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Abstract

We study generalization properties of distributed algorithms in the setting of nonparametric
regression over a reproducing kernel Hilbert space (RKHS). We first investigate distributed
stochastic gradient methods (SGM), with mini-batches and multi-passes over the data. We
show that optimal generalization error bounds (up to logarithmic factor) can be retained for
distributed SGM provided that the partition level is not too large. We then extend our results to
spectral algorithms (SA), including kernel ridge regression (KRR), kernel principal component
analysis, and gradient methods. Our results are superior to the state-of-the-art theory. Particu-
larly, our results show that distributed SGM has a smaller theoretical computational complexity,
compared with distributed KRR and classic SGM. Moreover, even for non-distributed SA, they
provide the first optimal, capacity-dependent convergence rates, for the case that the regression
function may not be in the RKHS.

Keywords: Kernel Methods, Stochastic Gradient Methods, Spectral Regularization, Dis-
tributed Learning

1. Introduction

In statistical learning theory, a set of N input-output pairs from an unknown distribution is
observed. The aim is to learn a function which can predict future outputs given the corresponding
inputs. The quality of a predictor is often measured in terms of the mean-squared error. In this
case, the conditional mean, which is called as the regression function, is optimal among all the
measurable functions (Cucker and Zhou, 2007; Steinwart and Christmann, 2008).

In nonparametric regression problems, the properties of the regression function are not known
a priori. Nonparametric approaches, which can adapt their complexity to the problem, are key
to good results. Kernel methods is one of the most common nonparametric approaches to learn-
ing (Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004). It is based on choosing
a RKHS as the hypothesis space in the design of learning algorithms. With an appropriate
reproducing kernel, RKHS can be used to approximate any smooth function.

The classical algorithms to perform learning task are regularized algorithms, such as KRR
(also called as Tikhonov regularization in inverse problems), kernel principal component re-
gression (KPCR, also known as spectral cut-off regularization in inverse problems), and more
generally, SA. From the point of view of inverse problems, such approaches amount to solving an
empirical, linear operator equation with the empirical covariance operator replaced by a regular-
ized one (Engl et al., 1996; Bauer et al., 2007; Gerfo et al., 2008). Here, the regularization term
controls the complexity of the solution to against over-fitting and to ensure best generalization
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ability. Statistical results on generalization error had been developed in (Smale and Zhou, 2007;
Caponnetto and De Vito, 2007) for KRR and in (Caponnetto, 2006; Bauer et al., 2007) for SA.

Another type of algorithms to perform learning tasks is based on iterative procedure (Engl
et al., 1996). In this kind of algorithms, an empirical objective function is optimized in an iter-
ative way with no explicit constraint or penalization, and the regularization against overfitting
is realized by early-stopping the empirical procedure. Statistical results on generalization error
and the regularization roles of the number of iterations/passes have been investigated in (Zhang
and Yu, 2005; Yao et al., 2007) for gradient methods (GM, also known as Landweber algorithm
in inverse problems), in (Caponnetto, 2006; Bauer et al., 2007) for accelerated gradient methods
(AGM, known as ν-methods in inverse problems) in (Blanchard and Krämer, 2010) for conjugate
gradient methods (CGM), and in (Lin and Rosasco, 2017b) for (multi-pass) SGM. Interestingly,
GM and AGM can be viewed as special instances of SA (Bauer et al., 2007), but CGM and
SGM can not (Blanchard and Krämer, 2010; Lin and Rosasco, 2017b).

The above mentioned algorithms suffer from computational burdens at least of order O(N2)
due to the nonlinearity of kernel methods. Indeed, a standard execution of KRR requires O(N2)
in space and O(N3) in time, while SGM after T -iterations requires O(N) in space and O(NT )
(or T 2) in space. Such approaches would be prohibitive when dealing with large-scale learning
problems. These thus motivate one to study distributed learning algorithms (Mcdonald et al.,
2009; Zhang et al., 2012). The basic idea of distributed learning is very simple: randomly divide
a dataset of size N into m subsets of equal size, compute an independent estimator using a fixed
algorithm on each subset, and then average the local solutions into a global predictor. Interest-
ingly, distributed learning technique has been successfully combined with KRR (Zhang et al.,
2015; Lin et al., 2017) and more generally, SA (Guo et al., 2017; Blanchard and Mucke, 2016b),
and it has been shown that statistical results on generalization error can be retained provided
that the number of partitioned subsets is not too large. Moreover, it was highlighted (Zhang
et al., 2015) that distributed KRR not only allows one to handle large datasets that restored on
multiple machines, but also leads to a substantial reduction in computational complexity versus
the standard approach of performing KRR on all N samples.

In this paper, we study distributed SGM, with multi-passes over the data and mini-batches.
The algorithm is a combination of distributed learning technique and (multi-pass) SGM (Lin and
Rosasco, 2017b): it randomly partitions a dataset of sizeN intom subsets of equal size, computes
an independent estimator by SGM for each subset, and then averages the local solutions into
a global predictor. We show that with appropriate choices of algorithmic parameters, optimal
generalization error bounds up to a logarithmic factor can be achieved for distributed SGM
provided that the partition level m is not too large.

The proposed configuration has certain advantages on computational complexity. For ex-
ample, without considering any benign properties of the problem such as the regularity of the
regression function (Smale and Zhou, 2007; Caponnetto and De Vito, 2007) and a capacity
assumption on the RKHS (Zhang, 2005; Caponnetto and De Vito, 2007), even implementing
on a single machine, distributed SGM has a convergence rate of order O(N−1/2 logN), with a
computational complexity O(N) in space and O(N3/2) in time, compared with O(N) in space
and O(N2) in time of classic SGM performing on all N samples, or O(N3/2) in space and O(N2)
in time of distributed KRR. Moreover, the approach dovetails naturally with parallel and dis-
tributed computation: we are guaranteed a superlinear speedup with m parallel processors
(though we must still communicate the function estimates from each processor).

The proof of the main results is based on a similar (but a bit different) error decomposition
from (Lin and Rosasco, 2017b), which decomposes the excess risk into three terms: bias, sample
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and computational variances. The error decomposition allows one to study distributed GM
and distributed SGM simultaneously. Different to those in (Lin and Rosasco, 2017b) which
rely heavily on the intrinsic relationship of GM with the square loss, in this paper, an integral
operator approach (Smale and Zhou, 2007; Caponnetto and De Vito, 2007) is used, combining
with some novel and refined analysis, see Subsection 6.2 for further details.

We then extend our analysis to distributed SA and derive similar optimal results on gener-
alization error for distributed SA, based on the fact that GM is a special instance of SA.

This paper is an extended version of the conference version (Lin and Cevher, 2018) where
results for distributed SGM are given only. In this version, we additionally provide statistical
results for distributed SA, including their proofs, as well as some further discussions.

We highlight that our contributions are as follows.

− We provide the first results with optimal convergence rates (up to a logarithmic factor) for
distributed SGM, showing that distributed SGM has a smaller theoretical computational
complexity, compared with distributed KRR and non-distributed SGM. As a byproduct,
we derive optimal convergence rates (up to a logarithmic factor) for non-distributed SGM,
which improve the results in (Lin and Rosasco, 2017b).

− Our results for distributed SA improves previous results from (Zhang et al., 2015) for
distributed KRR, and from (Guo et al., 2017) for distributed SA, with a less strict condition
on the partition number m. Moreover, they provide the first optimal rates for distributed
SA in the non-attainable cases (i.e., the regression function may not be in the RKHS).

− As a byproduct, we provide the first results with optimal, capacity-dependent rates for the
non-distributed SA in the non-attainable cases, filling a theoretical gap since (Smale and
Zhou, 2007; Caponnetto and De Vito, 2007) for KRR using the integral-operator approach.

The remainder of the paper is organized as follows. Section 2 introduces the supervised
learning setting. Section 3 describes distributed SGM, and then presents theoretical results on
generalization error for distributed SGM, following with simple comments. Section 4 introduces
distributed SA, and then gives statistical results on generalization error. Section 5 discusses
and compares our results with related work. Section 6 provides the proofs for distributed SGM.
Finally, proofs for auxiliary lemmas and results for distributed SA are provided in the appendix.

2. Supervised Learning Problems

We consider a supervised learning problem. Let ρ be a probability measure on a measurable space
Z = X × Y, where X is a compact-metric input space and Y ⊆ R is the output space. ρ is fixed
but unknown. Its information can be only known through a set of samples z̄ = {zi = (xi, yi)}Ni=1

of N ∈ N points, which we assume to be i.i.d.. We denote ρX(·) the induced marginal measure
on H of ρ and ρ(|x) the conditional probability measure on R with respect to x ∈ H and ρ. We
assume that ρX has full support in X throughout.

The quality of a predictor f : X → Y can be measured in terms of the expected risk with a
square loss defined as

E(f) =

∫
Z

(f(x)− y)2dρ(z). (1)

In this case, the function minimizing the expected risk over all measurable functions is the
regression function given by

fρ(x) =

∫
Y
ydρ(y|x), x ∈ X. (2)
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The performance of an estimator f ∈ L2
ρX

can be measured in terms of generalization error
(excess risk), i.e., E(f)− E(fρ). It is easy to prove that

E(f)− E(fρ) = ‖f − fρ‖2ρ. (3)

Here, L2
ρX

is the Hilbert space of square integral functions with respect to ρX , with its induced

norm given by ‖f‖ρ = ‖f‖L2
ρX

=
(∫
X |f(x)|2dρX

)1/2
.

Kernel methods are based on choosing the hypothesis space as a RKHS. Recall that a repro-
ducing kernel K is a symmetric function K : X ×X → R such that (K(ui, uj))

`
i,j=1 is positive

semidefinite for any finite set of points {ui}`i=1 in X. The reproducing kernel K defines a RKHS
(H, ‖·‖H) as the completion of the linear span of the set {Kx(·) := K(x, ·) : x ∈ X} with respect
to the inner product 〈Kx,Ku〉H := K(x, u).

Given only the samples z̄, the goal is to learn the regression function through efficient
algorithms.

3. Distributed Learning with Stochastic Gradient Methods

In this section, we first state the distributed SGM. We then present theoretical results for
distributed SGM and non-distributed SGM, following with simple discussions.

3.1 Distributed SGM

Throughout this paper, as that in (Zhang et al., 2015), we assume that1 the sample size N = mn
for some positive integers n,m, and we randomly decompose z̄ as z1 ∪ z2 ∪ · · · ∪ zm with
|z1| = |z2| = · · · = |zm| = n. For any s ∈ [m], we write zs = {(xs,i, ys,i)}ni=1. We study
distributed SGM, with mini-batches and multi-pass over the data, as detailed in Algorithm 1.
For any t ∈ N+, the set of the first t positive integers is denoted by [t].

Algorithm 1 Distributed learning with stochastic gradient methods

Input: Number of partitions m, mini-batch size b ≤ N/m, total number of iterations T , step-
size sequence {ηt > 0}Tt=1, and kernel function K(·, ·)

1: Divide z̄ evenly and uniformly at random into the m disjoint subsets, z1, · · · , zm.
2: For every s ∈ [m], compute a local estimate via b-minibatch SGM over the sample zs:
fs,1 = 0 and

fs,t+1 = fs,t − ηt
1

b

bt∑
i=b(t−1)+1

(fs,t(xs,js,i)− ys,js,i)Kxs,js,i
, t ∈ [T ]. (4)

Here, js,1, js,2, · · · , js,bT are i.i.d. random variables from the uniform distribution on [n].2

3: Take the averaging over these local estimators: f̄T = 1
m

∑m
s=1 fs,T .

Output: the function f̄T

In the algorithm, at each iteration t, for each s ∈ [m], the local estimator updates its current
solution by subtracting a scaled gradient estimate. It is easy to see that the gradient estimate
at each iteration for the s-th local estimator is an unbiased estimate of the full gradient of the

1. For the general case, one can consider the weighted averaging scheme, as that in (Lin et al., 2017), and our
analysis still applies with a simple modification.
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empirical risk over zs. The global predictor is the average over these local solutions. In the
special case m = 1, the algorithm reduces to the classic multi-pass SGM.

There are several free parameters, the step-size ηt, the mini-batch size b, the total number of
iterations/passes, and the number of partition/subsets m. All these parameters will affect the
algorithm’s generalization properties and computational complexity. In the coming subsection,
we will show how these parameters can be chosen so that the algorithm can generalize optimally,
as long as the number of subsets m is not too large. Different choices on ηt, b, and T correspond
to different regularization strategies. In this paper, we are particularly interested in the cases
that both ηt and b are fixed as some universal constants that may depend on the local sample
size n, while T is tuned.

The total number of iterations T can be bigger than the local sample size n, which means that
the algorithm can use the data more than once, or in another words, we can run the algorithm
with multiple passes over the data. Here and in what follows, the number of (effective) ‘passes’
over the data is referred to bt

n after t iterations of the algorithm.

The numerical realization of the algorithm and its performance on a synthesis data can be
found in (Lin and Cevher, 2018). The space and time complexities for each local estimator are

O(n) and O(bnT ), (5)

respectively. The total space and time complexities of the algorithm are

O(N) and O(bNT ). (6)

3.2 Generalization Properties for Distributed Stochastic Gradient Methods

In this section, we state our results for distributed SGM, following with simple discussions.
Throughout this paper, we make the following assumptions.

Assumption 1 H is separable and K is continuous. Furthermore, for some κ ∈ [1,∞[,

K(x, x) ≤ κ2, ∀x ∈ X, (7)

and for some M,σ ≥ 0, ∫
Y
y2dρ(y|x) ≤M2,

∫
Y

(fρ(x)− y)2dρ(y|x) ≤ σ2, ρX-almost surely. (8)

The above assumptions are quite common in statistical learning theory, see e.g., (Steinwart
and Christmann, 2008; Cucker and Zhou, 2007). The constant σ from Equation (8) measures the
noise level of the studied problem. The condition

∫
Y y

2dρ(y|x) ≤M2 implies that the regression
function is bounded almost surely,

|fρ(x)| ≤M. (9)

It is trivially satisfied when Y is bounded, for example, Y = {−1, 1} in the classification problem.
To state our first result, we define an inclusion operator Sρ : H → L2

ρX
, which is continuous

under Assumption (7).
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Corollary 1 Assume that fρ ∈ H and

m ≤ Nβ, 0 ≤ β < 1

2
.

Consider Algorithm 1 with any of the following choices on ηt, b and T .
1) ηt = η ' m/

√
N for all t ∈ [T∗], b = 1, and T∗ = N/m.

2) ηt = η =' 1
logN for all t ∈ [T∗], b '

√
N/m, and T∗ '

√
N logN.

Then,
E‖Sρf̄T∗+1 − fρ‖2ρ . N−1/2 logN.

Here and throughout this section, we use the notations a1 . a2 to mean a1 ≤ Ca2 for some
positive constant C depending only on κ,M, σ, ‖Sρ‖, ‖fρ‖H , and a1 ' a2 to mean a2 . a1 . a2.

The above result provides generalization error bounds for distributed SGM with two different
choices on step-size ηt, mini-batch size b and total number of iterations/passes. The convergence
rate is optimal up to a logarithmic factor, in the sense that it nearly matches the minimax rate
N−1/2 in (Caponnetto and De Vito, 2007) and the convergence rate N−1/2 for KRR (Smale and
Zhou, 2007; Caponnetto and De Vito, 2007). The number of passes to achieve optimal error
bounds in both cases is roughly one. The above result asserts that distributed SGM generalizes
optimally after one pass over the data for two different choices on step-size and mini-batch size,
provided that the partition level m is not too large. In the case that m '

√
N, according to (6),

the computational complexities are O(N) in space and O(N1.5) in time, comparing with O(N)
in space and O(N2) in time of classic SGM.

Corollary 1 provides statistical results for distributed SGM without considering any further
benign assumptions about the learning problem, such as the regularity of the regression function
and the capacity of the RKHS. In what follows, we will show how the results can be further
improved, if we make these two benign assumptions.

The first benign assumption relates to the regularity of the regression function. We introduce
the integer operator L : L2

ρX
→ L2

ρX
, defined by Lf =

∫
X f(x)K(x, ·)dρX . Under Condition (7),

L is positive trace class operators (Cucker and Zhou, 2007), and hence Lζ is well defined using
the spectral theory.

Assumption 2 There exist ζ > 0 and R > 0, such that ‖L−ζfρ‖ρ ≤ R.

This assumption characterizes how large the subspace that the regression function lies in.
The bigger the ζ is, the smaller the subspace is, the stronger the assumption is, and the easier
the learning problem is, as Lζ1(L2

ρX
) ⊆ Lζ2(L2

ρX
) if ζ1 ≥ ζ2. Moreover, if ζ = 0, we are making

no assumption, and if ζ = 1
2 , we are requiring that there exists some fH ∈ H such that fH = fρ

almost surely (Steinwart and Christmann, 2008, Section 4.5).
The next assumption relates to the capacity of the hypothesis space.

Assumption 3 For some γ ∈ [0, 1] and cγ > 0, L satisfies

tr(L(L+ λI)−1) ≤ cγλ−γ , for all λ > 0. (10)

The left hand-side of (10) is called effective dimension (Zhang, 2005) or degrees of freedom
(Caponnetto and De Vito, 2007). It is related to covering/entropy number conditions, see
(Steinwart and Christmann, 2008). The condition (10) is naturally satisfied with γ = 1, since
L is a trace class operator which implies that its eigenvalues {σi}i satisfy σi . i−1. Moreover,
if the eigenvalues of L satisfy a polynomial decaying condition σi ∼ i−c for some c > 1, or if L
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is of finite rank, then the condition (10) holds with γ = 1/c, or with γ = 0. The case γ = 1 is
refereed as the capacity independent case. A smaller γ allows deriving faster convergence rates
for the studied algorithms, as will be shown in the following results.

Making these two assumptions, we have the following general results for distributed SGM.

Theorem 1 Under Assumptions 2 and 3, let ηt = η for all t ∈ [T ] with η satisfying

0 < η ≤ 1

4κ2 log T
. (11)

Then for any t ∈ [T ] and λ̃ = nθ−1 with θ ∈ [0, 1], the following results hold.
1) For ζ ≤ 1,

E‖Sρf̄t+1 − fρ‖2ρ ≤ ((λ̃ηt)2 ∨Q2ζ∨1
γ,θ,n ∨ log t)[C5

(R+ 1{2ζ<1}‖fρ‖∞)2

(ηt)2ζ
+ C8

σ2

Nλ̃γ
+ C10

M2η

mb
].

(12)

2) For ζ > 1,

E‖Sρf̄t+1 − fρ‖2ρ ≤ ((λ̃ηt)2ζ ∨Qγ,θ,n ∨ (
(ηt)2ζ−1

n(ζ−1/2)∧1
) ∨ log t)[C5

R2

(ηt)2ζ
+ C8

σ2

Nλ̃γ
+ C10

M2η

mb
].

