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Abstract

The present work deals with the rational model order reduction method based
on the single-point Least-Square (LS) Padé approximation technique introduced
in [3]. Algorithmical aspects concerning the construction of the rational LS-Padé
approximant are described. In particular, the computation of the Padé denomi-
nator is reduced to the calculation of the eigenvector corresponding to the min-
imal eigenvalue of a Gramian matrix. The LS-Padé technique is employed to
approximate the frequency response map associated with various parametric time-
harmonic acoustic wave problems, namely, a transmission/reflection problem, a
scattering problem, and a problem in high-frequency regime. In all cases we es-
tablish the meromorphy of the frequency response map. The Helmholtz equation
with stochastic wavenumber is also considered. In particular, for Lipschitz func-
tionals of the solution and their corresponding probability measures, we establish
weak convergence of the measure derived from the LS-Padé approximant to the
true one. 2D numerical tests are performed, which confirm the effectiveness of the
approximation method.
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1 Introduction

Many applications require the fast and accurate numerical evaluation of Helmholtz
frequency response functions, i.e., functions that map the wavenumber to the solution
(or some quantity of interest related to the solution) of the corresponding time-harmonic
wave-problem, for a large number of frequencies. In mid- and high-frequency regimes,
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very fine meshes or high polynomial degrees should be considered, in order to obtain
accurate Finite Element (FE) solutions of the time-harmonic wave-problem. Moreover,
low order FE schemes are affected by the pollution effect [2], namely, an increasing
discrepancy between the best approximation error and the FE error, as the wave number
increases. In the “many-queries” context, i.e., when many solutions of the underlying
Partial Differential Equation (PDE) are needed, the “brute force” approach entails the
solution of a large number of high-dimensional linear systems, and it is then out of
reach.

Model order reduction methods aim at significantly reducing the computational
cost by approximating the quantity of interest starting from evaluations at only few
wavenumbers. They rely on a two-step strategy: the OFFLINE stage consists in
the computation of a finite dimensional basis - e.g., the basis of snapshots (see, e.g.,
[5, 14, 19, 25, 26, 28, 29, 15, 8, 22]), or evaluations of the frequency response map and
its derivatives at fixed centers (Padé method, see, e.g., [7, 13, 10, 9, 3]); the output of
this phase, whose computational cost may be very high, is stored, to be used during the
ONLINE phase, in which the approximation of the frequency response map correspond-
ing to a given new value of the parameter is constructed. This stage does not involve
the numerical solution of any PDE, and is expected to provide the output in real time.

In this work, we focus on the Padé-based model order reduction technique introduced
in [3], defined for any given univariate Hilbert space-valued meromorphic map T : C→
V , and relying on a single-point Least-Square (LS) Padé approximant. In particular, the
single-point LS-Padé approximant of T centered in z0 ∈ C, denoted by T[M/N ], is given

by the rational V -valued map T[M/N ](z) =
P[M/N](z)

Q[M/N](z)
, where P[M/N ](z) =

∑M
α=0 pα(z −

z0)α, with coefficients pα ∈ V (we write P[M/N ] ∈ PM (C;V )), and Q[M/N ] ∈ P?N (C),
where P?N (C) is the set of all polynomials with complex coefficients {qα}Nα=0 such that∑N
α=0 |qα|

2
= 1.

In [3] we have analyzed the convergence of T[M/N ] to T as M → ∞ for a fixed
denominator degree N . In particular, the LS-Padé approximant T[M/N ] identifies the N
poles of T closest to the center z0, as limit of the roots of the denominator Q[M/N ](z)
for M going to +∞.

In this paper, we describe in detail the algorithmical aspects of the construction of
the single-point LS-Padé approximant. In particular, the identification of the LS-Padé
denominator is proved to be equivalent to the identification of the normalized eigenvector
corresponding to the smallest non-negative eigenvalue of the Gramian matrix of the set{
T (z0),

(
T
)

1,z0
, . . . ,

(
T
)
N,z0

}
, where

(
T
)
α,z0

denotes the Taylor coefficient of T of order

α at z0.
Moreover, we explore the effectiveness of the single-point LS-Padé technique when

applied to parametric frequency response problems which go beyond the setting con-
sidered in [3], namely, a transmission/reflection problem, and a scattering problem. In
both cases, we first prove that the frequency response map associated with the consid-
ered problem is meromorphic. 2D numerical results are provided, which demonstrate
the convergence of the LS-Padé approximation. Moreover, 2D numerical tests in high-
frequency regime are performed for the parametric problem presented in [3].

The stochastic Helmholtz boundary value problem is also considered. We refer to [23]
for Uncertainty Quantification for frequency responses in vibroacoustics, to [6, 17, 16]
for model order reduction for random frequency responses in structural dynamics, and
to [24, 12] for the stochastic Helmholtz equation with uncertainty arising either in the
forcing term or in the boundary data or in the shape of the scatterer.

Within the present framework, we propose a novel approach to the stochastic Helm-
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holtz boundary value problem based on the LS-Padé technique, where the wavenumber
k2 is modeled as a random variable taking values intoK = [k2

min, k
2
max]. We approximate

the random variable X := L(S(k2)) with XP := L(S[M/N ](k
2)). Here, L : V → R is a

Lipschitz functional representing a quantity of interest, S is the meromorphic frequency
response map associated with the (stochastic) Helmholtz equation endowed with either
homogeneous Dirichlet or homogeneous Neumann boundary conditions, and S[M/N ] is
the LS-Padé approximation of S. An upper bound on the approximation error for the
characteristic function is derived.

All the considered boundary value problems fall into the following general setting.
Let D be an open connected bounded Lipschitz domain in Rd (d = 1, 2, 3), and consider
the following Helmholtz boundary value problem

−∆u− k2εr u = f in D,
u = gD on ΓD,
∇u · n = gN on ΓN ,
∇u · n− iku = gR on ΓR,

(1)

where the wavenumber k2 is either a parameter or a random variable, which takes values
into an interval of interest K := [k2

min, k
2
max] ⊂ R+, εr = εr(x) ∈ L∞(D), f ∈ L2(D),

gD ∈ H1/2(ΓD), gN ∈ H−1/2(ΓN ), gR ∈ H−1/2(ΓR), and {ΓD,ΓN ,ΓR} is a partition of
∂D, i.e., ΓD ∪ΓN ∪ΓR = ∂D and ΓD ∩ΓN = ΓD ∩ΓR = ΓN ∩ΓR = ∅. Throughout the
paper, we denote with V the Hilbert space H1

ΓD
(D). Moreover we assume the functions

in V to be complex-valued.
The outline of the paper is the following. In Section 2, we recall the definition of the

single-point LS-Padé approximant and the main convergence result of [3]. In Section 3,
we describe the algorithm to compute the LS-Padé approximant. Section 4 deals with a
parametric transmission/reflection problem, whereas Section 5 deals with a parametric
scattering problem. In Section 6, the LS-Padé approximation is tested in high-frequency
regime, and in Section 7 the LS-Padé methodology is applied to the stochastic setting.
Finally, conclusions are drawn in Section 8.

