
Adaptive Cache Mode Selection for Queries over Raw Data

Tahir Azim?, Azqa Nadeem‡ and Anastasia Ailamaki? †

?École Polytechnique Fédérale de Lausanne ‡TU Delft †RAW Labs SA
tahir.azim@epfl.ch, A.Nadeem@student.tudelft.nl, anastasia.ailamaki@epfl.ch

ABSTRACT
Caching the results of intermediate query results for future re-use
is a common technique for improving the performance of analytics
over raw data sources. An important design choice in this regard
is whether to lazily cache only the offsets of satisfying tuples, or
to eagerly cache the entire tuples. Lazily cached offsets have the
benefit of smaller memory requirement and lower initial caching
overhead, but they are much more expensive to reuse.

In this paper, we explore this tradeoff and show that neither lazy
nor the eager caching mode is optimal for all situations. Instead, the
ideal caching mode depends on the workload, the dataset and the
cache size. We further show that choosing the sub-optimal caching
mode can result in a performance penalty of over 200%. We solve
this problem using an adaptive online approach that uses informa-
tion about query history, cache behavior and cache size to choose
the optimal caching mode automatically. Experiments on TPC-H
based workloads show that our approach enables execution time to
differ by, at most, 16% from the optimal caching mode, and by just
4% on the average.

1. INTRODUCTION
As the data deluge continues, it has become increasingly im-

portant to be able to run analytics queries directly over raw data
sources. The key challenge in achieving this goal is the high CPU
and IO cost of reading and parsing raw data [2]. In contrast, load-
ing raw data into a database first has a very high initial cost, but
enables queries to run much more efficiently afterwards.

Data analytics systems commonly use on-the-fly caching of pre-
viously parsed data and intermediate operator results to address this
challenge [2, 12]. The basic idea is that when raw data is queried
the first time, the system caches in memory either all of the data
after parsing, or just the results of intermediate query operators.
Since the data resides in an efficient binary format in memory, the
cache enables faster responses to future queries on the same data.

Reading and parsing raw data is a costly operation, so creating
in-memory caches of binary data can add significant overhead to a
query. The alternative approach is to cache in memory only the file
offsets of satisfying tuples, and reconstruct the tuples from those

offsets when needed. Compared to the eager approach of caching
entire tuples, this lazy caching approach has the benefit of lower
caching overhead, but is more expensive to reuse.

Existing systems generally provide support for statically choos-
ing one of these caching modes, but leave open the problem of dy-
namically handling this tradeoff. Recent work on reactive caching
presented a technique to quickly switch to lazy caching if the ob-
served overhead of caching entire tuples was too high [4]. How-
ever, if a lazily cached item is reused, it immediately converts it to
an eager one, in order to make future reuse more efficient. Thus, it
also assumes that a popular item must be cached in eager mode.

This paper further explores the tradeoff between lazy and ea-
ger caching modes, and shows that neither mode is optimal for all
cases. Instead, the ideal caching mode depends on the size of the
cache, the characteristics of the dataset, and properties of the work-
load such as query types and selectivity. Building on this result,
we propose an adaptive approach to discover and use the optimal
caching mode automatically at runtime.

In particular, this paper makes the following contributions:

• We experimentally demonstrate that neither lazy nor eager caching
mode is ideal for all scenarios. Our experiments show that choos-
ing the incorrect caching mode can increase workload execution
time by over 200% compared to the optimal.

• We propose Acme, an adaptive cache mode selection algorithm
for automatically determining the optimal caching mode at run-
time, without relying on any advance information about the work-
load or dataset. Acme reduces the maximum performance penalty
for choosing the incorrect caching mode to less than 16%, and
the average penalty to just 4%.

The next section overviews related work in this domain. Sec-
tion 3 presents experimental results showing that neither eager nor
lazy caching is the best approach for all scenarios. Section 4 then
describes and evaluates our algorithm for automatically selecting
the ideal cache mode. Finally, we discuss some alternative design
choices that did not succeed in meeting our design goals.