(13)

Here,
Qγ,θ,n = 1 ∨ [γ(θ−1 ∧ log n)] (14)

and C5, C6, C8, C10 are positive constants depending only on κ2, ζ, cγ , ‖L‖ which will be given
explicitly in the proof, see (62), (63), (67) and (74).

In the above result, we only consider the setting of a fixed step-size. Results with a decaying
step-size can be directly derived following our proofs in the coming sections, combining with
some basic estimates from (Lin and Rosasco, 2017b). The error bound from (12) depends on the
number of iteration t, the step-size η, the mini-batch size, the number of sample points N and
the partition level m. It holds for any pseudo regularization parameter λ̃ where λ̃ ∈ [n−1, 1].
When t ≤ n/η, for ζ ≤ 1, we can choose λ̃ = (ηt)−1, and ignoring the logarithmic factor and
constants, (12) reads as

E‖Sρf̄t+1 − fρ‖2ρ .
1

(ηt)2ζ
+

(ηt)γ

N
+

η

mb
. (15)

The right-hand side of the above inequality is composed of three terms. The first term is related
to the regularity parameter ζ of the regression function fρ, and it results from estimating bias.
The second term depends on the sample size N, and it results from estimating sample variance.
The last term results from estimating computational variance due to random choices of the
sample points. In comparing with the error bounds derived for classic SGM performed on
a local machine, one can see that averaging over the local solutions can reduce sample and
computational variances, but keeps bias unchanged. As the number of iteration t increases,
the bias term decreases, and the sample variance term increases. This is a so-called trade-off
problem in statistical learning theory. Solving this trade-off problem leads to the best choice
on number of iterations. Notice that the computational variance term is independent of the
number of iterations t and it depends on the step-size, the mini-batch size, and the partition
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level. To derive optimal rates, it is necessary to choose a small step-size, and/or a large mini-
batch size, and a suitable partition level. In what follows, we provide different choices of these
algorithmic parameters, corresponding to different regularization strategies, while leading to the
same optimal convergence rates up to a logarithmic factor.

Corollary 2 Under Assumptions 2 and 3, let ζ ≤ 1, 2ζ + γ > 1 and

m ≤ Nβ, with 0 ≤ β < 2ζ + γ − 1

2ζ + γ
. (16)

Consider Algorithm 1 with any of the following choices on ηt, b and T∗.

1) ηt ' n−1 for all t ∈ [T∗], b = 1, and T∗ ' N
1

2ζ+γ n.

2) ηt ' n−1/2 for all t ∈ [T∗], b '
√
n, and T∗ ' N

1
2ζ+γ
√
n.

3) ηt ' N−
2ζ

2ζ+γm for all t ∈ [T∗], b = 1, and T∗ ' N
2ζ+1
2ζ+γ /m.

4) ηt ' 1
logN for all t ∈ [T∗], b ' N

2ζ
2ζ+γ /m, and T∗ ' N

1
2ζ+γ logN.

Then,

E‖Sρf̄T∗+1 − fρ‖2ρ . N
− 2ζ

2ζ+γ logN.

We add some comments on the above theorem. First, the convergence rate is optimal up to a
logarithmic factor, as it is almost the same as that for KRR from (Caponnetto and De Vito,

2007; Smale and Zhou, 2007) and also it nearly matches the minimax lower rate O(N
− 2ζ

2ζ+γ )
in (Caponnetto and De Vito, 2007). In fact, let P(γ, ζ) (γ ∈ (0, 1) and ζ ∈ [1/2, 1]) be the
set of probability measure ρ on Z, such that Assumptions 1-3 are satisfied. Then the following
minimax lower rate is a direct consequence of (Caponnetto and De Vito, 2007, Theorem 2):

lim inf
N→∞

inf
fN

sup
ρ∈P(γ,ζ)

Pr
(
z̄ ∈ ZN : E‖SρfN − fρ‖2ρ > CN

−2ζ
2ζ+γ

)
= 1,

for some constant C > 0 independent on N , where the infimum in the middle is taken over all
algorithms as a map ZN 3 z̄ 7→ fN ∈ H. Alternative minimax lower rates (perhaps considering
other quantities, R and σ2) could be found in (Caponnetto and De Vito, 2007, Theorem 3) and
(Blanchard and Mucke, 2016a, Theorem 3.5). Second, distributed SGM saturates when ζ > 1.
The reason for this is that averaging over local solutions can only reduce sample and compu-
tational variances, not bias. Similar saturation phenomenon is also observed when analyzing
distributed KRR in (Zhang et al., 2015; Lin et al., 2017). Third, the condition 2ζ + γ > 1 is
equivalent to assuming that the learning problem can not be too difficult. We believe that such
a condition is necessary for applying distributed learning technique to reduce computational
costs, as there are no means to reduce computational costs if the learning problem itself is not
easy. Fourth, as the learning problem becomes easier (corresponds to a bigger ζ), the faster
the convergence rate is, and moreover the larger the number of partition m can be. Finally,
different parameter choices leads to different regularization strategies. In the first two regimes,
the step-size and the mini-batch size are fixed as some prior constants (which only depends on
n), while the number of iterations depends on some unknown distribution parameters. In this
case, the regularization parameter is the number of iterations, which in practice can be tuned by
using cross-validation methods. Besides, the step-size and the number of iterations in the third
regime, or the mini-batch size and the number of iterations in the last regime, depend on the
unknown distribution parameters, and they have some regularization effects. The above theo-
rem asserts that distributed SGM with differently suitable choices of parameters can generalize
optimally, provided the partition level m is not too large.
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3.3 Optimal Rate for Multi-pass SGM on a Single Dataset

As a direct corollary of Theorem 1, we derive the following results for classic multi-pass SGM.

Corollary 3 Under Assumptions 2 and 3, consider Algorithm 1 with m = 1 and any of the
following choices on ηt, b and T∗.
1) ηt ' N−1 for all t ∈ [T∗], b = 1, and T∗ ' Nα+1.
2) ηt ' N−1/2 for all t ∈ [T∗], b '

√
N , and T∗ ' Nα+1/2.

3) ηt ' N−2ζα for all t ∈ [T∗], b = 1, and T∗ ' Nα(2ζ+1).
4) ηt ' 1

logN for all t ∈ [T∗], b ' N2ζα, and T∗ ' Nα logN.
Here,

α =
1

(2ζ + γ) ∨ 1
.

Then,

E‖Sρf̄T∗+1 − fρ‖2ρ .

{
N
− 2ζ

2ζ+γ logN, if 2ζ + γ > 1;

N−2ζ logN, otherwise.
(17)

The above results provide generalization error bounds for multi-pass SGM trained on a single
dataset. The derived convergence rate is optimal in the minimax sense (Caponnetto and De Vito,
2007; Blanchard and Mucke, 2016a) up to a logarithmic factor. Note that SGM does not have
a saturation effect, and optimal convergence rates can be derived for any ζ ∈]0,∞]. Corollary 3
improves the result in (Lin and Rosasco, 2017b) in two aspects. First, the convergence rates are

better than those (i.e., O(N
− 2ζ

2ζ+γ logN) if 2ζ + γ ≥ 1 or O(N−2ζ log4N) otherwise) from (Lin
and Rosasco, 2017b). Second, the above theorem does not require the extra condition m ≥ mδ

made in (Lin and Rosasco, 2017b).

4. Distributed Learning with Spectral Algorithms

In this section, we first state distributed SA. We then present theoretical results for distributed
SA, following with simple discussions. Finally, we give convergence results for classic SA.

4.1 Distributed Spectral Algorithms

In this subsection, we present distributed SA. We first recall that a filter function is defined as
follows.

Definition 4 (Filter functions) Let Λ be a subset of R+. A class of functions {G̃λ : [0, κ2]→
[0,∞[, λ ∈ Λ} is said to be filter functions with qualification τ (τ ≥ 0) if there exist some positive
constants E,Fτ <∞ such that

sup
α∈[0,1]

sup
λ∈Λ

sup
u∈]0,κ2]

|uαG̃λ(u)|λ1−α ≤ E, (18)

and

sup
α∈[0,τ ]

sup
λ∈Λ

sup
u∈]0,κ2]

|(1− G̃λ(u)u)|uαλ−α ≤ Fτ . (19)

In the algorithm, λ is a regularization parameter which should be appropriately chosen in
order to achieve best performance. In practice, it can be tuned by using the cross-validation
methods. SA is associated with some given filter functions. Different filter functions correspond

9
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Algorithm 2 Distributed learning with spectral algorithms

Input: Number of partitions m, filter function G̃λ , and kernel function K(·, ·)
1: Divide z̄ evenly and uniformly at random into m disjoint subsets, z1, z2, · · · , zm
2: For every s ∈ [m], compute a local estimate via SA over the samples zs:

3

gzsλ = G̃λ(Txs)
1

n

n∑
i=1

ys,iKs,i, Txs =
1

n

n∑
i=1

〈·,Kxs,i〉Kxs,i

3: Take the averaging over these local estimators: ḡz̄λ = 1
m

∑m
s=1 g

zs
λ

Output: the function ḡz̄λ

to different regularization algorithms. The following examples provide several common filter
functions, which leads to different types of regularization methods, see e.g. (Gerfo et al., 2008;
Bauer et al., 2007).

Example 1 (KRR) The choice G̃λ(u) = (u+ λ)−1 corresponds to Tikhonov regularization or
the regularized least squares algorithm. It is easy to see that {Gt(u) : λ ∈ R+} is a class of filter
functions with qualification τ = 1, and E = F = 1.

Example 2 (GM) Let {ηk > 0}k be such that ηkκ
2 ≤ 1 for all k ∈ N. Then as will be shown

in Section 6,

G̃λ(u) =
t∑

k=1

ηk

t∏
i=k+1

(1− ηiu)

where we identify λ = (
∑t

k=1 ηk)
−1, corresponds to gradient methods or Landweber iteration

algorithm. The qualification τ could be any positive number, E = 1, and Fτ = (τ/e)τ .

Example 3 (Spectral cut-off) Consider the spectral cut-off or truncated singular value de-
composition (TSVD) defined by

G̃λ(u) =

{
u−1, if u ≥ λ,
0, if u < λ.

Then the qualification τ could be any positive number and E = Fτ = 1.

Example 4 (KRR with bias correction) The function G̃λ(u) = λ(λ + x)−2 + (λ + x)−1

corresponds to KRR with bias correction. It is easy to show that the qualification τ = 2, E = 2
and Fτ = 1.

The implementation of the algorithms is very standard using the representation theorem, for
which we thus skip the details.

3. Let L be a self-adjoint, compact operator over a separable Hilbert space. G̃λ(L) is an operator on L defined
by spectral calculus: suppose that {(σi, ψi)}i is a set of normalized eigenpairs of L with the eigenfunctions

{ψi}i forming an orthonormal basis of H, then G̃λ(Txs) =
∑
i G̃λ(σi)ψi ⊗ ψi.

10
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4.2 Optimal Convergence for Distributed Spectral Algorithms

We have the following general results for distributed SA.

Theorem 2 Under Assumptions 2 and 3, let G̃λ be a filter function with qualification τ ≥ (ζ∨1),
and ḡz̄λ be given by Algorithm 2. Then for any λ̃ = nθ−1 with θ ∈ [0, 1], the following results
hold.
1) For ζ ≤ 1,

E‖Sρḡz̄λ − fρ‖2ρ ≤ (Q2ζ∨1
γ,θ,n ∨

λ̃2

λ2
)[C ′5(R+ 1{2ζ<1}‖fρ‖∞)2λ2ζ + C ′8

σ2

Nλ̃γ
]. (20)

2) For ζ > 1,

E‖Sρḡz̄λ − fρ‖2ρ ≤ (
λ1−2ζ

n(ζ−1/2)∧1
∨Qγ,θ,n ∨

λ̃2ζ

λ2ζ
)[C ′6R

2λ2ζ + C ′8
σ2

Nλ̃γ
]. (21)

Here, Qγ,θ,n is given by (14), and C ′5, C
′
6 and C ′8 are positive constants depending only κ, ζ, E, Fτ ,

cγ and ‖L‖.

The above results provide generalization error bounds for distributed SA. The upper bound
depends on the number of partition m, the regularization parameter λ and total sample size
N . When the regularization parameter λ > 1/n, by setting λ̃ = λ, the derived error bounds for
ζ ≤ 1 can be simplified as

E‖Sρḡz̄λ − fρ‖2ρ . λ2ζ +
1

Nλγ
.

There are two terms in the upper bound. They are raised from estimating bias and sample
variance. Note that there is a trade-off between the bias term and the sample variance term.
Solving this trade-off leads to the best choice on regularization parameter. Note also that similar
to that for distributed SGM, distributed SA also saturates when ζ > 1.

Corollary 5 Under the assumptions of Theorem 2, let 2ζ+γ > 1, λ = N
− 1

2ζ+γ and the number
of partitions satisfies (16). Then

E‖Sρḡz̄λ − fρ‖2ρ . N
− 2ζ

2ζ+γ . (22)

The convergence rate from the above corollary is optimal as it matches exactly the minimax
rate in (Caponnetto and De Vito, 2007), and it is better than the rate for distributed SGM
from Theorem 1, where the latter has an extra logarithmic factor. According to Corollary 5,
distributed SA with an appropriate choice of regularization parameter λ can generalize optimally,
if the number of partitions is not too large. To the best of our knowledge, the above corollary
is the first optimal statistical result for distributed SA considering the non-attainable case (i.e.

ζ can be less than 1/2). Moreover, the requirement on the number of partitions m < N
2ζ+γ−1

2ζ+γ

to achieve optimal generalization error bounds is much weaker than that (m ≤ N
2ζ−1
2ζ+γ ) in (Guo

et al., 2017; Blanchard and Mucke, 2016b).

11
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4.3 Optimal Rates for Spectral Algorithms on a Single Dataset

The following results provide generalization error bounds for classic SA.

Corollary 6 Under Assumptions 2 and 3, let G̃λ be a filter function with qualification τ ≥
(ζ ∨ 1), and gz1

λ be given by Algorithm 2 with λ = N
− 1

1∨(2ζ+γ) and m = 1. Then

E‖Sρgz1
λ − fρ‖

2
ρ .

{
N
− 2ζ

2ζ+γ , if 2ζ + γ > 1;

N−2ζ(1 ∨ logNγ), otherwise.
(23)

Here, a1 . a2 means a1 ≤ Ca2 for some positive constant C which is depending only on
κ, cγ , ζ,M, σ, ‖L‖, E, and Fτ .

The above results assert that SA generalizes optimally if the regularization parameter is well
chosen. To the best of our knowledge, the derived result is the first one with optimally capacity-
dependent rates in the non-attainable case for a general SA. Note that unlike distributed SA,
classic SA does not have a saturation effect.

5. Discussion

In this section, we briefly review some of the related results in order to facilitate comparisons.
For ease of comparisons, we summarize some of the results and their computational costs in
Table 1.

We first briefly review convergence results on generalization error for KRR, and more gen-
erally, SA. Statistical results for KRR with different convergence rates have been shown in, e.g.,
(Smale and Zhou, 2007; Caponnetto and De Vito, 2007; Wu et al., 2006; Steinwart and Christ-
mann, 2008; Steinwart et al., 2009). Particularly, Smale and Zhou (2007) proved convergence

rates of order O(N
− 2ζ

1+(2ζ∨1) ) with 0 < ζ ≤ 1, without considering the capacity assumption.
Caponnetto and De Vito (2007) gave optimally capacity-dependent convergence rate of order

O(N
− 2ζ

2ζ+γ ) but only for the case that 1/2 ≤ ζ ≤ 1. The above two are based on integral operator
approaches. Using an alternative argument related to covering-number or entropy-numbers, Wu

et al. (2006) provided convergence rate O(n
− 2ζ

1+γ ), and (Steinwart and Christmann, 2008, The-

orem 7.23) provides convergence rate O(n
− 2ζ

(2ζ+γ)∨1 ), assuming that 0 < ζ ≤ 1/2, γ ∈ (0, 1) and

|y| . 1 almost surely. For GM, Yao et al. (2007) derived convergence rate of order O(N
− 2ζ

2ζ+2 )
(for ζ ∈]0,∞[), without considering the capacity assumption. Involving the capacity assump-

tion, Lin and Rosasco (2017b) derived convergence rate of order O(N
−2ζ
2ζ+γ log2N) if 2ζ + γ > 1,

or O(N−2ζ log4N) if 2ζ+γ ≤ 1. Note that both proofs from (Yao et al., 2007; Lin and Rosasco,
2017b) rely on the special separable properties of GM with the square loss. For SA, statis-
tical results on generalization error with different convergence rates have been shown in, e.g.,
(Caponnetto, 2006; Bauer et al., 2007; Blanchard and Mucke, 2016a; Dicker et al., 2017; Lin
et al., 2017). The best convergence rate shown so far (without making any extra unlabeled data

as that in (Caponnetto, 2006)) is O(N
− 2ζ

2ζ+γ ) (Blanchard and Mucke, 2016a; Dicker et al., 2017;
Lin et al., 2017) but only for the attainable case, i.e., ζ ≥ 1/2. These results also apply to GM,
as GM can be viewed as a special instance of SA. Note that some of these results also require the
extra assumption that the sample size N is large enough. In comparisons, Corollary 6 provides
the best convergence rates for SA, considering both the non-attainable and attainable cases and
without making any extra assumption. Note that our derived error bounds are in expectation,
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Algorithm Ass. # Processors m Rate
Local Memory