2 Least-Squares Padé approximant of the parametric
model problem

This section deals with the Least-Squares (LS) Padé approximation of the following
parametric Helmholtz problem:

Problem 1 (Parametric Model Problem) The Helmholtz equation (1) has para-
metric wavenumber k2 ∈ K := [k2

min, k
2
max] ⊂ R+, εr = 1, and is endowed with either

Dirichlet or Neumann homogeneous boundary conditions on ∂D, i.e., ΓR = ∅ and either
ΓD = ∂D and gD = 0, or ΓN = ∂D and gN = 0.

The following result was proved in [3].

Theorem 2.1 Let S be the frequency response map which associates to each z ∈ C, the
solution uz ∈ V of the weak formulation of Problem 1:∫

D

∇uz(x) · ∇v(x) dx− z
∫
D

uz(x)v(x) dx =

∫
D

f(x)v(x) dx ∀v ∈ V. (2)

Then, S is well-defined, i.e., problem (2) admits a unique solution for any z ∈ C \ Λ,
Λ being the set of (real, non negative) eigenvalues of the Laplace operator with the
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considered boundary conditions. Moreover, S is meromorphic in C, with a pole of order
one in each λ ∈ Λ.

Remark 2.2 For the sake of simplicity, in Problem 1 we endow the Helmholtz equa-
tion with either homogeneous Dirichlet or homogeneous Neumann boundary conditions.
Small modifications to the proofs of Theorem 3.1, Proposition 4.1, and Proposition 4.2
in [3] allow to handle both homogeneous mixed Dirichlet/Neumann and non-homogeneous
Neumann boundary conditions, and to conclude an analogous result as Theorem 2.1. In
Section 4, we will show how to handle non-homogeneous Dirichlet boundary conditions.

We recall now the definition and the convergence theorem of the LS-Padé approxi-
mant of the frequency response map S.

Let K = [k2
min, k

2
max] ⊂ R+ be the interval of interest, and z0 ∈ C\Λ with Re (z0) >

0. To fix the ideas we take z0 =
k2min+k2max

2 +δi, with δ ∈ R\{0} arbitrary. The LS-Padé
approximant of S, centered in z0, is given by the ratio of two polynomials of degree M
and N respectively:

S[M/N ](z) :=
P[M/N ](z)

Q[M/N ](z)
. (3)

The denominator Q[M/N ](z) is a function of z only, and belongs to the space P?N (C)

of all polynomials of degree at most N , q =
∑N
i=0 qi(z − z0)i ∈ PN (C), such that∑N

i=0 |qi|
2

= 1. The numerator P[M/N ] : C → V is a function of both the complex

variable z and the space variable x ∈ D. More precisely, P[M/N ](z) =
∑M
i=0 pi(z − z0)i,

with coefficients pi ∈ V . In the following, we denote with PM (C;V ) the space of
polynomials of degree at most M in z ∈ C with coefficients in V .

The construction of the LS-Padé approximant proposed in [3] relies on the minimiza-
tion of the functional jE,ρ : PM (C;V )×P?N (C)→ R, parametric in E ∈ N and ρ ∈ R+,
defined as

jE,ρ(P,Q) =

(
E∑
α=0

∥∥∥(Q(z)S(z)− P (z)
)
α,z0

∥∥∥2

V,
√

Re(z0)
ρ2α

)1/2

, (4)

where the brackets
(
·
)
α,z0

denote the α-th Taylor coefficient of the Taylor series centered

in z0 (i.e., for a map T : C \Λ→ V ,
(
T (z)

)
α,z0

= 1
α!
dαT
dzα (z0)), and ‖·‖

V,
√

Re(z0)
denotes

the weighted H1(D)-norm (equivalent to the standard one) defined as

‖v‖
V,
√

Re(z0)
:=
√
‖∇v‖2L2(D) + Re (z0) ‖v‖2L2(D). (5)

We recall the formal definition of the LS-Padé approximant of the solution map S,
and we refer to Section 3 for the proof of the existence of a (not in general unique)
LS-Padé approximant.

Definition 2.3 Let M,N ∈ N, E ≥ M + N , and ρ ∈ R+. A LS-Padé approximant
S[M/N ], centered in z0, of the solution map S is a quotient P

Q with P ∈ PM (C;V ),

Q ∈ P?N (C), such that

jE,ρ(P,Q) ≤ jE,ρ(R,S) ∀R ∈ PM (C;V ) , ∀S ∈ P?N (C) . (6)

The following convergence result has been proved in [3].
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Theorem 2.4 Let N ∈ N be fixed, and let R ∈ R+ be such that the disk B(z0, R)
contains exactly N poles of S. Then, for any z ∈ B(z0, R) \Λ and for any |z| < ρ < R,
it holds

lim
M→∞

∥∥S(z)− S[M/N ](z)
∥∥
V,
√

Re(z0)
= 0,

for all E ≥M +N . Moreover, given α > 0 small enough, introduce the open subset

Kα :=
⋃

λ∈Λ∩K

(λ− α, λ+ α) ⊂ K.

Then for any 0 < ρ < R such that B(z0, ρ) ⊃ K, there exists M? ∈ N such that, for any
M ≥M? and for any z ∈ K \Kα, it holds∥∥S(z)− S(z)[M/N ]

∥∥
V,
√

Re(z0)
≤ C 1

α3

( ρ
R

)M+1

, (7)

where the constant C > 0 depends on ρ, R, N , z0, λmin = min{λ ∈ Λ}, ‖f‖L2(D), and

g(z) =
∏
λ∈Λ∩B(z0,R)(z − λ).

Remark 2.5 In [3] the bound∥∥S(z)− S(z)[M/N ]

∥∥
V,
√

Re(z0)
≤ C 1

α

( ρ
R

)M+1

was proved, with a constant C that depends on 1
g2
K\Kα

, with

gK\Kα := min
z∈K\Kα

|g(z)| ,

and g(z) =
∏
λ∈Λ∩B(z0,R)(z − λ). Since the frequency response map S presents only

simple poles (given by the Dirichlet/Neumann Laplace eigenvalues), and the interval of
interest K contains a finite number of poles of S, it follows that there exists Cg > 0
such that

|g(z)| ≥ Cg min
λ∈Λ∩B(z0,R)

|z − λ| ∀z ∈ K,

hence gK\Kα ≥ Cgα and the bound (7) follows.

We can draw the following consequences:

(a) The roots of the LS-Padé denominatorQ[M/N ] approximate the N poles of S, closest
to z0.

(b) The region of convergence of S[M/N ] is an open circle whose radius is equal to the
distance between z0 and the (N + 1)-th closest pole of S.

3 Algorithmical aspects

In this section, we describe an algorithm for the computation of a LS-Padé approxi-
mant (defined according to Definition 2.3) of the Helmholtz frequency response map S
introduced in the previous section. We underline that the presented algorithm can be
likewise applied to any V -valued meromorphic map T : C → V . As a first instructive
step, we recall the proof of the existence of such an approximant, which was developed
in [3, Proposition 4.1].
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Proposition 3.1 For any M,N ∈ N, E ≥M +N , and ρ ∈ R+, there exists a LS-Padé
approximant centered in z0.