2. RELATED WORK
Caching is a well-studied problem in computer systems. In the

area of databases, a large body of work exists on the problem of
caching and reusing the results of previous query executions to im-
prove performance.

Caching Disk Pages. All database systems retain disk pages in
memory buffers for a period of time after they are read in from disk.
The key question while caching is to decide which pages to keep
in memory to get the best performance. Based on contemporary
performance and price characteristics of memory and disk storage,

the 5-minute rule [9] proposed caching only those disk pages that
are re-used within 5 minutes. A revised version of the paper ten
years later found the results to be mostly unchanged [8].

Cost-based Caching. Cost-based caching algorithms, such as
online Greedy-Dual algorithms [20, 10, 5], improve cache per-
formance when the cost of reading different data items can vary
widely. These algorithms prioritize evicting less costly items in
order to keep expensive items in the cache. In addition, these algo-
rithms account for recency of access: recently accessed items are
less likely to be evicted than those accessed in the more distant past.

Caching Intermediate Query Results. Automatically caching
intermediate results of query execution has been frequently studied
[18, 13] but it has not been widely deployed due to its potential
overhead and additional complexity. Recent work towards caching
intermediate results of queries over relational data [15, 11] has
further shown the benefit of this approach. This work uses a cost-
based approach to decide which tuples to keep in the cache and
which to remove. The cost of each cached data item is estimated
based on fine-grained timing measurements and the size of the item.

Querying Raw Data. Many systems address the need to per-
form queries over data stored in their original raw formats. The tra-
ditional approach of completely loading raw data into a DBMS be-
fore running queries is a major bottleneck for use cases where im-
mediately getting fast response time is important. Apart from full
loading, DBMS offer an external tables functionality (e.g.,using a
custom storage engine [14]), in which every query parses the entire
raw file from scratch. Hadoop-oriented solutions [19, 17, 3] rely
on adapters per file format. For example, when a dataset is stored
in CSV files, a CSV-specific adaptor converts all values into a bi-
nary representation during query execution. Thus the query pays
for the conversion of the entire file, even if it never accesses parts
of the file. Other systems [7, 1] operate in a “hybrid” mode, loading
data on-demand into a DBMS based on workload patterns, or when
there are free CPU cycles [6]. Finally, several systems process raw
data in situ, and use techniques such as index structures, caches and
custom code-generated access paths to mask the costs of repeatedly
accessing raw data [2, 12, 16].

Caching Raw Data. The NoDB [2] and Proteus [12] query
engines for raw heterogeneous data both use caches to speed up
query performance. While caches enable them to optimize query
response time, their caching policies are relatively ad-hoc and sim-
plistic. For example, they admit everything into the cache and
use LRU for eviction, with the exception that they assume cached
JSON items to always be costlier than CSV. ReCache [4] adds
to this body of work by taking into account the cost of reusing a
cached result and automatically choosing the fastest data layout for
the cache. In addition, it caches only satisfying offsets of an inter-
mediate query result if the overhead of caching entire tuples is too
high. However, it assumes that popular data items must always be
cached eagerly, even if the working set is large or the cache size
is small. Proteus and ReCache also introduce the term degree of
eagerness: caching only offsets of satisfying tuples constitutes a
low degree of eagerness, while caching the entire tuple represents
a high degree of eagerness. However, it does not suggest automatic
policies to determine the degree of eagerness for a cached data item.
For brevity, we use the terms lazy and eager caching in this paper
instead of low and high degree of eagerness respectively.

3. FINDING THE OPTIMAL CACHE MODE
We first test experimentally whether either one of lazy or eager

caching can provide optimal performance in all cases. All exper-
iments are conducted on an Intel Xeon E5-2660 processor with a
clock speed of 2.20 Ghz and 8 cores per socket. The machine has

0 2000 4000 6000 8000
Cache Size (MB)

0

1000

2000

3000

4000

5000

E
x
e
c
u

ti
o
n

 T
im

e
 (

s
)

Lazy

Eager

(a) Select-project-{aggregate,
join} queries on CSV data.