& Time
Memory
& Time

KRR (Smale and Zhou, 2007) ζ ∈]0, 1], γ = 1 1 N
− 2ζ

(2ζ∨1)+1 × N2 & N3

KRR (Caponnetto and De Vito, 2007) ζ ∈ [1
2 , 1], γ ∈]0, 1], N ≥ Nδ 1 N

− 2ζ
2ζ+γ × -

KRR (Steinwart and Christmann, 2008)4 ζ ∈ [0, 1
2 ], γ ∈]0, 1[, |y| . 1 1 N

− (2ζ
2ζ+γ)∨1 × -

KRR [Corollary 6] ζ ∈]0,1],2ζ + γ > 1 1 N
− 2ζ

2ζ+γ × -

KRR [Corollary 6] 2ζ + γ ≤ 1 1 N−2ζ logNγ × -

GM (Yao et al., 2007) γ = 1 1 N
− 2ζ

2ζ+2 × N & N2N
1

2ζ+2

GM (Dicker et al., 2017) ζ ∈ [1
2 ,∞[, γ ∈]0, 1], N ≥ N0 1 N

− 2ζ
2ζ+γ × N & N2N

1
2ζ+γ

GM (Lin and Rosasco, 2017b) 2ζ + γ > 1, N ≥ Nδ 1 N
− 2ζ

2ζ+γ log2N × N & N2N
1

2ζ+γ

GM (Lin and Rosasco, 2017b) 2ζ + γ ≤ 1, N ≥ Nδ 1 N−2ζ log4N × N & N3

GM [Corollary 6] 2ζ + γ > 1 1 N
− 2ζ

2ζ+γ × N & N2N
1

2ζ+γ

GM [Corollary 6] 2ζ + γ ≤ 1 1 N−2ζ logNγ × N & N3

SA (Guo et al., 2017) ζ ∈ [1
2 , τ ], γ ∈]0, 1] 1 N

− 2ζ
2ζ+γ × −

SA [Corollary 6] ζ ≤ τ, 2ζ + γ > 1 1 N
− 2ζ

2ζ+γ × −
SA [Corollary 6] ζ ≤ τ,2ζ + γ ≤ 1 1 N−2ζ logNγ × −

OL (Ying and Pontil, 2008) γ = 1 1 N
− 2ζ

2ζ+1 logN × N & N2

AveOL (Dieuleveut and Bach, 2016) ζ ∈]0, 1], 2ζ + γ > 1 1 N
− 2ζ

2ζ+γ × N & N2

AveOL (Dieuleveut and Bach, 2016) 2ζ + γ ≤ 1 1 N−2ζ × N & N2

SGM (Lin and Rosasco, 2017b) 2ζ + γ > 1, N ≥ Nδ 1 N
− 2ζ

2ζ+γ log2N × N & N2N
1−γ
2ζ+γ

SGM (Lin and Rosasco, 2017b) 2ζ + γ ≤ 1, N ≥ Nδ 1 N−2ζ log4N × N & N3−γ

SGM [Corollary 3] 2ζ + γ > 1 1 N
− 2ζ

2ζ+γ × N & N2N
1−γ
2ζ+γ

SGM [Corollary 3] 2ζ + γ ≤ 1 1 N−2ζ logNγ × N & N3−γ

NyKRR (Rudi et al., 2015) ζ ∈ [1
2 , 1], γ ∈]0, 1], N ≥ Nδ 1 N

− 2ζ
2ζ+γ × N

2ζ+γ+1
2ζ+γ & N

2ζ+2+γ
2ζ+γ

NySGM (Lin and Rosasco, 2017a) ζ ∈ [1
2 , 1], γ ∈]0, 1], N ≥ Nδ 1 N

− 2ζ
2ζ+γ × N

2
2ζ+γ

∨1
& N

2ζ+2
2ζ+γ

DKRR & DSA (Guo et al., 2017) ζ ∈ [1
2 , 1], γ ∈]0, 1] N

2ζ−1
2ζ+γ N

− 2ζ
2ζ+γ N

2(1+γ)
2ζ+γ & N

3(1+γ)
2ζ+γ N

2ζ+2γ+1
2ζ+γ & N

2ζ+2+3γ
2ζ+γ

DKRR & DSA [Corollary 5] ζ ∈]0,1],2ζ + γ > 1 N
2ζ+γ−1

2ζ+γ N
− 2ζ

2ζ+γ N
2

2ζ+γ & N
3

2ζ+γ N
2ζ+γ+1

2ζ+γ & N
2ζ+2+γ

2ζ+γ

DSGM [Corollary 2.(3)] ζ ∈]0,1],2ζ + γ > 1 N
2ζ+γ−1

2ζ+γ N
− 2ζ

2ζ+γ N
1

2ζ+γ & N
2

2ζ+γ N & N
2ζ+γ+1
2ζ+γ

Table 1
Summary of assumptions and results for distributed SGM (DSGM) and related approaches

including KRR, GM, SA, one-pass SGM (OL), one-pass SGM with averaging (AveOL), SGM,
Nyström KRR (NyKRR), Nyström SGM (NySGM), distributed KRR (DKRR) and distributed

SA (DSA).

but it is not difficult to derive error bounds in high probability using our approach, and we will
report this result in a future work.

We next briefly review convergence results for SGM. SGM (Robbins and Monro, 1951) has
been widely used in convex optimization and machine learning, see e.g. (Cesa-Bianchi et al.,
2004; Nemirovski et al., 2009; Bottou et al., 2016) and references therein . In what follows, we
will briefly recall some recent works on generalization error for nonparametric regression on a
RKHS considering the square loss. We will use the term “online learning algorithm” (OL) to
mean one-pass SGM, i.e, SGM that each sample can be used only once. Different variants of
OL, either with or without regularization, have been studied. Most of them take the form

ft+1 = (1− λt)ft − ηt(ft(xt)− yt)Kxt , t = 1 · · · , N.

Here, the regularization parameter λt could be zero (Zhang, 2004; Ying and Pontil, 2008), or
a positive (Smale and Yao, 2006; Ying and Pontil, 2008) and possibly time-varying constant
(Tarres and Yao, 2014). Particularly, Tarres and Yao (2014) studied OL with time-varying

4. The results from (Steinwart and Christmann, 2008) are based on entropy-numbers arguments while the other
results summarized for KRR in the table are based on integral-operator arguments.
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regularization parameters and convergence rate of order O(N
−2ζ
2ζ+1 ) (ζ ∈ [1

2 , 1]) in high probability
was proved. Ying and Pontil (2008) studied OL without regularization and convergence rate of

order O(N
− 2ζ

2ζ+1 ) in expectation was shown. Both convergence rates from (Ying and Pontil, 2008;
Tarres and Yao, 2014) are capacity-independently optimal and they do not take the capacity
assumption into account. Considering an averaging step (Polyak and Juditsky, 1992) and a
proof technique motivated by (Bach and Moulines, 2013), Dieuleveut and Bach (2016) proved

capacity-dependently optimal rate O(N
− 2ζ

(2ζ+γ)∨1 ) for OL in the case that ζ ≤ 1. Recently, Lin
and Rosasco (2017b) studied (multi-pass) SGM, i.e, Algorithm 1 with m = 1. They showed that

SGM with suitable parameter choices, achieves convergence rate of order O(N
− 2α

(2α+γ)∨1 logβ N)
with β = 2 when 2α+γ > 1 or β = 4 otherwise, after some number of iterations. In comparisons,
the derived results for SGM in Corollary 3 are better than those from (Lin and Rosasco, 2017b),
and the convergence rates are the same as those from (Dieuleveut and Bach, 2016) for averaging
OL when ζ ≤ 1 and 2ζ+γ > 1. For the case 2ζ+γ ≤ 1, the convergence rate O(N−2ζ(1∨logNγ))
for SGM in Corollary 3 is worser than O(N−2ζ) in (Dieuleveut and Bach, 2016) for averaging
OL. However, averaging OL saturates for ζ > 1, while SGM does not.

To meet the challenge of large-scale learning, a line of research focus on designing learning
algorithms with Nyström subsampling, or more generally sketching. Interestingly, the latter
has also been applied to compressed sensing, low rank matrix recovery and kernel methods,
see e.g. (Candès et al., 2006; Yurtsever et al., 2017; Yang et al., 2012) and references therein.
The basic idea of Nyström subsampling is to replace a standard large matrix with a smaller
matrix obtained by subsampling (Smola and Schölkopf, 2000; Williams and Seeger, 2000). For
kernel methods, Nyström subsampling has been successfully combined with KRR (Alaoui and
Mahoney, 2015; Rudi et al., 2015; Yang et al., 2017) and SGM (Lu et al., 2016; Lin and Rosasco,

2017a). Generalization error bounds of order O(N
−2ζ
2ζ+γ ) (Rudi et al., 2015; Lin and Rosasco,

2017a) were derived, provided that the subsampling level is suitably chosen, considering the case
ζ ∈ [1

2 , 1]. Computational advantages of these algorithms were highlighted. Here, we summarize
their convergence rates and computational costs in Table 1, from which we see that distributed
SGM has advantages on both memory and time.

Another line of research for large-scale learning focus on distributed (parallelizing) learn-
ing. Distributed learning, based on a divide-and-conquer approach, has been used for, e.g.,
perceptron-based algorithms (Mcdonald et al., 2009), parametric smooth convex optimization
problems (Zhang et al., 2012), and sparse regression (Lee et al., 2017). Recently, this approach
has been successfully applied to learning algorithms with kernel methods, such as KRR (Zhang
et al., 2015), and SA (Guo et al., 2017; Blanchard and Mucke, 2016a). Zhang et al. (2015) first

studied distributed KRR and showed that distributed KRR retains optimal rates O(N
− 2ζ

2ζ+γ )
(for ζ ∈ [1

2 , 1]) provided the partition level is not too large. The number of partition to retain
optimal rate shown in (Zhang et al., 2015) for distributed KRR depends on some conditions
which may be less well understood and thus potentially leads to a suboptimal partition number.
Lin et al. (2017) provided an alternative and refined analysis for distributed KRR, leading to
a less strict condition on the partition number. Guo et al. (2017) extended the analysis to dis-
tributed SA, an proved optimal convergence rate for the case ζ ≥ 1/2, if the number of partitions

m ≤ N
2ζ−1
2ζ+γ . In comparison, the condition on partition number from Theorem 2 for distributed

SA is less strict. Moreover, Theorem 2 shows that distributed SA can retain optimal rate even
in the non-attainable case. According to Corollary 2, distributed SGM with appropriate choices
of parameters can achieve optimal rate if the partition number is not too large. In comparison
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of the derived results for distributed SA with those for distributed SGM, we see from Table 1
that the latter has advantages on both memory and time. The most related to our works are
(Zinkevich et al., 2010; Jain et al., 2016). Zinkevich et al. (2010) studied distributed OL for op-
timization problems over a finite-dimensional domain, and proved convergence results assuming
that the objective function is strongly convex. Jain et al. (2016) considered distributed OL with
averaging for least square regression problems over a finite-dimension space and proved certain
convergence results that may depend on the smallest eigenvalue of the covariance matrix. These
results do not apply to our cases, as we consider distributed multi-pass SGM for nonparametric
regression over a RKHS and our objective function is not strongly convex. We finally remark
that using a partition approach (Thomann et al., 2016; Tandon et al., 2016), one can also scale
up the kernel methods, with a computational advantage similar as those of using distributed
learning technique.

We conclude this section with some further questions. First, in this paper, we assume that
all parameter choices are given priorly. In practice, these parameters can be possibly tuned
by cross-validation method. Second, the derived rate for SGM and SA when 2ζ + γ ≤ 1 is
O(N−2ζ(1 ∨ logNγ)), which is worser than O(N−2ζ) of averaging OL (Dieuleveut and Bach,
2016). It would be interesting to improve the rate, or to derive a minimax rate for the case
2ζ+ γ ≤ 1. Third, all results stated in this paper are in expectation, and it would be interesting
to derive high-probability results (possibly by a proof technique from (London, 2017)).

6. Proofs for Distributed SGM

In this section, we provide the proofs of our main theorems for distributed SGM. We begin with
some basic notations. For ease of readability, we also make a list of notations in the appendix.

6.1 Notations

E[ξ] denotes the expectation of a random variable ξ. ‖ · ‖∞ denotes the supreme norm with
respect to ρX . For a given bounded operator L : H ′ → H ′′, ‖L‖ denotes the operator norm of L,
i.e., ‖L‖ = supf∈H′,‖f‖H′=1 ‖Lf‖H′′ . Here H ′ and H ′′ are two separable Hilbert spaces (which
could be the same).

We introduce the inclusion operator Sρ : H → L2
ρX

, which is continuous under Assumption
1. Furthermore, we consider the adjoint operator S∗ρ : L2

ρX
→ H, the covariance operator

T : H → H given by T = S∗ρSρ, and the operator L : L2
ρX
→ L2

ρX
given by SρS∗ρ . It can be

easily proved that S∗ρf =
∫
X Kxf(x)dρX(x) and T =

∫
X〈·,Kx〉HKxdρX(x). The operators T

and L can be proved to be positive trace class operators (and hence compact). In fact, by (7),

‖L‖ = ‖T ‖ ≤ tr(T ) =

∫
X

tr(Kx ⊗Kx)dρX(x) =

∫
X
‖Kx‖2HdρX(x) ≤ κ2. (24)

For any function f ∈ H, the H-norm can be related to the L2
ρX

-norm by
√
T : (Bauer et al.,

2007)

‖Sρf‖ρ =
∥∥∥√T f∥∥∥

H
, (25)

and furthermore according to the singular value decomposition of Sρ,

‖L−
1
2Sρf‖ρ ≤ ‖f‖H . (26)

We define the sampling operator (with respect to any given set x ⊆ X of cardinality n) Sx :
H → Rn by (Sxf)i = f(xi) = 〈f,Kxi〉H , i ∈ [n], where the norm ‖·‖Rn is the standard Euclidean
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norm times 1/
√
n. Its adjoint operator S∗x : Rn → H, defined by 〈S∗xy, f〉H = 〈y,Sxf〉Rn for

y ∈ Rn is thus given by

S∗xy =
1

n

n∑
i=1

yiKxi . (27)

Moreover, we can define the empirical covariance operator (with respect to x) Tx : H → H such
that Tx = S∗xSx. Obviously,

Tx =
1

n

n∑
i=1

〈·,Kxi〉HKxi .

By (7), similar to (24), we have
‖Tx‖ ≤ tr(Tx) ≤ κ2. (28)

For any λ̃ > 0, for notational simplicity, we let Tλ̃ = T + λ̃, Txλ̃ = Tx + λ̃, and

N (λ̃) = tr(L(L+ λ̃)−1) = tr(T (T + λ̃)−1).

For any f ∈ H and x ∈ X, the following well known reproducing property holds:

〈f,Kx〉H = f(x). (29)

and following from the above, Cauchy-Schwarz inequality and (7), one can prove that

|f(x)| = |〈f,Kx〉H | ≤ ‖f‖H‖Kx‖H ≤ κ‖f‖H (30)

For any s ∈ [m], we denote the set of random variables {js,i}b(t−1)+1≤i≤bt by Js,t, {js,1, js,2,
· · · , js,bT } by Js, and {J1, · · · ,Jm} by J. Note that js,1, js,2, · · · , js,bT are conditionally inde-
pendent given zs.

6.2 Error Decomposition

The key to our proof is an error decomposition. To introduce the error decomposition, we need
to introduce two auxiliary sequences.

The first auxiliary sequence is generated by distributed GM. For any s ∈ [m], the GM over
the sample set zs is defined by gs,1 = 0 and

gs,t+1 = gs,t − ηt
(
Txsgs,t − S∗xsys

)
, t = 1, . . . , T, (31)

where {ηt > 0} is a step-size sequence given by Algorithm 1. The average estimator over these
local estimators is given by

ḡt =
1

m

m∑
s=1

gs,t. (32)

The second auxiliary sequence is generated by distributed pseudo GM as follows. For any
s ∈ [m], the pseudo GM over the input set xs is defined by hs,1 = 0 and

hs,t+1 = hs,t − ηt (Txshs,t − Lxsfρ) , t = 1, . . . , T. (33)

The average estimator over these local estimators is given by

h̄t =
1

m

m∑
s=1

hs,t. (34)
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In the above, for any given inputs set x ⊆ X |x|, Lx : L2
ρX
→ H is defined as that for any f ∈ L2

ρX
such that ‖f‖∞ <∞,

Lxf =
1

|x|
∑
x∈x

f(x)Kx. (35)

Note that (33) can not be implemented in practice, as fρ(x) is unknown in general.
We state the error decomposition as follows.

Proposition 1 We have that for any t ∈ [T ],

E‖Sρf̄t − fρ‖2ρ = E‖Sρh̄t − fρ‖2ρ + E[‖Sρ(ḡt − h̄t)‖2ρ] + E‖Sρ(f̄t − ḡt)‖2ρ. (36)

The error decomposition is similar as (but a bit different from) (Lin and Rosasco, 2017b,
Proposition 1) for classic multi-pass SGM. There are three terms in the right-hand side of (36).
The first term depends on the regularity of the regression function (Assumption 2) and it is
called as bias. The second term depends on the noise level σ2 from (8) and it is called as
sample variance. The last term is caused by the random estimates of the full gradients and it
is called as computational variance. In the following subsections, we will estimate these three
terms separately. Total error bounds can be thus derived by substituting these estimates into
the error decomposition.

The proof idea is quite simple. According to Lemmas 7, 21 and 22, in order to proceed the
analysis, we only need to estimate bias, sample and computational variance of a local estimator.
In order to estimate local bias and local sample variance, as given in Lemma 8, we rewrite
gs,t and hs,t as the special forms induced by a filter function Gt of GM. The strategy here for
estimating local bias and sample variance is different from that in (Lin and Rosasco, 2017b)
which relies on the following error decomposition and iterative relationship motivated by (Lin
and Zhou, 2015):

‖gs,t − fρ‖ρ ≤ ‖rt − fρ‖ρ + ‖gs,t − rt‖ρ and

gs,t+1 − rt+1 =

t∑
k=1

ηk

t∏
j=k+1

(I − ηjTxs)(T rk − S∗ρfρ − Txrk + S∗xsys),

where the population sequence {rt}t is defined by r1 = 0 and

rt+1 = (I − T )rt + S∗ρfρ. (37)

Instead, in this paper, we use spectral theory from functional analysis to proceed the estimations.

Our main novelties lies in a new error bound for ‖T −
1
2

xλ̃
T

1
2

λ̃
‖, see Lemma 19 (which allows one

to derive optimal rates in the non-attainable cases without requiring the sample size is large

enough, and refines the error bounds on ‖T −
1
2

xλ̃
T

1
2

λ̃
‖ by involving Assumption 3 in the logarithmic

factor), and the estimation on local bias, as well as some other refined analysis. For estimating
local bias, we introduce a new key error decomposition, in order to cover both the non-attainable
case and the unbounded-output case.

All the missing proofs of propositions and lemmas in this section can be found in Appendix
B.

6.3 Estimating Bias

In this subsection, we estimate bias, i.e., E‖Sρh̄t−fρ‖2ρ. We first give the following lemma, which
asserts that the bias term can be estimated in terms of the bias of a local estimator.
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Lemma 7 For any t ∈ [T ], we have

E‖Sρh̄t − fρ‖2ρ ≤ E‖Sρh1,t − fρ‖2ρ.

To estimate the bias of the local estimator, E‖Sρh1,t− fρ‖2ρ, we next introduce some prelim-
inary notations and lemmas.

