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New non-volatile memory (NVM) technologies enable direct, durable storage of data in an application’s heap.
Durable, randomly accessible memory facilitates the construction of applications that do not lose data at system
shutdown or power failure. Existing NVM programming frameworks provide mechanisms to consistently
capture a running application’s state. They do not, however, fully support object-oriented languages or ensure
that the persistent heap is consistent with the environment when the application is restarted.

In this paper, we propose a new NVM language extension and runtime system that supports object-
oriented NVM programming and avoids the pitfalls of prior approaches. At the heart of our technique is
object reconstruction, which transparently restores and reconstructs a persistent object’s state during program
restart. It is implemented in NVMReconstruction, a Clang/LLVM extension and runtime library that provides:
(i) transient fields in persistent objects, (ii) support for virtual functions and function pointers, (iii) direct
representation of persistent pointers as virtual addresses, and (iv) type-specific reconstruction of a persistent
object during program restart. In addition, NVMReconstruction supports updating an application’s code, even
if this causes objects to expand, by providing object migration. NVMReconstruction also can compact the
persistent heap to reduce fragmentation. In experiments, we demonstrate the versatility and usability of object
reconstruction and its low runtime performance cost.
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1 INTRODUCTION
The three-to-five order-of-magnitude performance gap between durable storage (HDDs and SSDs)
and volatile memory (DRAM) has resulted in very different interfaces. Persistent data typically is
stored in a database or in a file system and accessed through a high-level abstraction such as a query
language or API. Due to the high latency of the storage media, these interfaces favor transferring a
large quantity of data at each interaction. Programming languages, in contrast, offer direct access
to (transient) data in DRAM.
Non-Volatile Memory (NVM) eliminates the performance gap between durable and volatile

storage, but using NVM requires changes to programming models. Technologies such as ReRAM [1,
49], PCM [32, 41], and STT-RAM [26] are a new storage media, albeit with an interface and
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performance characteristics similar to DRAM. These memories retain data after a power shutdown
and are likely to be widely deployed in servers in the near future.

NVM requires new programming models to ensure that the persistent storage is left in a recover-
able state after an unexpected or abrupt program failure. Durable atomic blocks cause a program to
atomically transition between consistent states, each of which can be recorded in NVM and used to
restart reliably after a crash [4, 9–12, 14, 17, 22, 27, 34, 37, 46, 50, 51].

Capturing a running application’s consistent state is, however, only part of recovery. The persis-
tent heap will be used after a restart, which means that it must be put into a state that is consistent
in the new environment that exists when the application resumes execution. Consider, for example,
a persistent key-value store in which each entry contains a pointer to a network connection to a
client [36]. The connection is not valid when the program restarts. Recovery should at least discard
the old connections to avoid an access to a stale pointer. Sockets, locks, and thread IDs are other,
inherently transient fields that are invalid after recovery. These fields are often intermixed with
persistent fields in an object, which requires recovery to distinguish the two types of fields and to
discard or reinitialize stale, transient values.

Persistent fields containing pointers to other durable objects also become invalid if recovery maps
the durable heap to a different location in memory. Currently, operating systems do not guarantee
that a persistent heap can be mapped by the mmap system call to the same address as before a crash.
If the mapping changes, pointers to persistent objects become invalid. Furthermore, program code
is also not guaranteed to reside at the same locations as before a crash. Most operating systems,
in fact, use address space layout randomization (ASLR) to implement the opposite behavior by
placing code at a different virtual address for each execution. Disabling ASLR is possible but reduces
security. ASLR affects function pointers (C), virtual table pointers (C++), and read-only data (e.g.,
string literals).
Fixing these problems after a crash is a significant burden on a programmer. To clear and

reinitialize transient fields and update pointers, the programmer must iterate over all live durable
objects and update pointers. Failure to find an object (or iterating over an object more than once) is
often a subtle error. These operations violate encapsulation as the recovery code must be aware
of an object’s internal structure (and be updated as an object’s fields evolve). Recovery cannot be
implemented using an object’s methods as the virtual table need to be updated before methods
are invoked. For these reasons, existing NVM systems generally do not distinguish or reinitialize
transient fields and some use self-relative offsets instead of direct pointers [16, 17]. These are more
costly and incompatible with standard libraries.1

In this paper, we present a C++ language extension for NVM reconstruction, the process of reestab-
lishing the consistency of data structures stored in NVM in the environment in which an application
is being restarted. NVMReconstruction enables a programmer to label a field as transient, so that
after a restart, the restored instances of this field will be zeroed. More complex recovery is also
supported through type-specific recovery methods that can reinitialize transient fields in arbitrary
ways. More importantly, programs written with NVMReconstruction use conventional data and
code pointers, and the system automatically updates these pointers if the location of the persistent
heap or the code segment changes.

NVMReconstruction also supports upgrading objects. Durable objects are not discarded when an
application terminates and they may live for a long time. However, when an application stops and
restarts, it can invoke a newer version of the application code. This upgrade can create a mismatch

1For C programs, using offsets requires pervasive code modifications at pointer dereferences. For C++, dereferencing can
be hidden by operator overloading, but pointer declaration must be modified. In both cases, offsets are slower than direct
references.
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between the new code and the objects in the persistent heap. In particular, the new code may append
fields to a class, and an object might expand beyond the space allocated to it. NVMReconstruction
supports code upgrading by relocating an object to a larger space and redirecting pointers to the
object’s new location.2
To reduce fragmentation of the persistent heap, NVMReconstruction also implements offline

NVM compaction. Fragmentation can lower performance and prevent the allocation of large objects.
Compaction in a garbage collector executes while a program is running, which requires restrictions
on code generation and is difficult to apply to unmanaged languages such as C or C++. Our
compaction algorithm is similar to a (fault-tolerant) copying garbage-collector, but it runs between
executions of an application, so that when compaction is running, the application is not. Thus,
compaction imposes no restrictions on code generation.

NVMReconstruction consists of a Clang/LLVM extension and a runtime library. The compiler
extension implements our C++ language annotations and emits type information for each class and
struct. To track runtime types, our extension modifies the existing object format by adding an 8-byte
header to hold a type identifier. The runtime also records additional execution-specific information
in NVM that it uses for reconstruction and compaction. Reconstruction runs concurrently and
lazily with an application, which allows an application to restart and respond quickly, without the
long latency from updating the entire persistent heap.

In this paper, we make the following contributions:
(1) The design and implementation of a language extension for C++ that distinguishes transient

data from persistent data, enabling object-specific recovery code.
(2) The details of a Clang/LLVM extension that implements the C++ extension and produces a

runtime type description for durable objects.
(3) The details of a reconstruction library that performs object-specific recovery and updates

pointers.
(4) The design and implementation of a non-concurrent compaction algorithm for upgrading an

application’s data structures and reducing persistent memory fragmentation.
(5) Demonstration of NVMReconstruction using Atlas, an NVM programming framework, and

the Echo key-value store, which shows the ease of using NVMReconstruction with existing
code and its low runtime overhead.

