
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. V. Kuncak, président du jury
Prof. C. Koch, directeur de thèse

Prof. V. Tannen, rapporteur
Dr D. Vytiniotis, rapporteur

Prof. M. Odersky, rapporteur

Compilation and Code Optimization for Data Analytics

THÈSE NO 8762 (2018)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 31 AOÛT 2018

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE THÉORIE ET APPLICATIONS D'ANALYSE DE DONNÉES

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS 

Suisse
2018

PAR

Amir SHAIKHHA





To my mother and father,

who have always supported me,

no matter how flawed and ungrateful I was.





Acknowledgements
First of all, I would like to thank Prof. Christoph Koch. Christoph was more than a Ph.D.

advisor to me. I will never forget countless deadline nights that he was staying awake with us.

He taught us not to be satisfied with low standards and what is the meaning of high-quality

research. Apart from that, he provided me with great opportunities for collaborations and

gave me the freedom to work on really interesting projects.

I am also grateful to Prof. Martin Odersky. Before accepting to be in my Ph.D. thesis committee,

I had the honor of having him as my master thesis supervisor. Being a member of the Scala

group (LAMP) was indeed one of the best opportunities that I had during my master studies at

EPFL.

I would also like to thank Prof. Val Tannen who have kindly accepted to be a reviewer of my

Ph.D. thesis. Also, I am grateful to Dr. Dimitrios Vytiniotis for not only being in my Ph.D.

thesis committee but also a great collaborator. Dimitrios was one of my mentors during an

internship that I did at Microsoft Research Cambridge (MSRC). I would like to also thank Dr.

Andrew Fitzgibbon, Dr. Don Syme, and Dr. Simon Peyton Jones for the valuable lessons they

taught me and the intriguing discussions we had during my internship at MSRC.

My Ph.D. was supported by NCCR MARVEL and a Google Ph.D. fellowship. I would like to

thank Christoph, Martin, and Simon for their support in my Google Ph.D. fellowship bid.

During my Ph.D., I had the chance to be in the DATA lab. Aleksandar, Daniel L., Immanuel, and

Milos have been great colleagues. Simone, our secretary, was always patient and supportive

during the 6 years that I was in the DATA lab. Yannis, Mohammad D., Mohammed, and Lionel

have been great lab members and collaborators, and we shared many enjoyable deadline

nights together. Vojin was my master thesis supervisor and my first research collaborator. I

am really grateful to him for being very patient with the (super-)inexperienced and immature

version of me. Finally, I would like to thank Lionel for translating my thesis abstract to French.

Also, I would like to thank several bachelor/master students/interns, from whom I have

learned a lot: Mohsen, Parand, Stefan, Daniel E., Lewis, Michal, Matthieu, Robin, Kevin,

Laurent, and Khayyam.

Being on the second floor of the BC building gave me the opportunity to share very good

moments with the greek gang: Stella, Matt, Eleni, and Manos. Also, I had the chance to have

several awesome Iranian friends close by, with whom I had amazing coffee breaks: Mohammad

Yaghini, Ahmad Agha, Ehsan Mohammadpour, Farnood, Fatemeh Q., and Sharareh.

Being outside my home country would not be possible without an awesome Iranian commu-

nity. I would like to thank little Helma and Hessam (Ebrahim and Fereshteh), little Amir Ali

i



Acknowledgements

(Meysam and Hoda), little Zeynab (Pedram and Fatemeh S.), little Samieh (Fazel and Fatemeh

R.), little Dorsa and Diana (Vahid and Maryam), little Bahar and Saleh (Mostafa and Malihe),

little Fatemeh Goli (Amirhossein and Negar), Seyed Mohsen, Mojgan, Amin, Mahshid, Mo-

hammad, and Rozhin. I would also like to thank Fatemeh Gh. and her family without whom I

would not have been half the man I am now.

The last year of my Ph.D. was one the most challenging (if not the most) years of my life. I am

really grateful to many friends for being there for me. To name a few, I would like to thank:

Ashkan, Arman, Ehsan Mansouri, Mortez, Reza, Zhaleh, Fatemeh N., Hesam, Farnaz F., Farnaz

E., Aida, Bahar, Niloofar P., Abolfazl, Amir Aminifar, and Niloofar Momeni.

Last but not least, I would like to thank my family for their endless love and support. My

sister Nazila has always been there for me during the difficult moments of my life. Parinaz has

always been a great source of energy by sending me the photos and videos of her kids. I could

have never believed that my little sister Nazanin would become so mature by the end of my

Ph.D. studies.

I would like to dedicate this thesis to my parents who have always prayed for me and supported

me in every moment of my life.

Lausanne, May 2018 Amir Shaikhha

ii



Abstract
The trade-offs between the use of modern high-level and low-level programming languages

in constructing complex software artifacts are well known. High-level languages allow for

greater programmer productivity: abstraction and genericity allow for the same functionality

to be implemented with significantly less code compared to low-level languages. Modularity,

object-orientation, functional programming, and powerful type systems allow programmers

not only to create clean abstractions and protect them from leaking, but also to define code

units that are reusable and easily composable, and software architectures that are adaptable

and extensible. The abstraction, succinctness, and modularity of high-level code help to avoid

software bugs and facilitate debugging and maintenance.

The use of high-level languages comes at a performance cost: increased indirection due to

abstraction, virtualization, and interpretation, and superfluous work, particularly in the form

of tempory memory allocation and deallocation to support objects and encapsulation. As

a result of this, the cost of high-level languages for performance-critical systems may seem

prohibitive.

The vision of abstraction without regret argues that it is possible to use high-level languages

for building performance-critical systems that allow for both productivity and high perfor-

mance, instead of trading off the former for the latter. In this thesis, we realize this vision for

building different types of data analytics systems. Our means of achieving this is by employing

compilation. The goal is to compile away expensive language features – to compile high-level

code down to efficient low-level code.

Key words: High-level programming languages, Domain-specific languages, Program synthe-

sis, Query processing, Generative programming, Optimizing compilers, Abstraction without

regret, Database optimization, Data analytics.

iii





Résumé

Les compromis entre l’utilisation de langages de programmation modernes de haut niveau

et ceux de bas niveau dans la construction d’artefacts logiciels complexes sont bien connus.

Les langages de haut niveau permettent une plus grande productivité des programmeurs :

l’abstraction et la généricité permettent d’implémenter la même fonctionnalité avec beaucoup

moins de code que dans les langages de bas niveau. La modularité, l’orientation objet, la pro-

grammation fonctionnelle et les systèmes de types puissants permettent aux programmeurs

non seulement de créer des abstractions aux frontières bien définies, mais aussi de définir

des unités de code réutilisables et facilement composables, et des architectures logicielles

adaptables et extensibles. L’abstraction, la concision et la modularité du code de haut niveau

aident à éviter les bogues logiciels et facilitent le débogage et la maintenance.

L’utilisation de langages de haut niveau a un coût au niveau des performances : augmentation

de l’indirection due à l’abstraction, à la virtualisation et à l’interprétation, et travail superflu,

notamment sous forme d’allocation de mémoire temporaire et de désallocation pour suppor-

ter les objets et l’encapsulation. En conséquence, le coût des langages de haut niveau pour les

systèmes à performance critique peut sembler prohibitif.

La vision de l’abstraction sans regret soutient qu’il est possible d’utiliser des langages de

haut niveau pour construire des systèmes à performance critique qui permettent à la fois

la productivité et la haute performance, au lieu de devoir troquer l’un pour l’autre. Dans

cette thèse, nous réalisons cette vision pour la construction de différents types de systèmes

d’analyse de données. Notre moyen d’y parvenir est de recourir à la compilation. L’objectif est

de faire disparaître à la compilation les fonctionnalités coûteuses du langage pour transformer

le code de haut niveau en code de bas niveau efficace.

Mots clefs : Langages de programmation de haut niveau, Langage dédié, synthèse de pro-

grammes, traitement des requêtes, programmation générative, compilateurs d’optimisation,

abstraction sans regret, optimisation de bases de données, analyses de données.

v





Contents
Acknowledgements i

Abstract (English/Français) iii

List of figures xiii

List of tables xix

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Efficient and High-Level Query Engine 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Architecture and System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Overall System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 The SC Compiler Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Multiple Abstraction Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Compiler Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Inter-Operator Optimizations – Eliminating Redundant Materializations 22

2.3.2 Data-Structure Specialization . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Changing Data Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.4 Introducing Dictionaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.5 Domain-Specific Code Motion . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.6 Traditional Compiler Optimizations . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Experimental Evaluation of LegoBase . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.2 Optimizing Query Engines Using General-Purpose Compilers . . . . . . 39

2.4.3 Comparing LegoBase with Previous Systems . . . . . . . . . . . . . . . . . 40

2.4.4 Source-to-Source Compilation from Scala to C . . . . . . . . . . . . . . . 42

2.4.5 Impact of Individual Compiler Optimizations . . . . . . . . . . . . . . . . 44

2.4.6 Memory Consumption and Overhead on Input Data Loading . . . . . . . 46

2.4.7 Scalability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vii



Contents

2.4.8 Productivity Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4.9 Compilation Overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Modular Query Compiler 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Overall Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.2 Choosing The DSLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.3 Constructing The Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Design Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Imperative vs. Declarative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2 DSL Design and Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.3 Intermediate Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 DSL Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.1 Two-Level Stack (QPlan & C) . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.2 Three-Level Stack (+ ScaLite) . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.3 Four-Level Stack (+ ScaLite[Map, List]) . . . . . . . . . . . . . . . . . . . . 68

3.4.4 Five-Level Stack (+ ScaLite[List]) . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.5 Collection Programming Front-end . . . . . . . . . . . . . . . . . . . . . . 70

3.4.6 Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5.1 Pipelining – From Fusion to Push Query Engines . . . . . . . . . . . . . . 71

3.5.2 Specialized Data-Structure Synthesis . . . . . . . . . . . . . . . . . . . . . 73

3.6 Putting it all together – The DBLAB/LB Query Engine . . . . . . . . . . . . . . . . 75

3.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.8 Outlook: Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Loop Fusion in Query Engines 81

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Pipelined Query Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1 Pull Engine – a.k.a. the Iterator Pattern . . . . . . . . . . . . . . . . . . . . 84

4.2.2 Push Engine – a.k.a. the Visitor Pattern . . . . . . . . . . . . . . . . . . . . 85

4.2.3 Compiled Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Loop Fusion in Collection Programming . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Fold Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.2 Unfold Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Loop Fusion is Operator Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 An Improved Pull-Based Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5.1 Stream Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5.2 Stream-Fusion Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

viii



Contents

4.6.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6.2 Fusion By Inlining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6.3 Removing Intermediate Results . . . . . . . . . . . . . . . . . . . . . . . . 101

4.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.7.1 Micro Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.7.2 Macro Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.8 Discussion: Column Stores and Vectorization . . . . . . . . . . . . . . . . . . . . 111

4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Efficient Memory Management 115

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 F̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.1 Syntax and Types of F̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.2 M̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2.3 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3 Destination-Passing Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.1 The DPS-F̃ Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.2 Translation from F̃ to DPS-F̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.3 Shape Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3.4 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.5 Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.6 Properties of Shape Translation . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4.1 F̃ Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4.2 C Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.5.1 Micro Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.5.2 Computer Vision and Machine Learning Workloads . . . . . . . . . . . . 135

5.6 Outlook and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6 Efficient Differentiable Programming 141

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.1.1 The problem we address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.1.2 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.3 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.3.1 High-Level API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.3.2 Source-to-Source Automatic Differentiation . . . . . . . . . . . . . . . . . 150

6.3.3 Perturbation Confusion and Nested Differentiation . . . . . . . . . . . . . 152

6.4 Efficient Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.4.1 Transformation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.4.2 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

ix



Contents

6.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.5.1 Compilation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.5.2 Rewrite Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.6.1 Micro Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.6.2 Computer Vision and Machine Learning Workloads . . . . . . . . . . . . 164

6.7 Outlook and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7 Efficient Incremental Analytics 169

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.2 Incremental Computation ∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.2.1 The Delta (∆) Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.3 The LAGO Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.3.1 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.3.2 Lago DSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.3.3 Transformation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.4 Abstract Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.4.1 Abstract Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.4.2 Specialized Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.6.1 Incremental Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.6.2 Incremental Matrix Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.6.3 Graph Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

8 Compiler-Compilation for Embedded DSLs 205

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.2 Background & Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

8.2.1 Compiler-Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

8.2.2 Domain-Specific Languages . . . . . . . . . . . . . . . . . . . . . . . . . . 207

8.2.3 Extensible Optimizing Compilers . . . . . . . . . . . . . . . . . . . . . . . 207

8.2.4 What is Alchemy? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.4 Compiler-Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.4.1 Alchemy Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.4.2 Gathering DSL Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

8.4.3 Generating an EDSL Compiler . . . . . . . . . . . . . . . . . . . . . . . . . 211

8.4.4 Lifting the Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

8.4.5 Generating a Polymorphic EDSL Compiler . . . . . . . . . . . . . . . . . . 212

8.5 SC (The Systems Compiler) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

8.5.1 Overall Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

8.5.2 SC Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

x



Contents

8.5.3 SC Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8.5.4 Generating Transformation Passes . . . . . . . . . . . . . . . . . . . . . . . 220

8.5.5 Productivity Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

9 Related Work 227

9.1 Compilation Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

9.2 Compilation for Query Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

9.3 Fusion and Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

9.4 Memory Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

9.5 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

9.6 Incrementalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

10 Conclusions and Future Work 241

A Absolute Execution Times of LegoBase Experiments 243

B Code Snippet for the Partitioning Transformer of LegoBase 247

C TPC-H Schema and Queries 251

D Micro Benchmark Queries for Loop Fusion 257

E An of Example the Fusion Process 259

F Impact of the Underlying Optimizing Compiler on Loop Fusion 263

G Loop Fusion for the Limit and Merge Join Operators 265

G.1 Translating the Limit Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

G.2 Translating the Merge Join Operator . . . . . . . . . . . . . . . . . . . . . . . . . . 266

Bibliography 299

Curriculum Vitae

xi





List of Figures
1.1 Comparison of the performance/productivity trade-off for all approaches pre-

sented in this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Partial evaluation and its application for various cases. . . . . . . . . . . . . . . . 6

1.3 Overall design for data analytics systems presented in this thesis. . . . . . . . . 7

2.1 Overall system architecture of LegoBase. . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Example of a query plan and an operator implementation in LegoBase. . . . . . 17

2.3 An example of the analysis and rewrite APIs of SC and the transformation pipline

used by LegoBase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Example of an input query plan (TPC-H Q12). . . . . . . . . . . . . . . . . . . . . 22

2.5 Removing redundant materializations by high-level programming. . . . . . . . 23

2.6 Using primary and foreign keys in order to generate code for high-performance

join processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Specializing HashMaps by converting them to native arrays. . . . . . . . . . . . 28

2.8 Using date indices to speed up selection predicates on large relations. . . . . . 29

2.9 Changing the data layout (from row to column) expressed as an optimization. . 30

2.10 Dead-code elimination (DCE) can remove intermediate materializations, e.g.,

row reconstructions when using a columnar layout. . . . . . . . . . . . . . . . . 31

2.11 Performance of a naive push-style engine compiled with LLVM and GCC . . . . 39

2.12 Performance comparison of various LegoBase configurations (C and Scala pro-

grams) with the code generated by the query compiler of HyPer [255] . . . . . . 42

2.13 Percentage of cache misses and branch mispredictions for DBX, HyPer and the

optimized C programs of LegoBase . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.14 Impact of different LegoBase optimizations on query execution time . . . . . . 44

2.15 Memory consumption of the optimized C programs of LegoBase . . . . . . . . . 46

2.16 Slowdown of input data loading occurring from applying all LegoBase optimiza-

tions to the C programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.17 The normalized query execution time for various scaling factors. . . . . . . . . . 48

2.18 Compilation time (in seconds) of all the optimized C programs of LegoBase . . 50

3.1 Handling concurrent optimizations in template expansion and progressive com-

pilation approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Representations of a query in different DSLs. . . . . . . . . . . . . . . . . . . . . . 66

xiii



List of Figures

3.3 A DSL stack for query compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Different data-layout representations. . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 A simple example of loop fusion using short-cut fusion. . . . . . . . . . . . . . . 71

3.6 Producer-consumer encoding of QMonad operators. . . . . . . . . . . . . . . . . 72

3.7 Representations of an example query after applying optimizations . . . . . . . . 74

4.1 Data flow and control flow for push and pull-based query engine for the provided

SQL query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Specialized version of the example query in pull and push engines and the

corresponding control-flow graphs (CFG). . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Correspondence between push-based query engines and fold fusion of collec-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Correspondence between pull-based query engines and unfold fusion of collec-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 The operations of the Step data type. . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 Correspondence between stream-fusion query engine and the stream fusion

technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.7 Specialized version of the example query in stream-fusion engine and the corre-

sponding control-flow graph (CFG). . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.8 The architecture of the DBLAB/LB query compiler. . . . . . . . . . . . . . . . . . 101

4.9 Constructs and derivation of fold fusion and unfold fusion. . . . . . . . . . . . . 102

4.10 The constructs for stream fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.11 The derivation of the stream-fusion rule. . . . . . . . . . . . . . . . . . . . . . . . 103

4.12 Step data type implemented using the Visitor pattern. . . . . . . . . . . . . . . . 104

4.13 Single-pipeline queries compiled without any optimization flags specified for

CLang. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.14 Single-pipeline queries compiled with the -O3 optimization flag for CLang. . . . 105

4.15 Compiled version of the take.sum query in pull and push engines. . . . . . . . . . 107

4.16 Single-join queries using hash join, left-semi hash join, and merge join operators. 107

4.17 The impact of inlining and low-level optimizations of CLang on a pull-based

engine for TPC-H queries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.18 Performance of different compiled query engines for TPC-H queries, when using

the -O0 flag with the CLang compiler. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.19 Performance of different compiled query engines for TPC-H queries, when using

the -O3 flag with the CLang compiler. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.20 Specialized version of the example query in column-store pull and push engines. 112

4.21 Performance of different compiled query engines with columnar layout and row

layout representations, when using the -O3 flag with the CLang compiler. . . . . 113

5.1 The syntax, type system, and function constants of the core F̃. . . . . . . . . . . 117

5.2 A subset of M̃ constructs defined in F̃. . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Fusion rules of F̃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4 The core DPS-F̃ syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xiv



List of Figures

5.5 The type system and built-in constants of DPS-F̃ . . . . . . . . . . . . . . . . . . 122

5.6 Translation from F̃ to DPS-F̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.7 Shape Translation of F̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.8 Simplification rules of DPS-F̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.9 Shape-F̃ syntax, which is a subset of the syntax of DPS-F̃ presented in Figure 5.4. 128

5.10 Experimental results for adding three vectors. . . . . . . . . . . . . . . . . . . . . 133

5.11 Experimental results for cross product of two vectors. . . . . . . . . . . . . . . . 134

5.12 Experimental results for Bundle Adjustment . . . . . . . . . . . . . . . . . . . . . 135

5.13 Experimental results for GMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.14 Experimental results for Hand Tracking . . . . . . . . . . . . . . . . . . . . . . . . 137

5.15 Bundle Adjustment functions in F̃. . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.1 The Jacobian Matrix of a function, and the visualization of how forward-mode

AD, reverse-mode AD, and dF̃ compute it. . . . . . . . . . . . . . . . . . . . . . . . 143

6.2 Compilation process in dF̃ and other AD systems . . . . . . . . . . . . . . . . . . 146

6.3 The syntax, types, and function constants of the extended F̃ language used in dF̃. 146

6.4 High-Level Differentiation API for F̃. . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.5 Automatic Differentiation Rules for F̃ Expressions. . . . . . . . . . . . . . . . . . 153

6.6 Optimizations for F̃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.7 The architecture of dF̃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.8 Ring-structure rules implemented using F# quotations. . . . . . . . . . . . . . . 162

6.9 Performance results for Micro Benchmarks. . . . . . . . . . . . . . . . . . . . . . 163

6.10 Performance results for NNMF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.11 Performance results for log-sum-exp used in GMM. . . . . . . . . . . . . . . . . 166

6.12 Performance results for Project in Bundle Adjustment. . . . . . . . . . . . . . . . 167

7.1 Propagation of data-changes in matrix programs. . . . . . . . . . . . . . . . . . . 171

7.2 The process of delta derivation for an example program . . . . . . . . . . . . . . 172

7.3 The architecture of the Lago framework. . . . . . . . . . . . . . . . . . . . . . . . 175

7.4 The core Lago DSL divided into two main classes, i.e., matrix and scalar opera-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.5 Syntactic sugar: Examples of additional operations defined using compositions

of the Lago DSL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.6 Program P represents all-pairs graph reachability or shortest path after k-hops

depending on the underlying semiring configuration. . . . . . . . . . . . . . . . 181

7.7 ∆ derivation rules for the core Lago DSL . . . . . . . . . . . . . . . . . . . . . . . 181

7.8 A subset of simplification rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.9 A subset of equivalence rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.10 The lattice of data types and the typing rules for a subset of Lago DSL. . . . . . . 185

7.11 The lattice of several abstract domains for matrix structure and a subset of

inference rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.12 Inferring dimensions and cost of matrices. . . . . . . . . . . . . . . . . . . . . . . 187

7.13 Abstract interpretation propagates abstract domains in a bottom-up manner. . 188

xv



List of Figures

7.14 Lago IVM phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.15 Walking through an example undergoing the IVM phases. . . . . . . . . . . . . . 190

7.16 Performance evaluation of Incremental Linear Regression. . . . . . . . . . . . . 193

7.17 Evaluation results for search-space and scalability metrics. . . . . . . . . . . . . 196

7.18 Performance evaluation of specialization opportunities enabled by abstract

interpretation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.19 Performance evaluation of the all-pairs reachability problem. . . . . . . . . . . . 199

7.20 Performance evaluation of incremental graph programs on real-world and syn-

thetic datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.1 Overall design of Alchemy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.2 The API of Alchemy for compiler experts. . . . . . . . . . . . . . . . . . . . . . . . 210

8.3 The annotated complex DSL implementation. . . . . . . . . . . . . . . . . . . . . 211

8.4 The generated IR nodes for the Complex DSL. . . . . . . . . . . . . . . . . . . . . 211

8.5 The second version of the annotated Complex DSL implementation. . . . . . . 212

8.6 An example expression and its lifted version in Complex DSL. . . . . . . . . . . . 213

8.7 The third version of the annotated Complex DSL implementation. . . . . . . . . 213

8.8 The generated polymorphic embedding interface for the Complex DSL. . . . . 214

8.9 The generated IR node definitions and deep embedding interface for the Com-

plex DSL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

8.10 Polymorphic embedding version of the example in Figure 8.6, and the generated

IR nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

8.11 Overall design of SC used with Alchemy. . . . . . . . . . . . . . . . . . . . . . . . 216

8.12 Offline Transformation API of SC. . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8.13 Inline annotations of two operators in our analytical query engine. . . . . . . . 219

8.14 Alchemy annotations of the Int class. . . . . . . . . . . . . . . . . . . . . . . . . . 221

8.15 The generated online transformation by Alchemy for addition on Int. . . . . . . 222

8.16 The generated online transformations by Alchemy for the scan operator of the

analytical query engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

8.17 Different transformations for the Scala Seq class. The transformations are written

using plain Scala code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

8.18 The generated offline transformations by Alchemy for Seq based on arrays. . . . 225

C.1 The TPC-H schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

E.1 Transformations needed for applying fold fusion on the example query. . . . . . 260

E.2 Transformations needed for applying unfold fusion on the example query. . . . 261

F.1 Control flow graph of the specialized pull-based engine for the filter.sum query,

compiled with different optimization flags in the CLang compiler. . . . . . . . . 264

G.1 Push-based query engine and fold fusion of collections for the Limit operator. . 266

G.2 The generated C and assembly code for a simple query in pull and push-based

engines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

xvi



List of Figures

G.3 Pull and push-based query engines for Merge Join operator. . . . . . . . . . . . . 268

G.4 Complied version of a query with a merge join operator in pull and push engines. 269

xvii





List of Tables
2.1 Mapping of string operations to integer operations through the corresponding

type of string dictionaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Description of all systems evaluated in Chapter 2.4 of this thesis . . . . . . . . . 38

2.3 Lines of code of several transformations in LegoBase with the SC compiler . . . 49

3.1 Comparison of declarative and imperative languages . . . . . . . . . . . . . . . . 60

3.2 Performance results (in milliseconds) for TPC-H for LegoBase and DBLAB/LB

with different DSL stack configurations . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Correspondence between query operators and collection operators . . . . . . . 92

4.2 Correspondence among pipelined query engines, object-oriented design pat-

terns, and collection programming loop fusion. . . . . . . . . . . . . . . . . . . . 92

4.3 The supported looping constructs by each pipelined query engine. . . . . . . . 100

4.4 The performance comparison of several variants of different engines on TPC-H

query 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5 Execution times (in milliseconds) of different compiled query engines for TPC-H

queries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1 Equivalent operations in Matlab, R, NumPy, and M̃. . . . . . . . . . . . . . . . . . 118

6.1 Different types of matrix derivatives. . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.1 Equivalent operations in MATLAB, R, NumPy, and Lago. . . . . . . . . . . . . . . 178

7.2 Report on compilation metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.3 The average Octave and Spark view refresh times in seconds for INCR of P 16

and a batch of 1,000 updates. The row update frequency is drawn from a Zipf

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.4 Properties of real-world graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

8.1 The comparison of LoCs of the (reflected) classes of the Scala standard library

and a preliminary implementation of two query engines together with the corre-

sponding automatically generated compilation interface. . . . . . . . . . . . . . 226

A.1 Execution times (in milliseconds) of Figure 2.11 and Figure 2.12 of this thesis . 243

xix



List of Tables

A.2 Execution times (in milliseconds) of TPC-H queries with individual optimiza-

tions applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

A.3 Memory consumption in GB, input data loading time in seconds, and optimiza-

tion/compilation time in milliseconds . . . . . . . . . . . . . . . . . . . . . . . . 244

A.4 Cache Miss Ratio (%) and Branch Misprediction Rate (%) for DBX, HyPer and

LegoBase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

D.1 SQL queries of microbenchmark queries. . . . . . . . . . . . . . . . . . . . . . . . 257

xx



1 Introduction

The trade-offs between the use of modern high-level and low-level programming languages in

constructing complex software artifacts are well known. High-level languages allow for greater

programmer productivity: abstraction and genericity allow for the same functionality to be

implemented with significantly less code compared to low-level languages. Modularity, object-

orientation, functional programming, and powerful type systems allow programmers not only

to create clean abstractions and protect them from leaking, but also to define code units that

are reusable and easily composable [260], and software architectures that are adaptable and

extensible. The abstraction, succinctness and modularity of high-level code help to avoid

software bugs and facilitate debugging and maintenance.

The use of high-level languages comes at a performance cost: increased indirection due to

abstraction, virtualization, and interpretation, and superfluous work, particularly in the form

of temporary memory allocation and deallocation to support objects and encapsulation.

As a result of this, the cost of high-level languages for performance-critical systems may

seem prohibitive. Nevertheless, we have recently witnessed a shift towards the use of high-

level programming languages for systems development. Examples include the Singularity

Operating System [161], and the Spark [377] and DryadLINQ [374] frameworks for distributed

data processing. These approaches collide with the traditional wisdom which calls for using

low-level languages like C for building high-performance systems, and the authors of these

works find that the advantages of high-level programming languages in combination with their

creative contributions offset the performance penalties. Yet, we have not seen this trend to

take root in data analytics systems, specially databases where systems continue to be written

in low-level languages.

The vision of abstraction without regret [287] for database systems [203, 204] argues that it is

possible to use high-level languages for building database systems that allow for both produc-

tivity and high performance, instead of trading off the former for the latter (cf. Figure 1.1). In

this thesis, we realize this vision for building data analytics systems.

1



Chapter 1. Introduction

Specialized Data
Analytics Engine

Handwritten
Data Analytics
Program

Existing
Analytics
Engines

Data Analytics
in a High-Level
Language

Performance

P
ro

d
u

ct
iv

it
y

Figure 1.1 – Comparison of the performance/productivity trade-off for all approaches pre-
sented in this thesis.

Nowadays, data analytics goes beyond the “simple” analytics workloads; data scientists often

use sophisticated statistical and machine learning models to gain insights into data [144].

These “complex” analytics workloads impose new challenges which are not addressed by the

traditional relational database systems [318, 319].

In this thesis, we present data analytics systems for both traditional simple analytics workloads,

expressed by languages inspired by relational algebra such as SQL, and complex analytics

workloads, expressed by languages inspired by linear algebra such as MATLAB and R. All of the

systems presented in this thesis are implemented in Scala, a high-level programming language.

Our means of achieving high performance for these systems is employing compilation. The

goal is to compile away expensive language features – to compile high-level code down to

efficient low-level code.

This thesis is derived from the following papers, which are published in or are under sub-

mission to conferences and journals in programming languages (PL) and databases (DB)

communities:

• Amir Shaikhha, Yannis Klonatos, Christoph Koch

Building Efficient Query Engines in a High-Level Language [300]

ACM Transactions on Database Systems (TODS), 2018

• Amir Shaikhha, Mohammad Dashti, Christoph Koch

Push versus Pull-Based Loop Fusion in Query Engines [298]

Journal of Functional Programming (JFP), 2018

• Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mohammad Dashti,

Christoph Koch

How to Architect a Query Compiler [301]

SIGMOD, 2016

• Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton Jones, Dimitrios Vytiniotis

2



Destination-Passing Style for Efficient Memory Management [299]

FHPC, 2017

• Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton Jones, Dimitrios Vytiniotis, Christoph

Koch

Efficient Differentiable Programming in a Functional Array-Processing Language

Under submission, 2018

• Amir Shaikhha, Mohammed ElSeidy, Daniel Espino, Stefan Mihaila, Christoph Koch

Synthesis of Incremental Analytics

Under submission, 2018

Building the compilation infrastructure of the systems used in this thesis resulted in the

following papers published in programming languages venues, but are not included in this

thesis:

• Vojin Jovanovic, Amir Shaikhha, Sandro Stucki, Vladimir Nikolaev, Christoph Koch,

Martin Odersky

Yin-Yang: concealing the deep embedding of DSLs [177]

GPCE, 2014

• Lionel Parreaux, Amir Shaikhha, Christoph Koch

Quoted staged rewriting: a practical approach to library-defined optimizations [268]

GPCE, 2017 (Best Paper Award)

• Lionel Parreaux, Antoine Voizard, Amir Shaikhha, Christoph Koch

Unifying analytic and statically-typed quasiquotes [270]

POPL, 2017

• Lionel Parreaux, Amir Shaikhha, Christoph Koch

Squid: type-safe, hygienic, and reusable quasiquotes [269]

Scala, 2017

Finally, the techniques and insights presented in this thesis have contributed to building the

underlying systems behind the following publications, which are also not included in this

thesis:

• Christoph Koch, Yanif Ahmad, Oliver Kennedy, Milos Nikolic, Andres Nötzli, Daniel

Lupei, Amir Shaikhha

DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views [205]

VLDBJ, 2014

• Mohammad Dashti, Sachin Basil John, Amir Shaikhha, Christoph Koch

Transaction Repair for Multi-Version Concurrency Control [82]

SIGMOD, 2017

3



Chapter 1. Introduction

• Mohammad Dashti, Sachin Basil John, Thierry Coppey, Amir Shaikhha, Vojin Jovanovic,

Christoph Koch

Compiling Database Application Programs [83]

http://arxiv.org/pdf/1807.09887v1.pdf, 2018

1.1 Background

The DB community has developed many techniques for optimizing data analytics tasks which

are usually expressed in a declarative language (such as SQL). We give a brief overview of these

techniques.

Algebraic Optimizations. Relational database management systems on relational algebra to

expose their declarative query interfaces to the end users. Thanks to its mathematical nature,

this algebra enables many opportunties for optimizations, such as join reordering and pushing

down selections and projections.

Materialization. Data analytics programs can produce several intermediate results during

their execution. The intermediate results that are used several times can be materialized [61]

to avoid recomputation of the same value. There are also cases where datasets evolve through

changes that are small relative to the overall dataset size. Recomputing data analytics on every

slight dataset change is far from efficient. Incremental View Maintenance [39, 205, 138] (IVM)

is a technique for computing only the required changes to the query instead of recomputing

the whole query from scratch.

Pipelining. In many cases, the intermedate results of a data analytics program are used

only once. In such cases materializing such collections of elements incurs additional run-

time and memory cost. Database systems use operator pipelining for streaming data items

through query operators, which removes the need for storing such unnecessary intermediate

collections.

Memory Management. The input data and the final output data are stored in a storage

medium, such as main memory, HDD, or SSD. A data analytics engine needs to transfer

data through the memory hierarchy for performing the actual computation. Additionally,

data analytics systems need additional memory for other purposes such as intermediate

data-structures [145]. Data analytics systems can rely on garbage collectors for allocating/deal-

locating the memory, which can have a performance overhead. Instead, these systems can

use in-memory data-structures maintaining contiguous memory space, called memory pools,

which avoid the overhead caused by garbage collectors.

Query Planning. There are different algorithmic and data-structure choices for each relational

algebra construct. For example, for implementing a join operator, one can use a hash-table

data-structure (i.e., the hash-join operator) or a B-Tree data-structure (i.e., the index-nested

loop join). Choosing an appropriate data-structure for different query operators and materil-

4



1.2. Thesis Contributions

ization decisions [125] is performed by the query optimizer component of a database system.

Query optimization is used for finding an optimized execution plan for a given query.

Differentiation. The scientific programming community has developed various techniques

for computing the derivative of a given function. Automatic differentiation (AD) [187] is a

technique for automatically computing the derivative of a given program. This makes AD an

essential component for optimization algorithms such as different variations of the gradient

descent algorithm, which are the core of many current machine learning frameworks.

All the mentioned techniques are usually performed during the runtime of the data analytics

engines. The programming languages (PL) and the compilers communities have a massive

literature on optimizing programs by moving the computation from run time to compila-

tion time and performing static analysis on them during compilation. Frameworks such

as Theano [334] and Tensorflow [5] are examples of data analytics frameworks performing

optimizations before the actual execution of the data analytics tasks.

Compiler Optimizations. Optimizing compilers include many optimizations for improving

the run-time performance of a given program. Among these optimizations, the partial evalu-

ation [116] technique specializes a given program with its static input, so that it produces a

specialized program that for a given dynamic input, produces the same output as the original

program (cf. Figure 1.2a). Basically, the key benefit of using partial evaluation is pushing a

computation that is supposed to be performed during the run time to the compilation time. In

programming languages, this idea can be used for specializing an interpreted program with its

interpreter for deriving a compiled program, which is known as the first Futamura projection

(cf. Figure 1.2b). Furthermore, by specializing a partial evaluator with an interpreter, one can

derive a compiler, which is known as the second Futamura projection (cf. Figure 1.2c).

Similary, one can use the idea of partial evaluation to specialize a data analytics program

with its data processing engine in order to derive a speciliazied data analytics engine (cf.

Figure 1.2d). This specialization process can be performed in various stages resulting in

various types of specialized data analytics engines.

Program Analysis. In many cases, we do not have the actual data needed for running the

program. Instead, we only know some properties about the data, and we are only interested in

reasoning about similar properties of the output. The PL community have used the abstract

interpretation [70] technique for performing various types of reasoning for programs.

1.2 Thesis Contributions

In this thesis, we show how these multi-disciplinary techniques can be used for building

various types of data analytics systems (cf. Figure 1.3). More specifically, the contributions of

this thesis are summarized as follows:

5



Chapter 1. Introduction

Static Input Dynamic Input

Program

Output

Dynamic Input

Specialized Prog.

Output

Partial Evaluation

(a) Generic partial evaluation for specializing a program with its static input data, resulting in a
specialized program.

Program Input

Interpreter

Output

Input

Compiled Prog.

Output

Partial Evaluation

(b) Specializing an interpreter with a program resulting in a compiled program, which is known as the
first Futamura projection.

Interpreter Program

Partial Evaluator

Compiled Prog.

Program

Compiler

Compiled Prog.

Partial Evaluation

(c) Specializing a partial evaluator with an interpreter resulting in a compiler, which is known as the
second Futamura projection.

Analytics Prog. Input Data

Data Proc. System

Output Result

Input Data

Specialized Engine

Output Result

Partial Evaluation

(d) Specializing a data analytics system with a given analytics program resulting in a specialized
analytics engine.

Figure 1.2 – Partial evaluation and its application for various cases.

6



1.2. Thesis Contributions

SQL / Collections / DataFrame

Simple Analytics

MATLAB / R / M~ / Lago DSL

Complex Analytics

C / 
C++ Scala MATLAB / 

R Spark

Fusion / 
Pipelining

Memory 
Management

Compiler 
Optimization

Algebraic 
Optimization

Program 
Analysis

Incrementalization
Δ

Differentiation
∇

Workload Type

Frontend 
Language

Data 
Analytics
Engine

Generated
Engine

Figure 1.3 – Overall design for data analytics systems presented in this thesis.

• We present the LegoBase system, which uses the idea of partial evaluation in various

stages for specializing a high-level implementation of an analytical database system

with system parameters, schema, query, or even data (Section 2.2).

• We present various domain-specific languages for building compliation-based analytical

database systems (Section 3.3) and more complex data analytics platforms (Section 5.2

and Section 7.3.2).

• We present various transformations for optimizing data analytics expressed in the

presented high-level domain-specific languages (Section 2.3, Section 3.5, Section 6.4,

and Section 7.3.3).

• In particular, we present the operator pipelining technique from the DB community

(Section 4.2), and the loop fusion technique from the PL community (Section 4.3 and

Section 5.2.3). We also show how these two techniques are connected, and based on

this connection, we propose a new approach for building pipelined query engines

(Section 4.4).

• Additionally, we present a new technique for efficient memory management when

translating high-level complex data analytics to low-level C code (Section 5.3).

• We show how our designed languages and the associated optimizations can be used

for making complex analytical tasks such as differentiable programming more efficient

(Section 6.6).

• We show how the idea of abstract interpretation from the PL community (Section 7.4)

and the idea of Incremental View Maintenance (IVM) from the DB community (Sec-

tion 7.2) can be combined for efficient complex incremental analytics.

7



Chapter 1. Introduction

• We present the Alchemy framework, a compiler-compiler for generating DSL compilers

from their implementation in Scala (Section 8.4).

• We present the Systems Compiler (SC), a compiler framework written in the Scala

programming language used for optimizing the data anlaytics engines presented in this

thesis (Section 8.5).

1.3 Thesis Outline

This thesis is structured as follows:

Simple Analytics. We focus on the realization of the abstraction without regret vision, for

ad-hoc main-memory analytical database systems (query engines):

• We show the usage of compilation techniques for producing efficient query processing

engines from their implementation in the Scala programming language in Chapter 2.

• We show a principled way of building compiler-based data management systems in

Chapter 3. More specifically, we propose to use a stack of multiple DSLs on different

abstraction levels through step-wise lowering. This makes query compilers easier to

build and extend.

• We show the parallels between pipelined query engines and loop fusion techniques in

functional languages in Chapter 4.

Complex Analytics. We go beyond the workloads supported by database query engines. We

show the usage of compilation techniques for more complex analytical workloads required for

machine learning and computer vision tasks:

• We present a high-level functional array-processing language, a linear-algebra-based

language, and a technique for efficiently compiling to low-level C code in Chapter 5.

More specifically, we focus on an efficient memory management technique for the

generated C code.

• We show how the languages presented in Chapter 5 can be used for producing efficient

differentiated code in Chapter 6.

• We show how a similar linear-algebra-based language can be used for incremental

processing of advanced analytical workloads in Chapter 7.

Compiler Framework. We show the design of the Alchemy and SC frameworks in Chapter 8.

We have used these compilation frameworks for building several data processing systems,

including the ones presented in this thesis.

8



1.3. Thesis Outline

We review the related work in Chapter 9. Finally, in Chapter 10 we conclude the thesis and

show future directions based on the results presented in this thesis.

9





2 Efficient and High-Level Query En-
gine

The hardest thing is to go to sleep at night, when there are so many urgent things

needing to be done. A huge gap exists between what we know is possible with today’s

machines and what we have so far been able to finish.

– Donald Knuth

Abstraction without regret refers to the vision of using high-level programming languages for

systems development without experiencing a negative impact on performance. A database

system designed according to this vision offers both increased productivity and high perfor-

mance, instead of sacrificing the former for the latter as is the case with existing, monolithic

implementations that are hard to maintain and extend.

In this chapter, we realize this vision in the domain of analytical query processing. We present

LegoBase, a query engine written in the high-level programming language Scala. The key

technique to regain efficiency is to apply generative programming: LegoBase performs source-

to-source compilation and optimizes database systems code by converting the high-level

Scala code to specialized, low-level C code. We show how generative programming allows to

easily implement a wide spectrum of optimizations, such as introducing data partitioning

or switching from a row to a column data layout, which are difficult to achieve with existing

low-level query compilers that handle only queries. We demonstrate that sufficiently powerful

abstractions are essential for dealing with the complexity of the optimization effort, shielding

developers from compiler internals and decoupling individual optimizations from each other.

2.1 Introduction

We have made a number of key choices:

• We achieve compilation by generative programming [330], a technique that allows for the

programmatic removal of abstraction overhead through source-to-source compilation.

We have implemented a new compiler framework, SC, to achieve this (cf. Chapter 8).

11



Chapter 2. Efficient and High-Level Query Engine

• The implementation of LegoBase, our database system, is direct, succinct, straightfor-

ward, and in a sense intentionally naive to be true to the idea of a high-level implemen-

tation.

• Systems programming techniques and performance-oriented refinements are applied

by SC via code transformations.

We have developed a library of code transformations that aim to represent the skill set

of an experienced systems programmer.1 These are applied to the LegoBase code by SC

to create high-performance code.

• The database system can run stand-alone, albeit inefficiently – without being passed

through SC. This means that there are neither lifted engine code2 nor facilities for code

generation in the code base of LegoBase. In particular, the query engine inside the

database system is implemented as a query interpreter, which is automatically lifted

to a query compiler by SC. (This is known as the second Futamura projection in the

compilers literature [116].)

• We use Scala, a functional, object-oriented, strongly-typed programming language to

implement all of our software artifacts: LegoBase, SC, and the transformations.

Some of these points need to be detailed and justified further.

SC is a compiler infrastructure for domain-specific languages (DSLs) embedded [158] in Scala.

Simply speaking, such DSLs are fragments of Scala defined by excluding certain language

features, data structures, or libraries. Scala is an impure language that allows to express both

high-level and low-level programs.

All our code artifacts, including the LegoBase codebase, are written in Scala DSLs that SC

is able to process. SC reads in a number of artifacts, such as (parts of) the LegoBase code

base, schema, or queries, and emits code for, or executes, a performance-optimized database

system. It must be emphasized again, since this is central, that SC is not limited to processing

a query plan language that is essentially relational algebra as most database systems do. A

Scala query plan DSL (Scala with query operator calls) is among the DSLs we work with,

but SC can compile and optimize potentially all of LegoBase. One place outside the query

engine that currently profits from this is the automatic specialization of storage structures to

schema and workload characteristics. In future work, this could be applied to other aspects of

database systems, such as the specialization of concurrency control techniques to workloads,

or coordination avoidance in distributed database systems [23, 293].

Our transformations can be categorized into optimizing and lowering transformations. We

have found that, starting with code in a high-level DSL, by iterating between optimization and

1We hope that with the experience of further systems implementations, we will be able to harden this set of
transformations into a stable and reusable library.

2This refers to code in an intermediate representation, such as an abstract syntax tree.

12



2.1. Introduction

lowering to lower-level DSLs (see Figure 3.3), we are able to express a large variety of optimiza-

tions easily by having them work on the DSL on the abstraction level most natural to them.

This is consistent with the proposal of [301]. Programs in our lowest-level Scala DSL, C.Scala,

are compositions of operators corresponding to constructs of the C programming language

and its core libraries and can be directly stringified to C code, which can be executed outside

Scala’s virtual-machine-based runtime system, guaranteeing unimpeded performance.

Our compiler infrastructure is based on partial evaluation and can be used to build database

systems that employ compilation at a variety of stages, or even in multiple stages – allowing,

for instance, the creation of a query compiler at the end of development, and further special-

ization at the installation, administration, or query processing stages; eagerly, or just in time –

specializing the query compiler with system parameters, schema, a query, or even data.

Throughout this article, we use the Scala language. The use of an object-oriented, functional,

and strongly-typed programming language is key to achieving the productivity in the devel-

opment of LegoBase that we report in this article. Functional programming languages have

long been known to be particularly well suited for productively implementing compilers, and

arguably the language feature most responsible for this is pattern matching, which is absent

from Java8 and C++11, both recent additions to the family of functional programming lan-

guages. Pattern matching was indispensable for making the implementation of SC as well as

our code analyses and transformations manageable for us. Some of the key features of SC such

as its powerful type-safe quasiquotation mechanism internally depend on the combination of

advanced genericity, support for mix-in composition, a powerful macro system, and a very

powerful type system (with dependent types) that in this flavor currently only co-exist in

Scala. A port to a number of other functional languages (the better known are Haskell, F# with

quotations [327], and OCaml3) is likely possible but not straightforward, and would require

further original research.

In addition to SC, LegoBase, and the code transformers as discussed above, this article makes

the following contributions.

• We demonstrate the ease of use of the new SC compiler for optimizing system com-

ponents that differ significantly in structure and granularity of operations. We do so

by presenting (i) the optimizations applied to the LegoBase query engine and (b) the

high-level compiler interfaces that database developers need to interact with when

coding optimizations. We show that the design and interfaces of SC allow for a number

of desirable properties for the LegoBase optimizations. These are expressed as library

components, providing a clean separation from the base code of LegoBase (e.g. that of

query operators), but also from each other. This is achieved, (as explained in Section 2.2)

by applying them in multiple, distinct optimization phases. Optimizations are (a) ad-

justable to the characteristics of workloads and architectures, (b) configurable, so that

3More precisely, MetaOCaml [328].

13



Chapter 2. Efficient and High-Level Query Engine

they can be turned on and off on demand and (c) composable, so that they can be easily

chained but also so that higher-level optimizations can be built from lower-level ones.

For each optimization, we present the domain-specific conditions that need to be satis-

fied in order to apply it (if any) and possible trade-offs (e.g. improved execution time

versus increased memory consumption). We examine which categories of database sys-

tems can benefit from applying each of our optimizations by providing a classification

of the LegoBase optimizations.

• We perform an experimental evaluation in the domain of analytical query processing

using the TPC-H benchmark [343]. We show how our optimizations can lead to a

system that has performance competitive to that of a standard, commercial in-memory

database called DBX (which does not employ compilation) and the code generated by

the query compiler of the HyPer database [255]. In addition, we illustrate that these

performance improvements do not require significant programming effort as even

complicated optimizations can be coded in LegoBase with only a few hundred lines

of code. We also provide insights into the performance characteristics and trade-offs

of individual optimizations. We do so by comparing major architectural decisions as

fairly as possible, using a shared codebase that only differs by the effect of a single

optimization. Finally, we demonstrate that our compilation approach incurs negligible

overhead to query execution.

The rest of this thesis is organized as follows. Section 2.2 presents the overall design of

LegoBase and SC. Section 2.3 gives an in-depth presentation of our optimizing code trans-

formers. Section 2.4 presents our experimental evaluation. Finally, Section 2.5 concludes.

2.2 Architecture and System Design

In this section, we present the design of the LegoBase system. First, we describe the overall

system architecture of our approach (Section 2.2.1). Then, we describe in detail how LegoBase

uses the SC compiler (Section 2.2.2) as well as how we efficiently convert the high-level

database system Scala code (not just that of individual operators) to optimized C code for

each incoming query (Section 2.2.3). We give concrete code examples of what our physical

query operators, physical query plans, and compiler interfaces look like.

2.2.1 Overall System Architecture

The overall system architecture of LegoBase is shown in Figure 2.1. The architecture of the

system is based on the idea of partial evaluation [172]. In this technique, a program is

considered as a mapping between the input data and output data, where the input data is

divided into two distinct sets of static and dynamic inputs4. Partial evaluation transforms

4This is standard terminology in the PL and compilers communities.

14



2.2. Architecture and System Design

Development Installation / DBA Query execution / JIT runtime

Main /

Parser

Query 

optimizer

Query 

interpreter

Transfor-

mations
Schema Data

Query

Query compiler

Opt. query plan

Specialized

 engine

QueryQuery

Specialized query compiler

DBX

opt.

Plan 

parser
Parsed query

Query

result

Figure 2.1 – Overall system architecture. The documents represent the inputs, the circles
represent the partial evaluation, and the arrows represent the flow of state.

a given program into a specialized program, which only accepts the dynamic input of the

original program. This specialized program returns the same output as the original program

by specializing the parts which are only dependent on the static input. Typically, we expect

the partial evaluator to make as much computation progress with the program as possible

given that only the static part of the input is available, and the output program captures the

remaining computation still to be done once the dynamic input becomes available.

Based on this definition, a partial evaluator can transform an interpreter given the input

program as its static input, into a compiled version of the input program. This process is

known as the first Futamura projection in the compilers literature [116]. Also, we can partially

evaluate a partial evaluator given an interpreter as its static input (The dynamic input is the

input program to be passed to the interpreter), into a compiler, a process known as the second

Futamura projection [116]. Note that an evaluator is a special case of a partial evaluator where

all the input data is static.

Partial evaluation can be used to build database systems that employ compilation at a variety

of stages, or even in multiple stages. In Figure 2.1, we assume three stages:

• Development stage. At this stage, the query interpreter and the transformations pro-

vided by the database system developer are passed into SC, in order to lift the query

interpreter into a query compiler (the second Futamura projection).

• Installation/DBA stage. At this stage, the schema of the relations and system configura-

tion parameters are provided or modified, and the constructed query compiler from

the previous stage is partially evaluated with this information. The result is a special-

ized, further optimized query compiler which is specific to the provided schema and

configuration parameters (the first Futamura projection).

• Query execution/JIT stage. At this stage, each incoming SQL query is passed through a

15



Chapter 2. Efficient and High-Level Query Engine

query optimizer in order to get an optimized query plan which describes the physical

query operators needed to process this query. Then, LegoBase parses this optimized

plan and constructs an intermediate representation for it, which can be either inter-

preted or compiled into a specialized query engine (the first Futamura projection) once

the user executes it.

However, one can consider additional stages. As an example, in an analytical data processing

system, one can assume a separate data loading stage. In this stage, the data is loaded into the

appropriate storage structures. Additionally, in this stage one can load data into pre-grouped

data structures to be used in queries that can profit from this – an idea that is heavily used in

data cubes.

We have not yet implemented a query optimizer.5 Thus, for our evaluation, we choose the

query optimizer of a commercial, in-memory database system, called DBX.6

(Partial) evaluation is shown in Figure 2.1 as circles. Even though one could use the partial

evaluator in many different stages and for a different set of inputs, we have presented only a

reasonable subset of such possibilities.

Next, we give more details about the alternative database systems that can be built at each of

three stages presented in Figure 2.1.

Query interpretation. LegoBase can use the produced query plan representation and the

input data in order to interpret the query. To do so, we use a library of operator implementa-

tions (written in Scala). Our operators (and their implementations) are composable, in the

sense that they expose a unified interface so that they can be easily chained. This unified

interface can either follow the Volcano model [128] (for a pull-based query engine) or the

producer/consumer model [121, 255] (for a push-based query engine, the interface of which

is given in the appendix. Figure 2.2 presents an example of how query plans and operators

are written in LegoBase, respectively. That is, the Scala code example shown in Figure 2.2a

loads the data, builds a functional tree from operator objects and then starts executing the

query by passing the elements through these operators.7 It is important to note that operator

implementations like the one presented in Figure 2.2b are exactly what one would write for an

5 For this work, we consider traditional query optimization (e.g. determining join order) as an orthogonal
problem and instead focus more on experimenting with the different optimizations that can be applied after query
optimization. This means that the focus of the transformations in LegoBase is to specialize the already provided
algorithms and query plans, and not choose a different algorithm or query plan (e.g. join order) in their place.
Hence, if a query optimizer chooses a query plan with a worse run time complexity, it would not be currently be
possible for SC to compensate this run time complexity difference.

6The choice of the DBX query optimizer results from a collaboration with the manufacturer of the commercial
system. We plan to implement the classical functionality of a query optimizer by a set of transformers to make
LegoBase self-contained. We expect that performance can profit from including the transformer pipeline, i.e.
orders of transformation, in the artifact to be optimized. This is future research.

7The current prototype of LegoBase targets the optimization of analytical queries. Hence, LegoBase currently
assumes that data are loaded only once in the beginning, before any query is submitted by the users, and that
updates are not taking place in the system.

16



2.2. Architecture and System Design

1 def Q6() {
2 val lineitemTable = loadLineitem()
3 val scanOp = new ScanOp(lineitemTable)
4 val startDate = parseDate("1996-01-01")
5 val endDate = parseDate("1997-01-01")
6 val selectOp = new SelectOp(scanOp)
7 (x =>
8 x.L_SHIPDATE >= startDate &&
9 x.L_SHIPDATE < endDate &&
10 x.L_DISCOUNT >= 0.08 &&
11 x.L_DISCOUNT <= 0.1 &&
12 x.L_QUANTITY < 24
13 )
14 val aggOp = new AggOp(selectOp)
15 (x => "Total")
16 ((t, agg) => { agg +
17 (t.L_EXTENDEDPRICE * t.L_DISCOUNT)
18 })
19 val printOp = new PrintOp(aggOp)(
20 kv => printf("%.4f\n", kv.aggs(0))
21 )
22 printOp.open
23 printOp.next
24 }

(a)

1 class AggOp[B](child:Operator, grp:Record=>B,
2 aggFuncs:(Record,Double)=>Double*)
3 extends Operator {
4 val hm = HashMap[B, Array[Double]]()
5 def open() { parent.open }
6 def process(aggs:Array[Double], t:Record){
7 var i = 0
8 aggFuncs.foreach { aggFun =>
9 aggs(i) = aggFun(t, aggs(i))
10 i += 1
11 }
12 }
13 def consume(tuple:Record) {
14 val key = grp(tuple)
15 val aggs = hm.getOrElseUpdate(key,
16 new Array[Double](aggFuncs.size))
17 process(aggs, tuple)
18 }
19 def next() : Record = {
20 hm.foreach { pair => child.consume(
21 new AGGRecord(pair._1, pair._2)
22 ) }
23 }
24 }

(b)

Figure 2.2 – Example of a query plan and an operator implementation in LegoBase. The
SQL query used as an input here is actually Query 6 of the TPC-H workload. The operator
implementation presented here uses a Push interface [255].

interpreted query engine that does not involve compilation at all. However, without further

optimizations, this engine cannot match the performance of existing databases: it consists

of generic data structures (e.g. the one declared in line 4 of Figure 2.2b) and involves expen-

sive memory allocations on the critical path,8 both properties that can significantly affect

performance.

Query compilation. LegoBase can use the specialized query compiler produced by SC in the

previous stages, in order to specialize the code base of the query engine with respect to the

given query plan. SC further specializes the code of the database system on the fly (including

the code of individual operators, all data structures used as well as any required auxiliary

functions), and progressively optimizes the code using our transformations (described in detail

in Section 2.3). For example, it optimizes away the HashMap abstraction and transforms it to

efficient low-level constructs (Section 2.3.2). In addition, SC utilizes query-specific information

during compilation. For instance, it will inline the code of all individual operators and, for

the example of Figure 2.2b, it automatically unrolls the loop of lines 8-11, since the number

of aggregations can be statically determined based on how many aggregations the input

SQL query has. Such fine-grained optimizations have a significant effect on performance, as

8Note that such memory allocations are not always explicit (i.e. at object definition time through the new
keyword). For instance, in line 15 of Figure 2.2b, the HashMap may have to expand (in terms of allocated memory
footprint) and be reorganized by the Scala runtime in order to more efficiently store data for future lookup
operations. We discuss this issue and its consequences to performance further later in this thesis.

17



Chapter 2. Efficient and High-Level Query Engine

they improve branch prediction. Finally, our system generates the optimized C code of the

specialized query engine,9 which is compiled using any existing C compiler.10 We then return

the query results to the user.

Note that, although Figure 2.1 demonstrates many different possibilities for building database

systems, in our experiments we use the implementation based on generated C code for a

specialized engine of a particular query. This engine is generated using a query compiler

which is specialized with respect to a particular schema.

2.2.2 The SC Compiler Framework

As we will later discuss in Chapter 8, the SC compiler was designed from the beginning so

that it allows developers to have full control over the optimization process without exporting

compiler internals such as code generation templates. It does so by delivering sufficiently

powerful programming abstractions to developers like those afforded by modern high-level

programming languages. The SC compiler and all optimizations are written in Scala, with its

rich language features that support productivity.

In contrast with low-level compilation frameworks like LLVM – which express optimizations

using a low-level, compiler-internal intermediate representation (IR) that operates on the

level of registers and basic blocks – programmers in SC specify the result of a program trans-

formation as a high-level, compiler-agnostic Scala program. As we will shown in Section 8.5.2,

SC offers two high-level programming primitives named analysis and rewrite for this

purpose, which are illustrated in Figure 2.3a and which analyze and manipulate statements

and expressions of the input program, respectively, by using the pattern matching feature

of Scala.11 By expressing optimizations at a high level, our approach enables a user-friendly

way to describe these domain-specific optimizations that humans can easily identify, without

imposing the need to interact with compiler internals.12 We use this optimization interface to

provide database-specific optimizations as a library and to aggressively optimize our query

engine.

To allow for maximum flexibility and expressive power to ultimately generate as efficient code

as possible, developers must be able to easily experiment with different optimizations and op-

9 In this work, we choose C as our code-generation language as this is the language traditionally used for
building high-performance database systems. However, SC is not particularly aware of C and can be used to
generate programs in other languages as well (e.g. optimized Scala). The generated C code can either be executed
in a stand alone manner, or alternatively be dynamically linked into a runtime system.