0 1000 2000 3000 4000
Cache Size (MB)

0

1000

2000

3000

4000

E
x
e
c
u

ti
o
n

 T
im

e
 (

s
)

Lazy

Eager

(b) Select-project-aggregate
queries on JSON data.

Figure 1: Workload execution time using lazy and eager caching
modes on TPC-H datasets in CSV and JSON formats.

two sockets with 16 hardware contexts per socket. Each core has
a 32 KB L1 instruction cache, 32 KB L1 data cache, 256 KB L2
cache, and 20 MB L3 cache is shared across the cores. Finally the
machine has 132 GB of RAM and a 450 GB, 15000 RPM disk with
a 6 Gb/s throughput. All experiments in this paper are built on top
of ReCache [4], which uses LLVM 3.4 to generate custom code for
each query. We run all experiments in single-threaded mode over
warm operating system caches. We disable the use of any index-
ing structures (such as positional maps [2]), and cache the outputs
of selection operators in each experiment. The caching system has
support for operator subsumption, i.e. if the cache contains a su-
perset of the tuples that would be returned by an operator, then the
operator will scan these cached tuples.

We use the TPC-H lineitem, customer, partsupp, order and
part tables as input CSV files, using scale factor 10 (SF10 - 60M
lineitem tuples, 15M order tuples, 8M partsupp tuples, 2M part
tuples and 1.5M customer tuples). The data types are numeric
fields (integers and floats). The queries in this workload are a se-
quence of 100 select-project-join queries over TPC-H SF-10 data
with the following format:

SELECT agg(attr_1), ..., agg(attr_n)
FROM subset of {customer,orders,lineitem,partsupp,
part} of size n
WHERE <equijoin clauses on selected tables>
AND <range predicates on each selected table with
random selectivity>

For each query in this workload, each table is included with a
probability of 50%. One attribute is randomly selected for aggre-
gation from each of the selected tables. Each table is joined with
the other table on their common key. The range predicate is applied
to random numeric columns of the selected tables.

The results on TPC-H CSV data are shown in Figure 1a. We find
that for smaller cache sizes below 2 GB, using lazy caching enables
24-27% lower execution times. For cache sizes larger than 2 GB,
eager caching performs better. These results seem quite intuitive in
retrospect: since fully cached tuples are larger than tuple offsets,
eagerly cached results fill up small caches more quickly and, there-
fore, get evicted more frequently. As a result, they are less likely to
be available for reuse in future queries. Lazily cached results may
be less efficient to reuse, but result in more frequent cache hits.

Query workloads over JSON data yield similar results. Our ex-
periment uses a 2.5 GB JSON file named orderLineitems, gener-
ated from the TPC-H SF1 lineitem and orders tables. Each line
in the file is a JSON object mapping an order record to a list of
lineitem records. Each lineitem record is itself a JSON object with
a set of nested fields describing the lineitem. On average, about
four lineitem records are associated with each order record. For

this experiment, the queries in the workload are a sequence of 100
select-project-aggregate queries with the following format:

SELECT agg(attr_1), ..., agg(attr_n)
FROM orderLineitems
WHERE <range predicates with random selectivity
over randomly chosen numeric attributes>

For this JSON data, eager caching involves unnesting [12] the
hierarchical data in order to convert it into a relational layout. This
obviously results in some data duplication, since multiple tuples
with the same order ID may be associated with different lineitem
records. In case of eager caching, each of these tuples is stored in
memory. In case of lazy caching, if a single line of JSON generates
multiple tuples all satisfying a predicate, then the file offset of the
line is only stored once.

Figure 1b shows the results. With a cache size of 128 MB, eager
caching results in a performance penalty of almost 40% compared
to lazy caching. Eager caching only starts out-performing the lazy
approach when the cache size exceeds 512 MB. At 2 GB, the work-
ing set for the workload completely fits in memory, so further in-
creasing cache size does not improve performance. This threshold
basically depends on the size of the working set, which in turn de-
pends on the nature of the workload and the dataset. For a DBA
with no a priori workload knowledge, estimating this threshold is
difficult, and incorrectly choosing the caching mode can increase
execution time by over 200% (e.g. with a cache size of 2 GB).