The paper is organized as follows. In Section 2, we describe the need for object-specific recovery in
existing systems. In Section 3, we present the NVMReconstruction language extension. In Section 4,
we describe the implementation of the runtime library. We discuss limitations in Section 5. We
demonstrate the approach and measure its performance in Section 6. Finally, in Section 7, we
discusses related work and conclude in Section 8.

2 PRESERVING OBJECT SEMANTICS ACROSS INVOCATIONS
In this section, we discuss the challenges in using objects to store durable data. For each of these
difficulties, we also describe existing solutions and enumerate their shortcomings.

In our data model, durable data is composed of objects. Each object is an instance of a class type
that corresponds to a class or struct definition in C++. For simplicity, consider two consecutive
executions of an application. In the first execution, denoted the initial execution, the application
allocates objects in durable storage, then reads and modifies them. In the second execution, denoted
re-execution, the application again uses the objects allocated in the initial execution. As we are

2 Other changes, such as deleting or reordering fields, are beyond this work and require application-specific modifica-
tions [35].
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primarily concerned with the behavior during re-execution, we also call this the current execution
and call the initial execution (or a prior execution) the old execution.

Some data residing in NVM can be execution-specific or transient: it is relevant only to a specific
execution and is invalid in subsequent executions. For such data, we use the term stale data for
data constructed during the old execution and current data for data constructed during the current
execution.

2.1 Transient Fields
Traditional durable storage interfaces, such as databases, only support durable data and offer no
means to distinguish transient data that exists for a single execution of a program. The database
system uses transient data, such as locks, but these details are hidden by the storage abstraction. In
contrast, when using an NVM heap, durable and transient data will be intermixed.

Consider, for example, locks. A lock is not reusable after the termination of a program. Still, it is a
common programming practice to put a lock in an object and to use it to synchronize accesses [13].
Separating the lock from the data, for example in a hash table, would introduce overhead and
reduce program performance and scalability. Sockets, process (or thread) IDs, and file descriptors
are similar transient data that are typically kept with an object.

Another example is transient pointers that occur when data in DRAM is pointed to by a field in a
durable object. Moreover, to increase the performance of an application, a programmer can convert
a persistent field to a transient field, thus reducing the number of flush operations required to update
the field in NVM. These fields could be statistical summaries or any data that is recomputable from
durable data. For example, in a persistent queue based on a linked list [20], the tail of the queue is
never flushed to NVM as it can be recovered easily. In this case, the tail pointer is a transient field
even though it is semantically durable and resides in a persistent queue object.

The presence of transient data in a durable object creates two problems. First, after re-execution,
an application might incorrectly assume that a transient field is still usable. Second, even if it is
possible to detect that a value is invalid, every method must explicitly check if every durable object
is well-formed. This introduces runtime overhead and creates unnecessarily complex code.

Coburn et al. [13] advocate preventing durable objects from holding pointers to DRAM. They also
propose generation locks that are considered “uninitialized” if the lock’s generation number differs
from the NVM heap’s generation number. At the start of each re-execution, the global execution
number is incremented, effectively releasing all NVM-resident locks from the previous execution.
Although this method is practical, it prevents a programmer from using system-provided locks,
such as pthread_mutex, or it requires persistent wrappers to add a generation number to these
locks. This solution also does not address the problem of scalar transient data, such as a process
ID, or semantically durable data, such as the tail of a persistent queue, though a similar approach
might address these cases as well.
A recent report [36] found that the intermingling of transient and durable data is common in

real applications and that separating these types of fields requires a significant effort.

2.2 Heap and Code Pointer Relocation
Persistent objects containing direct pointers to other persistent objects or to code are vulnerable to
the relocation of the heap and of the code segments. We discuss each of these cases separately and
consider existing solutions.

Heap Relocation. During an application’s initial execution, the NVM library creates a DAX (direct
access) [33] memory-mapped file backed by NVM memory. The memory contents reside in NVM
and are mapped (using mmap system call) into the virtual address space of the application. The data,
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like other abstractions in Linux, has a name in the file system, so that it can be found and reused.
During re-execution, the heap “file” is opened and mapped into the application’s virtual address
space.
The layout of an address space can change when the operating system or libraries are updated

or when a program runs under a debugger, profiler, or another runtime tool. The operating system
can remap the NVM memory to a different location in virtual memory than the one in the initial
execution. This behavior is explicitly permitted by the semantics of mmap, even if a program specifies
a desired virtual address, and is necessary when the requested addresses are already in use3. If
durable data contains direct pointers to persistent data, these pointers are invalidated when NVM
memory is mapped to a different location.

There are two existing solutions to the NVM pointer problem. The simpler solution, adopted by
most research prototypes, is to abort recovery if the remapped address differs from the original one.
In the usual case, when remapping works, a programmer can use native pointers and the system
avoids the necessity to update pointers. However, this approach is impractical for a real system,
as remapping failures means that the program will no longer execute and the persistent data is
effectively lost. Durable data is not really durable if it cannot survive an OS update.
Industry solutions, such as Oracle’s NVM Direct [16], use a different approach, self-relative

pointers, to resolve this problem. A direct pointer to an NVM location is replaced by its offset
relative to the memory location that contains the pointer itself. When one of these “pointers” is
dereferenced, the location’s memory address is added to its contents to produce a direct pointer
for a load or store instruction. Intel’s NVML system [17] uses a different approach called extents
(contiguous regions of durable memory). Each NVM pointer consists of an extent identifier and a
relative offset in the extent, in effect a software-implemented segmented-memory system [8].
There are two drawbacks to these approaches. The first is performance and space overhead.

Second, without language and compiler support, each durable pointer dereferencemust be annotated.
These annotations introduce syntactic clutter, reduce programmer productivity, and cause errors
as programmers must be aware of the two different pointer types (native and offset) and use
each appropriately. A recent port of memcached [36] also reported debugging challenges with the
offset-based pointers.

Code Relocation. Code segments can also be loaded at a different virtual address than the prior
execution when libraries are loaded at different addresses, code is reorganized by address-space
layout randomization (ASLR) [40], or a program is modified by a developer. Prohibiting these
possibilities would compromise security and make durable storage significantly less practical.

Direct pointers to methods and functions are common in data structures but forbidden in existing
NVM-specific durable storage systems. The most prevalent example of code pointers is the Virtual
Table Pointer (VTP) used by C++ to implement virtual methods. These pointers are part of an
object and elaborate its behavior in object-oriented designs. Non-object-oriented languages (e.g., C),
also use function pointers for this and other abstraction purposes. Both the VTP and the function
pointers are established in the execution in which an object is initialized. Attempts to invoke stale
virtual methods or function pointers during re-execution might result in undefined behavior or
corrupt data.

