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ABSTRACT 
Semiconductors with complex anisotropic morphologies in solar to chemical energy conversion devices enhance light absorption and 

overcome limiting charge transport in the solid. However, structuring the solid-liquid interface has also implications on concentration 

distributions and diffusive charge transport in the electrolyte. Quantifying the link between morphology and those multi-physical 

transport processes remains a challenge. Here we develop a coupled experimental-numerical approach to digitalize the photoelectrodes 

by high resolution FIB-SEM tomography, quantitatively characterize their morphologies and calculate multi-physical transport processes 

on the exact geometries. We demonstrate the extraction of the specific surface, shape, orientation and dimension of the building blocks 

and the multi-scale pore features from the digital model. Local current densities at the solid-liquid interface and ion concentration 

distributions in the electrolyte have been computed by direct pore-level simulations. We have identified morphology-dependent 

parameters to link the incident-light-to-charge-transfer-rate-conversion to the material bulk properties. In the case of a structured 

lanthanum titanium oxynitride photoelectrode (Eg = 2.1 eV), with an absorptance of 77%, morphology-induced mass transport 

performance limitations have been found for low bulk ion concentrations and diffusion coefficients. 

 

 

1. INTRODUCTION  

No single material has been found to efficiently and stably split 

water via photoelectrochemical (PEC) approaches while 

simultaneously ensuring scalability. The morphology of 

semiconductor photoelectrodes has been shown to significantly 

affect the performance of photoelectrochemical water splitting 

devices [1]. Optimal morphology can lead to enhanced solar 

absorption, increased surface area for electrochemical reaction, 

and shorter minority carrier migration paths. Therefore, nano and 

micro structuring of materials has been pursued in order to 

circumvent some of the critical limitations of bulk material 

properties. The decoupling of light absorption and charge 

transport can be achieved in well-controlled multi-step processes 

which create structured multi-dimensional arrays like 1D 

nanotubes [2],  nanowires [3], or 3D structures like micron pillars 

[4]. It has been demonstrated in these morphologies that 

enhanced light absorption along the vertical axis can be achieved, 

while orthogonally, minority charge carriers then have a relatively 

short path to the semiconductor-electrolyte interface. The 

morphological characterization of these structures is relatively 

straightforward due to the regularity of the patterns, and 

optimization of feature dimensions and array layouts are feasible 

[5][6]. However, the fabrication of these well-defined structures 

can be expensive or not possible, depending on the used 

materials and processing routes. Less expensive or less 

controllable fabrication steps can result in extremely complicated 
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photoelectrodes with irregular, complex, and stochastic 

morphologies. For example, atmospheric chemical vapor 

deposition with iron pentacarbonyl Fe(CO)5 as a precursor was 

reported to lead to a tree-like hematite array, consisting of 

‘cauliflower’ shaped nanopillars with a complex surface area [7]. 

Another example is a multi-layered particle network fabricated 

via electrophoretic deposition of lanthanum titanium oxynitride 

single crystalline particles on FTO [8]. The porosity of the particles, 

their stacking, and especially their connectivity (enhanced with 

TiO2 necking) are all morphological characteristics that greatly 

influence the performance of this photoelectrode. In general, 

complex photoelectrode morphologies have so far not been 

quantified, and an understanding of their influence on 

performance is limited. When aiming to improve the efficiency of 

a photoelectrochemical water splitting device, the light 

absorption, photogenerated carrier collection, ion transport, and 

catalysis must be optimized simultaneously. However, the 

structuring of the electrode can be beneficial to some of these 

transport phenomena, and disadvantageous to others. The 

effects are coupled, and a combination of experimental and 

numerical work is needed to understand the coupling and to 

optimize the structure for increased efficiency [9].  

Here we propose a combined experimental-numerical approach 

for the morphological and transport characterization of complex 

3D photoelectrodes. We acquired the exact 3D geometry of 

morphologically complex photoelectrode films destructively and 

ex-situ using FIB-SEM tomography. This tomography provides 
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high resolution (voxel size down to 4x4x4 nm3), with the ability to 

measure large sample volumes (hundreds of cubic microns). 

Precise ion beam milling and advanced automated tracking 

systems allow for isotropic measurements, providing the same 

high resolution in the slicing direction as in the imaging plane. The 

digitalized structure enables quantification of the overall film 

structure of the photoelectrode, as well as the individual 

components of the film. Furthermore, this data can then be used 

in direct pore-level simulations to characterize multi-physical 

transport in the films and identify transport limitations. In the 

present study, the methodology is demonstrated on hematite 

‘cauliflower’ and structured lanthanum titanium oxynitride 

photoelectrodes. The outcome of this study facilitates the 

identification of structural performance limitations and the 

development of morphology guidelines for performance 

enhancement.  

 

2. DIGITALIZATION OF THE MORPHOLOGY  

Exact 3D morphologies were acquired by FIB-SEM tomography. A 

cubic sample volume of the PEC electrode, embedded in epoxy, 

was eroded layer by layer using an ion beam. Between each 

milling step, a scanning electron beam acquired an image of the 

sample cross-section. This resulted in a sequence of cross-section 

images that allowed the digital reconstruction of the sample 

morphology.  

Two structured photoelectrodes of different materials, 

deposition procedures, and characteristic feature sizes were 

analyzed. Sample (i) was a 650 nm thick hematite (α-Fe2O3) 

photoelectrode consisting of ‘cauliflower’ shaped pillars 

deposited on FTO by atmospheric pressure chemical vapor 

deposition (APCVD). The detailed fabrication process of this 

electrode and its photoelectrochemical behavior were reported 

by Kay et al. [7]. These authors demonstrated a maximum 

photocurrent of 2.2 mA/cm2 at 1.23 VRHE in AM 1.5 G light of 1000 

W/m2. The smallest feature size, a single branch of a pillar, was in 

the range of tens of nanometers. Sample (ii) was a 7570 nm thick 

lanthanum titanium oxynitride (LaTiO2N, LTON) photoelectrode 

that was fabricated by electrophoretic deposition of LTON 

particles on FTO, followed by a dip coating step resulting in 

particle necking with TiO2. The detailed fabrication of LTO 

particles by solid state synthesis, the thermal ammonolysis step 

to obtain LTON particles, the deposition method, and the 

photoelectrochemical response were reported by Landsmann et 

al. [8]. These authors reported a maximum photocurrent of 0.8 

µA/cm2 at 1.23 VRHE for bare LTON, and improved it to 2.2 mA/cm2 

at 1.23 VRHE by adding a co-catalyst [10], both measured in AM 

1.5G light of 1000 W/m2. The LTON particle dimensions varied  
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Figure 1: 3D rendering of (a) the hematite photoelectrode with a 4x4x4 nm3 voxel volume size and a recorded volume 

of 1x5x24 μm3, and (b) the LTON photoelectrode with a 8x8x8 nm3 voxel volume size and a recorded volume of 8x8x31 

μm3. For both samples, a detailed view of the first SEM image of the acquired stack is shown. 



from hundreds of nanometers to micrometers, and the pores 

within the particles were in the range of a few nanometers. Figure 

1 shows the 3D rendering of the hematite and LTON 

photoelectrodes, digitalized based on the post-processed SEM 

cross-sections.  

