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ABSTRACT13

Out-of-plane failure ofmasonrywalls is often responsible for the partial collapse of unreinforced14

masonry structures. Modeling the out-of-plane response of these walls is therefore key in the15

assessment of existing buildings. The paper presents a new tri-linear model describing the force-16

displacement response of vertically-spanning unreinforced masonry walls subjected to out-of-plane17

loading. Different factors that affect the response of the walls are captured by the model: the18

support conditions, the level of applied axial load, the slenderness ratio and the deformability19

of the wall. The model is validated against experimental results from shake table tests. The20

force and displacement parameters of the model are described by analytical expressions that are21

derived from a mechanical model previously developed for unreinforced masonry. They offer an22

alternative to existing tri-linear models where corner displacements are mainly defined by empirical23

relationships.24
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26

INTRODUCTION27

Vertically-spanning, or one-way bending, unreinforced masonry (URM) walls are among the28

most vulnerable walls against out-of-plane failure mechanisms, as observed in post-earthquake29

surveys carried out on commercial and residential buildings (Giaretton et al. 2016a). This type of30

failure mechanism is usually observed in long walls, or in walls without side supports. Moreover,31

cantilever, or overturning, types of failure, which are also part of this class of out-of-plane failure32

mechanisms, mainly due to a lack of top horizontal restraint, are by far the most commonly observed33

failure mechanisms in URM buildings (D’Ayala and Speranza 2003).34

The seismic behavior of vertically-spanning URM walls undergoing large out-of-plane deflec-35

tions and rocking can be described by simplified force-displacement models such as the bi-linear36

model and the tri-linear model (Doherty 2000; Doherty et al. 2002; Griffith et al. 2003; Sorrentino37

et al. 2016), see Fig. 1. Bi-linear models are derived from non-linear rigid-body kinematic analysis38

of the wall, i.e., by modeling the wall as one or several rigid macroblocks, which are separated39

by fully cracked cross-sections and undergo large relative displacements and rotations. The non-40

linear kinematic analysis yields the two parameters of the model, which are the force F0 and the41

displacement ∆0. Tri-linear models are derived when the deformability of the masonry is taken42

into account. These models are composed of a first linear increasing branch, a horizontal plateau43

and a third branch that follows the descending branch obtained by non-linear kinematic analysis.44

The tri-linear model is defined by the force parameter F1, that is the force at the plateau level, the45

displacement parameters ∆1, ∆2 and the ultimate displacement ∆U. The parameters of the tri-linear46

model are usually related to those of the bi-linear model through the ratios F1/F0 and∆1/∆0, ∆2/∆0,47

∆U/∆0.48

Due to their relative simplicity and the small computational cost, these simplified force-49

displacement models have gained increasing attention and are nowadays recommended by building50

codes for the out-of-plane assessment of URMwalls when subjected to seismic loading (Sorrentino51
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et al. 2016). Assessment of the out-of-plane capacity of URM walls according to today’s codes is52

based on the use of bi-linear models (NTC 2008; NZSEE 2014). Estimates of ∆2/∆0 are required53

for predicting the displacement demand on the walls, which is obtained from an equivalent linear54

elastic single-degree-of-freedom system with a stiffness equal to the secant stiffness K2, Fig. 155

(Doherty et al. 2002; Griffith et al. 2003; Sorrentino et al. 2016; Derakhshan et al. 2017). If non-56

linear time-history analyses are carried out, the tri-linear model shows itself particularly adapted57

(Sorrentino et al. 2016): unlike the bi-linear model, in addition to the displacement capacity of the58

wall ∆max, it is able to capture the initial stiffness Kin, through K1, and the force capacity Fmax,59

through F1 (Fig. 1).60

Tests showed that four factors affect the response of out-of-plane vertically-spanning URM61

walls (Lam et al. 1995; Doherty 2000; Griffith et al. 2004; Dazio 2009; Derakhshan et al. 2014;62

Ferreira et al. 2015; Graziotti et al. 2016; Giaretton et al. 2016b): a) the support conditions of the63

wall (kinematic boundary conditions), b) the level and the eccentricity of the applied axial load64

(static boundary conditions), c) the height-to-thickness ratio of the wall (wall slenderness) and d)65

the deformability of the wall, which is given by the elastic deformation of the masonry together66

with its limited tensile and compressive strength. These findings were corroborated by a number67

of numerical and analytical studies carried out on URMwalls (Lu et al. 2004; Brencich et al. 2008;68

Morandi et al. 2008; Cavaleri et al. 2009; Tondelli et al. 2016; Godio and Beyer 2017).69

Non-linear rigid-body analysis yields insights into the influence of the static and kinematic70

boundary conditions and wall slenderness on the wall force capacity Fmax. It also allows investi-71

gating the influence of these factors on the wall displacement capacity ∆max (Griffith et al. 2003).72

However, it disregards the effect of the elastic deformation of the wall, which, together with the73

local rounding of the brick corners due to local crushing and the reduction of the mortar layer over74

the wall thickness (mortar pointing), reduces the peak force F1 of the URM wall (Priestley 1985;75

Doherty 2000; Griffith et al. 2003; Derakhshan et al. 2013a; Derakhshan et al. 2014).76

Tri-linear models were formulated with the aim of bounding the force capacity of the walls. The77

use of tri-linear models for modeling the response of vertically-spaning URMwalls was introduced78
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in the early 2000s (Doherty 2000) and their potential has been well demonstrated by the growing79

number of works devoted to the topic (Table 1). Nonetheless, the tri-linear models proposed in80

the previous works were based on the use of the non-linear rigid-body analysis in conjunction with81

experimentally determined empirical parameters or ratios.82

The objective of this paper is to offer fully analytical andmechanically-based formulations for the83

force and displacement parameters of the tri-linear model, to be used for modeling the out-of-plane84

response of awide range ofwall configurationswithout the use of empirical parameters. The new tri-85

linear model proposed in this paper is an engineering approximation of a recent mechanical model86