The read-only data segment of an application can also be mapped to a different address during
re-execution and will need to be updated. These pointers occur, for example, if a pointer references
a string literal (i.e., p = "Hello world").

3The MAP_FIXED flag specifies that the OS must not map the memory to a different virtual address than the one specified.
However, if the requested address cannot be satisfied by the OS, the mapping immediately fails.
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Listing 1. Code Annotations (based on the Echo key-value store [7])

1 struct kp_vt_struct{
2 kp_kvstore ∗parent; //back−pointer to parent kvstore
3 transient pthread_mutex_t ∗lock; //lock for this version table
4 ...
5 reconstructor(kp_vt_struct∗ o){
6 assert(kp_mutex_create("(∗new_vt)−>lock", &(o−>lock))==0);
7 }
8 }
9 void main(){
10 kp_vt_struct ∗new_vt = pnew kp_vt_struct;
11 ...
12 pdelete new_vt;
13 }

We are not aware of an NVM system that explicitly supports (or, for that matter, forbids) durable
objects with virtual methods and function pointers.4 The assumption in these systems is that data
are stored in C structures, which do not require virtual-function tables and do not contain pointers
to functions or read-only data, or that function locations and read-only data do not change position
between executions.

2.3 Upgrades and Object Migration
As persistent objects are expected to live for a long time, an application may evolve while its objects
remain alive. In many cases, implementing new capabilities or fixing bugs requires adding new
fields to an object, making it too large for its existing allocated space. In this case, the system must
migrate the upgraded object to another (sufficiently large) memory location. Then, every pointer
to the object must be redirected to its new location. So, upgrading a single object might require
iterating over all live objects in the heap.

Fragmentation. Compacting the heap reduces fragmentation by moving objects to a contin-
uous region of memory. Although de-fragmentation is beneficial for standard applications (as
demonstrated by managed language garbage collection), it is even more important for persistent
data. NVM might contain many persistent heaps, either because many applications each create a
heap or because an application creates many persistent heaps (e.g., each representing a state, or a
“document”, of that application). Each persistent heap can be fragmented. When fragmentation is
aggregated across many heaps, this leads to a significantly inefficient use of space.

3 PERSISTENT PROGRAMMING EXTENSION

The NVMReconstruction C++ extension consists of four new keywords: transient, pnew,
pdelete, and reconstructor. Listing 1 presents a code example.
The transient keyword annotates fields of a class (or struct). It implies that after terminating

the application (either gracefully or after a crash) and re-executing, instances of the field in NVM
will be initialized to a zero (null) value, not the value from the prior execution. Java uses this
keyword for a similar purpose in serialization: a transient field is not serialized with an object and,

4Some object-oriented DBs [24] support virtual methods, but they differ from NVM because all data access occurs through
a high-level, software-mediated interface.
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after de-serialization, the transient field is null. Our definition directly follows the Java definition.
If an instance of a class resides in NVM and a field is not marked transient, it is the responsibility
of the programmer to ensure that the field’s content has meaning after restarting the application.
The reconstructor keyword annotates a method that is invoked on each instance of a class

that resides in NVM and survives a crash. The reconstructor method can be used to initialize
transient fields to non-zero values. In a typical case, we expect the reconstructor code to follow the
behavior of the object’s constructor by reinitializing the transient fields, e.g. by creating a lock
or opening a file. The reconstructor method can also modify non-transient fields. However, the
reconstructor function can access only the object being reconstructed and DRAM-allocated objects.
It must not access any other persistent object, which might still be invalid (not yet reconstructed).5
We chose to invoke the reconstructor method after all transient fields of an object are set to null
values. This reduces the risk of mistakenly using stale transient values during reconstruction.

Finally, the pnew keyword is equivalent to the new keyword in C++, except that the object is
allocated in NVM instead of transient DRAM. It is possible to allocate instances of the same class,
both in the transient heap (using new) and in the NVM heap (using pnew). If an instance is allocated
via new, it is not durable and all annotations can be ignored. An object allocated via pnew must be
deleted via pdelete. An alternative would have been to use delete for both types of objects and
to detect at runtime where an object resides. This is unattractive as it introduces overhead at each
invocation of delete, even if a application does not use NVM. Consequently, delete of a persistent
object has undefined behavior. In contrast, pdelete of a transient object causes a runtime failure,
as we assume that the persistent allocator can afford to check its arguments.

4 IMPLEMENTATION OF NVMRECONSTRUCTION

We have implemented NVMReconstruction as a Clang/LLVM extension and a runtime library.
NVMReconstruction uses a runtime type system to safely recover objects for re-execution (re-
construction) and provides an efficient method for resolving fragmentation and for supporting
upgrades (compaction).

4.1 Runtime Type System
Identifying objects in the persistent heap requires runtime type information. For each object
instance, the system has to determine — for each of its field — whether it is a transient value, a
non-transient (persistent) pointer, or a literal. A transient field needs to be zeroed, a non-transient
pointer needs to be fixed (during reconstruction) or forwarded (if the pointed object is migrated),
and a literal field remains unmodified.

Similarly to managed languages, the NVMReconstruction implementation uses a header in each
object (8 bytes before its first byte) to store an object’s type. The Clang/LLVM extension analyzes
the code and produces a unique ID for each class type. Allocations via pnew allocate memory for
an object and initialize the header to the type ID. In addition, the compiler emits a global structure.
For each object type, this global structure records its type ID, the offsets of persistent pointers,
a function for zeroing transient fields and for invoking the (user-defined) reconstructor, and the
virtual table pointer for the class (if applicable). The compiler also emits type information for every
function that might be used as the target of a function pointer (i.e., each function whose address is
taken).
Although this provides necessary type information, it is insufficient to upgrade persistent

objects. If an application is changed and compiled, the NVMReconstruction Clang/LLVM extension
captures the current (upgraded) application semantics. We do not assume that the old version of

5Static analysis to warn of incorrect access to persistent objects is still work in progress.
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Fig. 1. Illustrating different virtual addresses for the same object.

the application is available to the compiler. This creates a mismatch: the persistent objects that
need to be traversed might have been created by an older version of the application, whereas the
Clang/LLVM-produced information corresponds to the latest version of the application.