  

3. PHOTOELECTRODE CHARACTERIZATION  

3.1 Macroscopic Structural Characterization of Photoelectrode 

Films 

3.1.1 Volume Fraction Profile 

The volume fraction profile (Figure S2) in the hematite film was 

divided into three regions: a dense base of the ‘cauliflower’ stems 

(z/t=0-0.2), an intermediate layer (z/t=0.2-0.5) with a decreasing 

density (85%-73%), where the pillars are branching out, and a top 

layer (z/t > 0.5) with a sharp density drop due to the uniform 

heights of the ‘cauliflowers’. The LTON film showed a much more 

loosely packed particle network of 30% solid, with a monotone 

decrease at the top (z/t>0.4) as the particle density thinned out. 

The plate-like particles, most standing with a single corner on the 

glass, led to a low volume fraction just above the FTO glass 

(z/t=0.015, the FTO glass roughness had a profile height in the 

range of 20-120 nm). The volume fraction of the TiO2 phase 

confirmed that necking fills the roughness of the FTO surface. The 

calculated mean volume fractions in the films were 60.1% and 

19.8% for the semiconductor phase in the hematite and LTON 

sample, respectively. 

 

3.1.2 Surface Area  

The hematite ‘cauliflower’ structure showed a film roughness 

factor (surface area per flat xy-plane area) of 12.7. The LTON 

electrode showed a film roughness factor of 30.3, but more than 

half of this was accounted for by the nano-pore network within 

the particles. Without the surface area of the nano-pores, the film 

roughness factor decreased to 12.5. Our calculations also showed 

that the necking between the particles decreases the surface 

roughness only slightly, by a value of 1.3. When we considered all 

interfaces in contact with the electrolyte active, including the 

nano-pores connected to the inter-particle space, the film 

roughness was 18.2. For the LTON sample, some of the FTO 

substrate remained uncovered and contributed a value of 1.4 to 

the roughness factor. When evaluating the results as surface area 

per semiconductor volume (excluding the surface and volume 

contributions of the FTO), the highest value was found for the 

hematite sample, 3.382·10-2 nm-1 compared to LTON=1.958·10-2 

nm-1. The specific surface of the LTON in direct contact with the 

percolating electrolyte was 1.133·10-2 nm-1. The specific surface 

of the LTON without nano-pores was 0.751·10-2 nm-1 (Figure S3). 

This converts to hematite=6.567 m2/g and LTON=3.169 m2/g, 

using a bulk density of hematite=5.15·10-12 g/µm3 and 

LTON=6.18·10-12 g/µm3. Our calculated values agree qualitatively 

with reported measurement results. The measured value for the 

surface roughness factor for hematite (measurement method not 

specified) has been reported to be approximately 24 [11], and the 

specific surface area for LTON (BET method) has been reported to 

be 14.2 m2/g [8]. The FIB-SEM spatial resolution is the limiting 

factor for a more accurate calculation of the surface areas. 
 

3.1.3 Size Distribution of the Semiconductor Phase, Pore Space, 

and Necking  

It is difficult to experimentally measure characteristic feature 

sizes and to quantify their distribution, especially for PEC 

electrodes with complex morphologies. The opening size 

distribution method applied to the semiconducting phase of the 

segmented dataset is capable of computationally quantifying the 

Figure 2: Cumulative opening size distribution (left y-axis) 

and probability opening size distribution (right y-axis) of the 

semiconductor films. (a) Hematite semiconducting phase 

(blue) and pore space (yellow). (b) LTON semiconducting 

phase with necking (violet), pore space (yellow), and TiO2 

necking phase only (green). The TiO2 probability opening 

size distribution has been scaled down by a factor of 5.  
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shortest diameter of every feature and thus gives an indication of 

the mean path length for the minority carriers to reach the solid-

electrolyte interface. For the hematite electrode, the mean 

feature diameter is 74 nm [dmin=0 nm, dmax=144 nm] (Figure 2a). 

In Figure 2b, the opening size distribution for the semiconducting 

phase of the LTON film is shown. The nano-pores in the individual 

particles were artificially filled in order to quantify the typical 

LTON particle size. The average characteristic feature size was 

441 nm [dmin=0 nm, dmax=800 nm]. This is double the maximum 

path length a minority carrier needs to travel to reach the outer 

interface of a particle. However, a minority carrier may transfer 

to the electrolyte via the connected nano-pore network.  

The pore space, filled with electrolyte in the operating PEC 

electrode (as long as the pore network is percolating and the 

capillary pressure is high enough for the electrolyte to penetrate 

into the smallest pores), had a mean diameter between hematite 

branches of 29 nm [dmin=0 nm, dmax=60 nm]. The mean diameter 

of the pore space, due to inhomogeneity of film thickness, i.e. 

between the thinnest and thickest film region, was 103 nm 

[dmin=60 nm, dmax=185 nm]. The pore space of the LTON film was 

divided into three different length scales: the nano-pores (nP) 

within individual LTON particles, having a mean diameter of 30 

nm [dmin=0 nm, dmax=128 nm], the meso-pores (mP) between the 

individual LTON particles, having a mean diameter of 1.17 µm 

[dmin=128 nm, dmax=2 µm], and the mean characteristic diameter 

of the pore volume developing between the thickest and thinnest 

region of the film, having a mean diameter of 3.03 µm [dmin=2 µm, 

dmax=4 µm].  

The opening size distribution of the necking phase (TiO2) in the 

LTON electrode revealed that the average diameter of the 

necking was 93 nm [dmin=0 nm, dmax=256 nm]. Together with the 

results from the volume fraction profile, these small sizes of the 

necking patches indicate that, apart from the first layer of LTON 

particles (well connected to the FTO), the charge generated in 

particles higher up in the film must be transported through 

multiple TiO2 necking patches, and particles before reaching the 

FTO substrate. 

 

3.2 Feature Characterization on Multiple Scales 

As applied to the LTON photoelectrode, the dimensions, shapes, 

and orientations of the individual LTON particles (micrometer 

scale) and the nano-pores (pores within the hosting LTON particle 

in nanometer scale) were quantified. For the particle analysis, 

individual particles had to be identified within the interconnected 

particle network. For the nano-pore analysis, the individual nano-

pores had to be assigned to the hosting particles. However, a 

proper segmentation of the particles posed difficulties due to the 

plate-like shapes of the particles, high aspect ratios, and locally 

dense stacking. For this purpose, we developed an algorithm to 

fit ellipsoids, grown from manually placed seed points, into the 

dataset (see Methods). Prior to this process, the nano-pores were 

artificially eliminated with a low pass filter. In Figure S7, the 

computed ellipsoids are visualized in the LTON geometry.  

3.2 1 LTON electrode: Particle Characterization  

Non-overlapping ellipsoids were fitted into all the particles. Since 

the shape of the analyzed LTON particles was dictated by the 

crystal structure of the precursor oxide LaTi2O7 (LTO), the three 

ellipsoid axes were associated with crystal axes of the LTO and the 

LTON unit cell. The resulting distribution of ellipsoid diameters 

along the directions of the three semi-axes were approximated by 

lognormal distributions (Figure S8). The shortest diameter of the 

ellipsoid, ds, was confined between 100 nm and 500 nm, with a 

mean of 272 nm (SD=88 nm). This result confirms and quantifies 

the narrow range of ds, which is explained by a known cleavage 

plane, normal to the shortest particle diameter, with weak bonds 

in the initial LTO particles [12]. The intermediate, di, and longest, 

dl, ellipsoid diameters were spread over a larger range up to 2 µm 

and 4 µm, respectively (di,mean=932 nm,  SDi=427 nm; dl,mean=1789 

nm,  SDl=773 nm). These indicate high aspect ratio particles, 

quantified in Figure 3. Overall, a high aspect ratio for ds/di was 

found with a mean of 0.35, and a moderate aspect ratio was 

found for di/dl with a mean of 0.55. The results were grouped 

according to the length of di into 4 classes of 500 nm intervals. 