10We use the CLang frontend of LLVM [214] for compiling the generated C code in our evaluation.
11For example, the second rule in Figure 2.3a, detects a while loop expression, and binds the entire expression,

the condition, and the body to the variables loop, cond, and body, respectively. Note that, the fourth rewrite
rule removes the matched expression. Hence, there is no need to specify any right-hand-side statement for the
corresponding pattern matching expression.

12Of course, every compiler needs to represent code through an intermediate representation (IR). The difference
between SC and other optimizing compilers is that the IR of our compiler is completely hidden from developers:
both the input source code and all of its optimizations are written in plain Scala code, which is then translated to
an internal IR through Yin-Yang [177].

18



2.2. Architecture and System Design

analysis += statement {
case sym -> code"new MultiMap[_, $v]"
if isRecord(v) => allMaps += sym

}
analysis += rule {
case loop @ code"while($cond) $body" =>
currentWhileLoop = loop

}

rewrite += statement {
case sym -> (code"new MultiMap[_, _]")
if allMaps.contains(sym) =>
createPartitionedArray(sym)

}
rewrite += remove {
case code"($map: MultiMap[Any, Any])
.addBinding($elem, $value)"
if allMaps.contains(map) =>

}
rewrite += rule {
case code"($map: MultiMap[Any, Any])
.addBinding($elem, $value)"
if allMaps.contains(map) =>
/* Code for processing add Binding */

}

(a)

pipeline += OperatorInlining
pipeline += SingletonHashMapToValue
pipeline += ConstantSizeArrayToValue
pipeline += ParamPromDCEAndPartiallyEvaluate
if (settings.partitioning) {
pipeline += PartitioningAndDateIndices
pipeline += ParamPromDCEAndPartiallyEvaluate

}
if (settings.hashMapLowering)
pipeline += HashMapLowering

if (settings.stringDictionary)
pipeline += StringDictionary

if (settings.columnStore) {
pipeline += ColumnStore
pipeline += ParamPromDCEAndPartiallyEvaluate

}
if (settings.dsCodeMotion) {
pipeline += HashMapHoisting
pipeline += MallocHoisting
pipeline += ParamPromDCEAndPartiallyEvaluate

}
if (settings.targetIsC)
pipeline += ScalaToCLowering

// else: handle other languages, e.g. Scala
pipeline += ParamPromDCEAndPartiallyEvaluate

(b)

Figure 2.3 – (a) An example of the analysis and rewrite APIs of SC. The examples here are taken
from various actual LegoBase optimizations and they are, thus, not self-contained. (b) The SC
transformation pipeline used by LegoBase. Details for the listed optimizations are presented
in Section 2.3.

timization orderings (depending on the characteristics of the input query or the properties of

the underlying architecture). In SC, developers do so by explicitly specifying a transformation

pipeline. This is a straightforward task as SC transformers act as black boxes, which can be

plugged in at any stage in the pipeline. For instance, for the default transformation pipeline of

LegoBase, shown in Figure 2.3b, Parameter Promotion, Dead Code Elimination and Partial

Evaluation are all applied at the end of each of the custom, domain-specific optimizations.

The transformation pipeline takes parameters, which allow to turn off certain optimizations

for certain queries (e.g. settings.partitioning in Figure 2.3b) at demand as well as specify which

optimizations should be applied only for specific hardware platforms.

Even though it has been advocated in previous work [290] that having multiple transformers

can cause phase-ordering problems, our experience is that system developers can easily rise

to the challenge of specifying a suitable order of transformations as they design their system

and its compiler optimizations. As we show in Section 2.4, with a relatively small number of

transformations we can get a significant performance improvement in LegoBase.

SC already provides many generic compiler optimizations like function inlining, common

subexpression and dead code elimination, constant propagation, scalar replacement, partial

evaluation, and code motion. In this work, we extend this set to include DBMS-specific

optimizations (e.g. using the popular columnar layout for data processing). We describe these

19



Chapter 2. Efficient and High-Level Query Engine

optimizations in more detail in Section 2.3.

2.2.3 Multiple Abstraction Levels

Database systems comprise many components of significantly different nature and function-

ality, thus typically resulting in very big code bases. To optimize those in a productive way,

developers must be able to express new optimizations without having to modify either (i) the

base code of the system or (ii) previously developed optimizations. Compilation techniques

based on template expansion do not scale to the task, as their single-pass approach forces

developers to support multiple code transformers with different optimization roles (such

as pipelining and data-structure specialization [301]) at the same time, which makes their

debugging and development complicated.

To this end, the SC compiler is built around the principle that, instead of using template expan-

sion to directly generate low-level code from a high-level program in a single macro expansion

step, an optimizing compiler should instead progressively lower the level of abstraction until

we reach the lowest level of representation, and only then generate the final, low-level code.

Each level of abstraction and all associated optimizations operating in it can be seen as

independent modules, enforcing the principle of separation of concerns. Higher levels are

more declarative, thus allowing for increased productivity, while lower levels are closer to the

underlying architecture, thus making it easy to perform low-level performance tuning. For

example, optimizations such as join reordering are only feasible in higher abstraction levels

(where the operator objects are still present in the code), while register allocation decisions can

only be expressed in the lowest abstraction level13. This design provides the nice property that

generation of the final code becomes a trivial stringification of the lowest level representation.

More precisely, in order to reach the abstraction level of C code (the lowest level representation

for the purposes of this thesis), transformations include multiple lowering steps that progres-

sively map Scala constructs to (a set) of C constructs. Most Scala abstractions (e.g. objects,

classes, inheritance) are optimized away in one of these intermediate stages (for example,

hash maps are converted to arrays through the domain-specific optimizations described in

Section 2.3), and for the remaining constructs (e.g. loops, variables, arrays) there exists a one-

to-one correspondence between Scala and C. SC already offers such lowering transformers

for an important subset of the Scala language. For example, classes are converted to structs,

13 As we already discussed, LegoBase is a query engine designed for in-memory processing. This means that
our design so far is focused on the use case where all data fit in main memory (including all memory space
required for optimizations like horizontal partitioning etc). When one targets data that does not fit in memory,
one needs to additionally optimize the access patterns for I/O. Such optimizations, which would occur at the
lowest levels of abstraction, are not currently provided by the LegoBase system, but there is nothing in the design
of either the query engine or the optimizing compiler that forbids expressing such optimizations. In fact, we have
experimented with optimizing the initial data-loading of LegoBase by replacing naive calls to fscanf (which result
in low-performance due to the increasing number of seeks) with corresponding calls to memory-mapped files
obtained through the mmap function. It is our belief that the presented solution definitely allows for the easy
extension of the transformation pipeline with I/O optimizations.

20



2.3. Compiler Optimizations

strings to arrays of bytes, etc.

This way of lowering does not require any modifications to the database code or effort from

database developers other than just specifying in SC how and after which abstraction level

custom data types and abstractions should be lowered. More importantly, such a design allows

developers to create new abstractions in one of their optimizations, which can in turn be

optimized away in subsequent optimization passes.

Finally, there are two additional implementation details of our source-to-source compilation

from Scala to C that require special mentioning.

First, the final code produced by LegoBase, with all optimizations enabled, does not require

library calls. For example, all collection data structures like hash maps are converted in

LegoBase to primitive arrays (Section 2.3.2). However, we view LegoBase as a platform for

easy experimentation of database optimizations. As a result, our architecture must also be

able to support traditional collections as a library and convert, whenever necessary, Scala

collections to corresponding ones in C (in the experiments of this article, using those provided

by GLib [333]).

Second, and more importantly, the two languages handle memory management in a totally

different way: Scala is garbage collected, while C has explicit memory management. Thus,

when performing source-to-source compilation from Scala to C, we must take special care to

free the memory that would normally be garbage collected in Scala in order to avoid memory

overflow. This is a hard problem to solve automatically, as garbage collection may have to

occur for objects allocated outside the DBMS code, e.g. for objects allocated inside the Scala

libraries. For the scope of this work, we follow a conservative approach and make, whenever

needed, allocations and deallocations explicit in the Scala code. We also free the allocated

memory after each query execution.

We give more details on designing an appropriate DSL stack for query compilers in Chapter 3.

2.3 Compiler Optimizations

In this section, we present examples of compiler optimizations in six domains:14 (a) inter-

operator optimizations for query plans, (b) transparent data-structure modifications, (c)

changing the data layout, (d) using string dictionaries for efficient processing of string opera-

tions, (e) domain-specific code motion, and, finally, (f) traditional compiler optimizations like

14 Note that the optimizations that can be supported by our system are not limited to the ones presented in
this section; one can define additional transformations using the transformation API provided by SC in order
to support further optimizations. More specifically, one can assume a generic API for a particular component
with several implementations. Then, the system can choose the best specialized implementation based on the
context of a particular workload. However, as the focus of this thesis is mainly on the adhoc in-memory analytical
query processing, we have only focused on optimizations related to the query engine component. Nevertheless,
we plan to use a similar approach for optimizing other components of the database system, such as the buffer
management, storage management, transaction processing, and concurrency control in future work.

21



Chapter 2. Efficient and High-Level Query Engine

def Q12() {
val ordersScan = new ScanOp(loadOrders())
val lineitemScan = new ScanOp(loadLineitem())
val lineitemSelect = new SelectOp(lineitemScan)(record =>
record.L_RECEIPTDATE >= parseDate("1994-01-01") &&
record.L_RECEIPTDATE < parseDate("1995-01-01") &&
(record.L_SHIPMODE == "MAIL" || record.L_SHIPMODE == "SHIP") &&
record.L_SHIPDATE < record.L_COMMITDATE && record.L_COMMITDATE < record.L_RECEIPTDATE

)
val jo = new HashJoinOp(ordersScan, lineitemSelect) // Join Predicate and Hash Functions
((ordersRec,lineitemRec) => ordersRec.O_ORDERKEY == lineitemRec.L_ORDERKEY)
(ordersRec => ordersRec.O_ORDERKEY)(lineitemRec => lineitemRec.L_ORDERKEY)

val aggOp = new AggOp(jo)(t => t.L_SHIPMODE) // L-SHIPMODE is the Aggregation Key
((t, agg) => {
if (t.O_ORDERPRIORITY == "1-URGENT" || t.O_ORDERPRIORITY == "2-HIGH") agg + 1 else agg

},
(t, agg) => {
if (t.O_ORDERPRIORITY != "1-URGENT" && t.O_ORDERPRIORITY != "2-HIGH") agg + 1 else agg

})
val sortOp = new SortOp(aggOp)((x, y) => x.key - y.key)
val po = new PrintOp(sortOp)(kv => {
printf("%s|%.0f|%.0f\n", kv.key, kv.aggs(0), kv.aggs(1))

})
po.open
po.next

}

Figure 2.4 – Example of an input query plan (TPC-H Q12). We use this query to explain various
characteristics of our domain-specific optimizations in Section 2.3.

dead code elimination. The purpose of this section is to demonstrate the ease-of-use of our

methodology: that by programming at the high-level, such optimizations are easily expressible

without requiring changes to the base code of the query engine or interaction with compiler

internals. Throughout this section we use, unless otherwise stated, Q12 of TPC-H, shown in

Figure 2.4, as a guiding example in order to better illustrate various important characteristics

of our optimizations.

2.3.1 Inter-Operator Optimizations – Eliminating Redundant Materializations

Consider a query in which a join is followed by a group-by, where the grouping of the aggrega-

tion and the hashing of the join are both performed on the same attribute. In this example,

the generated code includes two materialization points: (a) at the group-by and (b) when

materializing the left side of the join. However, there is no need to materialize the tuples

of the aggregation in two different data structures as the aggregations can be immediately

materialized in the data structure of the join. Such inter-operator optimizations are hard

to express using template-based compilers. Alternatively, one can implement an additional

operator (known as groupjoin [244]) in the query engine. In contrast to these two approaches,

in our system we use high-level programming to easily pattern match on the operators, as we

describe next.

By expressing optimizations at a high level, LegoBase can optimize code across operator

22



2.3. Compiler Optimizations

1 def optimize(op: Operator): Operator = op match {
2 case joinOperator@HashJoinOp(aggOp:AggOp, rightChild, joinPred, leftHash, rightHash) =>
3 new HashJoinOp(aggOp.leftChild, rightChild, joinPred, leftHash, rightHash) {
4 override def open() {
5 // leftChild is now the child of aggOp (relation S)
6 leftChild foreach { t =>
7 // leftHash hashes according to the attributes referenced in the join condition
8 val key = leftHash(aggOp.grp(t))
9 // Get aggregations from the hash map of HashJoin
10 val aggs = hm.getOrElseUpdate(key, new Array[Double](aggOp.aggFuncs.size))
11 // Process all aggregations using the original code of Aggregate Operator
12 aggOp.process(aggs,t)
13 }
14 }
15 }
16 case op: Operator =>
17 op.leftChild = optimize(op.leftChild)
18 op.rightChild = optimize(op.rightChild)
19 case null => null // Operators with only one child have rightChild set to null.
20 }

Figure 2.5 – Removing redundant materializations by high-level programming (here between
a group by and a join). This code follows the semantics of a Volcano-style engine, but the
optimization can be similarly applied to a push engine. The code of the Aggregate Operator is
given in Figure 2.2b.

interfaces; we can treat operators as Scala objects and match specific optimizations to certain

chains of operators. Here, we can completely remove the aggregate operator and merge it

with the join, thus eliminating the need of maintaining two data structures. The code of this

optimization is shown in Figure 2.5.

This optimization operates as follows. First, we call the optimize function, passing it the top-

level operator as an argument. The function then traverses the tree of Scala operator objects,

until it encounters a proper chain of operators to which the optimization can be applied to. As

shown in line 2 of Figure 2.5, for this example this chain is a hash-join operator connected to

an aggregate operator. When this pattern is detected, a new HashJoinOp operator object is

created, that is not connected to the aggregate operator, but instead to the child of the latter

(first function argument in line 3 of Figure 2.5). As a result, the materialization point of the

aggregate operator is completely removed. However, we must still find a place to (a) store the

aggregate values and (b) perform the aggregation. For this purpose we use the hash map of

the hash join operator (line 10), and we just call the corresponding function of the Aggregate

operator (line 12), respectively. The rest of join-related processing remains unchanged.

We observe that this optimization is programmed on the same level of abstraction as the

rest of the query engine: as normal Scala code. This fact demonstrates that when coding

optimizations at a high level of abstraction (e.g. to optimize the operators’ interfaces), devel-

opers no longer have to worry about low-level concerns such as code generation (as is the

case with existing approaches) – these concerns are simply addressed by later stages in the

transformation pipeline. Both these properties raise the productivity provided by our system,

showing the merit of developing database systems using high-level programming languages.

23



Chapter 2. Efficient and High-Level Query Engine

2.3.2 Data-Structure Specialization

Data-structure optimizations contribute significantly to the complexity of database systems,

as they tend to be heavily specialized to be workload, architecture and (even) query-specific.

Our experience with the PostgreSQL database system reveals that there are many distinct

implementations of the memory page abstraction and B-trees. These versions are slightly

divergent from each other, suggesting that the optimization scope is limited. However, this

situation contributes to a maintenance nightmare as in order to apply any code update, many

different pieces of code have to be modified.

Implementing data-structure specialization in existing template-based query compilers is

difficult, due to their low-level nature. Thanks to the unified high-level interface provided by

SC, our approach can be used to optimize the database systems’ Scala code, and not only the

operator interfaces, enabling various degrees of specialization in data structures, as has been

previous shown in [290].

In this article, we demonstrate such possibilities by explaining how our compiler can be used

to: 1. Optimize the data structures used to hold in memory the data of the input relations,

2. optimize Hash Maps which are typically used in intermediate computations like aggrega-

tions, and, finally, 3. automatically infer and construct indices for SQL attributes of date type.

We do so in the next three sections.

Data Partitioning

Optimizing the structures that hold the data of the input relations is an important form

of data-structure specialization, as such optimizations generally enable more efficient join

processing. This is true even for multi-way, join-intensive queries. In LegoBase, we perform

data partitioning when loading the input data. We analyze this optimization, the code of

which can be found in the appendix, next.

In LegoBase, developers can annotate the primary and foreign keys of their input relations

at schema definition time. Using this information, our system then creates optimized data

structures for those relations as follows.

First, for each input relation that has a single-attribute primary key, LegoBase creates a

1D-array which is accessed through the primary key specified for that relation. This is a

usually a straightforward task, as the primary keys frequently have values in the range of

[1...#num_tuples]. However, even when the primary key is not in a continuous value range,

LegoBase currently aggressively trades-off system memory for performance, and stores the

24



2.3. Compiler Optimizations

1 // Sequential accessing for the ORDERS table (since it has smaller size)
2 for (int idx = 0 ; idx < ORDERS_TABLE_SIZE ; idx += 1) {
3 int O_ORDERKEY = orders_table[idx].O_ORDERKEY;
4 struct LINEITEMTuple* bucket = lineitem_table[O_ORDERKEY];
5 for (int i = 0; i < counts[bucket]; i+=1)
6 // process bucket[i] -- a tuple of the LINEITEM table
7 }

Figure 2.6 – Using primary and foreign keys in order to generate code for high-performance
join processing. The underlying storage layout is that of a row-store for simplicity. The counts
array holds the number of elements that exist in each bucket.

input data in a sparse array15. For our running example, LegoBase creates a 1D array for the

ORDERS table, indexed through the O_ORDERKEY attribute.

Second, for composite primary keys as well as for foreign keys, LegoBase replicates and

repartitions the data of the corresponding input relations to form multiple two-dimensional

arrays, each indexed by one such key, where each bucket holds all tuples having a particular

value for that key16. We resolve the case where the composite primary/foreign key is not in

a contiguous value range by trading-off system memory, in a similar way to how we handle

single-attribute primary keys. For the example of Q12, LegoBase creates four partitioned

tables: one for the foreign key of the ORDERS table (O_CUSTKEY), one for the composite

primary key of the LINEITEM table (as described above), and, finally, two more for the foreign

keys of the LINEITEM table (on L_ORDERKEY and L_PARTKEY/L_SUPPKEY respectively).

Observe that for relations that have multiple foreign keys, not all corresponding partitioned

input relations need to be kept in memory at the same time, as an incoming SQL query may

not need to use all of them. To decide which partitioned tables to load, LegoBase depends on

the physical query execution plan (e.g. referenced attributes and join conditions), but also on

simple to estimate statistics, like cardinality estimation of the input relations. For example,

for Q12, out of the two partitioned, foreign-key data structures of LINEITEM, our optimized

code uses only the partitioned table on L_ORDERKEY, as there is no reference to L_PARTKEY

or L_SUPPKEY in the query.

These partitioned data structures can be used to significantly improve join processing, as they

allow to quickly extract matching tuples for a join between two relations on a primary-foreign

key relationship. This is best illustrated through Q12 and the join between the LINEITEM

15It is also possible to define a transformation in order to introduce a dictionary for densifying the domain
(c.f. Section 2.3.4). With this technique, one can reduce the memory footprint required compared to the current
approach of LegoBase for sparse keys. However, this dictionary-based transformation performs a dictionary lookup
for the original column during a hash join, which introduces additional overhead compared to the approach
currently followed by LegoBase. This dictionary lookup can be avoided if the original column is not needed for the
other parts of the query.

16Creating a 1D array is not possible for composite primary and foreign keys, as we would need to uniquely hash
all attributes of such a key. Deriving such a hash function in full generality would require knowledge of the whole
dataset in advance. More importantly, calculating the hash would introduce additional computation on the critical
path, leading to a significant negative impact on performance.

25



Chapter 2. Efficient and High-Level Query Engine

and ORDERS tables. For this query, LegoBase (a) infers that the ORDERKEY attribute rep-

resents a primary-foreign key relationship and (b) uses statistics to derive that ORDERS is

the smaller of the two tables. By utilizing this information, LegoBase can generate the code

shown in Figure 2.6 to directly get the corresponding bucket of LINEITEM (by using the value

of the ORDERKEY attribute), thus avoiding the processing of a possibly significant number of

LINEITEM tuples.

LegoBase uses this approach for multi-way joins as well, to completely eliminate the overhead

of intermediate data structures. This results in significant performance improvement as a num-

ber of expensive system calls responsible for the tuple copying between these intermediate

data structures is completely avoided.

With this optimization, LegoBase can remove most of the overhead of using generic data

structures for join processing. However, there are still some hash maps remaining in the

generated code. These are primarily hash maps used for calculating aggregations and hash

maps for joins on attributes that are not represented by a primary/foreign key relationship. In

these cases, LegoBase lowers these maps to two-dimensional arrays as we discuss in our hash

map lowering optimization in the next section.

Optimizing Hash Maps

By default, LegoBase uses GLib [333] hash tables for generating C code out of the HashMap

constructs of the Scala language. Close examination of these generic hash maps in the baseline

implementation of our operators (e.g. in the Aggregation of Figure 2.2b) reveals the following

three main abstraction overheads.

First, for every insert operation, a generic hash map must allocate a container holding the

key, the corresponding value, as well as a pointer to the next element in the hash bucket.

This introduces a significant number of expensive memory allocations on the critical path.

Second, hashing and comparison functions are called for every lookup in order to acquire the

correct bucket and element in the hash list. These function calls are usually virtual, causing

significant overhead on the critical path. Finally, the data structures may have to be resized

during runtime in order to efficiently accommodate more data. These resizing operations

can become a significant bottleneck, especially for long-running, computationally expensive

queries.

Next, we resolve all these issues with our compiler using schema and query knowledge, without

changing a single line of the base code of the operators that use these data structures, or the

code of other optimizations. This property shows that our approach, which is based on using

a high-level compiler API, is practical for specializing database systems. The transformation,

shown in Figure 2.7, is applied during the lowering phase of the compiler (Section 2.2.3), where

high-level Scala constructs are mapped to low-level C constructs. The optimization lowers

Scala HashMaps to native C arrays and inlines the corresponding operations, by using the

26



2.3. Compiler Optimizations

following three observations:

1. For our workloads, the information stored on the key is usually a subset of the attributes

of the value. Thus, generic hash maps store redundant data. To avoid this, whenever a

functional dependency between key and value is detected, we convert the hash map to

a native array that stores only the values, and not the associated key (lines 2-11). Then,

since the inserted elements are anyway chained together in a hash list, we provision for

the next pointer when these are first allocated (e.g. at data loading, outside the critical

path17). Thus, we no longer need the key-value-next container and we manage to reduce

the amount of memory allocations significantly.

2. Second, the SC compiler offers function inlining for any Scala function out-of-the-box.

Thus, our system can automatically inline the body of the hash and equal functions

(lines 20 and 23 of Figure 2.7). This significantly reduces the number of function calls

(to almost zero), considerably improving query performance.

3. Finally, to avoid costly maintenance operations on the critical path, we preallocate all

the necessary memory space that may be required for the hash map during execution.

This is done by specifying a size parameter when allocating the data structure (line 3).

Currently, we obtain this size by performing worst-case analysis on the query. Database

statistics can make this estimation very accurate, as we show in Section 2.4, where we

evaluate the memory consumption of LegoBase in more detail.

For our running example, the aggregation array, created in step 1 above, is accessed using the

integer value obtained from hashing the L_SHIPMODE string. Then, the values located into

the corresponding bucket of the array are checked one by one, in order to see if the value of

L_SHIPMODE exists and if a match is found, the aggregation entries are updated accordingly,

or a new entry is initialized otherwise.

Finally, we note that data-structure specialization is an example of intra-operator optimization

and, thus, each operator can specialize its own data-structures by using similar optimizations

as the one shown in Figure 2.7.

Automatically Inferring Indices on Date Attributes

Assume that an SQL query needs to fully scan an input relation in order to extract tuples

belonging to a particular year. A naive implementation would simply execute an if condition

for each tuple of the relation and propagate that tuple down the query plan if the check was

satisfied. However, it is our observation that such conditions, as simple as they may be, can

have a pronounced negative impact on performance, as they can significantly increase the

total number of CPU instructions executed in a query.

17The transformer shown in Figure 2.7 is applied only for the code segment that handles basic query processing.
There is another transformer which handles the provision of the next pointer during data loading.

27



Chapter 2. Efficient and High-Level Query Engine

1 class HashMapToArray extends RuleBasedTransformer {
2 rewrite += rule {
3 case code"new HashMap[K, V]($size, $hashFunc, $equalFunc)" => {
4 // Create new array for storing only the values
5 val arr = code"new Array[V]($size)"
6 // Keep hash and equal functions in the metadata of the new object
7 arr.attributes += "hash" -> hashFunc
8 arr.attributes += "equals" -> equalFunc
9 arr // Return new object for future reference
10 }
11 }
12 rewrite += rule {
13 case code"($hm: HashMap[K, V]).getOrElseUpdate($key, $value)" => {
14 val arr = transformed(hm) // Get the array representing the original hash map
15 // Extract functions
16 val hashFunc = arr.attributes("hash")
17 val equalFunc = arr.attributes("equals")
18 code"""
19 // Get bucket
20 val h = $hashFunc($value) // Inlines hash function
21 var elem = $arr(h)
22 // Search for element & inline equals function
23 while (elem != null && !$equalFunc(elem, $key))
24 elem = elem.next
25 // Not found: create new elem / update pointers
26 if (elem == null) {
27 elem = $value
28 elem.next = $arr(h)
29 $arr(h) = elem
30 }
31 elem
32 """
33 }
34 }
35 // Lowering of remaining operations is done similarly
36 }

Figure 2.7 – Specializing HashMaps by converting them to native arrays. The corresponding
operations are mapped to a set of primitive C constructs.

Thus, for such cases, LegoBase uses the aforementioned partitioning mechanism in order to

automatically create indices, at data loading time, for all attributes of date type. It does so

by grouping the tuples of a date attribute based on the year, thus forming a two-dimensional

array where each bucket holds all tuples of a particular year. This design allows to immediately

skip, at query execution time, all years for which this predicate is incorrect. That is, as shown in

Figure 2.8, the if condition now just checks whether the first tuple of a bucket is of a particular

year and if not the whole bucket is skipped, as all of its tuples have the same year and, thus,

they all fail to satisfy the predicate condition.

These indices are particularly important for queries that process large input relations, whose

date values are uniformly distributed across years. This is the case, for example, for the

LINEITEM and ORDERS tables of TPC-H, whose date attributes are always populated with

values ranging from 1992-01-01 to 1998-12-31.

28



2.3. Compiler Optimizations

// Sequential scan through table
for (int idx=0 ; idx<TABLE_SIZE ; idx+=1) {

if (table[idx].date >= "01-01-1994" &&
table[idx].date <= "31-12-1994")
// Propagate tuple down the query plan

}

(a) Original, naive code

// Sequential scan through table
for (int idx=0 ; idx<NUM_BUCKETS ; idx+=1) {
// Check only the first entry
if (table[idx][0].date >= "01-01-1994" &&

table[idx][0].date <= "31-12-1994")
// Propage all tuples of table[idx]

}

(b) Optimized code

Figure 2.8 – Using date indices to speed up selection predicates on large relations.

2.3.3 Changing Data Layout

An important trade-off in databases is between row and column stores [317, 142, 3]. The

central contrasting point between these two approaches is the data layout, i.e. the way data is

organized and grouped together. By default LegoBase uses a row layout, since this intuitive

data organization facilitates fast development of the relational operator implementations.

However, we quickly noted the benefits of using a column layout for efficient data processing.

One solution would be to go back and redesign the whole query engine; however this misses

the point of our compiler framework. In this section, we show how the transition from row to

column layout can be expressed as an optimization18.

The optimization of Figure 2.9 performs a conversion from an array of records (row layout) to

a record of arrays (column layout), where each array in the column layout stores the values for

one attribute. The optimization overwrites the default lowering for arrays, thus providing the

new behavior. As with all our optimizations, type information determines the applicability of

an optimization: here it is performed only if the array elements are of record type (lines 3,13,26).

Otherwise, this transformation is a NOOP (e.g. an array of Integers remains unchanged).

Consider, for example, an update to an array of records (arr(n) = v), where v is a record. We

know that the new representation of arr will be a record of arrays (column layout), and that v

has the same attributes as an element of arr. So, for each of these attributes we extract the

corresponding array from arr (line 18) and field from v (line 19); then we perform the update

on the extracted array (line 19) using the same index.

This optimization also reveals another benefit of using an optimizing compiler: developers

can create new abstractions in their optimizations, which will be in turn optimized away

in subsequent optimization passes. For example, the first rule of Figure 2.9 results in record

reconstruction by extracting the individual record fields from the record of arrays (lines 5-7)

and then building a new record to hold the result (line 8). This intermediate record can be

automatically removed using dead code elimination (DCE), as shown in Figure 2.10. Similarly,

if SC can statically determine that some attribute is never used (e.g. by having all queries given

in advance), then this attribute will just be an unused field in a record, which the optimizing

compiler will be able to optimize away (e.g. attribute L2 in Figure 2.10).

18Changing the data layout does not mean that LegoBase becomes a full-fledged column store. There are other
important aspects which we do not yet handle, and which we plan to investigate in future work.

29



Chapter 2. Efficient and High-Level Query Engine

1 class ColumnarLayoutTransformer extends RuleBasedTransformer {
2 rewrite += rule {
3 case code"new Array[T]($size)" if typeRep[T].isRecord => typeRep[T] match {
4 case RecordType(recordName, fields) => {
5 val arrays =
6 for((name, tp: TypeRep[Tp]) <- fields) yield
7 name -> code"new Array[Tp]($size)"
8 record(recordName, arrays)
9 }
10 }
11 }
12 rewrite += rule {
13 case code"(arr:Array[T]).update($idx,$v)" if typeRep[T].isRecord => typeRep[T] match {
14 case RecordType(recordName, fields) => {
15 val columnarArr = transformed(arr) // Get the record of arrays
16 for((name, tp: TypeRep[Tp]) <- fields) {
17 code """
18 val fieldArr: Array[Tp] = record_field($columnarArr, $name)
19 fieldArr($idx) = record_field($v, $name)
20 """
21 }
22 }
23 }
24 }
25 rewrite += rule {
26 case code"(arr:Array[T]).apply($index)" if typeRep[T].isRecord => typeRep[T] match {
27 case RecordType(recordName, fields) => {
28 val columnarArr = transformed(arr) // Get the record of arrays
29 val elems = for((name, tp: TypeRep[Tp]) <- fields) yield {
30 name -> code """
31 val fieldArr: Array[Tp] = record_field($columnarArr, $name)
32 fieldArr($index)
33 """
34 }
35 record(recordName, elems)
36 }
37 }
38 }
39 }

Figure 2.9 – Changing the data layout (from row to column) expressed as an optimization.
Scala’s typeRep carries type information, which is used to differentiate between Array[Rec]
and other non-record arrays (e.g. an array of integers).

We notice that the transformation described in this section does not have any dependency

on other optimizations or the code of the query engine. This is because it is applied in

the optimization phase that handles only the optimization of arrays. This separation of

concerns leads, as discussed previously, to a significant increase in productivity as, for example,

developers that tackle the optimization of individual query operators do not have to worry

about optimizations handling the data layout.

2.3.4 Introducing Dictionaries

LegoBase can improve the performance of queries by introducing dictionaries. These dictio-

naries contain a mapping to a new attribute, with better performance characteristics. Instead

30



2.3. Compiler Optimizations

val a1 = a.L1
val a2 = a.L2
val e1 = a1(i)
val e2 = a2(i)
val r =
record(L1->e1,

L2->e2)
r.L1

7→

val a1 = a.L1
val a2 = a.L2
val e1 = a1(i)
val e2 = a2(i)
val r =
record(L1->e1,

L2->e2)
e1

7→
val a1 = a.L1
val a2 = a.L2
val e1 = a1(i)
val e2 = a2(i)
e1

7→
val a1 = a.L1
val e1 = a1(i)
e1

Figure 2.10 – Dead-code elimination (DCE) can remove intermediate materializations, e.g.,
row reconstructions when using a columnar layout. Here a is a record of arrays (columnar
layout) and i is an integer. The records have only two attributes L1 and L2. The notation L1->v
associates the label (attribute name) L1 with value v.

of storing a relation19 R(A,B) in the database, we:

• introduce a suitable20 domain A′,

• store a relation M(A, A′) and a dictionary (subsequently also called M) from A to (po-

tentially a set of) A′ to speed up accesses when A is bound, and

• store a relation R ′(A′,B)

such that R(A,B) can be defined as a view

R(A,B) := πA,B (M(A, A′)./R ′(A′,B)).

Next, we give two use cases of this. In the first case, the dictionary introduction is an automatic

optimization, while in the second, it is a schema design choice. LegoBase implements a

transformer that expands such views using their definition, in all cases automatically.

String Dictionaries

Operations on non-primitive data types, such as strings, incur a high performance overhead.

Typically, a function call is required, and most operations need to execute loops to process

the encapsulated data. For example, strcmp needs to iterate over the underlying array of

characters, comparing one character from each of the two input strings on each iteration.

Thus, such operations significantly affect branch prediction and cache locality.

For strings, we use String Dictionaries [35] to remove their abstraction overhead. One dictio-

nary is maintained for every attribute of String type, which generally operates as follows. First,

at data loading time, each string value of an attribute is mapped to an integer value. Then, at

query execution time, string operations are mapped to their integer counterparts, as shown in

Table 2.1. This mapping allows to significantly improve the query execution performance, as it

19We show a binary relation here, but the generalization is obvious.
20In the two use cases, A′ is chosen differently, once as identifiers for A values and once as row ids for R.

31



Chapter 2. Efficient and High-Level Query Engine

completely eliminates underlying loops and, thus, significantly reduces the number of CPU

instructions executed.

LegoBase uses String Dictionaries21 [35] to remove the abstraction overhead of strings. Our

system maintains one dictionary for every attribute of String type. At data loading time, each

string value of an attribute is mapped to an integer value. This value corresponds to the

index of that string in a single linked-list holding the distinct string values of that attribute.

The list basically constitutes the dictionary itself. In other words, each time a string appears

for the first time during data loading, a unique integer is assigned to it; if the same string

value reappears in a later tuple, the dictionary maps this string to the previously assigned

integer. String operations are mapped to their integer counterparts, as shown in Table 2.1, thus

significantly improving query execution performance. For our running example, LegoBase

compresses the attributes L_SHIPMODE and O_ORDERPRIORITY by converting the six string

equality checks into corresponding integer comparisons.

Special care is needed for string operations that require ordering. For example, Q2 and Q14

of TPC-H need to perform the endsWith and startsWith string operations with a constant

string, respectively. This requires that we utilize a dictionary that maintains the data in order;

that is, if str i ngx < str i ng y lexicographically, then Intx < Inty as well. To do so, we take

advantage of the fact that in LegoBase all input data is already materialized, and thus we can

first compute a list of lexicographically sorted distinct values, and then make a second pass

over the data to assign integer values to the string attribute. By doing so, the constant string is

then converted to a [st ar t ,end ] range, by iterating over the list of distinct values and finding

the first and last strings which start or end with that particular string, as shown in Table 2.122

It is important to note that string dictionaries significantly improve query execution perfor-

mance, but have negative impact on the performance of data loading. In addition, string

dictionaries can actually degrade performance when they are used for primary keys or for

attributes that contain many distinct values (as in this case the string dictionary significantly

increases memory consumption). In such cases, LegoBase can be configured so that it does

not use string dictionaries for those attributes, through proper usage of the optimization

pipeline described in Section 2.2.

Densification of Domains

In some workloads, the values of certain integer columns partition into multiple number

domains. This means that queries that select only some partitions, creating sparsity, cannot

benefit from optimizations relying on the dense nature of the values, such as the data par-

titioning transformation shown in Section 2.3.2. The join on columns with such properties

21Like all optimizations, this is an option that can be turned off. We experiment with both cases.
22In addition, there is another special case where the string attributes need to be tokenized on a word granularity.

This happens, for example, in Q13 of TPC-H. Such queries need to perform the indexOfSlice string operation,
where the slice represents a word. LegoBase provides a word-tokenizing string dictionary that contains all words
in the strings instead of the string attributes themselves to handle such cases.

32



2.3. Compiler Optimizations

String Integer Dictionary
Operation C code Operation Type

equals strcmp(x, y) == 0 x == y Normal
notEquals strcmp(x, y) != 0 x != y Normal
startsWith strncmp(x, y, strlen(y)) == 0 x>=start && x<=end Ordered
indexOfSlice strstr(x, y) != NULL N/A Word-Token

Table 2.1 – Mapping of string operations to integer operations through the corresponding type
of string dictionaries. Variables x and y are strings arguments which are mapped to integers.
The rest of string operations are mapped in a similar way.

suffers from bad locality. To solve this issue, one can introduce (and store in the database) a

dictionary containing a mapping into a dense domain.

As an example, consider the relations Vehicle(vid, model) and V_Driver(vid, name)

for which we would like to answer the following query: σmodel=c(Vehicle./V_Driver). The

selection based on the attribute model results in sparse values for the (key) attribute vid in

relation Vehicle, leading to bad data locality for the join of the two relations. To improve

data locality, one can introduce the dictionary Dict(model,vid’). This dictionary maps

a model name to a dense set of values vid’ identifying the vehicles of that model. In the

data loading phase, instead of storing the original relations in main memory, the relation

V_Driver’(vid’, name) and the dictionary Dict are stored. During query processing,

instead of the initial query, the following query is evaluated: σmodel=c(Dict)./V_Driver’.

In this case, the values of the attribute vid’ are dense, leading to better data locality for the

join with V_Driver’.

Note that this use case does not arise in TPC-H, and thus our experimental evaluation.

2.3.5 Domain-Specific Code Motion

Domain-Specific code motion includes optimizations that remove code segments that have

negative impact on query execution performance from the critical path and instead executes

the logic of those code segments during data loading. Thus, the optimizations in this category

trade increased loading time for improved query execution performance. There are two main

optimizations in this category, described next.

Hoisting Memory Allocations

Memory allocations can cause a significant degradation in query execution performance.

LegoBase can completely eliminate such allocations from the critical path, by taking advantage

of type information available in each SQL query, as described next.

At query compilation time, information is gathered regarding the data types used throughout

33



Chapter 2. Efficient and High-Level Query Engine

an incoming SQL query. This is done through an analysis phase, where the compiler collects

all malloc nodes in the program, once the latter has been lowered to the abstraction level of C

code. This is necessary to be done at this level, as high-level programming languages like Scala

provide implicit memory management, which the SC optimizing compiler cannot currently

optimize. The obtained types correspond either to the initial database relations (e.g. the

LINEITEM table of TPC-H) or to types required for intermediate results, such as aggregations.

Based on this information, SC initializes memory pools during data loading, one for each type.

Then, at query execution time, the corresponding malloc statements are replaced with

references to those memory pools. We have observed that this optimization significantly

reduces the number of CPU instructions executed during query evaluation, and significantly

contributes to improving cache locality. This is because the memory space allocated for each

pool is contiguous and, thus, each cache miss brings useful records to the cache (this is not

the case for the fragmented memory space returned by the malloc system calls).

Finally, the size of the memory pools is estimated by performing worst-case analysis on a

given query. However, we have confirmed that the statistics that LegoBase collects during data

loading are accurate enough so that these pools do not unnecessarily create memory pressure.

Hoisting Data-Structure Initialization

The proper initialization and maintenance of any data structure needed during query execu-

tion generally require specific code to be executed in the critical path. This is typically true for

data structures representing some form of key-value stores, as we describe next.

Consider the case of TPC-H Q12, for which a data structure is needed to store the results of

the aggregate operator. Then, when evaluating the aggregation during query execution, we

must check whether the corresponding key of the aggregation has been previously inserted

in the aggregation data structure. In this case, the code must check whether a specific value

of O_ORDERPRIORITY is already present in the data structure. If so, it would return the

existing aggregation. Otherwise, it would insert a new aggregation into the data structure.

This means that at least one if condition must be evaluated for every tuple that is processed

by the aggregate operator. We have observed that such if conditions, which exist purely for

the purpose of data-structure initialization, significantly affect branch prediction and overall

query execution performance.

LegoBase provides an optimization to remove such data-structure initialization from the criti-

cal path by utilizing domain-specific knowledge. For example, LegoBase takes advantage of

the fact that aggregations can usually be statically initialized with the value zero, for each cor-

responding key. To infer all these possible key values (i.e. infer the domains of these attribute),

LegoBase utilizes the statistics collected during data loading for the input relations. Then, at

query execution time, the corresponding if condition mentioned above no longer needs to

be evaluated, as the aggregation already exists and can be accessed directly. We have observed

34



2.3. Compiler Optimizations

that, by removing code segments that perform only data-structure initialization, branch pre-

diction is improved and the total number of CPU instructions executed is significantly reduced

as well.

Observe that this optimization depends on the ability to predict the possible key values in

advance, during data loading. This may not always be possible, as is the case when the key

is a result of an intermediate operator deeply nested in the query plan. However, workloads

like TPC-H mostly use attributes of the original relations to access data structures, attributes

whose value range can be accurately estimated during data loading through statistics. In

addition, for TPC-H queries, the key value range is very small, typically up to a couple of

thousand sequential key values23. Under these two conditions, it becomes feasible to remove

initialization overheads and the associated unnecessary computations.

2.3.6 Traditional Compiler Optimizations

In this section, we present a number of traditional compiler optimizations that originate

mostly from work in the PL community. Most of them are generic in nature, and, thus, they

are offered out-of-the-box by the SC compiler.

Removal of Unused Relational Attributes

In Section 2.3.3 we mentioned that LegoBase provides an optimization for removing relational

attributes that are not accessed by a particular SQL query, assuming that this query is known

in advance. For example, the Q12 running example references eight relational attributes.

However, the relations LINEITEM and ORDERS contain 25 attributes in total. LegoBase avoids

loading these unnecessary attributes into memory at data loading time. It does so by analyzing

the input SQL query and removing the set of unused fields from the record definitions. This

reduces memory pressure and improves cache locality.

Removing Unnecessary Let-Bindings

The SC compiler uses the Administrative Normal Form (ANF) when generating code. This

simplifies code generation for the compiler. However, it has the negative effect of introducing

many unnecessary intermediate variables. To improve upon this situation, SC uses a tech-

nique first introduced by the programming language community [323], which removes any

intermediate variable that satisfies the following three conditions: the variable (a) is set only

once, (b) has no side effects, and, finally, (c) is initialized with a single value (and thus its

initialization does not correspond to executing expensive computations). SC then replaces

any appearance of this variable later in the code with its initialization value. We have observed

that since the variable initialization time may happen significantly earlier in the code than its

23A notable exception is TPC-H Q18 which uses O_ORDERKEY as a key, which has a sparse distribution of key
values. LegoBase generates a specialized data structure for this case.

35



Chapter 2. Efficient and High-Level Query Engine

actual use, this does not allow for this optimization to be performed by low-level compilers

like LLVM.

Finally, our compiler applies a technique known as parameter promotion or scalar replace-

ment. This optimization removes structs whose fields can be flattened to local variables. This

optimization has the effect of removing a memory access from the critical path as the field of a

struct can be referenced immediately without referencing the variable holding the struct itself.

As a result, the number of memory accesses occurring during query execution is significantly

reduced.

Fine-grained Compiler Optimizations

Finally, there is a category of fine-grained compiler optimizations that are applied last in

the compilation pipeline. These optimizations target optimizing very small code segments

(even individual statements) under particular conditions. We briefly present three such

optimizations next.

First, SC can transform arrays to a set of local variables. This lowering is possible only when

(a) the array size is statically known at compile time, (b) the array is relatively small (to avoid

increasing register pressure) and, finally, (c) the index of every array access can be inferred

at compile time (otherwise, the compiler is not able to know to which local variable an array

access should be mapped to).

Second, the compiler provides an optimization to change the boolean condition x && y to

x & y where x and y both evaluate to boolean and the second operand does not have any

side effect. According to our observations, this optimization can significantly improve branch

prediction when the aforementioned conditions are satisfied.

Finally, the compiler can be instructed to apply tiling to for loops whose ranges are known at

compile time (or can be accurately estimated).

It is our observation that all these fine-grained optimizations (as described above), which can

be typically written in less than a hundred lines of code, can help to improve the performance

of certain queries. More importantly, since they have very fine-grained granularity, their

application does not introduce additional performance overheads.

2.4 Experimental Evaluation of LegoBase

In this section, we evaluate the realization of the abstraction without regret vision in the

domain of analytical query processing. After briefly presenting our experimental platform, we

address the following topics and open questions related to the LegoBase system:

1. How well can general-purpose compilers, such as LLVM or GCC, optimize query engines?

36



2.4. Experimental Evaluation of LegoBase

We show that these compilers ultimately fail to detect many high-level optimization

opportunities and, thus, they perform poorly compared to our system (Section 2.4.2).

2. Is the code generated by LegoBase competitive, performance-wise, to (a) traditional

database systems and (b) query compilers based on template expansion? We show that

by utilizing query-specific knowledge and by extending the scope of compilation to

optimize the entire query engine, we can obtain a system that significantly outperforms

both alternative approaches (Section 2.4.3).

3. We experimentally validate that the source-to-source compilation from Scala to efficient,

low-level C binaries is necessary as even highly optimized Scala programs exhibit a

considerably worse performance than C (Section 2.4.4).

4. What insights can we gain by analyzing the performance improvement of individual op-

timizations? Our analysis reveals that important optimization opportunities have been

so far neglected by compilation approaches that optimize only queries. To demonstrate

this, we compare architectural decisions as fairly as possible, using a shared codebase

that only differs by the effect of a single optimization (Section 2.4.5).

5. How much are the overall memory consumption and data loading speed of our system?

These two metrics are of importance to main-memory databases, as a query engine

must perform well in both directions to be usable in practice (Section 2.4.6).

6. We analyze the amount of effort required when programming query engines in LegoBase

and show that, by programming in the abstract, we can derive a fully functional system

in a relatively short amount of time and coding effort (Section 2.4.8).

7. We evaluate the compilation overheads of our approach. We show that SC can efficiently

compile query engines even for the complicated, multi-way join queries typically found

in analytical query processing (Section 2.4.9).

2.4.1 Experimental Setup

Our experimental platform consists of a server-type x86 machine equipped with two Intel

Xeon E5-2620 v2 CPUs running at 2GHz each, 256GB of DDR3 RAM at 1600Mhz and two

commodity hard disks of 2TB storing the experimental datasets. The operating system is Red

Hat Enterprise 6.7. For all experiments, we have disabled huge pages in the kernel, since

this provided better results for all tested systems (described in more detail in Table 2.2). For

compiling the generated programs throughout the evaluation section, we use version 2.11.4 of

the Scala compiler and version 3.4.2 of the CLang front-end for LLVM [214], with the default

24 We note that according to the TPC-H specification rules, a database system can employ data partitioning (as
described in Section 2.3.2) and still be TPC-H compliant. This is the case when all input relations are partitioned
on one and only one primary or foreign key attribute across all queries. The LegoBase(TPC-H/C) configuration of
our system follows exactly this partitioning approach, which is also used by the HyPer system (but in contrast to
SC, partitioning in HyPer is not expressed as a compiler optimization).

37



Chapter 2. Efficient and High-Level Query Engine

System Description Compiler
optimizations

TPC-H
compliant

Uses query-
specific info

DBX Commercial,
in-memory DBMS

No compilation Yes No

Compiler
of HyPer

Query compiler of the
HyPer DBMS

Operator inlining,
push engine

Yes No

LegoBase
(Naive)

A naive engine with the
minimal number of opti-
mizations applied

Operator inlining,
push engine

Yes No

LegoBase
(TPC-H/C)

TPC-H compliant en-
gine

Operator inlining,
push engine, data
partitioning

Yes24 No

LegoBase
(StrDict/C)

Non TPC-H compliant
engine with some opti-
mizations applied

Like above, plus
String Dictionaries

No No

LegoBase
(Opt/C)

Optimized push-style
engine

All optimizations
of this thesis

No Yes

LegoBase
(Opt/Scala)

Optimized push-style
engine

All optimizations
of this thesis

No Yes

Table 2.2 – Description of all systems evaluated in this chapter. Unless otherwise stated, all
generated C programs of LegoBase are compiled to a final C binary using CLang. All listed
LegoBase engines and optimizations are written with only high-level Scala code, which is then
optimized and compiled to C or Scala code with SC.

optimization flags set for both compilers. For the Scala programs, we configure the Java

Virtual Machine (JVM) to run with 192GB of heap space, while we use the GLib library (version

2.38.2) [333] whenever we need to generate generic data structures in C.

For our evaluation, we use the TPC-H benchmark [343]. TPC-H is a data warehousing and

decision support benchmark that issues business analytics queries to a database with sales

information. This benchmark suite includes 22 queries with a high degree of complexity

that express most SQL features. We use all 22 queries to evaluate various design choices of

our methodology. We execute each query five times and report the average performance of

these runs. Unless otherwise stated, the scaling factor of TPC-H is set to 8 for all experiments.

It is important to note that the final generated optimized code of LegoBase (configurations

LegoBase(Opt/C) and LegoBase(Opt/Scala) in Table 2.2) employs materialization (e.g. for the

date indices) and, thus, this version of the code does comply with the TPC-H implementation

rules. However, we also present a TPC-H compliant configuration, LegoBase(TPC-H/C), for

comparison purposes. A brief presentation of the TPC-H schema and queries can be found in

Appendix C.

38



2.4. Experimental Evaluation of LegoBase

 2

 4

 8

 16

 32

 64

 128

 256

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1

0

Q
1

1

Q
1

2

Q
1

3

Q
1

4

Q
1

5

Q
1

6

Q
1

7

Q
1

8

Q
1

9

Q
2

0

Q
2

1

Q
2

2

S
lo

w
d

o
w

n
 t

o
 L

e
g

o
B

a
se

1536

2048

LegoBase(Naive/C) - LLVM LegoBase(Naive/C) - GCC

Figure 2.11 – Performance of a push-style engine compiled with LLVM and GCC. These engines
are generated using only operator inlining. The baseline is the performance of the optimal
generated code, LegoBase(Opt/C), with all optimizations enabled.

As a reference point for most results presented here, we use a commercial, in-memory, row-

store database system called DBX, which does not employ compilation. We assign 192GB of

DRAM as memory space in DBX, and we use the DBX-specific data types instead of generic

SQL types. As described in Section 2.2, LegoBase uses query plans from the DBX database.

We also use the query compiler of the HyPer system [255] (w) as a point of comparison with

existing query compilation approaches. Since parallel execution is not yet possible at the time

of writing for LegoBase, all systems have been forced to single-threaded execution, either by

using the execution parameters some of them provide or by manually disabling the usage of

CPU cores in the kernel configuration.

2.4.2 Optimizing Query Engines Using General-Purpose Compilers

First, we show that low-level, general-purpose compilation frameworks, such as LLVM, are not

adequate for efficiently optimizing query engines. To do so, we use LegoBase to generate an

unoptimized push-style engine with only operator inlining applied, which is then compiled

to a final C binary using LLVM. We choose this engine as a starting point since it allows the

underlying C compiler to be more effective when optimizing the whole C program (as the

presence of procedures may otherwise force the compiler to make conservative decisions or

miss optimization potential during compilation25).

As shown in Figure 2.11, the achieved performance is very poor: the unoptimized query engine,

25 [301] presents an easy-to-follow example and an analysis of why general-purpose compilers need to operate
in this fashion.

39



Chapter 2. Efficient and High-Level Query Engine

LegoBase(Naive/C)–LLVM, is significantly slower for all TPC-H queries, requiring more than

16× the execution time of the optimal LegoBase configuration in most cases. This is because

frameworks like LLVM cannot automatically detect all optimization opportunities that we

support in LegoBase (as described thus far in this thesis). This is because either (a) the scope

of an optimization is too coarse-grained to be detected by a low-level compiler or (b) the

optimization relies on domain-specific knowledge that general-purpose optimizing compilers

such as LLVM are not aware of.

In addition, as shown in the same figure, compiling with LLVM does not always yield better

results compared to using another traditional compiler like GCC26. We see that LLVM out-

performs GCC for only 15 out of 22 queries (by 1.09× on average) while, for the remaining

ones, the binary generated by GCC performs better (by 1.03× on average). In general, the

performance difference between the two compilers can be significant (e.g. for Q19, there is

a 1.58× difference). We also experimented with manually specifying optimizations flags to

the two compilers, but this turns out to be a very delicate and complicated task as developers

can specify flags which actually make performance worse. We argue that it is instead more

beneficial for developers to invest their effort in developing high-level optimizations, like

those presented in this thesis.

2.4.3 Comparing LegoBase with Previous Systems

Next, we compare our approach – which compiles the entire query engine and utilizes query-

specific information – with the compiler of the HyPer database [255]. HyPer performs template

expansion through LLVM in order to inline the relational operators of a query executed on a

push engine27. The results are presented in Figure 2.12.

We perform this analysis in two steps. First, we generate a query engine that (a) does not

utilize any query-specific information and (b) adheres to the implementation rules of the

TPC-H workload. Such an engine represents a system where data are loaded only once, and

all optimizations are applied before any query arrives (as happens with HyPer and any other

traditional DBMS). We show that this LegoBase configuration, titled LegoBase(TPC-H/C), has

performance competitive to that of the HyPer database system, and that efficient handling of

string operations is essential in order to have the performance of our system match that of

HyPer. Second, we show that by utilizing query-specific knowledge and performing aggressive

materialization and repartition of input relations based on multiple attributes, we can generate

a query engine, titled LegoBase(Opt/C), which significantly outperforms existing approaches.

Such an engine corresponds to systems that, as discussed previously in Section 2.4.1, have all

queries or data known in advance.

26For this experiment, we use version 4.4.7 of the GCC compiler.
27We also experimented with another in-memory DBMS that compiles SQL queries to native C++ code on the fly.

However, we were unable to configure the system so that it performs well compared to the other systems. Thus, we
omit its results from this chapter.

40



2.4. Experimental Evaluation of LegoBase

To begin with, Figure 2.12 shows that by using the query compiler of HyPer, performance

is improved by 6.4× on average compared to DBX. To achieve this performance improve-

ment, HyPer uses a push engine, operator inlining, and data partitioning. In contrast, the

TPC-H-compliant configuration of our system, LegoBase(TPC-H/C), which uses the same

optimizations, has an average execution time of only 4.4x the one of the DBX system, across

all TPC-H queries. The main reason behind this significantly slower performance is, as we

mentioned above, the inefficient handling of string operations in LegoBase(TPC-H/C). In

this version, LegoBase uses the strcmp function (and its variants). In contrast, HyPer uses

the SIMD instructions found in modern instructions sets (such as SSE4.2) for efficient string

handling [41], a design choice that can lead to significant performance improvement com-

pared to LegoBase(TPC-H/C). To validate this analysis, we use a configuration of our system,

called LegoBase(StrDict/C), which additionally applies the string dictionary optimization.

This configuration is no longer TPC-H-compliant (as it introduces an auxiliary data structure),

but is still does not require query-specific information. We notice that the introduction of this

optimization is enough to make LegoBase(StrDict/C) match the performance of HyPer: the

two systems have only a 1.06× difference in performance.

Second, Figure 2.12 also shows that by using all other optimizations of LegoBase (as they

were presented in Chapter 2.3), which are not performed by the query compiler of HyPer,

we can get a total 45.4× performance improvement compared to DBX with all optimizations

enabled. This is because, for example, LegoBase(Opt/C) uses query-specific information

to remove unused relational attributes or hoist out expensive computation (thus reducing

memory pressure and decreasing the number of CPU instructions executed) and aggressively

repartitions input data on multiple attributes (thus allowing for more efficient join processing).

Such optimizations result in improved cache locality and branch prediction, as shown in

Figure 2.13. More specifically, there is an improvement of 1.68× and 1.31× on average for the

two metrics, respectively, between DBX and LegoBase. In addition, the maximum, average

and minimum difference in the number of CPU instructions executed in HyPer is 3.76×,

1.61×, and 1.08× that executed in LegoBase. These results prove that the optimized code of

LegoBase(Opt/C) is competitive, performance wise, to both traditional database systems and

query compilers based on template expansion.

Note that in several cases DBX has a significantly lower branch misprediction rate compared

to LegoBase. To further investigate why this is the case, we performed some experiments

using TPCH query 6 as an example. Our results show that the source of this difference is due

to the pull vs. push-based nature of the query engines. In our experiments, we found that

the pull-based engine (Volcano style [128]) has a better branch misprediction rate (3%) than

a push-based engine (5%, producer/consumer style [255]). However, the absolute number

of branches in a pull-based engine for this query is almost twice as many as the number of

branches in a push-based engine. The absolute number of mispredicted branches is almost

equal in both engines (12.9M vs 12.8M, for the pull and push engines, respectively). This means

that half the branches in a pull-based engine, which are responsible for checking whether the

relation is fully scanned, are in most cases correctly predicted. Hence, although a pull-based

41



Chapter 2. Efficient and High-Level Query Engine
S
p
e
e
d
u
p
 t

o
 D

B
X

LegoBase(Naive/C) - LLVM
LegoBase(Naive/C) - GCC

Compiler of HyPer
LegoBase(TPC-H/C)

LegoBase(StrDict/C)
LegoBase(Opt/C)

LegoBase(Naive/Scala)
LegoBase(Opt/Scala)

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

S
p
e
e
d
u
p
 t

o
 D

B
X

LegoBase(Naive/C) - LLVM
LegoBase(Naive/C) - GCC

Compiler of HyPer
LegoBase(TPC-H/C)

LegoBase(StrDict/C)
LegoBase(Opt/C)

LegoBase(Naive/Scala)
LegoBase(Opt/Scala)

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

Q9 Q10 Q11 Q12 Q13 Q14 Q15

S
p
e
e
d
u
p
 t

o
 D

B
X

LegoBase(Naive/C) - LLVM
LegoBase(Naive/C) - GCC

Compiler of HyPer
LegoBase(TPC-H/C)

LegoBase(StrDict/C)
LegoBase(Opt/C)

LegoBase(Naive/Scala)
LegoBase(Opt/Scala)

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

Q16 Q17 Q18 Q19 Q20 Q21 Q22

Figure 2.12 – Performance comparison of various LegoBase configurations (C and Scala pro-
grams) with the code generated by the query compiler of [255]. The baseline for all systems is
the performance of the DBX commercial database system. The absolute execution times for
this figure can be found in Appendix A.

engine may have a lower branch misprediction rate, it does not mean that the performance is

better. This is further justified by seeing the similar trend of HyPer and LegoBase in terms of

branch misprediction, as both are push-based engines. A detailed comparison of push and

pull-based engines is can be found in Chapter 4.

