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Wall-contact sliding control strategy for a 2D caged quadrotor
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Abstract: This paper addresses the trajectory tracking problem of a 2D caged flying robot in contact with a wall. To
simplify the contact problem, the models are constructed on a vertical two-dimensional plane, and our objective is to let
the quadrotor hover or move along the wall with arbitrary velocity and attitude. The control law is derived using the
Lyapunov stability theory, applying backstepping techniques to achieve exponential stability under mild assumptions. To
overcome the unknown friction force between robot and wall, we design estimators for the friction coefficient, which
include a projection operator that provides an upper bound for the obtained estimates. Realistic simulation results are
provided to validate the proposed methodology.
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Fig. 1 The cage: a foldable cargo delivery drone with
protective structure [2].

1. INTRODUCTION
Unmanned Aerial Vehicles (UAVs) are known for

their safety, low weight, high flexibility, and agility, thus
they have been widely adopted in search and rescue, to-
pographic mapping, precision agriculture, among other
commercial and military applications. The ongoing de-
velopment of more advanced sensors, actuators, and algo-
rithms opens up new possible applications, as mentioned
in [1]. Among them, drone delivery gets attention both
from the scientific perspective and for commercial pur-
poses.

The caged drone [2], [3], as shown in Fig. 1, is a de-
livery quadcopter that adopts the foldable structure to op-
timize the space utilization. The drone is surrounded by
3D printed holders and carbon rods to protect electronics
and cargo. Thanks to such mechanical design, the cage is
able to attempt new flying strategies and applications that
classical drones are not able to conduct, such as indoor
flying or infrastructure close inspections.

Even equipped with a protective structure, the research
interests of drone indoor flying are to avoid obstacles,

typically using optical flow [4] or visual SLAM [5] to
evade obstructions. The reason why avoiding obstacles
is preferable is due to the fragility of the flying robots,
and the difficulty of stability recovery after impact. This
paper, on the contrary, addresses control problems that
are needed in systems that learn from contact. There are
quite a few works studying drone-environment interac-
tion, where robotic arms are often considered as the me-
dia for quadrotor to interact with the world. A hierarchi-
cal control scheme and a sliding model controller were
proposed to control the whole system in [6] and [7], re-
spectively. On a different approach, the study presented
in [8] explored how to make the tip of a rigid link attached
to the top of a quadrotor slide on the ceiling. To overcome
the situations when a quadrotor can be pulled towards
walls, caused by low-pressure area above the propellers
when it tilts toward the wall, a novel quadrotor design and
control was introduced in [9]. It is equipped with an ex-
tra horizontal propeller and a brush to maintain stability
while sliding on the wall. Another ducted fan aerial robot
is designed for moving vertically on the wall by tracking
the desired signal and applying a desired constant force
against the wall [10]. Researchers also attempted to put
the quadrotor into an airframe to ensure safe physical in-
teraction, and use hybrid model predictive control (MPC)
to generate the control law [11]. A micro aerial vehicle
equipped with a 3-axis gimbal protective frame is studied
in [12]. The two independent systems design weakens the
influence of collision to the inner system, guarantees it to
be upright even after impact. Therefore, this flying robot
is able to perform robust flying in cluttered environments
without complex sensory systems.

Conversely to the above approaches, the strategy pro-
posed in this paper aims at guaranteeing stability after
a collision, and maintaining contact with the wall if de-
sired, enabling the use of collision information for per-



ception and navigation in unknown environments. In the
proposed approach, the vehicle is controlled towards the
desired orientation and in a planned path while keeping
contact with obstacles, providing more flexibility when
compared to an immutable attitude as described in [12].

The objective of this work is to design an algorithm
that drives the quadcopter sliding on the wall by control-
ling its propellers, or equivalently, the thrust and torques
generated by them. More specifically, we want the drone
to track a trajectory next to the wall, consisting of desired
position and velocity profiles, where the component per-
pendicular to the wall is zero. There are several potential
applications using this strategy, among which the use of
indoor flying robots to transport items between offices in
a building is a good example. The protective cage, com-
bined with a slow motion behavior, guarantees safety for
people, property, and the vehicle itself, whereas the slid-
ing flying capabilities allow the vehicle to fly along walls,
floor, or ceiling to avoid other vehicles or obstacles, or en-
ter another room by applying a thrust on the door to open
it. Another application scenario, where a drone needs to
deliver a parcel to a customer in a designated apartment
within a building, having the capability of sliding along
a surface, may enable the drone to briefly enter the apart-
ment through a window to deliver its parcel.