Proof. We want to show that the minimization problem (6) admits at least one solution.
Since P has degree M , then

(
P (z)

)
α,z0

= 0 for all α > M . Hence, we can rewrite jE,ρ as

jE,ρ(P,Q)2 =

M∑
α=0

∥∥∥(Q(z)S(z)− P (z)
)
α,z0

∥∥∥2

V,
√

Re(z0)
ρ2α

+

E∑
α=M+1

∥∥∥(Q(z)S(z)− P (z)
)
α,z0

∥∥∥2

V,
√

Re(z0)
ρ2α

=

M∑
α=0

∥∥∥(Q(z)S(z)− P (z)
)
α,z0

∥∥∥2

V,
√

Re(z0)
ρ2α

+

E∑
α=M+1

∥∥∥(Q(z)S(z)
)
α,z0

∥∥∥2

V,
√

Re(z0)
ρ2α.

Now, let Q be fixed. Taking P = P̄ (Q), where P̄ (Q) satisfies(
P̄ (z)

)
α,z0

=
(
Q(z)S(z)

)
α,z0

∀ 0 ≤ α ≤M,

problem (6) can be formulated as a minimization problem in Q only: find Q ∈ P?N (C) such
that

j̄E,ρ(Q) ≤ j̄E,ρ(S) ∀S ∈ P?N (C) , (8)

where

j̄E,ρ(Q) := jE,ρ(P̄ (Q), Q) =

(
E∑

α=M+1

∥∥∥(Q(z)S(z)
)
α,z0

∥∥∥2

V,
√

Re(z0)
ρ2α

)1/2

. (9)

Since the functional j̄E,ρ is continuous and the set P?N (C) is compact (being homeomorphic

to the unit sphere in CN+1), j̄E,ρ has a global minimum on P?N (C), and the minimization

problem (8) admits at least one solution. �
In the following proposition we express an equivalent formulation of the constrained

minimization problem (8).

Proposition 3.2 The constrained minimization problem (8) is equivalent to the iden-
tification of the (normalized) eigenvector corresponding to the smallest non-negative
eigenvalue of the Hermitian positive-semidefinite matrix GE,ρ ∈ C(N+1)×(N+1) with en-
tries

(GE,ρ)i,j =

E∑
α=M+1

〈(
S
)
α−j,z0

,
(
S
)
α−i,z0

〉
V,
√

Re(z0)
ρ2α, i, j = 0, . . . , N, (10)

where 〈·, ·〉
V,
√

Re(z0)
denotes the scalar product that induces the weighted H1(D)-norm

‖·‖
V,
√

Re(z0)
, and the Taylor coefficient of order β,

(
S
)
β,z0

, is the unique solution of the

following Helmholtz equation:∫
D

∇
(
S
)
β,z0

(x) · ∇v(x) dx− z
∫
D

(
S
)
β,z0

(x)v(x) dx

=

∫
D

(
S
)
β−1,z0

v(x) dx ∀v ∈ V, (11)

whereas we set
(
S
)
β,z0

= 0, whenever β < 0.
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Proof. Set qα :=
(
Q
)
α,z0

for α = 0, . . . , N . Since

(
QS
)
α,z0

=

α∑
n=0

qn
(
S
)
α−n,z0

=

N∑
n=0

qn
(
S
)
α−n,z0

according to our convention that
(
S
)
β,z0

= 0 for β < 0, we have

j̄E,ρ(Q)2 =

E∑
α=M+1

〈(
QS
)
α,z0

,
(
QS
)
α,z0

〉
V,
√

Re(z0)
ρ2α

=

E∑
α=M+1

〈
N∑
j=0

qj
(
S
)
α−j,z0

,

N∑
i=0

qi
(
S
)
α−i,z0

〉
V,
√

Re(z0)

ρ2α

=

E∑
α=M+1

N∑
i,j=0

q∗i qj
〈(
S
)
α−j,z0

,
(
S
)
α−i,z0

〉
V,
√

Re(z0)
ρ2α

=

N∑
i,j=0

q∗i qj

E∑
α=M+1

〈(
S
)
α−j,z0

,
(
S
)
α−i,z0

〉
V,
√

Re(z0)
ρ2α

=q?GE,ρq,

where GE,ρ ∈ C(N+1)×(N+1) is defined in (10), and q = (q0, . . . , qN )T . By definition, GE,ρ is

Hermitian. Moreover, definition (9) implies that GE,ρ is positive-semidefinite, so that all its

eigenvalues are real non-negative. Finally, observe that the constraint
∑N
α=0

∣∣∣(Q)
α,z0

∣∣∣2 = 1 is

equivalent to the condition ‖q‖2 = 1. Hence, we conclude that the constrained minimization

problem (8) is equivalent to the identification of the (normalized) eigenvector corresponding to

the smallest eigenvalue GE,ρ. Finally, we observe that equation (11) is obtained by repeated

differentiation of equation (2); see [3] for a rigorous derivation. �
The Hermitian matrix GE,ρ defined in (10) is obtained as weighted sum of sub-

matrices of the Gram matrix G ∈ C(N+1)×(N+1) associated with the solution map S,

namely, the matrix with entries Gi,j =
〈(
S
)
i,z0

,
(
S
)
j,z0

〉
V,
√

Re(z0)
, for i, j = 0, . . . , N .

See Figure 1 for a graphical representation.
By following the steps performed in the proof of Proposition 3.1, and applying Propo-

sition 3.2, we devise Algorithm 1 for the computation of the LS-Padé approximant.

Remark 3.3 The choice of ρ impacts the algorithm only by determining the weights in
the computation of GE,ρ. Specifically, small (respectively large) values of ρ emphasize
the contributions from the sub-matrices located in the top-left (respectively bottom-right)
portion of G. A fast version of the algorithm, where GE,ρ reduces just to the leading
term (i.e., for ρ→ +∞), is currently under investigation (see [4]).
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G =


〈S,S〉V 〈S,S1〉V 〈S,S2〉V . . .
〈S1,S〉V 〈S1,S1〉V 〈S1,S2〉V 〈S1,S3〉V . . .
〈S2,S〉V 〈S2,S1〉V 〈S2,S2〉V 〈S2,S3〉V 〈S2,S4〉V . . .... 〈S3,S1〉V 〈S3,S2〉V 〈S3,S3〉V 〈S3,S4〉V . . .... 〈S4,S2〉V 〈S4,S3〉V 〈S4,S4〉V . . ....

...
...


GE,ρ = . . .+ ρ6

 〈S3,S3〉V 〈S2,S3〉V 〈S1,S3〉V
〈S3,S2〉V 〈S2,S2〉V 〈S1,S2〉V
〈S3,S1〉V 〈S2,S1〉V 〈S1,S1〉V

+ . . .

Figure 1: Gram matrix (top) associated with the frequency response map S. To lighten
the notation, we omit both the argument (z0) of the Taylor coefficients Sα, and the
weight

√
Re (z0) of the scalar product 〈·, ·〉V . In blue the sub-matrix corresponding

to N = 2 and α = 3, which provides a contribution to GE,ρ (bottom) with weight ρ6.
Observe that a transposition with respect to the secondary diagonal is carried out before
computing the sum.