(Godio andBeyer 2017), which yielded the analytical expression of the experimental pushover curve87

for vertically-spanning URMwalls subjected to out-of-plane static loading. As the model on which88

it is based, the herein presented tri-linear model regards masonry as a deformable homogeneous89

material with zero tensile strength and linear elastic constitutive law in compression. Its formulation90

includes the effect of geometric non-linearities. Following these assumptions, vertical strips of91

URM walls are modeled as deformable second-order Euler-Bernoulli beam elements where, as the92

wall deflects, cross-sections remain plane in the compressed regions of the wall and diffuse cracking93

occurs and spreads within the regions of maximum bending moment (Fig. 2). When describing the94

pushover curve of URM walls, idealizations of this kind yield important differences with respect95

to the rigid-body idealizations that are usually carried out. In particular, the following features of96

the experimental force-displacement curve are captured: (i) the initial slope of the curve, related97

to the initial elastic stiffness of the wall; (ii) the progressive reduction of the slope up to the peak98

force, due to the decrease of the effective thickness of the wall after cracking and the geometric99

non-linearity; (iii) the peak force which, because of the combined effect of wall deformability and100

geometric non-linearity, is always smaller than the ’rigid threshold’ F0 (Godio and Beyer 2017).101

The analytical formulations presented in this paper describe the effect of the four factors102

experimentally observed to affect the response of out-of-plane loaded walls. The tri-linear model103

is formulated for three different boundary conditions (Fig. 2). The boundary conditions that are104

applied by the model are those offered by the beam theory (Chapman and Slatford 1957; Godio105
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and Beyer 2017), used here to reproduce typical support conditions observed in existing buildings106

(Doherty et al. 2002; Dazio 2009): URM walls spanning vertically between two supports are107

modeled as clamped-clamped or pinned-clamped beams, depending whether the connection with108

the rest of the building is provided at the top of the wall by a slab (Fig. 2(a)) or by a timber beam109

(Fig. 2(b)); walls laid on one single support are modeled as cantilever beams (Fig. 2(c)). For all the110

considered boundary conditions, the effect of the self-weight and of the level of applied axial load111

(overburden) is taken into account by the formulation. For walls spanning between two supports,112

when the axial load is small compared to the wall self-weight, the middle crack tends to form in the113

upper half of the wall; if the self-weight is negligible compared to the applied axial load the crack114

forms at mid-height (Sorrentino et al. 2008). The new model includes a formula for predicting115

the position of the middle crack and its effect on the force and displacement capacity of the wall116

is captured by the analytical expressions of the force and displacement parameters of the tri-linear117

model. Themodel captures the effect of the applied axial load also at higher levels, that is, when it is118

close to Euler’s critical load of the wall. It is known that increasing the slenderness and decreasing119

the masonry elastic modulus diminishes Euler’s critical load and, as a result, walls become more120

vulnerable to lateral loading. As such, the analytical formulations of the new tri-linear model121

include the effect of the elastic deformability of the walls not only on their initial stiffness Kin, but122

also on their force capacity Fmax and displacement capacity ∆max. This aspect was excluded in123

early tri-linear models.124

The paper is organized as follows. The analytical formulations for the force and displacement125

parameters of the tri-linear model are first detailed. The tri-linear model is next validated against126

displacement time-histories obtained from laboratory shake table tests and its performance is127

compared to that of existing tri-linear models. The force and displacement parameters of the tri-128

linear model are next studied and compared with the empirical values previously suggested in the129

literature.130

MODEL FORMULATION131

The wall under consideration has a height Hw, a length Lw and a thickness tw. It is subjected132
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to a vertical load O (overburden) and to its self-weight W (Fig. 2). The elastic modulus of the133

masonry is Em and its mass density ρ. The moment of inertia of a generic uncracked cross-section134

of the wall is Iw = 1/12Lwt3
w. The scheme followed for the derivation of the tri-linear model can135

be summarized as follows (Fig. 3):136

• first, the parameters of the bi-linear model F0 and ∆0 are derived from the non-linear kinematic137

analysis of the walls undergoing rigid-body mechanisms;138

• next, the plateau force F1 is equated to the force capacity Fmax of the pushover curve and139

expressed through the ratio F1/F0;140

• similarly, the stiffness K1 of the initial branch of the tri-linear model is defined as a percentage141

of the initial stiffness of the pushover curve Kin;142

• the descending branch of the bi-linear curve is shifted in order to consider the effective thickness143

of the wall and the ultimate displacement ∆U is expressed as a percentage of ∆0;144

• finally, the displacement parameters of the tri-linear model ∆1 and ∆2 are derived from the145

expressions of F1, K1 and ∆U and expressed through the ratios ∆1/∆0 and ∆2/∆0.146

The steps listed above are detailed below in this section. In the resulting expressions, ∆ refers to147

the displacement of the control point of the wall, which corresponds to the wall mid-height for the148

clamped-clamped and the pinned-clamped wall and to the wall top for the cantilever or parapet wall149

(Fig. 2). The expressions are parametrized through the factors ε , β and κ, which take the following150

values: 0, 0.5, 0.5 for the clamped-clamped wall; 0.5, 0.5, 0.7 for the pinned-clamped wall; 1, 1, 2151

for the cantilever wall.152

Bi-linear model parameters F0 and ∆0153

The parameters of the bi-linear model are derived for a wall under a uniformly distributed154

load. The demonstration is given in Section S1 of Supplemental Data. Assuming the rigid-body155

mechanisms of Fig. 2, the parameters F0 and ∆0 result in the expressions:156

F0 =
1

2β2
ξW + (1 − (1 − ξ)ε)O

ξ(1 − ξ)
tw
Hw

, (1)
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and:157

∆0 =
1
2
ξW + (1 − (1 − ξ)ε)O
(1 − ξ)(ξW +O)

tw, (2)

where ξ describes the position of themiddle crack along the height of thewall. For clamped-clamped158

and pinned-clamped walls, the middle crack does not necessarily form at the wall mid-height but159

at (1 − ξ)Hw from the base support, with ξ given by:160

ξ =

√
(1 − ε)(W +O)O − (1 − ε)O

W + εO
. (3)