For simplicity, the model of the caged quadrotor and
its workspace are restricted in 2D space in this paper.
A nonlinear control law is designed to solve its trajec-
tory tracking problem by using backstepping techniques,
assuming a known friction coefficient. Then, consider-
ing an unknown friction coefficient in the model, a two-
stage estimator is applied to balance the friction, up-
per bounded by a designated value to prevent overflow.
Therefore, the main contributions of this work are the
2D vehicle-wall model and two control laws that provide
exponential stability guarantees, either when the friction
coefficient is known or when it is unknown or changes
through time.

This paper is structured as follows. Section 2 states the
problem we want to solve, providing further motivation
and the vehicle-wall model used throughout the paper.
The control law design with the knowledge of friction
and stability analysis are stated in Section 3, while the
estimators are designed in Section 4 to overcome the un-
known friction produced by the contact. Section 5 shows
the simulation results of the designed control law. Finally,
section 6 provides some concluding remarks.

2. PROBLEM STATEMENT
Building on the benefits of having a simple structure

and actuation mechanism, together with a relatively low
cost when compared with similar vehicles, quadrotors
have been intensively studied as a platform for testing
free flight strategies. Towards that end, numerous al-
gorithms for sensor processing and vehicle maneuvering
have emerged, namely, path planning, collision avoid-

ance, trajectory tracking, flight stability, disturbance re-
jection, or signal delay problems. Compared to the pop-
ularity of quadrotor free flight control, vehicle-obstacle
interaction is a relatively unexplored topic. One possible
reason is that quadcopters are usually vulnerable to con-
tact, as they may briefly lose stability or even crash. Ad-
ditionally, contact with obstacles during flight limits the
motion of the vehicle and introduces more disturbances at
the contact point or plane, which implies that algorithms
tailored for free flight may not be directly applied to this
problem. Recently, novel drone designs appear in an in-
exhaustible variety aiming at new applications. Some of
them have protective structures or deformable shape to
protect the functional parts. Therefore, contact flying is
becoming more and more plausible.

This paper discusses the wall-vehicle 2D interactions
of a quadrotor, surrounded by a circular cage. The objec-
tive is to design a control law for a 2D quadrotor, such
that it always stays in contact with the wall, and follows
a given trajectory consisting of 2D position, velocity, and
tilting between the wall, allowing the quadrotor to move
freely along the wall plane. Assume the quadrotor is fly-
ing against the wall, the 2D caged quadrotor dynamics in
contact with the wall are described by

ṗ = v

v̇ = −ge2 +
u1
m

cos θe2 −
u1µ

m
sin θe2

θ̇ = ω

ω̇ =
u2 + u1µ sin θr

J

(1a)

(1b)

(1c)

(1d)

where m,J ∈ R are the mass and moment of inertia
of the 2D quadrotor, respectively, p, v ∈ R2 represent
the position and linear velocity, respectively, of the body
frame {B} with respect to the inertial frame {I}, ex-
pressed in {I}, ei ∈ R2 is the i-th vector of the canonical
basis of a 2D space R2, i.e. e1 = [1, 0]T , θ, ω ∈ R de-
note the attitude and angular velocity expressed in {B},
respectively, r is the radius of the quadrotor cage, u1,
u2 ∈ R are the control thrust and torque to be designed.
The friction coefficient µ at the contact point adopt a
velocity-based model [13]

µ = µ0f(vrel) =µ0 sin
{
C tan−1

[
Avrel

− E
(
Avrel − tan−1 (Avrel)

)]} (2)

where A, C, E are constants that define some proper-
ties of the contact plane, µ0 represents the maximum
static friction coefficient, and the relative motion between
the quadrotor and the wall at the same point is given by
vrel = eT2 v − rω.

Fig. 2 shows the forces acting on caged quadcopter
while moving vertically along the wall, where FG =
mge2 is the gravity, the reaction force cancels out the hor-
izontal component of the thrust T, preventing the drone
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Fig. 2 The force analysis of a caged quadrotor when it
is moving along the vertical axis of a wall.

leaving from the wall, while the resulting vertical com-
ponent is given by u1 cos θe2. As the friction force is
proportional to the horizontal component of the reaction
force, we obtain the resulting friction f = −µu1 sin θe2.