Finally, we note that we plan to investigate even more aggressive and query-specific data-stru-

cture optimizations in future work. Such optimizations are definitely feasible, given the easy

extensibility of the SC compiler.

2.4.4 Source-to-Source Compilation from Scala to C

Next, we show that source-to-source compilation from Scala to C is necessary in order to

achieve optimal performance in LegoBase. To do so, Figure 2.12 also presents performance

results for both a naive and an optimized Scala query engine, named LegoBase(Naive/Scala)

42



2.4. Experimental Evaluation of LegoBase

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

B
ra

n
ch

 M
is

p
re

d
.

 20
 30
 40
 50
 60
 70
 80
 90

 100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

C
a
ch

e
 M

is
se

s
DBX Compiler of HyPer LegoBase(Opt/C)

Figure 2.13 – Percentage of cache misses and branch mispredictions for DBX, HyPer and
LegoBase(Opt/C) for all 22 TPC-H queries.

and LegoBase(Opt/Scala), respectively. First, we notice that the optimized generated Scala

code is significantly faster than the naive counterpart, by 26.4×. This shows that extensive

optimization of the Scala code is essential in order to achieve high performance. However, we

also observe that the performance of the optimized Scala program cannot compete with that

of the optimized C code, and is on average 10× slower.

Profiling information gathered with the perf 28 profiling tool of Linux reveals the following

three reasons for this behavior: (a) Scala causes an increase to branch mispredictions, by 1.8×
compared to the branch mispredictions in C, (b) The percentage of LLC misses is 1.3× to 2.4×
those in Scala, and more importantly, (c) The number of CPU instructions executed in Scala is

6.2× the one executed by the C binary. Of course, these inefficiencies are to a great part due to

the Java Virtual Machine and not specific to Scala29. Note that the optimized Scala program

is competitive to DBX (especially for non-join-intensive queries, e.g. queries that have less

than two joins): for 19 out of 22 queries, LegoBase(Opt/Scala) outperforms the commercial

DBX system. This is because we remove all abstractions that incur significant overhead for

Scala. For example, the performance of Q18, which builds a large hash map, is improved by

40× when applying the data-structure specialization provided by SC.

28https://perf.wiki.kernel.org/index.php/Main_Page.
29A publication from Google [160] comparing C++, Java, Go, and Scala seems to verify this hypothesis. In this

work, the authors show how important it is to adequately optimize the garbage collection (GC) mechanism of
the JVM by manually configuring its parameters. However, not only this work goes as far as to use custom JVM
flags, but also, in our experience, tuning the GC is an equally delicate task as tuning a traditional, general-purpose
C compiler. For example, the +UseCompressedOops GC flag improves the performance of Q16 (by 1.23×), but
negatively affects the performance of Q6 (by 1.27×). In addition, this work also suggests that there are a number of
language features and constructs of the Scala programming language that can significantly affect performance.
For instance, the SC optimizing compiler generates for-comprehensions for Scala. Yet, the comparative study of
Google suggests that it is better, performance wise, to use the foreach construct of Scala. We plan to explore such
optimization opportunities for the generated Scala code and the JVM in future work.

43



Chapter 2. Efficient and High-Level Query Engine
S
p
e
e
d
u
p

Data-Structure Specialization
Date Indices

Domain-Specific Code Motion
Struct Field Removal

String Dictionaries

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

S
p
e
e
d
u
p

Data-Structure Specialization
Date Indices

Domain-Specific Code Motion
Struct Field Removal

String Dictionaries

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Figure 2.14 – Impact of different LegoBase optimizations on query execution time. The base-
line is an engine that does not apply this optimization.

2.4.5 Impact of Individual Compiler Optimizations

In this section, we provide additional information about the performance improvement

expected when applying one of the compiler optimizations of LegoBase. These results, illus-

trated in Figure 2.14, aim to demonstrate that significant optimization opportunities have

been ignored by existing compilation techniques that handle only queries.

To begin with, we can clearly see in this figure that the most important transformation in

LegoBase is the data-structure specialization (presented in Sections 2.3.2 and 2.3.2). This

form of optimization is not provided by existing approaches, as data structures are typically

precompiled in existing database systems. We see that, in general, when data-structure

specialization is applied, the generated code has an average performance improvement of

30× (excluding queries Q8 and Q17 where the partitioning optimization facilitates skipping

the processing of the majority of the tuples of the input relations). Moreover, we note that the

performance improvement is not directly dependent on the number of join operators or input

relations in the query plan. For example, join-intensive queries such as Q5, Q7, Q8, Q9, Q21

obtain a speedup of at least 22× when applying this optimization. However, the single-join

queries Q4 and Q19 also receive similar performance benefit to that of multi-way join queries.

This is because query plans may filter input data early on, thus reducing the need for efficient

join data structures. Thus, selectivity information and analysis of the whole query plan are

essential for analyzing the potential performance benefit of this optimization. Note that, for

similar reasons, date indices (Section 2.3.2) allow to avoid unnecessary tuple processing and

thus lead to increased performance for a number of queries (such as Q3, Q14, and Q15).

44



2.4. Experimental Evaluation of LegoBase

For the domain-specific code motion and the removal of unused relational attributes opti-

mizations, we observe that they both improve performance, by 1.12× and 1.21×, respectively

on average for all TPC-H queries. This improvement is not be as pronounced as that of other

optimizations of LegoBase (like the one presented above). However, it is important to note

that they both significantly reduce memory pressure, thus allowing the freed memory space to

be used for other optimizations, such as the partitioning specialization, which in turn provide

significant performance improvement. Nevertheless, these two optimizations – which are

not provided by previous approaches (since they depend on query-specific knowledge) – can

provide considerable performance improvement by themselves for some queries. For example,

for TPC-H Q1, performing domain-specific code motion leads to a speedup of 2.96×, while

the removal of unused attributes gives a speedup of 2.11× for Q15.

Moreover, the same figure evaluates the speedup we gain when using string dictionaries. We

observe that for the TPC-H queries that perform a number of expensive string operations,

using string dictionaries always leads to improved query execution performance: this speedup

ranges from 1.06× to 5.5×, with an average speedup of 2.41×30. We also note that the speedup

this optimization provides depends on the characteristics of the query. More specifically, if

the query contains string operations on scan operators, as is the case with Q8, Q12, Q13, Q16,

Q17, and Q19, then this optimization provides a greater performance improvement than when

string operations occur in operators appearing later in the query plan. This is because, TPC-H

queries typically filter out more tuples as more operators are applied in the query plan. Stated

otherwise, operators being executed in the last stages of the query plan do not process as

many tuples as scan operators. Thus, the impact of string operations is more pronounced

when such operations take place in scan operators.

It is important to note that using string dictionaries comes at a price. First, this optimization

increases the loading time of the query. Second, this optimization requires keeping a dictionary

between strings and integer values, a design choice which requires additional memory. This

may, in turn, increase memory pressure, possibly causing a drop in performance. However, it

is our observation that, based on the individual use case and data characteristics (e.g. number

of distinct values of a string attribute), developers can easily detect whether it makes sense

performance-wise to use this optimization or not. We also present a more detailed analysis of

the memory consumption required by the overall LegoBase system later in this chapter.

Then, the benefit of applying operator inlining (not shown) varies significantly between

different TPC-H queries and ranges from a speedup of 1.07× up to 19.5×, with an average

performance improvement of 3.96×. The speedup gained from applying this optimization

depends on the complexity of the execution path of a query. This is a hard metric to visualize,

as the improvement depends not only on how many operators are used but also on their

type, their position in the overall query plan and how much each of them affects branch

prediction and cache locality. For instance, queries Q5, Q7 and Q9 have the same number of

30The rest of the TPC-H queries (Q1, Q4, Q5, Q6, Q7, Q10, Q11, Q15, Q18, Q21, Q22) either did not have any
string operation or the number of these operations on those queries was negligible.

45



Chapter 2. Efficient and High-Level Query Engine

 0

 2

 4

 6

 8

 10

 12

 14

 16

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

M
e
m

o
ry

 C
o
n
su

m
p
ti

o
n
 [

G
B

]

Figure 2.15 – Memory consumption of LegoBase(Opt/C) for the TPC-H queries.

operators, but the performance improvement gained varies significantly, by 10.4×, 1.4× and

7.5×, respectively. In addition, it is our observation that the benefit of inlining depends on

which operators are being inlined. This is an important observation, as for very large queries,

the compiler may have to choose which operators to inline (e.g. to avoid the code not fitting

in the instruction cache). In general, when such cases appear, we believe that the compiler

framework should merit inlining joins instead of simpler operators (e.g. scans or aggregations).

Finally, for the column layout optimization (not shown), the performance improvement is

generally proportional to the percentage of attributes in the input relations that are actually

used. This is expected as the benefits of the column layout are evident when this layout

can “skip” loading into memory a number of unused attributes, thus significantly reducing

cache misses. Synthetic queries on TPC-H data referencing 100% of the attributes show that,

in this case, the column layout actually yields no benefit, and it is slightly worse than the

row layout. Actual TPC-H queries reference 24% - 68% of the attributes and, for this range,

the optimization gives a 2.5× to 1.05× improvement, which degrades as more attributes are

referenced.

2.4.6 Memory Consumption and Overhead on Input Data Loading

Figure 2.15 shows the memory consumption of LegoBase(Opt/C) for all TPC-H queries. We

use Valgrind for memory profiling as well as a custom memory profiler, while the JVM is

always first warmed up. We make the following observations. First, the allocated memory is at

most twice the size of the input data for all TPC-H queries (16GB of memory for 8GB of input

data for all relations), while the average memory consumption is only 1.16× the total size of

the input relations. These results suggest that our approach is usable in practice, as even for

complicated, multi-way join queries the memory used remains relatively small. The additional

memory requirements come as a result of the fact that LegoBase aggressively repartitions

input data in many different ways (as was described in Section 2.3.2) in order to achieve

46



2.4. Experimental Evaluation of LegoBase

 1

 2

 4

 8

 16

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Lo
a
d
in

g
 S

lo
w

d
o
w

n

Figure 2.16 – Slowdown of input data loading occurring from applying all LegoBase optimiza-
tions to the C programs of the TPC-H workload (scaling factor 8).

optimal performance. Second, when all optimizations are enabled, LegoBase consumes less

memory than the total size of the input data, for a number of queries. For instance, Q16

consumes merely 2GB for all necessary data structures. This behavior is a result of removing

unused attributes from relational tables as well as of compressing attributes of string type

when loading the input data. In general, it is our observation that memory consumption grows

linearly with the scaling factor of the TPC-H workload.

In addition, we have mentioned before that applying our compiler optimizations can lead

to an increase in the loading time of the input data. Figure 2.16 presents the total slow-

down on input data loading when applying all LegoBase optimizations to the generated C

programs (LegoBase(Opt/C)) compared to the loading time of the unoptimized C programs

(LegoBase(Naive/C)). We observe that the total time spent on data loading, across all queries

and with all optimizations applied, is not (excluding Q13 which applies the word-tokenizing

string dictionary) more than 1.5× that of the unoptimized, push-style generated C code. This

means that while our optimizations lead to significant performance improvement, they do

not affect the loading time of input data significantly (there is an average slowdown of 1.88×
including Q13). Based on these observations, as well as the absolute loading times presented

in Appendix A, we can see that the additional overhead of our optimizations is not prohibitive:

it takes in average less than a minute for LegoBase to load the 8GB TPC-H dataset, repartition

the data, and build all necessary auxiliary data structures for efficient query processing.

47



Chapter 2. Efficient and High-Level Query Engine
N
o
rm
a
liz
e
d

 
E
x
e
c
u
tio
n

 
T
im
e

LegoBase - SF8 LegoBase - SF16 LegoBase - SF32 LegoBase - SF64

 0.5

 1

 2

 4

 8

 16

 32

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Figure 2.17 – The normalized query execution time for various scaling factors. The baseline is
the execution time of the most optimized LegoBase using scaling factor 8 for each query.

2.4.7 Scalability Evaluation

Figure 2.17 shows the normalized query execution time of the most optimized generated code

of LegoBase for different scaling factors for all TPC-H queries.31

Based on this experiment, we observe an almost linear increase in the query execution time,

as we increase the size of input data, for most TPC-H queries. Note also that queries that

perform aggressive data-structure repartitioning in LegoBase, such as Q21, currently do not

scale linearly due to the increased memory pressure caused by the repartitioning. We plan to

investigate implementing additional optimizations to handle these cases in future work.

In general, this experiment shows that LegoBase can scale to handle big datasets, as long as

there is a sufficient amount of memory available for storing the original data, as well as the

auxiliary repartitioned data.

2.4.8 Productivity Evaluation

An important point of this thesis is that the performance of query engines can be improved

without much programming effort. Next, we present the productivity/performance evaluation

of our system, which is summarized in Table 2.3.

We observe three things. First, by programming at the high level, we can provide a fully func-

tional system with a small amount of effort. Less development time was spent on debugging

the system, thus allowing us to focus on developing new useful optimizations. Development of

the LegoBase query engine alongside the domain-specific optimizations required, including

debugging time, eight months for only two programmers. However, the majority of this effort

was invested in building the new optimizing compiler SC (27K LOC) rather than developing

31As we explained in the previous section, the total memory consumption can reach up to twice the size of
the input data. In addition, the input data is stored in a Linux ramdisk (as explained in Section 2.4.1), which
by construction consumes memory space equal to the size of the input data. Hence, it is not currently possible
for us to perform experiments for scaling factor 128 or higher. This is because a scaling factor of 128 would, for
example, require a total of up to 384 GB of memory (128GB for the ramdisk, plus 256GB for LegoBase, while our
experimental platform has a total RAM size of 256GB).

48



2.4. Experimental Evaluation of LegoBase

Data-Structure Partitioning 505
Automatic Inference of Date Indices 318
Memory Allocation Hoisting 186
Column Store Transformer 184
Constant-Size Array to Local Vars 125
Flattening Nested Structs 118
Horizontal Fusion 152

Scala Constructs to C Transformer 793
Scala Collections to GLib Transformer 411
Scala Scanner Class to mmap Transformer 90

Other miscellaneous optimizations ≈ 200

Total 2930

Table 2.3 – Lines of code of several transformations in LegoBase with the SC compiler.

the basic, unoptimized, query engine itself (1K LOC).

Second, each optimization requires only a few hundred lines of high-level code to provide

significant performance improvement. More specifically, for ≈3000 LOC in total, LegoBase

is improved by 45.4× compared to the performance of DBX, as we described previously.

Source-to-source compilation is critical to achieving this behavior, as the combined size of

the operators and optimizations of LegoBase is around 40 times less than the generated code

size for all 22 TPC-H queries written in C.

Finally, from Table 2.3 it becomes clear that new transformations can be introduced in SC with

relative small programming effort. This becomes evident when one considers complicated

transformations like those of Automatic Index Inference and Horizontal Fusion32 which can

both be coded for merely ≈500 lines of code. We also observe that around half of the code-base

required to be introduced in SC concerns converting Scala code to C. However, this is a naïve

task to be performed by SC developers, as it usually results in a one-to-one translation between

Scala and C constructs. More importantly, this is a task that is required to be performed only

once for each language construct, and it needs to be extended only as new constructs are

introduced in SC (e.g. those required for custom data types and operations on those types).

2.4.9 Compilation Overheads

Finally, we analyze the compilation time for the optimized C programs of LegoBase(Opt/C) for

all 22 TPC-H queries. Our results are presented in Figure 2.18, where the y-axis corresponds to

32To perform a decent loop fusion, the short-cut deforestation is not sufficient. Such techniques only provide
vertical loop fusion, in which one loop uses the result produced by another loop. However, in order to perform
further optimizations one requires to perform horizontal loop fusion, in which different loops iterating over the
same range are fused into one loop [29, 124]. A decent loop fusion is still an open topic in the PL community [325,
71, 121].

49



Chapter 2. Efficient and High-Level Query Engine

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

C
o
m

p
ila

ti
o
n
 t

im
e
 (

se
co

n
d
s)

SC Optimization
CLang C Compilation

Figure 2.18 – Compilation time (in seconds) of all LegoBase(Opt/C) programs.

the time to (a) optimize an incoming query in our system and generate the C code with SC,

and, (b) the time CLang requires before producing the final C executable.

We see that, in general, all TPC-H queries require less than 1.2 seconds of compilation time.

We argue that this is an acceptable compilation overhead, especially for analytical queries

like those in TPC-H that are typically known in advance and which process huge amounts

of data. In this case, a compilation overhead of some seconds is negligible compared to the

total execution time. This result proves that our approach is usable in practice for quickly

compiling entire query engines written using high-level programming languages. To achieve

these results, special effort was made so that the SC compiler can quickly optimize input

programs. More specifically, our progressive lowering approach allows for quick application of

optimizations, as most of our optimizations operate on a relatively small number of language

constructs, thus making it easy to quickly detect which parts of the input program should

be modified at each transformation step, while the rest of them can be quickly skipped. In

addition, we observe that the CLang C compilation time can be significant. This is because,

by applying all the domain-specific optimizations of LegoBase to an input query, we get an

increase in the total program size that CLang receives from SC.

Finally, we note that if we generate Scala code instead of C, then the time required for compiling

the final optimized Scala programs is 7.2× that of compiling the C programs with LLVM. To

some extent this is expected as calling the Scala compiler is a heavyweight process: for every

query compiled there is significant startup overhead for loading the necessary Scala and Java

libraries. By just optimizing a Scala program using optimizations written in the same level

of abstraction, our architecture allows us to avoid these overheads, providing a much more

lightweight compilation process.

50



2.5. Conclusions

2.5 Conclusions

LegoBase is a new analytical database system currently under development. In this thesis, we

presented the current prototype of the query execution subsystem of LegoBase. Our approach

suggests using high-level programming languages for DBMS development without having

to pay the associated abstraction penalty. This vision has been previously called abstraction

without regret. The key technique to admit this productivity/efficiency combination is to

apply generative programming and source-to-source compile the high-level Scala code to

efficient low-level C code. We demonstrate how state-of-the-art compiler technology allows

developers to express database-specific optimizations naturally at a high level as a library and

use it to optimize the database systems code. In LegoBase, programmers need to develop just

a few hundred lines of high-level code to implement techniques and optimizations that result

in significant performance improvement. All these properties are very hard to achieve with

existing compilers that handle only queries and which are based on template expansion. Our

experiments show that LegoBase significantly outperforms both a commercial in-memory

database system as well as an existing query compiler.

51





3 Modular Query Compiler

A language that doesn’t have everything is actually easier to program in than some

that do.

– Dennis M. Ritchie

This chapter studies architecting query compilers. The state of the art in query compiler

construction is lagging behind that in the compilers field. We attempt to remedy this by

exploring the key causes of technical challenges in need of well founded solutions, and by

gathering the most relevant ideas and approaches from the PL and compilers communities

for easy digestion by database researchers. All query compilers known to us are more or less

monolithic template expanders that do the bulk of the compilation task in one large leap.

Such systems are hard to build and maintain. We propose to use a stack of multiple DSLs

on different levels of abstraction with lowering in multiple steps to make query compilers

easier to build and extend, ultimately allowing us to create more convincing and sustainable

compiler-based data management systems. We attempt to derive our advice for creating such

DSL stacks from widely acceptable principles. We have also re-created the LegoBase query

engine following these ideas and report on this effort.

3.1 Introduction

Query compilation has been with us since the dawn of the relational database era: IBM’s

System R employed query compilation in its very first prototype, but this approach was

quickly abandoned in favor of query interpretation [53]. Recently, query compilation has

returned to the limelight, with commercial systems such as StreamBase, IBM Spade, Microsoft’s

Hekaton, Cloudera Impala, and MemSQL employing it. Academic research has also intensified

[134, 10, 202, 208, 255, 203, 204, 205, 199, 352, 74, 252, 185, 19].

We can argue that, despite all this recent work, the state of the art in the design of query

compilers lags behind the programming languages and compilers research field. To the best

of our knowledge, all existing query compilers are template expanders at heart. A template

53



Chapter 3. Modular Query Compiler

expander is a procedure that, simply speaking, generates low-level code in one direct macro

expansion step. While a query interpreter calls an operator implementation used inside a

query plan, the template expander essentially inlines the operator code in the plan, for each

operator, to obtain low-level code for the entire plan. We restrict our study to the actual

compiler component of a possibly larger data management system. For instance, a system

which first parses SQL into query plans and optimizes these Selinger-style, then feeds such

plans to a compiler which generates LLVM bytecode, which is in turn lowered to machine code

by LLVM, is still a template expander if that core compiler component – into which all of the

DBMS engineering team’s compiler efforts went – is sufficiently primitive, even if more than

two languages and abstraction levels are present in the system as a whole.

Template expansion is a robust and intellectually accessible concept, but it has a number of

drawbacks. The System R team reports that query compilation was abandoned in favor of

interpretation since query compiler code was hard to maintain (cf. [53]). More fundamentally,

template expanders make it impractical to support a range of sophisticated optimizations

since multiple code transformers (with different optimization roles) have to be composed

and inlined in all possible ways and orderings, causing a code size explosion in compiler

code bases. Furthermore, template expanders make cross-operator code optimization hard to

implement [199]1.

To illustrate the above-mentioned code explosion further, consider the example of a template

expander that is to support two transformations: 1) pipelining (i.e. removing the need to

materialize intermediate results between query operators) and 2) data-structure specialization

(i.e. adapting the definition of a data structure to the particular context in which it is used). In

order to perform these two optimizations together, one has to implement every combination

of their respective cases. For example, if each optimization handles 3 different cases, one

has to create a template expander with 9 cases to handle their combination. In general, the

code complexity grows exponentially with the depth of the stack of desired transformations.

Figure 3.1a illustrates this code explosion.

System R’s initial query compiler as well as Hekaton are confirmed template expanders (cf.,

[53] and a private communication with the Hekaton team). While academic work makes

numerous contributions to the practice of query compilers, it is fair to say that creating a

query compiler that produces highly optimized code is a formidable challenge due to the

needs to work with various Domain-Specific Languages (DSLs), understand their optimization

potentials, and build on the wealth of algorithmic and systems results created by the research

over multiple decades. The database community can profit from further tools and techniques

from the compilers field.

In this chapter, we provide, to the best of our knowledge, the first principled methodology for

building query compilers.

1The key contribution of [255] is to show how a push operator interface can eliminate the need for cross-operator
fusion transformers, making template expanders produce faster code.

54



3.1. Introduction

We create tools and techniques to increase the modularity of query compiler components,

to manage the complexity of these systems. Instead of using template expansion to directly

generate low-level code from a high-level query plan, we propose progressively lowering

the level of abstraction until we reach the lowest level, and only then generating low-level

code. Each level of abstraction and each associated optimization can be seen as independent

modules, enforcing the principle of separation of concerns. There are two kinds of code

transformations, optimizations (where the source and target DSLs are the same) and lowerings.

By supporting optimizations on every abstraction level, we obtain real power – moving to a

lower-level DSL tends to expand the code size and there is a tradeoff between the search space

for optimizations and the granularity of the DSL. Optimizations such as join reorderings are

only feasible in high-level DSLs, while register allocation decisions can only be expressed in

very low-level DSLs. We propose to use a stack of multiple internal DSLs, one for each such

abstraction layer. We attempt to derive our advice for creating such DSL stacks from easily

acceptable principles.

Returning to the above example, we can define a third intermediate abstraction level, a data-

structure aware DSL, to place between the source and target languages. Pipelining transforms

a high-level query plan to that intermediate language which has explicit constructs for the

operations on the hash-table and list data structures. Then, data-structure specialization

transforms the program from this language to low-level code by using an appropriate im-

plementation of each data structure based on its context. Using this intermediate DSL and

stepwise lowering, there is no longer any need to consider every combination of the two

optimizations, as they no longer interfere by manipulating the same expression. As a result,

the complexity of the query compiler code base is more manageable, as demonstrated in

Figure 3.1b.

Creating a sophisticated query compiler is a challenging undertaking, and there are a number

of results from the PL and compilers research communities that can help. We explore the

key technical challenges in need of well founded solutions, and attempt to gather the most

relevant ideas and solution approaches from the PL and compilers communities for easy

digestion by database researchers. Specifically, we look at the choice of intermediate languages,

how to maximize the separation of concerns among compiler optimizations and lowerings,

implementation design choices, and several transformations expressible using this approach.

Throughout this chapter, we use the Scala language for our examples and for embedding

our DSLs, but nowhere does this work specifically depend on this choice of programming

language.

This is an atypical work in that our main contributions are hard to experimentally validate.

Our insights are based on building four distinct compiler-based data management systems

over the past seven years, but creating query compilers with a maximally shared codebase for

the multitude of alternatives discussed in this thesis is beyond the resources of any research

group.

55



Chapter 3. Modular Query Compiler

(a) Pipelining and data-structure specialization
are applied concurrently. Hence, we should ap-
ply brute-force to all combinations, resulting in
code explosion.

(b) Pipelining and data-structure specialization are
applied sequentially. Hence, there is no need to
consider all combinations, resulting in managed
code base.

Figure 3.1 – Handling concurrent optimizations in template expansion and progressive compi-
lation approaches.

Instead, we have re-created a well-known query compiler [199] following our ideas – our DSL

stack with stepwise lowering – and report on this effort. We report on the productivity of

creating this compiler using a suitable DSL compiler framework [100], and show that we are

able to implement all the optimizations of [199] (and more), obtaining at least comparable

and often better performance.

3.2 Overall Design Principles

3.2.1 Background

Most database management systems to date use high-level DSLs such as SQL to express

queries. Those queries are transformed into optimized physical query plans, and then passed

to an engine that interprets them. This approach pays the cost of interpretation overhead,

and many low-level optimization opportunities are missed (e.g. function inlining), because

they are not expressible in the high-level DSL of query plans. These sources of overhead may

become especially significant for queries working with in-memory data, where computation

is increasingly CPU-bound (rather than I/O-bound). To circumvent these limitations, query

compilation aims to generate low-level code from the high-level query plans, allowing specific

optimizations to be applied at this low-level representation2.

However, by directly generating low-level code, we also miss optimization opportunities that

are both not available at the high level, and hard to express at the low level – mainly because

2 In this work, we consider compilation as a form of partial evaluation [172]. A compiler-based approach can
always delay some of this partial evaluation to runtime, in which case the nature of the system moves, at least in
some aspect, from compilation to interpretation. A strict choice of either one or the other at design time is not,
however, necessary. More concretely, there are scenarios where compilation staging, just-in-time compilation, or
even interpretation are desirable: if some essential piece of information that can substantially speed up evaluation
is not available at compile time, it is better to delay this partial evaluation until that information is available. The
classical example is probably statistics for query optimization. Even a compilation-based query engine cannot
afford to go without a query optimizer.

56



3.2. Overall Design Principles

the locality of code patterns to match is lost. For example, loop fusion (i.e. replacing multiple

loops with a single one) is not expressible in query plans, as there is no notion of loop at this

abstraction level. Also, it is proven to be NP-complete [80, 192] and impractical in imperative

languages such as C [114], the usual target of query compilers.

We propose the introduction of intermediate abstraction levels (referred to as intermediate

DSLs) for expressing such optimizations. This has already been done in other domains, such

as signal transforms and linear algebra. In these domains, we can cite the Σ-SPL [114] and

Σ-LL [309] intermediate languages, which have been developed in Spiral [277] for expressing

loop fusion optimizations.

In this work, we show that by using several abstraction levels and by doing step-wise lowering

across them, we can express powerful optimizations (such as pipelining and data-structure

synthesis) that are hard or impossible to express in existing query compilation approaches.

The resulting set of DSLs, ordered from higher level to lower level, is referred to as the DSL

stack.

3.2.2 Choosing The DSLs

Although the design space for a DSL stack may seem overwhelming, there are several con-

straints that make some design choices impractical, or even infeasible. These directions can

be discarded. Among these constraints, there is an important principle for designing inter-

mediate abstraction levels related to the expressive power of programming languages, in the

sense of Felleisen [108]:

Expressibility principle: Any program written in a given DSL should be expressible

in any of the lower-level DSLs as well. Therefore, by lowering the level of abstraction

from the former to the latter, one should retain the same expressive power or gain

more.

Note that the converse does not need to hold: a program in a low-level DSL does not need

to be expressible in higher-level DSLs. Based on the expressibility principle, we can start

designing an appropriate DSL stack. For that, we need to answer the following questions: 1)

What abstraction levels (DSLs) do we need? 2) On which abstraction level(s) should we put

each transformation?

We propose a methodology that naturally answers both questions at the same time: to design

a DSL stack, one should start from the simplest stack possible (a high-level DSL that maps

directly to a low level one), then iteratively examine the desired transformations one by one

and see if the existing DSL stack is sufficient for it or if a new abstraction level needs to be

introduced.

57



Chapter 3. Modular Query Compiler

Every transformation requires an input program in a source language and produces a program

in a target language. If the source language and the target language are the same, the transfor-

mation is called an optimization, whereas if the target language is at lower level, it is called

a lowering transformation. We will see in the next section why the source language is never

going to be lower-level than the target language.

Optimizations are subject to the well-known phase-ordering problem [342]: most optimiza-

tions can produce opportunities for other optimizations that apply to the same language, but

it is not clear how to order them optimally. This problem is still a topic of research in the

Programming Language community, and no definitive answer has been formulated yet.3 To

mitigate this, we recursively apply optimizations inside the same abstraction level until we

reach a fixed point,4 where either no more optimizations can be applied or the application

of an optimization does not yield structurally different code. On the other hand, lowering

transformations are not subject to this issue, because they change the abstraction level of the

program so previous optimizations are no longer applicable.

Note that lowering transformations should always be applicable, irrelevant of the input pro-

gram. Otherwise, the transformation chains would be broken. In contrast, optimizations may

or may not be applicable, depending on the information and patterns found in the program

being optimized.

3.2.3 Constructing The Stack

For the DSL stack to be well-formed and to maximize the reuse of transformations, we need to

ensure that transformations are not redundant. Each lowering transformation translates a

DSL to the next lower-level DSL, and each high-level DSL program is, through a sequence of

lowerings, eventually mapped to the target language. This requirement is summarized in the

following principle:

Transformation cohesion principle: Between any two DSLs of different abstrac-

tion levels, there should be a unique path of lowering transformations translating

programs in the higher-level DSL into programs in the lower-level one.

Notice that this does not prevent having several different high-level front-end DSLs, or different

low-level target languages. On the other hand, the principle implies that there can be no

transformations from a given DSL a to a higher-level DSL b, as there would also need to be

a path down from b to a, creating a loop, and thus an infinity of lowering paths from b to a,

violating the principle.

3 Online (or local) transformations do help removing ordering problems for a certain class of optimizations [173].
We provide facilities (cf. [50]) to encode them in our framework, but this is out of the scope of the current chapter.

4 Special care needs to be taken in the design of optimizations to ensure that iteratively applying them leads to
termination.

58



3.3. Design Space

Let us consider the case where we need to introduce a new abstraction level, which mainly hap-

pens when we have more than one lowering transformation between two particular DSLs. In

such a case, we have to split either the source language or the target language into two separate

languages. The new intermediate language should follow the expressibility principle, interpo-

lating between the level above and below. Furthermore, the affected transformations should

update their source or target languages: optimizations on the source and target languages,

and the lowering transformations from the source to the target language. This update in the

existing lowering transformations is necessary as, otherwise, the transformation cohesion

principle would be violated.

Going back to our working example, consider a query compiler with SQL as the query language,

C as the target language, and pipelining and data-structure specialization as transformations.

First, we start from a two-level DSL stack, as shown in Figure 3.1a.

Second, we consider where to place the pipelining transformation. The information required

for checking the applicability of pipelining is available in SQL. However, it is very hard to

check such opportunities in a low-level language like C. Expressing a pipelined program is not

possible in SQL. This requires the expressibility of a lower language, like C in this case. Hence,

pipelining is a lowering transformation from SQL to C.

Finally, we examine the existing DSL stack (which is still two levels till now) for adding data-

structure specialization. Similar to pipelining, this transformation is a lowering from SQL to C.

This is because we need the high-level information available in SQL, but also a way to explicitly

represent data structures (not possible in SQL). We now have two lowering transformations

from SQL to C. This means we should break one of these languages into two languages to

modularize these two transformations. In this case, we break C into two languages: 1) Data-

structure-aware C, which is an extension to the standard C language with specific constructs

for the data structures of a query engine, and 2) The standard C language. Data-structure

specialization can now use data-structure-aware C as its source language and low-level C as

its target language. At last, all transformations which had C as their source or target language

should be updated accordingly. In this case, pipelining should update its target language

in order to follow the transformation cohesion principle. Pipelining can be expressed in

data-structure-aware C as well. Hence, the pipelining transformation is now a lowering

transformation between SQL and data-structure-aware C. The new DSL stack is shown in

Figure 3.1b.

In the next section, we further discuss the design space as well as compilation concerns for

different DSL stacks.

59



Chapter 3. Modular Query Compiler

Paradigm Advantages
Declarative X Concise programs

X Small search space of equivalent programs
X Simple to analyze and verify
X Simple to parallelize

Imperative X Efficient data structures
X Precise control of runtime constructs
X More predictable performance

Table 3.1 – Comparison of declarative and imperative languages

3.3 Design Space

3.3.1 Imperative vs. Declarative

So far, we have been referring to high-level and low-level languages without providing a clear

definition for these terms. A more precise terminology would have us use declarative and

imperative instead, although these do not always coincide. This dichotomy is not the only

criterion to take into account while designing abstraction levels, but it does play a central role,

as we will see. In a declarative language, programs are close to specifications of the results we

want to compute, while in an imperative language, details about how the result is computed

are made explicit. The latter usually involves the use of side-effects like mutation. Table 3.1

summarizes the important differences between these two approaches.

Different mixes of declarative and imperative features in a DSL are amenable to different

optimizations, and require different compilation techniques. Programs in high-level languages

are smaller, and the search space of semantically equivalent programs is therefore more

manageable. This allows us to use search strategies similar to the ones query optimizers use.

These result in global optimizations that have more impact on the resulting program than

optimizations on low-level programs, since an expression in a high-level program corresponds

to many low-level expressions.

Moreover, high-level languages usually target specific domains – in our case, query processing.

As a result, they need not be as complete and powerful as general-purpose languages: like

SQL, they do not even need to be Turing-complete [222]. This allows compilers to provide

more guarantees, and to perform better reasoning, static analysis, and optimization [346]. For

example, it is feasible to statically reason about the runtime cost of a SQL query with typically

good or acceptable accuracy. This is not possible in low-level Turing-complete languages

without actually running the program [201].

Since low-level programs are larger, there is a large number of equivalent low-level programs.

This makes the use of search techniques [201] impractical, preventing the global optimization

of these programs. Instead, optimizing compilers usually perform only local optimizations

(typically, so-called “peephole” optimizations, that only consider a small part of the program

60



3.3. Design Space

at a time).

In the rest of this section, we see how to design our intermediate DSLs to integrate more or

less imperative and declarative features, depending on the type of optimizations we want to

perform on them. Then, we discuss different possible Intermediate Representations (IRs) to

encode programs written in these DSLs.

3.3.2 DSL Design and Optimization

Functional languages are a particularly important class of declarative languages. We use

functional features to represent the declarative aspects of our DSLs for several reasons: first,

these languages are easy to understand and to reason about, possibly reusing frameworks

developed in the PL community [52]; second, functional constructs integrate well with im-

perative ones [265], supporting our goal of progressively turning programs from a declarative

to an imperative form; finally, the hybrid Scala programming language, which we use in our

framework, naturally allows such a mix of functional and imperative code.

Although functional programs are executable, they introduce a relatively heavy performance

penalty and do not allow enough control on runtime constructs. This prevents the fine tuning

of program performance. For example, standard functional data structures are immutable,

and do not allow in-place modification of their elements, requiring copies instead. Without

aggressive optimizations like deforestation [357], this translates into many unnecessary al-

locations and copies. Therefore, we need to lower these high-level declarative constructs

into specific, optimized imperative representations. Such representations are close to the

underlying architecture, providing opportunities for fine-grained performance tuning.

On the other hand, imperative programs that exhibit poor performance are harder to optimize.

For example, detecting loop fusion opportunities is much harder in imperative programs

than in functional ones. If the loops in an imperative program are not manually fused by the

programmer, there is little chance that the compiler will be able to fuse them automatically.

The reason is that optimizing imperative programs with side effects is notoriously hard [20],

chiefly because the compiler has to reason about aliased mutable memory locations, a problem

that has been shown to be intractable in general [281]. This has implications on low-level

optimizations.

For example, consider a for loop written in C that only manipulates local variables. Modern

compilers know how to optimize such constructs in near-optimal, almost unbeatable ways.

But as soon as one introduces non-trivial function calls inside the loop, the compiler’s bets are

off and many automatic rewritings become impossible. Consider the following code:

for (int i = 0; i < size(str); i++) { str[i] = ’X’; }

In general, a compiler must not assume that it is safe to extract the call to size(str) out of

the loop, because the way it is computed could be influenced by assignments performed inside

61



Chapter 3. Modular Query Compiler

the loop body. In fact, for the particular case where str is a simple C string, the compiler

cannot know that we are not going to override the string termination character while iterating

over the string (which would change the result of a subsequent call to size).5 This would

prevent the compiler from implementing resetting the characters of a string as an efficient

memset instruction.

In this context, human expertise becomes important again. Based on domain-specific knowl-

edge, one can make assumptions that low-level C compilers cannot, even after expensive

program analyses that try to recover high-level information from the low-level code. Since

we progressively lower abstraction one step at a time, we can exploit as many optimization

opportunities as possible along the way. Our framework allows the expression of effectful com-

putations, but can still reason about code that is known to be pure, and our transformations

can leverage invariants that are known to hold in the intermediate DSLs.

Next, we discuss various intermediate representation choices for each abstraction level.

3.3.3 Intermediate Representation

Compilers usually convert input programs, given as text strings, into an Intermediate Represen-

tation (IR) which contains all essential information available about the program after parsing6.

Optimizing compilers use IRs to facilitate the definition and application of optimizations.

The simplest form of an IR is an Abstract Syntax Tree (AST). In database management systems,

an AST represents a query in relational algebra or its physical plan. This representation is

sufficient for performing algebraic rewrite rules on such algebraic languages without variable

bindings. Examples of transformations include pushing down selections or changing the join

order in relational algebra. As an example, Stratego [354] uses ASTs for its IR.

However, there are optimizations that require more sophisticated IRs. For example, Common

Subexpression Elimination (CSE) involves sharing leaves among sub-trees, which calls for

a DAG rather than a tree representation, or equivalently a language with variable bindings

(cf. [11, 127]).

Furthermore, as the language becomes more complicated (e.g., through the introduction of

mutability), programs start requiring data-flow analysis [180, 179, 190] to check for the applica-

bility of optimizations. Performing data-flow analysis for every independent optimization that

requires it results in more analysis passes than necessary and is difficult to implement, debug,

and maintain [340]. Hence, the need to replace plain ASTs with a data structure that stores the

result of data-flow analysis, as a better representation on which to apply optimizations.

5A special case could be added in the compiler to handle this particular example, but this approach does not
scale, as the general problem is undecidable.

6Observe that different DSLs or abstractions levels may use the same IR as their underlying data structure;
however, the information (DSL constructs) encoded using these IRs may vary significantly.

62



3.3. Design Space

There are several IRs proposed in the PL community which simplify data-flow analysis, chief

among them 1) SSA [292, 76], 2) CPS [17, 189], and 3) ANF [110]. hese IRs encode data-flow

information by converting a given program into a canonical representation. For example, in all

of these IRs, every subexpression in a program is bound to a local variable, and reassignment

to these variables is not allowed (i.e. they are immutable) [52]. Although it has been proven

that these IRs are semantically equivalent [110, 16, 188], from a practical point of view there

are advantages and disadvantages for using each one. Even in the PL community, there is no

consensus on which IR is the best [189, 110, 52]. It is, however, undisputed in the PL community

that a simple use of ASTs, the dominant choice in work by the database community, creates

the problems mentioned before and is inferior to these three for many uses.

All DSLs in our stack use A-normal form (ANF) [110]. The reasons for using ANF can be

summarized as follows: first, ANF simplifies data-flow analysis by allowing a single definition

of variables [52], which has a great impact on simplifying optimizations that use data-flow

information, such as CSE – indeed, it facilitates the mix of effectful and pure computations,

and has been shown to make optimizing transformations and analyses easier to write [25];

second, both ANF and SSA preserve the natural organization of programs (called “direct-

style”), making them more understandable than CPS (which uses “continuation-passing style”,

whereby functions call continuations instead of returning values [110]); third, as ANF is a

direct-style representation of λ-calculus [110], there are very well-known frameworks for the

analysis and verification of λ-calculus developed in the PL community [217]. Hence, reasoning

about compiler optimizations in ANF is simpler [52]; finally, by converting many semantically

equivalent programs into a canonical representation, expressing optimizations becomes

simpler [195], as there is no more any need to express optimizations for all semantically

equivalent cases: it suffices to only express one for the canonical form.

ANF is better illustrated with an example. Consider the following expression which represents

a part of an aggregation:

agg1 += R_A * R_B
agg2 += R_A * R_B * (1 - R_C)
agg3 += R_D * (1 - R_C)

After converting to ANF, all operators should accept either a constant or a local variable. Hence,

every arithmetic operation is converted to a version which uses the local variable bound to its

arguments. The ANF representation of this expression is as follows:

val x1 = R_A * R_B
agg1 += x1
val x2 = 1 - R_C
val x3 = x1 * x2
agg2 += x3
val x4 = R_D * x2
agg3 += x4

While converting a subexpression to an immutable variable, one can look up the mappings

63



Chapter 3. Modular Query Compiler

between the existing variable bindings and their corresponding subexpressions. If there is

already a subexpression with the same operator and the same arguments, then the existing

bound variable can be reused. This provides CSE for free. In the previous example, the

expression R_A * R_B is computed once and is used twice for both agg1 and agg2. The

same happens for 1 - R_C in both agg2 and agg3. Observe that this optimization is only

one of the advantages of the ANF form.

Finally, we encode additional information (other than data-flow information) about the ex-

pressions in the IR. There are cases in which we need some high-level information about the

expressions which is not available in the current abstraction level. Such information can be

guided through annotations from a higher level of abstraction. Note that since ANF assigns a

unique symbol to each subexpression, this process is simplified by keeping a hash-table from

these unique symbols to their associated annotations.

There are other IRs proposed in the literature, which mainly target optimizations for parallel

architectures (e.g. PDG [109]), or are meant to help and combine compiler optimizations (e.g.

a sea of IR nodes [67] and E-PEG [331]). However, these IRs complicate the debugging process

of program compilation, and are seldom used in real-world, mainstream compilers [313].

Although we did not consider using these IRs, it would be an interesting direction for our

future work, particularly when targeting parallel architectures.

3.4 DSL Stack

In this section, we present the construction of our DSL stack by progressively refining a naïve

two-level stack consisting of query plans and C, respectively the source and target languages

commonly used in existing query compilers. We progressively add intermediate abstraction

levels to perform new optimizations in a modular way, as described in Section 3.2. Finally, we

demonstrate the straightforward addition of a new front-end language which reuses the lower

abstraction levels already defined in the DSL stack, thereby benefiting from all transformations

that apply to them.

Scala DSLs. Figure 3.3 shows the final DSL stack. On the right, we show which constructs are

added and removed by each intermediate DSL. Scala is the implementation language of the

framework, and we use a subset of its features to encode intermediate DSLs as well. We refer to

the main subset as ScaLite. We write ScaLite[X,Y,...] to denote ScaLite augmented with features

X, Y, etc. QPlan and QMonad are Scala DSLs used as two possible front-ends for the DSL stack.

ScaLite[Map, List] and ScaLite[List] are intermediate, data-structure-aware DSLs used for

specializing the abstract hash table and list data structures. As we will see, we enforce more

restrictions on higher-level DSLs, so that for example, restricted mutability makes ScaLite[Map,

List] in fact less expressive than ScaLite[List], where mutable Maps can be implemented

directly. In ScaLite, all data structure are completely implemented in the language itself, but

the memory is assumed to be managed by the garbage collector of a runtime system (e.g.

64



3.4. DSL Stack

the JVM). Finally, C.Scala is another Scala DSL that expresses C constructs, and in particular

memory manipulation constructs, so a program written in C.Scala is equivalent to a C program,

modulo a straightforward syntactic transformation (called stringification or unparsing).

The advantage of using Scala to host these DSLs (we say they are embedded [158] in Scala)

is that we benefit from its compilation tool-chain: parsing, type-checking, execution and

debugging. Indeed, each DSL is executable as a Scala program, with low performance but im-

proved debugging possibilities. Note that these DSLs could be designed in other programming

languages (e.g., quoted DSLs [253] in Haskell) or as external DSLs if one is willing to build the

compilation tool-chain from scratch.

Example Query. We use one query as a running example for demonstrating transformations.

The query is shown in SQL and expressed in each intermediate DSL (with Scala syntax) in

Figure 3.2.

3.4.1 Two-Level Stack (QPlan & C)

This is the two-level stack corresponding to existing query compilers, which are template-

based.7 The high-level DSL is an algebraic representation of query operators. A query optimizer

typically finds the best query plan for a given SQL query, and produces a program in this

declarative DSL. The low-level DSL is an architecture-dependent language that can express

implementation details useful for tuning performance. Typical choices include C and LLVM

IR.

QPlan. The QPlan DSL contains query plan operators typically encountered in various com-

mercial database systems, including semi-, anti- and outer joins. These operators are sufficient

for expressing a large class of SQL queries, including the 22 TPC-H [343] queries.

C.Scala. C.Scala is an extension of ScaLite with basic memory management constructs (e.g.

malloc and free) and memory referencing constructs (pointers and pointer arithmetic). We

use the GLib data structures to represent dynamic Arrays and sorted lists (as binary search

trees).

Transformations. At this stage, we perform pipelining while producing C.Scala code, either

by pulling [128] or pushing [255] data. With this approach, we remove many materialization

points, which results in improved data locality and I/O costs. This transformation is discussed

further in Section 3.5.1.

7 A state-of-the-art database system will often manipulate SQL, relational algebra and basic query plans before
handing the result to the query compiler, but these are not seen by the query compiler, and are thus not considered
in this chapter.

65



Chapter 3. Modular Query Compiler

SELECT COUNT(*)
FROM R, S
WHERE R.name == "R1"
AND R.id == S.id

(a) The example query in SQL.

AggOp(HashJoinOp(
SelectOp(ScanOp(R),
r => r.name == "R1"),

ScanOp(S),
(r,s) => r.id == s.id

), (rec, count) => count + 1)

(b) The example query in QPlan.

R.filter(r =>

r.name == "R1"
).hashJoin(S,
r => r.sid, s => s.rid

).count

(c) The example query in QMonad.

val hm = new MultiMap[Int,R]

for(r <- R) {
if(r.name == "R1") {

hm.addBinding(r.id, r)

}
}
var count = 0
for(s <- S) {

hm.get(s.id) match {
case Some(rList) =>

for(r <- rList) {
if(r.id == s.id)

count += 1
}

case None => ()
} }
return count

(d) The example query in
ScaLite[Map, List].

val MR: Array[Seq[R]] =
new Array[Seq[R]](BUCKETSZ)
for(r <- R) {
if(r.name == "R1") {

MR(r.id) += r

}
}
var count = 0
for(s <- S) {

val rList = MR(s.id)
for(r <- rList) {
if(r.id == s.id)
count += 1

}
}
return count

(e) The example query in
ScaLite[List]. Note that List is a
mutable data structure.

val MR: Array[R] =
new Array[R](BUCKETSZ)

for(r <- R) {
if(r.name == "R1") {
if(MR(r.id) == null) {
MR(r.id) = r

} else {
r.next = MR(r.id)
MR(r.id) = r

} } }
var count = 0
for(s <- S) {

var r: R = MR(s.id)
while(r != null) {
if(r.id == s.id)
count += 1

r = r.next
}

}
return count

(f) The example query in
ScaLite.

val MR: Array[Pointer[R]] =
malloc[Pointer[R]](BUCKETSZ)

for(r <- R) {

if(r->name == "R1") {
if(MR(r->id) == null) MR(r->id) = r
else {
r->next = MR(r->id)
MR(r->id) = r

} } }
var count = 0
for(s <- S) {
var r: Pointer[R] = MR(s->id)
while(r != null) {
if(r->id == s->id) count += 1
r = r->next

} }
return count

(g) The example query in C.Scala.

R** MR = (R**)
malloc(BUCKETSZ * sizeof(R*))

for(int i=0; i < R_REL_SIZE; i++) {
R* r = R[i];
if(strcmp(r->name, "R1") == 0) {
if(MR[r->id] == NULL) MR[r->id] = r;
else {
r->next = MR[r->id];
MR[r->id] = r;

} } }
int count = 0;
for(int i=0; i < S_REL_SIZE; i++) {
S* s = S[i]; R* r = MR[s->id];
while(r != NULL) {
if(r->id == s->id) count += 1;
r = r->next;

} }
return count;

(h) The example query in C.

Figure 3.2 – Representations of a query in different DSLs.

3.4.2 Three-Level Stack (+ ScaLite)

We saw in the introduction that this two-level stack with pipelining is not appropriate for

adding a transformation that affects constructs that are also affected by pipelining. This is

66



3.4. DSL Stack

QPlan QMonad

ScaLite[Map, List]

ScaLite[List]

ScaLite

C / C.Scala

Declarative

Imperative

+ Mutable DS
+ Looping
− Hash table

− List

+ Memory
Management

Pipelining

Hash-Table Specialization

List Specialization

Storage Layout

Figure 3.3 – A DSL stack for query compilation

because both transformations interfere by manipulating related constructs at the same time

(single compilation stage). Here, we want to introduce memory-management and layout

optimizations. To resolve the problem as suggested in Section 3.2, we add a new intermediate

DSL that can express pipelining, but does not contain memory management constructs yet.

ScaLite. The core of ScaLite is the simply-typed λ-calculus, which does not have recursion and

mainly consists of constructs for function abstraction (a.k.a. λ abstraction) and for function

application (invoking a function with an input parameter, possibly another function). ScaLite

additionally supports control-flow constructs such as if statements and bounded loops (loops

for which we statically know the maximum number of iterations). This DSL is not a purely

functional language, as it also supports variables that are either immutable (as in val x =

e; f(x)) or mutable (as in var x = e1; f(x); x = e2). It supports user-defined records

and three data structures: fixed-size arrays, dynamic arrays, and sorted lists.

These make ScaLite a powerful enough low-level language satisfying the expressibility princi-

ple. The restrictions (bounded loops, no recursion) simplify program analysis.

Transformations. While lowering ScaLite programs to C.Scala, we enhance memory man-

agement. For example, we use memory pools to preallocate intermediate records. By using

statistical information about the input, a worst-case estimate of the cardinality of elements is

used to preallocate a memory pool, which obviates the need to perform a system call when

allocating new memory. Another memory-management enhancement is to specialize the

memory layout of data structures. For example, depending on the context, we represent

an array of records either as: 1) an array of pointers to structs – a boxed [370] layout; 2) an

array of structs [352]; or 3) a struct containing one array for each record field – a columnar

layout [162, 317], which often has a positive impact on cache locality. These data-layout

representations are demonstrated in Figure 3.4.

Figure 3.2g shows our working example in C.Scala. Line 1 explicitly specifies the representation

of an array of records as an array of pointers to records. In line 2, we use the malloc function

to allocate the array. In the rest of the program, we use arrows (->) to access the fields of a

referenced record, as in C.

67



Chapter 3. Modular Query Compiler

(a) Boxed layout (b) Row layout (c) Columnar layout

Figure 3.4 – Different data-layout representations.

3.4.3 Four-Level Stack (+ ScaLite[Map, List])

Now, consider adding a transformation for data-structure specialization, which requires a

data-structure-aware DSL, as explained in Section 3.2. Such a DSL has specific constructs for

representing the operations of a set of data structures.

Hash tables and lists are two essential data structures for query engines [280]. Hash tables are

used for implementing the aggregation and hash join operators, while lists are used for storing

intermediate collections of records. There are two kinds of hash tables we are interested

in: HashMaps associate every key to a single value, and are used for expressing aggregation

operators; MultiMaps associate every key to a set or list of values, and are used for expressing

hash join operators.

These data structures are specialized to efficient implementations, depending on the context

in which they are used, which requires a prior analysis phase. This is not possible to do with

naïve expansion strategies, like with C++ templates or C macros. It could also be interesting

to consider other specialized data structures such as indexed trees to extend the DSL further.

This can be useful for other workloads, which we leave as future work.

ScaLite[Map, List]. This DSL is an extension of ScaLite with the HashMap, MultiMap, and

List data structures, as well as operations defined on them. For simplifying program analysis,

we ensure that for every program in this DSL, the following invariant holds: hash-table data

structures are not allowed to contain mutable elements, which means that the records we

put into these hash tables should be immutable. This is because if we were allowed to read

and write fields of an element obtained from a hash table, inferring the access patterns for

this hash table would become significantly more complicated. Another way of expressing this

invariant is to state that the DSL does not allow nested mutability.

Transformations. At this level, we can perform optimizations that use hash tables, such as

string dictionaries [35]. This optimization maps string operations to integer operations, as it

was discussed in Section 2.3.4. Also, hash-table specialization is performed while lowering

ScaLite[Map, List] programs. Access patterns are analyzed before this transformation in order

68



3.4. DSL Stack

to make informed materialization decisions and push some computations to a pre-processing

phase, which is explained in more details in Section 3.5.2.

Figure 3.2d shows our working example in ScaLite[Map, List]. Implementing a hash join is done

in two phases: the first phase (lines 3-12) iterates over the elements of the first relation and

builds a hash table which groups these elements based on their join key; in the second phase,

the algorithm probes the elements of the second relation and iterates over the corresponding

elements of the first relation using the constructed hash table.

3.4.4 Five-Level Stack (+ ScaLite[List])

Directly translating hash tables to arrays is not necessarily optimal. We would like to translate

them to lists first, so we can reuse the fine-grained, context-dependent lowering already

defined that converts lists to arrays. Sometimes, it is better to lower lists to linked lists, whereas

in some other cases, it is better to lower them to arrays. In order to do that, we add an

abstraction level similar to the one above, but without hash tables.

ScaLite[List]. ScaLite[List] is also built atop ScaLite, but only adds constructs related to Lists.

However, to encode MultiMaps using arrays of lists, we need to relax the restrictions imposed

on ScaLite[Map, List]: if nested mutability was forbidden, there would be no way to express

MultiMaps in a useful way, because we would not be able to update the set of elements asso-

ciated with a particular key incrementally (a capability that was hidden behind the MultiMap

interface of ScaLite[Map, List]).

Transformations. We perform list specialization while lowering from ScaLite[List] to ScaLite.

Consider the case in which we lower lists to linked lists. In a typical scenario, lists are used

for holding records. In that case, we use intrusive linked lists, which store the next pointer

of each list node in the records themselves. This removes one level of indirection caused by

the separate allocations of the container nodes and the records. On the other hand, since we

are working with ScaLite, which only has bounded loops, it is sometimes possible to perform

worst-case size analysis and obtain an estimate of the maximum cardinality of some lists. We

consequently lower them to native static Arrays, instead of linked lists. This way, we benefit

from the existing array layout optimizations provided for ScaLite down the DSL stack (e.g.

columnar layout).

Figure 3.2e shows the working example in ScaLite[List]. Lines 1-2 contain the lowered represen-

tation of the MultiMap data structure. Line 7 shows the implementation of the addBinding

method using the +=method of List. Line 16 shows how we lower the getmethod of MultiMap

by accessing a bucket in the lowered array.

69



Chapter 3. Modular Query Compiler

3.4.5 Collection Programming Front-end

We refer to collection programming as the practice of preferring generic operations defined

on collections like lists and associative maps (filter, groupBy, sum, etc.) rather than writing

them out as loops. The user base of collection programming APIs is growing. These APIs

improve the integration of applications with database back-ends by making them more seam-

less [238, 135, 134]. Thus, it makes sense to consider a DSL with a collection programming API

as an alternative front-end for a query compiler.

QMonad. The QMonad DSL is a functional language inspired by Monad Calculus on lists [44,

45, 358], Query and Monoid Comprehensions [136, 345, 107] and other collection program-

ming APIs like Spark RDDs [376]. In addition to standard collection operators (such as map,

filter, fold, etc.), this DSL contains different join operators including semi-, anti-, and

outer joins.8

Transformations. As we discussed in Section 3.3.2, declarative and functional languages

are not appropriate for performance tuning. It is thus necessary to compile and optimize

programs written in QMonad before executing them. Thankfully, by simply lowering those

programs to ScaLite[Map, List], we can reuse the transformations provided by the lower level

DSLs of our stack for free. To produce even faster code, we should perform pipelining to

remove materialization points (pipeline breakers). This transformation has a similar effect to

what we do for QPlan, by pushing or pulling data. Section 3.5.1 gives more detail about it.

Figure 3.2c shows our working example in QMonad. The filter method is a higher order

function that corresponds to the selection operator in relational algebra. It takes the selection

predicate as a parameter. The first parameter of the hashJoin method is the second relation,

and the second and third parameters indicate the join keys of the first and second relations,

respectively. The count method returns the number of elements in a list.

3.4.6 Extensibility

One of the main advantages of our DSL stack design is its extensibility in various dimensions.