Algorithm 1 Construction of the LS-Padé approximant

1: Fix z0 ∈ C \ Λ with Re (z0) > 0, ρ ∈ R+, M, N, E ∈ N, with E ≥M +N
2: Evaluate S in the center z0, by solving problem (2)
3: for β = 1, . . . , E do
4: Compute the Taylor coefficient of S in z0 of order β,

(
S
)
β,z0

, by solving the

problem (11)
5: end for
6: Define the matrix GE,ρ ∈ R(N+1)×(N+1) according to (10)
7: Compute the (normalized) eigenvector ξ = (ξ0, . . . , ξN ) corresponding to the small-

est non-negative eigenvalue of the matrix GE,ρ
8: Define the denominator as Q[M/N ](z) =

∑N
α=0 ξα(z − z0)α

9: for α = 0, . . . , N do
10: Compute the Taylor coefficient of SQ[M/N ] in z0 of order α using the formula(

SQ[M/N ]

)
α,z0

=
∑α
n=0 ξn

(
S
)
α−n,z0

11: end for
12: Define the numerator as P[M/N ](z) =

∑M
α=0

(
SQ[M/N ]

)
α,z0

(z − z0)α

13: Define the single-point LS-Padé approximant as S[M/N ] =
P[M/N]

Q[M/N]

8



4 Application to a transmission/reflection problem

We consider the transmission/reflection problem treated in [18], i.e., the transmis-
sion/reflection of a plane wave eiκx·d with wavenumber κ and direction d = (cos(θ), sin(θ)),
across a fluid-fluid interface. In particular, the considered domain D = (−1, 1)2 is di-
vided into two regions with different refractive indices n1, n2; we assume n1 < n2. The
Helmholtz problem is the following

−∆u− κ2ε2
ru = 0, with εr(x1, x2) =

{
n1 if x2 < 0,
n2 if x2 > 0.

(12)

For any angle 0 ≤ θ < π/2, the following function is a solution of equation (12):

uex(x1, x2) =

{
T exp{iK · x} if x2 > 0,
exp{iκn1d · x}+R exp{iκn1d · (x1,−x2)} if x2 < 0.

(13)

where K = (κn1d1, κ
√
n2

2 − (n1d1)2), R = −K2−κn1d2
K2+κn1d2

and T = 1 + R. We couple
the Helmholtz equation (12) with Dirichlet boundary conditions derived from the exact
solution (13), i.e., u|∂D = uex|∂D.

Depending on the value of θ (angle of the incident wave), the solution may exhibit
two types of behavior:

• if θ < θcrit := arccos
(
n2

n1

)
, then Im (K2) 6= 0, and uex decays exponentially for

x2 > 0. Physically, this phenomenon is called total internal reflection;

• if θ > θcrit, then d is close to the normal incidence, and the wave is refracted at
the interface.

The two behaviors are depicted in Figure 2.

Figure 2: Exact solution of the transmission/reflection problem with n1 = 2, n2 = 1,
κ = 11 and θ = 29◦ (left), θ = 69◦ (right).

4.1 Frequency response map

We are interested in the following boundary value problem:
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Problem 2 (Transmission/Reflection Problem) The wavenumber κ2 ranges in the
interval of interest K = [κ2

min, κ
2
max], and the Helmholtz equation is endowed with

Dirichlet boundary conditions on ΓD = ∂D:{
−∆u− κ2ε2

ru = 0 in D,
u = gD on ∂D,

(14)

where gD := uex|∂D, and uex is given by formula (13) with κ = 11 and either θ = 29◦

or θ = 69◦.

A weak formulation of problem (14) with z ∈ C replacing κ2 reads: find ů ∈ V = H1
0 (D)

such that ∫
D

∇ůz(x) · ∇v(x)dx− z
∫
D

ε2
r(x)̊uz(x)v(x)dx

= z

∫
D

ε2
r(x)wg(x)v(x)dx ∀v ∈ V, (15)

where wg ∈ H1(D) is the unique harmonic extension of gD, i.e., ∆wg = 0 in D and
wg|∂D = gD, and ů := u− wg.

By generalizing [3, Theorem 2.1], it can be proved that problem (15) admits a unique
solution for all z ∈ C \ Λ, Λ being the set of eigenvalues of the Laplacian (w.r.t. the
weighted L2(D)-norm ‖v‖L2(D),εr

= ‖εrv‖L2(D)) with homogeneous Dirichlet boundary
conditions. Moreover, with

0 < α < min
j:λj∈Λ

|λj − z| , (16)

the unique solution satisfies the a priori bound

‖ůz‖V,√Re(z0)
≤ max{1, n1, n2}

√
|λmin − z|+ |Re (z)|+ Re (z0)

α
|z| ‖wg‖L2(D) , (17)

where λmin := min{λ ∈ Λ}. By triangular inequality, an analogous upper bound on
‖uz‖V,√Re(z0)

follows.

Let us denote by S : C → V := H1(D) the frequency response map that associates
to each complex wavenumber z, the function S(z) = ůz +wg, with ůz the weak solution
of (15).

Proposition 4.1 The frequency response map S is meromorphic in C, having a pole of
order one in each λ ∈ Λ, where Λ is the set of eigenvalues of the Laplacian (w.r.t. the
weighted L2(D)-norm ‖·‖L2(D),εr

) with homogeneous Dirichlet boundary conditions.

Proof. We denote with 〈·, ·〉εr the inner product which induces the L2(D) weighted norm
‖·‖L2(D),εr

, i.e., 〈v1, v2〉εr :=
∫
D
ε2
r(x)v1(x)v2(x)dx. Let {ϕj} be the set of eigenfunctions of

the Laplacian (with homogeneous Dirichlet boundary conditions) orthonormal with respect
to the inner product 〈·, ·〉εr , and let {λj} be the corresponding eigenvalues, i.e., −∆ϕj =
λjε

2
rϕj in D and ϕj |∂D = 0 (see, e.g., [21, Theorem 2.36]). Inserting into equation (15) the

eigenfunction expansion ů(z,x) =
∑
j ůj(z)ϕj(x), where ůj(z) := 〈̊u(z), ϕj〉εr , and denoting

wj := 〈wg, ϕj〉εr , we derive

ůj(z) =
z wj
λj − z

. (18)

The eigenfunction expansion of the frequency response map is then given by

S(z) = ů(z,x) + wg(x) =
∑
j

ůj(z)ϕj(x) + wg(x)

(18)
=
∑
j

zwj
λj − z

ϕj(x) + wg(x). (19)

10



Since the series converges in the (weighted) H1(D)-norm, then (19) directly implies that S is

meromorphic in C, and each λ ∈ Λ is a pole of order one for S. �

4.2 LS-Padé approximant of the frequency response map

Since the frequency response map is meromorphic, it is appropriate to use the LS-
Padé technology to catch the singularities of S, and provide sharp approximations of
S(z), when z is close to the center z0. We apply Algorithm 1, and compute the co-
efficients of the denominator as the entries of the eigenvector corresponding to the
minimal eigenvalue of the Gram matrix (10). The Taylor coefficient of order β ≥ 1,(
S
)
β,z0

= 1
β!
dβS
dzβ
|z=z0 ∈ H1

0 (D), satisfies∫
D

∇
(
S
)
β,z0

(x) · ∇v(x)dx− z0

∫
D

ε2
r(x)

(
S
)
β,z0

(x)v(x)dx

=

∫
D

ε2
r(x)

(
S
)
β−1,z0

(x)v(x)dx ∀v ∈ H1
0 (D). (20)

Problem (20) admits a unique solution for all z ∈ C \ Λ, since the PDE operator is the
same as in (15) and the right-hand side is a bounded linear form.