The mean values, calculated for each class, showed a significant 

trend from prolate shapes to oblate shapes as di increased. The 

ratio ds/dl was fixed within a narrow range (lognormal 

distribution: mean=0.18, SD=0.09), indicating that the thicker 

monocrystalline particles can sustain a longer extension along the 

dl semi-axis. These results agree with the qualitative findings of a 

Figure 3: Shape analysis of the computed ellipsoids. The 

ellipsoids are divided into 4 classes based on the length of 

the intermediate diameter. The mean value shifts from 

prolate to oblate shapes for classes with larger di. Overall, 

the ratio ds/dl stays constant. Isolines for ds/dl are shown for 

the mean=0.18 ±SD. 
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TEM study on the particle shape for LTON [34], and highlight the 

additional advantage of strongly improved statistics. This 

quantitative information on particle shape delivers novel input for 

the understanding and control of single crystal particle growth 

modes in LTON.  

Based on the ellipsoid fitting, the particle volume distribution was 

estimated by assuming cubically shaped particles (Figure S9). In 

this case, the volume of the particles can be approximated by the 

volume of the box surrounding the ellipsoid. The lognormal 

distribution function had a mean of 0.521 µm3, a standard 

deviation of 0.544 µm3, and a median of 0.338 µm3.  

Quantifying the bounding boxes allows the estimation of the 

areas of specific surface plane types known to be implicated in 

photoelectrode performance. Pokrant et al. [12] correlated 

specific crystallographic planes with LTON particle faces and 

found that the biggest surface corresponds to the (100) plane, the 

medium surface to the (001) plane and the smallest surface to the 

(010) plane. Following this model, we quantified the ratio of these 

surface types. In an ideal case with non-touching particles, the 

(100) plane accounted for up to 70.57% of the overall outer 

particle surface, the (001) 19.33%, and the (010) 10.10%. If one 

knows the activity of the surface plane types, for example by ab-

initio calculations, then the results here are key to estimating the 

performance potential of LTON particles and electrodes.  

Using the eigenvectors of the ellipsoid radii, the orientation of the 

particles with respect to the FTO substrate was determined 

(Figure S10). Due to their plate-like nature, the orientation of the 

particles was quantified using the smallest diameter axis 

(standing normal on the largest particle surface). The smallest 

diameter vector is perpendicular to the electrode plane for a 

particle lying flat on the FTO, and an elevation angle of 90° was 

assigned. The elevation angle 

was set to 0° for a particle 

standing on an edge (i.e. the 

smallest diameter vector is 

parallel to the FTO substrate). 

No trend of particle 

orientation as a function of 

the z-positon in the film was 

found. Only a small 

percentage of particles laid 

flat or almost flat in the film. 

For the most part, the normal 

vectors of the particles were 

elevated by 10° or 45°. This is a 

desirable result, as the 

incoming light is absorbed 

along the long axes of the 

particles, the minority carriers 

have a short way to the 

electrolyte, and the majority 

carriers have to pass through fewer TiO2 necking patches.  

 

3.2.2 LTON electrode: Nano-Pore Characterization 

The pore network within the particles of sample (ii) forms during 

the powder ammonolysis step from LTO to LTON as 

compensation for the unit cell volume reduction. Its volume 

fraction is on the order of 14% [12]. The inner porosity (volume 

fraction within the ellipsoid volume, i.e. neglecting particle 

boundary effects) was calculated for 68 individual particles, and 

an average value of 10% was obtained with a standard deviation 

of 0.02. This value agrees well with a calculated inner porosity of 

9%, based on a complementing TEM tomography of a single LTON 

particle (TEM resolution of 7x7x7nm3). Our calculations predict 

that 34.1% of the total nano-pore volume within the particles is 

connected with the interparticle void space, and is thus filled with 

electrolyte during PEC operation. 

The nano-pore orientations relative to the orientation of the 

hosting particle were also quantified. The semi-axes of the 

ellipsoid were used as the reference coordinate system (Figure 

4a). An azimuth and an elevation angle of 0° corresponded to an 

elongated pore directed along the x-axis, the direction of the 

longest particle diameter dl. The calculated pore orientations 

were translated into crystallographic directions based on an 

orthorhombic LTON unit-cell with unit-cell parameters: 

a=5.57137 Å ([100]), b=7.8790 Å  ([010]), and c=5.60279 ([001]) 

[13]. Figure 4b shows the 2D histogram of the relative nano-pore 

orientations based on all pores in 4 particles with a volume 

greater than 30 voxels. The volume threshold filtered out small 

pores for which the algorithm was not able to determine the 

orientation. The frequency of the elevation angles was normally 

distributed around 0°. Considering only the elevation angles 
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Figure 4: (a) Rendering of an ellipsoid (blue) fitted into a LTON particle, and of nano-pores within 
the ellipsoid. The semi-axes correspond to crystallography directions of x=[010], y=[001], and 
z=[100]. An azimuth and an elevation angle of 0° corresponds to the direction of the x-axis. The 
pores in the network were separated using watershedding and visualized with individual colors. 
(b) 2D histogram of the nano-pore orientations in 4 different LTON particles relative to the 
orientation of the hosting particle. Three crystallography directions are indicated. The nano-pores 
are most frequently elongated in the [011] direction. 



between 0° and 5°, an overall maximum in the azimuth angle 

distribution was found at -30° and the corresponding local 

maximum at 150° was shifted by +180°. A high number of pores 

was elongated in the [010] direction, which corresponds to the 

longest semi-axis of the particle. However, the 2D histogram 

revealed that the pore orientations along the [011] direction 

belong to the most frequent elongation direction. With this result 

we quantitatively confirmed the qualitative TEM-based 

hypothesis [34] that the nano-pore elongation direction follows a 

major crystal axis (Figure S11). We also proved that we are able 

to analyze complex 3D porous networks utilizing FIB-SEM 

tomography with a higher resolution than 10 nm.   

     

3.3 Transport Characterization by Direct Pore-Level Simulations 

3.3.1 Electron-hole pair Generation Rate and Local Current 

Density 

An isotropic subsample with a volume of 512 μm3 was used for 

the following calculations. The subsample was eight times larger 

than the representative volume (Figure S5) and represents well 

the key morphological characteristics (volume fraction profile and 

surface area) of the measured LTON film (Figure S6). To model the 

light absorption, 25 x 25 volume fraction profiles along the z-axis 

were calculated from the subsample. For each column, the 

generation rate per solid volume was calculated applying Beer-

Lambert’s law with a discretization step of 40 nm in z-direction. 

For the wavelength-dependent absorption coefficient (Figure 

S12), and a bandgap of 2.1 eV, 77% of the incident light of the 

AM1.5G spectrum was absorbed within the LTON film. This result 

is in agreement with the experimentally determined absorptance 

of 72.3%. The generation rate for front illumination was 

symmetrically distributed, with a peak just beyond half of the film 

thickness. In contrast, the generation rate profile showed a 

maximum in the first micrometer and then declined (Figure S13). 