Given the friction coefficient µ ≤ 1, the desired trajec-
tory, defined as {pd,vd, θd | pTd e2 = 0, vTd e2 = 0, 0 ≤
θd ≤ π

4 } defines the maximum region the drone is able
to reach. A tighter upper bound of θd depends on how
much thrust can be generated. Since the vehicle is not
supposed to rotate vertically, the desired angular velocity
is 0. Thus, the resulting error dynamics is given by

˙̃p = v − vd

˙̃v = −ge2 +
u1
m

cos θe2 −
u1µ

m
sin θe2 − v̇d

˙̃
θ = ω

ω̇ =
u2 + u1µ sin θr

J

(3a)

(3b)

(3c)

(3d)

where ∼ denotes the difference between the actual value
and desired value, e.g., p̃ = p− pd.

3. CONTROLLER DESIGN
Assuming full state feedback, one important source of

uncertainty is the friction coefficient, that might be dif-
ferent on each wall of even within the same wall. Yet, for
simplicity, we first assume in this section full knowledge
of this coefficient, and in the next section, we propose
modifications in the control law to stabilize the system
while estimating its value.

In order to fulfill the aforementioned objective, steer
the vehicle to fly along the wall, we want to design control
laws for the actuation variables u1 and u2 such that the
controlled system is stable for certain domain. The con-
troller adopts a hierarchical backstepping fashion. The
stability of the quadrotor state, as well as the estima-
tion error, is achieved by proving the convergence of a
Lyapunov-like function that summarizes each state.

Let the Lyapunov function including the error dynam-
ics be

V1 =
k1
2
p̃T p̃+

1

2
(ṽ + k2p̃)

T (ṽ + k2p̃) +
k3
2
θ̃2

+
1

2
(ω + k4θ̃)

2

(4)

Its derivative is given by

V̇1 = k1p̃
T ṽ + (ṽ + k2p̃)

T
(
− ge2 +

u1
m

cos θe2

− u1µ

m
sin θe2 + k2ṽ

)
+ k3θ̃ω + (ω + k4θ̃)

(
u2 + u1µ sin θr

J
+ k4ω)

Assumption 1: The tilt angle θ always stays between
0 and π

4 .
Assumption 2: The desired trajectory pd, vd, θd are

smoothly differentiable individually.
Proposition 1: For system (3) that satisfies Assump-

tion 1 and 2, with friction coefficient µ given, under our
designed control law

u1 =
m

cos θ − µ0f sin θ
eT2 (ge2 − kpp̃− kvṽ + v̇d) (5)

u2 = J(−kωω − kθ θ̃)− u1µ0f sin θr (6)

the quadrotor state error converges to 0 exponentially.
Proof: Assumption 1 guarantees that the dynamic

model is valid during the trajectory, that is, the vehicle
is always in contact with the wall. Assumption 2 ensures
the proposed Lyapunov function is continuously differen-
tiable. Substituting (5) and (6) into V̇1, it becomes

V̇1 = −k2kpp̃T p̃− (kp − k1 + k2kv − k22)p̃T ṽ
− (kv − k2)ṽT ṽ − k4kθ θ̃2 − (kω − k4)ω2

− (kθ − k3 + k4kω − k24)θ̃ω

From here, V1 and V̇1 can be written as compact forms
sTM1s and −sTM2s, respectively, where s is the vector
of all the error states, M1 and M2 are symmetric matri-
ces. There always exists positive numbers k1, k2, kp, kv ,
k3, k4, kθ, kω , such that M1 and M2 are positive defi-
nite. Therefore, V̇1 ≤ − λmin(M2)

λmax(M1)
V1 ≤ 0, where λ are

the eigenvalues of a square matrix. V̇1 is equal to 0 if
and only if when all errors become 0. According to Lya-
punov’s theory, the origin is exponentially stable to the
system with a least convergence rate λmin(M2)

λmax(M1)
.

4. CONTROLLER DESIGN WITH
UNKNOWN FRICTION

In this section, we assume that the friction coefficient
µ is unknown, but can be approximated by a function of
the relative velocity, as described in Section 2. Although
the contact between the cage and the wall is more com-
plex when the quadrotor is moving along the wall, this
simple assumption is comprehensive enough to solve our
problem. With this assumption, we want to estimate the
maximum static friction coefficient µ0, which depends on
the material and texture of both surfaces. Since it is a con-
stant in the model, we are able to estimate its value and
feedback to the controller. Yet, to avoid algebraic loop



in this coupled system, two estimators are required. We
use µ̂1 and µ̂2 to represent the estimates of µ0, and the
differences between µ0 and them are given by µ̃1 and µ̃2,
respectively.