Let K = [3, 12] be the interval of interest and θ = 29◦. In Figure 3, the H1(D)-
weighted norm of the P2 finite element approximation of S, Sh, is compared with the
norm of its LS-Padé approximant Sh,P centered in z0 = 7.5 + 0.5i, for various degrees
(M,N). We have empirically observed (see Figure 4) that the LS-Padé approximation
delivers a better accuracy than that predicted in (7):

∥∥Sh(z)− S[M/N ],h(z)
∥∥
V,
√

Re(z0)
∼
(
|z0 − z|
|z0 − λN+1|

)M+1

, (21)

where {λj}j are the elements of Λ ordered according to: |λ1 − z0| < |λ2 − z0| < . . .. We
refer to [4] for a formal derivation of (21), where S[M/N ] is computed by a fast version
of Algorithm 1.
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Figure 3: Comparison between the H1(D)-weighted norm of Sh (with θ = 29◦) and of
its LS-Padé approximant Sh,P centered in z0 = 7.5 + 0.5i.
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Figure 4: LS-Padé approximation error, compared with the heuristic slope(
|z0−z̄|
|z0−λN+1|

)M+1

for z̄ = 8.
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5 Application to a scattering problem

In this section, we consider the scattering of an acoustic wave at a scatter occupying
the domain B((0, 0), 0.5) ⊂ R2. The incident wave ui is the time-harmonic plane wave
traveling along the direction d = (cos(θ), sin(θ)) with wavenumber k, i.e., ui = eikd·x.
The total field u, given by the sum of the incident wave ui with the scattered wave us,
satisfies the following boundary value problem in the infinite domain R2\B((0, 0), 0.5) ⊂
R2 

−∆u− k2u = 0 in R2 \ B((0, 0), 0.5) ⊂ R2,
u = 0 on ΓD := ∂B((0, 0), 0.5) ⊂ R2,

lim|x|→∞ |x|
1/2
(
∂us(x)
∂|x| − iku

s(x)
)

= 0

(22)

The finite element approximation of problem (22) entails the truncation of the un-
bounded domain R2 \ B((0, 0), 0.5) ⊂ R2 into the bounded domain

D := ([−2, 2]× [−2, 2]) \ B(0, 0.5),

whose outer boundary will be denoted as ΓR. Approximating the Sommerfeld radiation
condition at infinity in problem (22) by a first order absorbing boundary condition, we
write the following parametric problem:

Problem 3 (Scattering Problem) The wavenumber k2 ranges in the interval of in-
terest K := [k2

min, k
2
max] ⊂ R+, n is the outgoing normal vector field to ΓR, and

gR := ∂ui

∂n − ikui is the impedance trace of the incoming wave ui. We consider the
Helmholtz boundary value problem

−∆u− k2u = 0 in D,
u = 0 on ΓD,
∂u
∂n − iku = gR on ΓR.

(23)

5.1 Regularity of the frequency response map

We extend problem (23) to complex wavenumbers. Given a complex wavenumber z ∈ C,

we introduce the incident plane wave ui = eizd·x and its impedance trace gz := ∂ui

∂n −
izui, and we define the frequency response map S : z 7→ S(z) := uz ∈ V := H1

ΓD
(D),

where uz satisfies∫
D

∇uz(x) · ∇v(x)dx− z2

∫
D

uz(x)v(x)dx− iz
∫

ΓR

uz(x)v(x)ds (24)

=

∫
ΓR

gz(x)v(x)ds ∀ v ∈ V.

If z ∈ R, problem (24) admits a unique solution (see, e.g., [11]), which implies that the
frequency response map is well-defined on R. The following Theorem extends this result
to the complex half plane {z ∈ C : Im (z) ≥ 0}. Since the wavenumber in (24) is square
of the parameter z, we will endow the Hilbert space V with the weighted H1(D)-norm,
with weight w = Re (z0) (and not w =

√
Re (z0), as was done before).

Theorem 5.1 Problem (24) admits a unique solution in all compact subsets of

C+ := {z ∈ C : Im (z) ≥ 0} . (25)
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Proof. Given z ∈ C, we introduce the bilinear and linear forms which define problem (24):

Bz(u, v) :=

∫
D

∇uz(x) · ∇v(x)dx− z2

∫
D

uz(x)v(x)dx− iz
∫

ΓR

uz(x)v(x)ds, (26)

Lz(v) :=

∫
ΓR

gz(x)v(x)ds. (27)

We first show that either the coercivity or the G̊arding inequality (see [21]) holds, provided
that Im (z) is non-negative. For the bilinear form in (26), we have

Re (Bz(u, u)) = ‖∇u‖2L2(D) − (Re (z)2 − Im (z)2) ‖u‖2L2(D) + Im (z) ‖u‖2L2(ΓR)

≥ ‖∇u‖2L2(D) − (Re (z)2 − Im (z)2) ‖u‖2L2(D)

= ‖u‖2V,Re(z0) − (Re (z)2 − Im (z)2 + Re (z0)2) ‖u‖2L2(D) .

If C := Re (z)2 − Im (z)2 + Re (z0)2 ≤ 0, then B(·, ·) is coercive, whereas if C > 0, then Bz(·, ·)
satisfies the G̊arding inequality.

The bilinear form (26) is bounded, with constant C = max
{

1, |z|
2

Re(z0)
,
|z|C2

tr
Re(z0)

}
. Indeed,

using the trace inequality
‖u‖L2(ΓR) ≤ Ctr ‖u‖H1(D) ,

we get

|Bz(u, v)| ≤ ‖∇u‖L2(D) ‖∇v‖L2(D) + |z|2 ‖u‖L2(D) ‖v‖L2(D) + |z| ‖u‖L2(ΓR) ‖v‖L2(ΓR)

≤ ‖∇u‖L2(D) ‖∇v‖L2(D) + |z|2 ‖u‖L2(D) ‖v‖L2(D) + |z|C2
tr ‖u‖H1(D) ‖v‖H1(D)

≤ ‖∇u‖L2(D) ‖∇v‖L2(D) +
|z|2 Re (z0)2

Re (z0)2 ‖u‖L2(D) ‖v‖L2(D)

+ |z|C2
tr max

{
1,

1

Re (z0)2

}
‖u‖V,Re(z0) ‖v‖Re(z0)

≤ max

{
1,

|z|2

Re (z0)2 ,
|z|C2

tr

Re (z0)2

}
‖u‖V,Re(z0) ‖v‖Re(z0) .