When the wall self-weight is little as compared to the overburden, that is W/O → 0, the middle161

crack tends to form at 0.5Hw from the base of the clamped-clamped wall and at 0.586Hw from162

the base of the pinned-clamped walls. In these cases, the parameters of the bi-linear model are163

respectively F0 = 8Otw/Hw,∆0 = tw and F0 =
(
3 + 2

√
2
)

Otw/Hw,∆0 =
(
1 +
√

2
)

tw/4. For164

cantilever walls, the crack always forms at the base of the wall. In this case, the expressions for F0165

and ∆0 are retrieved by treating ξ as an auxiliary factor set equal to 1/2.166

Force parameter F1167

The force capacity Fmax of a vertically-spanning wall subjected to an uniformly distributed load168

can be approximated by Eq. (4) (Godio and Beyer 2017). Starting from this expression, the tri-linear169

model is built by equating the plateau force F1 to Fmax as proposed by Griffith et al. (2003), thus170

obtaining:171

F1
F0
= 1 −

(
P
PE

)0.4
. (4)

In this equation F0 is given by Eq. (1), P is denoted as the effective axial load and is defined as172

(Godio and Beyer 2017):173

P = βW +O, (5)
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and PE is the Euler’s critical load of the wall:174

PE =
π2EmIw
(κHw)

2 . (6)

The expression F1/F0 contained in Eq. (4) was originally derived for walls in which the middle175

crack forms at mid-height (Godio and Beyer 2017). Finite element simulations reported in Section176

S2 of Supplemental Data show that the same expression yields a very good approximation for walls177

in which the middle crack does not form at mid-height but in their upper half as a result of the178

influence of the wall self-weight on the wall response.179

Stiffness K1180

Denoted with Kin is the initial stiffness of the wall, which was derived by Godio and Beyer181

(2017) for a geometrically non-linear Euler-Bernoulli beam with uncracked cross-sections. Here it182

is written as the product between the stiffness Klin of a geometrically linear beam and the function183

ΨK embodying the P − ∆ effect:184

Kin = KlinΨK . (7)

The stiffness Klin is classically expressed as:185

Klin =
ζEmIw

H3
w

, (8)

with ζ = 384, 192, 8 respectively for the clamped-clamped, pinned-clamped and cantilever walls,186

whereas the function ΨK can be reasonably approximated by the short form (Section S3 of Supple-187

mental Data):188

ΨK = 1 −
P
PE
, (9)189
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where P and PE are expressed for each boundary condition by Eq. (6) and (5). ΨK decreases linearly190

with increasing P/PE and so does the stiffness of the wall Kin, which tends to Klin for P → 0 and191

to 0 for P→ PE. Once the initial elastic stiffness of the pushover curve is defined, the stiffness K1192

of the first branch of the tri-linear model is set equal to:193

K1 = 0.7Kin. (10)

The factor 0.7 defines the ratio of the effective stiffness up to ∆1 to the initial stiffness at zero194

displacement.195

Ultimate displacement ∆U196

The ultimate displacement of the pushover curve of URM walls is often observed to be smaller197

than ∆0 obtained by the rigid-body analysis (Griffith et al. 2003; Lagomarsino 2015). Reduction of198

the ultimate displacement in URM walls can be due to different material and geometrical factors,199

namely: the rounding of the unit corners due to local deformation (Lagomarsino 2015), the unit200

or mortar crushing (Derakhshan et al. 2013b), a reduced effective depth of the mortar layer due to201

mortar pointing or due to the dropping out of mortar during the rocking of the wall (Doherty 2000;202

Derakhshan et al. 2013b). In order to take into account this reduction, an effective thickness of the203

wall tw,eff is introduced. Expressed as tw,eff = τtw and substituted into Eq. (1) and (2), it leads to a204

shift of the descending branch of the bi-linear model (Fig. 3), which results in:205

∆U
∆0
= τ. (11)

Moreover, replacing tw with tw,eff in the formulation of the tri-linear model affects through Iw the206

formula for PE (Eq. (6)) and Klin (Eq. (8)).207

Displacement parameters ∆1 and ∆2208

The displacement parameter ∆1 can be obtained from the expression of the plateau force F1209

(Eq. (4)) and the stiffness K1 (Eq. (10)) as ∆1 is defined as: ∆1 = F1/K1. Normalized with respect210
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to ∆0, it writes:211

∆1
∆0
=

[
1 −

(
P
PE

)0.4
]

F0
∆0

1
0.7Kin

. (12)

The displacement parameter ∆2 can be derived as ∆2 = (τ − F1/F0)∆0. Introducing Eq. (4), the212

ratio of ∆2/∆0 becomes:213

∆2
∆0
= τ − 1 +

(
P
PE

)0.4
. (13)

MODEL INTEGRATION214

The tri-linear model is integrated numerically as single-degree-of-freedom system with non-215

linear elastic behavior following the tri-linear F(∆) relationship. For this purpose, two assumptions216

are required, see Fig. 2. The first assumption consists in assuming that the bottom and top217

supports of the URMwall experience the same out-of-plane ground acceleration ag(t). The second218

assumption consists in assuming a piece-wise linear inertia force distribution along the wall height.219

The fist assumption represents a simplification in the case of real buildings, as the upper storeys220

of the building may experience motions which are filtered by the building structure, i.e. the221

walls and the diaphragms, and can therefore be different from storey to storey. Even though222

examples of tri-linear models considering the diaphragm deformation can be found in the literature223

(Derakhshan et al. 2015; Landi et al. 2015), a systematic study quantifying the vulnerability of224

out-of-plane walls subjected to the relative support motion is still missing. The second assumption225

has been corroborated by experimental observations from laboratory shake table tests (Doherty226

2000; Graziotti et al. 2016) and is justified for walls undergoing significant rocking (Doherty et al.227

2002; Griffith et al. 2003). Its application to the herein developed tri-linear model is validated in228

this paper.229

Equation of motion230

Based on the above assumptions, D’Alembert’s principle can be written for the wall configura-231

tions depicted in Fig. 2. The use of this principle leads to the equation of motion for the equivalent232
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single-degree-of-freedom system, which writes:233

Ü∆(t) +
C
M
Û∆(t) +

3
2

F(∆(t))
M

= −
3
2

ag(t). (14)