Now we attempt to add the estimation error term to the
previous Lyapunov function:

V2 =
k1
2
p̃T p̃+

1

2
(ṽ + k2p̃)

T (ṽ + k2p̃) +
k3
2
θ̃2

+
1

2
(ω + k4θ̃)

2 +
ke1
2
µ̃2
1 +

ke2
2
µ̃2
2

(7)

In a similar fashion, by letting the new control laws be
given by

u1 =
m

cos θ − µ̂1f sin θ
eT2 (ge2 − kpp̃− kvṽ + v̇d) (8)

u2 = J(−kωω − kθ θ̃)− u1µ̂2f sin θr (9)

the derivative becomes

V̇2 = V̇1 − µ̃1

[
ke1 ˙̂µ1 +

f sin θ

cos θ − µ̂1f sin θ
(ṽ + k2p̃)

T

(ge2 − kpp̃− kvṽ + v̇d)

]
− µ̃2

(
ke2 ˙̂µ2 − (ω + k4θ)

u1f sin θr
)

When vref becomes 0, which means the quadcopter
is hovering in contact with the wall, there is no friction
between them under the velocity-based model. The val-
ues given by the estimators may not be near the true val-
ues, but they will still converge to some values. To avoid
the divergence or a large value of the estimation affect-
ing the performance of the controller, we use a saturation
function to set an upper bound on the estimates. As the
friction coefficient is naturally between 0 and 1, making
the estimates never go beyond 1 is also reasonable. The
bound is enforced by applying a projection function to
the estimates, as defined below.

Definition 1 ([14]): A projection is defined as

Proj(x, ŝ) = x− η1η2
2(ς2 + 2ςB)n+1B2

ŝ (10)

that meets the following properties:
1. |ŝ| ≤ B + ς,∀t ≥ 0
2. s̃Proj(x, ŝ) ≥ s̃µ
3. ‖Proj(x, ŝ)‖ ≤ ‖x‖(1 + (B+ς

B )2) + (B+ς)ε
2B2

4. Proj(x, ŝ) is of class Cn
where x is the original function to be projected, B + ς
is the upper bound ŝ is the estimate of a variable s, ς ε
are any positive number, n is the parametric order of the
system, which is 4 in this case. Two functions η1 and η2
are defined as

η1 =

{
(ŝ2 −B2)n+1 if(ŝ2 −B2) > 0

0 otherwise

η2 = ŝx+
√
(ŝx)2 + ε2

(11a)

(11b)

Table 1 Parameters used in the simulation.
Parameter k2 k4 kp kv kθ kω

Value 10 3 5 2 30 20
Parameter ke1 ke2 B ς ε n

Value 0.15 0.1 0.49 0.01 0.01 4

Proposition 2: Considering Assumptions 1 and 2, the
vehicle-wall error dynamics (3) with control inputs given
by (8) and (9), and estimation laws are given by

˙̂µ1,p = Proj( ˙̂µ1, µ̂1)

˙̂µ2,p = Proj( ˙̂µ1, µ̂2)

(12)

(13)

where

˙̂µ1 = − f sin θ

ke1(cos θ − µ̂1f sin θ)
(ṽ + k2p̃)

T

(ge2 − kpp̃− kvṽ + v̇d)

(14)

˙̂µ2 =
1

ke2
(ω + k4θ)u1f sin θr (15)

,then the quadrotor state error converges exponentially
fast to the origin.

Proof: By substituting (14) and (15) into V̇2, the extra
non-negative terms are canceled out, resulting in V̇2 =
V̇1 ≤ 0. If we replace ˙̂µ1 and ˙̂µ2 by their projection
functions in V̇2, we get

V̇2,p =
d

dt

[
k1
2
p̃T p̃+

1

2
(ṽ + k2p̃)

T (ṽ + k2p̃) +
k3
2
θ̃2

+
1

2
(ω + k4θ̃)

2

]
− ke1µ̃1

˙̂µ1,p − ke2µ̃2
˙̂µ2,p

From property 2 of Definition 1, −ke1µ̃1
˙̂µ1,p ≤

−ke1µ̃1
˙̂µ1 and −ke2µ̃2

˙̂µ2,p ≤ −ke2µ̃2
˙̂µ2. Therefore

V̇2,p ≤ V̇2 = V̇1 is negative definite. We conclude that
the origin is exponentially stable for (3) with saturated
estimations.