Moreover, the linear functional (27) is bounded, with constant

C = C2
tr max

{
1,

1

Re (z0)2

}
‖gz‖V,Re(z0) .

Problem (24) admits a unique solution (continuously dependent on the data) if and only if
its homogeneous adjoint problem admits only trivial solutions: see [21, Theorem 4.11]. We
consider the case Im (z) > 0, and we refer to [11] for Im (z) = 0. The bilinear form associated
with the adjoint problem with gz = 0 reads:

B∗z (ϕ, v) := Bz(v, ϕ) =

∫
D

∇ϕ(x) · ∇v(x)dx− z2

∫
D

ϕ(x)v(x)dx− iz
∫

ΓR

ϕ(x)v(x)ds,

and the condition B∗z (u, u) = 0 is equivalent to{
Re (B∗z (u, u)) = ‖∇u‖2L2(D) − (Re (z)2 − Im (z)2) ‖u‖2L2(D) + Im (z) ‖u‖2L2(ΓR) = 0

Im (B∗z (u, u)) = Re (z)
(

2Im (z) ‖u‖2L2(D) + ‖u‖2L2(ΓR)

)
= 0

If Re (z) 6= 0 and Im (z) > 0, then Im (B∗z (u, u)) = 0 is equivalent to ‖u‖L2(D) = ‖u‖L2(ΓR) = 0,

that is, u = 0 in D, whereas, if Re (z) = 0 and Im (z) > 0, then Re (B∗z (u, u)) = 0 implies

‖∇u‖L2(D) = ‖u‖L2(D) = ‖u‖L2(ΓR) = 0, hence u = 0. �
We recall here the following theorem, see [27, Theorem 1], which will be used in the

proof of Proposition 5.3.
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Theorem 5.2 Let B be an open and connected subset of the complex plane. If {T (z)}z∈B
is an analytic family of compact operators defined on a given Banach space, then either
(I − T (z)) is nowhere invertible in B or (I − T (z))−1 is meromorphic in B.

Proposition 5.3 The frequency response map S associated with problem (24) is mero-
morphic in all open bounded and connected subsets of C, and all its poles have negative
imaginary part.

Proof. We proceed as in [20, Proposition 2]. We add and subtract the term
∫
D
uzvdx to the

left-hand side of (24), and we get∫
D

∇uz(x) · ∇v(x)dx +

∫
D

uz(x)v(x)dx− (1 + z2)

∫
D

uz(x)v(x)dx

− iz
∫

ΓR

uz(x)v(x)ds =

∫
ΓR

gz(x)v(x)ds ∀ v ∈ V,

which can be written equivalently as

(I − T (z))uz = Gz in V, (28)

where T (z), Gz : V → V are defined, respectively, as

〈T (z)u, v〉V = (1 + z2)

∫
D

u(x)v(x)dx + iz

∫
ΓR

u(x)v(x)ds ∀ v ∈ V,

〈Gz, v〉V =

∫
ΓR

gzv(x)ds ∀ v ∈ V.

Therefore, S(z) = (I − T (z))−1Gz. We prove that T (z) is compact in all open bounded

connected subsets of the complex plane C. We write T (z) as T (z) = T̃ (z) ◦ J , where J is the

compact embedding J : V → H1/2+ε(D), and T̃ (z) : H1/2+ε(D)→ V . Hence, in order to prove

the compactness of T (z), it is enough to show that T̃ (z) is continuous. For all u ∈ H1/2+ε(D),
we have∥∥∥T̃ (z)u

∥∥∥
V

= sup
v∈V,‖v‖V =1

∣∣∣〈T̃ (z)u, v
〉
V

∣∣∣
= sup
v∈V,‖v‖V =1

∣∣∣∣(1 + z2)

∫
D

u(x)v(x)dx + iz

∫
ΓR

u(x)v(x)ds

∣∣∣∣
≤ sup
‖v‖V =1

(∣∣1 + z2
∣∣ ‖u‖L2(D) ‖v‖L2(D) + |z| ‖u‖L2(ΓR) ‖v‖L2(ΓR)

)
≤ sup
‖v‖V =1

(∣∣1 + z2
∣∣ ‖u‖L2(D) ‖v‖L2(D) + |z| ‖u‖L2(∂D) ‖v‖L2(∂D)

)
≤ sup
‖v‖V =1

(∣∣1 + z2
∣∣ ‖u‖L2(D) ‖v‖L2(D) + C2

tr |z| ‖u‖H1/2+ε(D) ‖v‖H1/2+ε(D)

)
≤ max{

∣∣1 + z2
∣∣ , C2

tr |z|} ‖u‖H1/2+ε(D) ,

where Ctr is the continuity constant of the trace operator γ : H1/2+ε(D) → L2(∂D) (see,

e.g., [1, Theorem 5.36]). Applying Theorem 5.2, we conclude that (I−T (z))−1 is meromorphic

in all open bounded and connected subsets of C and, since Gz is linear in z (hence holomorphic

in C), the same conclusion applies to the frequency response function S(z) = (I − T (z))−1Gz.

Moreover, since Theorem 5.1 states that S is well defined in C+, we deduce that all poles of S
must have negative imaginary part. �
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5.2 LS-Padé approximant of the frequency response map

We construct the LS-Padé approximant of the frequency response map S following
Algorithm 1. Having fixed z0 ∈ C+, N, M , and E ≥ M + N , the coefficients of the
denominator are computed by identifying the eigenvector corresponding to the smallest
eigenvalue of the matrix (10), where the β-th Taylor coefficient of S,

(
S
)
β,z0

, solves the

following recursive problem:∫
D

∇
(
S
)
β,z0

(x) · ∇v(x)dx− z2
0

∫
D

(
S
)
β,z0

(x)v(x)dx− iz0

∫
ΓR

(
S
)
β,z0

(x)v(x)ds

= 2z0

∫
D

(
S(x)

)
β−1,z0

v(x)dx + i

∫
ΓR

(
S(x)

)
β−1,z0

v(x)ds

+

∫
D

(
S(x)

)
β−2,z0

v(x)dx +
1

β!

∫
ΓR

dβ

dz
gz(x)|z=z0 · v(x)ds ∀ v ∈ V. (29)

Since the PDE operator in (29) is the same as in (24), and the linear form at the
right-hand side is bounded, by applying Theorem 5.1, we conclude that problem (29) is
well-posed for any z ∈ C+.

Figure 5: Comparison between the P3 finite element solution of problem (24) (left), with
its LS-Padé approximation S[M/N ](z) centered in z0 = 3 + 0.5i with degree (M,N) =
(10, 2) (center), and its Taylor polynomial centered in z0 = 3+0.5i with degree M+N =
12 (right), in the point z = 2.