First, as we just saw, one can use another algebra as the front-end by replacing the front-end

DSL (here, QMonad and QPlan). By providing a lowering transformation from the new algebra

to one of our intermediate DSLs, the existing infrastructure generates optimized C code for

that new front-end.

Second, user-defined functions (UDFs) can be added to input queries. There are two ap-

proaches for doing so: 1) expressing them in terms of our low-level DSLs – in this case, we miss

high-level optimization opportunities that could apply to them; 2) adding UDFs as constructs

in a high-level DSL, and defining lowerings to immediately-lower DSLs in the appropriate

8Map and join expressions are expressively redundant with nested fold expressions, but represent an important
performance choice, and are hard to reconstruct from folds.

70



3.5. Transformations

R.map(f).map(g) −−−−−−−−→ R.map(f o g)y x
build { k1 =>
(build { k2 =>
R.foreach(e => k2(f(e)))

}).foreach(e => k1(g(e)))
}

(T )
−−−−−−−−−−−→

build { k1 =>
R.foreach(e =>
k1(g(f(e)))

)}

(T ): build(f1).foreach(f2)  f1(f2)

Figure 3.5 – A simple example of loop fusion using short-cut fusion.

phase. This approach works best if the user provides additional information (by using annota-

tions, which was desribed in Section 3.3.3) about the additional language construct (e.g. their

side-effects).

Third, we can change our target language without any need to change the higher-level DSLs,

and still benefit from the optimizations provided in those higher-level DSLs. The only thing

we need to do is to provide a lowering from ScaLite (or a higher-level DSL) to our desired

target language, and then unparse the generated IR in a similar way as we unparse C.Scala

to C. This approach works well as long as the underlying architecture is not changed. The

extensibility of our DSL stack in the case of changing the target architecture (e.g. using a

multi-core architecture instead of a single-core one) is discussed in Section 3.8.

3.5 Transformations

In this section, we detail three transformations that were previously introduced, and which are

expressed using the proposed DSL stack. First, we present the pipelining transformation used

to improve data locality. Second, we present data-structure synthesis, which specializes and

materializes data structures to improve query execution performances. Finally, we provide

more details about the string dictionaries.

3.5.1 Pipelining – From Fusion to Push Query Engines

A query written using QMonad consists of chained invocations of higher-order functions

such as map, filter, flatMap, etc. After naively generating low-level code for such queries

(e.g. using template expansion), the generated code typically contains: 1) intermediate list

constructions and destructions; and 2) loops corresponding to each higher-order function.

Creating intermediate lists causes space and time overheads due to unnecessary allocations.

Loop fusion removes these overheads by removing the need to create intermediate lists. This

is because in the fused version of the loops, the elements are pipelined from one operation to

the next. Moreover, by merging several loops into a single loop, a single traversal is performed,

reducing the iteration overhead.

71



Chapter 3. Modular Query Compiler

class QueryMonad[T] {
/* These methods are both consumer and producer */
def map[S](f: T => S): QueryMonad[S] = build { k =>
for(e <- this) k(f(e))

}
def filter(p: T => Boolean): QueryMonad[T] = build { k =>
for(e <- this) if(p(e)) k(e)

}
def hashJoin[S](list2: QueryMonad[S])
(leftHash: T => Int)
(rightHash: S => Int): QueryMonad[(T, S)] = build { k =>
val hm = new MultiMap[Int, T]()
for(e <- this)
hm.addBinding(leftHash(e), e)

for(e2 <- list2) {
val key = rightHash(e)
hm.get(key) match {
case Some(list1) =>
for(e1 <- list1)
if(leftHash(e1) == rightHash(e2))
k((e1, e2))

case None => ()
}

}
}
/* This method is only a consumer */
def count: Int = {
var result = 0
for(e <- this)
result += 1

result
}

}

Figure 3.6 – Producer-consumer encoding of QMonad operators. Note that in Scala, for(e
<- R)f(e) is the same as R.foreach(e => f(e)).

The literature contains a very well-defined set of algebraic rewrite rules for Monad Calculus [44].

These rules are sufficient to express loop fusion for the Monad Calculus subset of QMonad.

However, fusion is also needed outside of that subset. Since we add constructs to the language,

we need to add the corresponding loop fusion rewrite rules. For this, it is important to be aware

of relevant research that has been conducted in the PL community. In fact, it turns out that

QMonad with n constructs needs O(n2) loop fusion rewrite rules, which is not scalable [121].

Ideally, one should need only O(n) rewrite rules for a DSL with n constructs. Furthermore,

there are cases in which the fusion of two operators in QMonad is not expressible in QMonad

itself. Figure 3.2c shows a program that exhibits this property: the fusion of filter and

hashJoin cannot be expressed using a single QMonad operator. This transformation needs

to be expressed using operations provided by a lower level DSL. Hence, for these cases loop

fusion is no longer an optimization but a lowering transformation (refer to Section 3.2).

Deforestation [357] is a well-known technique in the PL community that is used to remove

intermediate data structures. This is the approach we use for performing loop fusion. There

are several implementations of this technique, among which short-cut fusion (known as

cheap deforestation or foldr/build fusion) [121, 122] has been proven to achieve pipelined

72



3.5. Transformations

query execution [136]. This approach requires defining every operator in the language using

two primitive combinators: 1) a build combinator that produces a list; and 2) a foldr

combinator that consumes a list. This way, the number of rewrite rules needed for QMonad

with n constructs become O(n) (the implementations of the n operators using the build and

foldr combinators). Loop fusion is then achieved by eliminating adjacent occurrences of

build and foldr.

We implement a variant of short-cut fusion [175] in which every operator is expressed using the

church-encoding of lists [275], or tranducers [303] . For simplicity, we use the foreach operator

and side effects, instead of the pure foldRight operator. This transformation is implemented

as a lowering step from QMonad to ScaLite[Map, List]. Figure 3.6 shows the implementation of

a few QMonad operators using build and foreach. Inlining this high-level implementation

leads to pipelining transformation.

Figure 3.5 shows a simple example in which short-cut fusion is used to apply loop fusion (long

path at the bottom). Transformation (T ) is what allows us to transition from the code at the

bottom-left corner to the code at the bottom-right. This example shows that short-cut fusion

has the same impact as the corresponding algebraic rewrite rule from Monad Calculus (short

path, on top).

Figure 3.2d shows the code resulting from the example in Figure 3.2c, after the pipelining. The

filter operation is fused with the first loop of the hashJoin operation, which is responsible

for creating a hash table based on the join key of the first relation. The count operation is fused

with the second loop of hashJoin, which is responsible for iterating over the second relation

and probing relevant partitions from the hash table. Our observations show that short-cut

fusion has the same effect as the push-engines proposed in [255]. This is not a surprise, since

every operator in the latter is modeled after a producer/consumer pattern, which directly

corresponds to the foldr/build model described above. We present the connection between

loop fusion techniques and pipelined query engines in more detail in Chapter 4.

After pipelining the query engine and lowering it to ScaLite[Map, List], there are new optimiza-

tion opportunities to be applied on the resulting mutable data structures, as we saw in Section

3.4.3. Next, we discuss how to synthesize specialized data structures from ScaLite[Map, List]

programs.

3.5.2 Specialized Data-Structure Synthesis

A pipelined query uses mutable data structures to perform in-place updates, instead of cloning

the list every time a single element is updated. The resulting program is no longer in QMonad

(or QPlan), but has been lowered to ScaLite[Map, List], and is thus no longer purely functional.

This makes optimizations harder to express than in higher level, purely declarative DSLs,

mainly because of the presence of side-effects. To resolve this issue, we enforce several

restrictions on this DSL, which facilitate program analysis. For example, by not allowing nested

73



Chapter 3. Modular Query Compiler

val hm = new MultiMap[Int, R]
for(r <- R) {
if(r.name == "R1")
hm.addBinding(r.sid, r)

}
var count = 0
for(s <- S) {

hm.get(s.rid) match {
case Some(rList) =>

for(r <- rList) {
if(r.sid == s.rid)
count += 1

}
case None => ()

}
}
count

(a) The optimized version of the query in
ScaLite[Map, List].

/*
The iteration over the first
relation is moved to the
next step.

*/
var count = 0
for(s <- S) {

for(r <- R) {
if(r.name == "R1")
if(r.sid == s.rid)
count += 1

}

}
count

(b) Naïvely removing the MultiMap abstraction in
ScaLite[List].

/* Precomputation */
val MR: Array[List[R]] =
// Indexed R on sid

/* Actual Query Processing */
var count = 0
for(s <- S) {

val rList = MR(s.rid)
for(r <- rList) {
if(r.name == "R1")
if(r.sid == s.rid)
count += 1

}

}
count

(c) The optimized version of the query in
ScaLite[List] when R.sid is a foreign key. Note
that List is a mutable data structure.

/* Precomputation */
val MR: Array[R] =
// Indexed R on sid

/* Actual Query Processing */
var count = 0
for(s <- S) {

val r = MR(s.rid)
if (r.name == "R1")
if(r.sid == s.rid)
count += 1

}

count

(d) The optimized version of the query in
ScaLite[List] when R.sid is a primary key.

Figure 3.7 – Representations of an example query after applying pipelining and data-structure
synthesis.

mutability, we simplify side-effect analysis. This analysis helps identifying data dependencies

among statements, after which we can safely reorder them without changing the semantics of

the program.

MultiMaps, which are used to implement hash joins, can be specialized depending on the

way they are used. For example, under circumstances described below, and if there is a one-

to-one relationship between a write operation and its corresponding read, we can remove

the MultiMap altogether. In Figure 3.7a, we iterate over a relation R and add its tuples into a

MultiMap. We then access the relevant partitions of R while iterating over a second relation S.

Instead of these two steps, we would like to directly access the elements of R while iterating

74



3.6. Putting it all together – The DBLAB/LB Query Engine

over S. For it to be safe, such a transformation requires reordered statements to be free of

data dependencies related to the two iterations, outside of read/write dependencies on the

elements of the MultiMap we want to elide.

However, naïvely removing the intermediate MultiMap and substituting its read operation

with an iteration over R clearly will not improve performance (it is equivalent to a nested

loop join). Figure 3.7b shows the result of that naïve transformation. We can see that for

each element of S, instead of iterating over the relevant tuples in R, we iterate over the whole

relation. In order to correct this, we can materialize R based on the join key sid. First, we make

sure R is not an intermediate relation, but an input relation (otherwise, the transformation is

not applicable). Then, at query loading time, we materialize an array of lists which is indexed

based on sid. As a result, we can now iterate only over the relevant parts of R, as is shown in

Figure 3.7c.

Furthermore, in case sid is a primary key, the materialized data structure can be specialized

further: since there will only be one tuple associated with each key (by definition of a primary

key), there is no need for buckets anymore: a one dimensional array is sufficient, instead of

an array of lists. We remove the corresponding bucket iteration in the main loop. Figure 3.7d

shows the resulting code, in case the join key is a primary key.

Data-structure synthesis is not limited to MultiMaps. HashMaps, which are used to imple-

ment aggregations, can also be specialized. In that case, we synthesize materialized data

structures which partition the HashMaps based on their grouping key, automatically inferring

the grouping indices.

3.6 Putting it all together – The DBLAB/LB Query Engine

We have implemented the DSLs of our multi-level stack and the associated transformers in

DBLAB,9 a framework for building efficient database systems via high-level programming.

Using the components provided by DBLAB we have re-created the LegoBase [199] query

engine. We refer to this re-implementation as DBLAB/LB.

First, developers write their queries in DBLAB/LB using one of the front-end languages of

DBLAB/LB (QPlan or QMonad). DBLAB/LB uses the Yin-Yang [177] framework to construct

the corresponding IR from these queries. As already discussed in Section 3.4, the front-end

languages are progressively lowered and optimized until they reach the abstraction level of

the C programming language. Finally, the generated C programs are compiled using any

traditional C compiler such as CLang or GCC. At this point, our stack has generated a stand-

alone executable for the given query, which includes data loading and data processing and

whose execution produces the final query results. The overall DSL code base (without the

optimizations, whose lines of code are presented in Section 3.7) is around a thousand lines of

Scala code.

9http://github.com/epfldata/dblab

75



Chapter 3. Modular Query Compiler

DBLAB heavily relies upon the functionality provided by SC (“Systems Compiler”) [100], a

generic DSL compiler framework. SC provides a complete tool-chain for easily defining DSLs

and the corresponding transformations as well as a number of general-purpose optimizations

out-of-the-box. Note that applying one of the optimizations mentioned throughout this

thesis does not necessarily lead to performance improvements for a given query. In general,

finding the combination of optimizations that leads to optimal performance is a very hard

problem; for this reason, the SC DSL compiler does not try to automatically infer the optimal

combination of optimizations for each incoming query. Instead, SC was designed so that it

provides full control over the compilation process to the DSL developers, while hiding the

complicated internal implementation details of the compiler itself. Like DBLAB/LB, SC is also

written in Scala, and currently consists of around 27K LoC.

In this work, we extend the library of optimizations provided by SC with several domain-

specific optimizations which we apply on and across the presented DSLs using the interfaces

provided by SC. These domain-specific optimizations can be found in previous query com-

pilation approaches, like those found in the HyPer [255] database, the HIQUE [208] query

compiler and the LegoBase [199] query engine. More specifically, the DBLAB/LB DSL stack

provides support for: 1) A push-based query engine [255], 2) Operator Inlining [255], 3) Special-

ization of hash-table data structures [199], 4) Control flow optimizations to improve branch

prediction and cache locality [255], 5) String Dictionaries 10 [35], 6) Optimization of memory

allocations, by converting malloc calls to using memory pools instead and, finally, 7) Standard

compiler optimizations like Partial Evaluation, Function Inlining, Scalar Replacement, DCE

and CSE [199].

3.7 Experimental Results

Our experimental platform consists of a server-type x86 machine equipped with two Intel

Xeon E5-2620 v2 CPUs running at 2GHz each, 256GB of DDR3 RAM at 1600Mhz and two

commodity hard disks of 2TB storing the experimental datasets. The operating system is

Red Hat Enterprise 6.7. For compiling the generated programs throughout our evaluation we

use version 2.9 of the CLang compiler with the default optimization flags. Finally, for C data

structures we use the GLib library (version 2.42.1).

For our evaluation we use TPC-H [343], a benchmark suite which simulates data-warehousing

and decision support; it provides a set of 22 queries which represent actual business ana-

lytics operations to a database with sales information. These queries have a high degree of

complexity and express most SQL features.

As a reference point for all results presented in this section, we use the LegoBase query

engine [199], an in-memory query execution engine written in the high-level programming

language Scala. This is in contrast to the traditional wisdom which calls for the use of low-

10All performance numbers reported for LegoBase in [199] were obtained by including string dictionaries.

76



3.7. Experimental Results

System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

LegoBase 168 108 195 283 2220 100 209 462 447 488 105
DBLAB/LB 2 5936 1510 6176 12162 4904 580 4815 20069 27686 5500 797
DBLAB/LB 3 1298 749 4978 10779 3514 289 2714 20069 27686 3411 339
DBLAB/LB 4 177 58 178 141 159 64 109 56 628 433 59
DBLAB/LB 5 177 58 117 141 158 46 109 20 537 433 59
TPC-H Compliant 1298 611 4099 5628 2194 290 2745 6012 19944 3524 80

System Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

LegoBase 281 604 188 134 1326 75 245 371 495 669 191
DBLAB/LB 2 3763 1846 1832 1633 16962 23765 6329 3075 1629 18636 1320
DBLAB/LB 3 3068 1002 1238 955 14956 18471 3055 3075 938 11595 885
DBLAB/LB 4 311 860 39 97 4285 38 198 64 194 385 91
DBLAB/LB 5 120 591 12 27 723 11 196 19 167 385 91
TPC-H Compliant 2567 855 446 1022 4285 4795 4228 2693 427 12070 900

Table 3.2 – Performance results (in milliseconds) for TPC-H (scaling factor 8) for (a) the
generated optimized C code of LegoBase [199], and the generated optimized C code of our
system using (b) two-level (c) three-level (d) four-level, (e) five-level DSL stack, and (f) TPC-H
compliant DSL stack. (b) the generated C code of DBLAB/LB using an increasing number of
levels in our DSL stack and, finally, (c) the TPC-H compliant DSL stack.

level languages for DBMS development. To avoid the overheads of a high-level language (e.g.

complicated memory management) while maintaining nicely defined abstractions, LegoBase

uses generative programming [289, 329] and compiles the Scala code to optimized, low-level C

code for each SQL query. By programming databases in a high-level style and still being able

to get good performance, the time saved can be spent implementing more database features

and optimizations. LegoBase already significantly outperforms both a commercial in-memory

database and an existing state-of-the-art query compiler.

We present experimental results which demonstrate that by utilizing our multi-level DSL

stack, developers can build a query engine that matches or even significantly outperforms the

LegoBase system. This is because, by splitting optimizations across different abstraction layers

and separating concerns, it becomes easier to detect performance bottlenecks that are evasive

otherwise. Note that some optimizations of the SC DSL stack and LegoBase are not compliant

with the TPC-H rules. For this reason, we also present results for a TPC-H compliant set of

optimizations11.

Table 3.2 presents experimental results for all 22 queries of the TPC-H benchmark for both

our system (while incrementally introducing DSLs and their corresponding optimizations as

presented in Section 3.4) and LegoBase [199]. We observe the following three things.

DBLAB/LB achieves a speedup of up to 23× (Q8), with an average performance improvement

11To obtain this TPC-H compliant configuration we have disabled: 1) String Dictionaries 2) Data-Structure
Partitioning 3) Automatic Index Inference and, finally, 4) Removing unused table attributes.

77



Chapter 3. Modular Query Compiler

of 5×. More specifically, for 20 out of 22 queries, DBLAB/LB significantly outperforms the state-

of-the-art LegoBase system. This improvement was achieved by introducing optimizations

related to removing intermediate materializations that have a significant negative performance

impact at query execution. These materialization points (and other performance bottlenecks)

were not easy to be detected in the complicated generated code of the original LegoBase

system. In addition, we have introduced automatic inference of database indices, based on

database statistics, a technique that provided significant performance improvements and was

not expressed as a compiler optimization before. However, we also note that in cases where

DBLAB/LB is slower than LegoBase (Q1, Q9), this is because the latter was more aggressively

optimizing the data structures, e.g. by partitioning data using a composite set of attributes at

data loading time. We plan to investigate such optimization opportunities, which are easily

expressible with our DSL stack, in the future.

Second, Table 3.2 also presents a more detailed break-down of how performance improves

as DSLs and their corresponding optimizations are introduced in DBLAB/LB. In general

we observe that as more DSLs are introduced, performance can be significantly improved.

More specifically, when moving from a three to a four-level DSL stack we get an additional

56× performance improvement. This is because the introduction of the additional DSL

“unlocks” many optimization opportunities that were not expressible before with a three-

level stack. Observe also that the introduction of additional DSLs does not always improve

performance for all queries. For example, when moving from a two-level to a three-level

DSL stack, performance is marginally improved (if at all) for 10 out of 22 queries. Yet, the

introduction of an additional DSL significantly improves the performance of Q1. Thus, we see

that it is definitely possible to express even query-specific optimizations with the DBLAB/LB

DSL stack. More importantly, Table 3.2 clearly illustrates that performance is never negatively

affected by the introduction of an additional DSL level, for all 22 TPC-H queries.

Finally, we observe that the TPC-H compliant set of DBLAB/LB optimizations typically leads to

a better performance than that of a three-level DSL stack, however it does not outperform the

four-level DSL stack. This is because, at the four-level stack we start introducing optimizations

that are no-longer TPC-H compliant.

3.8 Outlook: Parallelism

One possible question regarding the extensibility of our approach would be adding parallelism

to the query engine. There are many different variants of parallelization for database systems.

Here, we focus only on the intra-operator (or partitioned) parallelism which can be achieved by

(a) partitioning the input data of each operator in the operator tree, (b) applying the sequential

operator implementations on each partition and, finally, (c) merging the result obtained on

each partition [128]. Next, we show how our DSL stack can be enriched with parallelization

through demonstrating the modifications needed for the DSLs and the transformations.

First, we present the required modifications for the DSLs in our stack. The parallelization

78



3.9. Conclusions

logic is encoded in the QPlan DSL by adding the split and merge operators [237]. As these two

operators are not expressible by middle level DSLs, the expressibility principle is violated. To

solve this issue, the intermediate DSLs require an appropriate set of facilities for parallelism.

This is achieved by adding threading facilities (i.e. forking and joining threads) to the ScaLite

DSL. As ScaLite[List], ScaLite[Map, List], and C.Scala are extensions to ScaLite, these DSLs are

also enriched with parallelism for free. The framework generates parallel code by unparsing

the parallel C.Scala constructs to the corresponding C code (e.g. by using pthreads).

Second, we analyze what modifications are required for the transformations. If the queries are

not using parallel physical query plans at all (e.g. there is no use of split and merge operators),

then no change is required for the transformations. However, the generated code for a query

with split and merge operators should use an appropriate set of parallelization constructs, as

we described above. To do so, we add the implementation of these two operators using the

threading constructs. This implementation leads to adjust the pipelining transformation rules

for these two operators, as was described in Section 3.5.1. The merge operator needs special

care based on the class of the aggregation (e.g. SUM is distributive and AVG is algebraic [129]).

Apart from these two operators, there is no other modification needed for the existing query

operators. Also, this modification is introduced only once and it is reused for all parallel

physical query plans. Furthermore, as the rest of existing transformations are not modified,

the generated code for each thread benefits from the optimizations provided for the sequential

version of the DSL stack for free.

It has been shown that in some cases using shared data structures (which requires a locking

mechanism) is better than using private data structures for each thread (which is the approach

we demonstrated here) [64]. Also, there is a possibility of using lock-free data structures and

work-stealing for scheduling the workload across the worker threads [216]. Finally, although

we use hash partitioning, there are a number of other approaches for partitioning the input

data (e.g. range partitioning, etc.): the performance of each scheme is dependent on the

underlying workload scenario and data characteristics [237]. We plan to investigate these

directions by employing program analysis and compilation techniques in the future.

3.9 Conclusions

In this chapter we argue that it is time for a rethinking of how query compilers are designed and

implemented. Current solutions are mainly using template expansion to generate low-level

code from high-level queries in one single step. Our experience with systems built using this

technique indicates that, in practice, it becomes very difficult to maintain and extend such

query compilers over time; the complexity of their code-bases increases to unmanageable

levels as more and more optimizations are added.

Our suggested approach advocates modularizing a query compiler by defining several abstrac-

tion levels. Each abstraction level is responsible for expressing only a subset of optimizations,

a design decision which creates a separation of concerns between different optimizations. In

79



Chapter 3. Modular Query Compiler

addition, we propose progressively lowering the high-level query to low-level code through

multiple abstraction levels. This allows for a more controlled code-generation approach.

We show that our approach, while introducing multiple abstraction layers, does not in fact

negatively impact the performance of the generated code, but instead improves it. This is

because it allows for expressing compiler optimizations that are already available in existing

query compilers, but also new optimizations not available before. More importantly, it does so

while actually providing for a great degree of programmer productivity, a property not found

in any previous query compilation approach to date.

80



4 Loop Fusion in Query Engines

Many badly needed goals, like fusion and cancer cure, would be achieved much

sooner if we invested more.

– Stephen Hawking

Database query engines use pull-based or push-based approaches to avoid the materialization

of data across query operators. In this chapter, we study these two types of query engines

in depth and present the limitations and advantages of each engine. Similarly, the program-

ming languages community has developed loop fusion techniques to remove intermediate

collections in the context of collection programming. We draw parallels between DB and

PL research by demonstrating the connection between pipelined query engines and loop

fusion techniques. Based on this connection, we propose a new type of pull-based engine,

inspired by a loop fusion technique, which combines the benefits of both approaches. Then

we experimentally evaluate the various engines, in the context of query compilation, for the

first time in a fair environment, eliminating the biasing impact of ancillary optimizations

that have traditionally only been used with one of the approaches. We show that for realistic

analytical workloads, there is no considerable advantage for either form of pipelined query

engine, as opposed to what recent research suggests. Also, by using microbenchmarks, which

demonstrate certain edge cases on which one approach or the other performs better, we show

that our proposed engine dominates the existing engines by combining the benefits of both.

4.1 Introduction

Database query engines successfully leverage the compositionality of relational algebra-style

query plan languages. Query plans are compositions of operators that, at least conceptually,

can be executed in sequence, one after the other. However, actually evaluating queries in this

way leads to grossly suboptimal performance. Computing (“materialising”) the result of a

first operator before passing it to a second operator can be very expensive, particularly if the

intermediate result is large and needs to be pushed down the memory hierarchy. The same

observation has been made by the programming languages and compilers community and has

81



Chapter 4. Loop Fusion in Query Engines

led to work on loop fusion and deforestation (the elimination of data structure construction

and destruction for intermediate results).

Already relatively early on in the history of relational database systems, a solution to this

problem has been proposed in the form of the Volcano Iterator model [128]. In this model,

tuples are pulled up through a chain of operators that are linked by iterators that advance

in lock-step. Intermediate results between operators are not accumulated, but tuples are

produced on demand, by request by conceptually “later” operators.

More recently, an operator chaining model has been proposed that shares the advantage of

avoiding materialisation of intermediate results but which reverses the control flow; tuples are

pushed forward from the source relations to the operator producing the final result. Recent

papers [255, 199] seem to suggest that this push-model consistently leads to better query

processing performance than the pull model, even though no direct, fair comparisons are

provided.

One of the main contributions of this work is to debunk this myth. As we show, if compared

fairly, push and pull based engines have very similar performance, with individual strengths

and weaknesses, and neither is a clear winner. Push engines have in essence only been

considered in the context of query compilation, conflating the potential advantages of the

push paradigm with those of code inlining. To compare them fairly, one has to decouple these

aspects.

In this section, we present an in-depth study of the tradeoffs of the push versus the pull

paradigm. Choosing among push and pull – or any reasonable alternative – is a fundamental

decision which drives many decisions throughout the architecture of a query engine. More

specifically, the interface exposed for implementing different query operators is dependent on

the type of the query engine [127]. Furthermore, the query processing engine needs to interact

with the storage manager to benefit from different access methods (such as hash-based and B+

tree indexes) for efficiently accessing data in the underlying storage [145]. Hence, different

design choices of query engines result in different design choices for the storage manager

component as well. Thus, one must understand the relevant properties and tradeoffs deeply,

and should not bet on one’s ability to overcome the disadvantages of a choice by a hack later.

Furthermore, we illustrate how the same challenge and tradeoff has been met and addressed

by the PL community, and show a number of results that can be carried over from the lessons

learned there. Specifically, we study how the PL community’s answer to the problem, stream

fusion [71], can be adapted to the query processing scenario, and show how it combines the

advantages of the pull and push approaches. Furthermore, we demonstrate how we can use

ideas from the push approach to solve well-known limitations of stream fusion. As a result, we

construct a query engine which combines the benefits of both push and pull approaches. In

essence, this engine is a pull-based engine on a coarse level of granularity (i.e., on the level of

collections), however, on a finer level of granularity (i.e., on the level of tuples), it pushes the

individual data tuples.

82



4.2. Pipelined Query Engines

In summary, this work makes the following contributions:

• We discuss pipelined query engines in Section 4.2. After presenting loop fusion for

collection programming in Section 4.3, we show the connection between these two

concepts in Section 4.4. Furthermore, we demonstrate the limitations associated with

each approach.

• Based on this connection with loop fusion, we propose a new pipelined query engine

in Section 4.5 inspired by the stream fusion [71] technique developed for collection

programming in the PL community. Also, we discuss implementation concerns and

compiler optimizations required for the proposed pipelined query engine in Section 4.6.

• We experimentally evaluate the various query engine architectures in Section 4.7. Using

microbenchmarks, we discuss the weaknesses of the existing engines and how the

proposed engine circumvents these weaknesses by combining the benefits of both

worlds. Then we demonstrate using TPC-H queries that good implementations of these

three query engines do not show a considerable advantage for either form of query

engine.

Throughout this chapter, we are using the Scala programming language for all code snippets,

interfaces and examples. None of the concepts and ideas require specifically this language

– other impure functional object-oriented programming languages (or object-oriented with

functional features) such as OCaml, F#, C++11, C#, or Java 8 could be used instead.

4.2 Pipelined Query Engines

Database management systems accept a declarative query (e.g., written in SQL). Such a query

is passed to a query optimizer to find a fast physical query plan, which then is either interpreted

by the query engine or compiled to low-level code (e.g. C code).

A physical query plan is a data flow graph of query operators which perform calculations and

data transformations. Each query operator can be connected to one or more input operators

(which we refer to as the source operators) and one output operator (which we refer to as the

destination operator).

A sequence of query operators can be pipelined, which means that the output of one oper-

ator is streamed into the next operator. Pipelining a query operator removes the need for

materializing the intermediate data and reading it back again, which can bring a significant

performance gain.

There are two approaches for pipelining. The first approach is demand-driven pipelining

in which an operator repeatedly pulls the next data tuple from its source operator. The

second approach is data-driven pipelining in which an operator pushes each data tuple to

83



Chapter 4. Loop Fusion in Query Engines

its destination operator. Next, we give more details on the pull-based and push-based query

engines.

4.2.1 Pull Engine – a.k.a. the Iterator Pattern

The iterator model is the most widely used pipelining technique in query engines. This model

was initially proposed in XRM [225]. However, the popularity of this model is due to its

adoption in the Volcano system [128], in which this model was enriched with facilities for

parallelization.

In a nutshell, in the iterator model, each operator pipelines the data by requesting the next

element from its source operator. This way, instead of waiting until the entire intermedi-

ate relation is produced, the data is lazily generated in each operator. This is achieved by

invoking the next method of the source operator by the destination operator. The design

of pull-based engines directly corresponds to the iterator design pattern in object-oriented

programming [355].

Figure 4.1 shows an example query and the control flow of query processing for this query.

Each query operator performs the role of a destination operator and requests data from its

source operator (the predecessor operator along the flow direction of data). In a pull engine,

this is achieved by invoking the next function of the source operator, and is shown as control

flow edges. In addition, each operator serves as source operator and generates result data

for its destination operator (the successor operator along the flow direction of data). The

generated data is the return value of the next function, and is represented by the data flow

edges in Figure 4.1. Note the opposing directions of control-flow and data-flow edges for the

pull engine in Figure 4.1.

From a different point of view, each operator can be considered as a while loop in which the

next function of the source operator is invoked per iteration. The loop is terminated when the

next function returns a special value (e.g., a null value). In other words, whenever this special

value is observed, a break statement is executed to terminate the loop execution.

There are two main issues with a pull-based query engine. First, the next function invocations

are implemented as virtual functions – operators with different implementations of next have

to be chained together. There are many invocations of these functions; each invocation

requires looking up a virtual table, which leads to suboptimal instruction locality. Query

compilation solves this performance issue by inlining these virtual function calls, which is

explained in Section 4.2.3.

Second, in practice, selection operators are problematic. When the next method of a selection

operator is invoked, the destination operator has to wait until the selection operator returns the

next data tuple satisfying its predicate. This makes the control flow of the query engine more

complicated by introducing more loops and branches, which is demonstrated in Figure 4.2c.

Push engines solve the problem of complicated control flow graphs.

84



4.2. Pipelined Query Engines

R

elem=next()

execute()

consume(elem)consume(elem)consume(elem)

elem=next()elem=next()scanFile()

Pull Engine

Push Engine

scanFile()

Control Flow
Data Flow

SELECT SUM(R.B) FROM R
WHERE R.A < 10

R.filter(r => r.A < 10)
.map(r => r.B)
.fold(0)((s, r) => s + r)

Figure 4.1 – Data flow and control flow for push and pull-based query engine for the provided
SQL query.

4.2.2 Push Engine – a.k.a. the Visitor Pattern

Push-based engines are widely used in streaming systems [150]. The Volcano system uses

data-driven pipelining (which is a push-based approach) for implementing inter-operator

parallelism in query engines. In the context of query compilation, stream processing engines

such as StreamBase [335] and Spade [117], as well as HyPer [255] and LegoBase [199, 300] use

a push-based query engine approach.

In push-based query engines, the control flow is reversed compared to that of pull-based

engines. More concretely, instead of destination operators requesting data from their source

operators, data is pushed from the source operators towards the destination operators. This

is achieved by the source operator passing the data as an argument to the consume method of

the destination operator. This results in eagerly transferring the data tuple-by-tuple instead of

requesting it lazily as in pull-engines.

A push engine can be implemented using the Visitor design pattern [355] from object-oriented

programming. This design pattern allows separating an algorithm from a particular type of

data. In the case of query engines, the visitor pattern allows us to separate the query operators

(data processing algorithms) from a relation of elements. To do so, each operator should be

defined as a visitor class, in which the consume method, which is responsible for pushing the

elements down the pipeline, has the functionality of the visit method, whereas the produce

method, which is responsible for initializing the chain of operators, has the functionality of

the accept method of the visitor pattern.

Figure 4.1 shows the query processing workflow for the given example query. Query processing

in each operator consists of two main phases. In the first phase, operators prepare themselves

for producing their data. This is performed only once in the initialization. In the second phase,

they consume the data provided by the source operator and produce data for the destination

operator. This is the main processing phase, which consists of invoking the consume method of

the destination operator and passing the produced data through it. This results in the same

direction for both control-flow and data-flow edges, as shown in Figure 4.1.

Push engines solve the problem pull engines have with selection operators. A selection

85



Chapter 4. Loop Fusion in Query Engines

1 var sum = 0.0
2 var index = 0
3 while(true) {
4 var rec = null
5 do {
6 if(index < R.length) {
7 rec = R(index)
8 index += 1
9 } else {

10 rec = null
11 }
12 } while(rec != null && !(rec.A < 10))
13 if(rec == null) break
14 else sum += rec.B
15 }
16 return sum

(a) Inlined query in pull engine.

var sum = 0.0
var index = 0

while(index < R.length) {
val rec = R(index)
index += 1

if(rec.A < 10)

sum += rec.B
}
return sum

(b) Inlined query in push engine.

1,2

3,4 5

6

7,8 10

16

12

14

13

(c) The CFG of the inlined query in pull engine.

1,2

6

7,8

12

14 16

(d) The CFG of the inlined query in push engine.

Figure 4.2 – Specialized version of the example query in pull and push engines and the
corresponding control-flow graphs (CFG).

operator ignores the produced data if it does not satisfy the given predicate by not passing the

data to the destination operator. This is in contrast with pull engines in which the destination

operator should have waited for the selection operator to serve the request.

However, push engines experience difficulties with limit and merge join operators. For limit

operators, push engines do not allow terminating the iteration by nature. This is because, in

push engines, the operators cannot control when the data should no longer be produced by

their source operator. This lack of control over when to stop producing more elements causes

the production of elements which will never be used.

The merge join operator suffers from a similar problem. There is no way for the merge join

operator to guide which one of its two source operators (which are both sorted and there is a

1-to-n relationship between them) should produce the next data item. Hence, it is not possible

to pipeline the data coming from both source operators in a merge join. As a result, at least

for one of the source operators, the pipeline needs to be broken. Hence, the incoming data

coming from one of the source operators can be pipelined (assuming it is correctly sorted, of

course), but the input data coming from the other source operator must be materialized.

86



4.2. Pipelined Query Engines

The mentioned limitation is not specific to operators such as merge joins. A similar situation

can arise in the case of more sophisticated analytical tasks where one has to use collection

programming APIs (such as Spark RDDs [376]). In collection programming many different

methods (for example, element-wise operations on two numeric vectors) are implemented

using the zip method. The situation is similar for operations which are variants of the merge

join operator such as Leapfrog Triejoin [349]. These methods require parallel traversal on two

(or more) collections similar to the merge join operator, which cannot be easily pipelined in

push-based engines.

Note that these limitations can be resolved by providing special cases for these two operators in

the push engine. In the case of limit operator, one can avoid producing unnecessary elements

by manually fusing the limit operator with its source operator, which is an ordering operator

in most cases. This is because in most cases limit-queries have an order-by clause.1 For the

merge join operator, one can implement a variant of this operator which uses different threads

for its source operators and uses synchronization constructs in order to control the production

of data by its two inputs, which can be costly. However, such engines can be considered as

hybrid engines, and in this chapter, by push engine, we mean a purely standard push engine

without such augmentations.

4.2.3 Compiled Engines

In general, the runtime cost of a given query is dependent on two factors. The first factor is

the time it takes to transfer the data across storage and computing components. The second

factor is the time taken for performing the actual computation (i.e., running the instructions

of the query). In disk-based DBMSes, the dominating cost is usually the data transfer from/to

the secondary storage. Hence, as long as the pipelining algorithm does not break the pipeline,

there is no difference between pull engines and push engines. As a result, the practical problem

with selections in pull engines (c.f. Section 4.2.1) is obscured by data transfer costs.

With the advent of in-memory DBMSes, the code layout of the instructions becomes an

ever more important factor. More specifically, the virtual function calls (or function calls

via function to pointers) appearing in the iterator model start becoming a bottleneck in the

performance. One solution is block-oriented processing of elements instead of processing

elements one-by-one, which hides the cost of virtual calls behind the cost of processing

a large number of elements [263, 42]. The alternative approach, which is the main focus

of this work, is query compilation. This approach uses code generation and compilation

techniques in order to inline virtual functions and further specialize the code to improve cache

locality [134, 10, 202, 208, 255, 204, 205, 199, 352, 74, 252, 185, 19, 301, 184]. As a result of that,

the code pattern used in each pipelining algorithm really matters. Hence, it is important to

investigate the performance of each pipelining algorithm for different workloads.

1 Even without manually fusing the ordering and limit operators, the cost of sorting dominates the cost of final
scan. This reduces the impact of pipelining the limit operator in realistic workloads, as we observe in Section 4.7.2.

87



Chapter 4. Loop Fusion in Query Engines

Figure 4.2a shows the inlined pull-engine code for the example SQL query given in Figure 4.1.

Note that for the selection operator, we need an additional while loop. This additional loop

creates more branches in the generated code, which makes the control-flow graph (CFG) more

complicated. Figure 4.2c demonstrates the CFG of the inlined pull-engine code. Each rectangle

in this figure corresponds to a block of statements, whereas diamonds represent conditionals.

The edges between these nodes represent the execution flow. The backward edges represent

the jumps inside a loop. This complicated CFG makes the code harder to understand and

optimize for the optimizing compiler. As a result, during the runtime execution, performance

degrades.

Figure 4.2b shows the specialized query for a push engine of the previous example SQL query.

The selection operator here is summarized in a single if statement. As a result, the CFG for the

inlined push-engine code is simpler than the one for the pull engine, as shown in Figure 4.2d.

This simpler CFG results in fewer branching machine instructions generated by the underlying

optimizing compiler, leading to better run time performance.

Up to now, there is no separation of the concept of pipelining from the associated specializa-

tions. For example, HyPer [255] is in essence a push engine which uses compiler optimizations

by default, without identifying the individual contributions to performance by these two fac-

tors. As another example, LegoBase [199] assumes that a push engine is followed by operator

inlining, whereas the pull engine does not use operator inlining [200]. On the other hand,

there is no comparison between an inlined pull engine – we suspect Hekaton [92] to be of

that class – with a push-based inlined engine in the same environment. Hence, there is no

comparison between pull and push engines which is under completely fair experimental con-

ditions, sharing environment and code base to the maximum degree possible. In Section 4.7,

we attempt such a fair comparison.

Furthermore, naïvely compiling the pull engine does not lead to good performance. This is

because a naïve implementation of the iterator model does not take into account the number

of next function calls. This can lead to inefficient code, due to the code explosion resulting

from inlining too many next calls. For example, the naïve implementation of the selection

operator invokes the next method of its source operator twice, as it is demonstrated below:

1 class SelectOp[R] (p: R => Boolean) {
2 def next(): R = {
3 var elem: R = source.next()
4 while(elem != null && !p(elem)) {
5 elem = source.next()
6 }
7 elem
8 }
9 }

The first invocation is happening before the loop for the initialization (line 3), and the second

invocation is inside the loop (line 5). Inlining can cause an explosion of the code size, which

can lead to worse instruction cache behavior. Hence, it is important to take into account

these concerns while implementing query engines. For example, our implementation of the

88



4.3. Loop Fusion in Collection Programming

selection operator in a pull-based query engine invokes the next method of its source operator

only once by changing the shape of the while loop (c.f. Figure 4.4a). Section 4.7.2 shows the

impact of this inline-friendly implementation of pull engines.

4.3 Loop Fusion in Collection Programming

Collection programming APIs are getting more and more popular. Ferry [135, 134] and

LINQ [238] use such an API to seemlessly integrate applications with database back-ends.

Spark RDDs [376] use the same operations as collection programming APIs. Also, functional

collection programming abstractions exist in mainstream programming languages such as

Scala, Haskell, and recently Java 8. The theoretical foundation of such APIs is based on Monad

Calculus and Monoid Comprehensions [44, 45, 358, 136, 345, 107, 368, 49].

Similar to query engines, the declarative nature of collection programming comes with a

price. Each collection operation performs a computation on a collection and produces a trans-

formed collection. A chain of these invocations results in creating unnecessary intermediate

collections.

Loop fusion or Deforestation [357] removes the intermediate collections in collection pro-

grams. This is a nonlocal and brittle transformation which is difficult to apply to impure

functional programs (i.e., in languages which include imperative features) and is thus absent

from mainstream compilers for such languages. In order to provide a practical implementa-

tion, one can restrict the language to a pure functional DSL for which the fusion rules can be

applied locally. Here, intermediate collections are removed using local transformations instead

of global transformations. This approach is known as short-cut deforestation. It is more realis-

tic to integrate this approach into real compilers; short-cut deforestation has been successfully

implemented in the context of Haskell [325, 71, 121] and Scala-based DSLs [175, 301].

Next, we present two approaches for short-cut deforestation, fold fusion and unfold fusion, in

the order they were discovered. They employ two kinds of “collection” micro-instructions each,

to which a large number of collection operations can be mapped. This allows to implement

fusion using very few rewrite rules.

4.3.1 Fold Fusion

In this approach, every collection operation is implemented using two constructs: 1) the build

method for producing a collection, and 2) the foldr method for consuming a collection. Some

collection-transforming methods such as map use both of these constructs for consuming the

given collection and producing a new collection. However, some methods such as sum, which

produces an aggregated result from a collection, require only the foldr method for consuming

the given collection.

We consider an imperative variant of this algorithm, in which the foldr method is substituted

89



Chapter 4. Loop Fusion in Query Engines

by foreach. The main difference is that the foldr method explicitly handles the state, whereas

in the case of foreach, the state is handled internally and is not exposed to the interface.

Using Scala syntax, the signature of the foreach method on lists is as follows:

class List[T] {
def foreach(f: T => Unit): Unit

}

The foreach method consumes a collection by iterating over the elements of that collection

and applying the given function to each element. The build function is the corresponding

producer for the foreach method. This function produces a collection for which the foreach

method applies the higher-order function consumer to the function f. The signature of the build

function is as follows:

def build[T](consumer: (T => Unit) => Unit): List[T]

We illustrate the meanings of these two methods by an example. Consider the map method of a

collection, which transforms a collection by applying a given function to each element. This

method is expressed in the following way using the build and foreach functions:

class List[T] {
def map[S](f: T => S): List[S] = build { k =>
this.foreach(e => k(f(e)))

}
}

The implementation of several other collection operators using these two methods is given in

Figure 4.3b.

After rewriting the collection operations using the build and foreach constructs, a pipeline

of collection operators involves constructing intermediate collections. These intermediate

collections can be removed using the following rewrite rule:

Fold-Fusion Rule:

build(f1).foreach(f2)  f1(f2)

For example, there is a loop fusion rule for the map function, which fuses two consecutive

map operations into one. More concretely, the expression list.map(f).map(g) is converted into

list.map(f o g). Figure 3.5 demonstrates how the fold-fusion technique can derive this conver-

sion by expressing the map operator in terms of foreach and build, following by application of

the fold-fusion rule.

One of the key advantages of this approach is that instead of writing fusion rewrite rules for

every combination of collection operations, it is sufficient to only express these operations in

terms of the build and foreach methods. This way, instead of writing O(n2) rewrite rules for n

collection operations, it is sufficient to express these operations in terms of build and foreach,

which is only O(n) rewrite rules. Hence, this approach greatly simplifies the maintenance of

the underlying compiler transformations [301].

90



4.3. Loop Fusion in Collection Programming

This approach successfully deforests most collection operators very well. However, it is not

successful in the case of zip and take operations. The zip method involves iterating over two

collections, which cannot be expressed using the foreach construct which iterates only over

one collection. Hence, this approach can deforest only one of the collections. For the other

one, an intermediate collection must be created. Also, for the take method, there is no way to

stop the iteration of the foreach method halfway to finish. Hence, the fold fusion technique

does not perform well in these two cases. The next fusion technique solves the problem with

these two methods.

4.3.2 Unfold Fusion

This is considered a dual approach to fold fusion. Every collection operation is expressed in

terms of the two constructs unfold and destroy. We use an imperative version of unfold fusion

here, which uses the generate function instead of unfold. The prototype of generate and destroy

are as follows:

class List[T] {
def destroy[S](f: (() => T) => S): S

}
def generate[T](gen: () => T): List[T]

The destroy method consumes the given list. Each element of this collection is accessible by

invoking the next function available by the destroy method. The generate function generates a

collection whose elements are specified by the input function passed to this method. In the

case of map operator, the elements of the result collection are the images of the elements of the

input collection under the function f.

The map method of collections is expressed in the following way using the generate and destroy

methods:

class List[T] {
def map[S](f: T => S): List[S] = this.destroy { n =>
generate { () =>
val elem = n()
if(elem == null) null
else f(elem)

}
}

}

The implementation of some other collection operators using these two methods is given in

Figure 4.4b.

In order to remove the intermediate collections, the chain of intermediate generate and destroy

can be removed. This fact is shown in the following transformation rule:

Unfold-Fusion Rule:

generate(f1).destroy(f2)  f2(f1)

91



Chapter 4. Loop Fusion in Query Engines

Operator Category Query Operator Collection Operator
Producer Scan fromArray

Transformer

Selection filter

Projection map

OrderBy sortBy

Limit take

Join* flatMap*
Merge Join† zip†

Consumer Agg‡ fold‡

* Nested loop join can be expressed using two nested flatMaps, but there is no equivalent for hash-based joins.

Also, flatMaps can express nested collections, whereas in relational query engines every relation is considered to

be flat.

† Both merge join and zip perform parallel traversal on two collections, even though they are otherwise quite

different.

‡ An Agg operator representing a GROUP BY is a transformer, whereas the one which folds into only a single result

is a consumer.

Table 4.1 – Correspondence between query operators and collection operators

Pipelined Object-Oriented Collection
Query Engines Design Pattern Loop Fusion

Pull Engine Iterator
Unfold fusion [325]
Stream fusion [71]

Push Engine Visitor Fold fusion [121]

Table 4.2 – Correspondence among pipelined query engines, object-oriented design patterns,
and collection programming loop fusion.

Figure 3.5 demonstrates how this rule fuses the previous example, list.map(f).map(g) into

list.map(f o g). Note that the null checking statements, which are for checking the end of a

list, are removed for brevity.

This approach introduces a recursive iteration for the filter operation. In practice, such a

recursive iteration, which is for finding the next satisfying element, can cause performance

issues, even though the deforestation is applied successfully [149]. Also, this approach does

not fuse operations on nested collections, which is beyond the scope of this thesis.

4.4 Loop Fusion is Operator Pipelining

By chaining query operators, one can express a given (say, SQL) query. Similarly, a given

collection program can be expressed using a pipeline of collection operators. The relationship

between relational queries and collection programs has been well studied. In particular, one

can establish a precise correspondence between relational query plans and a class of collection

programs [266].

92



4.4. Loop Fusion is Operator Pipelining

class ScanOp[R](arr: Array[R]) {
def init(): Unit = {
var i = 0
while(i < arr.length) {

dest.consume(arr(i))
} } }
class ProjectOp[R, P](f: R => P) {
def consume(e: R): Unit =

dest.consume(f(e))
}
class SelectOp[R](p: R => Boolean) {
def consume(e: R): Unit =
if(p(e))

dest.consume(e)
}
class AggOp[R, S](f: (R, S) => S) {
var result = zero[S]
def consume(e: R): Unit = {

result = f(e, result)
}
def getResult: S = result

}
class HashJoinOp[R, R2]
(leftHash: R => Int)
(rightHash: R2 => Int)
(cond: (R, R2) => Boolean) {
val hm = new MultiMap[Int, R]()
def consumeLeft(e: R): Unit = {

hm.addBinding(leftHash(e) -> e)
}
def consumeRight(e: R2): Unit = {
hm.get(rightHash(e)) match {
case Some(list) =>
for(l <- list) {
if(cond(l, e)) {

dest.consume(l.concat(e))
}

}
case None =>

} } }

(a) Push-based query engine

class QueryMonad[R] {
def fromArray[R](arr: Array[R]) =
build { k =>
var i = 0
while(i < arr.length) {

k(arr(i))
} }

def map[S](f: R => S) = build { k =>
for(e <- this)

k(f(e))
}
def filter(p: R => Boolean) = build { k =>
for(e <- this)
if(p(e))

k(e)
}
def fold[S](zero: S)(f: (R, S) => S): S = {
var result = zero
for(e <- this) {

result = f(e, result)
}
result

}
def hashJoin[R2](rightList: QueryMonad[R2])
(leftHash: R => Int)
(rightHash: R2 => Int)
(cond: (R, R2) => Boolean) = build { k =>
val hm = new MultiMap[Int, R1]()
for(e <- this) {

hm.addBinding(leftHash(e) -> e)
}
for(e <- rightList) {
hm.get(rightHash(e)) match {
case Some(list) =>
for(l <- list) {
if(cond(l, e)) {

k(l.concat(e))
}

}
case None =>

} } } }

(b) Fold fusion of collections.

Figure 4.3 – Correspondence between push-based query engines and fold fusion of collections.

Operators can be divided into three categories: 1) The operators responsible for producing a

collection from a given source (e.g., a file or an array), 2) the operators which transform the

given collection to another collection, and 3) the consumer operators which aggregate the

given collection into a single result.

The mapping between query operators and collection operators is summarized in Table 4.1.

Most join operators do not have a directly corresponding collection operator, with two excep-

tions: Nested loop joins can be expressed using nested flatMaps and the zip collection operator

is very similar to the merge join query operator. Both operators need to traverse two input

sequences in parallel. For the rest of join operators, we extend collection programming with

join operators (e.g. hashJoin, semiHashJoin, etc.). A similar mapping between the LINQ [238]

operators and Haskell lists is shown in Steno [251]. Note that we do not consider nested

93



Chapter 4. Loop Fusion in Query Engines

class ScanOp[R](arr: Array[R]) {
var i = 0
def next(): R = {
if(i < arr.length) {

val elem = arr(i)
i += 1
elem

} else
null

} }
class SelectOp[R](p: R => Boolean) {
def next(): R = {
var elem: R = null
do {

elem = source.next()
} while (elem != null && !p(elem))
elem

} }
class ProjectOp[R, P](f: R => P) {
def next(): P = {

val elem = source.next()
if(elem == null) null
else f(elem)

} }
class AggOp[R, S]
(f: (R, S) => S) {
def next(): S = {
var result = zero[S]
while(true){

val elem = source.next()
if(elem = null)
break

else

result = f(elem, result)
}
result

} }
class LimitOp[R](n: Int) {
var count = 0
def next(): R = {
if(count < n) {
count += 1

source.next()
} else {
null

} } }

(a) Pull-based query engine

class QueryMonad[R] {
def fromArray[R](arr: Array[R]) = {
var i = 0
generate { () =>
if(i < arr.length) {

val elem = arr(i)
i += 1
elem

} else
null

} }
def filter(p: R=>Boolean) = destroy { n =>
generate { () =>
var elem: R = null
do {

elem = n()
} while(elem != null && !p(elem))
elem

} }
def map[P](p: R => P) = destroy { n =>
generate { () =>

val elem = n()
if(elem == null) null
else f(elem)

} }
def fold[S](zero: S)
(f: (R, S) => S): S =
destroy { n =>
var result = zero
while(true){

val elem = n()
if(elem = null)
break

else

result = f(elem, result)
}
result

}
def take(n: Int) = {
var count = 0
destroy { n =>
if(count < limit) {
count += 1

n()
} else {
null

} } } }

(b) Unfold fusion of collections.

Figure 4.4 – Correspondence between pull-based query engines and unfold fusion of collec-
tions.

collections here, although straightforward to support in collection programming, in order to

emphasize similarity with relational query engines.

Pipelining in query engines is analogous to loop fusion in collection programming. Both

concepts remove the intermediate relations and collections, which break the stream pipeline.

Also, pipelining in query engines matches well-known design patterns in object-oriented

programming [355]. The correspondence among pipelining in query engines, design patterns

94



4.5. An Improved Pull-Based Engine

in object-oriented languages, and loop fusion in collection programming is summarized in

Table 4.2.

Push Engine = Fold Fusion. There is a similarity between the Visitor pattern and fold fusion.

On one hand it has been proven that the Visitor design pattern corresponds to the Church-

encoding [40] of data types [47]. On the other hand, the foldr function on a list corresponds

to the Church-encoding of lists in λ-calculus [275, 303]. Hence, both approaches eliminate

intermediate results by converting the underlying data structure into its Church-encoding. In

the former case, specialization consists of inlining, which results in removing (virtual) function

calls. In the latter case, the fold-fusion rule and β-reduction are performed to remove the

materialization points and inline the λ expressions. The correspondence between these two

approaches is shown in Figure 4.3 (compare (a) vs. (b)). The invocations of the consume method

of the destination operators in the push engine correspond to the invocations of the consume

function, which is passed to the build operator, in fold fusion.

Pull Engine = Unfold Fusion. In a similar sense, the Iterator pattern is similar to unfold fusion.

Although the category-theoretic essence of the iterator model was studied before [119], there

is no literature on the direct correspondence between the unfold function and the Iterator

pattern. However, Figure 4.4 shows how a pull engine is similar to unfold fusion (compare

Figure 4.4 (a) vs. (b)), to the best of our knowledge for the first time. Note the correspondence

between the invocation of the next function of the source operator in pull engines and the

invocation of the next function which is passed to the destroy operator in unfold fusion, which

is highlighted in the figure.

4.5 An Improved Pull-Based Engine

In this section, we first present yet another loop-fusion technique for collection programs.

Then, we suggest a new pull-based query engine inspired by this fusion technique based on

the correspondence between queries and collection programming.

4.5.1 Stream Fusion

In functional languages, loops are expressed as recursive functions. Reasoning about recursive

functions is very hard for optimizing compilers. Stream fusion tries to solve this issue by

converting all recursive collection operations to non-recursive stream operations. To do so,

first all collections are converted to streams using the stream method. Then, the correspond-

ing method on the stream is invoked which results in a transformed stream. Finally, the

transformed stream is converted back to a collection by invoking the unstream method.

The signature of the unstream and stream methods is as follows:
def unstream[T](gen: () => Step[T]): List[T]
class List[T] {
def stream(): Step[T]

95



Chapter 4. Loop Fusion in Query Engines

trait Step[T] {
def filter(p: T => Boolean): Step[T]
def map[S](f: T => S): Step[S]
def fold[S](yld: T => S, skip: () => S, done: () => S): S

}

case class Yield[T](e: T) extends Step[T] {
def filter(p: T => Boolean) =
if(p(e)) Yield(e) else Skip

def map[S](f: T => S) =
Yield(f(e))

def fold[S](yld: T => S, skip: () => S, done: () => S): S =
yld(e)

}

case object Skip extends Step[Nothing] {
def filter(p: Nothing => Boolean) =
Skip

def map[S](f: Nothing => S) =
Skip

def fold[S](yld: Nothing => S, skip: () => S, done: () => S): S =
skip()

}

case object Done extends Step[Nothing] {
def filter(p: Nothing => Boolean) =
Done

def map[S](f: Nothing => S) =
Done

def fold[S](yld: Nothing => S, skip: () => S, done: () => S): S =
done()

}

Figure 4.5 – The operations of the Step data type.

}

For example, the map method is expressed in using these two methods as:
class List[T] {
def map[S](f: T => S): List[S] = unstream { () =>
this.stream().map(f)

}
}

The stream method converts the input collection to an intermediate stream, which is specified

by the Step data type. The function f is applied to this intermediate stream using the map

function of the Step data type. Afterwards, the result stream is converted back to a collection

by the unstream method.

As discussed before, one of the main advantages of the intermediate stream, the Step data

structure, is that its operations are mainly non-recursive. This simplifies the task of the opti-

mizing compiler to further specialize the program. The implementation of several methods of

the Step data structure is given in Figure 4.5.

Such transformations do not result in direct performance gain – they may even degrade

performance. This is because of the intermediate conversions between streams and collections.

However, these intermediate conversions can be removed using the following rewrite rule:

96



4.5. An Improved Pull-Based Engine

class ScanOp[R](arr: Array[R]) {
var i = 0
def stream(): Step[R] = {
if(i < arr.length)

Yield(arr(i))
else
Done

} }
class SelectOp[R](p: R => Boolean) {
def stream(): Step[R] = {

source.stream().filter(p)
} }
class ProjectOp[R, P](f: R => P) {
def stream(): Step[P] = {

source.stream().map(f)
} }
class AggOp[R, S](f: (R, S) => S) {
def stream(): Step[S] = {
var result = zero[S]
var done = false
while(!done){

source.stream().fold(
e => { result = f(e, result) },
() => ,
() => { done = true }

)
}
result

} }
class LimitOp[R](n: Int) {
var count = 0
def stream(): Step[R] = {
if(count < n) {

source.stream().map(e => {
count += 1
e

})
} else {
Done

} } }

(a) Stream-fusion query Engine

class QueryMonad[R] {
def fromArray[R](arr: Array[R]) = {
var i = 0
unstream { () =>
if(i < arr.length)

Yield(arr(i))
else
Done

} }
def filter(p: R => Boolean) = {
unstream { () =>

stream().filter(p)
} }
def map[P](f: R => P) = {
unstream { () =>

stream().map(f)
} }
def fold[S](z: S)(f: (R, S) => S): S = {
unstream { () =>
var result = zero[S]
var done = false
while(!done){

stream().fold(
e => { result = f(e, result) },
() => ,
() => { done = true }

)
}
result

} }
def take(n: Int) = {
var count = 0
unstream { () =>
if(count < n) {

stream().map(e => {
count += 1
e

})
} else {
Done

} } } }

(b) Stream fusion of collections.