We conclude that neither lazy nor eager caching is ideal in all
cases. The next section addresses this problem using an automatic,
online method for adapting to the correct caching mode based on
historical knowledge of the workload and dataset.

4. ADAPTIVE CACHE MODE SELECTION
The experimental results in Section 3 show the importance of

choosing the correct caching mode for achieving optimal perfor-
mance. This is a difficult task because the workload may not be
known beforehand and the properties of the dataset may be com-
putationally expensive to ascertain. For this reason, we propose
an adaptive online algorithm that can observe the input workload
and the behavior of the cache to automatically choose the optimal
caching mode.

4.1 Design and Implementation
The mode selection algorithm is based on the idea that given a

known cache size, the system can continue executing in one cache
mode, while maintaining a reasonable estimate of how the alterna-
tive would perform. The algorithm works by tracking a window of
past queries, simulating a cache operating in the alternative caching
mode, and statistically determining if there would be a significant
improvement in performance using the alternative mode.

By default, the Adaptive cache mode selection (Acme) algo-
rithm starts off caching in eager mode. For each intermediate re-
sult cached using the current caching mode, Acme also creates a
“shadow” entry for a hypothetically cached item in the alternative
mode. This shadow entry does not store any data from the inter-
mediate result. Instead, it only stores a pointer to the actual cached
item, whose metadata it uses to estimate its own size, creation cost,
and scanning cost.

After each query, Acme looks at the state of both the actual and
shadow caches to decide if either one has exceeded its memory
budget and requires evictions. The cache eviction policy is based
on ReCache [4], which uses a cost-based algorithm to decide which
cached item to evict. The algorithm relies on the following mea-
surements to make this decision:

1. n, how many times an operator’s cache has been reused.

2. t, the time spent executing the operator.

3. c, the time spent caching the results of the operator in memory.

4. s, the time spent scanning the in-memory cache when it is reused.

5. l, the time spent looking for a matching operator cache

6. S, the size of an operator cache in bytes

Based on these measurements, Acme computes a benefit met-
ric, b = n ∗ (t + c− s− l)/log(S), for each item and feeds it to a
Greedy-Dual algorithm [10, 5] to make eviction decisions. In ad-
dition to running this algorithm on the actual cache, it also runs the
algorithm on the shadow cache in order to track the evolution of the
shadow cache over time. Thus, after any query, Acme knows what
the contents of the cache would be, if it were to use the alternative
caching mode.

An important detail here is how to estimate the values of c, s and
S for items in the shadow cache. Since data in the shadow cache
was never actually materialized, we do not have actual measure-
ments for these parameters. Therefore, Acme uses estimates for
these parameters.

If the shadow cache is simulating lazily cached entries, it as-
sumes c≈ 0, S = sizeo f (int)∗ i and s = teager ∗ i/N, where teager is
the value for t for the corresponding eagerly cached entry, i is the
number of tuples in the cached item, and N is the total number of
tuples in the cached item’s original relation. These estimates reflect
the fact that the cost of creating a lazy cache is very small, while its
size and scan cost are both directly proportional to its size relative
to its original relation.

If the shadow cache is simulating eagerly cached entries, Acme
assumes c = k ∗ clazy, s ≈ 0 and S = i ∗ Savg, where k is a constant
greater than one, clazy is the time taken to create the correspond-
ing lazy cache and Savg is the average tuple size measured in the
original relation. The idea behind these estimates is that the cost
of creating an eager cache is substantially higher than a lazy cache.
Based on the results in [4], which showed the average cost of eager
caching to be at least 3 times as high as that of lazy caching, we use
k = 3. In addition, the cost of scanning it is very low, while its size
depends on both the number and sizes of its individual tuples.