Let ui be the incident wave traveling along the direction d = (cos(0), sin(0)) with
wavenumber z = 2. Figure 5 (left) represents the solution of problem (24) computed via
the finite element method with polynomials of degree 3. Figure 5 (center) and (right)
represents the LS-Padé approximation S[M/N ](z) at z = 2 with center z0 = 3 + 0.5i
and degree (M,N) = (10, 2) (and parameters ρ = |z − z0|, E = M + N), and the
Taylor polynomial centered in z0 = 3 + 0.5i with degree E = 12, respectively. Both the
Padé and the Taylor approximant are constructed starting from the set of evaluations
{S(z0),

(
S
)

1
(z0), . . . ,

(
S
)

12
(z0)}. The LS-Padé approximant reproduces the behavior

of the reference solution much better than the Taylor approximant, and the LS-Padé
relative error in the weighted H1(D)-norm errpade = 0.101089 is much smaller than the
Taylor one errtay = 0.611428.

Let z = 3, and z0 = 3 + 0.5i. In Figure 6 (left) we plot the relative LS-Padé ap-
proximation error versus the degree of the LS-Padé numerator, for different values of
denominator degree. In Figure 6 (right), the relative error obtained by approximating
the frequency response map with the Taylor polynomial (black dashed line), and with
the LS-Padé approximant are compared. Also the diagonal LS-Padé approximant is
considered (dashed purple line), where the LS-Padé numerator and denominator have
the same degree. In Figure 6 (right), the errors are plotted versus the number of deriva-
tives

(
S
)
β,z0

, β = 0, . . . , E computed (i.e., the number of PDEs solved offline). Since
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B(z0, |z − z0|), the disk with center z0 = 3 + 0.5i and radius r1 = |z − z0| = 0.5, is con-
tained in the half plane where the frequency response map is holomorphic (see Proposi-
tion 5.3), the Taylor series centered in z0 converges, and the Taylor approximation error
is comparable to the LS-Padé approximation error. Figure 7 presents analogous plots
as in Figure 6, for the point z = 2. In this case, B(z0, |z − z0|) ∩ {Im (z) < 0} 6= ∅, and
the Taylor series diverges.
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Figure 6: Relative Taylor and LS-Padé approximation error in z = 3 plotted versus the
numerator degree (left), and the number of derivatives
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, β = 0, . . . , E computed

offline (right).
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Figure 7: Relative Taylor and LS-Padé approximation error in z = 2 plotted versus the
numerator degree (left), and the number of derivatives

(
S
)
β,z0

, β = 0, . . . , E computed

offline (right).

6 Application in high frequency regime

In this section, we want to study the approximation properties of the LS-Padé ap-
proximant in the high frequency regime. As in [3], we consider Problem (1) with
D = (0, π)× (0, π), ΓD = ∂D, gD = 0, and f(x) = −∆w(x)−ν2w(x), where w(x) is the
product between the plane wave e−iνd·x with wavenumber ν =

√
51 traveling along the

direction d = (cos(π/6), sin(pi/6)) and the normalized quadratic bubble function van-
ishing on ∂D. Note that w(x) is the exact solution of the Helmholtz equation (2), i.e.,
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S(z) = w, when z = ν2. The interval of frequencies we are interested in is K = [39, 55],
which contains 6 eigenvalues of the Dirichlet-Laplace operator: 40, 41, 45, 50, 52, 53.

In Figure 8, we plot the numerical solution Sh ∈ V of problem (2) with z = 51,
computed via P3 continuous finite elements. Observe that the relative finite element
error is of the order of 10−5. In Figure 9, the LS-Padé approximant Sh,P centered
in z0 = 47 + 0.5i evaluated in z = 51 is represented for two different values of the
denominator degree. Due to the fact that more derivatives are employed in the right
plot, more accurate results are obtained with higher denominator polynomial degrees.

In Figure 10, we plot the LS-Padé approximation error w.r.t. the exact solution, in
z = 51, for different values of the degree of the denominator, and we compare it with
the numerical rate (21). When N = 2, 4, the LS-Padé technique works as expected (or
even better), whereas for N = 6 the error is no longer decreasing. We believe that this
behavior is caused by the ill-conditioning of Step 7 in Algorithm 1), i.e., the computation
of the (normalized) eigenvector of the Gramian matrix GE,ρ defined in (10).

We partition uniformly the interval of interest K in 100 subintervals. At each point
z of the grid we have computed the numerical solution Sh(z) of the Helmholtz prob-
lem (2), and the LS-Padé approximant Sh,P (see Figure 11), as well as the relative error
‖Sh(z)−Sh,P (z)‖

H1(D),
√

Re(z0)

‖Sh(z)‖
H1(D),

√
Re(z0)

(see Figure 12). In Figure 13, we study the convergence of

the roots of the LS-Padé denominator Q[M/N ] to the exact Laplace eigenvalues. For
all degrees of the LS-Padé denominator Q[M/N ], there are two roots of Q[M/N ] which
converge to the two Laplace eigenvalues closest to z0. Concerning the other roots, we
observe two regimes: the error decreases for M smaller than a fixed value M? which
depends on N (M? = 12 if N = 4, M? = 9 if N = 6); for M > M?, the problem
becomes ill-conditioned and the roots do not converge anymore to the Laplace eigenval-
ues. This behavior explains also the reason why in Figure 12 only 4 peaks are identified
by the LS-Padé approximant. The ill-conditioning of the eigenvalue problem limits the
applicability of the method, especially in high frequency regime, where the singularities
are dense. To overcome this problem, we are currently investigating the multi-point
generalization of the single-point LS-Padé method proposed in this paper. In a multi-
point framework, the number of derivatives to be computed are split over the set of
centers. In particular, instead of computing M + N derivatives in a single center z0,
d(M +N)/ne derivatives will be computed in each center zi, for i = 0, . . . , n− 1.

Figure 8: Finite element solution Sh(51) ∈ V of problem (2)
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Figure 9: LS-Padé approximant Sh,P (51) centered in z0 = 47+0.5i, with degreesM = 10
and N = 2 (left), N = 4 (right).
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Figure 10: Relative error
‖S(z)−Sh,P (z)‖

V,
√

Re(z0)

‖S(z)‖
V,
√

Re(z0)

in the point z = 51, as a function of the

degree of the numerator M .
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Figure 11: Comparison between the weighted H1(D)-norm of the P3 finite element
solution Sh(z), and the weighted H1(D)-norm of the LS-Padé approximant S[M/N ](z),
for numerator degree M = 10 and denominator degree N = 2, N = 4 and N = 6.
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Figure 12: Relative error
‖Sh(z)−Sh,P (z)‖

H1(D),
√

Re(z0)

‖Sh(z)‖
H1(D),

√
Re(z0)

for different values of the degree of

the denominator.
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Figure 13: Convergence of the roots rQ of the LS-Padé denominator to the Laplace
eigenvalues. The error |rQ − λ| is plotted for N = 2, N = 4 and N = 6.
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7 LS-Padé approximant of the stochastic model prob-
lem

This section deals with the stochastic counterpart of Problem 1:

Problem 4 (Stochastic Model Problem) The wavenumber k2 of the Helmholtz equa-
tion is modeled as a random variable with bounded density function Fk2 . In this section,
either Dirichlet or Neumann or mixed Dirichlet/Neumann homogeneous boundary con-
ditions on ∂D are considered.