Furthermore, even without any change to the application, the Clang/LLVM type information can
be insufficient for interpreting pointers. As mentioned in Section 2, when an application restarts,
the OS can map the persistent heap or the code region to a different virtual address. In such a
case, a pointer needs to be interpreted according to the mapped address of the prior execution.
Lazy reconstruction complicates this behavior even further. When an application stops, there is no
guarantee that all blocks in NVM have been reconstructed and that, subsequently, all addresses
can be interpreted according to the current address space. Hence, it is possible that different NVM
objects need to be interpreted with respect to different address spaces.
Consider, for example, the scenario illustrated in Figure 1. It represents 3 different executions,

each time the NVM heap is mapped to a different address. During the third execution, both B○, C○
and D○ points to A○. However, each of these pointers use a different virtual address, even though
they all point to the same object A○.

To correctly interpret a persistent object created in an earlier execution, the NVMReconstruction
runtime records information about the application in a dedicated meta NVM heap. Each execution
is assigned a unique execution number. For each execution, NVMReconstruction stores the type
information emitted by Clang/LLVM, the mapped addresses of the persistent heap, and the mapped
addresses of the read-only data segments. The persistent heap is partitioned into blocks or pages
that are multiples of virtual memory page size (typically 4K). For each block, NVMReconstruction
stores the execution number by which the objects in the block should be interpreted (last column of
Figure 1). The runtime maintains a mapping from execution number to a executionInfo that holds
the runtime information for the corresponding execution. The runtime also collects the execution
numbers of all blocks in the persistent heap and prunes executionInfos that do not correspond
to any block.

4.2 Reconstruction
During re-execution, NVMReconstruction reconstructs the NVM heap by iterating over all live
objects in the persistent heap and by reconstructing each object field-by-field:

Clear Transient Fields (Section 2.1) Each transient field is zeroed. This prevents the program
from mistakenly using a stale transient field.

Pointer Relocation (Section 2.2) Each pointer into an NVM region is corrected to the current
location of the target object. Virtual table pointers, function pointers, and pointers to read-only
data are update to the correct location.
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Customized Reconstructor Function Finally, a type-specific reconstruction function is in-
voked on the object. This enables a programmer to specify more complex recovery patterns,
such as reinitializing transient fields.

Reconstruction works on a memory block. For each block with execution number eold (earlier
than ecur), the system consults the execution information between eold and ecur stored in the meta
NVM heap. This provides the necessary basis to interpret pointers and modify them so they can be
dereferenced in the current execution. The system iterates over all live objects in the block and
reconstructs each one, as described above.
To reconstruct a block, three challenges must be handled correctly and efficiently: recovery

during reconstruction, fast application restart, and preventing threads from accessing a stale block.
The first challenge is that an application can crash while reconstructing a block. Reconstructing

an object more than once can have a disastrous effect, because pointers are updated by adding the
difference between the old mapped address and the new address adding the difference twice is
wrong. To provide recoverability, we use undo logging at a block granularity. Before reconstructing
a block, the entire block is copied to the meta NVM heap. If a failure occurs before reconstruction
finishes, the block is reverted to its initial state before (another) reconstruction attempt. Once a
block is processed, the system flushes its updated content to NVM and sets its execution number to
the current execution number, thus signifying that its contents are up-to-date. Finally, it deletes the
undo log.
The second challenge is fast recovery. To ensure that an application never accesses stale data,

it is crucial that reconstruction runs before the application’s first access to an object. However,
NVM’s high density and low power consumption makes possible extremely large memories, so
iterating over the entire NVM heap could require hours for applications with large data sets, thus
making recovery extremely expensive [23, 36].

We implemented NVMReconstruction recovery in a lazy manner, which allows an application to
start execution immediately and its recovery to run concurrently. If the application accesses an object
before it is reconstructed, then the application must be delayed until the object is reconstructed.
Detecting these accesses employs a memory-protection mechanism to trap the first access to a block
of memory (one or more contiguous pages), so that all live objects in the block can be reconstructed
before the application resumes. Our algorithm is summarized in Listing 2. The block size is a
parameter of the system, but it must be a multiple of the virtual memory page size and no object
can cross a block boundary. We intend to support objects larger than a block in future work.

The third challenge is to grant the reconstructor thread read-and-write access to a block, without
allowing access by other application threads. We use a well-known technique that maps the
persistent heap twicewith differentmemory protections. The first mapping is the standard persistent
heap used by the application. A block starts as inaccessible in this mapping and becomes accessible
when reconstructed. The second mapping is used only by reconstruction and allows full read-and-
write access to the blocks.

4.3 Compaction
The reconstruction algorithm above works when object migration is not needed. However, some-
times object migration is necessary, either due to a change that enlarges an existing object or due
to a serious memory fragmentation in the persistent heap. In these cases, NVMReconstruction
compaction is similar to a compacting garbage collector.

But, unlike reconstruction, compaction runs fully offline and is not interleaved with the execution
of the application. Offline compaction is acceptable because we expect it to be invoked infrequently
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Listing 2. NVMReconstruction

1 LazyReconstructHeap() {
2 registerHandler(memoryTrap, memoryTrapHandler); // Run before application is started
3 mprotect(NVM, NO_READ|NO_WRITE); // Trap at first access to NVM blocks
4 in background do: // Reconstruct concurrently with application
5 foreach block b in persistentAllocator.getBlocks():
6 ReconstructBlock(b);
7 }
8 memoryTrapHandler(blockAddress) {
9 ReconstructBlock(blockAddress);
10 }
11 ReconstructBlock(blockAddress) {
12 Block &block = getBlockFromAddress(blockAddress);
13 block.lock();
14 if (block.is_processed())
15 {block.unlock(); return; }
16 backup(block);
17 PtrFixer ∗fixer = getFixerForExecution(block.getExecutionNumber());
18 munprotect(block, READ|WRITE, thisThread); // Unprotect block only for this function
19 foreach object O in persistentAllocator.getLiveObjectsInBlock(block):
20 ReconstructPersistentObj(fixer,O);
21 flush(block);
22 block.setExecutionNumber(currExecutionNumber);
23 munprotect(block, READ|WRITE); // Unprotect block for everyone
24 }
25 ReconstructPersistentObj(fixer,O) {
26 Type ∗ty = getType(O−>header);
27 foreach field p in ty−>getPointerFields()
28 O−>p = fixer.computeNewMapping(O−>p);
29 // zero transient fields and call user−defined reconstructor
30 ty−>zeroAndReconstruct(O);
31 }

and its cost is significantly higher than reconstruction. Running offline greatly reduces the com-
plexity of compaction, as the pointers that are forwarded all reside in memory, not in registers
and stacks in a running process. Thus, our compaction algorithm does not place restriction on
how machine code is generated and how it manipulates pointers. Only the persistent heap pointers,
pointers from a persistent object to another persistent object, must be in a standard format (e.g.,
XORing two pointers and storing the result in a register is permitted, but storing the result in a
heap object is not).
Although compaction runs offline, the heap’s state can still reflect many different executions,

each with a different execution number. Compaction starts by reconstructing the entire heap to a
consistent (the current) execution, in which all pointers are valid for the current mapped address.