This difference is directly linked to the morphology, as the first 

particle layers for the front illumination are much more loosely 

packed compared to the layers above the FTO. Assuming 100% 

absorbed photon-to-current efficiency, the generated charges 

were distributed onto the closest semiconductor-electrolyte 

interface. The current density distributions are shown in Figure 

S14. The most frequent current density was 0.12 mA/cm2 for front 

illumination, and 0.17 mA/cm2 for back illumination. As expected, 

the back illumination led to higher maximum local current 

densities (4.31 mA cm-2 for front illumination and 4.99 mA cm-2 

for back illumination).  

The measured absorption coefficient showed a weak wavelength 

dependency between 300 nm and 590 nm (bandgap). Therefore, 

the generation rate profile was calculated for a constant 

wavelength-averaged absorption coefficient of 1.4·104 cm-1. The 

mean deviation from the exact profile was 1.1% and 1.6%, for 

front and back illumination respectively. Based on this finding, the 

generation rate profiles and the local current densities were 

calculated for constant absorption coefficients ranging from 5·103 

to 1·105 cm-1 and a constant bandgap of 2.1 eV. The results 

showed that the influence of the morphology on the generation 

rate profile increases with higher absorption coefficients. For an 

absorption coefficient of only 5·104 cm-1, the shape of the 

generation rate profile is already dictated by the volume fraction 

profile. A maximum absorptance of 97.3%, equivalent to a 

maximum current of 9.5 mA/cm2 (per flat photoelectrode area), 

can be reached with a high absorption coefficient of 1·105 cm-1; 

the remaining part is always lost due to small areas not covered 

by any particle. For all absorption coefficients, the maximum 

current density for front illumination was 9-13% lower than for 

back illumination. Also, for low absorption coefficients (< 8·103 

cm-1), evenly distributed current densities with low values (< 4 

mA/cm2) were found, which is desirable in order to avoid 

degradation. High absorption coefficients (> 5·104 cm-1) resulted 

in big fractions of the surface area having high current densities, 

up to 11 mA/cm2. 

 

3.3.2 Mass Transport and Local Concentration Distribution 

The diffusion of reactants into the pore space of the LTON 

photoelectrode was studied. The same subsample as previously 

discussed was considered and shown in Figure 5. The incident-

light-to-charge-transfer-rate-conversion (ILCC) was calculated as 

a function of the intermediate reactant concentration, located 

above the LTON film at the interface to the macroscopic 

hydrodynamic boundary layer. The charge transfer rate 
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Figure 5: Example of calculated current densities for back 

illumination (α=1.4·104 cm-1) and OH- concentrations  

(ci=1 mM). The electrolyte is stagnant in the pore space and 

by a Sherwood correlation, the contributions of the 

hydrodynamic boundary layer in a flow cell setup is taken 

into account. 



integrated over the semiconductor-electrolyte interface is 

determined by the number of photons absorbed in the 

semiconductor and the number of reactants diffusing to the 

interface. The results are shown as absorbed-light-to-charge-

transfer-rate-conversion (ALCC) by multiplying with the 

absorptance (Figure 6a). For ALCC = 1, the mass transport did not 

limit photoelectrode performance for a given ci, but once the 

transport limitation was reached, the ALCC decreased sharply 

with decreasing ci. For back illumination, the decrease occurred 

at higher ci, and the initial slope was steeper, because the 

electrolyte close to the back (where the current density is the 

highest) was depleted first. Similar curves with different starting 

points for the transport limits were calculated for various 

diffusion coefficients D, ranging from 10-4 to 10-6 cm2/s, including 

the diffusion coefficients of OH- (D=5.28·10-5 cm2/s) and dissolved 

CO2 (D=2.02·10-5 cm2/s) in water. The results can be 

approximated by the following analytical equation: 

𝐴𝐿𝐶𝐶 = 𝑎 ∙ 𝑐i ∙ 𝑒(−𝑏∙𝑐i)          ≤ 1       (1) 

where ci [mol m-3] is the intermediate concentration. a and b are 

parameters that depend on the properties of the semiconductor, 

the electrolyte, the irradiance, and the morphology: 

𝑎 = 𝛷>𝐸𝑔 ∙ 𝐴 ∙ 𝑛 ∙ 𝐷 ∙ (𝑎1/𝛼2 + 𝑎2)            [m3 mol-1] (2) 

𝑏 = 𝛷>𝐸𝑔 ∙ 𝐴 ∙ 𝑛 ∙ 𝐷 ∙ (𝑏1/𝛼2 + 𝑏2)            [m3 mol-1] (3) 

Both a and b are linearly dependent on: the integral of the 

incoming photon flux (with energies above the bandgap), 𝛷>𝐸𝑔 

[m-2 s-1], the absorptance, A [-], the number of charges transferred 

at the semiconductor-electrolyte interface per reactant, n [-], and 

the diffusion coefficient of the reactant in the fluid phase, D 

[m2/s]. Finally, there is an inverse quadratic dependency of a and 

Figure 6: (a) Simulated values and fit for the absorbed-light-to-charge-transfer-conversion (ALCC) as a function of the 
intermediate concentration and the diffusion coefficient. (b) The ALCC correlated to the bulk pH for different flow regimes of 
a flow cell water splitting device with NaOH as an electrolyte. (c,d) The surface concentration distributions, cs, at the 
semiconductor-electrolyte interface and the tortuosity, τ, at different ALCC values for 3 diffusion coefficients for front and 
back illumination. (c) The histogram bars are binned with a logarithmic scale and the square above the bar indicates the 
intermediate concentration ci corresponding to the ALCC. (d) The tortuosity corresponds to the mean path length of the 
reactants divided by the film thickness. The error bars indicate the standard deviations of the normal distributed tortuosity. 
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b on the absorption coefficient α [m-1]. The first two parameters 

define the maximum possible current per irradiated flat area, and 

the multiplication with n defines the maximum possible reactant 

flux through a plane perpendicular to the irradiation direction.  

Any increase in this overall flux shifts the curve of the ALCC to 

higher ci, and a decrease shifts it to lower ci. In Figure 6a, the 

linear dependency between the diffusion coefficient and the 

parameters a and b has been demonstrated by fitting a=a0·D and 

b=b0·D in Equation 1 to all the simulated data points (same 

absorption coefficient), with a RMS=0.014 for front illumination 

and a RMS=0.016 for back illumination. As shown in Figure S16, 

the ALCC highly depends on the generation rate profile, or more 

specifically, the absorption coefficient and the volume fraction 

profile. For front and back illumination, the results showed a shift 

to higher ci for larger absorption coefficients. For the front 

illumination, this was mainly due to the increased generation 

rate. For the back illumination, the shift to higher ci is much more 

pronounced, as a larger absorption coefficient also shifts the 

generated charges to lower positions in the film, thus making it 

more difficult for the reactants to reach. In both cases, the ALCC 

curves asymptotically merged with high absorption coefficients. 