In the above equation, ∆(t), Û∆(t) and Ü∆(t) are respectively the displacement, the velocity and the234

acceleration measured at the control point of the wall, M is the total wall mass and C is the235

equivalent viscous damping factor. The derivation of Eq. (14), which for sake of conciseness is not236

reported in the paper, follows Griffith et al. (2003), where the equation was originally derived for237

walls where the middle crack is located at mid-height. The same equation is obtained here for an238

arbitrary crack location and using as control point the wall mid-height.239

The response F(∆(t)) given in the equation is the time-integrated force-displacement relation-240

ship of the wall, when this latter is subjected to uniform inertia forces. In Griffith et al. (2003), the241

expression for F(∆)was given by a non-linear elastic force-displacement curve of a bi-linear model.242

In the present case, F(∆) is given by the developed tri-linear model. The use of a non-linear elastic243

force-displacement curve represent a simple yet reliable modeling assumption which, as shown in244

this and previous works (Doherty et al. 2002; Sorrentino et al. 2016), allows mimicking the rocking245

behavior of vertically-spanning, or one-way bending, URM walls. Contrarily from what observed246

on two-way bending walls, the experimental behavior of one-way bending walls undergoing rocking247

is characterized by the absence of hysteresis cycles due to damage. The response of these walls is248

in fact mainly governed by geometric non-linearities, the main source of damping being the impact249

between the macroblocks (Lam et al. 1995; Doherty 2000; Griffith et al. 2004; Meisl et al. 2007;250

Dazio 2009; Derakhshan et al. 2014; Ferreira et al. 2015; Graziotti et al. 2016; Giaretton et al.251

2016b; Degli Abbati and Lagomarsino 2017).252

Damping factor253

A viscous damping factor based on a constant damping coefficient c is used for the integration254

of the tri-linear model. Related to the initial stiffness of the model, this factor reads (Griffith et al.255

2003): C =
√

6MK1c. For the simulations conducted in this paper, a constant damping coefficient256
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of 5% is used. This value constitutes a lower bound of the values observed during free-rocking tests257

(Griffith et al. 2004; Doherty 2000; Graziotti et al. 2016; Giaretton et al. 2016b). It has been shown258

that taking this value is a suitable choice when combining the tri-linear single-degree-of-freedom259

system with a viscous damping model (Griffith et al. 2003; Melis 2002), resulting in only negligible260

differences with respect to other more sophisticated numerical procedures such as the ’event-based’261

one proposed by Doherty (2000).262

Model implementation263

The tri-linear model is integrated numerically by means of the classical Newmark time-264

integration scheme. Simulations are run until failure of the wall occurs. The following failure265

condition is adopted:266

|∆| ≥ ∆U. (15)

MODEL VALIDATION267

Two series of laboratory shake table tests carried out on walls undergoing rocking under268

out-of-plane excitations are used for validating the tri-linear model. Both test series involve single-269

leaf brick masonry walls spanning vertically between two supports, with top support conditions270

reproducing connections between the walls and reinforced concrete slabs in existing buildings271

(Fig. 2(a)). Section S4 of Supplemental Data gives the link to a repository containing the Matlab272

code used in this section for the validation of the tri-linear model.273

Simulation of Adelaide tests274

The walls tested at the University of Adelaide (Griffith et al. 2004; Doherty 2000) had a height275

Hw = 1500 mm, a length Lw = 950 mm and a nominal thickness of tw = 110 and 50 mm. They276

were made of bricks with mass densities of 1800 and 2300 kg/m3, respectively. At their base, the277

walls were placed onto a straight steel plate after application of a mortar layer. At the top, the last278

row of bricks was laterally supported by two stiff rubber spacers fixed on both sides into L-shaped279

steel profiles. This prevented the lateral displacement but not the rotation of the bricks (Doherty280
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2000), resulting in a boundary condition similar to that at wall base, where the bricks were able to281

rotate after cracking of the mortar layer (Doherty 2000). In order to seize this condition, the walls282

are modeled as clamped at their ends: the moment originating at the wall ends leads to the partial283

cracking of the cross section and, as a result, the reaction force moves, as in the tested configuration,284

towards the compressed region of the cross-section (Godio and Beyer 2017).285

Griffith et al. (2004) tested three walls under out-of-plane loading on the shake table. The two286

110 mm-thick specimens 12 and 13 without overburden are selected for validating the model. The287

50 mm-thick specimen 14 was also tested on the shake table but the results for this specimen are not288

reported (Griffith et al. 2004; Doherty 2000). For the tests, Griffith et al. (2004) used the Nahanni,289

El Centro and Pacoima ground motions scaled at different intensities. When simulating the tests,290

the actual table accelerations are used as input for the tri-linear model, except for the Pacoima291

ground motion scaled at 66%, for which the input motion for the tri-linear model is here derived292

by scaling the table acceleration of the Pacoima motion available at 80%. This approach is taken293

as an unrealistic low response of the tri-linear model is observed when using the recorded table294

acceleration for that motion, possibly due to a wrong measurement of the table acceleration.295

Quasi-static pushover tests were carried out on the specimens before and after the shake table296

tests, to study respectively the uncracked and cracked behavior of the walls. The analytical model297

presented by Godio and Beyer (2017) was used to simulate the pushover tests carried out on the298

cracked walls and showed that an important reduction of the elastic moduli occurred due to the299

degradation of the joints. The resulting values of Em were derived from the initial stiffness of the300

static force-displacement curve of the walls and were 43 and 5 MPa, respectively for specimen 12301

and 13 (Godio and Beyer 2017). These values are used here for the simulation of the shake table302

tests by the tri-linear model. Table 2 gives the list of the force and displacement parameters used303

in the tri-linear model for simulating the Adelaide tests. No mortar drop-out was observed during304

the tests for the specimens that are here modeled. Moreover, the walls were cracked at mid-height305

from the previous pushover tests, where a concentrated force was applied at mid-height. In the306

simulations, the middle crack position is consequently fixed at mid-height and the displacement307
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parameter ∆U, representative of the effective wall thickness, is set equal to the nominal wall308

thickness: ∆U = ∆0 = tw (Eq. (2)).309

Force-displacement curves310

Fig. 4 shows the comparison of the tri-linear model with the experimental results in terms311

of normalized dynamic force-displacement curves. The experimental curves are built following312