ΠT
t+1(L) =

∏T
k=t+1(I − ηkL) for t ∈ [T − 1] and ΠT

T+1(L) = I, for any operator L : H → H,
where H is a Hilbert space and I denotes the identity operator on H. Let k, t ∈ N. We use
the following conventional notations: 1/0 = +∞,

∏t
k = 1 and

∑t
k = 0 whenever k > t. Σt

k =∑t
i=k ηi, λk:t = (Σt

k)
−1, and specially λ1:t is abbreviated as λt. Define the function Gt : R → R

by

Gt(u) =
t∑

k=1

ηk

T∏
k=t+1

(I − ηku). (38)

Throughout this paper, we assume that the step-size sequence satisfies ηt ∈]0, κ−2] for all
t ∈ N. Thus, Gt(u) and Πt

k(u) are non-negative on ]0, κ2]. For notational simplicity, throughout
the rest of this subsection, we will drop the index s = 1 for the first local estimator whenever it
shows up, i.e, we abbreviate h1,t as ht, z1 as z, and Tx1 as Tx, etc.

The key idea for our estimation on bias is that {ht}t can be well approximated by the
population sequence {rt}t, a deterministic sequence depending on the regression function fρ.

We first have the following observations.

Lemma 8 The sequence {rt}t defined by (37) can be rewritten as

rt+1 = Gt(T )S∗ρfρ. (39)

Similarly, for any s ∈ [m], the sequences {gs,t}t and {hs,t}t defined by (31) and (33) can be
rewritten as

gs,t+1 = Gt(Txs)S∗xsys,

and

hs,t+1 = Gt(Txs)Lxsfρ.

Proof Using the relationship (37) iteratively, introducing with r1 = 0, one can prove the first
conclusion.

According to the above lemma, we know that GM can be rewritten as a form of SA with
filter function G̃λ(·) = Gt(·). In the next lemma, we further develop some basic properties for
this filter function.

Lemma 9 For all u ∈ [0, κ2],
1) uαGt(u) ≤ λα−1

t , ∀α ∈ [0, 1].
2) (1− uGt(u))uα = Πt

1(u)uα ≤ (α/e)αλαt , ∀α ∈ [0,∞[.
3) Πt

k(u)uα ≤ (α/e)αλαk:t, ∀t, k ∈ N.

According to Lemma 9, Gt(·) is a filter function indexed with regularization parameter
λ = λt, and the qualification τ can be any positive number, and E = 1, Fτ = (τ/e)τ . Using
Lemma 9 and the spectral theorem, one can get the following results.
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Lemma 10 Let L be a compact, positive operator on a separable Hilbert space H such that
‖L‖ ≤ κ2. Then for any λ̃ ≥ 0,
1) ‖(L+ λ̃)αGt(L)‖ ≤ λα−1

t (1 + (λ̃/λt)
α), ∀α ∈ [0, 1].

2) ‖(I − LGt(L))(L+ λ̃)α‖ = ‖Πt
1(L)(L+ λ̃)α‖ ≤ 2(α−1)+((α/e)α + (λ̃/λt)

α)λαt , ∀α ∈ [0,∞[.
3) ‖Πt

k+1(L)Lα‖ ≤ (α/e)α λαk:t, ∀k, t ∈ N.

To proceed the proof, we introduce the following basic lemmas on operators.

Lemma 11 (Fujii et al., 1993, Cordes inequality) Let A and B be two positive bounded linear
operators on a separable Hilbert space. Then

‖AsBs‖ ≤ ‖AB‖s, when 0 ≤ s ≤ 1.

Lemma 12 Let H1, H2 be two separable Hilbert spaces and S : H1 → H2 a compact operator.
Then for any function f : [0, ‖S‖]→ [0,∞[,

f(SS∗)S = Sf(S∗S).

Proof The result can be proved using singular value decomposition of a compact operator.

Lemma 13 Let A and B be two non-negative bounded linear operators on a separable Hilbert
space with max(‖A‖, ‖B‖) ≤ κ2 for some non-negative κ2. Then for any ζ > 0,

‖Aζ −Bζ‖ ≤ Cζ,κ‖A−B‖ζ∧1, (40)

where

Cζ,κ =

{
1 when ζ ≤ 1,

2ζκ2ζ−2 when ζ > 1.
(41)

Proof The proof is based on the fact that uζ is operator monotone if 0 < ζ ≤ 1. While for
ζ ≥ 1, the proof can be found in, e.g., (Dicker et al., 2017).

Using Lemma 10, one can prove the following results, which give some basic properties for
the population sequence {rt}t.

Lemma 14 Let a ∈ R. Under Assumption 2, the following results hold.
1) For any a ≤ ζ, we have

‖L−a (Sρrt+1 − fρ) ‖ρ ≤ ((ζ − a)/e)ζ−aRλζ−at .

2) We have

‖T a−1/2rt+1‖H ≤ R ·

{
λζ+a−1
t , if − ζ ≤ a ≤ 1− ζ,
κ2(ζ+a−1), if a ≥ 1− ζ.

(42)

Proof 1) Using Lemma 12,

SρGt(T )S∗ρ = SρGt(S∗ρSρ)S∗ρ = Gt(SρS∗ρ)SρS∗ρ = Gt(L)L,
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and by (39), we have

L−a(Sρrt+1 − fρ) = L−a (Gt(L)L − I) fρ.

Taking the ρ-norm, applying Assumption 2, we have

‖L−a(Sρrt+1 − fρ)‖ρ ≤ ‖Lζ−a(Gt(L)L − I)‖R = ‖Lζ−aΠt
1(L)‖R.

Note that the condition (7) implies (24). Applying Part 2) of Lemma 10, one can prove the first
desired result.

2) By (39) and Assumption 2,

‖T a−1/2rt+1‖H = ‖T a−1/2Gt(T )S∗ρfρ‖H ≤ ‖T a−1/2Gt(T )S∗ρLζ‖R.

Noting that

‖T a−1/2Gt(T )S∗ρLζ‖ = ‖T a−1/2Gt(T )S∗ρL2ζSρGt(T )T a−1/2‖1/2

= ‖G2
t (T )T 2ζ+2a‖1/2 = ‖Gt(T )T ζ+a‖,

we thus have
‖T a−1/2rt+1‖H ≤ ‖Gt(T )T ζ+a‖R.

If 0 ≤ ζ + a ≤ 1, i.e., −ζ ≤ a ≤ 1− ζ, then by using 1) of Lemma 10, we get

‖T a−1/2rt+1‖H ≤ λζ+a−1
t R.

Similarly, when a ≥ 1− ζ, we have

‖T a−1/2rt+1‖H ≤ ‖Gt(T )T ‖‖T ‖ζ+a−1R ≤ κ2(ζ+a−1)R,

where for the last inequality we used 1) of Lemma 10 and (24). This thus proves the second
desired result.

With the above lemmas, we can prove the the following analytic result, which enables us to
estimate the bias term in terms of several random quantities.

Lemma 15 Under Assumption 2, let λ̃ > 0,

∆z
1 = ‖T 1/2

λ̃
T −1/2

xλ̃
‖2 ∨ 1, ∆z

3 = ‖T − Tx‖

and

∆z
2 = ‖Lxfρ − S∗ρfρ − Txrt+1 + T rt+1‖H .

Then the following results hold.
1) For 0 < ζ ≤ 1,

‖Sρht+1 − fρ‖ρ ≤

1 ∨

(
λ̃

λt

)ζ∨ 1
2

 (C1R(∆z
1)ζ∨

1
2λζt + 2

√
∆z

1λ
− 1

2
t ∆z

2). (43)

2) For ζ > 1,

‖Sρht+1 − fρ‖ρ ≤
√

∆z
1

1 ∨

(
λ̃

λt

)ζ (C2Rλ
ζ
t + 2λ

− 1
2

t ∆z
2 + C3Rλ

1
2
t (∆z

3)(ζ− 1
2

)∧1). (44)

Here, C1, C2 and C3 are positive constants depending only on ζ and κ.
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Proof Using Lemma 8 with s = 1, we can estimate ‖Sρht+1 − fρ‖ρ as

‖SρGt(Tx)Lxfρ − fρ‖ρ ≤‖SρGt(Tx)[Lxfρ − S∗ρfρ − Txrt+1 + T rt+1]︸ ︷︷ ︸
Bias.1

‖ρ

+ ‖ SρGt(Tx)[S∗ρfρ − T rt+1]︸ ︷︷ ︸
Bias.2

‖ρ

+ ‖ Sρ[I −Gt(Tx)Tx]rt+1︸ ︷︷ ︸
Bias.3

‖ρ

+ ‖ Sρrt+1 − fρ︸ ︷︷ ︸
Bias.4

‖ρ. (45)

In the rest of the proof, we will estimate the four terms of the r.h.s separately.
Estimating Bias.4
Using 1) of Lemma 14 with a = 0, we get

‖Bias.4‖ρ ≤ (ζ/e)ζλζtR. (46)

Estimating Bias.1
By a simple calculation, we know that for any f ∈ H,

‖SρGt(Tx)f‖ρ ≤ ‖SρT −1/2

λ̃
‖‖T 1/2

λ̃
T −1/2

xλ̃
‖‖T 1/2

xλ̃
Gt(Tx)‖‖f‖H .

Note that
‖SρT −1/2

λ̃
‖ =

√
‖SρT −1

λ̃
S∗ρ‖ =

√
‖LL−1

λ̃
‖ ≤ 1, (47)

and that applying 1) of Lemma 10, with (28), we have

‖T 1/2

xλ̃
Gt(Tx)‖ ≤ (1 +

√
λ̃/λt)/

√
λt.

Thus for any f ∈ H, we have

‖SρGt(Tx)f‖ρ ≤ (1 +

√
λ̃/λt)λ

− 1
2

t

√
∆z

1‖f‖H . (48)

Therefore,

‖Bias.1‖ρ ≤ (1 +

√
λ̃/λt)λ

− 1
2

t

√
∆z

1∆z
2. (49)

Estimating Bias.2
By (48), we have

‖Bias.2‖ρ ≤ (1 +

√
λ̃/λt)λ

− 1
2

t

√
∆z

1‖T rt+1 − S∗ρfρ‖H .

Using (with T = S∗ρSρ and L = SρS∗ρ)

‖T rt+1 − S∗ρfρ‖H = ‖S∗ρ(Sρrt+1 − fρ)‖H = ‖L1/2(Sρrt+1 − fρ)‖ρ,

and applying 1) of Lemma 14 with a = −1/2, we get

‖Bias.2‖ρ ≤ ((ζ + 1/2)/e)ζ+1/2(1 +

√
λ̃/λt)

√
∆z

1λ
ζ
tR. (50)
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Estimating Bias.3
By 2) of Lemma 9,

Bias.3 = SρΠt
1(Tx)rt+1.

When ζ ≤ 1/2, by a simple calculation, we have

‖Bias.3‖ρ ≤‖SρT −1/2

λ̃
‖‖T 1/2

λ̃
T −1/2

xλ̃
‖‖T 1/2

xλ̃
Πt

1(Tx)‖‖rt+1‖H

≤
√

∆z
1‖T

1/2

xλ̃
Πt

1(Tx)‖‖rt+1‖H ,

where for the last inequality, we used (47). By 2) of Lemma 10, with (28),

‖T 1/2

xλ̃
Πt

1(Tx)‖ ≤
√
λt(1/

√
2e +

√
λ̃/λt), (51)

and by 2) of Lemma 14,

‖rt+1‖H ≤ Rλζ−1/2
t .

It thus follows that

‖Bias.3‖ρ ≤
√

∆z
1(

√
λ̃/λt + 1/

√
2e)Rλζt .

When 1/2 < ζ ≤ 1, by a simple computation, we have

‖Bias.3‖ρ ≤ ‖SρT −1/2

λ̃
‖‖T 1/2

λ̃
T −1/2

xλ̃
‖‖T 1/2

xλ̃
Πt

1(Tx)T ζ−1/2

xλ̃
‖‖T 1/2−ζ

xλ̃
T ζ−1/2

λ̃
‖‖T 1/2−ζ

λ̃
rt+1‖H .

Applying (47) and 2) of Lemma 14, we have

‖Bias.3‖ρ ≤
√

∆z
1‖T

1/2

xλ̃
Πt

1(Tx)T ζ−1/2

xλ̃
‖‖T 1/2−ζ

xλ̃
T ζ−1/2

λ̃
‖R.

By 2) of Lemma 10,

‖T 1/2

xλ̃
Πt

1(Tx)T ζ−1/2

xλ̃
‖ = ‖T ζ

xλ̃
Πt

1(Tx)‖ ≤ ((ζ/e)ζ + (λ̃/λt)
ζ)λζt .

Besides, by ζ ≤ 1 and Lemma 11,

‖T 1/2−ζ
xλ̃

T ζ−1/2

λ̃
‖ = ‖T −

1
2

(2ζ−1)

xλ̃
T

1
2

(2ζ−1)

λ̃
‖ ≤ ‖T −

1
2

xλ̃
T

1
2

λ̃
‖2ζ−1 ≤ (∆z

1)ζ−
1
2 .

It thus follows that

‖Bias.3‖ρ ≤ (∆z
1)ζ((λ̃/λt)

ζ + (ζ/e)ζ)Rλζt .

When ζ > 1, we rewrite Bias.3 as

SρT −1/2

λ̃
· T 1/2

λ̃
T −1/2

xλ̃
· T 1/2

xλ̃
Πt

1(Tx)(T ζ−1/2
x + T ζ−1/2 − T ζ−1/2

x )T 1/2−ζrt+1.

By a simple calculation, we can upper bound ‖Bias.3‖ρ by

≤ ‖SρT −1/2

λ̃
‖‖T 1/2

λ̃
T −1/2

xλ̃
‖(‖T 1/2

xλ̃
Πt

1(Tx)T ζ−1/2
x ‖+‖T 1/2

xλ̃
Πt

1(Tx)‖‖T ζ−1/2−T ζ−1/2
x ‖)‖T 1/2−ζrt+1‖.

Introducing with (47) and (51), and applying 2) of Lemma 14,

‖Bias.3‖ρ ≤
√

∆z
1(‖T 1/2

xλ̃
Πt

1(Tx)T ζ−1/2
x ‖+ (1/

√
2e +

√
λ̃/λt)

√
λt‖T ζ−1/2 − T ζ−1/2

x ‖)R.
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By 2) of Lemma 10,

‖T 1/2

xλ̃
Πt

1(Tx)T ζ−1/2
x ‖ ≤ ‖T ζ

xλ̃
Πt

1(Tx)‖ ≤ 2ζ−1((ζ/e)ζ + (λ̃/λt)
ζ)λζt .

Moreover, by Lemma 13 and max(‖T ‖, ‖Tx‖) ≤ κ2,

‖T ζ−1/2 − T ζ−1/2
x ‖ ≤ (2ζκ2ζ−3)1{2ζ≥3}‖T − Tx‖(ζ−1/2)∧1.

Therefore, when ζ > 1, Bias.3 can be estimated as

‖Bias.3‖ρ

≤
√

∆z
1

(
2ζ−1((ζ/e)ζ + (λ̃/λt)

ζ)λζt + (2ζκ2ζ−3)1{2ζ≥3}(1/
√

2e +

√
λ̃/λt)

√
λt(∆

z
3)(ζ−1/2)∧1

)
R.

From the above analysis, we know that ‖Bias.3‖ρ can be upper bounded by

√
∆z

1(
√
λ̃/λt + 1/

√
2e)Rλζt , if ζ ∈]0, 1/2],

(∆z
1)ζ(

(
λ̃/λt

)ζ
+ (ζ/e)ζ)Rλζt , if ζ ∈]1/2, 1],√

∆z
1

(
2ζ−1(

(
ζ
e

)ζ
+ ( λ̃λt )

ζ)λζt + (2ζκ2ζ−3)1{2ζ≥3}( 1√
2e

+
√

λ̃
λt

)
√
λt(∆

z
3)(ζ− 1

2
)∧1

)
R, if ζ ∈]1,∞[.

(52)
Introducing (46), (49), (50) and (52) into (45), and by a simple calculation, one can prove

the desired results with

C1 = (ζ/e)ζ + 2((ζ +
1

2
)/e)ζ+

1
2 + ((ζ ∨ 1

2
)/e)ζ∨

1
2 + 1,

C2 = (2ζ−1 + 1)(ζ/e)ζ + 2((ζ +
1

2
)/e)ζ+

1
2 + 2ζ−1,

and C3 = (2ζκ2ζ−3)1{2ζ≥3}(1/
√

2e + 1).

The upper bounds in (43) and (44) depend on three random quantities, ∆z
1, ∆z

3 and ∆z
2. To

derive error bounds for the bias term from Lemma 15, it is necessary to estimate these three
random quantities. We thus introduce the following lemmas.

Lemma 16 Let f : X → Y be a measurable function such that ‖f‖∞ <∞, then with probability
at least 1− δ (0 < δ < 1/2),

‖Lxf − Lf‖H ≤ 2κ

(
2‖f‖∞
|x|

+
‖f‖ρ√
|x|

)
log

2

δ
.

Lemma 17 Let 0 < δ < 1/2. It holds with probability at least 1− δ :

‖T − Tx‖HS ≤
6κ2√
|x|

log
2

δ
.

Here, ‖ · ‖HS denotes the Hilbert-Schmidt norm.
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Lemma 18 Let 0 < δ < 1 and λ > 0. With probability at least 1− δ, the following holds:

∥∥∥(T + λ)−1/2(T − Tx)(T + λ)−1/2
∥∥∥ ≤ 4κ2β

3|x|λ
+

√
2κ2β

|x|λ
, β = log

4κ2(N (λ) + 1)

δ‖T ‖
.

The proofs of Lemmas 16 and 17 are based on concentration result for Hilbert space valued
random variable from (Pinelis and Sakhanenko, 1986), while the proof of Lemma 18 is based on
the concentration inequality for norms of self-adjoint operators on a Hilbert space from (Tropp,
2012; Minsker, 2011). For completeness, we give the proofs in the appendix.

We will use Lemmas 16 and 14 to estimate the quantity ∆z
2. The quantity ∆z

3 can be
estimated by Lemma 17 directly, as ‖T −Tx‖ ≤ ‖T −Tx‖HS . The quantity ∆z

1 can be estimated
by the following lemma, whose proof is based on Lemma 18.

Lemma 19 Under Assumption 3, let c, δ ∈ (0, 1), λ = |x|−θ for some θ ≥ 0, and

a|x|,δ,γ(c, θ) =
32κ2

(
√

9 + 24c− 3)2

(
log

4κ2(cγ + 1)

δ‖T ‖
+ θγmin

(
1

e(1− θ)+
, log |x|

))
. (53)

Then with probability at least 1− δ,

‖(T + λ)−1/2(Tx + λ)1/2‖2 ≤ (1 + c)a|x|,δ,γ(c, θ)(1 ∨ |x|θ−1), and

‖(T + λ)1/2(Tx + λ)−1/2‖2 ≤ (1− c)−1a|x|,δ,γ(c, θ)(1 ∨ |x|θ−1).