As previously discussed, in this range of high absorption 

coefficients, the generation rate profile is purely dependent on 

morphology, and thus constant. This behavior can be described 

by an inverse quadratic dependency with the fitting parameters 

a1, a2, b1, b2. The parameters a1 and b1 are weights to control the 

decrease of a and b with increasing absorption coefficients. The 

parameters a2 and b2 characterize the effect of morphology on 

the ALCC. Equations 1 to 3 were fitted to the data points in Figure 

S16, respecting the previous fit for a0 and b0. For front 

illumination, the parameters a1=2.254·10-1, a2=4.714·10-13, 

b1=8.217·10-2, and b2=1.709·10-13 were calculated with 

RMS=0.032. For back illumination, the parameters a1=2.538·10-1, 

a2=2.003·10-13, b1=9.536·10-2, and b2=6.871·10-14 were calculated 

with RMS=0.041. The parameters a2 and b2 are more than two 

times smaller for back illumination than for front illumination, 

which confirms them as morphology-descriptive parameters. 

Smaller parameters a2 and b2 lead to a shift of the ALCC to higher 

ci. The morphology has a much stronger effect on the ALCC for 

the back illumination case, as the generation rates are much 

deeper in the film, and mass transport limitations occur at higher 

concentrations.  

The correlation found between ci and ALCC can be combined with 

a macroscopic Sherwood correlation, describing the 

hydrodynamic boundary layer, to link the ALCC to a bulk 

concentration, cbulk. To quantify a realistic hydrodynamic 

boundary layer, the LTON photoelectrode was considered to be 

in a PEC flow cell [14], and the transport of OH- ions into the pore 

space of the LTON electrode for the oxygen evolution reaction in 

a water splitting device was studied (Figure 5). For the specific 

case of a flow cell, the Sherwood correlation described in the 

Methods was used. However, Equation 1 can be linked to any 

other appropriate correlation in another reactor setup. The ALCC 

as a function of the bulk pH of an aqueous NaOH solution is shown 

in Figure 6b for 3 different flow regimes: almost stagnant, Re=4; 

medium velocity, Re=143; and maximum velocity in laminar flow, 

Re=2300. The bulk pH for which the mass transport through the 

macroscopic concentration boundary layer begins to be limiting 

is indicated with a dotted line. For Re=4, the macroscopic mass 

transport limit was predicted to begin below a bulk pH of 12.6. 

The microscopic LTON structure had a minimal effect in this flow 

regime, and the illumination direction did not play a role. For 

Re=143 and Re=2300, the mass transport limitation was due to 

LTON morphology, and the difference between front and back 

illumination was more pronounced for higher Re. For the given 

case, mass limitations occurred only for relatively low bulk pH 

values (bulk pH < 12.6, Re=4), and in a flow cell setup, those mass 

transport limitations were shown to be effectively reduced by 

increasing the velocity (bulk pH < 11.82, Re=2300). However, with 

our multi-scale correlation, we not only predict the bulk pH below 

which the mass transport is limited, but also describe the ALCC as 

a function of the bulk pH. In addition, the local surface 

concentrations, cs, along the semiconductor-electrolyte interface 

are quantified for different diffusion coefficients at specific ALCC 

values. Figure 6c shows the results for D=5.28·10-5 cm2/s, 

D=2.02·10-5 cm2/s , and D=5.00·10-6 cm2/s at ALCC=1, 0.8, 0.6, 0.4, 

and 0.2. The concentration distribution is analyzed by using 

histogram bins in the logarithmic scale. The surface fractions for 

surfaces with zero concentration are, by definition, identical for 

all three diffusion coefficients at a given ALCC.  For decreasing 

ALCC values, the surface fraction of surfaces in depleted 

electrolyte regions increases. For both illumination directions, the 

depletion of the electrolyte began in regions above the FTO, 

which are the furthest from the bulk concentration. In the case of 

front illumination, a sharp increase of surfaces with zero 

concentration was observed from ALCC=1 to 0.6. The charges are 

generated high up in the film, and almost 60% of the surfaces 

were depleted for a 40% decrease of the overall mass flux. The 

rate of surface depletion diminished afterwards for lower ALCC 

values. For back illumination, the surface fraction of depleted 

surfaces was always much lower compared to front illumination 

for the same ALCC. For back illumination, the peak of the 

generation rate was confined to the bottom of the LTON film and 

the ALCC was influenced by the first surface areas that were 

depleted. Also, the surface fraction of depleted surfaces 

increased linearly with decreasing ALCC. In Figure 6c, the order of 

magnitude of the intermediate concentration for each ALCC and 

diffusion coefficient is indicated above each histogram bar. For 

ALCC=1, the calculated surface concentrations were, at most, one 

order of magnitude smaller than the intermediate 

concentrations, resulting in small concentration gradients 

throughout the pore space of the structure. This quickly changed 



for ALCC=0.8, where a wide distribution of surface concentrations 

was observed. The magnitude of the diffusion coefficient 

determined the surface fraction at each concentration. Larger 

diffusion coefficients resulted in a broader concentration 

distribution along the film thickness, and low surface 

concentrations (10-3-10-1 mol/m3) had a higher surface fraction. 

The concentration gradient was much higher for low diffusion 

coefficients, and most of the surface concentrations were closer 

to the intermediate concentration for a given ALCC. This was 

observed for front and back illumination. In general, the 

computed results provide unique insight into the influence of 

morphology on local surface concentration distributions. The 

data can be used to study the degradation of structured 

semiconductor electrodes due to locally quantified pH values in 

which the semiconductor is not stable. The specific case of the 

LTON photoelectrode in aqueous NaOH electrolyte was analyzed 

and the surface fractions of local pH values vs. bulk pH values are 

shown in Figure S17. The ALCC was below 1 for bulk pH values 

smaller than 12.6 and Re=4. For higher bulk pH values, the local 

pH on the electrolyte-semiconductor interface was not affected 

by the morphology. However, for smaller bulk pH values, e.g. 

12.5, local pH values (down to pH 7) were found. For LTON, which 

is stable only at high pH values (above 13), we never reached a 

condition where morphology would locally reduce the pH and 

degrade the semiconductor. The introduced approach could also 

be applied to an electrode for CO2 reduction, where local pH 

gradients are also desired to promote the activity of a catalyst 

towards the production of a specific product. 

The tortuosity was calculated for the same conditions as the 

surface concentration calculations and is shown for front and 

back illumination in Figure 6d. The tortuosity was defined as the 

mean path length of the reactants travelling from the 

intermediate concentration plane to the semiconductor surface 

divided by the LTON film thickness. Therefore, the tortuosity can 

be smaller than 1, as most reactants do not travel through the 

whole film thickness (Figure S18).  The path lengths were normal 

distributed and the error bars indicate the standard deviations. 

The tortuosity was generally larger for back illumination, as the 

key parameter is the generation rate profile calculated from the 

light absorption (Figure S13). For both illumination directions, the 

tortuosity decreased for smaller ALCC values due to the creation 

and growth of the depletion regions. For a given ALCC value, the 

influence of the diffusion coefficient was negligible.  Despite the 

complex structure of the LTON film, the mean values of the path 

lengths did not exceed the film thickness, even in the case of no 

mass transport limitations. 