The compaction algorithm works in four stages. First, it gathers the roots of the NVM persistent
heap. These are pointers to persistent objects that are located at a known position. These roots can
be accessed, even if the application does not have a pointer to a persistent object. After a crash, only
objects reachable from a persistent root can be accessed by the application when it restarts. Second,
the algorithm computes the transitive closure of the roots, marking (in a side markbit table) all
live objects reachable from these roots. It also creates a new — empty — persistent region, denoted
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to-space. Third, the algorithm computes a forwarding pointer for each live object. If an object is
upgraded, the forwarding pointer is computed from the new size of the object. Fourth, each object
is copied to its new location in to-space, during which each pointer field is modified according to
the forwarding pointer of the target object. The from-space persistent region is deleted, making
the to-space the valid copy of the persistent heap.

The compaction algorithm does not modify the from-space. Hence, supporting fault tolerance is
trivial. If the system crashes before the upgrade finishes, the (incomplete) to-space is discarded and
the process begins from scratch.
Compacting is invoked by the application with the NVM_Compact API. NVM_Compact must not

be invoked when the NVM region is opened for access by the application. It can be used either
before opening the NVM region (when de-fragmentation is necessary) or after closing it (to reduce
NVM consumption).

5 DISCUSSION
5.1 Atomicity-Enforcement Component
NVMReconstruction is orthogonal to the choice of the failure-atomicity enforcement system (e.g.,
transactional system) that recovers the heap state to a consistent point after a crash. However, these
two subsystems interact. A failure-atomicity enforcement system typically relies on a persistent
log for recovery. These logs contain pointers to objects being modified. Recovery is independent if
these pointers are implemented as offsets. However, if these pointers are direct addresses, they need
to be reconstructed before recovery to correctly apply the log during recovery. Reconstruction and
recovery can run in either order. NVMReconstruction can reconstruct the pointers in the persistent
log records before recovery is invoked. Or, reconstruction can be integrated into recovery so that
log records are updated and recovery run before NVMReconstruction’s reconstruction phase.

5.2 Persistent Allocator
Instead of incorporating an allocator into NVMReconstruction, we consider the persistent allo-
cator as an orthogonal component. Persistent allocators are often integrated with an atomicity
enforcement system, and this separation permits use of novel memory allocators without modifying
NVMReconstruction. NVMReconstruction requires the persistent allocator to iterate over the set
of blocks in the NVM heap and, for each block, to iterate over its live objects. NVMReconstruction
also requires the persistent allocator to provide an API to enumerate the roots of the NVM region.
For example, Atlas’s allocator [10] provides the NVM_SetRegionRoot and NVM_GetRegionRoot
methods for setting and reading the root of an NVM region.
Blocks must be a multiple of the virtual memory page size (typically 4K) and objects are not

permitted to cross a block boundary. In general, it is easy to add support to a persistent allocator to
iterate over live objects. However, partitioning the heap into blocks never crossed by an object is
not always easy. If a system cannot implement this capability, it is still possible to use the non-lazy
algorithm by treating the entire heap as a single block.
Another restriction is that persistent memory allocation must not be invoked directly by an

application. Since user code does not properly initialize the header of an object, it will be missing
the runtime type information necessary to interpret the object. pnew must be used exclusively to
create persistent objects, as it ensures that a correct type ID is stored in the object’s header.

5.3 Limitations
NVMReconstruction places some restrictions on an application. If the application uses integers
derived from pointers, e.g., hash values, these values are not automatically updated when addresses
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in the NVM change. In this case, a programmer must provide a reconstructor method to recal-
culate these hash values. Similarly, pointers coerced to integer values or stored in a scalar-typed
buffer are not updated by the system. Again, the programmer can write a reconstructor method
to fix these pointers.

NVMReconstruction was designed to use the NVM memory as a persistent heap owned by a
single process and opened for read/write access. Sharing the NVM region between multiple pro-
cesses is not supported. This poses challenges if processes map the NVM region to different virtual
addresses, in which case indirection is necessary. Opening an NVM region for read-only access
could be supported, but NVMReconstruction still requires its additional mapping for reconstruction
that allows both reading and writing.

Cross-region pointers are supported only if the two regions are loaded simultaneously. In such a
case, the regions are treated as a single heap with non-continuously virtual mapping.

NVMReconstruction does not support union types that overlay two (or more) fields in the same
memory location. The problem is that the system cannot know how to interpret a field during
reconstruction. Unions are not supported in managed languages with garbage collectors, such as
Java and C#, for a similar reason.

Our current implementation supports modifying a class only by adding fields at its end. Reorder-
ing fields is not yet supported. Another limitation is that the name of a modified class must remain
unchanged so that the system can identify object instances to upgrade. Similarly, the name of a
function pointed to by a persistent object must not be modified. Allowing renaming is future work.

5.4 Language Choice
We built NVMReconstruction as a C++ language extension, a natural choice since most high-
performance systems are written in unmanaged languages, and most research on NVM program-
ming uses them as well. Another option would have been to use a managed language such as
Java or C#. This would have simplified aspects, as these languages already have a runtime type
system and a garbage collector. However, we would have needed to implement reconstruction in a
large and complex runtime system. We leave that effort to braver individuals and are confident
that the ideas from NVMReconstruction will carry over to implement reconstruction for persistent
managed objects.

6 DEMONSTRATION AND MEASUREMENT
NVMReconstruction trades performance — the time to reconstruct all objects in the NVM heap —
for programmability. Thus, we evaluate NVMReconstruction along three dimensions. First, what
is the effect of NVMReconstruction on an application’s performance? What is the overhead of
reconstruction as well as the cost of compacting the heap? Second, how much effort is needed to
employ the NVMReconstruction annotations? Third, can durable data survive OS upgrades and
other modifications to the system? These three questions are considered below.
Except when specified otherwise (Section 6.3), all experiments were executed on a machine

containing an Intel i7–6700 CPU @ 3.40GHz with 2 Kingston 8GB DDR4 DRAM @ 2133 MHz
running Linux Ubuntu 16.04. NVMReconstructionwas incorporated into Clang version 5.0.0, which
was used to compile all code.

6.1 ReAtlas
Atlas [10] is a system designed to simplify or eliminate the task of identifying persistent transac-
tions by using existing synchronization primitives in a multi-threaded application to identify the
points in execution at which the program’s state is consistent (i.e., the boundaries of persistent
transactions). We combine Atlas and NVMReconstruction as the systems are complementary and
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focus on different aspects of NVM programming. NVMReconstruction, however, could be have
been equally well integrated with other NVM transactional systems [12, 27, 34, 37, 46]. Atlas has
several limitations that NVMReconstruction corrects. It did not permit NVM to be mapped to
different addresses across executions. If the operating system was unable to satisfy the requested
address, Atlas fails immediately. Atlas also does not support persistent objects that contain virtual
methods, function pointers, or pointers to read-only data.

