à Configuration Variable (TCV) [3] the impact of the newly available 

1MW Neutral Beam Injector (NBI) [2] on the performance and stability of the so-called 

Improved Central Electron Confinement (ICEC) scenario [5, 6]. In these L-mode plasmas an 

electron ITB is built up by injecting on-axis Electron Cyclotron Current Drive (ECCD) in the 

counter-Ip direction. The resulting hollow or very flat plasma current density profile is 

known to play a crucial role in the formation and sustainment of the transport barrier [4].  

The plasmas that are analysed here are in limiter configuration with the magnetic axis aligned 

with the NB port in order to enable an on-axis power injection in the co-Ip direction. The NB 

energy injection is limited to 0.5MJ by provisional operational constraints. Within this 

limitation and in presence of a weak eITB, i.e. with the normalized temperature gradient 

R/LTe being 2.5 times the corresponding value during the Ohmic phase, the NBI is observed 

to double the ion temperature, which remains half of the electron one, to slightly peak the 

electron density in the core, whose profile is not correlated with the electron temperature one 

[7], and to induce a noticeable toroidal torque in co-Ip direction. This evidence is 

documented in Fig. 1, which compares a) the electron temperature (Te), b) the ion 

temperature (Ti), c) the electron density (ne) and d) the toroidal rotation velocity profile of a 

plasma with Ip≈130kA, Bt≈1.4T, ne,0≈1.7 10
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m
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 in three different heating phases: the 

Ohmic one (in blue), the on-axis injection of PEC≈[1.6, 0.5]MW in the counter-Ip direction 

(in magenta and red) and the addition of PNB≈0.5MW in the co-Ip direction (in green). The 



profiles are measured with a,c) the Thomson Scattering (TS) and b, d)  the Charge Exchange 

Recombination Spectroscopy (CXRS) diagnostics, respectively. 

The investigated plasmas do not suffer any disruptive MHD activity, nonetheless βN 

collapses occur with high reproducibility when plasma triangularity exceeds a critical 

threshold (δ ≳ 0.3). The on-axis co-Ip NBCD injection is also observed to have a detrimental 

effect on the sustainment of the eITB, since it tends to lower the core q-profile [8]. This 

evidence is confirmed by 1D transport simulations that are performed with RAPTOR [9], that 

is used here as a plasma profile simulator. This control-oriented code provides the time 

evolution of the plasma profiles, by solving two coupled partial differential equations for the 

poloidal flux and the electron temperature. The equilibrium reconstruction code LIUQE 

provides the magnetic equilibrium to RAPTOR. The ECH/CD deposition is calculated using 

the Toray-GA ray-tracing code, while the NBH/CD profiles are modelled as Gaussians with 

fixed current drive efficiency per unit power, which is tuned to match the time evolution of 

the measured loop voltage. Transport is modelled using a closed-form expression for the heat 

diffusivity χe [10], which includes an empirical term to simulate the decrease in thermal 

transport in low-shear 

regions in the core of 

the plasma, the 

bootstrap current with 

the Angioni-Sauter 

model [11] and the 

sawtooth instability 

with the Porcelli’s 

model [12]. The time 

evolution of both ne 

and Ti is obtained from 

the TS and the CXRS 

measurements, 

respectively. The 

results of a RAPTOR 

predictive simulation 

for a NBI-heated ICEC 

plasma, where we 

 
Fig.1 Effect of the Neutral Beam Injection (NBI) on a) the electron 

temperature, b) the ion temperature, c) the electron density and d) the rotation 

velocity in the toroidal direction of a TCV plasma with Ip = 130kA, on-axis 

counter-Ip PEC=[1.6, 0.5]MW and on-axis co-Ip PNB=0.5MW. The profiles 

correspond to the following H/CD sequence: PΩ (blue), PEC (magneta and red) 

and PEC+PNB (green). 



achieved the highest normalized beta (βN ≳ 1.5), are summarized in Fig. 2. The frame on the 

left compares the simulated (red) and the experimental (blue) time evolution of a) the plasma 

current, b) the auxiliary powers (PEC≈1.7MW (red) and PNB≈1MW (green)), c) the loop 

voltage, d) Te, e) βN and f) the electron energy confinement time. On the right, we report g) 

the q-profile at t≈0.9s that is simulated by RAPTOR (black solid line) and the one 

reconstructed by LIUQE (empty black circles), using magnetic measurements and the 

diamagnetic loop to constrain the total energy. The slightly reversed q-profile simulated by 

RAPTOR results from the combination of the different current density components, i.e. 

Ohmic (magenta), EC (red), NB (green) and the bootstrap current (blue)), which sum up to a 

total hollow current density profile (dash-dotted black line). The corresponding simulated 

(red) and measured (blue) electron pressure profile is reported in h) together with the heat 

diffusivity, which is in good agreement with the one given in [5]. 

 
Fig.2 Validation of a predictive RAPTOR simulation (red) of a TCV NBI-heated L-mode plasma 

(experimental data in blue). On the left, time evolution of a) the plasma current, b) the PEC=1.7MW (red) 

and PNB=1MW(green), c) the loop voltage, d) the electron temperature, e) the normalized beta and f) the 

electron energy confinement time. On the right, g) Ohmic (magenta), EC (red), NB (green), bootstrap 

(blue) and total (dash-dotted black line) current density profiles and the resulting reversed q-profile (solid 

black line) simulated  by RAPTOR at t=0.9s. The q-profile is compared with LIUQE one (black circle). h) 

Experimental (blue) and RAPTOR (solid red line) electron pressure profile at t=0.9s and the 

corresponding χe profile (dashed red line). 



In this work we also apply for the first time the RAPTOR code to predictive transport 

simulations for DEMO1 (2015) plasmas, which are designed to be heated by ≈50 times 

higher EC and NB power compared to typical TCV plasmas. In Fig.3 the a) Te and b) 

q-profile at t=500s simulated by RAPTOR predictive (red) are compared to METIS [13] 

(blue) and ASTRA [14] (green). The results of the first two codes are in relative better 

agreement than with the ASTRA results, for which a more systematic investigation is 

required for a complete benchmark. As future developments of this work, we plan to extend 

the benchmark of RAPTOR predictive with ASTRA both for the TCV plasmas that are 

presented here and for the latest DEMO1 scenario, whose design is being currently updated. 

Predictive RAPTOR simulations are also foreseen in view of the 2017 MST1 campaign in 

support of the development of fully non-inductive scenarios on TCV towards higher βN ≳ 2.5 

and/or stationary or quasi-stationary operation. 
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Fig.3  Benchmark of the a) electron 

temperature and b) the q-profile of a 

DEMO1(2015) plasma simulated by  

METIS (blue), RAPTOR (red) and 

ASTRA (green).  