After executing its eviction decisions, Acme computes for both
the actual and shadow caches how much their content is (or could
have been) contributing towards the efficiency of the entire system.
This is computed by summing up the contributions of every item
stored in the cache. For each item, the contribution is computed
as (t + c− s− l), which represents the cost that would be incurred
if the item had to be reconstructed from its original data sources,
minus the cost of reusing the cache. While in lazy mode, it is pos-
sible that both the lazy actual cache and the shadow eager cache
remain under the size budget. In this scenario, it may be preferable
to switch to the more efficient eager caching mode. Acme incorpo-
rates this into the cost model by multiplying each contribution by
MaximumCacheSize
CurrentCacheSize while in lazy caching mode.

Acme appends the sums of contributions for the actual and shadow
cache into two separate lists. It then runs a statistical test of signif-
icance on the two lists to check if the shadow cache has signifi-
cantly higher contributions. If the test returns true, Acme switches
to caching data in the alternative mode for future queries. Mean-
while, Acme does not evict or modify existing items in the cache,
resulting in zero switching overhead and allowing these items to be
reused for future queries.

0 2000 4000 6000 8000
Cache Size (MB)

0

1000

2000

3000

4000

5000

E
x
e
c
u

ti
o
n

 T
im

e
 (

s
)

Lazy

Eager

Acme

(a) Select-project-{aggregate, join} queries on
CSV.

0 1000 2000 3000 4000
Cache Size (MB)

0

1000

2000

3000

4000

E
x
e
c
u

ti
o
n

 T
im

e
 (

s
)

Lazy

Eager

Acme

(b) Select-project-aggregate queries on JSON.

Figure 2: Workload execution time using lazy, eager and adaptive
caching modes on TPC-H datasets in CSV and JSON formats.

0 20 40 60 80 100

Query Sequence

0

20

40

60

80

100

120

E
x
e
c
u

ti
o
n

 T
im

e
 (

s
)

Selectivity
< 100%

Selectivity < 1% Selectivity
< 100%

Lazy

Eager

Acme

Figure 3: Execution times for a sequence of queries on CSV data
using adaptive, lazy and eager caching modes. Between queries 25
and 75, selectivity < 1%. Otherwise, it ranges from 0 to 100%.

When it switches the caching mode, Acme empties the contribu-
tion lists and the shadow cache because their contents now corre-
spond to an old configuration. Furthermore, it only sums up contri-
butions from those items in the actual cache whose mode matches
the current configuration. It will now revert back to the previous
configuration only if the shadow cache’s benefit once again starts
exceeding that of the actual cache by a significant margin.

4.2 Evaluation
We evaluate our approach on the same dataset and workload

as Section 3 to test if it can adaptively select the correct caching
mode. For testing statistically significant differences between the
two modes, we use the one-tailed Student’s t-test with a signifi-
cance level of 0.05. We choose this test because it is designed to
work with a small sample size, so it allows us to make a mode
switching decision more confidently using very few samples.

Figure 2 shows the results. In both the CSV and JSON work-
loads, Acme is able to closely match the performance of the opti-
mal caching mode. The average difference from the optimal over
all data points is less than 4%, while the worst case difference is
less than 16% (on the CSV workload with a cache size of 4096
MB). In the cases where the workload and the cache size necessi-
tate a switch to lazy caching, the t-test is able to make this decision
within the first 13 queries in the worst case, and within the first 3

queries in the best case.
Acme primarily under-performs when the difference in perfor-

mance between eager and lazy modes is relatively small. In that
case, its statistical test may not deem the difference between the
two modes to be significant enough to switch. As a result, it may
continue using the marginally under-performing cache mode.

The results also show that the Acme’s automatic cache mode se-
lection algorithm has almost negligible overhead. In every case
where the cache mode does not switch to lazy mode, Acme’s per-
formance closely matches that of eager mode. We further con-
firmed this observation by directly measuring the additional esti-
mation and significance testing overhead for each workload. Even
in the worst case, the overhead accounted for less than 1 second of
the entire workload execution time.