Figure 4.6 – Correspondence between stream-fusion query engine and the stream fusion
technique.

Stream-Fusion Rule:

unstream(() => e).stream()  e

Figure 3.5 demonstrates how the stream fusion technique transforms list.map(f).map(g) into

list.map(f o g). Note that for the Step data type, the step.map(f).map(g) expression is equivalent

to step.map(f o g).

The idea behind stream fusion is very similar to unfold fusion. The main difference is the filter

operator. Stream fusion uses a specific value, called Skip, to implement the filter operator. This

is in contrast with the unfold fusion approach for which the filter operator is implemented

using an additional nested while loop for skipping the unnecessary elements. Hence, stream

97



Chapter 4. Loop Fusion in Query Engines

fusion solves the practical problem of unfold fusion associated with the filter operator.

Next, we define a new pipelined query engine based on the ideas of stream fusion.

4.5.2 Stream-Fusion Engine

The proposed query engine follows the same design as the iterator model. Hence, this engine

is also a pull engine. However, instead of invoking the next method, this engine invokes the

stream method, which returns a wrapper object of type Step. We refer to our proposed engine

as the stream-fusion engine.

As we mentioned in Section 4.2.1, one of the main practical problems with a pull engine is

the case of the selection operator. In this case, an operator waits until the selection operator

returns the next satisfying element. The proposed engine solves this issue by using the Skip

object which specifies that the current element should be ignored. Hence, selection operators

are no longer a blocker for their destination operator.

The correspondence between the stream fusion algorithm and the stream-fusion engine is

shown in Figure 4.6. Every query operator provides an appropriate implementation for the

stream method, which invokes the stream method of the source operator to request the next

element. Similarly, stream fusion uses the stream method to fetch the next element. Then, by

invoking the unstream method, the generated stream is converted back to a collection.

From a different point of view, a push engine can be expressed using a while loop and a

construct for skipping to the next iteration (e.g. continue). By nature, it is impossible for a

push-based engine to finish the iteration before the producer’s while loop finishes its job. In

other words, the generated C code using a push-based engine never uses the break construct.

In contrast, a pull engine is generally expressible using a while loop and a construct for ter-

minating the execution of the while loop (i.e., the break construct). This is because of the

demand-driven nature of pull engines. However, in a pull-based engine there is no way to skip

an iteration. As a result, skipping an iteration should be expressed using a nested while loop

which results in performance issues (c.f. Section 4.2).

The stream-fusion engine combines the benefits of both engines by providing the following

two constructs for early termination of loops and skipping an iteration. First, the Done construct

denotes the termination of loops, and in essence has the same effect as the break construct

in an imperative language like C. Second, the Skip construct results in skipping to the next

iteration, and has an equivalent effect to the continue construct in an imperative language like

C. Table 4.3 summarizes the differences among the aforementioned query engines.

Consider a relation of two elements for which we select its first element and the second element

is filtered out. The first call to the stream method of the selection operator in the stream-fusion

engine produces a Yield element, which contains the first element of the relation. The second

98



4.5. An Improved Pull-Based Engine

1 var index = 0
2 var sum = 0.0
3 while(true) {
4 val step1 =
5 if(index < R.length) {
6 val rec = R(index)
7 index += 1
8 Yield(rec)
9 } else

10 Done
11 step1.filter(x => x.A < 10)
12 .map(x => x.B)
13 .fold(x => sum += x,
14 () => ,
15 () => break)
16 }
17 return sum

(a) Inlined query in stream-fusion engine with-
out further specializations.

var index = 0
var sum = 0.0
while(true) {

if(index < R.length) {
val rec = R(index)
index += 1

if(rec.A < 10)
sum += rec.B

}
else
break

}
return sum

(b) Inlined query in stream-fusion engine by inlin-
ing the visitor model of Step.

1,2

3 5

6-8 10

13

11

15

13

12

17

(c) The CFG of the inlined query in stream-
fusion engine without further specializations.

1,2

5

6,7

11

12 17

3

15

(d) The CFG of the inlined query in stream-fusion
engine by inlining the visitor model of Step.

Figure 4.7 – Specialized version of the example query in stream-fusion engine and the corre-
sponding control-flow graph (CFG).

invocation of the same method returns a Skip element, specifying that this element, which is

the second element of the relation, is filtered out and should be ignored. The next invocation

of this method results in a Done element, denoting that there is no more element to be produced

by the selection operator. The Done value has the same role as the null value in the pull engine.

The specialized version of the example query (which was introduced in Figure 4.1) based on

the stream-fusion engine is shown in Figure 4.7a. The code is as compact as the push engine

code. However, the control flow graph is similar to (or even more complicated than) the one of

a pull engine (c.f. Figure 4.7c). Furthermore, the specialized stream-fusion engine suffers from

more performance problems due to the intermediate Step objects created. The next section

discusses implementation aspects and the optimizations needed for tuning the performance

of the stream-fusion engine.

99



Chapter 4. Loop Fusion in Query Engines

Pipelined Query Engines Looping Constructs
Push Engine while + continue

Pull Engine while + break

Stream-Fusion Engine while + break + continue

Table 4.3 – The supported looping constructs by each pipelined query engine.

4.6 Implementation

In this section, we discuss the implementation of the presented query engines. First, we show

the architecture of our query compiler. Then, we discuss how the fusion rules are implemented

for each approach. Finally, we show how the problem associated with intermediate objects is

resolved for the stream-fusion engine.

4.6.1 Architecture

We have implemented different types of query engines and the associated optimizations in the

DBLAB/LB query compiler [301]. This query compiler is a component of DBLAB,2 a framework

for building efficient database systems in the high-level programming language Scala.

The DBLAB/LB query compiler uses the compilation facilities provided by Systems Com-

piler (SC)3 in order to implement several intermediate languages (through language embed-

ding [158]), the transformations inside and across these languages (using the transformation

framework), and finally unparsing the transformed program into Scala or C code (using the

pretty printers). Furthermore, SC provides several generic optimizations out-of-the-box,

which DBLAB/LB uses during query compilation. These optimizations include Common-

Subexpression Elimination (CSE), Dead-Code Elimination (DCE), Partial Evaluation, and

Scalar Replacement.

The architecture of DBLAB/LB is shown in Figure 4.8. The input programs can either be

expressed using physical (relational algebra-style) query plans in the QPlan language or

collection programming using the QMonad language. Depending on the input language, the

query compiler performs either pipelining or loop fusion. These transformations result in

a low-level Scala program, which does not have the high-level constructs of the QPlan and

QMonad languages.4 In order to transform this Scala program into a C program, the storage

layout for records should be specified. DBLAB/LB provides both row and columnar storage

layouts for relations [301]. Finally, the DBLAB/LB query compiler uses the C pretty printer

provided by SC to generate C code.

2http://github.com/epfldata/dblab
3http://github.com/epfldata/sc-public
4Note that DBLAB/LB defines more intermediate languages in its compilation stack [301] which can be found

in Figure 3.3.

100



4.6. Implementation

QPlan QMonad

Scala

C

Pipelining & Fusion

Storage Layout

Figure 4.8 – The architecture of the DBLAB/LB query compiler.

We have implemented the collection programming operations and the corresponding loop

fusion techniques described earlier in this thesis. Thanks to the equivalence which was shown

in Section 4.4 between query engines and collection programming, it is clear how different

pipelining techniques can be implemented for query engines. As a result, it is not surprising

that the experimental results presented in the next section for different fusion techniques

match the results for the corresponding pipelined query engines. Next, we discuss how the

fusion rules for different loop fusion algorithms can be expressed in this framework.

4.6.2 Fusion By Inlining

As mentioned in Section 4.4, a fusion rule is expressed as a local transformation rule which is

applied as an extension to the host language compiler (which is GHC [174] in the case of the

mentioned papers). In this section, we show how these fusion rules are implemented by only

using inlining. This was proposed for implementing fold fusion in Scala [175]. Here, we use a

similar approach for other fusion techniques.

Figure 4.9a shows the definition of the build operator. By inlining the definition of this operator,

an object of type QueryMonad is created. The foreach method of this object applies the higher-

order function passed to the build method (f1) to the input parameter of the foreach method

(f2). By inlining this foreach method, we derive the same rule as the fold-fusion rule which

was introduced in Section 4.3. This derivation is shown in Figure 4.9a. The constructs and

derivation of unfold fusion are shown in Figure 4.9c and Figure 4.9d. Stream fusion follows

a similar pattern which is given in Figure 4.10 and Figure 4.11. Figures E.1 and E.2 show the

fusion process for the working example using fold and unfold fusion respectively.

Next, we discuss the problematic creation of intermediate objects by the stream-fusion engine,

as well as our solution.

4.6.3 Removing Intermediate Results

Although the stream-fusion engine removes intermediate relations, it creates intermediate

Step objects. There are two problems with these intermediate objects. First, the Step data type

operations are virtual calls. This causes poor cache locality and degrades performance. Second,

normally these intermediate objects lead to heap allocations. This causes higher memory

consumption and worse running times. This is why the original stream fusion approach is

dependent on optimizations provided by its source language compiler (i.e., the GHC [174]

101



Chapter 4. Loop Fusion in Query Engines

type Cont[T] = (T => Unit) => Unit

class Consumer[T](cont: Cont[T])
extends QueryMonad[T] {
def foreach(f: T => Unit): Unit =
cont(f)

}

def build[T](cont: Cont[T])
: QueryMonad[T] =
new Consumer[T](cont)

(a) The constructs for fold fusion.

build(f1).foreach(f2)y (inline build definition)

new Consumer(f1).foreach(f2)y (inline foreach definition)

f1(f2)

(b) The derivation of the fold-fusion rule.

type Gen[T] = () => T

class DestroyGen[T](gen: Gen[T])
extends QueryMonad[T] {
def destroy[S](f: Gen[T] => S): S =
f(gen)

}

def generate[T](gen: Gen[T])
: QueryMonad[T] =
new DestroyGen[T](gen)

(c) The constructs for unfold fusion.

generate(f1).destroy(f2)y (inline generate definition)

new DestroyGen(f1).destroy(f2)y (inline destroy definition)

f2(f1)

(d) The derivation of the unfold-fusion rule.

Figure 4.9 – Constructs and derivation of fold fusion and unfold fusion.

compiler). Implementing an effective version of it for other languages requires supporting

similar optimizations supported by the GHC compiler.

The first problem with virtual calls can be solved by rewriting the Step operations by enu-

merating all cases for the Step object. This is possible because there are only three possible

concrete cases (1. Yield 2. Skip 3. Done) for this data type. To do so, one can use if-statements.

In functional languages, the pattern matching feature can be used. Although this approach

solves the first problem, still there are heap allocations which are not removed.

The good news is that these heap allocations can be converted to stack allocations. This is

because the created objects are not escaping their usage scope. For example, these objects are

not copied into an array and not used as an argument to a function. This fact can be verified

by the well-known compilation technique of escape analysis [63]. Based on that, the heap

allocations can be converted to stack allocations.

The compiler optimizations can go further and remove the stack allocations as well. Instead

of the stack allocation for creating a Step object, the fields necessary to encode this type

are converted to local variables. Hence, the Step abstraction is completely removed. This

optimization is known as scalar replacement in compilers.

From a different point of view, removing the intermediate Step objects is a similar problem to

removing the intermediate relations and collections in query engines and collection program-

ming. Hence, one can borrow similar ideas and apply it for the Step objects in a fine-grained

102



4.6. Implementation

type GenStream[T] = () => Step[T]

class Streamer[T](gen: GenStream[T]) extends QueryMonad[T] {
def stream(): Step[T] = gen()

}

def unstream[T](gen: GenStream[T]): QueryMonad[T] =
new Streamer[T](gen)

Figure 4.10 – The constructs for stream fusion.

unstream(() => e).stream()y (inline unstream definition)

new Streamer(() => e).stream()y (inline stream definition)

e

Figure 4.11 – The derivation of the stream-fusion rule.

granularity. More specifically, we use the church-encoding of the Step data type to completely

remove its abstraction. A similar idea is used in the strymonas library [197].

To do so, we implement a variant of the Step data type using the Visitor pattern. As we discussed

in Section 4.4, this is similar to the Church-encoding of data types. This encoding results in

pushing Step objects down the pipeline. Hence, the stream-fusion engine implements a pull

engine on a coarse-grained level (i.e. relation level) and pushes the individual elements on a

fine-grained level (i.e. tuple level). The Visitor pattern version of the Step data type is shown in

Figure 4.12.

The result of applying this enhancement to our working example is shown in Figure 4.7b. By

comparing this code to the code produced by a push engine, we see a clear similarity. First,

there are no more additional virtual calls associated with the Step operators. Second, there is

no more materialization of the intermediate Step objects. Finally, similar to push engines, the

produced code does not contain any additional nested while loop for selection. This leads to a

simpler control flow graph, which is shown in Figure 4.7d.

As an alternative implementation, one can implement the Step data type as a sum type, a

type with different distinct cases in which an object can be one and only one of those cases.

Hence, the implementation of the Step methods can use the pattern matching feature of the

Scala programming language. However, it has been proven that the Visitor pattern is a way to

encode the sum types in object-oriented languages [47]. On the other hand, pattern matching

in Scala is a way to express the Visitor pattern [99]. Hence, from a conceptual point of view

there is no difference between these implementations [152].

103



Chapter 4. Loop Fusion in Query Engines

trait StepVisitor[T] {
def yld(e: T): Unit
def skip(): Unit
def done(): Unit

}

trait Step[T] { self =>
def __match(v: StepVisitor[T]): Unit
def filter(p: T => Boolean): Step[T] =
new Step[T] {
def __match(v: StepVisitor[T]): Unit =
self.__match(new StepVisitor[T] {
def yld(e: T): Unit =
if (p(e)) v.yld(e) else v.skip()

def skip(): Unit = v.skip()
def done(): Unit = v.done()

})
}

def map[S](f: T => S): Step[S] =
new Step[S] {
def __match(v: StepVisitor[S]): Unit =
self.__match(new StepVisitor[T] {
def yld(e: T): Unit = v.yld(f(e))
def skip(): Unit = v.skip()
def done(): Unit = v.done()

})
}

}

case class Yield[T](e: T) extends Step[T] {
def __match(v: StepVisitor[T]): Unit = v.yld(e)

}
case object Skip extends Step[Nothing] {
def __match(v: StepVisitor[Nothing]): Unit = v.skip()

}
case object Done extends Step[Nothing] {
def __match(v: StepVisitor[Nothing]): Unit = v.done()

}

Figure 4.12 – Step data type implemented using the Visitor pattern.

4.7 Experimental Results

We use a server-type x86 machine equipped with two Intel Xeon E5-2620 v2 CPUs running at

2GHz each, 256GB of DDR3 RAM at 1600Mhz and two commodity HDDs of 2TB. The operating

system is Red Hat Enterprise 6.7.

Our query compiler uses the same set of transformations for different pipelining techniques

to allow for a fair comparison. These transformations consist of dead code elimination (DCE),

common subexpression elimination (CSE) or global value numbering (GVN), and partial evalu-

ation (inlining and constant propagation). These transformations are provided out-of-the-box

by DBLAB [301], which we use as our testbed. Also, the scalar replacement transformation

is always applied unless otherwise specified. We do not use any data-structure specializa-

tion transformations or inverted indices for these experiments. Finally, all experiments use

DBLAB’s in-memory row-store representation.

For compiling the generated programs throughout our evaluation we use version 3.9.1 of the

104



4.7. Experimental Results

 0

 1000

 2000

 3000

 4000

filter.count filter.sum filter.filter.sum filter.filter.filter.sum

R
u
n
 T

im
e 

(m
s)

Pull Push Stream (Scalar) Stream (Visitor)

Figure 4.13 – Single-pipeline queries compiled without any optimization flags specified for
CLang.

 0

 200

 400

 600

 800

filter.count filter.sum filter.filter.sum filter.filter.filter.sum

R
u
n
 T

im
e 

(m
s)

Pull Push Stream (Scalar) Stream (Visitor)

Figure 4.14 – Single-pipeline queries compiled with the -O3 optimization flag for CLang.

CLang compiler. We use the most aggressive optimization strategy provided by the CLang

compiler (the -O3 optimization flag)5. Finally, for C data structures we use the GLib library

(version 2.42.1).

Our evaluation consists of two parts. First, by using micro benchmarks, we clearly demonstrate

the differences between different query engines. Then, for more complex queries, we use

the TPC-H [343] benchmark to demonstrate how different query engines behave in more

complicated scenarios.

4.7.1 Micro Benchmarks

The micro benchmarks belong to three categories, (1) queries consisting of only selection

and aggregation without group by attributes leading to a single result, (2) queries consisting

of a limit operator, which return a list of results, and (3) queries with selection and different

join operators, such as hash join, merge join, and hash semi-join, which are followed by

an aggregation operator resulting to a single result. All these queries use generated TPC-H

databases at scaling factor 8, unless otherwise specified. The corresponding SQL queries for

all these micro benchmarks are shown in Table D.1.

Aggregated Single Pipeline. Next, we measure the performance obtained by each engine

5We observed similar performance results with the -O1 optimization flag. The -O1 optimization flag provides all
the transformation passes used in HyPer [255] except global value numbering (GVN). This transformation is not
needed in our case, as it is already provided by DBLAB [301].

105



Chapter 4. Loop Fusion in Query Engines

for queries with a single pipeline, which aggregate into a single result. Figure 4.13 shows

the performance of different engines when the generated C code is compiled without any

optimization flags. The push engine is behaving 2X better than the pull engine in most cases.

The visitor-based stream-fusion engine hides this limitation of the pull engine, and has a

similar performance to push engines. However, the stream-fusion engines that use scalar

replacement perform worse than pull engines.

The difference is more obvious whenever there are chains of selection operations. A similar

effect was shown in HyPer [255] in the case of using up to four consecutive selection operations.

Again the visitor-based stream-fusion engine is resolving this practical limitation of pull

engines. From a practical point of view, as the query optimizer is merging all conjunctive

predicates into a single selection operator, the case in which a chain of several selection

operators are followed by each other never happens in practice.

The difference among all types of engines can be removed by using more aggressive optimiza-

tions of the underlying optimizing compiler. Figure 4.14 shows that using the -O3 optimization

flag of CLang, the performance of all types of engines is similar. This is mainly thanks to

the CFG simplification performed by CLang. However, queries with more complicated selec-

tion predicates (e.g. user-defined functions or external functions such as strcmp) make the

reasoning hard for the underlying optimizing compiler. Hence, CFG simplification cannot

be applied, and push-based engine and stream-fusion engine have a superior performance

in comparison with a pull-based engine. The impact of the optimizations provided by an

underlying optimizing compiler is discussed in more details in Section F.

Single Pipeline with Limit. Next, we examine the results for single pipeline queries which

have a limit operator at the end of the pipeline. In all three queries, the push engine is

performing worse than the pull-based engine and the stream-fusion engine. This is because

the standard push engine cannot perform early loop-termination when using the limit query

operator (c.f. Section 4.2.2).

To better illustrate the mentioned behavior, Figure 4.15 shows the generated code for the

take.sum query for pull and push-based query engines. The pull engines do not require travers-

ing all the elements and can stop immediately after reaching the limit operator (c.f. line 18

of Figure 4.15a). However, the push engine should wait until all elements are produced to be

able to finish the execution (c.f. Figure 4.15b). A more detailed explanation on a similar query

is given in Section G.1. A similar behavior has been observed for pull-based and push-based

fusion techniques for Java 8 streaming API in [34].

Single Join. Finally, we investigate the performance of different join operations, which is

demonstrated in Figure 4.16. In the case of hash join and left-semi hash-join operators, there

is no obvious difference among the engines. However, in the case of merge join, there is a

great advantage for pull engines in comparison with the push engine. This is mainly because

the push engine cannot pipeline both inputs of a merge join. Hence, it is forced to break the

106



4.7. Experimental Results

1 var sum = 0.0
2 var index = 0
3 var count = 0
4 while(true) {
5 if(count < 1000) {
6 var rec = null
7 if(index < R.length) {
8 rec = R(index)
9 index += 1

10 } else {
11 rec = null
12 }
13 if(rec == null) break
14 else sum += rec.B
15 count += 1
16 } else {
17 break
18 } }
19 return sum

(a) Inlined query in pull engine.

var sum = 0.0
var index = 0
var count = 0

while(index < R.length) {
val rec = R(index)
index += 1

if(count < 1000) {
sum += rec.B
count += 1

}

}
return sum

(b) Inlined query in push engine.

Figure 4.15 – Compiled version of the take.sum query in pull and push engines.

 0

 200

 400

 600

 800

filter.hJoin.sum filter.sJoin.sum filter.mJoin.sum

R
u
n
 T

im
e 

(m
s)

Pull Push Stream (Scalar) Stream (Visitor)

Figure 4.16 – Single-join queries using hash join (hJoin), left-semi hash join (sJoin), and merge
join (mJoin) operators.

pipeline in one of the inputs (c.f. Section 4.2.2)6. A more detailed investigation of the merge

join operator is given in Section G.2.

4.7.2 Macro Benchmarks

In this section, we investigate scenarios which are happening more often in practice. To do so,

we use the larger and more complicated analytical queries defined in the TPC-H benchmark.

First, we investigate the difference between an inlined and an uninlined version of a pull-based

query engine on 12 TPC-H queries. Then, we show the impact of fine-grained optimizations

as well as a inline-friendly way of implementing pull engines on one of the TPC-H queries.

Finally, we demonstrate the performance difference among different types of query engines for

6The stream-fusion engine should have a special case for handling merge joins followed by filter operations. By
skipping the elements in the main loop of merging, many CPU cycles are wasted for retrieving the next satisfying
element. However, accessing them by using a similar approach to the Iterator model (keep iterating until the next
satisfying element is found in a tight loop) gives a better performance.

107



Chapter 4. Loop Fusion in Query Engines

 0

 0.2

 0.4

 0.6

 0.8

 1

Q1 Q2 Q3 Q4 Q5 Q6 Q9 Q10 Q12 Q14 Q19 Q20

N
or

m
al

iz
ed

 E
xe

cu
ti
on

 T
im

e

Uninlined (-O0) Uninlined (-O3) Inlined (-O3)

Figure 4.17 – The impact of inlining and low-level optimizations of CLang on a pull-based
engine for TPC-H queries.

Type of Engine Run Time (ms)
Pull (Interpreted) 3486
Pull (Naïve) 2405
Pull (Inline-Friendly) 2165
Stream (Scalar Replacement for Step objects) 2447
Stream (Visitor model for Step objects) 2217
Stream (No removal of Step objects) 6886

Table 4.4 – The performance comparison of several variants of different engines on TPC-H
query 19.

12 TPC-H queries. The remaining 10 TPC-H queries require features which are not supported

by all our query engines. All these experiments use 8 GBs of TPC-H generated data.

The Impact of Inlining on Pull Engine. As it was explained in Section 4.2.3, we expect inlined

(compiled) query engines to perform better than their corresponding uninlined (interpreted)

version. Figure 4.17 demonstrates the normalized execution time for 12 TPC-H queries for

interpreted and compiled pull-based query engines. The compiled query engine inlines the

next function invocations of a pull-based query engine, whereas the interpreted query engine

invokes the (virtual) functions during run time. Performing aggressive compilation of the

interpreted query using the -O3 flag of the CLang compiler, improves the performance of the

interpreted query. However, the best performance is achieved by generating C code using

query compilation, and then compiling the generated code using the -O3 flag of the CLang

compiler. On average, inlining the pull-based engine gives 67% improvement. In particular, for

TPC-H query 2, we observe a 4 times speedup. This considerable performance improvement

is the result of the removal of intermediate object allocations which is achieved after inlining

the operators of the query by DBLAB/LB. One exception is TPC-H query 4 which we see a

negligible performance improvement after inlining. This query uses a semi hash join operator

for implementing the functionality required for the EXISTS clause. The cost required for

building the intermediate hash table (which is implemented using the GLib library) dominates

the cost of (virtual) function calls. Hence, we do not see a significant improvement by inlining

108



4.7. Experimental Results

 0

 0.5

 1

 1.5

 2

Q1 Q2 Q3 Q4 Q5 Q6 Q9 Q10 Q12 Q14 Q19 Q20

N
or

m
al

iz
ed

 E
xe

cu
ti
on

 T
im

e
Pull Push Stream (Visitor)

Figure 4.18 – Performance of different compiled query engines for TPC-H queries, when using
the -O0 flag with the CLang compiler.

 0

 0.5

 1

 1.5

 2

Q1 Q2 Q3 Q4 Q5 Q6 Q9 Q10 Q12 Q14 Q19 Q20

N
or

m
al

iz
ed

 E
xe

cu
ti
on

 T
im

e

Pull Push Stream (Visitor)

Figure 4.19 – Performance of different compiled query engines for TPC-H queries, when using
the -O3 flag with the CLang compiler.

those function calls. The absolute execution times for all these queries can be found in

Table 4.5. Note that, the performance difference with LegoBase [199, 300] and DBLAB/LB [301]

is due to the lack of additional optimizations provided by these systems such as data-structure

specialization.

Inline-Friendly Pull Engine Implementation. A naïve implementation of the selection op-

erator in a pull-based query engine, invokes the next method of its source operator twice.

This can exponentially grow the code size in the case of a chain of selection operators. This

case is not frequent in practice, since the selection operator is mainly used right after the

scan operator. However, in the case of TPC-H query 19 the selection operator is used after a

join7. Table 4.4 shows that the inline-friendly implementation of the selection operator in pull

engines, improves performance by 15%. One of the main reasons is that the inline-friendly

implementation generates around 40% less query processing code in comparison with the

naïve implementation for query processing in these two queries. This improves instruction

cache locality, as a larger part of the code can fit into the instruction cache.

7An alternative implementation is to fuse the selections happening after joins in the join operator itself. The
experiments performed in [296] are based on this assumption for join operators. This means that the join operator
is not a pure join operator, but a super operator containing a join operator followed by a selection operator. For
the purposes of this thesis we do not consider this case.

109



Chapter 4. Loop Fusion in Query Engines

Removing Intermediate Object Allocations. Table 4.4 shows the impact of intermediate ob-

ject allocations on performance. Overall, removing heap allocations of intermediate Step

objects improves the performance of a stream-fusion engine up to three times. More specif-

ically, the visitor model for Step objects improves performance by 50% in comparison with

the case in which Scalar Replacement is used for removing intermediate heap allocations (c.f.

Section 4.6.3). Furthermore, our experiments show that removing intermediate Step objects

(either by visitor model or Scalar Replacement) decreases the memory consumption from 14

GBs to 11 GBs for TPC-H query 19.

Different Engines on Analytical Queries. Figures 4.18 shows the performance of several

TPC-H queries using different engines, when they are not using any optimizations provided by

CLang. Overall, this figure shows that the difference between engines is not in terms of "orders

of magnitude"; in most cases, improvements are minor. This is because the comparison is

performed in a fair scenario in which specialization is performed on all engines, in contrast

with previous work in which operator inlining was not applied to pull engines [199].

Based on this figure we make the following observations. First, in all cases, the push-based

engine is outperforming both pull-based engines. This is justified by the simplified control

flow produced by push-based engines. Second, the visitor-based stream-fusion engine has a

similar performance to a push-based engine, thanks to the simplified control flow offered by

its visitor-based tuple-level implementation. Finally, even for queries with limit and merge join

the pull-based engine is not performing better than the push-based engine. For queries with

limit, as the limit operator is followed by an ordering operator, the cost of sorting outweighs

the cost of the final scan. As a result, pipelining the limit operator does not have a considerable

impact. For TPC-H query 12, which has a merge join operator, the performance penalty

caused by the complicated control flow graph of pull-based engine hides the improvement of

pipelining this join operator. However, the stream-fusion engine has a better performance

than both pull- and push-based engines, thanks to pipelining the merge join operator, while

keeping the control flow simple.

Now, we answer the following question: to which extent the underlying optimizing compiler

can hide the limitations of each engine? Figures 4.19 shows the performance of several TPC-H

queries using different engines, when the CLang compiler is used with the -O3 flag. Overall, this

figure shows that for most queries all types of engines have a similar performance. This means

that the underlying optimizing compiler (CLang) successfully optimizes the code generated

by pull-based engines, to the extent that the generated machine code behaves similarly to the

generated machine code for push-based engines.

However, there are still some cases for which CLang cannot compensate the limitation of a

particular engine. Query 12 falls into this category because of its use of the merge join operator.

This query has an average 70% speed up for a pull engine in comparison with a push engine.

It is important to note that in this query, the query plan that uses a merge join is almost two

times faster than the one that uses hash join. This is because both input relations are already

110



4.8. Discussion: Column Stores and Vectorization

Query Engine Q1 Q2 Q3 Q4 Q5 Q6 Q9 Q10 Q12 Q14 Q19 Q20

Pull Uninlined -O0 10249 3872 9022 14574 6925 1748 19918 5155 3039 4205 6882 2674
Pull Uninlined -O3 5911 2949 7371 12042 5947 919 15420 4055 1652 2271 3486 1338
Pull -O0 8344 1907 8810 14834 6528 1470 16655 4979 2788 2749 6853 2378
Push -O0 6982 1166 7521 13690 5460 868 15045 3994 2326 2097 6022 1605
Stream (Visitor) -O0 7287 1314 7730 13560 5827 1077 15278 4087 2188 2358 6168 1833
Pull -O3 3540 769 6387 11474 3970 338 10612 2588 921 1263 2165 869
Push -O3 3652 622 6429 11557 3927 359 10809 2742 1121 1447 2218 868
Stream (Visitor) -O3 3552 704 6652 11260 4640 376 10703 2659 928 1334 2217 881

Table 4.5 – Execution times (in milliseconds) of different compiled query engines for TPC-H
queries.

sorted on the join key. Hence, the merge join implementation can perform the join on the fly,

as opposed to the hash join implementation which needs to construct an intermediate hash

table while joining the two input relations.

The stream-fusion engine always uses the Visitor pattern throughout this experiment. Inter-

estingly, it is performing as well as push engines and significantly better than pull engines,

whenever one does not rely on an underlying optimizing compiler to simplify the control flow.

Furthermore, in the cases where push engines require to break the pipeline (the limit and

merge join operators) the stream-fusion engine is as efficient as pull engines.

In this section, we have shown the experimental results for different design choices for building

complied query engines. Although in realistic workloads there is no considerable advantage for

either form of query engine, in certain edge cases each of the pull and push-based engines have

their own advantages. We have seen how the stream-fusion engine combines the individual

advantages of both approaches in such edge cases, while avoiding their weaknesses. This

makes the stream-fusion engine a good alternative choice for building compiled query engines.

4.8 Discussion: Column Stores and Vectorization

Column Stores. For analytical workloads, there is merit in column-store databases [162,

317]. The PL community is using a similar representation [274], known as structs of arrays.

Furthermore, database systems can leverage the compression opportunities provided by the

column-stores which can improve performance and space consumption [35, 2, 384].

As it was explained in Section 4.6.1, DBLAB/LB supports both row layout and columnar layout

representations. The columnar layout representation is achieved by translating the array

of records coming from a row layout representation, each one containing N fields, into N

arrays, where each array corresponds to the values of a particular column. Figure 4.20 shows

the generated code of our running example for push and pull-based engines. Lines 12 and

14 of this figure show how the accesses to the fields A and B of a record of the relation R are

111



Chapter 4. Loop Fusion in Query Engines

1 var sum = 0.0
2 var index = 0
3 while(true) {
4 var recNull = true
5 do {
6 if(index < R_length) {
7 recNull = false
8 index += 1
9 } else {

10 recNull = true
11 }
12 } while(!recNull && !(R_A(index) < 10))
13 if(recEmpty) break
14 else sum += R_B(index)
15 }
16 return sum

(a) Inlined query in a column-store pull engine.

var sum = 0.0
var index = 0

while(index < R_length) {

index += 1

if(R_A(index) < 10)

sum += R_B(index)
}
return sum

(b) Inlined query in a column-store push engine.

Figure 4.20 – Specialized version of the example query in column-store pull and push engines.

transformed into the accesses to the corresponding column arrays R_A and R_B in the columnar

layout representation.8

Although the experiments shown in this chapter use row layout, we have found similar results

when comparing different engines using columnar layout representation. More specifically,

Figure 4.21 shows the performance of the single-pipeline aggregated queries for different

types of compiled columnar and row layout query engines. The performance of column-

store engines is better than the performance of the row-store counterparts. Furthermore,

the relative speedup of different engines over a pull-based engine using the columnar layout

representation is similar to the speedup of the corresponding engines over a pull-based

engine for the row layout representation. The only considerable difference is the first query,

which counts the number of the filtered elements. This query gives a better performance

for column-store push and stream-fusion engines, thanks to the automatic vectorization

performed by CLang. However, the generated code of a column-store pull-based engine

cannot be automatically vectorized by the compiler due to the existence of data-dependent

exit conditions [267].

Supporting hash-based join operators for column-stores requires careful consideration of

where to construct the tuples (a.k.a. the materialization strategies [4]), and even implementing

other join operators (such as JIVE join [221]), which we leave for future work.

Vectorization. Using SIMD operations for implementing query operators has been extensively

investigated by the DB community [276, 60, 383]. MonetDB [42] implemented a vectorized

query engine by performing block-wise data processing instead of tuple-wise processing,

8Note that in most real-world database systems a column-store consists of other abstractions such as pages.
However, for the purposes of this thesis, we have presented a simplified form which only uses column arrays.
Furthermore, as the column arrays have a primitive type (i.e. cannot have a null value), the check for termination
in a pull-based engine (i.e. checking the equality to null) is handled through the intermediate boolean variable
recNull.

112



4.9. Conclusions

 0

 100

 200

 300

 400

 500

filter.count filter.sum filter.filter.sum

R
u
n
 T

im
e 

(m
s)

Pull [C]
Push [C]

Stream (Visitor) [C]

Pull [R]
Push [R]

Stream (Visitor) [R]

Figure 4.21 – Performance of different compiled query engines with columnar layout and row
layout representations (denoted by [C] and [R], respectively), when using the -O3 flag with the
CLang compiler.

through transferring a block of elements in the iterator model instead of a single element.

Generalized stream fusion [229] followed a similar idea and showed how, by exploring vec-

torization opportunities, a high-level functional language can beat handwritten C code for

collection programs. We can follow a similar idea to perform vectorization for the stream-

fusion engine. On the other hand, push engines can also benefit from vectorization by pushing

a block of elements and processing them using SIMD operations as explained in [255].

4.9 Conclusions

If one effects a fair comparison of push and pull-based query processing – particularly if

one attempts to inline and optimize code in both approaches as much as possible – neither

approach clearly outperforms the other. We have discussed the reasons for this, and indeed,

when considered closely how each approach fundamentally works, it should seem rather

surprising if either approach dominated the other performance-wise.

We have also drawn close connections to three fundamental approaches to loop fusion in

programming languages – fold, unfold, and stream fusion. As it turns out, there is a close

analogy between pull engines and unfold fusion on one hand and push engines and fold

fusion on the other.

Finally, we have applied the lessons learned about the weaknesses of either approach and

propose a new approach to building query engines which draws its inspiration from stream

fusion and combines the individual advantages of pull and push engines, avoiding their

weaknesses.

113





5 Efficient Memory Management

A programming language is low level when its programs require attention to the

irrelevant.

– Alan Perlis

In the previous chapters of this thesis, we have seen how to efficiently compile analytical

applications expressed in languages based on relational algebra such as SQL. In the rest of

this thesis, we turn our attention to more sophisticated analytics expressed in languages

inspired by linear algebra. More specifically, in this chapter we show how to compile high-level

functional array-processing programs, drawn from image processing and machine learning,

into C code that runs as fast as hand-written C. The key idea is to transform the program to

destination-passing style, which in turn enables a highly-efficient stack-like memory allocation

discipline.

5.1 Introduction

Applications in computer vision, robotics, and machine learning [344, 332] may need to run in

memory-constrained environments with strict latency requirements, and have high turnover

of small-to-medium-sized arrays. For these applications the overhead of most general-purpose

memory management, for example malloc/free, or of a garbage collector, is unacceptable, so

programmers often implement custom memory management directly in C.

In this chapter we propose a technique that automates a common custom memory-manage-

ment technique, which we call destination-passing style [213, 242] (DPS), as used in efficient C

and Fortran libraries such as BLAS. We allow the programmer to code in a high-level functional

style, while guaranteeing efficient stack allocation of all intermediate arrays. Fusion techniques

for such languages are absolutely essential to eliminate intermediate arrays, and are well

established. But fusion leaves behind an irreducible core of intermediate arrays that must

exist to accommodate multiple or random-access consumers.

115



Chapter 5. Efficient Memory Management

The key idea behind DPS is that every function is given the storage in which to store its result.

The caller of the function is responsible for allocating the destination storage, and deallocating

it as soon as it is no longer needed. This incurs a burden at the call site of computing the size

of the callee result, but we will show how a surprisingly rich input language can nevertheless

allow these computations to be done statically, or in negligible time. Our contributions are:

• We propose a new destination-passing style intermediate representation that captures a

stack-like memory management discipline and ensures there are no leaks (Section 5.3).

This is a good compiler intermediate language because we can perform transformations

on it and reason about how much memory a program will take. It also allows efficient C

code generation with bump-allocation. Although it is folklore to compile functions in

this style when the result size is known, we have not seen DPS used as an actual compiler

intermediate language, despite the fact that DPS has been used for other purposes (cf.

Section 4.8).

• DPS requires to know at the call site how much memory a function will need. We design

a carefully-restricted higher-order functional language, F̃ (Section 5.2) which is a subset

of F#, and a compositional shape translation (Section 5.3.3) that guarantees to compute

the result size of any F̃ expression, either statically or at runtime, with no allocation, and

a run-time cost independent of the data or its size (Section 5.3.6). Other languages with

similar properties [166] expose shape concerns intrusively at the language level, while F̃

programs are just F#.

• We present the implementation of of the technique (Section 5.4) and evaluate the

runtime and memory performance of both micro-benchmarks and real-life computer

vision and machine-learning workloads written in our high-level language and compiled

to C via DPS (as shown in Section 5.5). We show that our approach gives performance

comparable to, and sometimes better than, idiomatic C++.

5.2 F̃

F̃ (we pronounce it F smooth) is a subset of F#, an ML-like functional programming language

(the syntax in this thesis is slightly different from F# for presentation reasons). It is designed to

be expressive enough to make it easy to write array-processing workloads, while simultaneously

being restricted enough to allow it to be compiled to code that is as efficient as hand-written

C, with very simple and efficient memory management. We are willing to sacrifice some

expressiveness to achieve higher performance. As presented here, F̃ strictly imposes its

language restrictions, rejecting programs for which shape inference is not efficient. Of course

it would also be possible to emit compilation warnings for inefficient constructs, and defer

shape calculation to runtime, and also to add heap allocation using F#’s explicit "new".

116



5.2. F̃

e ::= e e | fun x -> e | x – Application, Abstraction, and Variable Access
| n | i | N – Scalar, Index, and Cardinality Value
| c – Constants (see below)
| let x = e in e – (Non-Recursive) Let Binding
| if e then e else e – Conditional

T ::= M – (Non-Functional) Expression Type
| T ⇒ T – Function Types

M ::= Num – Numeric Type
| Array<M> – Vector, Matrix, ... Type
| Bool – Boolean Type

Num ::= Double | Index | Card – Scalar, Index, and Cardinality Type

Typing Rules:
e1 e2 : T2

e1 : T1 ⇒ T2 e2 : T1
(T-App)

Γ` fun x -> e : T1 ⇒ T2

Γ∪x : T1 ` e : T2
(T-Abs) Γ` x : T

x : T ∈ Γ (T-Var)

Γ` let x = e1 in e2: T2

Γ` e1 : T1 Γ,x : T1 ` e2 : T2
(T-Let)

if e1 then e2 else e3 : M
e1 : Bool e2 : M e3 : M

(T-If)

Scalar Function Constants:
+ | - | * | / | ** : Num, Num ⇒ Num
sin | cos | tan |
log | exp : Num ⇒ Num

> | < | == | <> : Num ⇒ Num ⇒ Bool
&& | || : Bool⇒ Bool⇒ Bool
! : Bool⇒ Bool

Vector Function Constants:
build : Card⇒ (Index⇒ M ) ⇒ Array<M>
ifold : (M ⇒ Index⇒ M ) ⇒ M ⇒ Card⇒ M

get : Array<M>⇒Index⇒ M
length : Array<M>⇒Card

Syntactic Sugar:
e0[e1] = get e0 e1

e1 bop e2 = bop e1 e2

Vector = Array<Double>
Matrix = Array<Array<Double>>

Figure 5.1 – The syntax, type system, and function constants of the core F̃.

5.2.1 Syntax and Types of F̃

In addition to the usual λ-calculus constructs (abstraction, application, and variable access), F̃

supports let binding and conditionals. The syntax, type system, and several built-in functions

are shown in Figure 5.1. Note that Figure 5.1 shows an abstract syntax and parentheses can be

used as necessary. Also, x and e denote one or more variables and expressions, respectively,

which are separated by spaces, whereas, T represents one or more types which are separated

by commas.

In support of array programming, the language has several built-in functions defined: build

for producing arrays; ifold for iteration for a particular number of times (from 0 to n-1)

while maintaining a state across iterations; length to get the size of an array; and get to index

an array.

Although F̃ is a higher-order functional language, it is carefully restricted in order to make it

efficiently compilable:

117



Chapter 5. Efficient Memory Management

Matlab R NumPy M̃
A * B A %*% B A.dot(B) matrixMult A B
A + B A + B A + B matrixAdd A B

A’ t(A) A.T matrixTranspose A
ones(n, m) matrix(1, n, m) ones((n, m)) matrixOnes n m
zeros(n, m) matrix(0, n, m) zeros((n, m)) matrixZeros n m

eye(n) diag(n) eye(n) matrixEye n

Table 5.1 – Equivalent operations in Matlab, R, NumPy, and M̃.

• F̃ does not support arbitrary recursion, hence is not Turing Complete. Instead one can

use build and ifold for producing and iterating over arrays.

• The type system is monomorphic. The only polymorphic functions are the built-in

functions of the language, such as build and ifold, which are best thought of as

language constructs rather than first-class functions.

• An array, of type Array<M>, is one-dimensional but can be nested. If arrays are nested

they are expected to be rectangular, which is enforced by defining the specific Card type

for dimension of arrays, which is used as the type of the first parameter of the build

function. This assumption simplifes our shape inference algorithm as can be seen in

Section 5.3.3.

• We assume that no partial application is allowed as an expression in this language.

Additionally, an abstraction cannot return a function value.

Next, we show how a Linear Algebra domain-specific language (DSL) can be defined on top of

F̃.

5.2.2 M̃

M̃ is a functional Linear Algebra DSL, mainly inspired by MATLAB and R, programming

languages which are heavily used by data analysts. By providing high-level vector and ma-

trix operations, M̃ frees the users from low-level details and enables them to focus on the

algorithmic aspects of the problem in hand.

M̃ is an embedded DSL (EDSL) [158] in F̃; it is defined as a library on top of F̃. Figure 5.2

demonstrates a subset of M̃ operations which are defined as functions in F̃. This DSL is ex-

pressive enough for constructing vectors and matrices, elementwise-operations, accessing a

slice of elements, reduction-based operations (computing the sum of vector elements), matrix

transpose, and matrix multiplication. More specifically, there are vector mapping operations

(vectorMap and vectorMap2) which build vectors using the size of the input vectors. The

i th element (using a zero-based indexing system) of the output vector is the result of the

application of the given function to the i th element of the input vectors. Using the vector

118



5.2. F̃

mapping operations, one can define vector addition, vector element-wise multiplication,

and vector-scalar multiplication. Then, there are several vector operations which consume

a given vector by folding over its elements. For example, vectorSum computes the sum of

the elements of the given vector, which is used by the vectorDot and vectorNorm opera-

tions. Similarly, several matrix operations are defined using these vector operations. More

specifically, matrix-matrix multiplication is defined in terms of vector dot product and matrix

transpose. Supporting more sophisticated operations such as matrix determinant and matrix

decomposition is beyond the scope of the current work, and we leave it for the future.

M̃ is inspired by MATLAB and R, the programming languages heavily used by data scientists.

As a result, there is a mapping among the constructs of M̃ and these matrix-based languages.

Hence, it is easily possible to translate a program written in one of these languages to M̃.

Table 5.1 demonstrates the mapping among a subset of the constructs of MATLAB, R, NumPy

and M̃.

5.2.3 Fusion

Fusion is essential for array programs, without it they cannot be efficient. However fusion is

also extremely well studied [357, 121, 325, 71], and we simply take it for granted in this work.

Let us work through one example which illustrates how fusion can be applied to an F̃ program.

Consider this function, which returns the norm of the vector resulting from the addition of its

two input vectors.

f = fun vec1 vec2 ->

vectorNorm (vectorAdd vec1 vec2)

Executing this program, as is, involves constructing two vectors in total: one intermediate

vector which is the result of adding the two vectors vec1 and vec2, and another intermediate

vector which is used in the implementation of vectorNorm (vectorNorm invokes vectorDot,

which invokes vectorEMul in order to perform the element-wise multiplication between two

vectors). After using the rules presented in Figure 5.3, the fused function is as follows:

f = fun vec1 vec2 ->

sqrt (ifold (fun sum idx ->

let tmp = vec1[idx]+vec2[idx] in

sum + tmp * tmp

) 0 (length vec1))

This is better because it does not construct the intermediate vectors. Instead, the elements of

the intermediate vectors are consumed as they are produced.

119



Chapter 5. Efficient Memory Management

let vectorRange = fun n ->
build n (fun i -> i)

let vectorFill = fun n e ->
build n (fun i -> e)

let vectorHot = fun n i ->
build n (fun j -> if i = j then 1 else 0)

let vectorMap = fun v f ->
build (length v) (fun i -> f v[i])

let vectorMap2 = fun v1 v2 f ->
build (length v1) (fun i -> f v1[i] v2[i])

let vectorAdd = fun v1 v2 ->
vectorMap2 v1 v2 (+)

let vectorEMul = fun v1 v2 ->
vectorMap2 v1 v2 (×)

let vectorSMul = fun v s ->
vectorMap v (fun a -> a × s)

let vectorSum = fun v ->
ifold (fun s i -> s + v[i]) 0 (length v)

let vectorDot = fun v1 v2 ->
vectorSum (vectorEMul v1 v2)

let vectorNorm = fun v ->
sqrt (vectorDot v v)

let vectorSlice = fun v s e ->
build (e − s + 1) (fun i -> v[i + s])

let vectorToMatrix = fun v ->
build 1 (fun i -> v)

let vectorOutProd = fun v1 v2 ->
let m1 = vectorToMatrix v1
let m2 = vectorToMatrix v2
let m2T = matrixTranspose m2
matrixMul m1 m2T

let matrixRows = fun m -> lengthm
let matrixCols = fun m -> length (m[0])
let matrixZeros = fun r c ->
build r (fun i -> vectorFill c 0)

let matrixOnes = fun r c ->
build r (fun i -> vectorFill c 1)

let matrixEye = fun n ->
build n (fun i -> vectorHot n i)

let matrixHot = fun n m r c ->
build n (fun i ->
build m (fun j ->
if (i = r && j = c) then 1 else 0

) )
let matrixMap = fun m f ->
build (lengthm) (fun i -> f m[i])

let matrixMap2 = fun m1 m2 f ->
build (lengthm1) (fun i -> f m1[i] m2[i])

let matrixAdd = fun m1 m2 ->
matrixMap2 m1 m2 vectorAdd

let matrixTranspose = fun m ->
build (matrixCols m) (fun i ->
build (matrixRows m) (fun j ->

m[j][i]
) )

let matrixMul = fun m1 m2 ->
let m2T = matrixTranspose m2
build (matrixRows m1) (fun i ->
build (matrixCols m2) (fun j ->

vectorDot (m1[i]) (m2T[j])
) )

Figure 5.2 – A subset of M̃ constructs defined in F̃.

However, our focus is on efficient allocation and de-allocation of the arrays that fusion cannot

remove. For example: the array might be passed to a foreign library function; or it might be

passed to a library function that is too big to inline; or it might be consumed by multiple

consumers, or by a consumer with a random (non-sequential) access pattern. In these cases

there are good reasons to build an intermediate array, but we want to allocate, fill, use, and

de-allocate it extremely efficiently. In particular, we do not want to rely on a garbage collector.

5.3 Destination-Passing Style

Thus motivated, we define a new intermediate language, DPS-F̃, in which memory allocation

and deallocation is explicit. DPS-F̃ uses destination-passing style: every array-returning

120



5.3. Destination-Passing Style

(build e0 e1)[e2]  e1 e2

length (build e0 e1)  e0

Figure 5.3 – Fusion rules of F̃.

t ::= t t | fun x -> t | n | i | x | c | let x = t in t
| P – Shape Value
| r – Reference Access
| • – Empty Memory Location
| if t then t else t – Conditional
| alloc t (fun r -> t) – Memory Allocation

P ::= ◦ – Zero Cardinality
| N – Cardinality Value
| (N,P) – Vector Shape Value

c ::= [See Figure 5.5]
D ::= M | D ⇒ M | Bool

| Shp – Shape Type
| Ref – Machine Address

M ::= Num | Array<M>
Num ::= Double | Index

Shp ::= Card – Cardinality Type
| (Card * Shp) – Vector Shape Type

Figure 5.4 – The core DPS-F̃ syntax.

function receives as its first parameter a pointer to memory in which to store the result

array. No function allocates the storage needed for its result; instead the responsibility of

allocating and deallocating the output storage of a function is given to the caller of that

function. Similarly, all the storage allocated inside a function can be deallocated as soon as

the function returns its result.

Destination passing style is a standard programming idiom in C. For example, the C standard

library procedures that return a string (e.g. strcpy) expect the caller to provide storage for the

result. This gives the programmer full control over memory management for string values.

Other languages have exploited destination-passing style during compilation [146, 147].

5.3.1 The DPS-F̃ Language

The syntax of DPS-F̃ is shown in Figure 5.4, while its type system is in Figure 5.5. The main

additional construct in this language is the one for allocating a particular amount of storage

space alloc t1 (fun r -> t2). In this construct t1 is an expression that evaluates to the size (in

bytes) that is required for storing the result of evaluating t2. This storage is available in the

lexical scope of the lambda parameter, and is deallocated outside this scope.

The previous example can be written in the following way in DPS-F̃:

121



Chapter 5. Efficient Memory Management

Typing Rules:

(T-Alloc)
alloc t0 (fun r -> t1): M

Γ` t0 : Card Γ, r : Ref` t1 : M

Vector Function Constants:
build : Ref, Card, (Ref, Index⇒ M ),

Card, (Card⇒ Shp )
⇒ Array<M>

ifold : Ref, (Ref, M, Index⇒ M ), M,
Card, (Shp, Card⇒ Shp ),

Shp, Card ⇒ M
get : Ref, Array<M>, Index,

Shp, Card⇒ M
length : Ref, Array<M>, Shp ⇒ Card
copy : Ref, Array<M>⇒ Array<M>

Scalar Function Constants:
DPS version of F̃ Scalar Constants (Figure 5.1)
stgOff : Ref, Shp ⇒ Ref
vecShp : Card, Shp ⇒ (Card * Shp)
fst : (Card * Shp) ⇒ Card
snd : (Card * Shp) ⇒ Shp
bytes : Shp ⇒ Card

Syntactic Sugar:
t0.[t1]{r} = get r t0 t1 length t = length • t
(t0, t1) = vecShp t0 t1

e1 bop e2 = bop • e1 e2

Figure 5.5 – The type system and built-in constants of DPS-F̃

f = fun r1 vec1 vec2 -> alloc (vecBytes vec1) (fun r2 ->

vectorNorm_dps • (vectorAdd_dps r2 vec1 vec2) )

Each lambda abstraction typically takes an additional parameter which specifies the storage

space that is used for its result. Furthermore, every application should be applied to an

additional parameter which specifies the memory location of the return value in the case

of an array-returning function. However, a scalar-returning function is applied to a dummy

empty memory location, specified by •. In this example, the memory location r1 can be

ignored, whereas the number of bytes allocated for the memory location r2 is specified by the

expression (vecBytes vec1) which computes the number of bytes of the array vec1.

5.3.2 Translation from F̃ to DPS-F̃

We now turn present the translation from F̃ to DPS-F̃. Before translating F̃ expressions to their

DPS form, the expressions should be transformed into a normal form similar to ANF [110].

In this representation, each subexpression of an application is either a constant value or

a variable. This greatly simplifies the translation rules, specially the (D-App) rule.1 The

representation of our working example in ANF is as follows:

f = fun vec1 vec2 ->

let tmp = vectorAdd vec1 vec2 in

vectorNorm tmp

1 In a true ANF, every subexpression is a constant value or a variable, whereas in our case, we only care about
the subexpressions of an application. Hence, our representation is almost ANF.

122



5.3. Destination-Passing Style

D�e�r = t

(D-App) D�e0 x1 ... xk�r = (D�e0�•) r x1 ... xk x1
shp ... xk

shp

(D-Abs) D�fun x1 ... xk -> e1�• = fun r2 x1 ... xk x1
shp ... xk

shp -> D�e1�r2

(D-VarScalar) D�x�• = x
(D-VarVector) D�x�r = copy r x
(D-Let) D�let x = e1 in e2�r = let xshp = S �e1� in

alloc (bytes xshp ) (fun r2 ->
let x = D�e1�r2 inD�e2�r)

(D-If) D�if e1 then e2 else e3�r = ifD�e1�• thenD�e2�r elseD�e3�r

DT �T� = D

(DT-Fun) DT �T1, ..., Tk ⇒ M � = Ref, DT �T1�, ..., DT �Tk�,
ST �T1�, ..., ST �Tk� ⇒ DT �M�

(DT-Mat) DT �M� = M
(DT-Bool) DT �Bool� = Bool
(DT-Card) DT �Card� = Card

Figure 5.6 – Translation from F̃ to DPS-F̃

Figure 5.6 shows the translation from F̃ to DPS-F̃, where D�e�r is the translation of a F̃ expres-

sion e into a DPS-F̃ expression that stores e’s value in memory r. Rule (D-Let) is a good place

to start. It uses alloc to allocate enough space for the value of e1, the right hand side of the

let — but how much space is that? We use an auxiliary translation S �e1� to translate e1 to an

expression that computes e1’s shape rather than its value. The shape of an array expression

specifies the cardinality of each dimension. We will discuss why we need shape (what goes

wrong with just using bytes) and the shape translation in Section 5.3.3. This shape is bound

to xshp , and used in the argument to alloc. The freshly-allocated storage r2 is used as the

destination for translating the right hand side e1, while the original destination r is used as the

destination for the body e2.

In general, every variable x in F̃ becomes a pair of variables x (for x’s value) and xshp (for x’s

shape) in DPS-F̃. You can see this same phenomenon in rules (D-App) and (D-Abs), which deal

with lambdas and application: we turn each lambda-bound argument x into two arguments x

and xshp .

Finally, in rule (D-App) the context destination memory r is passed on to the function being

called, as its additional first argument; and in (D-Abs) each lambda gets an additional argu-

ment, which is used as the destination when translating the body of the lambda. Figure 5.6

also gives a translation of an F̃ type T to the corresponding DPS-F̃ type D.

For variables there are two cases. In rule (D-VarScalar) a scalar variable is translated to itself,

while in rule (D-VarVector) we must copy the array into the designated result storage using the

copy function. The copy function copies the array elements as well as the header information

123



Chapter 5. Efficient Memory Management

(the second argument) into the given storage (the first argument).

5.3.3 Shape Translation

As we have seen, rule (D-Let) relies on the shape translation of the right hand side. This

translation is given in Figure 5.7. If e has type T, then S �e� is an expression of type ST �T�
that gives the shape of e. This expression can always be evaluated without allocation.

A shape is an expression of type Shp (Figure 5.4), whose values are given by P in that figure.

There are three cases to consider. First, a scalar value has shape ◦ (rules (S-ExpNum), (S-

ExpBool)). Second, when e is an array, S �e� gives the shape of the array as a nested tuple,

such as (3,(4,◦)) for a 3-vector of 4-vectors. So the “shape” of an array specifies the cardinality

of each dimension. Finally, when e is a function, S �e� is a function that takes the shapes of

its arguments and returns the shape of its result. You can see this directly in rule (S-App): to

compute the shape of (the result of) a call, apply the shape-translation of the function to the

shapes of the arguments. This is possible because F̃ programs do not allow the programmer to

write a function whose result size depends on the contents of its input array.

What is the shape-translation of a function f? Remembering that every in-scope variable f has

become a pair of variables—one for the value and one for the shape—we can simply use the

latter, fshp , as we see in rule (S-Var).

For arrays, could the shape be simply the number of bytes required for the array, rather than a

nested tuple? No. Consider the following function, which returns the first row of its argument

matrix:

firstRow = fun m: Matrix -> m[0]

The shape translation of firstRow, namely firstRowshp , is given the shape of m, and must

produce the shape of m’s first row. It cannot do that given only the number of bytes in m; it

must know how many rows and columns it has. But by defining shapes as a nested tuple, it

becomes easy: see rule (S-Get).

The shape of the result of the iteration construct (ifold) requires the shape of the state

expression to remain the same across iterations, which is by checking the beta equivalence of

the initial shape and the shape of each iteration. Otherwise the compiler produces an error, as

shown in rule (S-Ifold).

The other rules are straightforward. The key point is that by translating every in-scope variable,

including functions, into a pair of variables, we can give a compositional account of shape

translation, even in a higher order language.