Remark 1 Typically, we will choose c = 2/3. In this case,

a|x|,δ,γ(2/3, θ) = 8κ2

(
log

4κ2(cγ + 1)

δ‖T ‖
+ θγmin

(
1

e(1− θ)+
, log |x|

))
. (54)

We have with probability at least 1− δ,

‖(T + λ)1/2(Tx + λ)−1/2‖2 ≤ 3a|x|,δ,γ(2/3, θ)(1 ∨ |x|θ−1).

Proof We use Lemma 18 to prove the result. Let c ∈ (0, 1]. By a simple calculation, we have

that if 0 ≤ u ≤
√

9+24c−3
4 , then 2u2/3 + u ≤ c. Letting

√
2κ2β
|x|λ′ = u, and combining with Lemma

18, we know that if √
2κ2β

|x|λ′
≤
√

9 + 24c− 3

4
,

which is equivalent to

|x| ≥ 32κ2β

(
√

9 + 24c− 3)2λ′
, β = log

4κ2(1 +N (λ′))

δ‖T ‖
, (55)

then with probability at least 1− δ,∥∥∥T −1/2
λ′ (T − Tx)T −1/2

λ′

∥∥∥ ≤ c. (56)
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Note that from (56), we can prove

‖T −1/2
λ′ T 1/2

xλ′ ‖
2 ≤ c+ 1, ‖T 1/2

λ′ T
−1/2
xλ′ ‖

2 ≤ (1− c)−1. (57)

Indeed, by simple calculations,

‖T −1/2
λ′ T 1/2

xλ′ ‖
2 = ‖T −1/2

λ′ Txλ′T
−1/2
λ′ ‖ = ‖T −1/2

λ′ (T − Tx)T −1/2
λ′ + I‖

≤ ‖T −1/2
λ′ (T − Tx)T −1/2

λ′ ‖+ ‖I‖ ≤ c+ 1,

and (Caponnetto and De Vito, 2007)

‖T 1/2
λ′ T

−1/2
xλ′ ‖

2 = ‖T 1/2
λ′ T

−1
xλ′ T

1/2
λ′ ‖ = ‖(I − T −1/2

λ′ (T − Tx)T −1/2
λ′ )−1‖ ≤ (1− c)−1.

From the above analysis, we know that for any fixed λ′ > 0 such that (55), then with probability
at least 1− δ, (57) hold.

Now let λ′ = aλ when θ ∈ [0, 1) and λ′ = a|x|−1 when θ ≥ 1, where for notational simplicity,
we denote a|x|,δ,γ(c, θ) by a. We will prove that the choice on λ′ ensures the condition (55) is
satisfied, as thus with probability at least 1− δ, (57) holds. Obviously, one can easily prove that
a ≥ 1, using κ2 ≥ 1 and (24). Therefore, λ′ ≥ λ, and

‖T 1/2
λ T −1/2

xλ ‖ ≤ ‖T 1/2
λ T −1/2

λ′ ‖‖T 1/2
λ′ T

−1/2
xλ′ ‖‖T

1/2
xλ′ T

−1/2
xλ ‖ ≤ ‖T 1/2

λ′ T
−1/2
xλ′ ‖

√
λ′/λ,

where for the last inequality, we used ‖T 1/2
λ T −1/2

λ′ ‖2 ≤ supu≥0
u+λ
u+λ′ ≤ 1 and ‖T 1/2

xλ′ T
−1/2
xλ ‖2 ≤

supu≥0
u+λ′

u+λ ≤ λ
′/λ. Similarly,

‖T −1/2
λ T 1/2

xλ ‖ ≤ ‖T
−1/2
λ′ T 1/2

xλ′ ‖
√
λ′/λ.

Combining with (57), and by a simple calculation, one can prove the desired bounds. What
remains is to prove that the condition (55) is satisfied. By Assumption 3 and a ≥ 1,

β ≤ log
4κ2(1 + cγa

−γ |x|(θ∧1)γ)

δ‖T ‖
≤ log

4κ2(1 + cγ)|x|θγ

δ‖T ‖
= log

4κ2(1 + cγ)

δ‖T ‖
+ θγ log |x|.

If θ ≥ 1, or θγ = 0, or log |x| ≤ 1
(1−θ)+e , then the condition (55) follows trivially. Now consider

the case θ ∈ (0, 1), θγ 6= 0 and log |x| ≥ 1
(1−θ)+e . In this case, we apply (78) to get θγ

1−θ log |x|1−θ ≤
θγ

1−θ
|x|1−θ

e , and thus

β ≤ log
4κ2(1 + cγ)

δ‖T ‖
+

θγ

1− θ
|x|1−θ

e
.

Therefore, a sufficient condition for (55) is

|x|1−θa
g(c)

≥ log
4κ2(1 + cγ)

δ‖T ‖
+

θγ

e(1− θ)
|x|1−θ, g(c) =

32κ2

(
√

9 + 24c− 3)2
.

From the definition of a in (53),

a = g(c)

(
log

4κ2(cγ + 1)

δ‖T ‖
+

θγ

e(1− θ)+

)
,
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and by a direct calculation, one can prove that the condition (55) is satisfied. The proof is
complete.

We also need the following lemma, which enables one to derive convergence results in expec-
tation from convergence results in high probability.

Lemma 20 Let F :]0, 1] → R+ be a monotone non-increasing, continuous function, and ξ a
nonnegative real random variable such that

Pr[ξ > F (t)] ≤ t, ∀t ∈ (0, 1].

Then

E[ξ] ≤
∫ 1

0
F (t)dt.

The proof of the above lemma can be found in, e.g., (Blanchard and Mucke, 2016a). Now we
are ready to state and prove the following result for the local bias.

Proposition 2 Under Assumptions 2 and 3, we let λ̃ = n−1+θ for some θ ∈ [0, 1]. Then for
any t ∈ [T ], the following results hold.
1) For 0 < ζ ≤ 1,

E‖Sρht+1 − fρ‖2ρ ≤ C5(R+ 1{ζ<1/2}‖fρ‖∞)2

(
1 ∨ λ̃

2

λ2
t

∨ [γ(θ−1 ∧ log n)]2ζ∨1

)
λ2ζ
t .

2)For ζ > 1,

E‖Sρht+1 − fρ‖2ρ ≤ C6R
2

(
1 ∨ λ̃

2ζ

λ2ζ
t

∨ λ1−2ζ
t

(
1

n

)(ζ− 1
2

)∧1

∨ [γ(θ−1 ∧ log n)]

)
λ2ζ
t .

Here, C5 and C6 are positive constants depending only on κ, ζ and can be given explicitly in the
proof.

Remark 2 In this paper, we did not try to optimize the constants from the error bounds. But
one should keep in mind that the constants can be further improved using an alternative proof for
some special case, e.g., γ = 0 (Hsu et al., 2014), or ζ ≥ 1/2 (Caponnetto and De Vito, 2007),
or |y| ≤ M . Furthermore, by assuming that |y| ≤ M almost surely (which is not even satisfied
with linear measurement model with Gaussian noise), the proof can be further simplified. Note
also that, the constants from our error bounds appear to be larger than those from (Hsu et al.,
2014; Caponnetto and De Vito, 2007), but our results do not require the extra assumption that
the sample size is large enough as those in (Hsu et al., 2014; Caponnetto and De Vito, 2007).

Proof We will use Lemma 15 to prove the results. To do so, we need to estimate ∆z
1, ∆z

2 and
∆z

3.

By Lemma 19, we have that with probability at least 1− δ,

∆z
1 ≤ 3an,δ,γ(1− θ) ≤ (1 ∨ γ[θ−1 ∧ log n])24κ2 log

4κ2e(cγ + 1)

δ‖T ‖
, (58)
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where an,δ,γ(1−θ) = an,δ,γ(2/3, 1−θ), given by (54). By Lemma 16, we have that with probability
at least 1− δ,

∆z
2 ≤ 2κ

(
2‖rt+1 − fρ‖∞

n
+
‖Sρrt+1 − fρ‖ρ√

n

)
log

2

δ
.

Applying Part 1) of Lemma 14 with a = 0 to estimate ‖Sρrt+1−fρ‖ρ, we get that with probability
at least 1− δ,

∆z
2 ≤ 2κ

(
2‖rt+1 − fρ‖∞/n+ (ζ/e)ζRλζt /

√
n
)

log
2

δ
.

When ζ ≥ 1/2, we know that there exists a fH ∈ H such that SρfH = fρ (Steinwart and
Christmann, 2008, Section 4.5). In fact, letting g = L−ζfρ, for ζ ≥ 1/2, fρ can be written as

fρ = Lζg = (SρS∗ρ)ζg = Sρ(S∗ρSρ)ζ−
1
2 (S∗ρSρ)−

1
2S∗ρg = SρT ζ−1/2(S∗ρSρ)−

1
2S∗ρg.

Choosing fH = T ζ−
1
2 (S∗ρSρ)−

1
2S∗ρg, as (S∗ρSρ)−

1
2S∗ρ is partial isometric from L2

ρX
to H and

ζ ≥ 1/2, fH is well defined. Moreover, SρfH = fρ and

‖rt+1 − fH‖H = ‖Gt(T )S∗ρfρ − fH‖H = ‖Gt(T )S∗ρSρfH − fH‖H = ‖(Gt(T )T − I)fH‖H ,

where we used (39) for the first equality. Introducing with fH = T ζ−1S∗ρg, with ‖g‖ρ ≤ R by
Assumption 2,

‖rt+1 − fH‖H ≤ ‖(Gt(T )T − I)T ζ−1S∗ρ‖‖g‖ρ ≤ ‖(Gt(T )T − I)T ζ−1/2‖R.

Using Lemma 10 with (24), we get

‖rt+1 − fH‖H ≤ ((ζ − 1/2)/e)ζ−1/2λ
ζ−1/2
t R.

Combing with (30),

‖rt+1 − fρ‖∞ =‖rt+1 − fH‖∞ ≤ κ‖rt+1 − fH‖H ≤ κ((ζ − 1/2)/e)ζ−1/2Rλ
ζ−1/2
t .

When ζ < 1/2, by Part 2) of Lemma 14, ‖rt+1‖H ≤ Rλζ−1/2
t . Combining with (30), we have

‖rt+1 − fρ‖∞ ≤ κ‖rt+1‖H + ‖fρ‖∞ ≤ κλζ−1/2
t R+ ‖fρ‖∞.

From the above analysis, we get that with probability at least 1− δ,

∆z
2 ≤ log

2

δ

{
2κR

(
2κ((ζ − 1/2)/e)ζ−1/2/(λtn) + (ζ/e)ζ/

√
λtn
)
λ
ζ+1/2
t , if ζ ≥ 1/2,

2κ
(
2κR/(λtn) + 2‖fρ‖∞(nλt)

−ζ−1/2 + (ζ/e)ζR/
√
nλt
)
λ
ζ+1/2
t , if ζ < 1/2,

which can be further relaxed as

∆z
2 ≤ C4R̃(1 ∨ (λtn)−1)λ

ζ+1/2
t log

2

δ
, R̃ = R+ 1{ζ<1/2}‖fρ‖∞. (59)

where

C4 ≤

{
2κ
(
2κ((ζ − 1/2)/e)ζ−1/2 + (ζ/e)ζ

)
, if ζ ≥ 1/2,

2κ
(
2κ+ 2 + (ζ/e)ζ

)
, if ζ < 1/2.
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Applying Lemma 17, and combining with the fact that ‖T − Tx‖ ≤ ‖T − Tx‖HS , we have that
with probability at least 1− δ,

∆z
3 ≤

6κ2

√
n

log
2

δ
. (60)

For 0 < ζ ≤ 1, by Pat 1) of Lemma 15, (58) and (59), we have that with probability at least
1− 2δ,

‖Sρht+1−fρ‖ρ ≤
(

3ζ∨
1
2C1Ra

ζ∨ 1
2

n,δ,γ(1− θ) + 2
√

3C4R̃a
1
2
n,δ,γ(1− θ) log

2

δ

)1 ∨

(
λ̃

λt

)ζ∨ 1
2

∨ 1

nλt

λζt .

Rescaling δ, and then combining with Lemma 20, we get

E‖Sρht+1 − fρ‖2ρ

≤
∫ 1

0

(
3ζ∨

1
2C1a

ζ∨ 1
2

n,δ/2,γ(1− θ) + 2
√

3C4a
1
2

n,δ/2,γ(1− θ) log
4

δ

)2

dδ

1 ∨

(
λ̃

λt

)2ζ∨1

∨ 1

n2λ2
t

λ2ζ
t R̃

2.

By a direct computation, noting that since λ̃ ≥ n−1 and 2ζ ≤ 2,

1 ∨

(
λ̃

λt

)2ζ∨1

∨ 1

n2λ2
t

≤ 1 ∨

(
λ̃

λt

)2

,

and that for all b ∈ R+, ∫ 1

0
logb

1

t
dt = Γ(b+ 1), (61)

one can prove the first desired result with

C5 = 2[C2
1 (48κ2)2ζ∨1(A2ζ∨1+2)+192κ2C2

4 (A(log2 4+2+2 log 4)+log2 4+4 log 4+6)], A = log
8κ2(cγ + 1)e

‖T ‖
.

(62)
For ζ > 1, by Part 2) of Lemma 15, (58), (59) and (60), we know that with probability at least
1− 3δ,

‖Sρht+1 − fρ‖ρ

≤
√

3R(C2 + 2C4 + 6κ2C3)a
1
2
n,δ,γ(1− θ) log

2

δ

1 ∨ λ̃
ζ

λζt
∨ 1

nλt
∨ λ

1
2
−ζ

t

(
1

n

) (ζ− 1
2 )∧1

2

λζt .

Rescaling δ, and applying Lemma 20, we get

E‖Sρht+1 − fρ‖2ρ

≤ 3(C2 + 2C4 + 6κ2C3)2R2

∫ 1

0
an,δ/3,γ(1− θ) log2 6

δ
dδ

(
1 ∨ λ̃

2ζ

λ2ζ
t

∨ 1

n2λ2
t

∨ λ1−2ζ
t

(
1

n

)(ζ− 1
2

)∧1
)
λ2ζ
t .

This leads to the second desired result with

C6 = 24κ2(C2 + 2C4 + 6κ2C3)2((A+ 1) log2 6 + 2(A+ 2) log 6 + 2A+ 6), A = log
12κ2(cγ + 1)e

‖T ‖
.

(63)
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by noting that n−1 ≤ λ̃. The proof is complete.

Combining Proposition 2 with Lemma 7, we get the following results for the bias of the fully
averaged estimator.

Proposition 3 Under Assumptions 2 and 3, for any λ̃ = n−1+θ with θ ∈ [0, 1] and any t ∈ [T ],
the following results hold.
1) For 0 < ζ ≤ 1,

E‖Sρh̄t+1 − fρ‖2ρ ≤ C5(R+ 1{ζ<1/2}‖fρ‖∞)2

(
1 ∨ λ̃

2

λ2
t

∨ [γ(θ−1 ∧ log n)]2ζ∨1

)
λ2ζ
t . (64)

2) For ζ > 1,

E‖Sρh̄t+1 − fρ‖2ρ ≤ C6R
2

(
1 ∨ λ̃

2ζ

λ2ζ
t

∨ λ1−2ζ
t

(
1

n

)(ζ− 1
2

)∧1

∨ [γ(θ−1 ∧ log n)]

)
λ2ζ
t . (65)

Here, C5 and C6 are given by Proposition 2.

6.4 Estimating Sample Variance

In this section, we estimate sample variance ‖Sρ(ḡt − h̄t)‖ρ. We first introduce the following
lemma.

Lemma 21 For any t ∈ [T ], we have

E‖Sρ(ḡt − h̄t)‖2ρ =
1

m
E‖Sρ(g1,t − h1,t)‖2ρ. (66)

According to Lemma 21, we know that the sample variance of the averaging over m local
estimators can be well controlled in terms of the sample variance of a local estimator. In what
follows, we will estimate the local sample variance, E‖Sρ(g1,t − h1,t)‖2ρ. Throughout the rest of
this subsection, we shall drop the index s = 1 for the first local estimator whenever it shows up,
i.e., we rewrite g1,t as gt, z1 as z, etc.

Proposition 4 Under Assumption 3, let λ̃ = nθ−1 for some θ ∈ [0, 1]. Then for any t ∈ [T ],

E‖Sρ(gt+1 − ht+1)‖2ρ ≤ C8
σ2

nλ̃γ

(
1 ∨ λ̃

λt
∨ [γ(θ−1 ∧ log n])

)
.

Here, C8 is a positive constant depending only on κ, cγ , ‖T ‖ and will be given explicitly in the
proof.

Proof Following from Lemma 8,

gt+1 − ht+1 = Gt(Tx)(S∗xy − Lxfρ).

For notational simplicity, we let εi = yi−fρ(xi) for all i ∈ [n] and ε = (εi)1≤i≤n. Then the above
can be written as

gt+1 − ht+1 = Gt(Tx)S∗xε.
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Using the above relationship and the isometric property (25), we have

Ey‖Sρ(gt+1 − ht+1)‖2ρ = Ey‖SρGt(Tx)S∗xε‖2ρ
= Ey‖T 1/2Gt(Tx)S∗xε‖2H

=
1

n2

n∑
l,k=1

Ey[εlεk] tr (Gt(Tx)T Gt(Tx)Kxl ⊗Kxk) .

Here, Ey denotes the expectation with respect to y conditional on x. From the definition of fρ
and the independence of zl and zk when l 6= k, we know that Ey[εlεk] = 0 whenever l 6= k.
Therefore,

Ey‖Sρ(gt+1 − ht+1)‖2ρ =
1

n2

n∑
k=1

Ey[ε2k] tr (Gt(Tx)T Gt(Tx)Kxk ⊗Kxk) .

Using the condition (8),

Ey‖Sρ(gt+1 − ht+1)‖2ρ ≤
σ2

n2

n∑
k=1

tr (Gt(Tx)T Gt(Tx)Kxk ⊗Kxk)

=
σ2

n
tr
(
T (Gt(Tx))2Tx

)
=
σ2

n
tr
(
T −1/2

λ̃
T T −1/2

λ̃
T 1/2

λ̃
(Gt(Tx))2TxT 1/2

λ̃

)
≤σ

2

n
tr(T −1/2

λ̃
T T −1/2

λ̃
)‖T 1/2

λ̃
Gt(Tx)2TxT 1/2

λ̃
‖

≤σ
2N (λ̃)

n
‖T 1/2

λ̃
T −1/2

xλ̃
‖‖T 1/2

xλ̃
Gt(Tx)2TxT 1/2

xλ̃
‖‖T −1/2

xλ̃
T 1/2

λ̃
‖

≤σ
2N (λ̃)

n
∆z

1‖Gt(Tx)Tx‖‖Gt(Tx)Txλ̃‖

≤σ
2N (λ̃)

n
∆z

1(1 + λ̃/λt),

where ∆z
1 is given by Lemma 15 and we used 1) of Lemma 10 for the last inequality. Taking the

expectation with respect to x, this leads to

E‖Sρ(gt+1 − ht+1)‖2ρ ≤
σ2N (λ̃)

n
(1 + λ̃/λt)E[∆z

1].