Doherty (2000), see also Graziotti et al. (2016): ∆ is the relative displacement measured at the313

wall mid-height, where the middle crack is located, and F is the force derived by multiplying the314

absolute acceleration of the center of mass of the two portions of wall that are delimited by the315

middle crack, by their mass. To this purpose, a triangular distribution of the relative acceleration316

along the wall height is assumed as in Fig. 2. To be consistent with the experimental results,317

the numerical curves show the total inertia force, which, according to Eq. (14), is the sum of the318

restoring force, 3/2F(∆), and the force generated by damping, C Û∆. The figure shows the accuracy319

of the tri-linear model and the selected damping model in reproducing the force and displacement320

capacity of the walls tested on the shake table. Moreover, the initial stiffness of the walls, which was321

back calculated starting from pushover tests (Godio and Beyer 2017), yields a good estimation of322

the stiffness observed in the dynamic force-displacement curves. The comparison is complemented323

with the results obtained from the tri-linear model built based on the empirical values proposed324

by Doherty et al. (2002), which were chosen on the basis of the different states of degradation325

observed on the same walls used for the benchmark (Griffith et al. 2003): the ∆1/∆0 and ∆2/∆0326

ratios increased as the mortar quality degraded from new to moderately degraded and severely327

degraded joints, resulting in respectively 0.06; 0.13; 0.20 and 0.28; 0.40; 0.50. Following Melis328

(2002) and Griffith et al. (2003), new and moderately degraded joints are assumed respectively329

for specimen 12 and specimen 13, resulting respectively in ∆1/∆0 = 0.06, ∆2/∆0 = 0.28 and330

∆1/∆0 = 0.13, ∆2/∆0 = 0.40. The curves given by the empirical model (Doherty et al. 2002)331

are very close to those given by the herein proposed tri-linear model, showing therefore good332

performance of this latter.333
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Displacement time histories334

Fig. 5 compares the present tri-linear model and the tri-linear model proposed by Doherty335

et al. (2002) with the experimental results in terms of normalized displacement time histories. In336

general, the present tri-linear model shows itself able to seize the peak displacements (Table 3)337

and the frequency content of the experimental response. Moreover, failure occurs in the test of338

Fig. 5(b), where the specimen hits the support frame which was put in place to prevent the collapse339

of the wall onto the shake table (Doherty 2000). For specimen 13 (Fig. 5(b),(d),(f)) the model built340

with the empirical values proposed by Doherty et al. (2002) gives a response which is the same341

than that of the model proposed here. For specimen 12 (Fig. 5(a),(c),(e)) the new model gives a342

better estimate of the wall response than the empirical one, which tends to overestimates the actual343

wall response.344

Error estimators345

The response of rocking structures such as masonry walls, columns and isolated blocks is346

very sensitive to small changes in the geometry, the material parameters and the input excitation347

(Psycharis et al. 2000; Papantonopoulos et al. 2002). For this reason, a full agreement between348

numerical and experimental results can hardly be attained. Moreover, the model does not take349

into account the wall cracking at other levels than that calculated by rigid body analysis. In350

order to evaluate in a quantitative manner the capability of the tri-linear model in reproducing the351

displacement time histories of the experimental response, two error estimators are used.352

The first error estimator is denoted with εRMS and is based on the Root Mean Square (RMS)353

value of the mid-height displacement computed throughout the experimental (exp) and numerical354

(trl) time histories. It writes (Al Shawa et al. 2012):355

εRMS =
|∆̄exp − ∆̄trl |

|∆̄exp |
, (16)
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with the RMS value ∆̄ computed over the time history ∆(t) as:356

∆̄ =

√√√
1
N

N∑
i=1
|∆(ti)|2. (17)

The second error estimator is based on the Weighted Mean Error (WME) and is defined as (Al357

Shawa et al. 2012):358

εWME = min
∆t∈[−0.50s,0.50s]

∫ T
0 |∆exp(t) − ∆trl(t + ∆t)dt |∫ T

0 |∆exp(t)|dt
. (18)

This error estimator is computed by keeping fixed the experimental response and shifting the359

response obtained from the tri-linear model over the total duration of the time history T by a360

lag ∆t ranging between −0.50 s and +0.50 s and taking the minimum WME value over this361

interval. This error measure can be computed taking into account either the whole time histories or,362

according to Al Shawa et al. (2012), only the parts of the time histories that contain displacements363

with amplitudes larger than 20% of the maximum absolute displacement of the experimental and364

numerical results (whichever is larger). All other parts of the time histories are set to zero and the365

error computed as defined in Eq. (18). The first method yields the error denoted with εWME; the366

second yields the error εWME(20). The objective of these error measures is to estimate the accuracy367

of the tri-linear model in predicting all and large amplitude displacements not at a fixed time but368

within a given time window. This error proves particularly useful in the case of rocking structures,369

where, as already stated above, reaching a perfect agreement is practically impossible.370

The errors εRMS and εWME(20) defined by Eq. (16), Eq. (18) have been used by Al Shawa et al.371

(2012) for estimating the sensitivity of a tri-linearmodelwith respect to the displacement parameters372

∆1 and ∆2, based on the comparison with experimental results. The error committed by the new373

tri-linear model in simulating the shake table tests presented in Fig. 5 is given in Table 3. The mean374

values are close to the minimum errors of εRMS = 0.300 and εWME(20) = 0.700, which Al Shawa375

et al. (2012) obtained when optimizing the displacement parameters ∆1 and ∆2 of his tri-linear376
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model. For comparison, the empirical model proposed by Doherty et al. (2002) gives errors that377

are on average |∆max
trl |/|∆

max
exp | = 1.207, εRMS = 0.479, εWME = 1.205 and εWME(20) = 1.641, that is378

approximately twice the error committed by the new tri-linear model presented here. Table 3 also379

contains the ratio between the absolute peak displacement measured on the tested and simulated380

walls: the tri-linear model yields a close and slightly over-conservative estimation of the wall peak381

displacements.382

Simulation of Pavia tests383

Graziotti et al. (2016) tested an unreinforced single-leaf brick masonry wall of Hw = 2754 mm,384

length Lw = 1438 mm and thickness tw = 102 mm. The wall was tested during an experimental385

campaign dedicated to the study of cavity walls. It was made of bricks with mass density ρ =386

