000256806 001__ 256806
000256806 005__ 20190619220044.0
000256806 0247_ $$a10.1039/C8SE00215K$$2doi
000256806 037__ $$aARTICLE
000256806 245__ $$aLinking Morphology and Multi-Physical Transport in Structured Photoelectrodes
000256806 260__ $$c2018
000256806 269__ $$a2018
000256806 336__ $$aJournal Articles
000256806 520__ $$aSemiconductors with complex anisotropic morphologies in solar to chemical energy conversion devices enhance light absorption and overcome limiting charge transport in the solid. However, structuring the solid-liquid interface has also implications on concentration distributions and diffusive charge transport in the electrolyte. Quantifying the link between morphology and those multi-physical transport processes remains a challenge. Here we develop a coupled experimental-numerical approach to digitalize the photoelectrodes by high resolution FIB-SEM tomography, quantitatively characterize their morphologies and calculate multi-physical transport processes on the exact geometries. We demonstrate the extraction of the specific surface, shape, orientation and dimension of the building blocks and the multi-scale pore features from the digital model. Local current densities at the solid-liquid interface and ion concentration distributions in the electrolyte have been computed by direct pore-level simulations. We have identified morphology-dependent parameters to link the incident-light-to-charge-transfer-rate-conversion to the material bulk properties. In the case of a structured lanthanum titanium oxynitride photoelectrode (Eg = 2.1 eV), with an absorptance of 77%, morphology-induced mass transport performance limitations have been found for low bulk ion concentrations and diffusion coefficients.
000256806 536__ $$aFNS$$c155876
000256806 536__ $$aSwiss foundations$$cHans-Eggenberger Preis
000256806 700__ $$g234754$$aSuter, Silvan$$0248342
000256806 700__ $$g120862$$aCantoni, Marco$$0240852
000256806 700__ $$g178247$$aGaudy, Yannick Kenneth$$0248008
000256806 700__ $$aPokrant, Simone
000256806 700__ $$0247143$$aHaussener, Sophia$$g207354
000256806 773__ $$tSustainable Energy & Fuels$$j2$$k12$$q2661-2673
000256806 8560_ $$fsophia.haussener@epfl.ch
000256806 8564_ $$uhttps://infoscience.epfl.ch/record/256806/files/Suter_et_al_05_09_2018_revised.pdf$$s1923324
000256806 8564_ $$uhttps://infoscience.epfl.ch/record/256806/files/Suter_et_al_ExtendedData_05_09_2018_revised.pdf$$s1810962
000256806 909C0 $$xU12656$$pLRESE$$msophia.haussener@epfl.ch$$0252472
000256806 909CO $$qGLOBAL_SET$$pSTI$$particle$$ooai:infoscience.epfl.ch:256806
000256806 960__ $$asophia.haussener@epfl.ch
000256806 961__ $$apierre.devaud@epfl.ch
000256806 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000256806 980__ $$aARTICLE
000256806 981__ $$aoverwrite