 

4. CONCLUSIONS 
For the first time reported, we have successfully used nano-

tomography to acquire the detailed geometries of 

morphologically-complex PEC electrodes. This data was 

digitalized and used to provide a quantitative analysis of the 

structure of two morphologically-complex photoelectrodes: a 

particle-based lanthanum titanium oxynitride electrode with a 

film thickness of a few micrometers, and a ‘cauliflower-like’ 

structured hematite electrode with a film thickness of a few 

hundred nanometers. We used a combined experimental-

numerical approach in which we obtained the exact structural 

information by destructive, ex-situ FIB-SEM tomography and 

digitalized the structure utilizing advanced post-processing and 

segmentation algorithms. We then used various computational 

algorithms to quantify the morphological properties on multiple 

scales: i) the solid phase material distribution along the electrode 

thickness, specific surface, mean feature dimensions, and film 

homogeneity on the macro-scale; ii) particle shapes, surfaces, 

volumes, and orientations on the meso-scale; and iii) nano-pore 

volumes and orientations on the nano-scale.  

Detailed semiconductor material distribution profiles along the 

electrode thickness were obtained and provide relevant 

information for light absorption. Surface characterizations on the 

exact geometry allowed decoupling of contributions from the 

meso-scale features and the nano-scale pores, suggesting that 

the connected nano-pore surfaces represent 31% of the overall 

surface. Advanced segmentation of the tomography data, based 

on machine learning algorithms which can distinguish different 

grey value patterns, led to the identification of the TiO2 necking 

phase in the LTON electrode and revealed that necking spans 

short distances between particles only. These results prove that 

majority carriers must be transported through multiple particles 

and necking patches in order to reach the FTO back-contact. An 

algorithm was developed which performs ellipsoid fitting into the 

particle-based LTON structure. This algorithm allows for the 

identification and characterization of individual particles in the 

highly interconnected particle network. Quantitative 

characterization of single LTON particles was then obtained by 

calculating frequency distributions of particle diameters and 

volumes, as well as particle shapes and orientations. The surface 

area of the particles was calculated and contributions from the 

characteristic particle facets, which are linked to crystallographic 

planes, were estimated. The high resolution of the FIB-SEM 

tomography gave quantitative insight into the nano-pore volumes 

within the LTON particles and allowed determination of the 

crystallographic directions, to which the pores were preferentially 

elongated.  

Multi-physical transport characterizations were performed on the 

LTON photoelectrode using direct pore-level simulations. The 

exact 3D morphological geometry was used to investigate light 

absorption in the semiconductor and mass transport through the 

liquid space of the LTON particle network. Current densities for 

front and back illumination were calculated and imposed as a 

boundary condition at the semiconductor-electrolyte interface. 



The influence of the absorption coefficient on the generation rate 

profile was analyzed and resulting current density distributions 

were quantified. The mass transport calculations were done on 

multiple scales, simulating the purely diffusive transport of 

reactants through the stagnant pore space and correcting the 

result with a Sherwood correlation to take into account the 

concentration gradients in the macroscopic hydrodynamic 

boundary layer. The mass transport induced performance drop of 

the photoelectrode was described as a function of the 

semiconductor and electrolyte properties, the incident radiation, 

and ultimately linked to the morphology. Local concentration 

distributions on the semiconductor-electrolyte interface were 

quantified for various ALCC values and diffusion coefficients. For 

the same conditions, the tortuosity of the reactants within the 

LTON film was calculated. 

This study presents the first in-depth geometrical quantification 

and multi-physical transport characterization of morphologically-

complex photoelectrodes. The data acquisition with the FIB-SEM 

nano-tomography provides the detailed morphology-information 

to study the film structure, characterize the individual building 

blocks on multiple scales, and to run pore-level transport 

simulations on a representative volume. The method we 

developed contributes to guiding the morphology and fabrication 

of optimized photoelectrodes with enhanced performance.  
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METHODS  
Sample Preparation 

For FIB-SEM tomography, the FTO with the deposited films were embedded in epoxy. The effect of the epoxy is to provide mechanical 

support for free standing structures, obscure the off-section features, in addition to increasing contrast of the SEM image. The epoxy 

embedding medium was diluted with acetone at a ratio of 1:3 and the electrode was dip coated and put in a vacuum for 20 min. This 

step was repeated twice at an epoxy/acetone ratio of 2:2 and 3:1. The sample was then dip coated in a pure resin, put in a vacuum for 

20 min, and then polymerized for 24 h at 60°C. Subsequently, a wedge was polished with a tripod polishing tool using diamond lapping 

film discs of 6 µm, 3 µm, 1 µm, 0.5 µm roughness. The polishing was necessary to decrease epoxy thickness to a few hundred nanometers 

above the volume of interest. A thin film of gold was sputtered onto the epoxy to diminish the charging effect during electron beam 

imaging. A fiducial platinum film was deposited in the FIB-SEM over the region of interest. V-shaped alignment reference marks were 

milled into this film and covered by a 1 micron thick carbon layer to increase the contrast.  

 

Ion Beam Milling and Image Acquisition 

We used a Zeiss NVision 40 Crossbeam system for the FIB-SEM tomography. The sample was mounted on the sample holder and tilted 

by 52° to align the ion beam column perpendicular to the sample surface. The ion beam was used to erode a trench in front of the 

volume of interest, allowing for accessibility and the acquisition of a first cross-section image by the scanning electron beam. Automated 

drift-correction and beam tuning (focus and stigmator) was needed in order to acquire a stable sectioning of the sample for hundreds 

of images and to maintain spacing between the images in accord with SEM resolution (4 nm). The Atlas3D system (Fibics, Inc.), a scan 

generator and image acquisition system of Zeiss devices, can cope with various drift phenomena (electron beam and ion beam), as well 

as a shift in imaging conditions, by assessing the position of the reference marks in the platinum layer. FIB milling and SEM imaging were 

done simultaneously to reduce overhead time. The ion beam continued to mill while the electron beam returned to start the scan of a 

new line (“fly-back”), and blanked when the electron beam acquired a line of the image in order to eliminate interference in the 

secondary electron images [15]. FIB milling was done at an acceleration voltage of 30 kV and a 300 pA beam current, and the SEM 

images were recorded with an acceleration voltage of 1.7 kV and 1nA. We ran the FIB-SEM tomography for 24 h to obtain at least 1000 

consecutive images of stable cross-sections. Secondary electron (SE) and backscattered electron (BSE) signals were recorded 

simultaneously.  

 

Digital Reconstruction 

The data for the hematite electrode was acquired with an isotropic voxel size of 4x4x4 nm3 and consisted of 1354 images with the 

dimension of 6204x1000 pixels. The LTON electrode was measured with an isotropic voxel size of 8x8x8 nm3, giving 1000 images with 

the dimension of 4065x1400 pixels. All the image post-processing in the following discussion used the images from the SE signal and 

was implemented in the open-source tool Fiji [16].  

Image Registration—Despite the 3D tracking during data acquisition, translational drift occurred. This remaining drift was corrected by 

a registration process utilizing three notches milled into the platinum layer along the sectioning direction as alignment marks. The mark 

on the first image was used as a template and matched by a normalized correlation coefficient matching method to the following marks 

to determine the image translation and to align the slices using the plug-in Template Matching [17]. In the case of the relatively thick 

LTON sample, the images were inconsistently compressed in the height of the image due to charging effects that can deflect the electron 

beam. This compression was compensated for by aligning the bottom of the FTO throughout the stack and by expanding or compressing 

the individual images accordingly. Typical compression factors were in the range of 4 to 10 voxels. 