1835 kg/m3 and was subjected to two levels of vertical compression stress during the tests, namely387

0.3 and 0.1 N/mm2. At its base, the wall was laid on a mortar layer placed on the foundation.388

At the top, the last row of bricks was fixed into L-shaped steel profiles filled with mortar, which389

prevented both the lateral displacement and the rotation of the bricks. Similarly to the walls tested390

by Doherty (2000), this wall can be modeled as double clamped, with the exception that an effective391

height of 2673 mm, neglecting the last row of bricks, is considered.392

The specimen SIN-01-00 is used as benchmark for the tri-linear model, since it is the only393

one exhibiting rocking (Graziotti et al. 2016). More particularly, only the tests for which the394

wall undergoes mid-height displacements that are greater or equal than 0.1tw are considered. An395

estimate of the masonry elastic modulus can be derived from the measure of the elastic frequency396

of the wall, made at the beginning of the test sequence by application of a random signal. A flexural397

frequency of 14.27 Hz was found for the specimen SIN-01-00 (Graziotti et al. 2016). Assuming398

that the wall behaves at that stage as a double clamped beam made of uncracked homogeneous399

material, this frequency corresponds to an elastic modulus of Em = 1735 MPa, that is 0.53 times400

the one determined by material testing (Graziotti et al. 2016). For the simulation of tests (a)-(d)401

the modulus measured at the beginning of the test sequence is used. However, as the wall may402

lose its initial stiffness during the tests, due to the repeated shakes that damage the joints and the403
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units, a more precise estimate of the wall stiffness is derived for tests (e) and (f). In particular the404

elastic modulus is derived from the experimental F −∆ curves shown in Fig. 6. These curves were405

built as those of Fig. 4, i.e. taking ∆ as the relative displacement measured at wall mid-height,406

and F as the force derived by the absolute acceleration of the center of mass of the two portions407

of wall delimited by the middle crack (Graziotti et al. 2016). The resulting force and displacement408

parameters of the tri-linear model used for simulating the Pavia tests are given in Table 4.409

The comparison with the experimental curves is shown in Fig. 6 and Fig. 7. In general, the410

frequency content and the peak displacements (Table 5) of the experimental response are well411

represented by the tri-linear model (Fig. 7). The model predicts also satisfactorily the dynamic412

force-displacement hysteretic curves (Fig. 6). Moreover, the middle crack position predicted by413

the tri-linear model (Eq. (3)) is located at 0.560Hw from the foundation, which is very close to the414

position observed in the tests of 0.575Hw.415

The comparison with the experimental curves is complemented by the computation of the416

error estimators for each test (Table 5). The mean values are, also for this test series, close to417

the optimum values of 0.300 and 0.700 obtained by Al Shawa et al. (2012). To put the obtained418

error measures further in context, these error measures are also computed for the tri-linear model419

using the parameters suggested by Doherty et al. (2002); the new joints are assumed for tests (a)420

to (d) and moderately degraded joints are assumed for tests (e) and (f). The errors obtained are421

|∆max
trl |/|∆

max
exp | = 4.110, εRMS = 4.186 and εWME = 2.122. The estimator εWME(20) is larger than 10422

because the model predicts failure for four walls while only one wall failed during the tests.423

SENSITIVITY OF MODEL PARAMETERS TO FACTORS AFFECTING THE424

OUT-OF-PLANE RESPONSE OF URM WALLS425

An insight on the four factors affecting the response of out-of-plane vertically-spanning URM426

walls is carried out in this section through a sensitivity study on the tri-linear model parameters. As427

described in the introduction to the paper, these factors are: (a) the support conditions of the wall,428

(b) the level of applied axial load, (c) the height-to-thickness or slenderness ratio of the wall and429

(d) the deformability of the wall. The latter factor is taken into account explicitly by the tri-linear430
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model by taking as input the masonry elastic modulus but not its compressive strength, as it is431

assumed that the walls do not crush. The possibility of modeling the rounding of the unit corners432

due to local crushing and a reduced effective depth of the mortar layer is given by introducing an433

effective wall thickness as a proxy for the nominal wall thickness (Eq. (11)).434

The parameters of the tri-linear model mainly depend on the P/PE ratio. This ratio can be435

expressed in such a way that the four above-mentioned factors can be distinguished and their effect436

on the wall response studied separately (Godio and Beyer 2017):437

(
P
PE

)
=

12
π2

fcm
Em
Λ

2
(

P
P0

)
. (19)

In the above expression P/P0 is the axial load ratio, factor (b), with P0 = fcmLwtw the maximum438

compressive load that the wall can sustain at incipient material failure, introduced only in order to439

normalize the axial load applied to the wall, and fcm the masonry compressive strength, which is440

here just assumed since not explicitly considered by the model; Λ = κHw/tw is the wall slenderness441

ratio, factor (c), in which the effect of the boundary conditions, factor (a), is expressed bymeans of κ,442

and Em is the masonry elastic modulus, which allows studying the effect of masonry deformability,443

factor (d).444

Effect of boundary conditions, axial load and wall slenderness ratio445

Fig. 8(a) shows the variation of the force and displacement parameters of the tri-linear model446

versus the slenderness ratio of the wall Λ and for increasing axial loads. The figure refers to a wall447

strip of unitary length, height Hw = 2.8 m and mass density ρ = 1800 kg/m3. A compressive448

strength of fcm = 10 MPa and τ = 1 are also assumed and Em is set to 2000 MPa, which corresponds449

to Em/ fcm = 200. To vary the slenderness ratio, the wall height is kept constant while the wall450

thickness is varied between 0.35 and 0.07m. Note that, changing tw makes changing P0 as well.451