5. SIMULATIONS
To verify the effectiveness of the control law, we tested

several desired trajectories aiming at different applica-
tions. The vehicle initial state is generated randomly but
not too far from the desired initial state such that the ini-
tial error is not 0. The parameters used in the simulation
are listed in Table 1. As an under-actuated system, the
quadrotor position control is assisted by attitude control,
which explains that attitude gains are greater than posi-
tion gains. Other parameters are chosen such that the V2
is a qualified Lyapunov function. The upper bound of the
estimation is chosen to be 0.5 to observe the saturation
function does work clearly. Noticing that k1 and k3 only
appear in the Lyapunov function, not in the control law.



The first simulation considers a scenario where the ve-
hicle is executing some tasks on the wall, like painting.
As Fig. 3 shows, the desired height is a sinusoidal func-
tion and desired tilt is a constant. Thus, the quadrotor
moves up and down repeatedly along the wall. We can
see, after a brief transient, the vehicle is able to follow the
desired trajectory, with a maximum error of 0.1 meters in
position. Regarding the performance of the estimators, it
can be seen that estimators converge to the true value of
µ0 = 0.3 with an error of less than 0.05 in 3 seconds.

In the second simulation as shown in Fig. 5 and 6, the
quadrotor is asked to follow a piecewise linear function
such that it keeps a constant velocity in a period. In 0 ∼
10s, the desired velocity is 0.8 m/s. During 10s ∼ 15s,
it hovers at 8m height. Then it moves down with 0.6 m/s
velocity and the desired tilt changes from 0.3 to 0.4. After
25s, the quadrotor flies up again with 0.5 m/s speed. The
maximum static friction coefficient µ0 is set to 0.4. We
can clearly see that the trajectory is stabilized within 3
seconds after each transition. In Fig. 6, there are two cut-
offs when the estimates reach the bound 0.5, proving the
effectiveness of the projection function. During the hov-
ering time, estimators fail to converge to the correct value
because the friction model suggests that there is no fric-
tion when there is no relative motion. Nevertheless, the
failure of the estimation does not affect the flight control.
The first estimator usually takes more time to converge
than the second. One reason might be that like in posi-
tion control, the estimation used in position part is slower
than the attitude counterpart.

The third simulation focus on emulating the texture
change of the contact plane during an exploration task.
In this scenario, the quadrotor is slowly descending with
0.3 m/s velocity. After 20s, the maximum static friction
coefficient changes from 0.1 to 0.3. Like the first two, the
trajectory converges to the desired one in 3 seconds and
has only a slight surge after the coefficient change. As
shown in Fig. 8, estimators are able to reveal the change
of friction coefficient and converge to the true value.

From the above simulations, we conclude that the pro-
posed control law executes all three tasks successfully
and they end up with almost zero state error. Each time
the trajectory experiences a non-smooth change, the es-
timations diverge because it violates Assumption 2. But
each piecewise function meets the requirement individu-
ally. So the error converges to 0 eventually. Both esti-
mators converge to the actual friction coefficient during
normal flight. We can also observe that they are saturated
when they reach the projection bound of 0.5, proving the
projection function is compatible with the estimators.

6. CONCLUSION
In this work, we presented a 2D quadrotor control

strategy that makes the caged drone follow a given tra-
jectory along the wall. Additionally, we developed a
two-stage estimator to compute the friction coefficient
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Fig. 3 Time evolution of quadrotor state that tracks a
sinusoidal trajectory.
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Fig. 4 Both estimates converge to designed value.
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Fig. 5 Time evolution of quadrotor state that tracks a
piecewise constant velocity trajectory.
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Fig. 6 Estimates converge to designed value during the
flying time, and become different value during hov-
ering.
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Fig. 8 Estimates experience a deviation after contact
material changes.

between the vehicle and wall at the contact point, which
is fed to the controller to generate a corresponding thrust.
To avoid estimator saturation affecting the controller, we
put an upper bound on estimators to suppress the over-
shoot. Our method is verified by simulations with various
trajectories.

There are still theoretical and practical issues that need
further research. Firstly, to ensure Assumption 1 is al-
ways satisfied, there should be a saturation operator to
constrain the tilt angle by controlling the angular acceler-
ation. Moreover, the presented modeling and controller
design can be migrated to a 3D framework, so that it
can be used in more applications and also experimentally
tested.
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