Filtering and 3D rendering—A major challenge was the removal of air bubble artifacts in the images. These bubbles formed in the epoxy 

during the sample preparation. In Figure S1a, the bubbles can be seen on the surface of the LTON particles, or in narrow gaps between 

the particles. A low pass filter was applied in the frequency domain, derived by a discrete Fourier transformation, to blur the pores in 

the particles. A histogram-based threshold segmentation and a stack erosion step, with a structuring disk of 5 pixels in diameter, was 

applied on the filtered images. After the erosion of the solid phase, the artifacts were disconnected from the solid phase and, by selecting 

only the larger connected solid volumes, a binary mask was obtained to remove the signal from the bubbles in the SEM images.  

Segmentation—We used a grey value histogram-based segmentation in order to differentiate between the solid and void domains and 

eventually digitalize the reconstructed dataset of grey values. A coarse segmentation of the structure for the two introduced 

photoelectrodes was straightforward, as the epoxy in the void domain had a high carbon level with a big electron beam interaction 

volume leading to a low signal to noise ratio. The fine tuning of the segmentation, however, highly depended on the quality and contrast 

of the acquired SEM images and needed to be adjusted for each dataset individually. For sample (i), the smallest hematite features had 



a diameter of a few nanometers and suffered from edge effects. Edge effects appear when the scanning electron beam hits a small 

feature. Secondary electrons leave the feature through all surrounding edges, resulting in an increased brightness, but a less sharp solid-

void interface. We used an 8-bit threshold of 125 for the segmentation. This threshold lied symmetrically between the two extreme 

thresholds of 100, where all grey values except the background were included, and 150, where small features started to disconnect 

from the main solid phase.   

For sample (ii), the outer interfaces between the LTON particles and void were well defined and sharp. However, the inner pores were 

not properly filled with epoxy and showed weak contrast. The necking phase between the particles could be visually distinguished from 

the LTON by the texture and contrast in the electron beam image, and was segmented by a machine-learning algorithm trained on 

manually selected image features using the Trainable WEKA Segmentation plug-in [18]. Before applying the plug-in, the contrast was 

improved by contrast limited adaptive histogram equalization [19] using the Enhance Local Contrast (CLAHE) plug-in in Fiji. The quality 

of the segmentation could only be assessed visually and is shown in Figure S1b. Figure S1c shows the 3D rendering of the TiO2 necking. 

An animated version is available in Supplementary Information. The individual TiO2 phases were labeled and connected TiO2 phases 

were given the same color. For the first time, the TiO2 necking was visualized and quantified, and its ability to connect the LTON particles, 

ideally over a length scale of multiple particles, was assessed. Once the TiO2 phase is subtracted, the LTON was segmented with an 8-

bit threshold value of 92. An upper threshold of 106, where all the nano-pores were connected, and a lower threshold of 78, where only 

volumes entirely filled by epoxy were considered to be pores, were used to define error bars on the results, i.e. the sensitivity of the 

obtained results on the threshold accuracy. 

 

Volume Fraction Profile 

The volume fractions of the solid components as a profile throughout the photoelectrode film along the z-axis was computed using a 

voxel-based approach. The volume of each pixel was assigned to a component based on the grey value and the threshold. The solid 

volume fraction of each pixel layer parallel to the substrate plane was determined by the ratio of the number of pixels of a component 

and the total number of pixels in that layer. The volume fraction profile was drawn perpendicular to the FTO surface, which was set as 

the origin (z=0).  

 

Surface Area  

The surface area was calculated by creating a triangular surface mesh and integrating over all triangle areas. The surface mesh was 

generated using the marching cube algorithm [20]. Eight neighboring voxels forming the corners of a cube defined the surface polygon 

that divided the cube into the solid and void phases. The scalars of the grey values determined the intersection points with the cube 

edges. The algorithm marched through the dataset and neglected the surface triangles touching the boundaries of the scanned volume. 

 

Size distributions  

The feature size at any point in the solid phase of the photoelectrode geometry was characterized by the biggest sphere that fits into 

the structure [21]. This was calculated by applying mathematical morphology operations. After a threshold segmentation, the binary 

dataset was sequentially processed by an opening algorithm with a structuring element, increasing in size. The opening algorithm 

consisted of a 3D morphological erosion, followed by a 3D morphological dilation, using a sphere with a diameter d [22], and thus, 

eliminated all features smaller than the structuring element. The cumulative opening size distribution 1-F(d)=ε(d)/ε0 was determined by 

calculating the porosity, ε, after each step and relating it to the initial porosity, ε0. Its derivation lead to the size distribution, f(d)=F’(d). 

The mean diameter is given as: 

 

𝑑mean =
∫ 𝑑∙𝑓(𝑑)d𝑑

𝑑max
𝑑min

∫ 𝑓(𝑑)d𝑑
𝑑max
𝑑min

 , (4) 

 

where dmin and dmax are the considered lower and upper limits of the integration. The same methodology can be applied to the void 

phase by inverting the segmented dataset, or to the TiO2 necking phase. 

 

Particle Properties 

An algorithm to fit ellipsoids into individual particles of an interconnected particle network was developed. The algorithm was only 

relevant for sample (ii) and was based on the principle of finding the maximal inscribing ellipsoid, for a given seed point, into a binary 

dataset. We used the matrix definition of an ellipsoid,  

 



(𝑋 − 𝑋0)𝑇𝐻(𝑋 − 𝑋0)  ≤  1,  (5) 

 

for its translational and rotational movement, and for evaluating if a point lied in or on the ellipsoid. H was the product of the eigenvalue 

and eigenvector matrices, X was the test point, and X0 was the centroid [23]. Our method works on a stack of binary images and needs 

the coordinates of the seed points as an input. For each seed point, the code fitted the biggest possible ellipsoid into the solid phase 

and run in parallel on multiple cores for overlapping ellipsoids, or in series for non-overlapping ellipsoids. Each ellipsoid was initialized 

with a small sphere (radius=4 voxels) and the radius was successively increased. A set number of points (default=1000) on the surface 

of the sphere were evaluated after each step to determine whether they were located in the solid phase or in the void phase. As soon 

as the sphere touched the void phase, an average vector between the contact points and the centroid was formed and the sphere was 

moved away from the interface along this direction. The procedure was repeated until the sphere hit the solid-void interface on two 

opposite sides and thus was centered along the shortest axis of a particle. The radii were reduced back to 4 voxels and the two semi-

axes perpendicular to the shortest particle axis were simultaneously increased. Whenever the resulting ellipsoid hit the solid-void 

interface, the centroid got pushed away, normal to the contact points. The medium axis of the particle was found once the ellipsoid had 

again two contact points on opposite sides. The two in-plane semi-axes were rotated until one of the semi-axes merged with the medium 

particle axis. The radii were once more reduced to 4 voxels and the last semi-axis was increased and the centroid was moved away from 

the contact points until the final centroid location was found. In a last step, the ellipsoid semi-axes were inflated until the biggest possible 

ellipsoid volume was reached. The output of the code consists of an image stack with the computed ellipsoids, the values of the centroid 

coordinates, the volumes of the ellipsoids, the lengths of the semi-axes, and the eigenvectors of the ellipsoids, which describe the 

orientations of the semi-axes. The developed algorithm was inspired by the ellipsoid factor plug-in [23] in BoneJ [24] for estimating local 

bone thickness in trabecular bone structures. The code was written in Java as a Fiji plug-in.  