Overall, increasing the wall slenderness ratio decreases the force ratio F1/F0 and increases the452

displacement ratios ∆1/∆0, ∆2/∆0 with an almost linear trend. The slope of the curves remains453

almost linear and increases with the value of P/P0, which means that the effect of the slenderness454
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ratio on the model parameters is amplified by increasing axial loads. Nonetheless, already for455

a low axial load ratio of P/P0 = 0.01, as the one that can be found at the highest levels of a456

building, the plateau force ranges from 0.80 to 0.95F0, with F1/F0 ≈ 0.85 for Λ = 12. For the457

same slenderness but for a larger yet still relatively low ratio of P/P0 = 0.05, the plateau force458

reduces to approximately 0.7F0 and for P/P0 = 0.10 to 0.6F0. With regard to the effect of the459

boundary conditions, the F1/F0 and ∆2/∆0 curves are the same for the clamped-clamped and the460

pinned-clamped case, since the slenderness ratio Λ is fixed at each point of the curve (Eq. (4) and461

(13)); on the contrary the ∆1/∆0 curves result in higher ratios in the pinned-clamped case than462

in the clamped-clamped one, since in Eq. (12) the initial stiffness K1 and the F0/∆0 ratio are not463

equivalent in the two cases.464

Effect of wall deformability465

Fig. 8(b) shows the variation of the force and displacement parameters of the tri-linear model466

when varying the elastic modulus of masonry Em, for a given compressive strength of 10 MPa,467

and the axial load ratio P/P0. In this case, the slenderness ratio is fixed to 10, which corresponds468

to tw = 0.14 and 0.196 m for the clamped-clamped and the pinned-clamped case. In general, an469

increase of the elastic modulus leads to greater values of F1/F0 whereas ∆1/∆0 and ∆2/∆0 reduce.470

From the curves it is expected that for high moduli and very low axial load ratios, (∆1,∆2) → 0 and471

F1 → F0, i.e., the tri-linear model tends to the bi-linear one.472

Classes of joint degradation473

Fig. 8 also compares the parameters of the tri-linear model proposed by Doherty et al. (2002),474

who empirically distinguished new from moderately degraded and severely degraded joints, with475

the parameters of the herein proposed tri-linear model. With respect to the empirical values,476

those developed in this paper depend on the slenderness ratio, the level of applied axial load, the477

deformability of the masonry and the support conditions of the wall. For a given P/P0, it can be478

observed that, moving from new to degraded joints, the parameters given by the present model479

intercept the empirical values for increasing values of slenderness and decreasing values of elastic480

modulus. From the comparison, classes of joint degradation to be used in the practice can be481
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distinguished.482

CONCLUSIONS483

Simplified tri-linear force-displacement models are an alternative to the use of refined numerical484

simulations in the seismic assessment of vertically-spanning URM walls. Moreover, their larger485

but still very limited number of parameters makes them very flexible compared to bi-linear models486

derived from rigid-body analysis, which cannot capture the initial stiffness and the actual force487

capacity of the walls (Doherty et al. 2002; Griffith et al. 2003; Sorrentino et al. 2016). The488

deformability of the walls is a major factor in determining this latter, together with the slenderness489

ratio and the boundary and overburden conditions of the wall (Doherty et al. 2002; Griffith et al.490

2003; Dazio 2009; Godio andBeyer 2017). Various tri-linearmodels have been previously proposed491

in the literature, but the effect of the wall deformability in conjuction with non-linear geometric492

effects on the displacements∆1 and∆2 and therefore also on the initial stiffnessK1 and themaximum493

force F1 was determined by means of calibration constants determined from experimental results.494

These constants relate the parameters of the tri-linear model to the joint conditions observed in the495

walls (Doherty et al. 2002) or are used as correction factors for bounding the force capacity of the496

walls obtained through bi-linear models (Derakhshan et al. 2013b).497

In this paper, new analytical formulations for the force and displacement parameters of the498

tri-linear model are presented. The formulations are derived from a recently developed mechanical499

model for the out-of-plane response of URM masonry walls, in which the analytical expression of500

the static pushover curve was given (Godio and Beyer 2017). For engineering purposes, a tri-linear501

model is derived from the expression of the pushover curve, being particularly suited to non-linear502

time-history analyses.503

The tri-linear model proposed in this paper shows itself capable of providing good predictions504

of the displacement time histories and the force-displacement hysteretic curves of tested URM505

walls. It has the advantage of a rational development and an analytical formulation, which allows506

covering a wide range of wall configurations. When compared to existing tri-linear models, this507

new model needs one additional input parameter only, i.e. the elastic modulus of the masonry Em.508
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Its use in the context of the seismic assessment and preliminary design of masonry buildings can be509

envisaged both in the modeling of the out-of-plane response of the URM walls through non-linear510

time-history analyses and in the prediction of the displacement demand on these walls, by means511

of an equivalent single-degree-of-freedom system with a secant stiffness passing through one of512

the points of the tri-linear curve (Godio and Beyer 2018).513

NOTATION514

The following symbols are used in this paper:515

ag = ground motion (m/s2);

C = equivalent viscous damping factor
(√

kgN/m
)
;

c = damping coefficient (−);

Em = elastic modulus of masonry (MPa);

Fmax = force capacity of the wall (N);

F0 = force parameter of the bi-linear model (N);

F1 = plateau force of the tri-linear model (N);

fcm = compressive strength of masonry (MPa);

Hw = height of the wall (m);

Iw = moment of inertia of the uncracked section of the wall (m4);

Kin = initial stiffness of the wall (N/m);

Klin = stiffness of a linear elastic Euler-Bernoulli beam (N/m);

K1 = initial stiffness of the tri-linear model (N/m);

K2 = stiffness of the equivalent single-degree-of-freedom system (N/m)

Lw = length of the wall (m);

M = mass of the wall (kg);
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O = overburden (N);

P = effective axial load of the wall (N);

PE = Euler’s critical load of the wall (N);

P0 = maximum compressive load of the wall (N);

tw = thickness of the wall (m);

tw,eff = effective thickness of the wall (m);

W = self-weight of the wall (N);

β, ε, κ, ζ = factors accounting for different boundary conditions (−);

∆ = displacement of the control point of the wall (m);

Û∆ = velocity of the control point of the wall (m/s);