The integrated system is called ReAtlas. It extends Atlas and supports changing mmap addresses
and persistent objects that contain virtual methods, function pointers, and pointers to read-only
data. NVM is emulated using the /dev/shm directory in Linux, which is backed by DRAM. Atlas
uses an undo log to ensure failure-safety, with clflushes used to ensure write ordering to NVM.
The key difference of ReAtlas, as compared to the original Atlas, is the reconstruction, which we
report below. After reconstruction completes, the overhead of ReAtlas, as compared to Atlas, was
less than 0.9%. We also report compaction time, an optional feature of ReAtlas.

ReAtlas affects performance because of the page faults that occur when objects are reconstructed.
Initially, every NVM memory access triggers a page fault and reconstruction, leading to a “fault
storm” and poor performance. After the initial working set is reconstructed, reconstruction runs
mostly in the background and has little effect on performance.

To measure these costs, we conducted the following experiment. First, we built a simple key-value
store based on a hash map and ran it in ReAtlas. During the initial execution, a key-value store
populated with 500K elements was put in a 1GB NVM heap. Each element was a mapping from
an 8-byte key to a data buffer of 1000 bytes. After populating the hash map, 1M operations were
executed. The operation distribution was 50% reads and 50% puts, similar to YCSB workload A (write
heavy). Then, the application terminated and re-executed. Note that no reconstruction was needed
during the initial execution and no NVMReconstruction performance penalty was observed.

During re-execution, we used the same operation distribution (50% reads, 50% puts) and measured
the number of operations executed in each 10ms time interval. Recall that reconstruction is frequent
at the beginning of the execution, during the fault storm, and fades as execution continues. We
measured two configurations: one in which keys are chosen uniformly at random and the other
in which keys are picked using a Zipfian distribution with skew 1. The experiment was executed
10 times and we report the average throughput for each 10ms time interval. Results are depicted
in Figure 2. In both configurations, we observe the fault storm, but its duration differs. With the
Zipfian distribution, the system executes 4–10 operations during the first 10 milliseconds. After
80 milliseconds, throughput is above 120 operations per 10 milliseconds. Finally, after 140ms,
throughput reaches 90% of peak performance. With the random distribution, the system also
executes 4–10 operations during the first 10 milliseconds, but reconstruction takes longer. It takes
140ms to reach a throughput of 120 operations per 10 milliseconds and 260ms to reach 90% of
peak performance. The main difference between the two is the working set size. The working set
with the Zipfian distribution is small, so popular keys are reconstructed early and cease to affect
performance. By contrast, the working set for the random distribution is larger, so reconstruction
affects performance for a longer time.

The principal cost of reconstruction is backing up and flushing pages that are reconstructed. The
actual reconstruction effort per object is small. To measure these contributions, we slightly modified
the hash map experiment. We fixed the amount of NVM memory at 0.5GB to keep the number
of blocks constant. As we increased the number of elements in the hash map, from 500K to 4M,
we proportionally decreased the size of the data buffer in each element to keep the total memory
usage constant. To avoid inference with the application workload, we measured reconstruction
time using eager reconstruction, which ran before the application started. Results are depicted in
Figure 2. Comparing the two extreme points (500K and 4M elements), we see that the number of
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(a) (b)

Fig. 2. Measuring reconstruction. (a) Throughput of the key-value store in 10ms time intervals (higher is
better). Initially, most accesses cause reconstruction, but the overhead quickly decreases once the popular
elements are reconstructed. Zipfian distribution converges faster since its working set is smaller than randomly
distributed keys. (b) Time to finish eager reconstruction (lower is better). x-axis reports the number of elements
in the hash map. The size of each element is decreased so that the total amount of memory used remains
fixed. The y-axis reports eager reconstruction time. The performance change is not as large as the increase in
the number of objects since most of cost is attributable to the number of pages of memory accessed.

reconstructed objects increased by 8x, whereas reconstruction time increased only by 37%. The
overhead of reconstruction comes from backing up data before reconstructing a block, with only a
slight cost to process each object on a page.

Lazy reconstruction enables an application to start providing functionality almost immediately,
and with this small benchmark, it reaches full throughput in less than 300ms. The reconstruction
penalty and interval obviously depends on the working set size and secondarily on the number of
objects.

Next, we measure the effect of compaction. Recall that compaction is an optional feature of NVM-
Reconstruction, which is explicitly activated before accessing the key-value store. On a workload
with 50% reads, 50% puts, and 500K elements, each of size 1000 bytes, compaction requires 1.5
seconds, during which no key-value operations are executed. We also measured how the number of
items in the heap affects performance. We used the same technique as before: fix the NVM region
size to 0.5 GB and vary the number of elements in the hash table. The results are depicted in Figure 3.
Unlike reconstruction time, compaction is strongly dependent on the number of elements in the
heap. Tracing the heap and allocating objects in the to-space dominates the cost of compaction.
Both have a cost proportional to the number of elements in the hash map.

Compaction, however, can improve the overall performance of the system by de-fragmenting the
NVM heap. To show this effect, we conducted the following experiment. The operation distribution
is 50% reads, 25% puts, and 25% removes. The heap was 65%–70% occupied. Each element is a
mapping from an 8-byte key to a data buffer of length k , where k is picked uniformly at random
in the range 8–2000 bytes. Due to this randomness, a newly created element is unlikely to fit
exactly in the space freed by previous remove operations. Initially, the allocator satisfies most
allocations from the current memory arena, which is relatively inexpensive. However, as the heap
become fragmented, allocation requires a more expensive traversal of the heap, leading to lower
performance.
Initially, the NVM heap was allocated and fragmented by running 4M operations. Then the

application was terminated. We then ran 2M additional operations in two configurations. The
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(a) (b)

Fig. 3. Measuring compaction time. (a) Time to compact the entire heap (lower is better). x-axis reports the
number of elements in the hash map. The size of each element is decreased so that the total amount of
memory used remains fixed. The y-axis reports compaction time. Compaction time is clearly dependent
on the number of elements in the heap. (b) Throughput of a key-value store with and without compaction
(higher is better). With compaction, initial throughput is zero, but it quick catches up as it does not suffer
from memory fragmentation that lowers performance.

first executed a compaction before starting execution, while the second immediately started ex-
ecution (and reconstruction). We executed the experiment 10 times and observed similar trends,
but we report one run of the experiments in Figure 3 to avoid “smoothing out” the results (with
fragmentation, results are highly variant).
For the first 1.5 seconds, the no-compaction version runs faster, as the other version is not yet

running the application. Even without compaction, throughput is initially high as the allocator
manages to recycle memory locally, avoiding expensive searches for free space. After the first 1.5
seconds, the situation reverses. With compaction, the heap is defragmented and operations run at
peak throughput. But without compaction, the allocator is often unable to locally recycle a node
and instead reverts to an expensive search for a free chunk. Performance is more than 4x lower than
peak throughput and the variance is high. Overall, 2M operations finished in less than 5 seconds
with compaction, but required more than 10 seconds without compaction. In this case, compaction
clearly pays off. This suggests that if a heap becomes highly fragmented, compaction is extremely
useful and eventually improves overall performance.