Applying Lemmas 19 and 20, we get

E‖Sρ(gt+1 − ht+1)‖2ρ ≤ 6
σ2N (λ̃)

n
(1 ∨ (λ̃/λt))

∫ 1

0
an,δ,γ(2/3, 1− θ)dδ

≤C7
σ2N (λ̃)

n
(1 ∨ (λ̃/λt) ∨ [γ(θ−1 ∧ log n])),

where C7 = 48κ2 log
4κ2(cγ+1)e
‖T ‖ . Using Assumption 3, we get the desired result with

C8 = cγ48κ2 log
4κ2(cγ + 1)e

‖T ‖
. (67)
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Using the above proposition and Lemma 21, we derive the following results for sample
variance.

Proposition 5 Under Assumption 3, let λ̃ = nθ−1 for some θ ∈ [0, 1]. Then for any t ∈ [T ],

E‖Sρ(ḡt+1 − h̄t+1)‖2ρ ≤ C8
σ2

Nλ̃γ

(
1 ∨

(
λ̃

λt

)
∨ [γ(θ−1 ∧ log n)]

)
. (68)

Here, C8 is the positive constant given by Proposition 4.

6.5 Estimating Computational Variance

In this section, we estimate computational variance, E[‖Sρ(f̄t − h̄t)‖2ρ]. We begin with the fol-
lowing lemma, from which we can see that the global computational variance can be estimated
in terms of local computational variances.

Lemma 22 For any t ∈ [T ], we have

E‖Sρ(f̄t − ḡt)‖2ρ =
1

m2

m∑
s=1

E‖Sρ(fs,t − gs,t)‖2ρ. (69)

In what follows, we will estimate the local computational variance, i.e., E‖Sρ(fs,t − gs,t)‖2ρ.
As in Subsections 6.3 and 6.4, we will drop the index s for the s-th local estimator whenever it
shows up. We first introduce the following two lemmas, see (Lin and Rosasco, 2017b, Lemmas
20 and 24). The empirical risk Ez(f) of a function f with respect to the samples z is defined as

Ez(f) =
1

n

∑
(x,y)∈z

(f(x)− y)2.

Lemma 23 Assume that for all t ∈ [T ] with t ≥ 2,

1

ηt

t−1∑
k=1

1

k(k + 1)

t−1∑
i=t−k

η2
i ≤

1

4κ2
. (70)

Then for all t ∈ [T ],

sup
k∈[t]

EJ[Ez(fk)] ≤
8Ez(0)Σt

1

ηtt
. (71)

Lemma 24 For any t ∈ [T ], we have

EJ‖Sρft+1 − Sρgt+1‖2ρ ≤
κ2

b

t∑
k=1

η2
k

∥∥∥T 1
2 Πt

k+1(Tx)
∥∥∥2

EJ[Ez(fk)]. (72)

Here, EJ denotes the expectation with respect to J conditional on z.

Now, we are ready to state and prove the result for local computational variance as follows.
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Proposition 6 Assume that (70) holds for any t ∈ [T ] with t ≥ 2. Let λ̃ = n−θ+1 for some
θ ∈ [0, 1]. For any t ∈ [T ],

E‖Sρft+1−Sρgt+1‖2ρ ≤ C9M
2(1∨ [γ(θ−1∧ log n)])b−1 sup

k∈[t]

{
Σk

1

ηkk

}( t−1∑
k=1

η2
k(λ̃+ λk+1:te

−1) + η2
t

)
.

Here, C9 is a positive constant depending only on κ, cγ , ‖T ‖ and can be given explicitly in the
proof.

Proof Following from Lemmas 24 and 23, we have that,

EJ‖Sρft+1 − Sρgt+1‖2ρ ≤
8κ2Ez(0)

b

t∑
k=1

η2
k

∥∥∥T 1
2 Πt

k+1(Tx)
∥∥∥2

sup
k∈[t]

{
Σk

1

ηkk

}
.

Taking the expectation with respect to y conditional on x, and then with respect to x, noting
that

∫
Y y

2dρ(y|x) ≤M2, we get

E‖Sρft+1 − Sρgt+1‖2ρ ≤
8κ2M2

b
sup
k∈[t]

{
Σk

1

ηkk

} t∑
k=1

η2
kE
∥∥∥T 1

2 Πt
k+1(Tx)

∥∥∥2
.

Note that ∥∥∥T 1
2 Πt

k(Tx)
∥∥∥2
≤ ‖T

1
2T −1/2

xλ̃
‖2‖T 1/2

xλ̃
Πt
k(Tx)‖2 ≤ ∆z

1‖Txλ̃(Πt
k(Tx))2‖

≤ ∆z
1(‖TxΠt

k(Tx)‖+ λ̃‖Πt
k(Tx)‖)‖Πt

k(Tx)‖ ≤ ∆z
1(λk:te

−1 + λ̃),

where ∆z
1 is given by Lemma 15 and for the last inequality we used Part 2) of Lemma 10.

Therefore,

E‖Sρft+1 − Sρgt+1‖2ρ ≤ E[∆z
1]

8κ2M2

b
sup
k∈[t]

{
Σk

1

ηkk

}( t−1∑
k=1

η2
k(λ̃+ λk+1:te

−1) + η2
t

)
.

Using Lemmas 19 and 20, and by a simple calculation, one can upper bound E[∆z
1] and conse-

quently prove the desired result with C9 given by

C9 = 192κ4 log
4κ2(cγ + 1)e

‖T ‖
.

The proof is complete.

Combining Lemma 22 with Proposition 6, we have the following error bounds for computa-
tional variance.

Proposition 7 Assume that (70) holds for any t ∈ [T ] with t ≥ 2. Let λ̃ = n−θ+1 for some
θ ∈ [0, 1]. For any t ∈ [T ],

E‖Sρ(f̄t+1 − ḡt+1‖2ρ ≤ C9M
2(1 ∨ [γ(θ−1 ∧ log n)])

1

mb
sup
k∈[t]

{
Σk

1

ηkk

}( t−1∑
k=1

η2
k(λ̃+ λk+1:te

−1) + η2
t

)
.

(73)
Here, C9 is the positive constant from Proposition 6.
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6.6 Deriving Total Errors

We are now ready to derive total error bounds for (distributed) SGM and to prove the main
theorems for (distributed) SGM of this paper.

Proof of Theorem 1 We will use Propositions 1, 3, 5 and 7 to prove the result.
We first show that the condition (11) implies (70). Indeed, when ηt = η, for any t ∈ [T ]

1

ηt

t−1∑
k=1

1

k(k + 1)

t−1∑
i=t−k

η2
i = η

t∑
k=2

1

k
≤ η

t∑
k=2

∫ k

k−1

1

x
dx = η log t ≤ 1

4κ2

where for the last inequality, we used the condition (11). Thus, by Proposition 7, (73) holds.
Note also that λk+1:t = 1

η(t−k) and λt = 1
ηt as ηt = η. It thus follows from (73) that

E‖Sρ(f̄t+1 − ḡt+1‖2ρ ≤ C9M
2(1 ∨ [γ(θ−1 ∧ log n)])

η

mb

(
λ̃η(t− 1) +

t−1∑
k=1

1

e(t− k)
+ η

)
.

Applying
t−1∑
k=1

1

t− k
=

t−1∑
k=1

1

k
≤ 1 +

t−1∑
k=2

∫ k

k−1

1

x
dx ≤ 1 + log t,

and (11), we get

E‖Sρ(f̄t+1 − ḡt+1‖2ρ ≤ C9M
2(1 ∨ [γ(θ−1 ∧ log n)] ∨ λ̃ηt ∨ log t)

η

mb

(
2 +

1

4κ2

)
.

Introducing the above inequality, (64) (or (65)), and (68) into the error decomposition (36), by
a direct calculation, one can prove the desired results with

C10 = C9

(
2 +

1

4κ2

)
= 192κ4 log

4κ2(cγ + 1)e

‖T ‖

(
2 +

1

4κ2

)
. (74)

Proof of Corollary 2 In Theorem 1, we let λ̃ = N
− 1

2ζ+γ . In this case, with Condition (16),
it is easy to show that

1 ≥ θ =
log λ̃

log n
+ 1 =

log λ̃

logN − logm
+ 1 ≥ − 1

2ζ + γ

logN

logN − β logN
+ 1 > 0.

The proof can be done by simply applying Theorem 1 and plugging with the specific choices of
ηt, b, and T∗.

Proof of Corollary 1 Since fρ ∈ H, we know from (26) that Assumption 2 holds with ζ = 1
2

and R ≤ ‖fρ‖H . As noted in comments after Assumption 3, (10) trivially holds with γ = 1 and
cγ = κ2. Applying Corollary 2, one can prove the desired results.

Proof of Corollary 3 In Theorem 1, we let m = 1 and n = N and λ̃ = N θ−1 with θ = 1− α.
Then it is easy to see that

γ(θ−1 ∧ logN) ≤

{
γ(2ζ+γ)
2ζ+γ−1 , if 2ζ + γ > 1,

γ logN, if 2ζ + γ ≤ 1.

Following from (12) or (13), and plugging with the specific choices on ηt, T∗, b, one can prove
the desired error bounds.
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Appendix

• In Appendix A, we provide a list of notations commonly used in this paper.

• In Appendix B, we prove some of the lemmas and propositions from Section 6.

• In Appendix C, we prove our main results for distributed SA. We first introduce an
error decomposition, which decomposes total errors into bias and sample variance. We
then estimate these two terms in the following two subsequent subsections. Plugging the
two estimates into the error decomposition, we prove the desired results.

Appendix A. List of Notations

Notation Meaning

H the hypothesis space, RKHS
X,Y, Z the input space, the output space and the sample space (Z = X × Y )
ρ, ρX the fixed probability measure on Z, the induced marginal measure of ρ on X
ρ(·|x) the conditional probability measure on Y w.r.t. x ∈ X and ρ
N, n,m the total sample size, the local sample size, the number of partition (N = nm)

z̄ the whole samples {zi}Ni=1, where each zi is i.i.d. according to ρ.
zs the samples {zs,i = (xs,i, ys,i)}ni=1 for the s-th local machine, s ∈ [m]
E the expected risk defined by (1)
κ2 the constant from the bounded assumption (7) on the hypothesis space H
{fs,t}t the sequence generated by SGM over the local sample zs, given by (4)
{f̄t} the sequence generated by distributed SGM, i.e., f̄t = 1

m

∑m
s=1 fs,t

b the minibatch size of SGM
T the maximal number of iterations for SGM

js,i (js,t etc.) the random index from the uniform distribution on [n] for SGM performing on the s-th local sample set zs
Js,t the set of random indices at t-th iteration of SGM performing on the s-th local sample set zs
Js the set of all random indices for SGM performing on the s-th local sample set zs after T iterations
J the set of all random indices for distributed SGM after T iterations

EJs the expectation with respect to the random variables Js (conditional on zs)
EJ the expectation with respect to the random variables J (conditional on z̄)
Ey the expectation with respect to the random variables y (conditional on x)
{ηt}t the sequence of step-sizes
M,σ the positive constants from Assumption ??
L2
ρX the Hilbert space of square integral functions from X to R with respect to ρX
fρ the regression function defined (2)
ζ,R the parameters related to the ‘regularity’ of fρ (see Assumption 2)
γ, cγ the parameters related to the effective dimension (see Assumption 3)
{gs,t}t the sequence generated by GM (31) with respect to the s-th local sample set zs
{ḡt}t the sequence generated by distributed GM (32)
{hs,t}t the sequence generated by pseudo GM (33) over the s-th local sample set zs
{h̄t}t the sequence generated by distributed pseudo GM
{rt}t the sequence generated by population GM (37)
Sρ the inclusion map from H → L2

ρX

S∗ρ the adjoint operator of Sρ, S∗ρf =
∫
X
f(x)KxdρX(x)

L the operator from L2
ρX to L2

ρX , L(f) = SρS∗ρf =
∫
X
f(x)KxρX(x)

T the covariance operator from H to H, T = S∗ρSρ =
∫
X
〈·,Kx〉HKxdρX(x)

Sx the sampling operator from H to R|x|, (Sxf)i = f(xi), xi ∈ x

S∗x the adjoint operator of Sx, S∗xy = 1
|x|

∑|x|
i=1 yiKxi

Tx the empirical covariance operator, Tx = S∗xSx = 1
|x|

∑|x|
i=1〈·,Kxi〉HKxi

ΠT
t+1(L) = Πk=t+1(I − ηkL) when t ∈ [T − 1] and ΠT

t+1 = I if t ≥ T
λ̃ a pseudo regularization parameter, λ̃ > 0

Tλ̃, Tλ̃ = T + λ̃
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Txλ̃, Txλ̃ = Tx + λ̃
Gt(·) the filter function of GM, (38)

G̃λ(·) a general filter function
λ a regularization parameter λ > 0
[t] the set {1, · · · , t}

b1 . b2 b1 ≤ Cb2 for some universal constant C > 0
b1 ' b2 b2 . b1 . b2

∆z
1,∆

z
2,∆

z
3 the random quantities defined in Lemma 15 (or Lemma 30)

Lx an operator defined by (35)

Σtk =
∑t
i=k ηi (= 0 if k > t)

λt the regularization parameter of GM (= (Σt1)−1)
λk:t = (Σtk)−1 ( = ∞ if k > t)

a|x|,δ,γ(c, θ) the quantity defined by (53)
gzsλ the estimator defined by SA over the s-th local sample set zs, see Algorithm 2
ḡz̄λ the estimator defined by distributed SA, see Algorithm 2
hzs
λ the estimator defined by pseudo SA over the s-th local sample set zs, (83)
h̄z̄
λ the estimator defined by distributed pseudo SA, (84)
r̃λ the function defined by population SA, (86)

Appendix B. Proofs for Section 3

In this section, we provide the missing proofs of lemmas and propositions from Section 3.

B.1 Proof of Proposition 1

For any s ∈ [m], using an inductive argument, one can prove that (Lin and Rosasco, 2017b)

EJs|zs [fs,t] = gs,t. (75)

Here EJs|zs (or abbreviated as EJs) denotes the conditional expectation with respect to Js given
zs. Indeed, taking the conditional expectation with respect to Js,t (given zs) on both sides of
(4), and noting that fs,t depends only on Js,1, · · · ,Js,t−1 (given zs), one has

EJs,t [fs,t+1] = fs,t − ηt
1

n

n∑
i=1

(fs,t(xs,i)− ys,i)Kxs,i ,

and thus,

EJs [fs,t+1] = EJs [fs,t]− ηt
1

n

n∑
i=1

(EJs [fs,t](xs,i)− ys,i)Kxs,i , t = 1, . . . , T,

which satisfies the iterative relationship given in (31). Similarly, using the definition of the
regression function (2) and an inductive argument, one can also prove that

Eys [gs,t] = hs,t. (76)

Here, Eys denotes the conditional expectation with respect to ys given xs.

We have

‖Sρf̄t − fρ‖2ρ = ‖Sρf̄t − Sρḡt‖2ρ + ‖Sρḡt − fρ‖2ρ + 2〈Sρf̄t − Sρḡt,Sρḡt − fρ〉.
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Taking the conditional expectation with respect to J (given z) on both sides, using (75) which
implies

EJSρ(f̄t − ḡt) =
1

m

m∑
s=1

SρEJs [fs,t − gs,t] = 0,

we thus have
EJ‖Sρf̄t − fρ‖2ρ = EJ‖Sρf̄t − Sρḡt‖2ρ + ‖Sρḡt − fρ‖2ρ.

Taking the conditional expectation with respect to ȳ = {y1, · · · ,ym} (given x̄ = {x1, · · · ,xm}),
noting that

Eȳ‖Sρḡt − fρ‖2ρ = Eȳ[‖Sρ(ḡt − h̄t)‖2ρ] + ‖Sρh̄t − fρ‖2ρ + 2〈SρEȳ[ḡt − h̄t],Sρh̄t − fρ〉ρ

and that from (76),

〈SρEȳ[ḡt − h̄t],Sρh̄t − fρ〉ρ =
1

m

m∑
s=1

〈SρEys(gs,t − hs,t),Sρh̄t − fρ〉ρ = 0,

we know that

EȳEJ‖Sρf̄t − fρ‖2ρ = EȳEJ‖Sρf̄t − Sρḡt‖2ρ + Eȳ[‖Sρ(ḡt − h̄t)‖2ρ] + ‖Sρh̄t − fρ‖2ρ,

which leads to the desired result.

B.2 Proof of Lemma 7

By Jensen’s inequality, we can prove the desired result:

E‖Sρh̄t − fρ‖2ρ = E

∥∥∥∥∥ 1

m

m∑
s=1

(Sρhs,t − fρ)

∥∥∥∥∥
2

ρ

≤ 1

m
E

m∑
s=1

‖Sρhs,t − fρ‖2ρ = E‖Sρh1,t − fρ‖2ρ.

B.3 Proof of Lemma 9

1). For α = 0 or 1, the proof is straightforward and can be found in (Yao et al., 2007).
Indeed, for all u ∈ [0, κ2], Πt

k+1(u) ≤ 1 and thus Gt(u) ≤
∑t

k=1 ηk = λ−1
t . Moreover, writing

ηku = 1− (1− ηku), we have

uGt(u) =
t∑

k=1

(ηku)Πt
k+1(u) =

t∑
k=1

(Πt
k+1(u)−Πt

k(u)) = 1−Πt
1(u) ≤ 1. (77)

Now we consider the case 0 < α < 1. We have

uαGt(u) = |uGt(u)|α|Gt(u)|1−α ≤ λα−1
t ,

where we used uGt(u) ≤ 1 and Gt(u) ≤ λ−1
t in the above.

2) By (77), we have (1 − uGt(u))uα = Πt
1(u)uα. Then the desired result is a direct conse-

quence of Conclusion 3).
3) The proof can be also found, e.g., in (Lin and Rosasco, 2017b, Page 17). Using the basic

inequality
1 + x ≤ ex for all x ≥ −1, (78)
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with ηlκ
2 ≤ 1, we get

Πt
k+1(u)uα ≤ exp

{
−uΣt

k+1

}
uα.

The maximum of the function g(u) = e−cuuα (with c > 0) over R+ is achieved at umax = α/c,
and thus

sup
u≥0

e−cuuα =
( α

ec

)α
. (79)

Using this inequality with c = Σt
k+1, one can prove the desired result.

B.4 Proof of Lemma 10

1) Following from the spectral theorem, one has

‖(L+ λ̃)αGt(L)‖ ≤ sup
u∈[0,κ2]

(u+ λ̃)αGt(u) ≤ sup
u∈[0,κ2]

(uα + λ̃α)Gt(u).