Ü∆ = acceleration of the control point of the wall (m/s2);

∆̄ = root mean square value of the displacement history (−);

∆max = displacement capacity of the wall (m);

∆U = ultimate displacement of the tri-linear model (m);

∆0 = displacement parameter of the bi-linear model (m);

∆1 = first displacement parameter of the tri-linear model (m);

∆2 = second displacement parameter of the tri-linear model (m);

εRMS, εWME, εWME(20) = error estimators (−)

Λ = slenderness ratio of the wall (−);

ξ = normalized position of the middle crack from the top wall support (−);

ρ = mass density of the masonry (m);
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τ = ratio between effective thickness and nominal thickness of the wall (−), and

ΨK = function embodying P − ∆ effects in the initial stiffness of the wall (−).
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Fig. 1. Force-displacement curves and simplifiedmodels of vertically-spanning out-of-plane loaded
URM walls.
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Fig. 2. URM walls spanning vertically between two supports (a)-(b) or laid on one single support
(c). Walls are subjected to overburden and out-of-plane loading. Piece-wise linear inertia force
distribution is assumed. Deformable and rigid-body idealizations of the walls: regions in which
cracking occurs are shown in the deformable case.
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Fig. 4. Simulation of the shake table tests carried out at the University of Adelaide. Dynamic
force-displacement response of specimen 12 (a),(c),(e) and specimen 13 (b),(d),(f).
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Fig. 5. Simulation of the shake table tests carried out at the University of Adelaide. Displacement
time histories of specimen 12 (a),(c),(e) and specimen 13 (b),(d),(f).
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Fig. 6. Simulation of the shake table tests carried out at the University of Pavia. Dynamic
force-displacement response. *A technical issue occurred in test (d) prevented the mid-height
acceleration to be measured properly (Graziotti et al. 2016).
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Fig. 7. Simulation of the shake table tests carried out at the University of Pavia. Displacement
time histories.
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Fig. 8. Sensitivity study of force and displacement parameters of the tri-linear model: effect of
slenderness (a) and elastic modulus (b) for clamped-clamped (solid lines) and pinned-clamped
walls (dotted-dashed lines); comparison with empirical values contained in the literature (Doherty
et al. 2002) for different states of joint degradation (dashed lines).
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Table 1. Summary of existing tri-linear models describing the out-of-plane response of vertically-
spanning URM walls. Support conditions of the wall (Fig. 2): CC = clamped-clamped; PC =
pinned-clamped; Cant. = cantilever.

Tri-linear model Support conditions Joints condition ∆1/∆0 ∆2/∆0 ∆U/∆0 F1/F0

Doherty et al. (2002) CC, PC, Cant. New 0.06 0.28 1 0.72
Moderately degraded 0.13 0.40 1 0.60
Severely degraded 0.20 0.50 1 0.50

Derakhshan et al. (2013b) PC 0.04 1 −

F1/F0

≤ 1* 0.83**

Al Shawa et al. (2012) Cant., one-side rock-
ing

0.02 0.20-
0.35

0.94 0.74-
0.59

Derakhshan et al. (2015) PC, flexible top and
bottom supports

0.04 0.33 1 0.67

Landi et al. (2015) PC*** 0.05 0.26 1 0.74
Tomassetti et al. (2018) CC, single-leaf and

cavity walls
0.03-
0.04

0.06-
0.25

0.92-
0.98

0.73-
0.90

*expressed as a function of the mortar pointing and the compressive strength of the masonry
**with F0 calculated by rigid-body analysis of the wall including the limited compressive strength of the masonry
***values given according to the formulations proposed by Sorrentino (2003)
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Table 2. Parameters of the tri-linear model used for simulating the Adelaide tests. Imposed middle
crack position at 0.5Hw.

Tested wall* ∆1/∆0 ∆2/∆0 F1/F0

Specimen 12 (a),(c),(e) 0.017 0.198 0.802
Specimen 13 (b),(d),(f) 0.110 0.468 0.532

*reference to results contained in Fig. 4, Fig. 5
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Table 3. Ratio between the absolute peak displacements and error committed by the tri-linear
model in predicting the displacement time histories of the Adelaide tests.

Tested wall* |∆max
trl
|/|∆max

exp | εRMS εWME εWME(20)

Specimen 12 (a) 1.342 0.544 1.105 1.365
Specimen 12 (c) 1.052 0.159 0.772 0.514
Specimen 12 (e) 1.141 0.180 0.855 0.632
Specimen 13 (b) 0.991 0.108 0.702 0.630
Specimen 13 (d) 0.898 0.244 0.742 0.710
Specimen 13 (f) 1.046 0.072 0.628 0.524
Mean value 1.078 0.218 0.801 0.729

*reference to results contained in Fig. 4, Fig. 5
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Table 4. Parameters of the tri-linear model used for simulating the Pavia tests. Predicted middle
crack position from the base support at 0.560Hw.

Tested wall* ∆1/∆0 ∆2/∆0 F1/F0

SIN-01-00 (a) 0.013 0.172 0.828
SIN-01-00 (b) 0.013 0.172 0.828
SIN-01-00 (c) 0.013 0.172 0.828
SIN-01-00 (d) 0.013 0.172 0.828
SIN-01-00 (e) 0.031 0.249 0.751
SIN-01-00 (f) 0.041 0.281 0.719

*reference to results contained in Fig. 6, Fig. 7
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Table 5. Ratio between the absolute peak displacements and error committed by the tri-linear
model in predicting the displacement time histories of the Pavia tests.

Tested wall* |∆max
trl
|/|∆max

exp | εRMS εWME εWME(20)

SIN-01-00 (a) 0.830 0.154 0.784 0.394
SIN-01-00 (b) 1.559 0.225 1.044 1.126
SIN-01-00 (c) 1.558 0.607 0.996 1.456
SIN-01-00 (d) 1.324 0.382 0.998 1.365
SIN-01-00 (e) 1.217 0.304 1.035 0.892
SIN-01-00 (f) 1.069 0.076 0.226 0.102
Mean value 1.260 0.291 0.847 0.889

*reference to results contained in Fig. 6, Fig. 7
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