We note that the experiments above used the Atlas memory allocator and could perform differ-
ently on other memory allocators. However, there exist programs that create high fragmentation for
any possible allocator [15, 42]. Another motivation for compaction is the ability to upgrade an ap-
plication and increase the size of its existing objects. This capability does not improve performance,
but it does greatly improves the practicality of storing durable objects in NVM.

6.2 Echo Key-Value Store
Echo [7] is a key-value store designed specifically for NVM. It is part of the Whisper benchmark
suite [39] and performs well. It has been shown to significantly outperform Google’s LevelDB [21]
(when using ramdisk for storage) and to perform similarly to the Masstree transient key-value store.
However, its authors did not implement recovery code for data residing in NVM. Without recovery
code, an Echo DB is effectively transient as durable data cannot be retrieved after a crash. The
benchmark always allocates a new instance of the key-value store and measures its performance.
Thus, this program offers an opportunity to measure the complexity of adding recovery to an
application designed for NVM.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 153. Publication date: November 2018.



153:16 Nachshon Cohen, David T. Aksun, and James R. Larus

Table 1. Number of line changes to use NVMReconstruction in Echo.

pnew pdelete realloc extras transient reconstructor Total
38 68 25 19 64 214

There are several challenges in adding recovery to Echo. NVMReconstruction easily solves
these problems. Echo frequently uses mutexes to synchronize access to an object. These mutexes
are allocated in DRAM and are lost during a crash, but they are pointed to by objects in NVM.
Echo does not contain any code for checking the validity of these pointers or for initializing them
during recovery. It simply assumes that after initializing an object, all its fields remain valid, even
across crashes. To solve this problem, we annotated these mutex pointers as transient and wrote a
reconstructor method that initialized a mutex pointer with a freshly allocated mutex. Without
NVMReconstruction, initializing these mutexes would require thorough understanding of the Echo
system, either to iterate over all persistent objects or to capture the first access to an object. Adding
transient annotations and reconstructors required less than a day, even though we possessed no
prior knowledge of the system.
Echo also uses function pointers to customize the behavior of the internal hash map. If these

functions are mapped to a different address after recovery, the existing Echo system is likely to
crash when it uses a function. NVMReconstruction solves this problem by correctly remapping
function pointers on re-execution.

An additional issue arose with NVM pointers. The memory allocator of Echo is designed to use
offset-based pointers, so allocation runs correctly when the heap is mapped at a different address
than the previous execution. However, the key-value store implementation used native pointers. It
exhibits undefined behavior if the kernel is unable to map the heap file to the same virtual address as
the previous execution.6 The NVMReconstruction neatly solves this problem by updating pointers.
Echo uses C-style allocations for persistent objects. To store runtime information for recovery,

we modified Echo to use the allocation/deallocation keywords (e.g., pnew/pdelete) instead of the
existing C malloc functions for objects that can be persistent. For re-allocations, we created a new
storage space, copied the object, and deleted the old storage.
These changes affect 214 lines (SLOC) of Echo’s 22503 SLOC of code. The breakdown of these

modifications is shown in Table 1. Overall, the Echo system defines 34 types (structs), 17 of which
can be allocated in the persistent heap. Out of these 17 types, we had to modify 7 types to define
a special treatment on recovery: either some of the fields were transient or we had to define
a reconstructor. There was no need to modify the other 10 types, even though they contained
pointer fields that need to be reconstructed, as these are automatically handled by our Clang/LLVM
extension.
Overall, Echo demonstrates that implementing recovery code without NVMReconstruction is

difficult. By contrast, when NVMReconstruction was used, writing the recovery code was easy,
requiring little understanding of the Echo internals. Integrating NVMReconstruction into the Echo
system and NVM allocate was also simple, again showing that NVMReconstruction’s interface is
easy to integrate into an existing NVM system.
We also measured the performance of the Echo key-value system. We inserted a software-

induced crash into Echo’s test run, which simulated a power failure. To avoid affecting performance
measurements, the crash occurred during the population stage of the test. After the failure, Echo

6In our experiments, the kernel was always able to supply the requested virtual address, so we did not observe this behavior.
Of course, as discussed above, the OS need not behave this way.
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was ran again from the failed location, resuming the test. We find that the overall cost of NVMRe-
construction reconstruction is 0.35 seconds for a 1GB size heap. This accounts for 3% of the total
time in the Echo test, which runs for 10 seconds. When compaction is applied, the total initialization
overhead increases to 1.73 seconds.

6.3 Portability Test
Durable data is expected to exist for a long time. It must be able to survive the evolution of the
computation environment, such as OS updates. To test the NVMReconstruction system, we wrote
a simple polymorphism test and executed it twice, once allocating objects in a heap and another
time using these objects. We attempted to modify the execution environment as much as possible
between the two executions. First, we ran the first execution on a server running Ubuntu 16.04 and
the re-execution on a Mac laptop running OS X EI Capitan 10.11.6. Between the two executions,
the heap file was copied to the other machine. Second, we used -O3 optimization flag for the initial
execution and -O0 for the re-execution. Third, we modified the code between the two executions
by adding a boolean field to each class type. Fourth, we modified the mapped address of the heap
file. For the initial execution, the heap file was mapped to address 240, whereas for the second
execution it was mapped to address 3 · 240. Finally, we ran the initial execution under gdb and the
re-execution natively. All these changes ensured that the execution environment differed greatly
between executions. The only aspect we explicitly did not change was the name of the classes.

The test consisted of two stages. The first stage allocates various objects and executes only during
the initial execution. The second stage executes during both invocations and prints the objects. We
ensured that the code for printing objects had no static information about the type of the objects.
The test defines three persistent types. The first is a printableElement, consisting of a pointer to
printableElement and an abstract virtual print method. Using the pointers, it is possible to form
a linked list of printableElements. The second type is a templated printableInt that derives
from printableElement; the print method prints the templated integer argument. We verified (via
the sizeof operator) that the templated argument was a compile-only variable and was not stored
in the object. The third type is printableHello that derives from printableElement. The print
method simply prints “hello world”.