Using Part 1) of Lemma 9 to the above, one can prove the first conclusion.
2) Using the spectral theorem,

‖Πt
1(L)(L+ λ̃)α‖ ≤ sup

u∈[0,κ2]

(u+ λ̃)αΠt
1(u).

When α ≤ 1,

sup
u∈[0,κ2]

(u+ λ̃)αΠt
1(u) ≤ sup

u∈[0,κ2]

(uα + λ̃α)Πt
1(u) ≤ (α/e)αλαt + λ̃α,

where for the last inequality, we used Part 2) of Lemma 9. Similarly, when α > 1, by Hölder’s
inequality, and Part 2) of Lemma 9,

sup
u∈[0,κ2]

(u+ λ̃)αΠt
1(u) ≤ 2α−1 sup

u∈[0,κ2]

(uα + λ̃α)Πt
1(u) ≤ 2α−1((α/e)αλαt + λ̃α).

From the above analysis, one can prove the second conclusion.
3) Simply applying the spectral theorem and 3) of Lemma 9, one can prove the third conclusion.

B.5 Proof of Lemma 16

We first introduce the following concentration result for Hilbert space valued random variable
used in (Caponnetto and De Vito, 2007) and based on the results in (Pinelis and Sakhanenko,
1986).

Lemma 25 Let w1, · · · , wm be i.i.d random variables in a separable Hilbert space with norm
‖ · ‖. Suppose that there are two positive constants B and σ2 such that

E[‖w1 − E[w1]‖l] ≤ 1

2
l!Bl−2σ2, ∀l ≥ 2. (80)

Then for any 0 < δ < 1/2, the following holds with probability at least 1− δ,∥∥∥∥∥ 1

m

m∑
k=1

wm − E[w1]

∥∥∥∥∥ ≤ 2

(
B

m
+

σ√
m

)
log

2

δ
.

In particular, (80) holds if

‖w1‖ ≤ B/2 a.s., and E[‖w1‖2] ≤ σ2. (81)
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Lemmas 16 and 17 can be proved by simply applying the above lemma.

Proof of Lemma 16 Let ξi = f(xi)Kxi for i = 1, · · · , |x|. Obviously,

Lxf − Lf =
1

|x|

|x|∑
i=1

(ξi − E[ξi]),

and by Assumption (7), we have

‖ξ‖H ≤ ‖f‖∞‖Kx‖H ≤ κ‖f‖∞

and

E‖ξ‖2H ≤ κ2‖f‖2ρ.

Applying Lemma 25 with B′ = 2κ‖f‖∞ and σ = κ‖f‖ρ, one can prove the desired result.

B.6 Proof of Lemma 17

Let ξi = Kxi ⊗Kxi , for all i ∈ [|x|]. Obviously,

T − Tx =
1

|x|

|x|∑
i=1

(E[ξi]− ξi),

and by Assumption (7), ‖ξi‖HS = ‖Kxi‖2H ≤ κ2. Applying Lemma 25 with B′ = 2κ2 and
σ′ = κ2, one can prove the desire result.

B.7 Proof of Lemma 18

In order to prove Lemma 18, we introduce the following concentration inequality for norms of
self-adjoint operators on a Hilbert space.

Lemma 26 Let X1, · · · ,Xm be a sequence of independently and identically distributed self-
adjoint Hilbert-Schmidt operators on a separable Hilbert space. Assume that E[X1] = 0, and
‖X1‖ ≤ B almost surely for some B > 0. Let V be a positive trace-class operator such that
E[X 2

1 ] 4 V. Then with probability at least 1− δ, (δ ∈]0, 1[), there holds∥∥∥∥∥ 1

m

m∑
i=1

Xi

∥∥∥∥∥ ≤ 2Bβ

3m
+

√
2‖V‖β
m

, β = log
4 trV
‖V‖δ

.

Proof The proof can be found in, e.g., (Rudi et al., 2015; Dicker et al., 2017). Following from
the argument in (Minsker, 2011, Section 4), we can generalize (Tropp, 2012, Theorem 7.3.1)
from a sequence of self-adjoint matrices to a sequence of self-adjoint Hilbert-Schmidt operators

on a separable Hilbert space, and get that for any t ≥
√
‖V‖
m + B

3m ,

Pr

(∥∥∥∥∥ 1

m

m∑
i=1

Xi

∥∥∥∥∥ ≥ t
)
≤ 4 trV
‖V‖

exp

(
−mt2

2‖V‖+ 2Bt/3

)
. (82)
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Rewriting

4 trV
‖V‖

exp

(
−mt2

2‖V‖+ 2Bt/3

)
= δ,

as a quadratic equation with respect to the variable t, and then solving the quadratic equation,
we get

t0 =
Bβ

3m
+

√(
Bβ

3m

)2

+
2β‖V‖
m

≤ 2Bβ

3m
+

√
2β‖V‖
m

:= t∗,

where we used
√
a+ b ≤

√
a+
√
b,∀a, b > 0. Note that β > 1, and thus t0 ≥

√
‖V‖
m + B

3m . By

Pr

(∥∥∥∥∥ 1

m

m∑
i=1

Xi

∥∥∥∥∥ ≥ t∗
)
≤ Pr

(∥∥∥∥∥ 1

m

m∑
i=1

Xi

∥∥∥∥∥ ≥ t0
)
,

and applying (82) to bound the left-hand side, one can get the desire result.

Applying the above lemma, one can prove Lemma 18 as follows.

Proof of Lemma 18 The proof can be also found in (Rudi et al., 2015; Dicker et al., 2017;
Hsu et al., 2014). Unlike the result in (Rudi et al., 2015) which requires the condition λ ≤ ‖T ‖,
our results hold for any λ > 0. We will use Lemma 26 to prove the result. Let |x| = m and

Xi = T −1/2

λ̃
(T − Txi)T

−1/2

λ̃
, for all i ∈ [m]. Then T −1/2

λ̃
(T − Tx)T −1/2

λ̃
= 1

m

∑m
i=1Xi. Obviously,

for any X = Xi, E[X ] = 0, and

‖X‖ ≤ E
[
‖T −1/2

λ̃
TxT −1/2

λ̃
‖
]

+ ‖T −1/2

λ̃
TxT −1/2

λ̃
‖ ≤ 2κ2/λ̃,

where for the last inequality, we used Assumption (7) which implies

‖T −1/2

λ̃
TxT −1/2

λ̃
‖ ≤ tr(T −1/2

λ̃
TxT −1/2

λ̃
) = tr(T −1

λ̃
Tx) = 〈T −1

λ̃
Kx,Kx〉H ≤ κ2/λ̃.

Also, by E(A− EA)2 4 EA2,

EX 2 4 E(T −1/2

λ̃
Tx̃T −1/2

λ̃
)2 = E[〈T −1

λ̃
Kx,Kx〉HT −1/2

λ̃
Kx ⊗KxT −1/2

λ̃
]

4
κ2

λ̃
E[T −1/2

λ̃
Kx ⊗KxT −1/2

λ̃
] =

κ2

λ̃
T −1

λ̃
T = V,

Note that ‖T −1

λ̃
T ‖ = ‖T ‖

‖T ‖+λ̃ ≤ 1. Therefore, ‖V‖ ≤ κ2

λ̃
and

tr(V)

‖V‖
=
N (λ̃)‖T ‖+ tr(T −1

λ̃
T )λ̃

‖T ‖
≤ N (λ̃)‖T ‖+ tr(T )

‖T ‖
≤ κ2(N (λ̃) + 1)

‖T ‖
,

where for the last inequality we used (24). Now, the result can be proved by applying Lemma
26.
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B.8 Proof of Lemma 21

Note that from the independence of z1, · · · , zm and (76), we have

Eȳ‖Sρ(ḡt − h̄t)‖ρ =
1

m2

m∑
s,l=1

Eȳ〈Sρ(gs,t − hs,t),Sρ(gl,t − hl,t)〉ρ =
1

m2

m∑
s=1

Eys‖Sρ(gs,t − hs,t)‖2ρ.

Taking the expectation with respect to x̄, we get

E‖Sρ(ḡt − h̄t)‖ρ =
1

m2

m∑
s=1

E‖Sρ(gs,t − hs,t)‖2ρ =
1

m
E‖Sρ(g1,t − h1,t)‖2ρ.

The proof is complete.

B.9 Proof of Lemma 22

Note that by (75) and from the conditional independence of Js, · · ·Jm (given z̄), we have

EJ‖Sρ(f̄t − ḡt)‖ρ =
1

m2

m∑
s,l=1

EJ〈Sρ(fs,t − gs,t),Sρ(fl,t − gl,t)〉ρ =
1

m2

m∑
s=1

EJs‖Sρ(fs,t − gs,t)‖2ρ.

Taking the expectation with respect to z̄, we thus prove the desired result.

Appendix C. Proofs for Distributed Spectral Algorithms

The proof for distributed SGM in Section 3 involves the analysis for distributed GM. In this
section, we will extend our analysis for distributed GM to distributed SA. The proof almost
follows along the same lines as the proof for distributed GM in Subsections 6.3 and 6.4, but
some of them need some delicate modifications, the reason for which lies in that the qualification
τ for GM can be any positive number while it is a fixed constant for a general SA.

C.1 Error Decomposition

We begin with an error decomposition. To introduce the error decomposition, we define an
auxiliary function, generated by pseudo-SA as follows.Given a spectral function G̃λ, for any
s ∈ [m], the function hzsλ generated by the pseudo spectral algorithm over xs is given by

hzsλ = G̃λ(Txs)Lxsfρ. (83)

The estimator generated by distributed pseudo-spectral algorithm is the averaging over these
local estimators,

h̄z̄λ =
1

m

m∑
s=1

hzsλ . (84)

We note that the above algorithm can not be implemented in practice as the regression
function fρ is unknown. From the definition of the regression function, similar to (76), we can
prove that

Eys [g
zs
λ ] = hzsλ , (85)

and thus
Eȳ[ḡz̄λ] = h̄z̄λ,

Using these basic properties, analogous to Proposition 1, we have the following error decompo-
sition for distributed SA.
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Proposition 8 We have

E‖Sρḡz̄λ − fρ‖2ρ = E‖h̄z̄λ − fρ‖2ρ + E‖Sρḡz̄λ − h̄z̄λ‖2ρ.

The right-hand side is composed of two terms. The first term is called as bias, and the second
term is called as sample variance. In what follows, we will estimate these two terms separably.

C.2 Estimating Bias

Analogous to Lemma 7, we can show that the bias term E‖h̄z̄λ − fρ‖2ρ can be upper bounded in
terms of the local bias E‖hz1

λ − fρ‖
2
ρ.

Lemma 27 We have E‖h̄z̄λ − fρ‖2ρ ≤ E‖hz1
λ − fρ‖

2
ρ.

Proof The proof is the same as that in Lemma 7 by using Hölder’s inequality.

In what follows, we will estimate the local bias E‖hz1
λ − fρ‖

2
ρ. Throughout the rest of this

subsection, we shall drop the index s = 1 for the first local estimator whenever it shows up, i.e.,
we rewrite hz1

λ as hzλ, z1 as z, etc. To do so, we need to introduce a population function defined
by

r̃λ = G̃λ(T )S∗ρfρ. (86)

The function r̃λ is deterministic and it is independent from the samples. Since G̃λ(·) is a filter
function with qualification τ > 0 and constants E,Fτ , similar to Lemma 10, we have the following
results for a filter function according to the spectral theorem.

Lemma 28 Let L be a compact, positive operator on a separable Hilbert space H such that
‖L‖ ≤ κ2. Then for any λ̃ ≥ 0,
1) ‖(L+ λ̃)αG̃λ(L)‖ ≤ Eλα−1(1 + (λ̃/λ)α), ∀α ∈ [0, 1].
2) ‖(I − LG̃λ(L))(L+ λ̃)α‖ ≤ Fτ2(α−1)+λα(1 + (λ̃/λ)α), ∀α ∈ [0, τ ].

With the above lemma, analogous to Lemma 14, we have the following properties for the
population function.

Lemma 29 Under Assumption 2, the following results hold.
1) For any ζ − τ ≤ a ≤ ζ, we have

‖L−a (Sρr̃λ − fρ) ‖ρ ≤ FτRλζ−a.

2) We have

‖T a−1/2r̃λ‖H ≤ ER ·

{
λζ+a−1, if − ζ ≤ a ≤ 1− ζ,
κ2(ζ+a−1), if a ≥ 1− ζ.

(87)

Note that there is a subtle difference between Lemma 14.(1) and Lemma 29.(1). The latter
requires a ≥ ζ − τ while the former does not, the reason for which is that, the qualification τ is
fixed in the latter while it can be any positive constant in the former. This difference makes the
proof for SA slightly different to the one for GM, when estimating the bias.
Proof 1) According to the spectral theory,

SρG̃λ(T )S∗ρ = SρG̃λ(S∗ρSρ)S∗ρ = G̃λ(SρS∗ρ)SρS∗ρ = G̃λ(L)L.
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Combining with (86), we thus have

L−a(Sρr̃λ − fρ) = L−a
(
G̃λ(L)L − I

)
fρ.

Taking the ρ-norm, and applying Assumption 2, we have

‖L−a(Sρr̃λ − fρ)‖ρ ≤ ‖Lζ−a(G̃λ(L)L − I)‖R.

Note that the condition (7) implies (24). By a similar argument as that for 2) of Lemma 28,
one can prove the first desired result.

2) By (86) and Assumption 2,

‖T a−1/2r̃λ‖H = ‖T a−1/2G̃λ(T )S∗ρfρ‖H ≤ ‖T a−1/2G̃λ(T )S∗ρLζ‖R.

Noting that

‖T a−1/2G̃λ(T )S∗ρLζ‖ = ‖T a−1/2G̃λ(T )S∗ρL2ζSρG̃λ(T )T a−1/2‖1/2

= ‖G̃2
λ(T )T 2ζ+2a‖1/2 = ‖G̃λ(T )T ζ+a‖,

we thus have
‖T a−1/2r̃λ‖H ≤ ‖G̃λ(T )T ζ+a‖R.

If 0 ≤ ζ + a ≤ 1, i.e., −ζ ≤ a ≤ 1− ζ, then using 1) of Lemma 28, we get

‖T a−1/2r̃λ‖H ≤ λζ+a−1ER.

Similarly, when a ≥ 1− ζ, we have

‖T a−1/2r̃λ‖H ≤ ‖G̃λ(T )T ‖‖T ‖ζ+a−1R ≤ κ2(ζ+a−1)ER,

where for the last inequality we used 1) of Lemma 28 and (24). This thus proves the second
desired result.

With the above lemmas, similar to Lemma 15, we have the following analytic result, which
enables us to estimate the bias term in terms of several random quantities.

Lemma 30 Under Assumption 2, let

∆z
1 = ‖T 1/2

λ̃
T −1/2

xλ̃
‖2 ∨ 1, ∆z

3 = ‖T − Tx‖

and

∆z
2 = ‖Lxfρ − S∗ρfρ − Txr̃λ + T r̃λ‖H .

Then the following results hold for any λ̃ > 0.
1) For 0 < ζ ≤ 1

‖Sρhzλ − fρ‖ρ ≤

1 ∨

(
λ̃

λ

)ζ∨ 1
2

 (C ′1R(∆z
1)ζ∨

1
2λζ + 2E

√
∆z

1λ
− 1

2 ∆z
2). (88)

2) For ζ > 1,

‖Sρhzλ − fρ‖ρ ≤ ∆z
1

1 ∨

(
λ̃

λ

)ζ (C ′2Rλ
ζ + 2Eλ−

1
2 ∆z

2 + C ′3Rλ
1
2 (∆z

3)(ζ− 1
2

)∧1). (89)

Here, C ′1, C ′2 and C ′3 are positive constants depending only on ζ, κ, E, and Fτ .
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The upper bound from (89) is a bit worser than the one in (44).
Proof We can estimate ‖Sρhzλ − fρ‖ρ as

‖SρG̃λ(Tx)Lxfρ − fρ‖ρ ≤‖SρG̃λ(Tx)[Lxfρ − S∗ρfρ − Txr̃λ + T r̃λ]︸ ︷︷ ︸
Bias.1

‖ρ

+ ‖ SρG̃λ(Tx)[S∗ρfρ − T r̃λ]︸ ︷︷ ︸
Bias.2

‖ρ

+ ‖ Sρ[I − G̃λ(Tx)Tx]r̃λ︸ ︷︷ ︸
Bias.3

‖ρ

+ ‖ Sρr̃λ − fρ︸ ︷︷ ︸
Bias.4

‖ρ. (90)

In the rest of the proof, we will estimate the four terms of the r.h.s separately.
Estimating Bias.4
Using 1) of Lemma 29 with a = 0, we get

‖Bias.4‖ρ ≤ FτRλζ . (91)

Estimating Bias.1
By a simple calculation and (47), we know that for any f ∈ H and any b ∈ [0, 1

2 ],

‖SρG̃λ(Tx)f‖ρ ≤ ‖T 1/2

λ̃
T −1/2

xλ̃
‖‖T 1/2

xλ̃
G̃λ(Tx)T b

xλ̃
‖‖T −b

xλ̃
T b
λ̃
‖‖T −b

λ̃
f‖H .

Note that by 1) of Lemma 28, with (28),

‖T 1/2

xλ̃
G̃λ(Tx)T b

xλ̃
‖ ≤ E(1 + (λ̃/λ)b+

1
2 )λb−

1
2 ,

and by Lemma 11, we get

‖T −b
xλ̃
T b
λ̃
‖ ≤ ‖T −

1
2

xλ̃
T

1
2

λ̃
‖2b.

Therefore, for any f ∈ H and any b ∈ [0, 1
2 ],

‖SρG̃λ(Tx)f‖ρ ≤ (∆z
1)b+

1
2E(1 + (λ̃/λ)b+

1
2 )λb−

1
2 ‖T −b

λ̃
f‖H . (92)

Letting f = Lxfρ − S∗ρfρ − Txr̃λ + T r̃λ and b = 1
2 in the above, we get

‖Bias.1‖ρ ≤ E(1 +

√
λ̃/λ)λ−

1
2

√
∆z

1∆z
2. (93)

Estimating Bias.2
Thus, letting f = T r̃λ − S∗ρfρ, in (92), we have

‖Bias.2‖ρ ≤ E‖T
1
2

λ̃
T −

1
2

xλ̃
‖2b+1(1 + (λ̃/λ)b+

1
2 )λb−

1
2 ‖T −b

λ̃
[T r̃λ − S∗ρfρ]‖H

≤ E(∆z
1)b+

1
2 (1 + (λ̃/λ)b+

1
2 )λb−

1
2 ‖L−b+

1
2

λ̃
[Sρr̃λ − fρ]‖H .