124



5.3. Destination-Passing Style

S �e� = s

(S-App) S �e0 e1 ... ek � = S �e0� S �e1� ... S �ek�
(S-Abs) S �fun x1 ..., xk -> e � = fun x1

shp , ..., xk
shp ->S �e�

(S-Var) S �x� = xshp

(S-Let) S �let x = e1 in e2� = let xshp = S �e1� inS �e2�
(S-If) S �if e1 then e2 else e3� =

{
S �e2� S �e2� ∼= S �e3�
Comp. Error! S �e2�� S �e3�

(S-ExpNum) e: Num ` S �e� = ◦
(S-ExpBool) e: Bool ` S �e� = ◦
(S-ValCard) S �N� = N
(S-AddCard) S �e0 + e1� = S �e0� + S �e1�
(S-MulCard) S �e0 ∗ e1� = S �e0� ∗ S �e1�
(S-Build) S �build e0 e1� = (S �e0�, (S �e1� ◦))
(S-Get) S �e0[e1]� = sndS �e0�
(S-Length) S �length e0� = fstS �e0�
(S-Ifold) S � ifold e1 e2 e3 � =

{
S �e2� S �e1 e2 0� ∼= S �e2�
Comp. Error! otherwise

ST �T� = S

(ST-Fun) ST �T1, T2, ..., Tk ⇒ M � = ST �T1�, ST �T2�, ..., ST �Tk� ⇒ ST �M�
(ST-Num) ST �Num� = Card
(ST-Bool) ST �Bool� = Card
(ST-Card) ST �Card� = Card
(ST-Vector) ST �Array<M>� = (Card * ST �M�)

Figure 5.7 – Shape Translation of F̃

125



Chapter 5. Efficient Memory Management

5.3.4 An Example

Using this translation, the running example at the beginning of Section 5.3.2 is translated as

follows:

f = fun r0 vec1 vec2 vec1shp vec2shp ->

let tmpshp = vectorAddshp vec1shp vec2shp in

alloc (bytes tmpshp ) (fun r1 ->

let tmp =

vectorAdd r1 vec1 vec2 vec1shp vec2shp in

vectorNorm r0 tmp tmpshp

)

The shape translations of some M̃ constructs from Figure 5.2 are as follows:

let vectorRangeshp = fun nshp -> (nshp , (fun ishp -> ◦) ◦)

let vectorMap2shp = fun v1shp v2shp fshp ->

(fst v1shp , (fun ishp -> ◦) ◦)

let vectorAddshp = fun v1shp v2shp ->

vectorMap2shp v1shp v2shp (fun ashp bshp -> ◦)

let vectorNormshp = fun vshp -> ◦

5.3.5 Simplification

As is apparent from the examples in the previous section, code generated by the translation

has many optimisation opportunities. This optimisation, or simplification, is applied in

three stages: 1) F̃ expressions, 2) translated Shape-F̃ expressions, and 3) translated DPS-F̃

expressions. In the first stage, F̃ expressions are simplified to exploit fusion opportunities that

remove intermediate arrays entirely. Furthermore, other compiler transformations such as

constant folding, dead-code elimination, and common-subexpression elimination are also

applied at this stage.

In the second stage, the Shape-F̃ expressions are simplified. The simplification process for

these expressions mainly involves partial evaluation. By inlining all shape functions, and

performing β-reduction and constant folding, shapes can often be computed at compile

time, or at least can be greatly simplified. For example, the shape translations presented in

Section 5.3.3 after performing simplification are as follows:

let vectorRangeshp = fun nshp -> (nshp ,◦)

let vectorMap2shp = fun v1shp v2shp fshp -> v1shp

let vectorAddshp = fun v1shp v2shp -> v1shp

let vectorNormshp = fun vshp -> ◦

126



5.3. Destination-Passing Style

Empty Allocation:
alloc ◦ (fun r -> t1)  t1[r 7→ •]

Allocation Merging:
alloc t1 (fun r1 ->  alloc (t1 + t2) (fun r1 ->
alloc t2 (fun r2 -> let r2 = stgOff r1 t1 in

t3 )) t3 )
Dead Allocation:
alloc t1 (fun r -> t2)  t2 if r ∉ FV (t2)

Allocation Hoisting:
fun x -> alloc t1 (fun r -> t2)  alloc t1 (fun r -> fun x -> t2) if x ∉ FV (t1)

Cardinality Simplification:
bytes ◦  ◦
bytes (◦,◦)  ◦
bytes (N,◦)  NUM_BYTES ∗ N + HDR_BYTES
bytes (N,s)  (bytes s) ∗ N + HDR_BYTES

Figure 5.8 – Simplification rules of DPS-F̃

The final stage involves both partially evaluating the shape expressions in DPS-F̃ and simpli-

fying the storage accesses in the DPS-F̃ expressions. Figure 5.8 demonstrates simplification

rules for storage accesses. The first two rules remove empty allocations and merge consecutive

allocations, respectively. The third rule removes a dead allocation, i.e. an allocation for which

its storage is never used. The fourth rule hoists an allocation outside an abstraction whenever

possible. The benefit of this rule is amplified more in the case that the storage is allocated

inside a loop (build or ifold). Note that none of these transformation rules are available in

F̃, due to the lack of explicit storage facilities.

After applying the presented simplification process, our working example is translated to the

following program:

f = fun r0 vec1 vec2 vec1shp vec2shp ->

alloc (bytes vec1shp ) (fun r1 ->

let tmp = vectorAdd r1 vec1 vec2

vec1shp vec2shp in

vectorNorm r0 tmp vec1shp

)

In this program, there is no shape computation at runtime.

5.3.6 Properties of Shape Translation

The target language of shape translation is a subset of DPS-F̃ called Shape-F̃. The syntax of the

subset is given in Figure 5.9. It includes nested pairs, of statically-known depth, to represent

shapes, but it does not include vectors. That provides an important property for Shape-F̃ as

127



Chapter 5. Efficient Memory Management

s ::= s s | fun x -> s | x | P | c | let x = s in s
P ::= ◦ | N | (N,P)
c ::= vecShp | fst | snd | + | ∗
S ::= S ⇒ Shp | Shp

Shp ::= Card | (Card * Shp)

Figure 5.9 – Shape-F̃ syntax, which is a subset of the syntax of DPS-F̃ presented in Figure 5.4.

follows:

Theorem 1 All expressions resulting from shape translation, do not require any heap memory

allocation.

Proof. All the non-shape expressions have either scalar or function type. As shown in Figure 5.7

all scalar type expressions are translated into zero cardinality (◦), which can be stack-allocated.

On the other hand, the function type expressions can also be stack allocated. This is because

functions are not allowed to return functions. Hence, the captured environment in a closure

does not escape its scope. Hence, the closure environment can be stack allocated. Finally, the

last case consists of expressions which are the result of shape translation for vector expressions.

As we know the number of dimensions of the original vector expressions, the translated

expressions are tuples with a known-depth, which can be easily allocated on stack.

Next, we show the properties of our translation algorithm. First, let us investigate the impact

of shape translation on F̃ types. For array types, we need to represent the shape in terms of the

shape of each element of the array, and the cardinality of the array. We encode this information

as a tuple. For scalar type and cardinality type expressions, the shape is a cardinality expression.

This is captured in the following theorem:

Theorem 2 If the expression e in F̃ has the type T, then S �e� has type ST �T�.

Proof. Can be proved by induction on the translation rules from F̃ to Shape-F̃.

In order to have a simpler shape translation algorithm as well as better guarantees about

the expressions resulting from shape translation, two important restrictions are applied on F̃

programs.

1. The accumulating function used in the ifold operator should preserve the shape of

the initial value. Otherwise, converting the result shape into a closed-form polynomial

expression requires solving a recurrence relation.

2. The shape of both branches of a conditional should be the same.

These two restrictions simplify the shape translation as is shown in Figure 5.7.

128



5.4. Implementation

Theorem 3 All expressions resulting from shape translation require linear computation time

with respect to the size of terms in the original F̃ program.

Proof. This can be proved in two steps. First, translating a F̃ expression into its shape expres-

sion, leads to an expression with smaller size. This can be proved by induction on translation

rules. Second, the run time of a shape expression is linear in terms of its size. An important

case is the ifold construct, which by applying the mentioned restrictions, we ensured their

shape can be computed without any need for recursion.

Finally, we believe that our translation is correct based on our successful implementation.

However, we leave a formal semantics definition and the proof of correctness of the transfor-

mation as future work.

5.3.7 Discussion

One possible question is whether the DPS technique can go beyond the F̃ language. In other

words, is it possible to support programs which require an arbitrary recursion, such as filtering

an array, changing the size while recursing, or computing a Fibonacci-size array?

The answer is yes; instead of producing compilation errors (cf. Figure 5.7), the compiler

produces warnings and postpones the shape computation until the run time. However,

this can cause a massive run time overhead, as it is no longer possible to benefit from the

performance guarantees mentioned in Section 5.3.6. More specifically, the shape computation

could be as time consuming as the original array expressions [154], which can cause massive

computation and space overheads. As an example, the computation complexity of a Fibonacci-

size array will be O
(
2.7n

)
instead of O

(
1.6n

)
(the former is the closed form of f

(
n

)= 2 f
(
n −

1
)+2 f

(
n −2

)
, while the latter is the closed form of f

(
n

)= f
(
n −1

)+ f
(
n −2

)
).

5.4 Implementation

5.4.1 F̃ Language

We implemented F̃ as a subset of F#. Hence F̃ programs are normal F# programs. Further-

more, the built-in constants (presented in Figure 5.1) are defined as a library in F# and all M̃

constructs (presented in Figure 5.2) are implemented as library functions using these built-in

constants. If a given expression is in the subset supported by F̃, the compiler accepts it.

For implementing the transformations presented in the previous sections, instead of modifying

the F# compiler, we use F# quotations [327]. Note that there is no need for the user to use

F# quotations in order to implement a F̃ program. The F# quotations are only used by the

compiler developer in order to implement transformation passes.

Although F̃ expressions are F# expressions, it is not possible to express memory management

129



Chapter 5. Efficient Memory Management

constructs used by DPS-F̃ expressions using the F# runtime. Hence, after translating F̃ expres-

sions to DPS-F̃, we compile down the result program into a programming language which

provides memory management facilities, such as C. The generated C code can either be used

as kernels by other C programs, or invoked in F# as a native function using inter-operatorability

facilities provided by Common Language Runtime (CLR).

Next, we discuss why we choose C and how the C code generation works.

5.4.2 C Code Generation

There are many programming languages which provide manual memory management. Among

them we are interested in the ones which give us full control on the runtime environment,

while still being easy to debug. Hence, low-level imperative languages such as C and C++ are

better candidates than LLVM mainly because of debugging purposes.

One of the main advantages of DPS-F̃ is that we can generate idiomatic C from it. More

specifically, the generated C code is similar to a handwritten C program as we can manage

the memory in a stack fashion. The translation from DPS-F̃ programs into C code is quite

straightforward.

As our DPS encoded programs are using the memory in a stack fashion, the memory could

be managed more efficiently. More specifically, we first allocate a specific amount of buffer

in the beginning. Then, instead of using the standard malloc function, we bump-allocate

from our already allocated buffer. Hence, in most cases allocating memory is only a pointer

arithmetic operation to advance the pointer to the last allocated element of the buffer. In the

cases that the user needs more than the amount which is allocated in the buffer, we need to

double the size of the buffer. Furthermore, memory deallocation is also very efficient in this

scheme. Instead of invoking the free function, we need to only decrement the pointer to the

last allocated storage.

We compile lambdas by performing closure conversion. As functions in DPS-F̃ do not return

functions, the environment captured by a closure can be stack allocated.

As mentioned in Section 5.2, polymorphism is not allowed except for some built-in con-

structs in the language (e.g. build and ifold). Hence, all the usages of these constructs

are monomorphic, and the C code generator knows exactly which code to generate for them.

Furthermore, the C code generator does not need to perform the closure conversion for the

lambdas passed to the built-in constructs. Instead, it can generate an efficient for-loop in

place. As an example, the generated C code for a running sum function of F̃ is as follows:

double vector_sum(vector v) {
double sum = 0;
for (index idx = 0; idx < v->length; idx++) {
sum = sum + v->elements[idx];

}
return sum;

}

130



5.5. Experimental Results

Finally, for the alloc construct in DPS-F̃, the generated C code consists of three parts. First,

a memory allocation statement is generated which allocates the given amount of storage.

Second, the corresponding body of code which uses the allocated storage is generated. Finally,

a memory deallocation statement is generated which frees the allocated storage. The generated

C code for our working example is as follows:

double f(storage r0, vector vec1, vector vec2,
vec_shape vec1_shp, vec_shape vec2_shp) {

storage r1 = malloc(vector_bytes(vec1_shp));
vector tmp = vector_add_dps(r1, vec1, vec2, vec1_shp, vec2_shp);
double result = vector_norm_dps(r0,tmp,vec1_shp);
free(r1);
return result;

}

We use our own implementation of malloc and free for bump allocation.

5.5 Experimental Results

For the experimental evaluation, we use an iMac machine equipped with an Intel Core i5 CPU

running at 2.7GHz, 32GB of DDR3 RAM at 1333Mhz. The operating system is OS X 10.10.5. We

use Mono 4.6.1 as the runtime system for F# programs and CLang 700.1.81 for compiling the

C++ code and generated C.2

Throughout this section, we compare the performance and memory consumption of the

following alternatives:

• F#: Using the array operations (e.g. map) provided in the standard library of F# to

implement vector operations.

• CL: Leaky C code, which is the generated C code from F̃, using malloc to allocate vectors,

never calling free.

• CG: C code using Boehm GC, which is the generated C code from F̃, using GC_malloc

of Boehm GC to allocate vectors.

• CLF: CL + Fused Loops, performs deforestation and loop fusion before CL.

• D: DPS C code using system-provided malloc/free, translates F̃ programs into DPS-F̃

before generating C code. Hence, the generated C code frees all allocated vectors. In

this variant, the malloc and free functions are used for memory management.

• DF: D + Fused Loops, which is similar to the previous one, but performs deforestation

before translating to DPS-F̃.

• DFB: DF + Buffer Optimizations, which performs the buffer optimizations described

in Section 5.3.5 (such as allocation hoisting and merging) on DPS-F̃ expressions.

2 All code and outputs are available at http://github.com/awf/Coconut.

131



Chapter 5. Efficient Memory Management

• DFBS: DFB using stack allocator, same as DFB, but using bump allocation for memory

management, as previously discussed in Section 5.4.2. This is the best C code we

generate from F̃.

• C++: Idiomatic C++, which uses an handwritten C++ vector library, depending on

C++14 move construction and copy elision for performance, with explict programmer

indication of fixed-size (known at compile time) vectors, permitting stack allocation.

• E++: Eigen C++, which uses the Eigen [137] library which is implemented using C++

expression templates to effect loop fusion and copy elision. Also uses explicit sizing for

fixed-size vectors.

First, we investigate the behavior of several variants of generated C code for two micro bench-

marks. More specifically we see how DPS improves both run-time performance and memory

consumption (by measuring the maximum resident set size) in comparison with an F# version.

The behavior of the generated DPS code is very similar to manually handwritten C++ code

and the Eigen library.

Then, we demonstrate the benefit of using DPS for some real-life computer vision and machine

learning workloads motivated in [312]. Based on the results for these workloads, we argue that

using DPS is a great choice for generating C code for numerical workloads, such as computer

vision algorithms, running on embedded devices with a limited amount of memory available.

5.5.1 Micro Benchmarks

Figure 5.10 shows the experimental results for adding three vectors, and Figure 5.11 shows the

experimental results for cross product of two vectors.

add3 : vectorAdd(vectorAdd(vec1, vec2), vec3)

in which all the vectors contain 100 elements. This program is run one million times in a

loop, and timing results are shown in Figure 5.10a. In order to highlight the performance

differences, the figure uses a logarithmic scale on its Y-axis. Based on these results we make

the following observations. First, we see that all C and C++ programs are outperforming the

F# program, except the one which uses the Boehm GC. This shows the overhead of garbage

collection in the F# runtime environment and Boehm GC. Second, loop fusion has a positive

impact on performance. This is because this program involves creating an intermediate vector

(the one resulting from addition of vec1 and vec2). Third, the generated DPS C code which

uses buffer optimizations (DFB) is faster than the one without this optimization (DF). This is

mainly because the result vector is allocated only once for DFB whereas it is allocated once

per iteration in DF. Finally, there is no clear advantage for C++ versions. This is mainly due to

the fact that the vectors have sizes not known at compile time, hence the elements are not

stack allocated. The Eigen version partially compensates this limitation by using vectorized

operations, making the performance comparable to our best generated DPS C code.

132



5.5. Experimental Results

(a) Run time performance comparison by running for one million times.

(b) Memory consumption comparison by varying the number of iterations. All the invisible lines are
hidden under the bottom line.

Figure 5.10 – Experimental results for adding three vectors of 100 elements.

The peak memory consumption of this program for different approaches is shown in Fig-

ure 5.10b. This measurement is performed by running this program by varying number of

iterations. Both axes use logarithmic scales to better demonstrate the memory consumption

difference. As expected, F# uses almost the same amount of memory over the time, due to GC.

However, the runtime system sets the initial amount to 15MB by default. Also unsurprisingly,

leaky C uses memory linear in the number of iterations, albeit from a lower base. The fused

version of leaky C (CLF) decreases the consumed memory by a constant factor. Finally, DPS C,

and C++ use a constant amount of space which is one order of magnitude less than the one

used by the F# program, and half the amount used by the generated C code using Boehm GC.

cross : vectorCross(vec1, vec2)

This micro-benchmark is one million runs in which the two vectors contain 3 elements. Timing

results are in Figure 5.11a. We see that the F# program is faster than the generated leaky C

code, perhaps because garbage collection is invoked less frequently than in add3. Overall,

in both cases, the performance of F# program and generated leaky C code is very similar. In

this example, loop fusion does not have any impact on performance, as the program contains

only one operator. As in the previous benchmark, all variants of generated DPS C code have a

similar performance and outperform the generated leaky C code and the one using Boehm

133



Chapter 5. Efficient Memory Management

(a) Run time performance comparison by running for one million times.

(b) Memory consumption comparison by varying the number of iterations. All the invisible lines are
hidden under the bottom line.

Figure 5.11 – Experimental results for cross product of two vectors of three elements.

GC, for the same reasons. Finally, both handwritten and Eigen C++ programs have a similar

performance to our generated C programs. For the case of this program, both C++ libraries

provide fixed-sized vectors, which results in stack allocating the elements of the two vectors.

This has a positive impact on performance. Furthermore, as there is no SIMD version of the

cross operator, we do not observe a visible advantage for Eigen.

Finally, we discuss the memory consumption experiments of the second program, which is

shown in Figure 5.11b. This experiment leads to the same observation as the one for the first

program. However, as the second program does not involve creating any intermediate vector,

loop fusion does not improve the peak memory consumption.

The presented micro benchmarks show that our DPS generated C code improves both perfor-

mance and memory consumption by an order of magnitude in comparison with an equivalent

F# program. Also, the generated DPS C code promptly deallocates memory which makes

the peak memory consumption constant over the time, as opposed to a linear increase of

memory consumption of the generated leaky C code. In addition, by using bump allocators

the generated DPS C code can improve performance as well. Finally, we see that the generated

DPS C code behaves very similarly to both handwritten and Eigen C++ programs.

134



5.5. Experimental Results

(a) Run time performance comparison

(b) Peak memory consumption comparison

Figure 5.12 – Experimental results for Bundle Adjustment

5.5.2 Computer Vision and Machine Learning Workloads

In this section, we investigate the performance and memory consumption of real-life work-

loads.

Bundle Adjustment [344] is a computer vision problem which has many applications. In

this problem, the goal is to optimize several parameters in order to have an accurate estimate

of the projection of a 3D point by a camera. This is achieved by minimizing an objective

function representing the reprojection error. This objective function is passed to a nonlinear

minimizer as a function handle, and is typically called many times during the minimization.

One of the core parts of this objective function is the project function which is responsible for

finding the projected coordinates of a 3D point by a camera, including a model of the radial

distortion of the lens. The F̃ implementation of this method is shown in Figure 5.15.

Figure 5.12a shows the runtime of different approaches after running project ten million times.

First, the F# program performs similarly to the leaky generated C code and the C code using

Boehm GC. Second, loop fusion improves speed fivefold. Third, the generated DPS C code

is slower than the generated leaky C code, mainly due to costs associated with intermediate

deallocations. However, this overhead is reduced by using bump allocation and performing

loop fusion and buffer optimizations. Finally, we observe that the best version of our generated

135



Chapter 5. Efficient Memory Management

(a) Run time performance comparison

(b) Peak memory consumption comparison

Figure 5.13 – Experimental results for GMM

DPS C code marginally outperforms both C++ versions.

The peak memory consumption of different approaches for Bundle Adjustment is shown in

Figure 5.12b. First, the F# program uses three orders of magnitude less memory in comparison

with the generated leaky C code, which remains linear in the number of calls. This improve-

ment is four orders of magnitude in the case of the generated C code using Boehm GC. Second,

loop fusion improves the memory consumption of the leaky C code by an order of magnitude,

due to removing several intermediate vectors. Finally, all generated DPS C variants as well as

C++ versions consume the same amount of memory. The peak memory consumption of is an

order of magnitude better than the F# baseline.

The Gaussian Mixture Model is a workhorse machine learning tool, used for computer

vision applications such as image background modelling and image denoising, as well as

semi-supervised learning.

In GMM, loop fusion can successfully remove all intermediate vectors. Hence, there is no

difference between CL and CLF, or between DS and DSF, in terms of both performance and

peak memory consumption as can be observed in Figure 5.13a and Figure 5.13b. Both C++

libraries behave two to three times worse than our fused and DPS generated code, due to the

lack of support for fusion needed for GMM.

136



5.6. Outlook and Conclusions

(a) Run time performance comparison

(b) Peak memory consumption comparison

Figure 5.14 – Experimental results for Hand Tracking

Due to the cost for performing memory allocation (and deallocation for DPS) at each iteration,

the F# program, the leaky C code, and the generated DPS C code exhibit a worse performance

than the fused and stack allocated versions. Furthermore, as the leaky C code does not

deallocate the intermediate vectors, the consumed memory is increasing.

Hand tracking is a computer vision/computer graphics workload [332] that includes matrix-

matrix multiplies, and numerous combinations of fixed- and variable-sized vectors and ma-

trices. Figure 5.14a shows performance results of running one of the main functions of

hand-tracking for 1 million times. As in the cross micro-benchmark we see no advantage for

loop fusion, because in this function the intermediate vectors have multiple consumers. As

above, generating DPS C code improves runtime performance, which is improved even more

by using bump allocation and performing loop fusion and buffer optimizations. However,

in this case the idiomatic C++ version outperforms the generated DPS C code. Figure 5.14b

shows that DPS generated programs consume an order of magnitude less memory than the F#

baseline, equal to the C++ versions.

5.6 Outlook and Conclusions

In this chapter we presented a new destination-passing style intermediate representation that

enables a highly-efficient stack-like memory allocation discipline for memory management.

137



Chapter 5. Efficient Memory Management

let radialDistort = fun (radical: Vector) (proj: Vector) ->
let rsq = vectorNorm proj
let L = 1.0 + radical.[0] * rsq + radical.[1] * rsq * rsq
vectorSMul proj L

let rodriguesRotate = fun (rotation: Vector) (x: Vector) ->
let sqtheta = vectorNorm rotation
if sqtheta != 0. then
let theta = sqrt sqtheta
let thetaInv = 1.0 / theta
let w = vectorSMul rotation thetaInv
let wCrossX = vectorCross w x
let tmp = (vectorDot w x) * (1.0 - (cos theta))
let v1 = vectorSMul x (cos theta)
let v2 = vectorSMul wCrossX (sin theta)
vectorAdd (vectorAdd v1 v2) (vectorSMul w tmp)

else
vectorAdd x (vectorCross rotation x)

let project = fun (cam: Vector) (x: Vector) ->
let Xcam = rodriguesRotate (vectorSlice cam 0 2) (

vectorSub x (vectorSlice cam 3 5) )
let distorted = radialDistort (vectorSlice cam 9 10) (

vectorSMul (vectorSlice Xcam 0 1) (1.0/Xcam.[2]) )
vectorAdd (vectorSlice cam 7 8) (

vectorSMul distorted cam.[6] )

Figure 5.15 – Bundle Adjustment functions in F̃.

Also, we presented a carefully-restricted higher-order functional language, called F̃, which is

guaranteed to be compiled into efficient C code. We plan to relax some of the restrictions that

we currently have for the F̃ language, and investigate the subset of guarantees that are still

valid.

On top of F̃, we presented M̃, a linear algebra language for expressing advanced data analytics

tasks in a high-level of abstraction. We plan to provide different front-ends to convert the

programs written in MATLAB, R, and NumPy to M̃ programs (cf. Figure 5.1 for a mapping

among these languages). As M̃ does not support all the features provided by these languages,

the provided front-ends should check whether the given program is in the subset that can be

compiled to M̃ or not.

Finally, we experimentally validated that the run time and memory performance of micro

benchmarks and real-life computer vision and machine-learning workloads written in F̃, are

as good as the ones optimized by hand in C. We plan to implement more data anlaytics tasks

in F̃ and experimentally evaluate their performance in comparison with the corresponding

implementations in other programming langauges. One possible system to compare against

is the ML Kit [338] compiler, which implements the region-based memory management for

138



5.6. Outlook and Conclusions

the Standard ML language.

139





6 Efficient Differentiable Programming

... in the summer of 1958 John McCarthy decided to investigate differentiation as

an interesting symbolic computation problem, which was difficult to express in the

primitive programming languages of the day. This investigation led him to see the

importance of functional arguments and recursive functions in the field of symbolic

computation.

– Norvig [259, p248].

In this chapter, we present a system for the automatic differentiation of the higher-order

functional array-processing language presented in Chapter 5. This core functional language

simultaneously supports both source-to-source automatic differentiation and global opti-

mizations such as loop transformations. Thanks to this feature, we demonstrate how for some

real-world machine learning and computer vision benchmarks, the system outperforms the

state-of-the-art automatic differentiation tools.

6.1 Introduction

Functional programming (FP) and automatic differentiation (AD) have been natural partners

for sixty years, and major functional languages all have elegant automatic differentiation

packages [98, 27, 183]. With the increasing importance of numerical engineering disciplines

such as machine learning, speech processing, and computer vision, there has never been

a greater need for systems which mitigate the tedious and error-prone process of manual

coding of derivatives. However the popular packages (TensorFlow, CNTK) all implement

clunky (E)DSLs in procedural languages such as Python and C++. Why? One reason is that the

FP packages are slower than their imperative counterparts, by many orders of magnitude [312],

because modern applications depend heavily on array processing, with vectors, matrices, and

tensors as the canonical datatypes. In contrast, AD for FP has generally handled only scalar

workloads efficiently [183].

Our key contribution in this chapter is to take a recently introduced F# subset designed for

141



Chapter 6. Efficient Differentiable Programming

efficient compilation of array-processing workloads (cf. Section 5.2), and to augment it with

vector AD primitives, yielding a functional AD tool that is competitive with the best C/C++

and Fortran tools on many benchmarks, and considerably faster on others.

6.1.1 The problem we address

Automatic differentiation is one of the main techniques for automating the process of com-

puting derivatives. This technique systematically applies the chain rule, and evaluates the

derivatives for the primitive arithmetic operations (such as addition, multiplication, etc.).

One of the main advantages of automatic differentiation over its main competitive technique,

symbolic differentiation, is the constant-time overhead of the differentiated program with

respect to the original code. Symbolic differentiation can lead to code explosion if one is not

careful about sharing, and requires a closed-form representation of the programs [27].

There are two approaches for implementing AD. Forward-mode AD computes the derivative

part (tangent part) alongside the original computation while making a forward pass over the

program. Reverse-mode AD makes a forward pass to compute the original part of the program,

followed by a backward pass for computing the derivative part (adjoint part). We present these

two techniques through an example.

Example. Consider the function f
(
x1, x2

) = ln
(
x1

)+ si n
(
x2

)
, for which we would like to

compute the partial derivatives with respect to x1 at point x1 = 1 and x2 = 3. First let us name

each intermediate expression with a variable vi :

f
(
x1, x2

)= let v1 = ln
(
x1

)
let v2 = si n

(
x2

)
let y = v1 + v2

y

This function is computed as follows:

v1 = l n
(
1
)

= 0

v2 = si n
(
3
)

= 0.1411

y = 0+0.1411 = 0.1411

To compute the derivative of this function using the forward-mode AD, we associate the

derivative
*
vi = ∂vi

∂x1
+ ∂vi

∂x2
to each variable vi . As we are computing the partial derivative of f

with respect to x1, we have
*
x1 = 1 and

*
x2 = 0. By applying the chain rule, the evaluation trace

for the derivative of this function is as follows:

142



6.1. Introduction

f :Rn →Rm J = ∂ f

∂x
=

∂ f1

∂x1
· · · ∂ f1

∂xm

...
. . .

...
∂ fn

∂x1
· · · ∂ fn

∂xm




Forward Mode

Reverse Mode

dF̃

Figure 6.1 – The Jacobian Matrix of a function. Forward-mode AD computes a column of this
matrix, whereas the reverse-mode AD computes a row of this matrix. dF̃ computes the full
Jacobian matrix using a vectorized variant of the forward-mode AD.

*
v1 =

*
x1 × ∂ ln

(
x1

)
∂x1

=
*
x1
x1

= 1
1 = 1

*
v2 =

*
x2 × ∂ si n

(
x2

)
∂x2

=
*
x2 × cos

(
x2

)
= 0× cos

(
3
)

= 0
*
y =

*
v1 × ∂

(
v1+v2

)
∂v1

+ *
v2 × ∂

(
v1+v2

)
∂v2

=
*
v1 + *

v2 = 1 + 0 = 1

To compute the derivative of this function using the reverse-mode AD, we associate the adjoin

term
(
vi = ∂y

∂vi
to each variable vi . As a result, if we are interested in computing the partial

derivative of function f with respect to x1, we have to compute the value of
(
x1. To do so, we

have to apply the chain rule in the reverse order, leading to the following execution trace:

(
y = ∂y

∂y = 1
(
v1 =

(
y × ∂y

∂v1
= 1×1 = 1

(
v2 =

(
y × ∂y

∂v2
= 1×1 = 1

(
x2 =

(
v2 × ∂v2

∂x2
= 1× cos

(
3
)

= -0.9899
(
x1 =

(
v1 × ∂v1

∂x1
= 1× 1

1 = 1

4

Forward and reverse mode compute a column and a row, respectively, of the full Jacobian

matrix J at each invocation. 1 More precisely, for a function with an input vector of size m and

an output vector of size n, the forward mode approach computes a column vector of size n,

and the reverse mode computes a row vector of size m (see Figure 6.1).

From a different point of view, for a given function f with an input vector parameter a,

forward-mode AD produces the function d f , where

1J|a is a matrix consisting of partial derivatives of the output elements of function f with respect to the elements
of the input vector at point a.

143



Chapter 6. Efficient Differentiable Programming

d f a b = J|a .b

In the case of passing a one-hot vector as b, where only the i th element is one, the forward-

mode AD computes the i th column of the full Jacobian matrix. Similarly, for the same function,

the reverse-mode AD produces the function b f , where

b f a c = (J|a)T .c

This expression computes the j th row of the full Jacobian matrix, if c is a one-hot vector with a

single one at the j th position and zeros elsewhere.

For a class of optimization problems, such as various computer vision problems using the

Levenberg-Marquardt algorithm [234, 220, 248], one is required to compute the full Jacobian

matrix. In such cases, neither of the two techniques perform efficiently,

To compute the full Jacobian matrix, both forward and reverse-mode techniques must iterate

either over the columns or the rows of the Jacobian matrix, respectively. Given that both

approaches have a constant overhead over the original computation, the forward mode

technique is more efficient for computing the full Jacobian matrix when n À m, whereas the

reverse mode AD is more efficient when m À n, an uneasy choice. Moreover:

• By carefully examining the body of the loops needed for computing the full Jacobian

matrix, one can observe that many computations are loop-invariant and are unnecessar-

ily performed multiple times. Thus, there is a lost opportunity for loop-invariant code

motion for hoisting such expressions outside the loop, thus improving the performance

(cf. the Bundle Adjustment experiment in Section 6.6).

• Furthermore, while the result of automatic differentiation is known to only have by a

constant factor more arithmetic operations than the original program, the constant can

be significant; this overhead can have a dramatic impact on the run-time performance

in practice. More specifically, in applications involving the manipulation of vectors,

many intermediate vectors are allocated that can be removed. The optimization for

eliminating such intermediate vectors is known as deforestation [357, 121, 325, 71] or

loop fusion in the functional programming community. This optimization opens the

door for many other optimizations such as turning loops iterating over sparse vectors

with a single non-zero element into a single statement (cf. Example 4 in Section 6.4).

6.1.2 Our contributions

In this chapter, we present a novel automatic differentiation technique based on forward mode,

which combines the benefits of both forward and reverse mode in many cases, and which,

144



6.2. Overview

even for cases that require computing the full Jacobian matrix, outperforms both techniques.

The key idea behind our technique is that we use a vector-aware programming language, in

which the loops required for constructing the full Jacobian matrix are exposed to the compiler.

Thus, the compiler can employ global optimization techniques such as loop-invariant code

motion and loop fusion for simplifying the differentiated programs.

Example 1. Assume that we have a matrix M and two vectors u and v (which are represented

as row matrices and are independent of M). Based on matrix calculus one can prove that
∂
(

uM vT
)

∂M = uT v . However, computing the differentiated version of this function using forward-

mode AD tools requires multiple iterations over the differentiated program for every element

in the matrix M . By using the reverse-mode AD, one can invoke the differentiated function only

once, and the adjoin parts of the input matrix M will be filled in. We show in Section 6.4 that dF̃

derives the gradient of this expression with respect to M , resulting in an expression equivalent

to uT v . This removes the need for multiple iterations over the differentiated program for

each element of matrix M , in contrast to the existing AD tools based on the forward-mode AD

technique.

The contributions of this chapter are summarized as follows:

• We present F̃, a higher-order functional array-processing language in Section 5.2. This

language can be efficiently compiled into low-level C code with efficient memory man-

agement. Then, we present M̃, a linear algebra DSL inspired by MATLAB, embed-

ded [158] in this language in Section 5.2.2.

• Then, we show the differentiation programming capabilities provided by F̃. First, Sec-

tion 6.3.1 shows the high-level API exposed in F̃ for performing various matrix deriva-

tives such as scalar derivatives, gradients, and Jacobians. Then, we show transformation

rules for performing source-to-source automatic differentiation of F̃ expressions in

Section 6.3.2.

• Afterwards, we show how dF̃ produces efficient differentiated programs by introducing

several global optimizations such as loop-invariant code motion, loop fusion, and

partial evaluation, as well as generating C code with efficient stack-discipline memory

management in Section 6.4.

• Finally, using several micro benchmarks and several functions used in machine learning

and computer vision workloads, we show how dF̃ outperforms the state-of-the-art AD

techniques in Section 6.6.

6.2 Overview

In this section, we start with an overview of the compilation process in dF̃, which is shown in

Figure 6.2. This figure demonstrates the position of dF̃ with respect to existing AD tools. dF̃

145



Chapter 6. Efficient Differentiable Programming

M̃ / MATLAB / NumPy
ADiMat [38] / Autograd [228]

Diff. M̃ / MATLAB / NumPy

Lowering Lowering

F̃ (Section 5.2) / F#
dF̃ (Section 6.3.2) / DiffSharp [28]

Diff. F̃/ F#

DPS [299] DPS [299]

C / C++
Tapenade [143] / ADIC [254]

Diff. C / C++

Figure 6.2 – Compilation process in dF̃ and other AD systems. The solid arrows correspond to
the pipeline used in dF̃.

e ::= [See Figure 5.1]
T ::= [See Figure 5.1]

M ::= [See Figure 5.1]
| M × M – Pair Type

Pair Function Constants:
pair : M1 ⇒ M2 ⇒ M1 × M2 fst : M1 × M2 ⇒ M1 snd : M1 × M2 ⇒ M2

Syntactic Sugar:
(e0, e1) = pair e0 e1

DoubleD = Double × Double
VectorD = Array<Double × Double>
MatrixD = Array<Array<Double × Double>>

Figure 6.3 – The syntax, types, and function constants of the extended F̃ language used in dF̃.

starts from a program written in a high-level linear algebra DSL, called M̃ (Section 5.2.2). This

program is lowered into its implementation in a higher-order functional language with array

support, called F̃ (Section 5.2). If a part of the program requires computing differentiation

(which are specified by using high-level differentiation API exposed by dF̃, as mentioned in

Section 6.3.1) dF̃ uses AD transformation rules (Section 6.3.2) for transforming the involved

expressions into their differentiated form. Finally, after applying several simplifications such as

loop fusion, partial evaluation, data layout transformation, etc. (Section 6.4) the differentiated

program is transformed into low-level C code. The generated C code uses efficient stack-

discipline memory management by using the destination-passing style (DPS) technique [299].

Figure 6.3 shows the abstract syntax , types, and several built-in functions of the extended F̃

used in dF̃. The key additional constructs in the extended version of F̃ corresponds to pair

construction and projections.

146



6.3. Differentiation

One of the key features of F̃ is its support for both source-to-source automatic differentiation

and global optimizations such as loop-invariant code motion and loop fusion in the same time.

The transformations required for automatic differentiation are presented in Section 6.3.2, and

the ones for optimization and simplification are shown in Section 6.4.

As we have seen in Section 5.2.2, we have embedded M̃, a functional Linear Algebra DSL, in F̃.

Next, we see how our working example can be expressed in M̃.

Example 1 (Continued). The matrix expression uM vT is expressed as the following function

in M̃:

let f = fun u M v ->

let um = vectorToMatrix u

let vt = matrixTranspose (vectorToMatrix v)

let m = matrixMult um (matrixMult M vt)

m[0][0]

The last expression is for accessing the single scalar element of a 1×1 matrix.

4

6.3 Differentiation

In this section, we show the differentiation process in dF̃. First, we start by the high-level API

exposed by dF̃ to the end users. Then, we show how dF̃ uses automatic differentiation behind

the scenes for computing derivatives. Finally, we present the optimizations offered by dF̃,

and we demonstrate how dF̃ can use these optimizations to deduce several matrix calculus

identities.

6.3.1 High-Level API

For computing the derivative of an arbitrary function, dF̃ provides the deriv construct. This

construct can be better thought of as a macro, which is expanded during compilation time. The

expanded expression includes the expression of the original computation, which is given as the

first argument (and can be an arbitrary scalar, vector, or matrix expression), and the derivative

of this expression with respect to the variable given as the second argument, referred to as the

independent variable. Note that one can easily compute the derivative of an expression with

respect to a list of free variables by multiple invocation of the deriv construct.

Algorithm 1 shows a pseudo-code implementation of the deriv construct. First, deriv

constructs a lambda function which has the free variables of the given expression as its

input parameters (cf. line 6). This function is given as input to source-to-source automatic

differentiation for computing the derivative (cf. line 8). The differentiated function is applied to

147



Chapter 6. Efficient Differentiable Programming

the dual number encoding of all the free variables (cf. lines 5-8). If the free variable is different

than the input variable with respect to which we are differentiating (i.e., the independent

variable), the derivative part is a zero scalar, vector, or matrix (cf. lines 26-33). Otherwise, the

derivative part is a one-hot encoding scalar, vector, or matrix (cf. lines 35-42).

If the independent variable has a scalar type, deriv returns the applied function (cf. lines

9-11). However, if the independent variable has a vector type, deriv constructs a vector with

the same number of elements as the independent variable. For computing the r i th element of

the result vector, the corresponding input vector is a one-hot encoding with a single one at the

r i th position (cf. lines 12 and 39). The situation is similar for an independent variable with a

matrix type; the corresponding one-hot encoding matrix has a single one at the r i th row and

ci th column (cf. lines 14 and 41). Note that the two variables ri and ci are treated specially and

are distinguished variables.

Example 2. Let us assume that we would like to compute the derivative of a program comput-

ing the cosine function with respect to its input:

cos(a)

The derivative of this program at point a is represented as follows:

snd (deriv (cos a) a)

This expression is transformed into the following expression after expanding the derivmacro:

snd ((D�fun a -> cos(a)�) (a, 1))

4

Furthermore, dF̃ provides three additional differentiation constructs, inspired by AD tools

such as DiffSharp [28]: 1) diff computes the derivative a function, from a real number to

a real number, with respect to its input, 2) grad computes the gradient of a function, from

a vector of real numbers to a real number, with respect to its input vector, and 3) jacob

computes the Jacobian matrix of a vector-valued function, a function from a vector of real

numbers to a vector of real numbers, with respect to its input vector. Figure 6.4 demonstrates

how these high-level differentiation constructs are defined in terms of the source-to-source

AD transformation construct D.

Example 2 (Continued). For the previous example, if we would like to use the diff construct,

first we have to define the following function:

g = fun x -> cos(x)

The derivative of this function at point a is represented as follows:

148



6.3. Differentiation

Algorithm 1 A pseudo-code implementation of the deriv construct.

1: // Returns an expression including both the original and the derivative computation.
2: function DERIV(e, x)
3: args ←;
4: f ← e
5: for all v ← FREEVARS(e) do
6: f ← fun v -> f
7: args ← args ∪ DUAL(v, if(v = x) then ONEHOT(v) else ZERO(v))

8: df ← (D�f�) args
9: if TYPE(x) = Double then

10: return df
11: else if TYPE(x) = Vector then
12: return build (length x) (fun ri -> df)
13: else if TYPE(x) = Matrix then
14: return build (matrixRows x) (fun ri -> build (matrixCols x) (fun ci -> df))

15: end function
16: // Returns the dual number encoding of the two input expressions.
17: function DUAL(e1, e2)
18: if TYPE(e1) = Double then
19: return (e1, e2)
20: else if TYPE(e1) = Vector then
21: return vectorZip e1 e2

22: else if TYPE(e1) = Matrix then
23: return matrixZip e1 e2

24: end function
25: // Returns a zero scalar, vector, or matrix expression based on the type of input.
26: function ZERO(e)
27: if TYPE(e) = Double then
28: return 0
29: else if TYPE(e) = Vector then
30: return vectorZeros (length e)
31: else if TYPE(e) = Matrix then
32: return matrixZeros (matrixRows e) (matrixCols e)

33: end function
34: // Returns a one-hot encoding scalar, vector, or matrix expression.
35: function ONEHOT(e)
36: if TYPE(e) = Double then
37: return 1
38: else if TYPE(e) = Vector then
39: return vectorHot (length e) ri
40: else if TYPE(e) = Matrix then
41: return matrixHot (matrixRows e) (matrixCols e) ri ci

42: end function

149



Chapter 6. Efficient Differentiable Programming

Oper. Type Definition
diff (Double⇒Double) ⇒ fun f x ->D�f� (x, 1)

Double⇒DoubleD
grad (Vector⇒Double) fun f v ->

⇒Vector⇒VectorD build (length v) (fun i ->
jacob (Vector⇒Vector) D�f� (vectorZip v (vectorHot (length v) i))

⇒Vector⇒MatrixD )