The first stage of the test application, executed only during the initial execution, allocates objects
in a random order and creates a linked list of them. It also sets the root pointer to the first element in
the list. The second stage, executed during initial execution and re-execution, iterates over the linked
list and invokes the virtual print method. The code that iterates over the linked list has no access to
the definition of printableInt and printableHello; only printableElement pointers are used.
Despite the many environmental differences between the initial execution and re-execution, both
executions produce identical output. This demonstrates that NVMReconstruction is able to endure
drastic changes in the execution environment and to preserve the identity of objects.

7 RELATEDWORK
The idea of using C++ to access durable storage dates back to the days of Object-Oriented Database
Management Systems (OODBMS) [3, 5, 6, 24, 25, 29, 31, 45]. As these systems used a hard-disk as
the underlying durable media, entire pages were written to the disk. By contrast, NVM enables
a fine-grained persistence, in which the cost of persistence is a cacheline flush. This motivates
intermixing transient and persistent fields and so requires new reconstruction mechanisms. In
addition, OODBMS are closed worlds, which do not allow pointers to code or to data in a process
to be stored in a DB.
The ObjectStore OODBMS [31] enabled programmers to store arbitrary C++ objects durably.

It relied on memory-protection operations to trap accesses to durable objects. At the beginning
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of a transaction, durable memory was protected so that accesses triggered a memory trap. Traps
are expensive and the resulting overheads were unacceptable for small, fine-grained transactions.
NVMReconstruction also uses traps, but they occur only on the first access to a group of objects
and so have low overhead. Another OODBMS based on C++ is ONTOS [2]. We are not aware of
papers describing the details of this system.
Pointer swizzling [38, 47] is a technique for storing wide (64-bit) pointers in an OODBMS and

converting them into 32-bit virtual addresses. Pointer swizzling can be applied during page-fault
time [44, 48], significantly reducing the overhead for applications with good locality. When data is
written back to a disk, 32-bits virtual address pointers are un-swizzled into the wide 64-bits format.
Our solution for correcting mmap’ed addresses is similar in respects to pointer swizzling but only
uses a pointer single representation.
Most systems for NVM programming focus on implementing a transactional protocol that can

recover a consistent snapshot of the NVM heap when an application crashes. Mnemosyne [46] is the
first system that supports durable transactions, based on TinySTM [19]. DudeTM [34] improves the
efficiency of transactional support by decoupling transactional concurrency control from durability,
which is performed in the background. LSNVMM [27] improves the efficiency of transactional
support by avoiding replicating data in a log. The system stores a single copy of data in a log and is
able to reference it efficiently. Kamino-TX [37] improves the efficiency of transactional support by
using a redo log, while avoiding the need for special lookup. The system stores a DRAM copy of data
for reading and asynchronously updates the durable copy. NVThread [12] improves the efficiency
of transactional support by spawning threads as separate processes and using virtual memory
mapping to create a thread-local view of the memory. Kolli et al. [30] improves the performance of
durable transactions by pipelining multiple stages in order to reduce the number of flushes. Cohen
et al. [14] reduces the number of flushes required for a durable log by carefully utilizing the NVM
memory consistency model.

The transactional protocol is mostly orthogonal to this paper. As shown in Section 2, even when
the application terminates gracefully (i.e., not in the middle of a transaction), the meaning of an
object might change between different executions.

Durable data structures that do not rely on transactional systems have been considered by many
authors [7, 28, 43, 50, 51]. These efforts share the goal of transactional systems of avoiding exposing
the intermediate state of NVM (which is inconsistent) and are also orthogonal to this paper.
Other work focuses on reducing the programming effort required to use NVM. Atlas [10]

simplifies identifying durable transactions. It is based on the observation is that for multi-threaded
programs, if no locks are held, then memory is in a consistent state. Thus, locks can define a durable
transaction. Combining NVMReconstruction with Atlas results in a more capable and resilient
system (Section 6) that enables a programmer to persist objects with virtual methods and enables
the system to operate when the kernel is unable to mmap NVM heap file into the requested address.
Makalu [9] is a conservative garbage collection (GC) for NVM. As it is not integrated with a

runtime type system, it treats every field that could be a pointer as a possible pointer. A conservative
GC can prevent most persistent memory leakages (even during crashes). It also simplifies memory
allocation, because a programmer need not ensure that memory is not lost during program failure.
However, Makalu cannot migrate objects or fixed pointers because it cannot accurately identify
pointer fields. Makalu could be profitably combined with NVMReconstruction to obtain these
benefits.
Coburn et al. [13] propose a restrictive programming model for NVM to enforce “good” pro-

gramming practices. They forbid pointers from NVM regions to DRAM or to other NVM regions.
They also propose wide pointers, consisting of a region ID and offset, to enable an NVM region
to be mapped to a different address. Finally, they suggested generational locks that are implicitly
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released after a restart. These restrictions may involve extensive changes to many applications,
unlike NVMReconstruction, which cleanly isolates recovery and allows most of an application to
use NVM-like conventional memory.

NVMDirect [16] is a C language extension for NVM. Pointers to NVM are implemented as self-
relative offsets. It defines a syntax extension to help a programmer avoid confusing standard and
NVM pointers. NVML [17] is another system designed for NVM. It uses a macro-based solution to
implement NVM pointers as pool ID and offset pairs. NVMReconstruction uses more efficient direct
memory pointers and only requires a programming to annotate transient fields in NVM-resident
objects. SAVI [18] is a system that enables the sharing of objects with virtual functions across
different processes. Such objects cannot be passed directly to other processes as virtual table entries
can differ between the processes. The authors consider two techniques to handle this problem:
duplicating virtual table entries across processes and hash-based lookups in a global virtual table.
NVMReconstruction also tackles the problem of sharing objects with virtual functions, but across
reboots instead of across processes.

8 CONCLUSION
This paper presents NVMReconstruction, a programming language extension to C++ and a runtime
system that supports the recovery of persistent objects and the re-execution of applications that use
non-volatile memory (NVM). A simple language extension ensures that durable objects stored in
NVM can be properly updated and reinitialized when an applications restarts. This extension and
runtime library reestablishes the consistency of the persistent data structures in the environment
when resuming execution, which is orthogonal to the intensively studied atomicity constructs
used to ensure the consistency of NVM during execution. NVMReconstruction supports NVM
objects with transient fields, even if these fields require non-trivial reconstruction. It also supports,
even across program restarts, direct pointers to persistent objects, virtual tables, functions, and
read-only data. The system incurs negligible overhead after reconstruction, which itself is relatively
inexpensive and can be performed lazily to overlap reconstruction with computation. NVMReconst-
ruction also provides compaction to support infrequent application upgrades that modify object
formats and to reduce NVM fragmentation.
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