When ζ ≤ 1
2 , we have τ − ζ ≥ 1

2 since τ ≥ 1. Letting b = 0, and applying Lemma 29.(1) with
a = −1

2 , we get

‖SρG̃λ(Tx)[T r̃λ − S∗ρfρ]‖ρ ≤ EFτR(∆z
1)

1
2 (1 + (λ̃/λ)

1
2 )λζ .
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Similarly, when 1
2 ≤ ζ ≤ 1, we choose b = ζ − 1

2 , and applying Lemma 29.(1) with a = ζ − 1, we
get

‖SρG̃λ(Tx)[T r̃λ − S∗ρfρ]]‖ρ ≤ EFτR(∆z
1)ζ(1 + (λ̃/λ)ζ)λζ .

When ζ ≥ 1, we choose b = 1
2 , and applying Lemma 29.(1) with a = 0, we get

‖SρG̃λ(Tx)[T r̃λ − S∗ρfρ]]‖ρ ≤ EFτR∆z
1(1 + (λ̃/λ))λζ .

From the above estimate, we get

‖Bias.2‖ρ ≤ EFτRλζ ×


(1 + (λ̃/λ)1/2)(∆z

1)1/2 if 0 < ζ ≤ 1/2,

(1 + (λ̃/λ)ζ)(∆z
1)ζ if 1/2 < ζ ≤ 1,

(1 + λ̃/λ)∆z
1 if ζ > 1.

(94)

Estimating Bias.3
When ζ ≤ 1/2, by a simple calculation and (47), we have

‖Bias.3‖ρ ≤‖SρT −1/2

λ̃
‖‖T 1/2

λ̃
T −1/2

xλ̃
‖‖T 1/2

xλ̃
(I − G̃λ(Tx)Tx)‖‖r̃λ‖H

≤
√

∆z
1‖T

1/2

xλ̃
(I − G̃λ(Tx)Tx)‖‖r̃λ‖H ,

By 2) of Lemma 28, with (28),

‖T 1/2

xλ̃
(I − G̃λ(Tx)Tx)‖ ≤ Fτ (1 +

√
λ̃/λ)

√
λ, (95)

and by 2) of Lemma 29, ‖r̃λ‖H ≤ ERλζ−1/2. It thus follows that

‖Bias.3‖ρ ≤
√

∆z
1(1 +

√
λ̃/λ)EFτRλ

ζ .

When 1/2 < ζ ≤ 1, by a simple computation, we have

‖Bias.3‖ρ ≤ ‖SρT
− 1

2

λ̃
‖‖T

1
2

λ̃
T −

1
2

xλ̃
‖‖T

1
2

xλ̃
(I − G̃λ(Tx)Tx)T ζ−

1
2

xλ̃
‖‖T

1
2
−ζ

xλ̃
T ζ−

1
2

λ̃
‖‖T

1
2
−ζ

λ̃
r̃λ‖H .

Applying (47) and 2) of Lemma 29, we have

‖Bias.3‖ρ ≤
√

∆z
1‖T

1
2

xλ̃
(I − G̃λ(Tx)Tx)T ζ−

1
2

xλ̃
‖‖T

1
2
−ζ

xλ̃
T ζ−

1
2

λ̃
‖ER.

By 2) of Lemma 28,

‖T
1
2

xλ̃
(I − G̃λ(Tx)Tx)T ζ−

1
2

xλ̃
‖ ≤ Fτ (1 + (λ̃/λ)ζ)λζ .

Besides, by ζ ≤ 1 and Lemma 11,

‖T
1
2
−ζ

xλ̃
T ζ−

1
2

λ̃
‖ = ‖T −

1
2

(2ζ−1)

xλ̃
T

1
2

(2ζ−1)

λ̃
‖ ≤ ‖T −

1
2

xλ̃
T

1
2

λ̃
‖2ζ−1 ≤ (∆z

1)ζ−
1
2 .

It thus follows that

‖Bias.3‖ρ ≤ (∆z
1)ζ(1 + (λ̃/λ)ζ)EFτRλ

ζ .
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When ζ > 1, we rewrite Bias.3 as

SρT
− 1

2

λ̃
· T

1
2

λ̃
T −

1
2

xλ̃
· T

1
2

xλ̃
(I − G̃λ(Tx)Tx)(T ζ−

1
2

x + T ζ−
1
2 − T ζ−

1
2

x )T
1
2
−ζ r̃λ.

By a simple calculation and (47), we can upper bound ‖Bias.3‖ρ by

≤ ‖T
1
2

λ̃
T −

1
2

xλ̃
‖(‖T

1
2

xλ̃
(I − G̃λ(Tx)Tx)T ζ−

1
2

x ‖+ ‖T
1
2

xλ̃
(I − G̃λ(Tx)Tx)‖‖T ζ−

1
2 − T ζ−

1
2

x ‖)‖T
1
2
−ζ r̃λ‖H .

Introducing with (95), and applying 2) of Lemma 29,

‖Bias.3‖ρ ≤
√

∆z
1(‖T

1
2

xλ̃
(I − G̃λ(Tx)Tx)T ζ−1/2

x ‖+ Fτ (

√
λ̃/λ+ 1)

√
λ‖T ζ−1/2 − T ζ−1/2

x ‖)ER.

By 2) of Lemma 28,

‖T
1
2

xλ̃
(I − G̃λ(Tx)Tx)T ζ−

1
2

x ‖ ≤‖T ζ
xλ̃

(I − G̃λ(Tx)Tx)‖

≤2ζ−1Fτ (1 + (λ̃/λ)ζ)λζ .

Moreover, by Lemma 13 and max(‖T ‖, ‖Tx‖) ≤ κ2,

‖T ζ−
1
2 − T ζ−

1
2

x ‖ ≤ (2ζκ2ζ−3)1{2ζ≥3}‖T − Tx‖(ζ−
1
2

)∧1.

Therefore, when ζ > 1, Bias.3 can be estimated as

‖Bias.3‖ρ ≤
√

∆z
1

(
2ζ−1(1 + (λ̃/λ)ζ)λζ + (2ζκ2ζ−3)1{2ζ≥3}(

√
λ̃/λ+ 1)

√
λ(∆z

3)(ζ− 1
2

)∧1

)
EFτR.

From the above analysis, we know that ‖Bias.3‖ρ can be upper bounded by

EFτR


√

∆z
1(
√
λ̃/λ+ 1)λζ , if ζ ∈]0, 1/2],

(∆z
1)ζ((λ̃/λ)ζ + 1)λζ , if ζ ∈]1/2, 1],√
∆z

1

(
2ζ−1(1 + (λ̃/λ)ζ)λζ + (2ζκ2ζ−3)1{2ζ≥3}(

√
λ̃/λ+ 1)

√
λ(∆z

3)(ζ− 1
2

)∧1

)
, if ζ ∈]1,∞[.

(96)
Introducing (91), (93) (94) and (96) into (90), and by a simple calculation, one can prove

the desired results with
C ′1 = Fτ (1 + 4E),

C ′2 = Fτ

(
1 + 2E + 2ζE

)
,

and C ′3 = 2EFτ (2ζκ2ζ−3)1{2ζ≥3} .

The rest of the proofs parallelize as those for distributed GM.

Proposition 9 Under Assumptions 2 and 3, we let λ̃ = n−1+θ for some θ ∈ [0, 1]. Then the
following results hold.
1) For 0 < ζ ≤ 1,

E‖Sρhzλ − fρ‖2ρ ≤ C ′5
(
R+ 1{2ζ<1}‖fρ‖∞

)2(
1 ∨ [γ(θ−1 ∧ log n)]2ζ∨1 ∨ λ̃

2

λ2

)
λ2ζ
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2)For ζ > 1,

E‖Sρhzλ − fρ‖2ρ ≤ C ′6R2

(
1 ∨ λ̃

2ζ

λ2ζ
∨ λ1−2ζ

(
1

n

)(ζ− 1
2

)∧1

∨ [γ(θ−1 ∧ log n)]2

)
λ2ζ .

Here, C ′5 and C ′6 are positive constants depending only on κ, ζ, E, Fτ , cγ , ‖T ‖ and can be given
explicitly in the proof.

Proof We will use Lemma 30 to prove the results. To do so, we need to estimate ∆z
1, ∆z

2 and
∆z

3.
By Lemma 19, we have that with probability at least 1− δ, (58) holds, where an,δ,γ(1− θ) =

an,δ,γ(2/3, 1− θ) is given by (54). By Lemma 16, we have that with probability at least 1− δ,

∆z
2 ≤ 2κ

(
2‖r̃λ − fρ‖∞

n
+
‖Sρr̃λ − fρ‖ρ√

n

)
log

2

δ
.

Applying Lemma 29 with a = 0 to estimate ‖Sρr̃λ − fρ‖ρ, we get that with probability at least
1− δ,

∆z
2 ≤ 2κ

(
2‖r̃λ − fρ‖∞/n+ FτRλ

ζ/
√
n
)

log
2

δ
.

When ζ ≥ 1/2, we know that there exists some fH = T ζ−1S∗ρL−ζfρ ∈ H such that SρfH = fρ
(Steinwart and Christmann, 2008) and

‖r̃λ − fρ‖∞ ≤ κ‖r̃λ − fH‖H ≤ κFτRλζ−1/2,

where for the last inequality, we used Lemma 28. When ζ < 1/2, by 2) of Lemma 29, ‖r̃λ‖H ≤
ERλζ−1/2, which thus lead to

‖r̃λ − fρ‖∞ ≤ κ‖r̃λ‖H + ‖fρ‖∞ ≤ κERλζ−1/2 + ‖fρ‖∞.

From the above analysis, we get that with probability at least 1− δ,

∆z
2 ≤ log

2

δ

{
2κFτR

(
2κ/(λn) + 1/

√
λn
)
λζ+1/2, if ζ ≥ 1/2,

2κ
(
2κER/(λn) + 2‖fρ‖∞(nλ)−ζ−1/2 + FτR/

√
nλ
)
λζ+1/2, if ζ < 1/2,

which can be further relaxed as

∆z
2 ≤ C ′4R̃(1 ∨ (λn)−1)λζ+1/2 log

2

δ
, R̃ = R+ 1{2ζ<1}‖fρ‖∞, (97)

where

C ′4 ≤

{
2κFτ

(
2κ+ 1

)
, if ζ ≥ 1/2,

2κ
(
2κE + 2 + Fτ

)
, if ζ < 1/2.

Applying Lemma 17, we have that with probability at least 1− δ, (60) holds.
For 0 < ζ ≤ 1, by Lemma 30, (58) and (97), we have that with probability at least 1− 2δ,

‖Sρhzλ−fρ‖ρ ≤
(

3ζ∨
1
2C ′1Ra

ζ∨ 1
2

n,δ,γ(1− θ) + 2
√

3EC ′4R̃a
1
2
n,δ,γ(1− θ) log

2

δ

)1 ∨

(
λ̃

λ

)ζ∨ 1
2

∨ 1

nλ

λζ .
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Rescaling δ, and then combining with Lemma 20, we get

E‖Sρht+1 − fρ‖2ρ

≤R̃2

∫ 1

0

(
3ζ∨

1
2C ′1a

ζ∨ 1
2

n,δ/2,γ(1− θ) + 2
√

3EC ′4a
1
2

n,δ/2,γ(1− θ) log
4

δ

)2

dδ

1 ∨

(
λ̃

λ

)2ζ∨1

∨ 1

n2λ2

λ2ζ .

By a direct computation and noting that λ̃ ≥ n−1 and ζ ≤ 1, one can prove the first desired

result with A = log
8κ2(cγ+1)e
‖T ‖ , and

C ′5 = 2[C ′21 (48κ2)2ζ∨1(A2ζ∨1 + Γ(3)) + 192κ2C ′24 E
2(A(log2 4 + 2 + 2 log 4) + log2 4 + 4 log 4 + 6)].

For ζ > 1, by Lemma 30, (58), (97) and (60), we know that with probability at least 1− 3δ,

‖Sρhzλ − fρ‖ρ

≤ 3R(C ′2 + 2EC ′4 + 6κ2C ′3)an,δ,γ(1− θ) log
2

δ

1 ∨ λ̃
ζ

λζ
∨ 1

nλ
∨ λ

1
2
−ζ
(

1

n

) (ζ− 1
2 )∧1

2

λζ .

Rescaling δ, and applying Lemma 20, we get

E‖Sρhzλ − fρ‖2ρ

≤ 9R2(C ′2 + 2EC ′4 + 6κ2C ′3)2

∫ 1

0
a2
n,δ/3,γ(1− θ) log2 6

δ
dδ

(
1 ∨ λ̃

2ζ

λ2ζ
∨ 1

n2λ2
∨ λ1−2ζ

(
1

n

)(ζ− 1
2

)∧1
)
λ2ζ ,

which leads to the second desired result with

C ′6 = 243κ4(C ′2 + 2EC ′4 + 6κ2C ′3)2(A+ 1)2(log 6 + 1)2, A = log
12κ2(cγ + 1)e

‖T ‖
,

by noting that λ̃ ≥ n−1 and ζ ≥ 1. The proof is complete.

Combining Proposition 9 with Lemma 27, we get the following results for the bias of the
fully averaged estimators.

Proposition 10 Under Assumptions 2 and 3, for any λ̃ = n−1+θ with θ ∈ [0, 1], the following
results hold.
1) For ζ ≤ 1,

E‖Sρhzλ − fρ‖2ρ ≤ C ′5 (R+ 12ζ<1‖fρ‖∞)2

(
1 ∨ [γ(θ−1 ∧ log n)]2ζ∨1 ∨ λ̃

2

λ2

)
λ2ζ . (98)

2) For 1 < ζ ≤ τ,

E‖Sρhzλ − fρ‖2ρ ≤ C ′6R2

(
1 ∨ λ̃

2ζ

λ2ζ
∨ λ1−2ζ

(
1

n

)(ζ− 1
2

)∧1

∨ [γ(θ−1 ∧ log n)]2

)
λ2ζ (99)

Here, C ′5 and C ′6 are given by Proposition 9.
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C.3 Estimating Sample Variance

In this section, we estimate sample variance ‖Sρ(ḡz̄λ − h̄z̄λ)‖ρ. We first introduce the following
lemma.

Lemma 31 We have

E‖Sρ(ḡz̄λ − h̄z̄λ)‖ρ =
1

m
E‖Sρ(gz1

λ − h
z1
λ )‖2ρ. (100)

Proof The proof is the same as that in Lemma 21 by applying (85).

According to Lemma 31, we know that the sample variance of the averaging over m local
estimators can be well controlled in terms of the sample variance of a local estimator. In what
follows, we will estimate the local sample variance, E‖Sρ(gz1

λ − h
z1
λ )‖2ρ. Throughout the rest of

this subsection, we shall drop the index s = 1 and write z1 as z, x1 as x.

Proposition 11 Under Assumption 3, let λ̃ = nθ−1 for some θ ∈ [0, 1]. Then

E‖Sρ(gzλ − hzλ)‖2ρ ≤ C ′8
σ2

nλ̃γ

(
1 ∨ λ̃

λ
∨ [γ(θ−1 ∧ log n])

)
.

Here, C ′8 is a positive constant depending only on κ, cγ , ‖T ‖, E and will be given explicitly in the
proof.

Proof For notational simplicity, we let εi = yi − fρ(xi) for all i ∈ [n] and ε = (εi)1≤i≤n. Then
from the definitions of hzsλ and gzsλ

gzλ − hzλ = G̃λ(Tx)S∗xε.

Using the above relationship and the isometric property (25), we have

Ey‖Sρ(gt+1 − ht+1)‖2ρ = Ey‖SρG̃λ(Tx)S∗xε‖2ρ
= Ey‖T 1/2G̃λ(Tx)S∗xε‖2H

=
1

n2

n∑
l,k=1

Ey[εlεk] tr
(
G̃λ(Tx)T G̃λ(Tx)Kxl ⊗Kxk

)
.

From the definition of fρ and the independence of zl and zk when l 6= k, we know that Ey[εlεk] = 0
whenever l 6= k. Therefore,

Ey‖Sρ(gt+1 − ht+1)‖2ρ =
1

n2

n∑
k=1

Ey[ε2k] tr
(
G̃λ(Tx)T G̃λ(Tx)Kxk ⊗Kxk

)
.
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Using Assumption 1,

E‖Sρ(gzλ − hzλ)‖2ρ ≤
σ2

n2

n∑
k=1

tr
(
G̃λ(Tx)T G̃λ(Tx)Kxk ⊗Kxk

)
=
σ2

n
tr
(
T (G̃λ(Tx))2Tx

)
≤σ

2

n
tr(T −1/2

λ̃
T T 1/2

λ̃
)‖T 1/2

λ̃
G̃λ(Tx)2TxT 1/2

λ̃
‖

≤σ
2N (λ̃)

n
∆z

1‖T
1/2

xλ̃
G̃λ(Tx)2TxT 1/2

xλ̃
‖

≤σ
2N (λ̃)

n
∆z

1‖G̃λ(Tx)Tx‖(‖G̃λ(Tx)Tx‖+ λ̃‖G̃λ(Tx)‖)

≤E2σ
2N (λ̃)

n
∆z

1(1 + λ̃/λ),

where for the last inequality, we used 1) of Lemma 28. Taking the expectation with respect to
x, this leads to

E‖Sρ(gzλ − hzλ)‖2ρ ≤ E2σ
2N (λ̃)

n
(1 + λ̃/λ)E[∆z

1].

Applying Lemmas 19 and 20, we get

E‖Sρ(gzλ − hzλ)‖2ρ ≤ 6E2σ
2N (λ̃)

n
(1 ∨ (λ̃/λ))

∫ 1

0
an,δ,γ(2/3, 1− θ)dδ

≤C ′7
σ2N (λ̃)

n
(1 ∨ (λ̃/λ) ∨ [γ(θ−1 ∧ log n])),

where C ′7 = 48E2κ2 log
4κ2(cγ+1)e2

‖T ‖ . Using Assumption 3, we get the desired result with

C ′8 = cγC7.

Using the above proposition and Lemma 31, we derive the following results for sample
variance.

Proposition 12 Under Assumption 3, let λ̃ = nθ−1 for some θ ∈ [0, 1]. Then for any t ∈ [T ],

E‖Sρ(ḡz̄λ − h̄z̄λ)‖2ρ ≤ C ′8
σ2

Nλ̃γ

(
1 ∨

(
λ̃

λ

)
∨ [γ(θ−1 ∧ log n)]

)
, (101)

where C ′8 is given by Proposition 11.

C.4 Deriving Total Error Bounds

Proof of Theorem 2 The proof can be finished by simply applying Propositions 12 and 10
into Proposition 8.

Proof of Corollary 6 The results are direct consequences of Theorem 2.
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