Finally, we demonstrate Acme’s ability to adapt to a changing
workload in Figure 3. We fix the cache size at 256 MB and run the
CSV workload. However, between queries 25 and 75, the work-
load switches its random selectivity from less than 100% to less
than 1%. This allows eager caching to completely fit intermedi-
ate results in the cache. Acme adapts to the changing workload by
switching to lazy caching on query 3, eager caching on query 29,
and finally back to lazy caching on query 90. This adaptivity is re-
flected in the figure where Acme tracks closely with eager caching
between queries 30 and 90, and with lazy caching otherwise.

5. DISCUSSION
We now briefly discuss the applicability of this work to tradi-

tional database systems that operate on relational data. We then
describe some approaches we tried initially that did not meet our
design and performance goals. We also outline possible directions
for future research.

5.1 Applicability to Traditional DBMS
While this paper has focused on caching results of queries over

raw data, Acme is also applicable to traditional databases storing
relational data in row-oriented and columnar layouts. Row-oriented
databases are essentially similar to CSV files, differing mainly in
that data does not need to be parsed from plain text. Moreover, a
file offset alone may not be sufficient to identify a tuple. These
details can be easily incorporated into Acme’s cost model.

With columnar databases, an additional difference is that an ea-
ger cache will likely contain only a small subset of attributes of a
relation. Furthermore, to reconstruct a tuple from its columns us-
ing a lazy cache, an offset has to be stored for each column. In this
case, the lazy cache would only be beneficial if (i) the total size
of the columns was much larger than the total size of the integer
offsets, or (ii) if reading the columns was very expensive. Never-
theless, integrating these differences into the cost model should be
quite straightforward.

5.2 Alternative Designs
Before settling on our final design, we considered a number of

initial ideas which we found to be incompatible with our design
goals. As a first step, we considered a purely analytical, offline
method to find the optimal cache mode. But this required prior
knowledge of the workload and dataset.

Second, we implemented and evaluated a design where the cache
stored satisfying tuples in both lazy and eager modes. When an
eviction was required, the cache only evicted a fraction of the ea-
gerly cached tuples to reclaim space. When reused, a cached item
initially scans the full tuples in memory and then scans the satisfy-
ing lines in the original data source. While we attempted a num-
ber of cache eviction heuristics to make this work well, the primary

problem remained the same: the initial eager caching overhead was
too high, both in terms of execution time and memory consumption.
As a result, cache evictions and misses remained frequent, and its
performance degenerated to that of eager caching.

A third, similar approach did not keep the lazy offsets in cache.
Instead, after partially evicting some tuples out of an eager cache to
meet the cache size limit, it only kept the file offset of the last tuple
that remained. This allowed the cache to scan the cached item,
and then partially scan the original data source. This approach also
degenerated in performance to eager caching in every case, hence
it was also unsuitable for small cache sizes.

Finally, we considered the case where the shadow cache also
stored the data associated with each cached item. In this way, the
system could switch caching modes faster, since the data for each
shadow cache item would already be in memory. We did not ex-
plore this in more detail because it was also quite similar to our first
attempt, so the space/time overhead of caching in two modes was
likely to be excessive. However, a more detailed evaluation of this
and other techniques might help uncover a better approach.

5.3 Future Work
There are many possible avenues for future work. In particular,

we want to explore how Acme can be adapted for use in other real-
world systems, including open source relational database engines
and in-memory databases. For in-memory databases, it may be in-
teresting to consider the memory hierarchy at a finer granularity by
distinguishing between L1, L2 and L3 caches in the model. Based
on advance knowledge of the workload and performance require-
ments, this approach could also be used for cache sizing. Finally,
it will be valuable to evaluate the benefits and limitations of Acme
on additional real-world workloads and benchmarks.

6. CONCLUSION
Caching the results and intermediate results of queries is a com-

monly used technique for accelerating database queries. An impor-
tant design question while building the cache is whether it should
store only the offsets of satisfying tuples, or the entire tuples. Man-
ually choosing this caching mode is a challenge because the opti-
mal mode depends on the cache size as well as the properties of
the workload and the dataset. An incorrect choice can cause per-
formance to be over 200% worse than the optimal.