Figure 6.4 – High-Level Differentiation API for F̃.

`````````````̀Input Type
Output Type

Scalar Vector Matrix

Scalar diff vdiff mdiff
Vector grad jacob –
Matrix mgrad – –

Table 6.1 – Different types of matrix derivatives.

snd ((diff g) a)

which is expanded to the following program:

snd (D�g� (a, 1))

4

Table 6.1 summarizes different matrix derivatives, and how they can be computed using

our high-level API. Note that the definition of vdiff and mdiff is similar to diff, and the

definition ofmgrad is similar tograd andjacob (cf. Figure 6.4). Note that thederiv construct

subsumes all these operators.

One key advantage of defining different matrix derivatives in terms of automatic differentiation

is that one no longer needs to define the matrix calculus derivative rules for all different

combinations shown in Table 6.1. Instead these rules can be deduced automatically from

the automatic differentiation rules defined for scalar values. Moreover, even the algebraic

identities for matrix derivative can be deduced by using the simplification rules presented in

Section 6.4.

Next, we present the source code transformation required for applying automatic differentia-

tion rules.

6.3.2 Source-to-Source Automatic Differentiation

dF̃ relies on source-to-source translation for implementing forward-mode automatic dif-

ferentiation. Each expression is converted into an expression containing both the original

150



6.3. Differentiation

computation, together with the derivative computation, a.k.a. the dual number technique.

The scalar expressions are transformed into a pair of values, the original computation and the

derivative computation. The vector expressions are transformed into vectors containing tuple

expressions, instead of scalar expressions. The situation is similar for higher-rank tensors such

as matrices.

The rules for automatic differentiation are demonstrated in Figure 6.5. D�e� specifies the AD

translation for expression e. A variable y is translated as *y, emphasizing that the translated

variable keeps the derivative part as well (D-Abs, D-Var, and D-Let). V �e� is a shorthand for

extracting the original computation from the translated term D�e�, while T �e� is a shorthand

for accessing the derivative part.

Constructing an array is differentiated as an array with the same size, however, the way that

each element of the array is constructed is differentiated (D-Build). Differentiating an iteration

results in an iteration with the same number of iterations, and with the initial state and the

next state function both differentiated (D-IFold). The differentiation of the length and indexing

an array, is the same as the length and indexing the differentiated array, respectively (D-Length

and D-Get).

Differentiating a pair of elements results in the pair of differentiated elements (D-Pair). Simi-

larly, differentiating the projection of a pair, is the projection of the differentiated pair (D-Fst,

D-Snd). For other scalar-valued functions, the differentiation rules are similar to the corre-

sponding rules in mathematics.

Example 2 (Continued). In the previous example, based on the automatic differentiation

rules, the differentiated program would be as follows:

*g = fun *x -> -snd (*x) * sin(fst (*x))

Based on the definition of the diff construct, we have to use the AD version of the function

(i.e., g) and assign 1 to the derivative part of the input. So the value of cos′ for the input a is

computed as follows:

snd ((diff g) a)  snd (D�g� (a, 1))  snd (*g (a, 1))  

-snd ((a, 1)) * sin(fst ((a, 1)))  -1 * sin(a)  -sin(a)

4

Similarly, we can compute the partial derivatives of a given function, by setting the desired

derivative part to one, and the rest of derivatives to zero. This process is illustrated in the next

example.

Example 3. Assume that we would like to compute the partial derivative of the expression a *

151



Chapter 6. Efficient Differentiable Programming

b with respect to a, which is represented as follows in F̃:

snd (deriv (a * b) a)

This expression is expanded as follows:

snd (D�fun a b -> a * b� (a, 1) (b, 0))

Note that the derivative part of the second input is set to 0. Similar to the previous example,

the result is as follows:

snd ((fun *a *b -> (fst (*a)*fst (*b), fst (*a)*snd (*b) + snd (*a)*fst (*b))) (a, 1) (b, 0))

which is evaluated as follows:

snd ((a * b, 1 * b + a * 0))  1 * b + a * 0  b

4

It is important to note that dF̃ performs many of the evaluation steps shown for the previous

examples during compilation time, i.e., performs partial evaluation.

6.3.3 Perturbation Confusion and Nested Differentiation

In several problems such as computing the Hessian matrix, one requires to compute the

differentiation of a differentiated program. In such cases, one should be careful on dealing

with tangent parts. We demonstrate this problem in the next example.

Example. Consider the following expression:

∂(x ∂x+y
∂y )

∂x

This expression should be evaluated to 1 at every point. However, an AD tool can mistakenly

evaluate this expression to 2. This is because of confusing the tangent part (perturbation) of

the free variable x with the tangent of the variable y, while computing the inner derivative.

This is known as the perturbation confusion problem in the AD literature.

We show how dF̃ avoids this problem by using the deriv macro. This expression is imple-

mented as follows in the F̃ language:

152



6.3. Differentiation

(D-App) D�e0 e1� = (D�e0�) (D�e1�)
(D-Abs) D�fun x -> e� = fun *x -> D�e�
(D-Var) D�y� = *y
(D-Let) D�let x = e1 in e2� = let *x = D�e1� in

D�e2�
(D-If) D�if e1 then e2 else e3� = if (fstD�e1�) thenD�e2� elseD�e3�

(D-Build) D�build e0 e1� = build (fstD�e0�) (fun i -> (D�e1�) (i, 0))
(D-IFold) D�ifold e0 e1 e2� = ifold (fun x i ->

(D�e0�) x (i, 0)) D�e1� (fstD�e2�)
(D-Get) D�e0[e1]� = (D�e0�)[fstD�e1�]
(D-Length) D�length e0� = (lengthD�e0�, 0)

(D-Pair) D�(e0, e1)� = (D�e0�, D�e1�)
(D-Fst) D�fst e0� = fst (D�e0�)
(D-Snd) D�snd e0� = snd (D�e0�)

(D-NumV) e: Num ` V �e� = fstD�e�
(D-NumT) e: Num ` T �e� = sndD�e�

(D-Neg) D�-e1� = ( -V �e1� , -T �e1� )
(D-Add) D�e1 + e2� = ( V �e1�+V �e2� , T �e1�+T �e2� )
(D-Mult) D�e1 * e2� = ( V �e1�*V �e2� , T �e1�*V �e2� + V �e1�*T �e2� )
(D-Div) D�e1 / e2� = ( V �e1�/V �e2� ,

(T �e1�*V �e2� - V �e1�*T �e2�) / (V �e2�**2) )
(D-Pow) D�e1 ** e2� = ( V �e1�**V �e2� , (V �e2� * T �e1� / V �e1� +

log(V �e1�)*T �e2�) * (V �e1�**V �e2�) )
(D-Sin) D�sin(e1)� = ( sin(V �e1�) , T �e1� * cos(V �e1�) )
(D-Cos) D�cos(e1)� = ( cos(V �e1�) , -T �e1� * sin(V �e1�) )
(D-Tan) D�tan(e1)� = ( tan(V �e1�) , T �e1� / (cos(V �e1�) ** 2) )
(D-Log) D�log(e1)� = ( log(V �e1�) , T �e1� / V �e1� )
(D-Exp) D�exp(e1)� = ( exp(V �e1�) , T �e1� * exp(V �e1�) )

(DT-Fun) DT�T1 ⇒ T2 � = DT�T1� ⇒ DT�T2�
(DT-Exp) DT�Num� = Num × Num
(DT-Arr) DT�Array<M>� = Array<DT�M�>
(DT-Pair) DT�M1 × M2� = DT�M1� × DT�M2�

Figure 6.5 – Automatic Differentiation Rules for F̃ Expressions.

fun x y ->

snd (

deriv (x * (snd (

deriv (x + y) y

))) x

)

153



Chapter 6. Efficient Differentiable Programming

After expanding the inner deriv macro, the following expression is derived:

fun x y ->

snd (

deriv (x * (snd (

(fun *x *y -> (fst (*x) + fst (*y), snd (*x) + snd (*y))) (x, 0) (y, 1)

))) x

)

After partially evaluating the inner expression we have:

fun x y ->

snd (

deriv x x

)

Expanding this deriv macro results in the following expression:

fun x y ->

snd (

(fun *x -> *x) (x, 1)

)

This expression equivalent to the following expression after partial evaluation:

fun x y ->

1

4

Correctly handling the perturbation confusion problem is an important feature, enabling dF̃

to efficiently handle nested differentiation constructs such as computing the Hessian matrix.

We plan to investigate the support for the Hessian matrix for the future.

Next, we give more details on the optimizations and simplifications offered by dF̃.

6.4 Efficient Differentiation

In this section, we show how dF̃ achieves efficient differentiable programming. First, we show

several transformation rules applicable on F̃ expressions. Then, we show how we generate C

code from F̃ expressions for a more efficient memory management.

154



6.4. Efficient Differentiation

e + 0 = 0 + e  e
e * 1 = 1 * e  e
e * 0 = 0 * e  0
e + -e = e - e  0
e0 * e1 + e0 * e2  e0 * (e1 + e2)

(a) Ring-Structure Rules

(fun x -> e0) e1  e0[x 7→ e1]
let x = e0 in e1  e1[x 7→ e0]
let x = let y = e0 in

let y = e0 in e1  let x = e1

in e2 in e2

f(let x = e0 in e1)  let x = e0 in f(e1)

(b) λ-Calculus Rules

(build e0 e1)[e2]  e1 e2

length (build e0 e1)  e0

(c) Fusion Rules

fst (e0, e1)  e0

snd (e0, e1)  e1

(d) Tuple Partial Evaluation Rules

ifold f z 0  z
ifold (fun a i -> a) z n  z
ifold f z n  ifold (fun a i -> f a (i+1)) (f z 0) (n - 1)
ifold (fun a i ->
if(i = j) then f a i else a) z n  f z j

(e) Iteration Rules

if true then e1 else e2  e1

if false then e1 else e2  e2

if e0 then e1 else e1  e1

f (if e0 then e1 else e2)  if e0 then f (e1) else f (e2)
if e0 then e1 else e2  if e0 then e1[e0 7→ true] else e2[e0 7→ false]

(f) Conditional Rules

ifold (fun a i -> (f (fst a) i, g (snd a) i) ) (z1, z2) n  (ifold f z1 n, ifold g z2 n)

(g) Loop Fission

Figure 6.6 – Optimizations for F̃.

6.4.1 Transformation Rules

There are various algebraic identities that one can define for F̃. Based on these identities,

differentiated programs can be heavily optimized. Figure 6.6 shows a set of optimizations

defined for F̃.

There are various optimizations defined for scalar operations based on the ring structure

of addition and multiplication, which are shown in Figure 6.6a. Note that other ring-based

algebraic identities, such as associativity and commutativity, do not appear directly in the

list of rules that dF̃ applies. This is because they do not necessarily improve the performance,

unless they are combined with other rewrite rules.

As F̃ is based on λ-calculus, all partial evaluation rules for this calculus come for free. Fur-

thermore, the optimizations defined in the literature for let-binding can also be used. Finally,

partial evaluation rules for conditionals are also available. Figure 6.6b shows this set of rules.

As the vector constructs of F̃ are based on pull arrays, one can use the pull-array fusion rules for

155



Chapter 6. Efficient Differentiable Programming

removing unnecessary intermediate vectors and matrices. The two fusion rules for pull-arrays

are shown in Figure 6.6c.

In addition, many intermediate tuples resulting from the dual number technique of AD can

be removed by using partial evaluation. Figure 6.6d shows the partial evaluation rules for

removing the intermediate tuples which are followed by a projection.

Partially evaluating the tuples across the boundary of a loop requires a sophisticated analysis

of the body of the loop. To simplify this task, we perform loop fission for the loops that return

a tuple of values. This is possible only when different elements of the tuple are computed

independently in different iterations of the loop. Figure 6.6g shows how loop fission turns an

iteration creating a pair of elements into a pair of two iterations constructing independently

the elements of that pair. After performing this optimization, if we are interested only in a

particular element of the result tuple, other loops corresponding to irrelevant elements are

removed by partial evaluation.

Based on these rewrite rules, dF̃ derives well-known matrix calculus rules, without requiring

to add a rewrite rule in the level of matrices (i.e., M̃). However, as we will see, the order in

which these rewrite rules should be applied can become tricky and for the moment are defined

manually in dF̃. We leave an automatic way of inferring a good sequence of rewrite rules for

the future work.

The next example, shows how dF̃ can derive a well-known matrix identity by using a sequence

of transformation rules defined in this section.

Example 4. Based on matrix calculus derivative rules, it is known that ∂v1·v2
∂v1

= v2, where · is

the vector dot product operator. We would like to show how dF̃ can deduce the same algebraic

identity. The differentiation of dot product of two vectors is represented as follows:

fun v1 v2 ->

vectorMap (deriv (vectorDot v1 v2) v1) snd

This expression is expanded as follows:

fun v1 v2 ->

vectorMap (

build (length v1) (fun i ->

D�fun v1 v2 -> vectorDot v1 v2�
(vectorZip v1 (vectorHot (length v1) i))

(vectorZip v2 (vectorZeros (length v2))))

) snd

After inlining the definition of vectorMap (cf. Figure 5.2) and applying the fusion rule (cf.

Figure 6.6c), the following program is produced:

156



6.4. Efficient Differentiation

fun v1 v2 ->

build (length v1) (fun i ->

snd (D�fun v1 v2 -> vectorDot v1 v2�
(vectorZip v1 (vectorHot (length v1) i))

(vectorZip v2 (vectorZeros (length v2)))))

After inlining the definition of vectorDot, vectorZip, vectorHot, and vectorZeros, and again

applying the fusion rule, we have:

fun v1 v2 ->

build (length v1) (fun i ->

snd (D�fun v1 v2 -> ifold (fun s j -> s+v1[j]*v2[j]) 0 (length v1)�
(build (length v1) (fun j -> (v1[j], if(i=j) then 1 else 0)))

(build (length v2) (fun j -> (v2[j], 0)))))

After applying AD transformation rules (cf. Figure 6.5), and partial evaluation rules (cf. Fig-

ure 6.6) the following program is derived:

fun v1 v2 ->

build (length v1) (fun i ->

snd (fun*v1*v2 -> ifold (fun s j ->

( (fst s) + (fst*v1[j]) * (fst*v2[j]) ,

(snd s) + (fst*v1[j]) * (snd*v2[j]) + (snd*v1[j]) * (fst*v2[j]) )

) (0, 0) (length*v1))

(build (length v1) (fun j -> (v1[j], if(i=j) then 1 else 0)))

(build (length v2) (fun j -> (v2[j], 0)))))

After further applying β-reduction (cf. Figure 6.6b), tuple partial evaluation (cf. Figure 6.6b),

and loop fusion the following program is generated:

fun v1 v2 ->

build (length v1) (fun i ->

snd (ifold (fun s j ->

( (fst s) + v1[j] * v2[j] ,

(snd s) + v1[j] * 0 + (if (i=j) then 1 else 0) * v2[j] )

) (0, 0) (length v1))

Now we apply loop fission (cf. Figure 6.6g), conditional rules (cf. Figure 6.6f), and several other

simplification rules:

157



Chapter 6. Efficient Differentiable Programming

fun v1 v2 ->

build (length v1) (fun i ->

snd (

ifold (fun s j -> s + v1[j] * v2[j]) 0 (length v1) ,

ifold (fun s j -> if (i=j) then s + v2[j] else s) 0 (length v1)

) )

Note that applying the loop fission rule, does not necessarily improve the performance; it

is only after performing tuple partial evaluation rules that the iteration responsible for the

original computation is removed and the performance is improved. Thus, the strategy for

applying rewrite rules can become tricky, and for this example, we manually specify the

sequence of transformations that should be applied. After applying the partial evaluation rule,

the following program is derived:

fun v1 v2 ->

build (length v1) (fun i ->

(ifold (fun s j ->

if(i = j) then

(s + v2[j])

else

s) 0 (length v1)))

By using the optimization that turns single access iterations into a single statement (cf. Fig-

ure 6.6e), dF̃ produces the following program:

fun v1 v2 ->

build (length v1) (fun i -> v2[i])

This program is equivalent to v2 if the size of the two input vectors are the same (i.e., length

v1 = length v2). Otherwise, the input program is ill-formed.

4

Next, we show the power of dF̃ in deriving a matrix calculus identity for gradient of matrices.

Example 5. By using the same set of optimizations, dF̃ can deduce the identity
∂tr

(
M

)
∂M = I .

First, we start from the representation of this gradient in F̃:

fun m ->

build (lengthm) (fun i ->

build (lengthm[0]) (fun j ->

snd (D�matrixTrace� (matrixZip m (matrixHot (lengthm) (lengthm[0]) i j)))))

158



6.4. Efficient Differentiation

After applying the AD transformations and the optimizations presented in this section, the

following program is produced:

fun m ->

build (lengthm) (fun i ->

build (lengthm[0]) (fun j ->

if (j = i) then 1 else 0))

If the rows and columns of the input matrix are equal, this program represents the identity

matrix with the same dimensions as the input matrix.

4

Similarly, dF̃ automatically discovers the following identity if A is independent of M:
∂tr

(
M A

)
∂M =

AT . Now we return to the example shown in the beginning of this chapter.

Example 1 (Continued). If we have a matrix M and two vectors u and v (which are represented

as row matrices and are independent of M), using matrix calculus one can prove that
∂
(

uM vT
)

∂M =
uT v . First, we start by a partially inlined representation of this program in F̃:

let f = fun u M v ->

let m =

matrixMult

(build 1 (fun i -> u))

(matrixMult M

(matrixTranspose (build 1 (fun i -> v))))

m[0][0]

fun u M v ->

(build (lengthM) (fun i ->

(build (lengthM[0]) (fun j ->

(snd (D�f�
(vectorZip v (vectorZeros (length v)))

(matrixZip M (matrixHot (lengthM) (lengthM[0]) i j))

(vectorZip v (vectorZeros (length v)))))))))

Note that the function f is returning the only scalar element of the 1-by-1 matrix uM vT . After

performing loop fusion, loop fission and partial evaluation the following program is derived:

fun u M v ->

build (lengthM) (fun i ->

build (lengthM[0]) (fun j ->

u[i] * v[j]))

159



Chapter 6. Efficient Differentiable Programming

This program is equivalent to uT v if the input program is well formed, i.e., the number of rows

and columns of M are the same as the length of u and v , respectively.

4

6.4.2 Code Generation

After applying the optimizations mentioned in the previous section, one can further improve

the efficiency by generating programs in a low-level language with manual memory man-

agement. This way, the overhead of garbage collection can be removed. Furthermore, by

using stack-discipline memory management techniques such as Destination-Passing Style

(DPS) [299], one can benefit from efficient bump memory allocation instead of using the

expensive malloc and free calls.

Example 1 (Continued). The generated C code for the optimized differentiated program is as

follows:

matrix uMv_d(storage s, vector u, matrix M, vector v) {
matrix res = (matrix)s;
for(int r = 0; r < M->rows; r++) {
for(int c = 0; c < M->cols; c++) {
res->elems[r][c] = u->elems[r] * v->elems[c];

}
}
return res;

}

The parameter s is the storage area allocated for storing the result matrix.

4

Up to now, we have only seen the cases where only the derivative part of the program was of

interest. If we are interested in the original part of the program as well (e.g., the intermediate

vectors cannot be fused), we need to store both the original and derivative parts. In such cases,

the differentiated vectors, which are represented as arrays of tuples, can be transformed into

a more efficient data layout. The well-known array of structs (AoS) to struct of arrays (SoA)

transformation represents differentiated vectors as a tuple of two numeric arrays. Further

partial evaluation can remove the unnecessary decoupled numeric arrays.

6.5 Implementation

In this section, we discuss the implementation of dF̃. Figure 6.7 gives an overview of the

architecture of dF̃. Next, we give more details on the compilation process.

160



6.5. Implementation

M~ 
Library

M~ 
Program LISP 

Code

F~ 
Rewrite 
Rules

Rewrite 
Rules

IR Optimized 
IR

Optimized 
C Code

Language F# LISP Scala C

dF~ 
User

dF~ 
Developer

SC Compilation Framework

F# Quotations to 
Scala Compilation

Optimization

F~
Runtime

in C

Figure 6.7 – The architecture of dF̃.

6.5.1 Compilation Process

As we discussed in Section 5.4, F̃ is a subset of F#. As M̃ is also embedded inside F̃, the programs

written in both languages are valid F# programs. We provide input M̃ and F̃ programs together

with the M̃ library in F#. These programs can be executed, as they are, as normal F# programs.

However, running as normal an F# program causes missing the benefits gained by using the

transformations offered by dF̃.

In order to benefit from the compilation facilities provided by dF̃, the F# programs are con-

verted to LISP [314] code. One clear advantage of using LISP as the intermediate exchanging

language is its functional nature and its simplicity for parsing.

The generated LISP programs are passed to SC, an extensible compilation framework imple-

mented in Scala (cf. Chapter 8). SC parses the LISP programs and constructs SC IR nodes.

Then, it applies the transformation rules in the order manually specified by the developer, and

produces optimized IR nodes. Finally, SC generates C code from the optimized IR.

6.5.2 Rewrite Rules

Many rewrite rules do not need static analysis over code for checking whether they can be

applied to a given expression. Such rewrite rules can be implemented as F# quotations.

Figure 6.8 shows the implementation of the ring-based rewrite rules (which were presented in

Figure 6.6a) using F# quotations.

These rewrite rules are converted into Scala code that uses the API provided by SC. The

compiler framework presented in Section 5.4, which was implemented in F#, is extended

with a Scala code generator that converts the rewrite rules in F# quotations into Scala pattern

matching code. As an example, the following F# quotation:

<@ %a + 0 <==> %a @>

161



Chapter 6. Efficient Differentiable Programming

<@ %a + 0 <==> %a @>

<@ 0 + %a <==> %a @>

<@ %a * 1 <==> %a @>

<@ 1 * %a <==> %a @>

<@ %a * 0 <==> 0 @>

<@ 0 * %a <==> 0 @>

<@ %a + (-%b) <==> %a - %b @>

<@ %a - %a <==> 0 @>

<@ %a * %b + %a * %c <==> %a * (%b + %c) @>

Figure 6.8 – Ring-structure rules implemented using F# quotations.

is converted to the following Scala code:

exp match {
case Add(a, Const(0)) => Some(a)
case _ => None

}

The rewrite rules that need program analysis for checking their applicability, are not expressible

as F# quotations. For example, loop fission rules (cf. Figure 6.6g) require analysing the code

for checking the usage pattern of tuples inside the loop. In such cases, the given expression

needs to be inspected for checking the applicability of the rewrite rule. These rewrite rules are

implemented directly in Scala using the SC rewriting API.

Finally, SC also has the power for visualization of the application of rewrite rules in a web-

based frontend. This is thanks to the Scala.js [93] compiler, which compiles the SC compilation

framework code base into JavaScript code. Thus, it is possible to execute the SC compiler in a

web browser, and visualize the compilation process.

6.6 Experimental Results

In this section, we show how dF̃ performs in practice. We show the performance of the

differentiated code for two real-world machine learning and computer vision applications.

Experimental Setup. We have performed the experiments using an iMac machine equipped

with an Intel Core i5 CPU running at 2.7GHz, 32GB of DDR3 RAM at 1333Mhz. The operating

system is OS X 10.13.1. We use CLang 900.0.39.2 for compiling the generated C code, and

Python 2.7.12 for running the Python code.

6.6.1 Micro Benchmarks

The micro benchmarks used for our experiments consist of the following vector expressions:

1) gradient of dot product of two vectors with respect to the first vector (which is a Jacobian

162



6.6. Experimental Results

 0.01

 0.1

 1

 10

 100

 1000

 1000  10000

R
u
n
 T

im
e
 (

m
s)

Vector Dimension

Gradient of Vector Dot Product w.r.t. the First Vector

Tapenade (R)

Tapenade (F)

dF~

dF~ + DPS

 0.01

 0.1

 1

 10

 100

 1000

 1000  10000

R
u
n
 T

im
e
 (

m
s)

Vector Dimension

Gradient of Vector Max w.r.t. the Input Vector

Tapenade (R)

Tapenade (F)

dF~

dF~ + DPS

 0.1

 1

 10

 100

 1000

 1000  10000

R
u
n
 T

im
e
 (

m
s)

Vector Dimension

Jacobian of Vector Addition w.r.t. the First Vector

Tapenade (R)

Tapenade (F)

dF~

dF~ + DPS

 0.01

 0.1

 1

 10

 100

 1000

 1000  10000

R
u
n
 T

im
e
 (

m
s)

Vector Dimension

Gradient of Vector-Scalar Multiplication w.r.t. Scalar

Tapenade (R)

Tapenade (F)

dF~

dF~ + DPS

Figure 6.9 – Performance results for Micro Benchmarks.

matrix with a single row), 2) gradient of the maximum value of a vector with respect to the input

vector (which is a Jacobian matrix with a single row), 3) gradient of addition of two vectors with

respect to the first vector (which is a Jacobian matrix), and 4) gradient of the multiplication of

a vector with a scalar value with respect to the scalar value (which is a Jacobian matrix with a

single column).

Figure 6.9 shows the performance results for the mentioned micro benchmarks for dF̃ and

both forward and reverse-mode of Tapenade. In all cases, dF̃ outperforms or performs as good

as both forward and reverse-mode of Tapenade. The performance is improved further when

the generated C code uses Destination-Passing Style (DPS) [299] for stack-discipline memory

management.

As in the first two cases the Jacobian matrix is a row vector, reverse-mode AD computes

the whole Jacobian matrix in a single backward pass. However, forward-mode AD needs to

iterate over each column to compute the corresponding derivative value. For the case of

the addition of two vectors, as the Jacobian matrix is a square matrix, reverse-mode AD and

163



Chapter 6. Efficient Differentiable Programming

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100  1000
Dimension (K)

Non-Negative Matrix Factorization -- Dimension of A: 100 x K

Tapenade (R)

Tapenade (F)

Tapenade (R) + Fused

Tapenade (F) + Fused

Theano

dF~

dF~ + DPS

 0.0001

 0.001

 0.01

 0.1

 100  1000
Dimension (K)

Non-Negative Matrix Factorization -- Dimension of A: K x 100

Tapenade (R)

Tapenade (F)

Tapenade (R) + Fused

Tapenade (F) + Fused

Theano

dF~

dF~ + DPS

Figure 6.10 – Performance results for NNMF.

forward-mode AD show comparable performance. Finally, for the last case, as the Jacobian

matrix is a column vector, the forward mode AD computes the whole Jacobian matrix in

a single forward pass. However, the reverse mode AD requires traversing over each row to

compute the corresponding partial derivative values.

6.6.2 Computer Vision and Machine Learning Workloads

Non-Negative Matrix Factorization (NNMF) is a useful tool which has many applications in

various fields ranging from document clustering, recommendation systems, signal processing,

to computer vision. For instance, in [223], the authors study the NNMF of Web dyadic data

represented as the matrix A. Dyadic data contains rich information about the interactions

between the two participating sets. It is useful for a broad range of practical applications

including Web search, Internet monetization, and social media content [223]. For example the

(query, clicked URL) data is used in query clustering [169], query suggestions [22] and improv-

ing search relevance [9]. Matrix factorization is a commonly used approach to understanding

the latent structure of the observed matrix for various applications [33, 311]. The authors

present a probabilistic NNMF framework for a variety of Web dyadic data that conforms to

different probabilistic distributions. For instance, an Exponential distribution is used to model

Web lifetime dyadic data, e.g., user dwell time, and similarly the Poisson distribution is used

to model count dyadic data, e.g., click counts.

The iterative algorithm to find W and H depends on the form of the assumed underlying

distribution. In particular the update formula for gradient descent are derived by computing

the gradient of the negative log of the likelihood function. For example, the negative log of the

exponential distribution is represented as follows:

164



6.6. Experimental Results

D
(

A||Ã)=Σ(i , j )

(
log

(
Ãi , j

)+ Ai , j

Ãi , j

)
, Ã =W H

The update formulas are derived manually, and for each new distribution it is the responsibility

of the user to undertake the error prone and laborious task of deriving, optimizing, and

implementing the update rules. dF̃ automatically derives the gradient of the negative log

of the likelihood function for the exponential distribution. After performing optimizations,

dF̃ produces an expression which is equivalent to the following update formula, which is

manually derived by hand in [223]:

∂D

∂H
=W T

(
1

W H
− A(

W H
)2

)

Figure 6.10 shows the performance results of executing the derived update rule on Tapenade,

Theano, and dF̃. For all the experiments, we consider factorizing the matrix A into two vectors

W and H (represented as u and vT , respectively). To have a fair comparison between Tapenade

and dF̃, we have provided both the fused and unfused versions of the likelihood function.

We observe a 2x speed up for the forward mode, and a 5x speed up for the reverse mode,

when comparing the fused version with the unfused version. Comparing the fused version of

Tapenade and dF̃, we observe that the reverse-mode AD of Tapenade behaves similarly to dF̃.

This shows that dF̃ successfully generates efficient code for this case, which is an ideal case for

the reverse-mode AD (the loss function is a scalar valued function, which should compute

the gradient with respect to all elements of the input vector). Finally, as the dimension of the

vectors increases, Theano converges to the same performance as dF̃ and reverse-mode AD of

Tapenade. This is thanks to the fact that the overhead of invoking C functions from Python

becomes negligible as the size of the vector increases.

The Gaussian Mixture Model (GMM) is a statistical method used for various machine learn-

ing tasks such as unsupervised and semi-supervised learning, as well as computer vision

applications such as image background modelling and image denoising.

Here we focus on computing the gradient of one of function used in GMM: the Log-Sum-Exp

(LSE) of a vector is useful in various machine learning algorithms such as GMM [257, 157].

Intuitively, if the multiplication operation in the linear domain is transformed into addition

in the log domain, the addition operation is transformed into LSE in the log domain. This

expression is computed as follows.

LSE
(
x1, ..., xn

)= xmax + log
(
Σn

i=1(exi−xmax )
)

Figure 6.11 shows the performance results for the gradient of this function with respect to its

input vector. Applying fusion improves the performance of the differentiated programs by

165



Chapter 6. Efficient Differentiable Programming

 0.1

 1

 10

 100

 1000

 1000  10000

R
u
n
 T

im
e
 (

m
s)

Vector Dimension

Gradient of Log-Sum-Exp

Tapenade (R)

Tapenade (F)

Tapenade (R) + Fused

Tapenade (F) + Fused

dF~

dF~ + DPS

Figure 6.11 – Performance results for log-sum-exp used in GMM.

25%. Comparing the fused versions of the programs, dF̃ outperforms the forward-mode AD of

Tapenade from 2 to 4 orders of magnitude. This gap increases quadratically with the size of

the input vector. However, dF̃ shows a similar performance to the fused reverse-mode AD of

Tapenade.

Bundle Adjustment [344, 8, 375] is a computer vision problem, where the goal is to optimize

several parameters in order to have an accurate estimate of the projection of a 3D point by a

camera. This is achieved by minimizing an objective function representing the reprojection

error.

For the experiments, we compute the Jacobian matrix of the Project function in Bundle Ad-

justment. For a 3D point X ∈R3 and a camera with rotation parameter r ∈R3, center position

C ∈ R3, focal index f ∈ R, principal point x0 ∈ R2, and radical distortion k ∈ R2, the Project

function is computes the projected point as follows:

project
(
r,C , f , x0,k, X

)
= distort

(
k,p2e

(
rodrigues

(
r, X −C

)))
f +x0

distort
(
k, x

)
= x

(
1+k1||x||2 +k2||x||4

)
p2e

(
X

)
= X1..2/X3

rodrigues
(
r, X

)
= X cosθ+ (

v ×X
)
si nθ+ v

(
vT X

)(
1− cosθ

)
,θ = ||r ||, v = r

||r ||

Consider having N 3D points and one particular camera parameter (an input vector of size

3N +11), we are interested in computing a Jacobian matrix with 3N +11 rows and 2N columns.

Figure 6.12 shows the performance results for computing the mentioned Jacobian matrix. As

166



6.7. Outlook and Conclusions

 1

 10

 100

 1000

 100  1000

R
u
n
 T

im
e
 (

m
s)

Vector Dimension

Jacobian of Project in Bundle Adjustment

Tapenade (R)

Tapenade (F)

dF~

dF~ + Code Motion

dF~ + Code Motion + DPS

Figure 6.12 – Performance results for Project in Bundle Adjustment.

it can be seen dF̃ outperforms both forward and reverse mode of Tapenade. This is mainly

thanks to the loop transformations, such as loop-invariant code motion, happening in dF̃.

6.7 Outlook and Conclusions

In this chapter we have demonstrated how to efficiently compute the derivate of a program.

The key idea behind our system is exposing all the constructs used in differentiated programs

to the underlying compiler. As a result, the compiler can apply various loop transformations

such as loop-invariant code motion and loop fusion for optimizing differentiated programs.

We have shown how dF̃ outperforms the existing AD tools on micro benchmarks and real-world

machine learning and computer vision applications.

We plan to extend dF̃ with the reverse-mode AD by employing a similar technique to the one

proposed by [273]. In addition, as we have seen in our examples, the strategy for applying

rewrite rules can become tricky in some cases; there are some rewrite rules (e.g., loop fission)

that do not necessarily improve the performance, unless they are combined with other trans-

formation rules. We plan to investigate the use of search strategies for automated rewriting

(e.g., using Monte-Carlo tree search [84]).

167





7 Efficient Incremental Analytics

The man who moves a mountain begins by carrying away small stones.

– Confucius

This chapter targets the Incremental View Maintenance (IVM) of sophisticated analytics (such

as statistical models, machine learning programs, and graph algorithms) expressed as linear

algebra programs. We present Lago, a unified framework for linear algebra that automatically

synthesizes efficient incremental trigger programs, thereby freeing the user from erroneous

manual derivations, performance tuning, and low-level implementation details. The key

technique underlying our framework is abstract interpretation, which is used to infer various

properties of analytical programs. These properties give the reasoning power required for

the automatic synthesis of efficient incremental triggers. We evaluate the effectiveness of our

framework on a wide range of applications from regression models to graph computations.

7.1 Introduction

Analytics has seen a paradigm shift from aggregate query processing, e.g., SQL, to more so-

phisticated analytics where data practitioners, engineers, and scientists utilize advanced

statistical data models to gain insights into the collected data. These analytical tasks in-

clude machine learning, statistical analyses, scientific computation, and graph computations.

The need is increasing for optimized execution workflows that support such analytic work-

loads. Currently, a wide range of tools and environments for expressing and optimizing

such workloads have evolved. These include systems specialized for machine learning tasks

such as MLlib [239] and SystemML [118]; platforms dedicated for graph processing such as

GraphChi [209], GraphLab [226], Pregel [230] and PowerGraph [126]; low-level autotuned

kernels such as Spiral [277, 310] for linear transformations; and Riot [381] for out-of-core

statistical analysis.

Recently, data collection has been experiencing a steep increase in volume and velocity.

Not only is the data big, but it is changing rapidly as well. More than ever, the demand for

169



Chapter 7. Efficient Incremental Analytics

applications and tools that react promptly to dynamic data has been increasing. A broad

range of modern applications, including clickstream analysis, algorithmic trading, network

monitoring, and recommender systems, compute realtime analytics over rapidly evolving

datasets. However, the existing tools lack support for dynamic datasets. High data velocity

forces application developers to manually build ad-hoc solutions in order to deliver high

performance, responsiveness, and interactivity. Most datasets evolve through changes that are

small relative to the overall dataset size. For example, the activity of a single customer, like her

purchase history or review ratings, represents only a tiny portion of the overall collected data

corpus. Recomputing data analytics on every (moderate) dataset change is far from efficient.

An alternative approach, Incremental View Maintenance (IVM), combines pre-computations

with incoming ∆ changes to provide a computationally cheap method for updating the final

result. IVM [39, 205, 138] of relational calculus is well known in the Databases literature and

provides orders of magnitude better performance than traditional approaches for SQL queries.

However, there are two main limitations with the existing IVM approaches for advanced ana-

lytics. First, despite some efforts for supporting IVM of recursive matrix equations [258], these

techniques are not applicable for a wide range of applications such as many machine learning

algorithms, including regression, recommender systems, and matrix factorizations, which are

representable as matrix operations [118]. Moreover, recent research [193, 48, 350] suggests that

modelling graph analytics using matrix operations results in better parallelization efficiency,

e.g., coarse grained parallelism, and higher productivity, e.g., using simpler abstractions.

Second, to the best of our knowledge, the process of generating such incremental triggers is

not completely automated. Naïvely incrementalizing analytics can lead to programs with the

same computational complexity, if not worse [258]. To make this process automatic while

achieving good performance, one needs to decide on the right program optimization choices,

which requires advanced forms of reasoning over analytical programs.

This thesis presents techniques and tools that enable automatic synthesis of incremental

linear algebra programs. We now present the structure of this thesis while outlining our main

contributions:

• Lago: Automatic Synthesis of IVM: Lago (Section 7.3) is a unified modular compiler frame-

work that enables end-to-end automatic IVM of a broad class of linear algebra programs.

Lago automatically synthesizes incremental trigger programs of analytical computations,

thus freeing the user from erroneous manual derivations, low-level implementation details,

and performance tuning. Lago benefits from certain mathematical tricks for capturing ∆

changes in a compressed factored form [258] (Section 7.2) that enables asymptotic perfor-

mance improvements for IVM. Furthermore, Lago defines a DSL (Section 7.3.2) for supporting

a wide range of applications and domains of different semiring configurations, e.g., graph

applications. In addition, we present a set of domain-specific transformation rules that allows

for delta derivation, simplification, and cost-based optimization of matrix algebra programs

170



7.2. Incremental Computation∆

Figure 7.1 – A single data-entry change ∆A in the input A can result in whole matrix perturba-
tions of subsequent ∆ expressions. ∆B has changes in a row and a column, whereas ∆C has
changes all over all the entries.

(Section 7.3.3).

• Abstract Interpretation: Lago leverages matrix-expression properties, called abstract do-

mains, including data type, dimensions, cost, matrix structures, etc, for synthesizing efficient

incremental analytics. This is achieved by a well-known technique from the programming

language community, called abstract interpretation (Section 7.4). This idea is inspired by the

workload-specific information (e.g., selectivity and cardinality) used in the query optimizers

of DBMSes. Examples in this thesis demonstrate how dimensions are used to guide cost-based

optimization (Section 7.4.1); how symmetry enables further transformations; and how data

and semiring types permit specialization opportunities during code generation (Section 7.4.2).

• Use cases & Evaluation: In Section 7.6, we evaluate the IVM of several practical use

case examples including computing linear regression models, gradient descent, and all-pairs

graph reachability and shortest path computations. The evaluation results demonstrate

orders of magnitude better performance of synthesized trigger programs relative to simple

re-evaluation.

7.2 Incremental Computation∆

Most datasets evolve through changes that are small relative to the overall dataset size. For

example, a social network graph evolves through connections that are relatively small in com-

parison to the entire graph size. Recomputing data analytics on every slight dataset change is

far from efficient. Incremental View Maintenance [39, 205, 138] (IVM) studies the incremental

maintenance of relational queries. IVM trades off storage in favour of cheaper computations.

The main idea is to confine the re-evaluation to the changes affected by the incremental

updates only. Then, they are used to update materialized views of the precomputed results.

Within the Databases literature, several approaches [39, 205, 138] have been proposed to

171



Chapter 7. Efficient Incremental Analytics

def pow(A)={
B:= A.A;
C:= B.B;
D:= C.C;

return D;
}

(a) Example program that computes the 8th power
of input matrix A.

def powDelta(∆A)={
∆B:=(A+∆A).(A+∆A)-A.A;
∆C:=(B+∆B).(B+∆B)-B.B;
∆D:=(C+∆C).(C+∆C)-C.C;
A+=∆A;B+=∆B;C+=∆C;D+=∆D;
return D;

}

(b) Trigger program that computes ∆ expressions
for each statement and finally updates the corre-
sponding materialized views.

def powDelta(∆A)={
∆B:= A.∆A + ∆A.A + ∆A.∆A;

∆C:= B.∆B + ∆B.B + ∆B.∆B;

∆D:= C.∆C + ∆C.C + ∆C.∆C;

A+=∆A;B+=∆B;
C+=∆C;D+=∆D;
return D;

}

(c) An optimized version of the trigger program
after applying algebraic simplification.

def powDelta(uA,vA)={

UB:=[uA (A.uA + uA.(vTA.uA))];

VB:=[(vTA.A) ; vTA];
UC:=[UB (B.UB + UB.(VB.UB))];
VC:=[(vB.B) ; VB];
UD:=[UC (C.UC + UC.(VC.UC))];
VD:=[(VC.C) ; VC];
A+=uA.vA;B+=UB.VB;
C+=UC.VC;D+=UD.VD;
return D;

}

(d) Final optimized trigger program that represents
∆ expressions in a factored form.

Figure 7.2 – The process of delta derivation for an example program that computes the 8th

power of input matrix A.

achieve this. Most notably, DBToaster [205] achieves orders of magnitude better performance

on SQL queries in comparison to traditional re-evaluation. However, these approaches are

not applicable to matrix programs. To demonstrate this, consider the simple example of

computing matrix powers. Matrix powers play an important role in many different domains

including evaluating the stochastic matrix of a Markov chain after k steps, solving systems of

linear differential equations using matrix exponentials, answering graph reachability queries

after k hops. Fig. 7.2a demonstrates an example of computing the 8th power of the input

matrix A. The program requires computing 3 costly O (n3) matrix-matrix multiplications to

evaluate the result. Now, consider a trigger program that updates the final result given a single

entry change ∆A to the input matrix A. For explanatory reasons, Fig. 7.2b gives a simplistic

representation of such a trigger program where it computes the delta expression for each of

the intermediate variables B, C, and D, respectively. Then finally, these materialized views

are updated with the corresponding delta expressions, e.g., B+=∆B. Furthermore, when the

expressions are expanded algebraically utilizing the associative and distributive laws of matrix

172



7.2. Incremental Computation∆

addition over multiplication, one could deduce the more simplified expressions as illustrated

in Fig. 7.2c.

On relatively small changes, one could imagine that by confining the computation to the

deltas, we could achieve better performance in comparison to re-evaluation. Unfortunately,

this is not the case. As depicted in Fig. 7.1, consider a single entry change ∆A in A. As the

figure illustrates, dark cells correspond to entry changes where as white cells correspond to

the neutral value, i.e., no change. We can easily compute ∆B in O (n2) time, as there is only

one single entry in ∆A. After the multiplication, the resulting ∆B matrix has entry changes on

a single row and a single column. Similarly, computing ∆C can be done in O (n2) time, as one

only needs to multiply the two vectors from∆B with full matrices. However, this is not the case

anymore when computing∆D.∆C has changes all over its matrix entries. When it is used in the

subsequent statement to compute ∆D, full fledged O (n3) matrix multiplications are required.

This renders incremental computation useless in comparison to naive re-evaluation. The

above example shows that linear algebra programs are, in general, sensitive to input changes.

Even a single entry change in the input can cause an avalanche effect of perturbations, quickly

escalating to full matrix perturbations, even after executing only two statements.

7.2.1 The Delta (∆) Representation

Until now, we have stored the results of ∆ expressions into full matrices. However, one can

realize that this representation is highly redundant and that ∆s are usually characterized by

having low ranks. Capturing this information is important, as it enables representing the

∆ expressions in a packed factored form which compacts storage and greatly reduces the

computation cost of its evaluation. The matrix rank is defined as follows:

Definition 7.2.1 A matrix M of dimensions (n ×n) is said to have rank-k if the maximum

number of linearly independent rows or columns in the matrix is k. M is called a low-rank

matrix if k ¿ n.

For example, a single entry change can be represented as a rank-1 update. In fact, a rank-1

update can represent updates of a single row/column or even several rows/columns that are

linearly dependent to each other. A rank-1 update is represented in a compressed compact

form as an outer product of two vectors ∆= uvT rather than a full matrix. To demonstrate this,

consider a matrix A with dimensions 3×3 and a single entry change ∆A that adds the value c

at index [2,2] of matrix A. This change can be represented in the factored form as follows:

∆A =

 0 0 0

0 0 0

0 0 c

= u.vT =

 0

0

1

 [
0 0 c

]

Similarly a row change or a column change at [2,_] or [_,2] can be represented as follows

173



Chapter 7. Efficient Incremental Analytics

respectively:

∆A =

 0 0 0

0 0 0

c0 c1 c2

= u.vT =

 0

0

1

 [
c0 c1 c2

]

∆A =

 0 0 c0

0 0 c1

0 0 c2

= u.vT =

 c0

c1

c2

 [
0 0 1

]
In general, rank-k matrices can represent more general update patterns as they can be repre-

sented as a sum of k rank-1 matrices.

Let us illustrate the benefits of this factored form in the previous example. Consider a rank-1

update ∆A = uAvT
A, where uA and vA are column vectors. One can compute ∆B = uA (vT

A A)+
(A uA) vT

A + (uA vT
A uA) vT

A as a sum of three outer products. The evaluation order enforced by

these parentheses results in matrix-vector and vector-vector multiplications only. Thus, the

evaluation of ∆B requires O (n2) operations only. Moreover, rather than representing the delta

expressions as a sum of outer products, we represent them in a more compact vectorized form

for performance, storage, and presentation reasons. Generally, a sum of k outer products is

equivalent to a single product of two matrices with dimensions (n ×k) and (k ×n), which are

obtained by horizontally/vertically stacking the corresponding vectors together as follows:

u1.vT
1 +u2.vT

2 +u3.vT
3 =

[
u1 u2 u3

]  vT
1

vT
2

vT
3

=U V

where U and V are block matrices with dimensions (n ×3) and (3×n) respectively. Following

the same structure, we can represent ∆B in the factored form UB VB as derived in Fig. 7.2d:

∆B = uA.(vT
A.A)+ (A.uA +uA.(vT

A.uA)).vT
A ⇒

UB = [uA (A.uA +uA.(vT
A.uA))]

VB = [(vT
A.A) ; vT

A]

This factored representation is used further down the program to derive the ∆ expressions for

each of C and D as depicted in Fig. 7.2d.

In summary and without loss of generality, we capitalize on the low-rank structure of delta

matrices by representing a delta expression ∆n×n of rank k as a product of two matrices with

dimensions (n×k) and (k×n), where k ¿ n. This allows for efficient evaluation of subsequent

174



7.3. The LAGO Framework

Abstract InterpreterSe
ar

ch
 A

lg
or

ith
m

Specialized Code Generator

LAGO DSL

Derivation Rules
Simplification RulesReduction Rules

Equivalence Rules

Transformation Rules

Pandas/Spark SQL
DataFrame

TensorFlow /
NumPy 

MATLAB / 
R

Figure 7.3 – The architecture of the Lago framework.

delta expressions without performing expensive O (n3) operations;1 instead, only O (kn2)

operations are computed. The benefit of incremental processing diminishes as k approaches

n.

7.3 The LAGO Framework

In the previous section, we introduced the concept of incremental computation for matrix

algebra and the ability to derive efficient trigger programs by representing updates in a factored

form through exploitation of their low rank structure. In this section, we discuss how to

automatically derive those trigger programs. One could assume a manual approach in dealing

with this problem, however the developer has to put effort into deriving the incremental

program, then optimizing it to ensure low cost computation, then finally writing down the

code for the trigger program. This is a long and tedious process that includes a) delta derivation

which is error prone, b) optimization which requires simplification, cost-based rewrites, and

delicate ordering of operations, and c) writing the final trigger program code which requires

careful consideration, e.g., evaluating the delta expressions using the precomputed results

before updating the views. We propose offloading all of these responsibilities to Lago, a

compiler framework dedicated for synthesizing trigger code for various underlying processing

substrates, thereby freeing the user from erroneous manual derivations, optimization, and

low-level implementation details.

1More precisely, the complexity of matrix multiplication is O (nγ) where 2 ≤ γ ≤ 3. For all practical reasons,
the complexity of matrix multiplication implementations, e.g., using BLAS [363] has cubic cost O (n3). Other
algorithms, such as Coppersmith-Winograd and its successors, suggest better exponents of 2.37+ε; however, these
algorithms are only applicable for astronomically large matrices. Our incremental techniques remain relevant
as long as matrix multiplication stays asymptotically worse than quadratic time. Note that the asymptotic lower
bound isΩ(n2) operations because it needs to process at least all 2n2 entries.

175



Chapter 7. Efficient Incremental Analytics

7.3.1 Architecture Overview

In this section, we present the architecture of the Lago framework. Then we describe its

underlying components in detail. The main tasks of the Lago framework are as follows:

1) accepting an input matrix program; 2) deriving the incremental ∆ expressions for the

statements; performing cost-based optimizations to optimize the derived expressions; and

finally 3) generating the output trigger program for the underlying architecture using the

derived ∆ expressions. Fig. 7.3 gives an overview of the Lago architecture.

1. First, Section 7.3.2 presents the domain-specific language (DSL) used to describe matrix

programs in the framework. It includes a restricted set of domain-specific operations spe-

cialized for matrix algebra that is independent of the application domain. This DSL can be

thought of as an intermediate language (similar to the Weld IR [264]), which can be the target

of various frontends such as Pandas and Spark Dataframe, Tensorflow, NumPy, MATLAB, and

R. Table 7.1 shows the mapping among several operations in MATLAB, R, NumPy, and Lago

DSL.

2. To derive the incremental program, Lago needs a set of reduction rules that symbolically

derive the incremental expressions from the input program and those that simplify the derived

expressions. Afterwards, equivalence rules are applied whenever optimization is required.

These are called transformation rules (Section 7.3.3). A search module is required to navigate

the search space of functionally equivalent programs created by the transformation rules.

Different search algorithms can be utilized for different workloads. Similar to DBMSes, various

flavours of search algorithms can be employed, such as brute force, Dynamic Programming, or

randomized algorithms [163]. However, the discussion about search strategies is orthogonal

to this thesis. To evaluate the cost of candidate programs, one needs to estimate their running

costs. Similar to how DBMSes estimate query-plan costs using cardinality and selectivity

information, Lago leverages abstract domains (Section 7.4) for matrix programs. The abstract

domains encapsulate various properties associated to matrix expressions, such as dimensions,

structure, symmetry, rank, etc. Moreover, Lago uses abstract interpretation to automatically

derive these abstract domains for candidate programs. This information helps in estimating

program costs and in leveraging specialized back-end implementations.

3. Finally, Lago generates trigger code for the underlying processing substrate using code

generation. Code generation is extensible, in the sense that one can easily use various code

generators for different environments, e.g., Octave, R, Spark, SystemML, etc. The main task in

this phase is to generate code for the materialized precomputed results and updating them

with their corresponding optimized ∆ expressions.

Next, we discuss each of these components in detail, and we discuss how they interact with

each other.

176



7.3. The LAGO Framework

m ::= m ·m – Matrix-Matrix Multiplication
| m +m – Matrix Addition
| m> – Matrix Transpose
| m-1 – Matrix Inverse
| m⇒m – Matrix Concatenation
| vect[s](s) – Row Matrix Construction
| diag[s][s] – Diagonal Matrix Construction
| let x = m1 inm2 – Let binding
| iterate[s](m)(x ⇒m) – Matrix Iteration
| x – Matrix Identifier

s ::= s bop s – Scalar Binary Operation
| cols(m) – Number of Columns of a Matrix

Figure 7.4 – The core Lago DSL divided into two main classes, i.e., matrix and scalar operations.

7.3.2 Lago DSL

Many sophisticated data analytics programs, including machine learning, graph algorithms,

and statistical programs, express computation using matrices and vectors using a high-level

abstraction. Lago exposes a domain-specific language (DSL) that expresses such program

formulations. The DSL is formulated using standard matrix manipulation primitives, including

elementwise operators2.

Lago adopts a functional approach in the language design. This choice is motivated by the

design of languages like relational algebra and Monad algebra [44, 45] in the DB community.

Functional programming is a popular paradigm that treats computation as the evaluation of

mathematical functions while avoiding state mutation. Since the domain in hand is also math-

ematical, this paradigm fits well and the inherited benefits are manifold. Most problems that

commonly arise in imperative languages from mutable state and side effects are eliminated.

This plays a critical role in performing optimizations. In particular, transformations and their

compositions preserve semantics. This eliminates worries about the program correctness.

Moreover, given the mathematical nature of the DSL, transformation rules and abstract inter-

pretation rules are much easier defined, as later discussed in Section 7.3.3 and Section 7.4.1.

Alternatively, other declarative languages proposed in the literature, such as SystemML [118],

are imperative and support generic control flow and mutable state. Mutable state enables

better runtime performance yet makes reasoning and optimization much harder.

Core Language

Another important design choice that drives the language design is to keep the core language

succinct enough while maintaining expressiveness that supports a wider range of linear alge-

bra operations through composition. This keeps the language simple, which in turn keeps all

2Note that the addition operator can be parameterized with other binary operators to support other elementwise
operators, such as elementwise multiplication.

177



Chapter 7. Efficient Incremental Analytics

MATLAB R NumPy Lago
A * B A %*% B A.dot(B) A · B
A + B A + B A + B A + B

A’ t(A) A.T A>

[A,B ] cbind(A, B) hstack((A,B)) A⇒ B
[A;B ] rbind(A, B) vstack((A,B)) A� B

ones(n, m) matrix(1, n, m) ones((n, m)) ones[n, m]
zeros(n, m) matrix(0, n, m) zeros((n, m)) zeros[n, m]

eye(n) diag(n) eye(n) identity[n]

Table 7.1 – Equivalent operations in MATLAB, R, NumPy, and Lago respectively. Fig. 7.5 defines
the extended operations.

the transformation and inference rules at a simple maintainable level. Fig. 7.4 presents Lago’s

core language grammar which includes matrix multiplication, matrix addition, transpose,

matrix inverse, horizontal concatenation (stacking), diagonal matrix construction, let binding,

and declaring matrix identifiers, respectively. vect[s1](s2) constructs a 1× s1 matrix with

the constant value s2. diag[s1][s2] creates an s1×s1 matrix with diagonal elements of value

s2. The rest of operations are self-explanatory. Additionally, we define binary operations on

scalars and computing the columns of a matrix.

These constructs are sufficient for expressing non-iterative matrix operations. However, sup-

porting iterative computation is a challenging undertaking. For example, the declarative

language presented in SystemML [118] uses imperative constructs such as while loops. Alter-

natively, to support iterative computation without using imperative loops or mutable states

we present the iterate[s](m)(x ⇒ m) construct which allows us to perform step-by-step

computations. The construct is defined by specifying the number of iterations s, the matrix

m value for the initial step, i.e., neutral value, as well as a function, x ⇒m, which computes

the current step given the accumulator computed from the previous steps. Notice how the

iterate operator relates to the functional fold operator. It is important to note that the

iterate construct represents syntactic sugar for recursive functions. An initial program

with the iterate operator is first expanded into simpler core language constructs using the

simplification rules described in Section 7.3.3.

Extensions

Various matrix manipulation operations can be defined as syntactic sugar over the core

language. This means that there is no need to extend the core language with further redundant

operations, which in turn complicates the language, the transformations, the reasoning power,

the search space and eventually the modularity of the framework. Instead, one can define these

operations in terms of compositions of the core language constructs. Fig. 7.5 demonstrates

the expressiveness of the core Lago DSL and Table 7.1 illustrates some examples of equivalent

operations in Matlab, R, NumPy, and Lago using compositions of the small set of core language

178



7.3. The LAGO Framework

fill[r, c](s)
:= vect[r](1)> · vect[c](s)

rows(m)
:= cols(m>)

k ·m
:= diag[rows(m)][k] ·m

m1 −m2

:= m1 + -1 ·m2

m1 �m2

:= (m1
>⇒m2

>)
>

identity[n]
:= diag[n][1]

ones[r, c]
:= fill[r, c](1)

zeros[r, c]
:= fill[r, c](0)

Figure 7.5 – Syntactic sugar: Examples of additional operations defined using compositions of
the Lago DSL.

operations.

Semiring Configurations. Different domains and applications can be built on top of matrix

algebra using various semiring configurations. One domain example that makes use of matrix

algebra and semirings is graph computation. To explain this further, let’s define a semiring

first:

Definition 7.3.1 Given a set S and two binary operations ⊕, ⊗ called addition and mul-

tiplication respectively, a semiring 〈S ,⊕,⊗〉 is an algebraic structure, such that 〈S ,⊕〉 is a

commutative monoid with the identity element 0, 〈S ,⊗〉 is a monoid with the identity element

1, left and right multiplication ⊗ distributes over addition ⊕, and multiplication by 0 yields

back 0.

Semirings & Graphs. Graphs are among the most important abstract data structures in com-

puter science. The algorithms that operate on them are critical to a wide variety of applications

including bioinformatics, computer networks, and social media. The vast growth in graph data

has forced a shift to parallel computing for executing graph algorithms. Implementing parallel

graph algorithms while achieving good parallel performance is a difficult task as it requires

fine grained synchronization [48]. Recently, there has been an interest in addressing this

challenge by exploiting the duality between the canonical representation of graphs as abstract

collections of vertices and edges and a sparse adjacency matrix representation [193, 48, 350].

Furthermore, there is a duality between the fundamental operations on graphs, Breadth First

Search (BFS), and the fundamental operation of matrices, matrix multiplication.

The benefits of representing graph algorithms as matrices are manifold [193, 48, 350]. Firstly,

this linear algebraic approach is widely accessible to scientists and engineers who may not

be formally trained in computer science. Secondly, higher performance can be achieved,

as parallelizing graph algorithms can leverage decades worth of research on parallelizing

matrix operations, coarse grained parallelism, and optimization with regards to the memory

hierarchy. Finally, it leverages productivity and ease of implementation.

179



Chapter 7. Efficient Incremental Analytics

The common primitive operations used are the numerical addition and multiplication which

define a semiring 〈S ,⊕,⊗〉 where S ∈ {R}, ⊕=+, ⊗=×. Many graph problems can be articu-

lated as matrix algebra programs under different semiring semantics. For instance, computing

all-pairs graph reachability or shortest path after k hops can be expressed as program P

depicted in Fig. 7.6. The semiring configuration defines the semantics of the program. For

example, program P with the Boolean semiring 〈B,∨,∧〉 configuration expresses the k-hop

reachability program. Similarly, with the tropical semiring 〈R,min,+〉 [48] configuration,

program P expresses the k-hop shortest path program.

IVM & Semirings. The high-level matrix operations provided by Lago DSL directly allows us

to represent graph programs. Moreover, all the primitives previously presented to support the

incremental view maintenance of matrix expressions naturally follow under different semiring

definitions. For example, as graphs evolve with time, one can model new connections in the

graph as the ∆G expression added to G , representing the original adjacency matrix3.

Deriving the ∆ expressions and trigger programs is only concerned with the abstract represen-

tation of matrices and their transformations, and is independent of the semiring definition.

However, this information is useful later on during the code generation phase for specializa-

tion, as demonstrated in Section 7.6. The semiring information can be expressed using the

core language except for matrix inverse. We generalize the Lago core language by replacing

matrix addition and multiplication with two meta-operators ⊕R and ⊗R parameterized by a

semiring R instance. For example, ⊕N and ⊗N are concrete instances of the meta-operators

with the arithmetic semiring N parameter.

7.3.3 Transformation Rules

Definition 7.3.2 The ∆x (m) operator symbolically derives the delta ∆ of expression m with

respect to variable (or matrix) x. Derivation of the delta expressions and their optimizations

are achieved by recursively applying delta transformation rules on the expression m until all ∆

operators are omitted.

There are two types of transformation rules: First, reduction rules which are used to derive

the ∆ operators and to perform simplifications on the derived expressions. Second, to further

perform cost-based optimizations, Lago relies on a set of equivalence rules that create a space

of functionally equivalent programs which are passed to the search algorithm in order to find

a program with optimal cost. Transformation rules are responsible for constructing the search

space of programs. It is very important that transformation rules preserve program semantics.

For illustration purposes, consider a 2-hop instance of the Graph program in Fig. 7.6 yielding

3Note that ∆ changes represented as additions are naturally defined within the semiring, however, deletions
depend on the availability of an additive inverse. For example under the boolean semiring, the additive inverse
does not exist and thus we cannot model deletions.

180



7.3. The LAGO Framework

iterate[k](id)(acc=> G · acc + id)

Figure 7.6 – Program P represents all-pairs graph reachability or shortest path after k-hops
depending on the underlying semiring configuration.

∆x (m1 +m2) →∆x (m1) + ∆x (m2) DELTA-ADD

∆x (m1 ·m2) → ∆x (m1) ·m2 +m1 · ∆x (m2) + ∆x (m1) · ∆x (m2) DELTA-MULT

∆x
(
m>) →(∆x (m))> DELTA-TRANS

∆x
(
m-1

) →(m + ∆x (m))-1 −m-1 DELTA-INV

∆x
(
y
) →δy if x = y DELTA-VAR-EQ

∆x
(
y
) →zeros[rows(y), cols(y)] if x 6= y DELTA-VAR-NEQ

∆x (m1⇒m2) → ∆x (m1) ⇒ ∆x (m2) DELTA-STACK

∆x (let x = m1 inm2) →let δx
(
y
)

= ∆y (m1) in ∆x (m2) DELTA-LET

∆x (vect[c](s)) →zeros[1, c] DELTA-VECT

∆x (diag[c][s]) →zeros[c, c] DELTA-DIAG

Figure 7.7 – ∆ derivation rules for the core Lago DSL. The iterate construct is first unfolded
using the simplification rules in Figure 7.8 before applying ∆ rules.

the following expression4:

G.G + G.id + id

We will continue using this simple running example throughout the following subsections.

Reduction Rules

These are rules in the form of lhs → rhs, where it always reduces a matched expression from

the left-hand-side to the right-hand-side. There are two classes of reduction rules, in particular,

derivation and simplification rules which are explained next.

Derivation Rules. This class of reduction rules are used to derive the delta expressions. ∆

operators are expanded and evaluated recursively. Using the distributive and associative

properties of common matrix operations, we demonstrate the set of delta derivation rules for

the core language as depicted in Fig. 7.7. The derivation of these rules are based on matrix

identities. DELTA-ADD distributes the∆ operator across the summands. DELTA-MULT is directly

derived from the distributivity of matrix multiplication over addition. DELTA-TRANS pushes the

∆ into the expression before evaluating the transpose. DELTA-INV depicts the actual definition

of ∆ computation, which does not provide any computational savings at first glance, however

it enables the Woodbury formula optimization that admits efficient evaluation. DELTA-VAR-EQ

simply maps the ∆x of a matrix y to a variable instance (called the delta variable) if x = y ,

4Notice that we omit the id in G.G.id. This is only meant to simplify the following flow and avoid redundant
discussions as with the subexpression G.id.

181



Chapter 7. Efficient Incremental Analytics

i.e., the matrix being changed x is identical to expression y . Similarly for DELTA-VAR-NEQ,

if x 6= y , i.e., the matrix being changed x is different than the expression y , then the delta

expression for y is zeros. DELTA-STACK distributes the ∆ across the stacked matrices. DELTA-

LET simply instantiates a delta variable instance and pushes the ∆ across the expressions.

Finally, DELTA-VECT and DELTA-DIAG reduce the ∆ of the constant matrices to zeros.

These rules are applied recursively until all deltas of expressions are evaluated, i.e., no more

matching derivation rules exist. To illustrate this, given our running example, consider that

graph G is evolving with ∆G changes and that we would like to evaluate the following expres-

sion:

∆G(G.G + G.id + id)

We notice, that the ∆ operator is applied over an entire expression that can be reduced by the

derivation rules. First, after applying the DELTA-ADD rule, the expression becomes:

∆G(G.G) + ∆G(G.id) + ∆G(id)

Furthermore, applying the DELTA-MULT rule yields:

∆G(G).G + G.∆G(G) + ∆G(G).∆G(G) + ∆G(G).(id)
+ G.∆G(id) + ∆G(G).∆G(id) + ∆G(id)

Moreover, ∆G operators on expressions without any G bindings are further reduced to zeros

using the DELTA-VAR-NEQ rule. Also, using the DELTA-VAR-EQ rule, all the ∆G (G) expressions

are reduced to delta variable instances δG . This yields the expression:

δG.G + G.δG + δG.δG + δG.zeros
+ G.zeros + δG.zeros + zeros

Simplification Rules. The second class of reduction rules represents expression simplification.

Symbolic computation is commonly accompanied by simplification. The derived expression is

usually unnecessarily large and contains redundant computations. The expression is generally

amenable to simplification. This is a major step in performing symbolic computations in

computer algebra systems (CAS). For example, in CASs, right after deriving symbolic differen-

tials, they usually perform simplification with the goal of minimizing the expression size. The

same artifact happens while deriving ∆ expressions, however, the goal is to avoid unnecessary

redundant operations that will most probably result in higher cost. Fig. 7.8 demonstrates

a subset of simplification rules used within Lago. These kinds of transformation rules are

important when the expression tree is undergoing derivation or major transformations by

Lago and requires simplification along the way. For instance, in the previous running example

182



7.3. The LAGO Framework

(m>)
> →m

rows(m) →r
m : D(r,c)

iterate[0](m)(x ⇒f(x)) →m

iterate[n](m0)(x ⇒f(x)) →iterate[n-1](f(m0))(x ⇒f(x))
n > 0

let x1 = x2 inm1 →m1 [x1 := x2]
m · identity[c] →m

m : D(r,c)

m · zeros[k, c] →zeros[r, c]
m : D(r,k)

m + zeros[r, c] →m

Figure 7.8 – A subset of simplification rules

m1 +m2 ↔m2 +m1 (m1 +m2) +m3 ↔m1 + (m2 +m3)

(m1 ·m2) ·m3 ↔m1 · (m2 ·m3) (m1 ·m2)> ↔m2
> ·m1

>

(m1 +m2)> ↔m1
> +m2

> (m1⇒m2)> ↔m1
> �m2

>

m1 · (m2 +m3) ↔m1 ·m2 +m1 ·m3

let x = m1 inm2 ↔m2 [x1 :=m1]

Figure 7.9 – A subset of equivalence rules

there are many zeros matrices that have been created throughout the derivation process.

After applying several simplification rules as demonstrated in Fig. 7.8, our running example is

simplified to the following expression:

δG.G + G.δG + δG.δG

Equivalence Rules

These are rules that define equivalent expressions lhs ↔ rhs. In particular, it is not clear

beforehand which form of the expression (lhs or rhs) will result in an optimized program

down the road. However, their presence is important not only because of their probable

performance improvement, but also their possible impact on permitting other rewrite rules

later. This effect is known as enabling transformations in compilers. Fig. 7.9 presents a subset

of equivalence rules used within Lago. Common subexpression elimination (CSE) and forward