We introduce a Lipschitz functional L : V → R representing a quantity of interest of
the frequency response map S, and we define the following two random variables:

X := L(S(k2)) (30)

and
XP := L(S[M/N ](k

2)) (31)

where S[M/N ] =
P[M/N]

Q[M/N]
is the LS-Padé approximant of S centered in z0, with Re (z0) =

k2min+k2max
2 and Im (z0) 6= 0; this guarantees that z0 /∈ Λ, Λ being the set of eigenvalues

of the Laplacian, with the considered boundary conditions. Let φX , φXP : R → C
denote the characteristic functions of X and XP , respectively, i.e., φX(t) := E

[
eitX

]
,

φXP (t) := E
[
eitXP

]
. We are interested in studying the LS-Padé approximation error on

the characteristic function, i.e., we aim at proving an a priori bound for

errt = |φX(t)− φXP (t)| for any t ∈ R. (32)

Theorem 7.1 Let L : V → R be a Lipschitz functional with Lipschitz constant L, and
let X,XP be the random variables defined in (30) and (31). Given α > 0, then it holds

errt ≤
(

2 |Kα|+ |t| LC
1

α3

( ρ
R

)M+1

|K|
)

sup
x∈K

Fk2(x) ∀ t ∈ R, (33)

with the same definitions of R, ρ, and Kα, and the same characterization of C > 0 as
in Theorem 2.4, and |·| denoting the Lebesgue measure.

Proof. Using the definition of the characteristic function and the linearity of the expected
value we find

errt = |φX(t)− φXP (t)| =
∣∣∣E [eitX]− E

[
eitXP

]∣∣∣
=
∣∣∣E [eitX − eitXP ]∣∣∣ =

∣∣∣∣∫
K

(
eitL(S(x)) − eitL(S[M/N](x))

)
Fk2(x) dx

∣∣∣∣
≤
∣∣∣∣∫
Kα

(
eitL(S(x)) − eitL(S[M/N](x))

)
Fk2(x) dx

∣∣∣∣
+

∣∣∣∣∣
∫
K\Kα

(
eitL(S(x)) − eitL(S[M/N](x))

)
Fk2(x) dx

∣∣∣∣∣ .
We bound the two integrals separately. For the integral over Kα, we have∣∣∣∣∫

Kα

(
eitL(S(x)) − eitL(S[M/N](x))

)
Fk2(x) dx

∣∣∣∣
≤
∫
Kα

∣∣∣eitL(S(x))
∣∣∣Fk2(x)dx+

∫
Kα

∣∣∣eitL(S[M/N](x))
∣∣∣Fk2(x)dx ≤ 2 |Kα| sup

x∈Kα
Fk2(x). (34)
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Consider now the integral over K \Kα. Since eitx is Lipschitz as a function of x with constant
|t|, and L is Lipschitz with constant L, we find∣∣∣∣∣

∫
K\Kα

(
eitL(S(x)) − eitL(S[M/N](x))

)
Fk2(x) dx

∣∣∣∣∣
≤
∫
K\Kα

∣∣∣eitL(S(x)) − eitL(S[M/N](x))
∣∣∣Fk2(x)dx

≤ |t|
∫
K\Kα

∣∣L(S(x))− L(S(x))[M/N ]

∣∣Fk2(x)dx

≤ |t| L
∫
K\Kα

∥∥S(x)− S(x)[M/N ]

∥∥
V,
√

Re(z0)
Fk2(x)dx.

From the bound (7) of Theorem 2.4, we obtain∣∣∣∣∣
∫
K\Kα

(
eitL(S(x)) − eitL(S[M/N](x))

)
Fk2(x) dx

∣∣∣∣∣
≤ |t| LC 1

α3

( ρ
R

)M+1

|K| sup
x∈K\Kα

Fk2(x). (35)

The conclusion follows from inequalities (34) and (35). �

Corollary 7.2 Under the same assumptions as in Theorem 7.1, it holds

lim
M→∞

errt = 0 ∀t ∈ R.

In particular, there exists C > 0 such that for any t ∈ R

errt ≤ C |t|1/4
( ρ
R

)M+1
4

.

Proof. We have |Kα| ≤ αn, with n ≤ N the number of poles of S in K. From Theorem 7.1
it holds

errt ≤ inf
α>0

(
C1α+ C2(t)

1

α3

( ρ
R

)M+1
)
,

with C1 = 2n supx∈K Fk2(x) and C2(t) = |t|LC |K|Fk2(x). By optimizing the expression in
α we obtain

errt ≤ Ct
( ρ
R

)M+1
4

with Ct = C
3/4
1 C2(t)1/4(31/4 + 3−3/4). �

This corollary establishes, in particular, uniform exponential convergence of φXP to
φX on any compact subset of R.

Remark 7.3 Theorem 7.1 and Corollary 7.2 can be generalized to derive an a priori up-
per bound on errξ = |E [ξ(X)]− E [ξ(XP )]|, for any continuous and bounded functional
ξ : R→ R. Thus, the weak convergence of XP to X follows, as M → +∞.

Let us consider the case of ∂D = ΓD. Let K = [7, 14] be the interval of interest
(which contains three eigenvalues of the Dirichlet-Laplace operator: 8, 10, 13), and let
the wavenumber be modeled as a random variable uniformly distributed on K, i.e.,
k2 ∼ U(K). Given the functional L = ‖·‖

V,
√

Re(z0)
, where z0 = 10+0.5i, we consider the

random variables X =
∥∥Sh(k2)

∥∥
V,
√

Re(z0)
and XP =

∥∥Sh,P (k2)
∥∥
V,
√

Re(z0)
. We define as
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Sh the P3 finite element approximation of S; then Sh,P is the LS-Padé approximant of
Sh, centered in z0 and with polynomial degrees (M,N). In Figure 14, we display the
random variables X and XP evaluated at 100 sample points uniformly distributed in
K. When the degree of the LS-Padé denominator is N = 3, all the poles are correctly
identified by the LS-Padé approximant, provided that M is larger than 4. In Figure 15
we plot the characteristic function of the random variable XP , φXP (t), where the degrees
of the Padé denominator and denominator are N = 3, and M = 2, 4, 6, respectively.
The expected value has been computed by the Monte Carlo method, using 105 samples.
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Figure 14: Comparison between X =
∥∥Sh(k2)

∥∥
V,
√

Re(z0)
and XP =

∥∥Sh,P (k2)
∥∥
V,
√

Re(z0)

evaluated at 100 sample points uniformly distributed in K = [7, 14]).
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Figure 15: Characteristic function φXP (t), with N = 3 and M = 2, 4, 6.

8 Conclusions

The present paper concerns a model order reduction method based on the single-point
LS-Padé approximation technique introduced in [3]. We have described an algorithm to
compute the LS-Padé approximant of the Helmholtz frequency response map, and we
have explored the applicability and potentiality of the method via 2D numerical exper-
iments in various contexts. Moreover, the time-harmonic wave equation with random
wavenumber has been analyzed.

We are currently investigating the extension of the proposed methodology and of its
convergence analysis to the case of multi-point LS-Padé expansions, where evaluations of
the frequency response map S and of its derivatives at multiple frequencies are used. We
believe that this technique will outperform the single-point one, when a large number
of singularities of S need to be identified.
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