This paper presents Acme, an adaptive cache mode selection al-
gorithm, which observes the evolution of the cache under the exist-
ing workload to dynamically determine the optimal caching mode.
This reduces the maximum performance penalty for choosing the
incorrect caching mode to just 16% and the average penalty to 4%.
Acknowledgments. This work was funded in part by the European
Union’s Horizon 2020 research and innovation programme under
grant agreement No 650003 (Human Brain project) and by the Eu-
ropean Union Seventh Framework Programme (ERC-2013-CoG),
under grant agreement no 617508 (ViDa).

7. REFERENCES
[1] A. Abouzied, D. J. Abadi, and A. Silberschatz. Invisible

Loading: Access-Driven Data Transfer from Raw Files into
Database Systems. In EDBT, 2013.

[2] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and
A. Ailamaki. NoDB: Efficient query execution on raw data
files. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data.

[3] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.
Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and

M. Zaharia. Spark SQL: Relational Data Processing in
Spark. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2015.

[4] T. Azim, M. Karpathiotakis, and A. Ailamaki. ReCache:
Reactive caching for fast analytics over heterogeneous data.
Proceedings of the VLDB Endowment, 11(3), 2017.

[5] P. Cao and S. Irani. Cost-aware www proxy caching
algorithms. In Usenix symposium on internet technologies
and systems, volume 12, pages 193–206, 1997.

[6] Y. Cheng and F. Rusu. SCANRAW: A Database
Meta-Operator for Parallel In-Situ Processing and Loading.
TODS, 40(3):19:1–19:45, 2015.

[7] D. J. DeWitt, A. Halverson, R. V. Nehme, S. Shankar,
J. Aguilar-Saborit, A. Avanes, M. Flasza, and J. Gramling.
Split Query Processing in Polybase. In Proceedings of the
ACM SIGMOD International Conference on Management of
Data, 2013.

[8] J. Gray and G. Graefe. The five-minute rule ten years later,
and other computer storage rules of thumb. ACM Sigmod
Record, 26(4):63–68, 1997.

[9] J. Gray and F. Putzolu. The 5 minute rule for trading memory
for disc accesses and the 10 byte rule for trading memory for
cpu time. ACM SIGMOD Record, 16(3):395–398, Dec. 1987.

[10] S. Irani. Page replacement with multi-size pages and
applications to web caching. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of
computing, pages 701–710. ACM, 1997.

[11] M. G. Ivanova, M. L. Kersten, N. J. Nes, and R. A.
Gonçalves. An architecture for recycling intermediates in a
column-store. ACM Transactions on Database Systems
(TODS), 35(4):24, 2010.

[12] M. Karpathiotakis, I. Alagiannis, and A. Ailamaki. Fast
queries over heterogeneous data through engine
customization. PVLDB, 9(12):972–983, 2016.

[13] Y. Kotidis and N. Roussopoulos. Dynamat: a dynamic view
management system for data warehouses. In ACM SIGMOD
Record, volume 28, pages 371–382. ACM, 1999.

[14] MySQL. Chapter 24. Writing a Custom Storage Engine.
http://dev.mysql.com/doc/internals/en/
custom-engine.html.

[15] F. Nagel, P. Boncz, and S. D. Viglas. Recycling in pipelined
query evaluation. In Data Engineering (ICDE), IEEE 29th
International Conference on, pages 338–349. IEEE, 2013.

[16] M. Olma, M. Karpathiotakis, I. Alagiannis,
M. Athanassoulis, and A. Ailamaki. Slalom: Coasting
through raw data via adaptive partitioning and indexing.
PVLDB, 10(10):1106–1117, 2017.

[17] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A Not-So-Foreign Language for Data
Processing. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2008.

[18] P. Roy, K. Ramamritham, S. Seshadri, P. Shenoy, and
S. Sudarshan. Don’t trash your intermediate results,
cache’em. arXiv preprint cs/0003005, 2000.

[19] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive - A
warehousing solution over a map-reduce framework.
PVLDB, 2(2):1626–1629, 2009.

[20] N. Young. The k-server dual and loose competitiveness for
paging. Algorithmica, 11(6):525–541, 1994.