 

Nano-Pore Characterization 

For sample (ii), the nano-pores within single LTON particles were characterized. The inner porosity, as the volume fraction of the pores 

within the particles, was computed using a voxel-based approach. Only the voxels that were located within the previously calculated 

ellipsoid volumes were extracted and segmented with a threshold value of 92. The inner porosity was calculated for each ellipsoid and 

then averaged. The connectivity of the nano-pore space was assessed by a 3D flood fill algorithm [25] starting from the inter-particle 

void space and subsequently flooding all the connected void phase voxels. The orientations of the pores relative to the orientation of 

the hosting ellipsoid were characterized. The pores within a given ellipsoid were separated by water shedding in order to break the pore 

network down into single, non-diverging volumes. The main elongations of these pores were computed by the tensors of inertia in 

Avizo, giving the orientations of the longest semi-axis of an ellipsoid fitted into each pore volume.  

 

Generation Rate and Local Current Density 

The spectral reflectance, ρm, and the transmittance, τm, were acquired with a UV-3600 Shimadzu UV-VIS-NIR spectrophotometer using 

an integrating sphere. The sample was illuminated from the FTO-side and therefore, ρm has to be corrected by the absorbance of the 

FTO glass: ρc = ρm + αFTO. The transmittance and the reflectance of the FTO glass were measured separately and the absorbance was 

calculated by: αFTO = 1 - ρFTO – τFTO. The effective absorption coefficient is determined using a single partially transmitting layer with a 

thickness greater than the wavelength, considering multiple internal reflections: 

 

𝛼∗(𝜆) = −
1

𝑡∗ ln (
√(−𝜌c

2+2𝜌c+𝜏m
2−1)2+4𝜏m

2−𝜌c
2+2𝜌c+𝜏m

2−1

2𝜏m
)  (6) 

 

with the effective thickness given by 𝑡∗ = 𝑒∫ 𝑉(𝑧)d𝑧
𝑙

0  where V(z) is the averaged volume fraction profile along the z-direction given in 

Figure S2.  

For the calculation of the generation rate, a subsample of the segmented FIB-SEM data set was discretized in all three directions. For 

constant x=I, y=j and z=k values, the generation rate per solid volume, Gi,j,k was calculated as: 

 

𝑔𝑖,𝑗,𝑘(𝜆) =  𝛼∗(𝜆) ∙ 𝑉𝑘 ∙ 𝑃𝑘(𝜆) ∙
𝜆

ℎ𝑐
 (7) 

𝑃𝑘+1(𝜆) = 𝑃𝑘(𝜆) − 𝑔𝑖,𝑗,𝑘(𝜆) ∙ d𝑧 ∙
ℎ𝑐

𝜆
 (8) 

𝐺𝑖,𝑗,𝑘 =
1

𝑉𝑘
∙ ∑ 𝑔𝑖,𝑗,𝑘(𝜆)

𝜆Bandgap

𝜆=300𝑛𝑚
 (9) 

 



where Pk=1(λ) is the wavelength dependent AM 1.5G solar spectrum. All losses due to absorption in the electrolyte or the FTO layer and 

glass were not considered. This method does not take into account scattering within the porous structure; however, for highly absorbing 

materials, the light is absorbed within 1 or 2 particles, minimizing the effect of scattering on the generation rate profile. The local current 

density on the semiconductor-electrolyte interface was calculated by solving the Poisson equation in the semiconductor: 

 

∇ ∙ (𝐷 ∙ ∇𝑐) + 𝑆𝑐 = 0  (10) 

 

where c is the charge concentration, D is the diffusion coefficient and Sc is the source term. The semiconductor phase of the FIB-SEM 

dataset was meshed using a tetrahedral mesh generator[26] and the Poisson equation was solved with a commercial finite volume 

solver[27]. The computed generation rates per solid, Gi,j,k, where inserted as source terms and the boundary condition at the 

semiconductor-electrolyte interface was set cinterface=0. The resulting charge flux over the interface was taken as the local current density. 

This method does not take into account any semiconductor physics, but simply distributes the charges to the closest semiconductor-

electrolyte interface by choosing a sufficiently small diffusion coefficient. The results were identical for diffusion coefficient values 

smaller or equal to 10-12 cm2/s.  

 

Mass Transport  

Mass transport of reactants within the void phase of the complex morphology was modeled as diffusion in a stagnant fluid. For the 

assumptions of zero fluid velocities and infinitely diluted species, diffusive transport equation was solved until steady state was reached: 

 
𝜕𝑐

𝜕𝑡
= ∇ ∙ (𝐷 ∙ ∇𝑐).  (11) 

 

The void phase of the FIB-SEM dataset was meshed using a tetrahedral mesh generator [26] and the diffusive transport equation was 

solved with a commercial finite volume solver [27]. A schematic of the simulation setup is show in Figure S15. An intermediate 

concentration ci was set as a top boundary condition. The side walls had symmetry boundary conditions and the bottom, which was 

covered by FTO had a no-flux boundary condition. The calculated local current density was applied as a reactant sink boundary condition 

onto the electrolyte-semiconductor interface. The boundary flux was given as a step function, being the charge flux calculated by the 

generation rate for a boundary concentration cBoundary > 0, and being 0 for cBoundary = 0. It was assumed that the photo-induced potential 

drop occurs only in the space-charge layer of the semiconductor and in the Helmholtz layer [28], thus, ions are not driven by an electric 

field, but only travel by diffusion. This assumption is correct for ionic concentrations in the electrolyte with a small Debye length. For 

our calculations, the ionic strength in most parts of the domain is high enough to keep the Debye length below 1nm; however, for the 

domain regions with near depletion, the Debye length increases and contributions from the electric field through migration were 

neglected. The mass transport through the macroscopic hydrodynamic boundary layer in a laminar-flow parallel plate cell was taken 

into account by the experimentally determined Leveque- correlation [29]:  

𝑆ℎ =
𝑘y∙𝑑𝑒

𝐷
= 0.978 (𝑅𝑒 ∙ 𝑆𝑐 ∙

𝑑𝑒

𝑦
)

1

3
(

2

𝛾+1
)

1

3 (12) 

where ky is the local mass transfer coefficient at distance y, downstream from the front edge of the photoelectrode, de is the equivalent 

diameter of the flow cell equal to 2BS/(B+S), Re is the Reynolds number defined as Re=ρvde/μ, Sc is the Schmidt number defined as 

μ/ρD, γ is the aspect ratio S/B, where B is the width and S is the height of the flow cell. The average mass transfer coefficient for the 

photoelectrode with length L is according to Qi et al. [29] evaluated at y=8/27L. The fluid dynamic properties of the electrolyte were 

taken from water and the following dimensions were used: B=1 cm, S=0.15 cm, L=1 cm.  The intermediate concentration ci was linked 

to the bulk concentration cbulk using the mass transfer equation N=ky ·A(ci –cbulk), where N is the total species flux and A is the projected 

flat area of the photoelectrode subsample.  

The tortuosity was calculated with the mean path lengths of the reactants divided by the film thickness. 2500 pathlengths were extracted  

from the derivative of the reactant concentration field. The start points of the pathlengths were uniformly distributed on the plane of 

the intermediate concentration ci. 
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