substitution (FS) are among these rules. In essence, these rules are the reverse of each other,

hence it is not clear which one should be applied. General purpose compilers adopt CSE as

a best-effort heuristic to enhance performance. That is, they apply them whenever possible

as an enabling compiler optimization. Moreover, other domain-specific frameworks such

as SystemML adopt these optimizations as static optimization opportunities, i.e., heuristics.

183



Chapter 7. Efficient Incremental Analytics

In contrast, we argue that decisions about these optimizations should be taken under the

light of cost-based optimization. In particular, algebraic and domain structure information

often enable optimizations that override these general compiler heuristics. To illustrate this,

consider our running example: δG.G + G.δG + δG.δG , where the matrix G has dimensions

n ×n. Now, suppose that δG is a simple single entry change which can represented as an

outer-product u.vT, i.e., (n×1) × (1×n). Using simple heuristics a compiler can directly detect

that the expression δG = u.vT occurs several times within the program, hence by applying CSE,

one can compute u.vT once and then reuse it later on for further computation. In particular,

the derived program becomes:

let D := u.vT in D.G + G.D + D.D

Although CSE saved us from re-computing uvT, i.e., saving O (n2) operations, it results in more

costly computations further on, in particular, the O (n3) matrix multiplications G.D, D.G, and

D.D. On the other hand, given that u.vT is an outer product of two vectors, using cost-based

optimization, it is much cheaper, i.e., O (n2) overall, to avoid CSE and keep the computations

inlined as follows:

u.(vT.G) + (G.u).vT + u.(vT.u).vT

This pattern occurs frequently in the derivation of incremental programs.Equivalence rewrite

rules construct programs which should be included in the search space. This is because it is

not possible to decide locally if a rewrite rule will produce a better program or not. Even if it

locally generates a better program, it might disable further transformations along the way. In

other words, in order to not fall into a local optimum, one should traverse the search space of

equivalent programs and rely on the search algorithm along with cost estimation to decide

globally which program to pick.

To find the best program, we can use an exhaustive search algorithm, but given that the search

space is very large, coming up with an effective search algorithm is challenging. Lago uses

breadth-first search (BFS) as its main search algorithm. However, in order to prune the large

search space, only the equivalence rules are participating in constructing the search space.

The reduction rules are always deterministically applied, and the choice of applying them is

not left to the search algorithm. This means that these rules do not increase the size of the

search space. It would be interesting to see how randomized search algorithms [163] behave

in comparison to the suggested pruned BFS algorithm.

Some transformation rules require specific conditions to check for their applicability in order

to preserve semantics. These are known as conditional rewrite rules in the literature [182].

Apart from the structure of the program, these rules can use abstract domains to check their

applicability. This way, the framework can make sure that the transformation rules are sound,

meaning that they do not change the program semantics. For example, m> is equivalent to m

184



7.4. Abstract Interpretation

R

Z R≥0

Z≥0 R>0

Z>0B

{1}

m1 ◦m2 : T 1 ∨T 2

m1 : T 1 m2 : T 2 ◦ ∈ {.,+,⇒}
m1

¦ : T 1

m1 : T 1 ¦ ∈ {>,−1}

let x = m1 inm2 : T 2

m1 : T 1 x : T 1 `m2 : T 2

iterate[p](m1)(x ⇒m2) : T 2

m1 : T 1 x : T 1 `m2 : T 2

Figure 7.10 – The lattice of data types and the typing rules for a subset of Lago DSL.

in the case that the matrix m is symmetric. Next, we discuss how such information about the

programs can be inferred.

7.4 Abstract Interpretation

DBMSes extensively use workload-specific information such as selectivity and cardinality in

order to estimate query costs during query optimization. We observe that such an idea of

abstract domains used by query optimizers can be generalized and used for other domains. For

example, in the domain of matrix algebra, symmetry, dimensions, and structure of matrices

are workload-specific information that permits further enhancements. To that end, Lago

permits encoding information about matrix and expression properties. The data type is the

most obvious example of such information, e.g., a binary matrix or a matrix of real numbers.

Matrix dimensions are another, which are, in essence, very similar to relation cardinalities.

The sparsity and the rank of a matrix are similar to the notion of selectivity in databases.

Finally, the cost estimate itself is another abstract domain that can be used during cost-based

optimization.

Abstract interpretation [70] is a methodology for acquiring information about the semantics

of a program (e.g. control-flow, data-flow) in a well-defined way, without fully executing the

program itself. Abstract interpretation coarsens the operational semantics of the language

by transforming the actual program values (i.e., concrete domain) into more abstract values

(of an abstract domain). As an example, instead of computing the actual value of the result of

adding two matrices, abstract interpretation says that the elements of the result matrix are

some real numbers, i.e., the data type of matrix elements is R.

There are many benefits to abstract interpretation: 1) First, to verify program correctness. For

example, in the case of matrix multiplication, dimensions are used to check if the number of

columns of the first matrix is equal to the number of rows of the second matrix. 2) Secondly, to

guide the optimizing compiler to reason about optimization opportunities by evaluating cost

185



Chapter 7. Efficient Incremental Analytics

estimates. 3) Thirdly, to enable conditional rewrites. 4) Finally, to enable further specialization

opportunities during the code generation phase.

Lago is extensible; in a sense, one can introduce more abstract domains that capture the

workload-specific information available. These abstract domains are not limited to the infor-

mation about the input data provided by the input program. Lago uses abstract interpretation

to propagate these abstract domains throughout the whole program whenever possible. This

is achieved by defining inference rules for various abstract domains as described next.

7.4.1 Abstract Domains

The user provides information about the input matrices by specifying their associated abstract

domain. In order to leverage this information, abstract interpretation propagates the abstract

domains throughout the program. This way, the optimizing compiler can utilize the provided

information for the whole program. Abstract interpretation uses a lattice-based model and

inference rules in order to infer the abstract domain of an expression based on its input data

through a bottom-up derivation approach. The inference rules should be specified for all

the constructs of the core Lago DSL. The inference rules for the extension constructs can be

derived from the core constructs used in their implementation (cf. Fig. 7.5).

We now enumerate several useful abstract domains.

Data Type. Types can be represented as an abstract domain [69]. Every matrix expression is

associated with a data type for its underlying elements. The matrix elements can have the

following data types: boolean (B), integer (Z), and real (R). Moreover, the numerical types can

be further constrained to positive (Z>0, R>0) and non-negative (Z≥0, R≥0) data types, which

are useful for reasoning on applications such as non-negative matrix factorization.

These data types form a lattice, which is shown in Figure 7.10. This lattice is useful for

specifying the result data type of a matrix-expression. Operations on matrices with different

element data types can lead to a matrix with the least upper bound data type. For example,

the multiplication of a binary matrix with a positive real matrix, leads to a non-negative real

matrix, denoted as follows: B∨R>0 =R≥0, where ∨ is the join operator of the mentioned lattice,

responsible for computing the least upper bound type.

Matrix Structure. Matrices can have different structures such as lower/upper triangle, sym-

metric, sparse/dense, etc. These structures can be expressed as abstract domains, and are

useful for using certain transformation rules and specializations (e.g., storing only half of the

matrix when the matrix is symmetric).

Matrix structures also form a lattice, which is demonstrated in Figure 7.11. G represents a

matrix without a particular structure, whereas L , U , S , and D are representing lower/upper

triangle, symmetric, and diagonal matrices. These structures can be further extended to be

more fine grained for encoding the structure of each block of a matrix [310]. Additionally, one

186



7.4. Abstract Interpretation

G

L S U

D

m1 . m2 :σ1 ∨σ2

m1 :σ1 m2 :σ2 σ1,σ2 ∈ {D,L ,U ,G }
m1 +m2 :σ1 ∨σ2

m1 :σ1 m2 :σ2 σ1,σ2 ∈ {D,L ,S ,U ,G }

m> : L
m : U

m> : U
m : L

m> :σ
m :σ σ ∈ {D,S }

m. m> : S
m :σ

diag[c][s] :D

Figure 7.11 – The lattice of several abstract domains for matrix structure and a subset of
inference rules.

m1 ·m2 : D(n,p),C(c1+c2+n·m·p)

m1 : D(n,m),C(c1) m2 : D(m,p),C(c2)

m1 +m2 : D(n,m),C(c1+c2+n·m)

m1 : D(n,m),C(c1) m2 : D(n,m),C(c2)

m> : D(m,n),C(c+n·m)

m : D(n,m),C(c)

m-1 : D(n,n),C(c+n3)

m : D(n,n),C(c)

m1⇒m2 : D(n,m+p),C(c1+c2+n(m+p))

m1 : D(n,m),C(c1) m2 : D(n,p),C(c2)

let x = m1 inm2 : D(p,k),C(c1+c2)

m1 : D(n,m),C(c1) x : D(n,m) `m2 : D(p,k),C(c2)
diag[c][s] : D(c,c),C(c2)

vect[c](s) : D(1,c),C(c)
iterate[p](m1)(x ⇒m2) : D(n,m),C(c1+p·c2)

m1 : D(n,m),C(c1) x : D(n,m) `m2 : D(n,m),C(c2)

Figure 7.12 – Inferring dimensions and cost of matrices.

can encode information about density by keeping track of the number of zero elements and

the dimension of a matrix.

Dimensions and Cost Model. One of the most essential abstract domains is cost estimation.

The cost estimate is used to guide the search space in choosing efficient derived programs.

This is in contrast to most systems doing empirical search, that evaluate the run time cost of

programs by executing them directly on the machine [373]. Although this sacrifices precision,

it had three advantages. First, it can estimate the runtime cost of programs abstractly inde-

pendent from the underlying processing substrate. Second, as there is no need for running

the program, it can explore more programs in a given fixed amount of time. Third, it can

extend the cost model without changing the underlying architecture of that runs the Lago

framework. Currently, the cost estimate is modelled as a function of the number of arithmetic

operations that need evaluation. Similar to cost estimation used in the query optimizer of

database systems which requires cardinality information of relations, the cost estimation in

Lago also requires knowledge about the dimensions of matrices. This means, before starting

the inference process for the cost estimation abstract domain, the dimension inference should

be performed. The inference rules for dimensions and estimation are given in Fig. 7.12, where

D(n,m) represents the dimension of a matrix with n rows and m rows, and C( f ) corresponds to

f floating point operations.

187



Chapter 7. Efficient Incremental Analytics

+B, D(n,n), S , C(2n3+n2+n)

+B, D(n,n), S , C(2n3+n2) I B, D(n,n), D

×B, D(n,n), S , C(2n3) G B, D(n,n), S

GB, D(n,n), S G B, D(n,n), S

−→ ←−

−→ ←−

−→ ←−

Figure 7.13 – Abstract interpretation propagates abstract domains in a bottom-up manner.

Returning back to our running example, the search algorithm uses the estimated cost and

favors forward substitution of δG over CSE given the following parenthesization order:

u.(vT .G) + (G.u).vT + u.(vT.u).vT

Cost estimation is extensible as well. For instance, in addition to dimensions, one can intro-

duce and define additional abstract domains that can introduce specialized solutions and,

therefore, better cost estimation. For example, based on the structure of matrices, e.g., up-

per/lower triangular, one can use specialized matrix multiplication algorithms, e.g., SSYMM

in BLAS, that only computes the required entries, thereby saving space and computation

cost. This can be reflected in the cost model by inferring the structure of the matrix, before

performing cost inference. By further reflecting this information as new inference rules in the

cost estimation, one could further specialize the precision of the cost model estimation.

Example. Consider our original reachability example. If the input graph G is undirected, then

it is symmetric and requires to be stored in a binary adjacency matrix. As depicted in Fig. 7.13,

starting from these properties of matrix G, the abstract domain propagates upwards to infer

the abstract domain of the intermediate and final results using the inference rules described

before. This information is useful for specialization purposes, which is described next.

7.4.2 Specialized Code Generation

As explained in the previous section, in the graph reachability example the input G is an

undirected binary graph. This abstract domain can be encoded into the input data and Lago

propagates this information and tries to infer properties for the subsequent and intermedi-

ate statements. Abstract interpretation leverages specialization opportunities at the code

generation phase. For instance, in the graph reachability program example, the following

specialization opportunities are possible.

Bit Vectors. The domain values are either zeros or ones only. Accordingly, rather than repre-

senting the adjacency matrix entries using the more generic single or double-precision types,

one can utilize compressed bit vectors to pack every eight cells into a single byte. As we will

demonstrate later, this compact storage, allows for large matrix constructions, and avoids

expensive communication costs for data shuffling in a distributed setting.

188



7.5. Implementation

Boolean Algebra. The semiring operations, i.e., Boolean conjunction and disjunction, enable

Boolean algebra optimizations and specialization opportunities. For instance, the dot product

of two vectors can be translated as computing the bitwise-AND of the two bit vectors followed

by evaluating if the result is bigger than zero. This leverages vectorized operations. Further-

more, one can benefit from short-circuiting by early terminating the computation of the dot

product after reaching the first bit one, rather than passing over the entire bit vectors. Matrix

multiplication G ×G can be specialized along the same lines. Alternatively, in a general pur-

pose environment, i.e. R or Matlab, this expression is evaluated using the following expression

(G ×G) > 0. That is, it computes the matrix multiplication numerically first and then a logical

indexing is applied over the result matrix to bring it back to the binary domain.

Symmetry. Matrix symmetry enables many specializations ranging from compact represen-

tation, e.g., lower triangular, to call specialized matrix operations that exploit symmetry. In

this evaluation, we focus on a specific specialization that leverages the matrix layout. Since

the bit vector matrices can be represented as rows or columns of bit vectors, there are two

layout configurations, i.e., row-major layout and column-major layout. The operations on

the matrices define the ideal layout representation of these matrices. For example, consider

G ×G , ideally matrix G should have both row-major and column-major layouts to support

direct use of the bitwise operations; otherwise transformations to the layout should be applied

which incurs an overhead. However, if G is symmetric then GT =G , which means that matrix

G represents both logical layouts, independently from its underlying physical representation.

This eliminates the need for transforming G’s layouts and therefore its associated costs.

Lago provides an extensible code generator which leverages the inferred abstract domains

in order to generate specialized efficient code for different targets. For distributed analytical

workloads, we implement a Spark code generator, for the subset of Lago DSL required for the

experiments in this thesis, together with a runtime using Spark RDDs that allow for mutable

operations on block matrices that call efficient BLAS routines locally.5

7.5 Implementation

In Section 7.3, we have discussed the building blocks that constitute the Lago framework. In

this section, we discuss how all these parts are put together to generate incremental trigger

programs. An incremental program consists of an initialization phase that precomputes and

materializes the initial value of the intermediate and result expressions, and a trigger function

that computes a set of ∆ expressions that update their corresponding views.6

5All experiments on matrix RDDs have a predefined block distribution of 10×10 blocks. Efficient partitioning of
matrices is orthogonal to the discussion of this thesis and can be handled by other systems like SystemML [118].
For example, Lago can generate SystemML matrix programs, i.e., compositions of matrix operations using the
SystemML DSL, which is then handled and optimized by SystemML.

6For presentation clarity purposes, in the rest of this thesis we omit the “·” symbol whenever multiplication is
understood within context.

189



Chapter 7. Efficient Incremental Analytics

To ANF Derivation Factorization Materialization

1. Simplify & Optimize !
2. Transform ! to ANF "

1.(#$!%& #("%
2. Simplify #

 For each statement '()#:

   1. Inline UkVk for δk)'(

   2. Optimize '(

   3. Factorize '( to UiVi

1. Generate views for "
2. Generate code for #

3. Update Views using !

Input ! Output O " ("$#,!) ("$#,!)

Figure 7.14 – Lago IVM phases.

P :

let x0 = G + id
let x1 = Gx0 + id

x1

(a) Simplified program.

A :

let x0 = G + id
let x1 = Gx0

let x2 = x1 + id
x2

(b) ANF version of the program.

∆:

let δ0 = δG

let δ1 = δG x0 + Gδ0 + δGδ0

let δ2 = δ1

δ2

M :

[G → δG , x0 → δ0,

x1 → δ1, x2 → δ2]

(c) After the Derivation phase.

∆:

let U0 = u
let V0 = vT

let U1 = u ⇒ GU0

let V1 = vT(x0 + U0V0) �V0

let U2 = U1

let V2 = V1

U2V2

(d) After the Factorization phase.

// Global Views:
MG := G
M0 := G + id
M1 := GM0

M2 := M1 + id
// P Inc(u,v):
/* Generate ∆ */
// Update Views:
MG+=uvT;M0+=U0V0;
M1+=U1V1;M2+=U2V2;

(e) After Materialization phase.

Figure 7.15 – Going through the IVM phases of program P from Fig. 7.6.

To achieve these goals, an input program accepted by Lago undergoes several phases. As de-

picted in Figure 7.14, the input program passes through four stages, namely, ANF, DERIVATION,

FACTORIZATION and MATERIALIZATION. Next, we explain each phase while illustrating it using

our running example.

1. ANF. As a preprocessing step, an input Lago program P is first simplified and then op-

timized using cost-based optimization to find an appropriate ordering of operations. After

that, it is converted to the administrative normal form (ANF) A [110]. In our context, the ANF

is defined as a simple representation of the program that assigns a unique variable to each

190



7.5. Implementation

subexpression while also ensuring that each variable is assigned before it is used. The ANF is

extensively used in optimizing compilers due to its simplistic canonical representation that

facilitates reasoning and optimization [110]. To explain this, consider our reachability program

P as depicted in Figure 7.6. First, the program is simplified using the simplification rules

in Figure 7.8 where the iterate construct is unfolded and multiplications with the identity

matrix are omitted, yielding the simple program in Fig 7.15a. Afterwards, in Figure 7.15b, the

simplified program is transformed into its ANF A , where each subexpression containing one

operation is assigned to a unique variable.

2. Derivation. In this phase, the delta derivation rules are recursively applied over the A

program reducing it to ∆. During derivation, a map M is created that maps each intermediate

result variable xi in A to its corresponding delta δi variable. Moreover, simplification rules

are applied whenever possible. This ensures that each statement si ∈∆ represents a sum of

matrix products, i.e., Σimi where mi is an expression of matrix products. Figure 7.15c presents

the final delta program derived from ∆G (A ) and the corresponding map M .

3. Factorization. The main goal of this phase is to represent each δi variable in a compact

factored form Ui Vi . This is achieved by recursively propagating and forward substituting

each δk variable with its corresponding factored form UkVk within each statement that calls

δk . Note that forward substitution begins with the initial substitution of δG with uvT . Given

that ∆ is in ANF form, then it is ensured that δk and therefore, UkVk is defined before being

used. Then, each statement si is optimized using the equivalence rules along with cost-

based optimizations. In particular, the search algorithm explores the search space created

by applying valid equivalence rules on the statement si . Then, it chooses the program with

minimum inferred cost as explained in Section 7.4.1. Notice that search is confined within the

scope of a single statement si . This guided approach avoids searching a vast search space that

includes all the statements of the whole program.

This ensures that each statement si ∈∆ is a sum of matrix products containing UkVk , i.e.,Σ jpjqj
where pj and qj are expressions of matrix products and j represents the index of minimum

dimension within the overall matrix products. Finally, each statement is factorized to Ui Vi

using the FACTORIZATION rule in Figure 7.9, such that Ui = p0⇒ p1 · · ·⇒ pn and similarly

Vi = q0� q1 · · ·� qn. Figure 7.15d presents the factorized ∆ program with its corresponding

updated map M .

4. Materialization. Finally, in this phase Lago generates the incremental program. First, it

generates global materialized views for each of the variables defined in A . Then, it generates

the trigger program ∆ derived from the previous stage. Finally, it updates the global views with

their corresponding δi expression derived in M . Figure 7.15e illustrates the final incremental

program for P given incremental changes to G, i.e., δG := uvT .

191



Chapter 7. Efficient Incremental Analytics

Iter. Compilation Rules Equiv. Programs
(#) Time (s) (#) Rules (%) Revisited (%)

OLS - 36 10869640 7% 90.98%
BGDS 4 0.567 4526 7% 75.56%
BGDS 16 0.944 28826 4% 81.08%
BGDS 128 15.139 1328854 0.8% 87.76%
BGDS 256 128.599 3841206 0.5% 87.35%

Table 7.2 – Report on compilation metrics.

7.6 Evaluation

In the previous sections, we have presented a concrete framework for expressing, deriving,

and optimizing incremental view maintenance of matrix algebra programs. In this section,

we demonstrate the performance of the derived incremental programs in comparison to

re-evaluation. We illustrate three case studies that build upon matrix algebra: computing

linear regression, matrix powers, and evaluating graph reachability and shortest path after k

hops. Moreover, we evaluate the opportunity benefits of specialization leveraged by inferred

abstract domains. We show how Lago pushes the burden and complications of IVM derivation,

optimization, and low-level specialization down to the compiler framework, while generating

trigger programs that achieve orders of magnitude better performance.

Experimental Environment. The experiments are conducted under two different config-

urations: a) Local: For moderate size experiments, we use a multiprocessing workstation

environment with a 2.66GHz Intel Xeon with 2×6 cores, each with 2 hardware threads, 64GB of

DDR3 RAM, and Mac OS X El Capitan 10.11.5. Dense BLAS operations are supported through

the underlying Mac VecLib framework. b) Distributed: For large-scale experiments, we use a

cluster of 100 server instances connected via a full-duplex 10GbE network. Each instance is

equipped with an Intel Xeon E5-2630L @ 2.40GHz server with 2 × 6 cores, each with 2 hardware

threads, 15MB of cache, 128GB of DDR3 RAM, and Ubuntu 14.04.2 LTS. We rely on the ATLAS

library to support multithreaded BLAS operations. We use GNU Octave 4.2.0, Spark 1.6.1,

YARN 2.7.1, and Scala 2.10.4. For all IVM experiments, unless stated otherwise, we simulate a

stream of rank-one updates to evaluate the performance.

7.6.1 Incremental Linear Regression

Linear regression is an approach for modelling the relationship between the dependent

variables Ym× j and independent variables Xm×n . It is extensively used in fitting predictive

models to an observed dataset of X and Y values. The goal is to estimate, given the input,

the unknown parameters. The Ordinary Least Squares (OLS) method solves this problem by

finding a statistical estimate of the parameter β∗ best satisfying Y = Xβ. The program, written

as a linear algebra program, is β∗ := (X T X )−1 X T Y . The evaluation of the previous closed

form equation requires expensive O (n3) matrix-matrix computations for computing matrix

192



7.6. Evaluation

0.01	

0.1	

1	

10	

100	

4k	 8k	 10k	 16k	 20k	AV
G
	T
IM

E(
SE
C)
	U
PD

AT
E	

DIMENSION	

OLS	X:nxm	n=2m	Y:nx1	(Octave)	

REEVAL	 INCR-LAGO	 INCR-LINVIEW	

44.6x	
98.9x	

112x	
173x	

250x	

(a) Performance results for Ordinary Least Squares on a single machine.

0.01	

0.1	

1	

10	

100	

1000	

4k	 8k	 10k	 16k	 20k	AV
G
	T
IM

E(
SE
C)
	U
PD

AT
E	

DIMENSION	

OLS	X:nxn	Y:nx1	(Octave)	

REEVAL	 INCR-LAGO	 INCR-LINVIEW	

110.4x	
167.9x	 251.2x	

402.7x	 445.4x	

(b) Performance results for Ordinary Least Squares on a single machine.

1	  

10	  

100	  

1000	  

10000	  

10k	   20k	   30k	   40k	  AV
G
	  T
IM

E(
SE
C)
	  U
PD

AT
E	  

	  

DIMENSION	  

BGDS	  X:nxn	  Y:nxn	  (Spark)	  

REEVAL	   INCR	  

6.2x	  
16.8x	   44.5x	   85.8x	  

(c) Performance results for Batched Gradient Descent on a cluster.

0	  

50	  

100	  

150	  

200	  

0	  
1	  
2	  
3	  
4	  
5	  
6	  
7	  

0	   1	   2	   4	   16	   31	   37	   46	   54	  

#D
IS
TI
N
CT

	  P
RO

GS
	  E
XP

LO
RE

D	  
(X
	  

10
2 )
	  

ES
TI
M
AT

ED
	  M

IN
	  C
O
ST
	  IN

	  #
O
PS
	  

(X
	  1
01

2 )
	  

SEARCH	  TIME	  (SECS)	  

OLS	  X:nxn	  Y:nx1 (Octave)	  

Cost	   Programs	  

(d) Cost-based optimization search results.

Figure 7.16 – Performance evaluation of Incremental Linear Regression.

193



Chapter 7. Efficient Incremental Analytics

multiplications and inverses. It is far from efficient to re-evaluate the expression over and

over again as the input datasets evolve. Input datasets naturally evolve by either growing (for

example as more observations are accumulated to X and Y ), or by changing (as more accurate

estimates arrive). Alternatively, Lago derives materialized views of precomputed intermediate

results and their corresponding delta expressions to generate trigger programs.

In this set of experiments, we evaluate the performance of the common machine learning task

of building a linear regression model given the independent and dependent variables X and Y

respectively. In particular, we experiment on two programs: a) OLS: the Ordinary Least Squares

method to evaluate the statistical estimate β∗ via the matrix expression β∗ := (X T X )−1 X T Y ,

and b) BGDS: the Iterative Batch Gradient Descent method (BGDS) which, similar to OLS,

evaluates the statistical estimateΘ that is computed via the recurrence relationΘi+1 :=Θi −
X T (XΘi −Y ). Given ∆X changes, Lago derives the incremental version of each program

and generates the corresponding trigger code. Furthermore, to demonstrate portability, we

generate Octave code (Local) for OLS and Spark code (distributed) for BGDS. For comparison,

we compare the re-evaluation of the original programs REEVAL against the derived trigger

code INCR.

OLS Evaluation. We conduct a set of experiments to evaluate the statistical estimator β∗. The

predictor matrix X has dimension (n ×m) and the response matrix Y is of dimension (n ×1).

Given a continuous stream of ∆X updates on X , Figure 7.16a and Figure 7.16b compare the

average execution time per ∆X update of REEVAL, INCR-LAGO, and INCR-LINVIEW [258] for

different values of n (x-axis). In particular, we experiment on two settings: 1) when X is a tall

skinny matrix with dimensions n ×m, where n = 2m (Figure 7.16a), and 2) when X is a square

matrix with dimensions n ×n (Figure 7.16b), i.e., m = n. The graphs illustrate how INCR-LAGO

and INCR-LINVIEW outperform REEVAL in computing the β∗ estimate. Notice the asymptotic

difference between the two approaches; the performance gap between REEVAL and INCR-LAGO

widens as the matrix size increases, i.e., 44.6x — 250x and 110.4x — 445.4x, respectively. The

cost of REEVAL is dominated by costly O (n3) matrix operations including matrix inversion and

multiplication, whereas INCR-LAGO and INCR-LINVIEW avoid matrix inversions and evaluate

cheaper O (n2) matrix multiplications. Finally, INCR-LAGO is on average 20x better than INCR-

LINVIEW thanks to the cost-based optimizations provided by Lago.

BGDS Evaluation. We also experiment on the batch gradient descent method to compute

the estimate Θ for the linear regression problem. This method is usually used, instead of

OLS, as a fast approximate or when the expression X T X is singular, i.e., non-invertible. For

experimental purposes, we set X and Y with dimensions (n ×n) and we fix the number of

iterations to 16 assuming that the result converges to an appropriate solution after this number

of steps. Figure 7.16c demonstrates the average computation time per incremental update ∆X

for each of REEVAL and INCR. The results demonstrate 6.2x-85.8x performance speedups as

the dimension size n increases. Distributed matrix multiplications require partitioning the

matrices appropriately to evaluate the final result. This poses large communication overhead

due to repartitioning. On the other hand, if one of the matrices undergoing multiplication is

194



7.6. Evaluation

fairly small, e.g., vector, it is broadcasted to all partitions instead of repartitioning the bigger

matrix. Given that the delta expressions in INCR are materialized in factored forms, their

multiplications are much cheaper. Therefore, INCR avoids both costly matrix multiplication

operations and expensive communication overheads.

Search Space Evaluation. We also evaluate the explored search space using the traditional

breadth-first-search (BFS) for both OLS and BGDS. OLS represents a small program and BGDS

represents a big size program, i.e., defined by the number of iterations. We experiment on

two different search configurations. For the OLS program with n = 10000 we run a complete

BFS search on the whole derived delta program, whereas for BGDS, cost-based optimization

complies with the phased approach described in Section 7.5 which confines the search on each

statement independently from the other statements. Figure 7.16d illustrates two dimensions

against elapsed search time. First, the number of distinct programs explored and secondly, the

minimum inferred cost of the explored programs. The cost here depicts the sum of costs for

both the original and the trigger program. Notice how the minimum cost decays fast during

the early stages of the search as more programs are being explored.

The search begins with an initial program requiring 2 matrix multiplications, 1 matrix-vector

multiplication, 1 matrix inverse, and 2 matrix transposes. That is a sum of 3n3 and 3n2

operations. Moreover, the initial trigger program, which is achieved by naïvely replacing each

X with X+∆X, requires 3n3 and 6n2 operations. All in all, this requires 6n3 + 9n2 operations

which when substituted with n = 10000 gives around 6 billion operations as depicted in the

figure at time 0. At time 1, the search algorithm is able to transform all expensive operations

with run time cost of O (n)3 in the trigger program to cheaper O (n)2 ones. Then the total cost

is reduced to that of the original program (pre-computations) which accounts for 3 billion

operations as depicted in Figure 7.16d. Interestingly, the search algorithm finds a simple

equivalent program as follows β := X −1Y . Although the program is numerically unstable in

comparison to computing the pseudo-inverse (X T X )−1, it is analytically equivalent to the

original program and it is much cheaper to evaluate as it only requires computing one matrix

inverse (n3). The program is found at time 4 secs in Figure 7.16d.

The search reaches a point where it introduces negligible savings. The search algorithm finds

the minimal cost at second 36, after it has explored a search space created from applying

10,105,018 simplification rules and 764,622 equivalence rules. To avoid re-visiting the same

programs within the search space, we maintain a cache that saves the hash-codes of the

canonical representation of visited programs, i.e. canonical representation of the IR tree.

This saves a lot from doing redundant work. For instance after 36 seconds the cache reports

90.983% hits and 9.016% misses. This suggests that a large number of the generated candidate

programs have been explored before, which also means that many of the different orderings

of the transformation rules yield the same programs.

195



Chapter 7. Efficient Incremental Analytics

1	  

10	  

100	  

1000	  

10000	  

10K	   20K	   30K	   40K	   50K	   60K	   70K	   80K	   90K	   100K	  AV
G
	  T
IM

E(
SE
C)
	  U
PD

AT
E	  

DIMENSION	  	  

Matrix	  Powers	  P16	  P:nxn	  (Spark)	  

REEVAL	   INCR	  

5.5x	  
9.9x	   14.4x	  

31.8x	  
53.3x	  

(a) Scalability results.

0	  
2	  
4	  
6	  
8	  
10	  
12	  
14	  
16	  
18	  

0	  

50	  

100	  

150	  

200	  

20K	   30K	   40K	   50K	  

SP
EE
DU

P	  

AV
G
	  M

EM
O
RY

	  U
SA

G
E	  
(G
B)
	  	  

DIMENSION	  

Matrix	  Powers	  P16	  P:nxn	  (Spark)	  

REEVAL	   INCR	   Speedup/(Memory	  Overhead)	  

3.3x	  

3.3x	  

(b) Scalability and additional storage results.

Figure 7.17 – Evaluation results for search-space and scalability metrics.

Zipf factor 5.0 4.0 3.0 2.0 1.0 0.0
Octave (10K) 6.3 6.8 7.5 10.9 68.4 236.5
Spark (30K) 28.1 41.5 67.3 186.1 508.9 1678.8

Table 7.3 – The average Octave and Spark view refresh times in seconds for INCR of P 16 and a
batch of 1,000 updates. The row update frequency is drawn from a Zipf distribution.

7.6.2 Incremental Matrix Powers

Matrix powers play an important role in many different domains including evaluating the

stochastic matrix of a Markov chain after k steps and solving systems of linear differential

equations using matrix exponentials. They also lay the foundation for more advanced an-

alytics like batch gradient descent and furthermore, computing graph analytics. Consider

the same running example as in section 7.2 that computes the 4th power of an input matrix

A. The original program can be represented using a simple iterate construct, similar to

Fig 7.6. Once again, the evaluation of the program requires expensive O (n3) matrix-matrix

computations. Re-evaluation of the entire program on any delta change δA := uvT is a costly

process. On the other hand, Lago derives the delta of these expressions on each incremental

change.

196



7.6. Evaluation

In this section we evaluate several dimensions of IVM in comparison to re-evaluation, in

particular, scalability, memory consumption of materialized view and performance of batch

updates. For these experiments we evaluate on the matrix powers problem on dense matrices,

in particular we compute the matrix power P 16 on Spark. Figure 7.17a shows how incremental

evaluation outperforms evaluation as previous results. Moreover, INCR can scale to larger

dimensions, i.e. n= 100k, whereas REEVAL cannot go beyond 50k, as the sizes of shuffled

data for matrix multiplication increase resulting in large communication overheads and

unmaintainable states at each machine.

On the other hand, IVM requires additional storage for maintaining materialized views of

intermediate results. Figure 7.17b demonstrates the average memory usage of INCR in

comparison to REEVAL. INCR consistently uses 3.3x more storage no matter the dimension

n, that is because the program maintains 4 intermediate results, in particular P 2, P 4, P 8, and

the result P 16. To compare the performance speedup gains in comparison to the costs of extra

storage, the figure also demonstrates the ratio between (speedup gain)/(storage-cost). The

results show how the gains ratio keep on increasing with the dimensions size, i.e., 3x — 16x.

This is consistent with the asymptotic increase in the computational gain versus the constant

increases in storage costs.

In the final set of experiments we explore the efficiency of IVM under batches of updates. We

simulate a use case where some regions (rows) of the matrix P are updated more frequently

than others. The frequency of updates is set by a Zipf distribution that is controlled by the Zipf

exponent factor. When the factor value increases, it simulates a more skewed distribution, on

the other hand, if it decreases it converges more towards a uniform distribution of changes.

Table 7.3 reports on the performance results of IVM of P 16 under a batch of 1000 tuples. As the

Zipf factor tends to a uniform distribution, the overall rank of the updates increases and thus

IVM looses its benefit in comparison to re-evaluation. To put the results in context, the cost of

re-evaluation is 99.1 seconds and 203.4 for Octave and Spark respectively.

7.6.3 Graph Analytics

Many graph computations can be formulated as matrix operations. In this section, we ex-

periment on the all pairs k-hop reachability/shortest path problem for the undirected graph

G. The program, in Fig. 7.6, is the same as the running example used through out this thesis.

As mentioned earlier, different semiring configurations for this program result in different

programs. In particular, a Boolean semiring 〈B,∨,∧〉 defines the reachability problem, whereas

the tropical semiring 〈R,min,+〉 defines the shortest path problem.

Specialization using Abstract Domains

We have shown in Section 7.4.2 how Lago leverages various abstract domains to specialize

graph computations. Next, we evaluate the impact of such specializations.

197



Chapter 7. Efficient Incremental Analytics

0.1	

1	

10	

100	

1000	

10000	

2k	 4k	 8k	 10k	 15k	 20k	 30k	 50k	

AV
G
	T
IM

E	
(S
EC

)	

DIMENSION	

MMUL	Specialization:	G:nxn	Density	0.5%	(Scala)	

Symbit	 Bit	 CSC	 Dense	

2x	
2x	

408x	
16x	 18.5x	

(a) Performance results of matrix-matrix (MM) multiplication by varying the dimension.

1	

10	

100	

0.01	 0.05	 0.1	 0.5	

AV
G
	T
IM

E	
(S
EC

)	

G	DENSITY	%	

MMUL	Specialization:	G:nxn	n=10000	(Scala)	

Symbit	 Bit	 CSC	 Dense	

0.04x	

6.3x	
10.8x	

(b) Performance results of MM multiplication by varying the density.

0	
500	
1000	
1500	
2000	
2500	
3000	
3500	

200k	 300K	 400K	 500K	 600K	 700K	 800K	 900K	 1000K	

AV
G
	T
IM

E	
(S
EC

)	

DIMENSION	

MMUL	Specialization	G*Y	G:nxn		Y:nx1000	(Spark)	

Bit-CSC-0.1	 Bit-CSC-0.2	 CSC-CSC-0.1	 CSC-CSC-0.2	

(c) Performance results of MM multiplication by varying the dimension on a cluster.

0	

500	

1000	

1500	

2000	

2500	

200k	 300K	 400K	 500K	 600K	 700K	 800K	 900K	 1000K	

	S
HU

FF
LE
D	
DA

TA
	(G

B)
	

	DIMENSION		

MMUL	Specialization	G*Y	G:nxn		Y:nx1000	(Spark)	

Bit-CSC-0.1	 Bit-CSC-0.2	 CSC-CSC-0.1	 CSC-CSC-0.2	

(d) Shuffled data of MM multiplication by varying the dimension on a cluster.

Figure 7.18 – Performance evaluation of specialization opportunities enabled by abstract
interpretation.

198



7.6. Evaluation

0.1	

1	

10	

100	

1000	

2k	 4k	 8k	 10k	 15k	 20k	

AV
G
	T
IM

E(
SE
C)
	U
PD

AT
E	

DIMENSION	

All-Pairs	Reachability	G:nxn	4-hops	Density:0.01	(Scala)	

SymBit	 Dense	

2.9x	

4.1x	

4.9x	
4.1x	

3.9x	

(a) Run time of all-pairs reachability by varying the dimension.

0.1	

1	

10	

100	

1000	

10000	

2k	 4k	 8k	 10k	 15k	 20k	

AV
G
	M

EM
O
RY

	U
SA

G
E	
(M

B)
		

DIMENSION	

All-Pairs	Reachability	G:nxn	4-hops	Density:0.01	(Scala)	

SymBit	 Dense	

62x	

(b) Memory consumption of all-pairs reachability by varying the dimension.

Figure 7.19 – Performance evaluation of the all-pairs reachability problem.

Evaluation. Graph analysis in this domain relies on matrix algebra operations and most

notably on matrix multiplication which is commonly used in graph clustering, between-

ness centrality, graph contraction, subgraph extraction, cycle detection, and quantum chem-

istry [48, 324, 94]. To that end, we focus our attention on the microbenchmark of evaluating

the performance of specialized sparse matrix multiplications in two different settings:

Local. We compare between four different specialized implementations in Scala: a) SymBit

represents the implementation of all the previous specializations. b) Bit is similar to SymBit,

but excludes the symmetry specialization. c) CSC represents the implementation using the

conventional Compressed Column Storage format [294]. This format is mainly used for sparse

matrices and maintains matrix values along with their indexes in a compact form. d) Dense

represents the multithreaded general purpose implementation that calls native dense BLAS

routines for double precision operations. Notice that the following evaluation results are for a

single thread except for Dense that leverages native multithreading capabilities.

For the first set of experiments, we evaluate the potential of the aforementioned specializations.

To that end, we focus on the micro-benchmarks of a single matrix-matrix multiplication G ×G .

The input binary matrix is randomly generated with density 50%. Although real-world social

graphs are really sparse, we set this density configuration because the reachability program

results in denser (intermediate) results after a few iterations (hops). Fig. 7.18a reports the

average execution time for each implementation with varying dimension size n. First, let us

199



Chapter 7. Efficient Incremental Analytics

compare the general purpose implementations CSC and Dense. Notice how CSC performs

poorly in comparison to Dense as n grows and how it begins to fail after 20k. This is because of

the high matrix density, which makes CSC inefficient for storage, i.e., saving index information,

and for computation, i.e., no cache locality. Moreover, CSC computes on one core whereas

Dense leverages all the available cores. On the other hand, the bit vector implementations Bit

and Symbit exhibit scalable performance. They can scale to larger sizes n while maintaining

a very compact storage representation up to n = 100k. Moreover, they benefit from short-

circuiting given the density of the matrices. This saves from passing over all the entries within

the whole matrix and achieves more than two order of magnitudes better performance than

CSC and one order of magnitude better than Dense with one core only. Moreover, SymBit

exploits the symmetric property and has 2x better performance than Bit.

To explore the effect of Graph density on the previous implementations, we fix the dimensions

size n = 10k and vary the density parameter. Fig. 7.18b illustrates the results. At the density

level 0.01, CSC beats all the others due to the sparsity of the input which makes this format

and implementation the most suitable. SymBit and Bit cannot leverage short-circuiting

at this stage due to sparsity. However, as the density increases SymBit and Bit outperform

the others. Notice how the performance of Dense does not change, as it is agnostic to the

underlying structure of the input matrices.

Putting it all together, we experiment on the overall reachability program on randomly gener-

ated scale-free graphs G with density 0.01. Fig. 7.19a and Fig. 7.19b present the execution time

and space utilization respectively. SymBit outperforms Dense by up to 3x-5x in performance

and up to 62x in space savings. The reduction in space is consistent with the fact that bit

vectors allow compacting 64 item into 8 bytes rather than a double value that represents a

single item in 8 bytes.

Distributed. In this experiment, we evaluate the large scale matrix multiplication G ×Y under

the numerical semiring, where G is a binary graph and Y is a matrix with arbitrary values.

This operation is common in graph algorithms such as vertex clustering [120]. We compare

between two implementations in Spark: a) Bit-CSC and b) CSC-CSC. Bit-CSC represents the

first matrix in bit vector format and the other matrix in CSC. We experiment on graphs with two

density settings 0.1 and 0.2 with variable dimension size n. Fig. 7.18c and Fig. 7.18d demon-

strate how the specialized code Bit-CSC outperforms CSC-CSC as n grows. The performance

gains are pronounced in the communication savings of shuffling compressed bit vectors rather

than larger unnecessary general-purpose data-structures. Since communication dominates

cost in a distributed environment, these savings result in better resource utilization and per-

formance. Notice how Bit-CSC can scale to large graphs. In summary, Lago leverages useful

abstract domains that open up opportunities for optimization at the code generation phase.

As we have demonstrated, these optimizations can range from data-structure to computation

specializations.

200



7.6. Evaluation

0.001	
0.01	
0.1	
1	

10	
100	

1000	
10000	
100000	

go	 yago	 citeseer	 pubmed	 arXiv	 facebook	
combined	

wiki	vote	 email	
enron	

soc	
slashdot	

AV
G
	T
IM

E(
SE
C)
	U
PD

AT
E	

All-Pairs	Reachability	Real-World	Graphs	4-Hops	(Scala)	

REEVAL	(Bit)	 INCR	(Bit)	 REEVAL	(CSC)	 INCR	(CSC)	

(a) Performance results on real-world graphs using Bit and CSC for representing matrices.

0.1	

1	

10	

100	

1000	

2k	 4k	 8k	 10k	 12k	 16k	 20k	AV
G
	T
IM

E(
SE
C)
	U
PD

AT
E	

DIMENSION	

All-Pairs	Reachability	G:nxn	4-Hops	(Scala)	

REEVAL	 INCR	

1.6x	

1.9x	
2.5x	

4.1x	
5.7x	

7.8x	 7.7x	

(b) Performance results on a synthetic graph with the density value of 0.01 using Symbit.

0.1	

1	

10	

100	

1000	

10000	

100000	

500	 1000	 2000	 4000	 8000	 10000	AV
G
	T
IM

E(
SE
C)
	U
PD

AT
E	

DIMENSION	

All-Pairs	Shortest	Distance	G:nxn	4-hops	(Scala)	

REEVAL	 INCR	

23.16x	
44.8x	

45.1x	

78.6x	
139.1x	 173x	

(c) Performance results on a synthetic graph with the density value of 0.01 using Dense.

Figure 7.20 – Performance evaluation of incremental graph programs on real-world and
synthetic datasets.

Incremental Graph Analytics

By combining semiring configurations with IVM capability as described in Section 7.6.1, one

can directly derive incremental graph analytics. Notice that the delta rules operate at the

abstract level of matrix algebra operations. This permits reasoning about the derivation

of incremental programs at a high level without delving into the details of the underlying

operations used within the matrix operators, i.e., semiring.

Evaluation. We first evaluate the performance of the incremental version of 4-hops all-pairs

reachability problem on real-world graphs obtained from [170] and the SNAP dataset [219]

(cf. Table 7.4). Fig. 7.20a shows that in most cases the incremental variants outperform

201



Chapter 7. Efficient Incremental Analytics

Dataset Vertices Edges Density (%)
arXiv 6000 66707 0.185
citeseer 10720 44258 0.038
go 6793 13361 0.028
pubmed 9000 40028 0.049
yago 6642 42392 0.096
facebook combined 4039 88234 0.540
wiki vote 7115 103689 0.204
email enron 36692 367662 0.027
soc slashdot 77360 905468 0.015

Table 7.4 – Properties of real-world graphs taken from [170] and SNAP [219].

re-evaluation. Also, as the matrices get more sparse, the CSC representations show a better

performance, to the extent that REEVAL (CSC) outperforms INCR (BIT). However, as the

density increases we observe that for the CSC, even the incremental version becomes worse

than re-evaluation. This is because of the additional non-sparse intermediate matrix-vector

multiplications. Finally, for larger graphs the CSC representation settings do not finish the

processing after two days of computing, due to dense results.

Then, we evaluate the performance on synthetic graphs with the density value of 0.01. The

update performance of the previously described 4-hops all-pairs reachability problem is com-

pared against its incremental version as generated by Lago in Fig. 7.20b. Similarly, Fig. 7.20c

compares the update performance for the 4-hops all-pairs shortest path problem. Lago is able

to derive the incremental program of the matrix program independent from the underlying

semiring semantics. Again, we can observe performance gains for IVM in comparison to

re-evaluation, i.e., 1.6x — 7.7x in the case of reachability and 23.16x — 173x in the case of

shortest paths. Notice how the performance gains in the boolean semiring are not as big as

the other experiments. This is because of short-circuiting (cf. Section 7.4.2) which introduces

large performance gains that are comparable to the gains of IVM. Also, notice how the shortest

path program is much more slower than that of reachability, although they only differ in

the semiring definition. The reason is that the Tropical semiring requires evaluating the min

operator O (n3) times. There is no specialized machine instruction for this operator as opposed

to addition/multiplication in the numerical semiring and vectorwise and/or in the boolean

semiring. Therefore, the min operator is expanded to many other machine instructions which

is even much more costly in a loop, i.e., matrix multiplication.

7.7 Discussion

One of the key limitations of Lago is that elementwise operations (e.g., Hadamard product)

cannot propagate factorized expressions down the program. For instance, the expression X .∗
u.v t , cannot exploit the low rank structure and be further factorized into UV . That said, Lago

202



7.7. Discussion

provides no performance guarantee for the incremental programs utilising such elementwise

operators. However, Lago can provide efficient triggers for programs involving elementwise

multiplication such as triangle counting for graphs [68]. Efficient factored representations for

elementwise operations requires further research which we leave for the future.

One interesting future direction for Lago is supporting statistical queries. In the query B = f (A),

an update ∆A results in the update ∆B = f (A+∆A)− f (A). Similarly, an input error δ results

in the output error ε= f (A+δ)− f (A). One can use the Lago IVM infrastructure for efficiently

computing the output error based on the input error. Based on the computed error value, Lago

can decide to update the value immediately or wait for more updates to batch them together.

In addition, one can use Lago for incrementally updating the influence of different inputs,

which has been explored for sensitivity analysis in the context of probabilistic databases [181].

However, the applicability of the proposed technique to the Lago DSL needs further research.

Another extension is using other semiring configurations for supporting even further applica-

tion domains. As an example, by supporting the set semiring (set union ∪ and set intersection

∩) one can express certain kinds of data-flow analysis problems (a technique for program

analysis) in terms of matrix expressions [94]. Hence, it would be interesting to see how Lago

can be used to incrementally compute the data-flow analysis of large programs.

203





8 Compiler-Compilation for Embedded
DSLs

Everything that happens once can never happen again. But everything that happens

twice will surely happen a third time.

– Paulo Coelho, The Alchemist

In this chapter, we present a framework to generate compilers for embedded domain-specific

languages (EDSLs). This framework provides facilities to automatically generate the boilerplate

code required for building DSL compilers on top of extensible optimizing compilers. We

evaluate the practicality of our framework by demonstrating several use-cases successfully

built with it.

8.1 Introduction

Domain-specific languages (DSLs) have gained enormous success in providing productiv-

ity and performance simultaneously. The former is achieved through their concise syntax,

while the latter is achieved by using specialization and compilation techniques. These two

significantly improve DSL users’ programming experience.

Building DSL compilers is a time-consuming and tedious task requiring much boilerplate code

related to non-creative aspects of building a compiler, such as the definition of intermediate

representation (IR) nodes and repetitive transformations [43]. There are many extensible

optimizing compilers to help DSL developers by providing the required infrastructure for

building compiler-based DSLs. However, the existing optimizing compilation frameworks

suffer from a steep learning curve, which hinders their adoption by DSL developers who lack

compiler expertise. In addition, if the API of the underlying extensible optimizing compiler

changes, the DSL developer would need to globally refactor the code base of the DSL compiler.

The key contribution of this work is to use a generative approach to help DSL developers with

the process of building a DSL compiler. Instead of asking the DSL developer to provide the

boilerplate code snippets required for building a DSL compiler, we present a framework which

205



Chapter 8. Compiler-Compilation for Embedded DSLs

automatically generates them.

More specifically, we present Alchemy, a language workbench [113, 103] for generating com-

pilers for embedded DSLs (EDSLs) [158] in the Scala programming language. DSL developers

define a DSL as a normal library in Scala. This plain Scala implementation can be used for

debugging purposes without worrying about the performance aspects (handled separately by

the DSL compiler).

Alchemy provides a customizable set of annotations for encoding the domain knowledge in the

optimizing compilation frameworks. A DSL developer annotates the DSL library, from which

Alchemy generates a DSL compiler that is built on top of an extensible optimizing compiler.

As opposed to the existing compiler-compilers and language workbenches, Alchemy does not

need a new meta-language for defining a DSL; instead, Alchemy uses the reflection capabilities

of Scala to treat the plain Scala code of the DSL library as the language specification.

A compiler expert can customize the behavior of the predefined set of annotations based

on the features provided by a particular optimizing compiler. Furthermore, the compiler

expert can extend the set of annotations with additional ones for encoding various domain

knowledge in an optimizing compiler.

This chapter is organized as follows. In Section 8.2 we review the background material and

related work. Then, in Section 8.3 we give a high-level overview of the Alchemy framework. In

Section 8.4 we present the process of generating a DSL compiler in more detail. Section 8.5

presents several use cases built with the Alchemy framework. Finally, Section 8.6 concludes.

8.2 Background & Related Work

In this section, we present the background and related work to better understand the design

decisions behind Alchemy.

8.2.1 Compiler-Compiler

A compiler-compiler (or a meta compiler) is a program that generates a compiler from the spec-

ification of a programming language. This specification is usually expressed in a declarative

language, called a meta-language.

Yacc [171] is a compiler-compiler for generating parsers specified using a declarative lan-

guage. There are numerous systems for defining new languages, referred to as language

workbenches [113, 103], such as Stratego/Spoofax [186], SugarJ [101], Sugar* [102], KHEP-

ERA [105], and MPS [168].

206



8.2. Background & Related Work

8.2.2 Domain-Specific Languages

DSLs are programming languages tailored for a specific domain. There are many successful

examples of systems using DSLs in various domains such as SQL in database management,

Spiral [277] for generating digital signal processing kernels, and Halide [278] for image pro-

cessing. The software development process can also be improved by using DSLs, referred to as

language-oriented programming [361]. Cadelion [224] is a language workbench developed for

language-oriented programming.

There are two kinds of DSLs: 1) external DSLs which have a stand-alone compiler, and 2)

embedded DSLs [158] (EDSLs) which are embedded in another generic-purpose programming

language, called a host language.

Various EDSLs have been successfully implemented in different host languages, such as

Haskell [21, 253, 158] or Scala [288, 215, 261, 295]. The main advantage of EDSLs is reusing the

existing infrastructure of the host language, such as the parser, the type checker, and the IDEs

among others.

There are two ways to define an EDSL. The first approach is by defining it as a plain library in

the host language, referred to as shallowly embedding it in the host language. A shallow EDSL

is reusing both the frontend and backend components of the host language compiler. However,

the opportunities for domain-specific optimizations are left unexploited. In other words, the

library-based implementation of the EDSL in the host language is served an interpreter.

The second approach is deeply embedding the DSL in the host language. A deep EDSL is

only using the frontend of the host language, and requires the DSL developer to implement a

backend for the EDSL. This way, the DSL developer can leverage domain-specific opportunities

for optimizations and can leverage different target backends through code generation.

8.2.3 Extensible Optimizing Compilers

There are many extensible optimizing compilers which provide facilities for defining optimiza-

tions and code generation for new languages. Such frameworks can significantly simplify the

development of the backend component of the compiler for a new programming language.

Stratego/Spoofax [186] uses strategy-based term-rewrite systems for defining domain-specific

optimizations for DSLs. Stratego uses an approach similar to quasi-quotation [353] to hide

the expression terms from the user. For the same purpose, Alchemy uses annotations for

specifying a subset of optimizations specified by the compiler expert. One can use quasi-

quotes [297, 268] for implementing domain-specific optimizations in concrete syntax (rather

than abstract syntax) similar to Stratego.

207



Chapter 8. Compiler-Compilation for Embedded DSLs

8.2.4 What is Alchemy?

Alchemy is a compiler-compiler, designed for EDSLs that use Scala as their host language.

Alchemy uses the Scala language itself as its meta-language; it takes an annotated library as

the implementation of a shallow EDSL and produces the required boilerplate code for defining

a backend for this EDSL using a particular extensible optimizing compiler. In other words,

Alchemy converts an interpreter for a language (a shallow EDSL) to a compiler (a deep EDSL).

Truffle [159] provides a DSL for defining self-optimizing AST interpreters, using the Graal [369]

optimizing compiler as the backend. This system mainly focuses on providing just-in-time

compilation for dynamically typed languages such as JavaScript and R, by annotating AST

nodes. In contrast, Alchemy uses annotation on the library itself and generates the AST nodes

based on strategy defined by the compiler expert.

Forge [322] is an embedded DSL in Scala for specifying other DSLs. Forge is used by the

Delite [215] and LMS [288, 290] compilation frameworks. This approach requires DSL devel-

opers to learn a new specification language before implementing DSLs. In contrast, Alchemy

developers write a DSL specification using plain Scala code. Then, domain-specific knowledge

is encoded using simple Alchemy annotations.

Yin-Yang [177] uses Scala macros for automatically converting shallow EDSLs to the corre-

sponding deep EDSLs. Thus, it completely removes the need for providing the definition of

a deep DSL library from the DSL developer. However, contrary to our work, the compiler-

compilation of Yin-Yang is specific to the LMS [288] compilation framework. Also, Yin-Yang

does not generate any code related to optimizations of the DSL library. We have identified the

task of automatically generating the optimizations to be not only a crucial requirement for

DSL developers but also one that is significantly more complicated than the one handled by

Yin-Yang.

8.3 Overview

Figure 8.1 shows the overall design of the Alchemy framework. Alchemy is implemented as

a compiler plugin for the Scala programming language.1 After parsing and type checking

the library-based implementation of an EDSL, Alchemy uses the type-checked Scala AST to

generate an appropriate DSL compiler. The generated DSL compiler follows the API provided

by an extensible optimizing compiler to implement transformations and code generation

needed for that DSL.

There are two different types of users for Alchemy. The first type is a DSL developer, who is

the end-user of the Alchemy framework for defining a new DSL together with a set of domain-

specific optimizations specified by a set of annotations. A DSL developer is a domain expert,

1We decided to implement Alchemy as a compiler plugin rather than using the macro system of Scala, due to
the restrictions imposed by def macros and macro annotations.

208



8.4. Compiler-Compilation

Annotated 
Shallow 
EDSL

Interpreter CompilerCompiler-Compiler

DSL Developer Compiler Expert

Alchemy

Kiama
Plugin

LMS
Plugin

SC
Plugin

Deep 
EDSL

SCLMSKiama

IR Nodes
Expression

Lifting
Annotations

Figure 8.1 – Overall design of Alchemy.

without too much expertise in compilers.

The second type of users is a compiler expert, who is not necessarily knowledgeable in various

domains; instead, she is an expert in building optimizing compilers. In particular, a compiler

expert has detailed knowledge about the internals of a specific extensible optimizing compiler.

Thus, she can use the API provided by the Alchemy framework to specify how the definition of

an annotated Scala library is converted into the boilerplate code required for a DSL compiler

built on top of an extensible optimizing compiler. Furthermore, she can extend the set of

existing annotations provided by Alchemy, for encoding the domain knowledge to be used by

an optimizing compiler.

8.4 Compiler-Compilation

In this section, we give more details on the process of generating a DSL compiler. First, we

present the annotations defined by the Alchemy framework. Then, we show the process of

gathering the DSL information from an annotated library. Afterwards, through an example

we give more details on the process of generating a DSL compiler based on the gathered DSL

information. Then, we show how Alchemy uses the implementation body of the annotated

library for building DSL compilers. Finally, we show the process of generating EDSL compilers

using a well-known embedding technique through our running example.

8.4.1 Alchemy Annotations

Deep Types. The DSL developers use the @deep annotation for specifying the types for which

they are interested in generating a corresponding deep embedding. In other words, this anno-

tation should be used for the types that are actually participating in the definition of a DSL,

rather than helper classes which are used for debugging, profiling, and logging purposes.

209



Chapter 8. Compiler-Compilation for Embedded DSLs

case class ShallowDSL(types: List[ShallowType])
case class ShallowType(tpe: Type,
methods: List[ShallowMethod]) {
def annotations: List[Annotation]
def reflectType: Option[Type]

}
case class ShallowMethod(sym: MethodSymbol,
body: Option[Tree]) {
def annotations: List[Annotation]
def paramAnnots: List[(Int, Annotation)]

}

trait AlchemyCompiler {
type DSLContext
def liftType(t: Type)(implicit ctx: DSLContext): Type
def liftExp(e: Tree)(implicit ctx: DSLContext): Tree
def compileDSL(dsl: ShallowDSL)

(implicit ctx: DSLContext): Tree
def compileType(t: ShallowType)

(implicit ctx: DSLContext): Tree
def compileMethod(m: ShallowMethod)

(implicit ctx: DSLContext): Tree
}

Figure 8.2 – The API of Alchemy for compiler experts.

Reflected Types. The @reflect annotation is used for annotating the classes the source code of

which the DSL developers have no access to. This annotation is used in Alchemy for a) anno-

tating the methods of the Scala core libraries, such as HashMap, ArrayBuffer, etc. which are

frequently used, as well as for b) providing alternative implementations for the DSL library

and the Scala core library.

User-Defined Annotations. Alchemy allows compiler experts to define their custom anno-

tations, together with the behavior of the target DSL compiler for the annotated method. A

compiler expert extends the API exposed by Alchemy to implement the desired behavior (cf.

Figure 8.2).

8.4.2 Gathering DSL Information

The Alchemy framework inspects the Scala AST of the given annotated library after the type

checking phase of the Scala compiler. Based on the typed Scala AST, Alchemy produces

the information about the shallow version of the EDSL by building ShallowMethod, ShallowType,

and ShallowDSL objects, corresponding to the DSL methods, DSL types, and the whole DSL,

respectively.

A ShallowMethod instance has the symbol of the DSL method (the sym parameter) and the AST of

its body, if available. Also, this instance returns the list of annotations that the DSL developer

has used for the method (annotations) and its parameters (paramAnnots).

A ShallowType instance contains the information of the DSL type (the tpe parameter) and the

list of its methods. In addition, this instance has the list of annotations used for the type

210



8.4. Compiler-Compilation

@deep
class Complex(val re: Double, val im: Double)
object Complex {
def add(c1: Complex, c2: Complex): Complex =
new Complex(c1.re + c2.re, c1.im + c2.im)

def sub(c1: Complex, c2: Complex): Complex =
new Complex(c1.re - c2.re, c1.im - c2.im)

def zero(): Complex =
new Complex(0, 0)

}

Figure 8.3 – The annotated complex DSL implementation.

// Predefined by a compiler expert
trait Exp
case class DoubleConstant(v: Double) extends Exp
// Automatically generated by Alchemy
case class ComplexNew(re: Exp, im: Exp) extends Exp
case class ComplexAdd(c1: Exp, c2: Exp) extends Exp
case class ComplexSub(c1: Exp, c2: Exp) extends Exp
case class ComplexZero() extends Exp

Figure 8.4 – The generated IR nodes for the Complex DSL.

(annotations) and the type it reflects (reflectType) in the case where it is annotated with @reflect.

Finally, a ShallowDSL instance has the information of all DSL types that are annotated with @deep.

Next, we show how this information is used to build a compiler for a simple DSL.

8.4.3 Generating an EDSL Compiler

Let us consider a DSL for working with complex numbers as our running example. For this

DSL, we generate a DSL compiler using a simple form of expression terms as the intermediate

representation, which is used by compilation frameworks such as Kiama [307].

Figure 8.3 shows the implementation of this EDSL as an annotated Scala library. This imple-

mentation can be used as a normal Scala library to benefit from all the tool-chains provided

for Scala such as debugging tools and IDEs.

Figure 8.4 shows the definition of IR nodes generated by Alchemy. The IR nodes are algebraic

data types (ADTs), each one specifying a different construct of the Complex DSL. For each

method of the Complex companion object, Alchemy generates a case class with a default naming

scheme in which the name of the object is followed by the name of the method. For example,

the method add of the Complex object is converted to the ComplexAdd case class. As another

example, the constructor of the Complex class is converted to the ComplexNew case class. Each case

class has the same number of arguments as the corresponding shallow method.

The methods of a class are converted in a similar manner. The key difference is that the

generated case class has an additional argument corresponding to this object. For example,

the method + of the Complex class is converted to a case class with two parameters, where

211



Chapter 8. Compiler-Compilation for Embedded DSLs

@deep
class Complex(val re: Double, val im: Double) {
@name("ComplexAdd")
def +(c2: Complex): Complex =
new Complex(this.re + c2.re, this.im + c2.im)

@name("ComplexSub")
def -(c2: Complex): Complex =
new Complex(this.re - c2.re, this.im - c2.im)

}
object Complex {
def zero(): Complex =
new Complex(0, 0)

}

Figure 8.5 – The second version of the annotated Complex DSL implementation.

the first parameter corresponds to this object of the Complex class, and the second parameter

corresponds to the input parameter of the + method.

As explained before, Alchemy allows a compiler expert to define user-defined annotations. In

Figure 8.5, the @name annotation is used for overriding the default naming scheme provided by

Alchemy. For example, the + method is converted to the ComplexAdd case class.

8.4.4 Lifting the Implementation

As Figure 8.2 shows, Alchemy also provides two methods for lifting the expression and the

type of the implementation body of DSL library methods. These two methods are useful for

defining syntactic sugar constructs for a DSL (i.e., the DSL constructs that do not have an

actual node in the compiler, instead they are defined in terms of other constructs of the DSL).

An example of such a construct can be found in Section 8.4.5.

In addition, by providing several reflected versions (cf. Section 8.4.1) for a particular type,

each one with a different implementation, Alchemy can generate several transformations

for those DSL constructs. This removes the need to implement a DSL IR transformer, which

manipulates the IR defined in the underlying optimizing compiler.

To specify the way that expressions should be transformed, compiler experts can implement

a Scala AST to Scala AST transformation (cf. the liftExp method in Figure 8.2). Note that

implementing Scala AST to Scala AST transformations from scratch can be a tedious and

time-consuming task. Alternatively, if the target optimizing compiler uses the tagless final [50]

or polymorphic embedding [153] approaches, one can use frameworks such as Yin-Yang [177],

which are already providing the translation required for these approaches. Next, we show a

DSL compiler generated based on the polymorphic embedding approach.

8.4.5 Generating a Polymorphic EDSL Compiler

Let us consider the third version of the Complex DSL, shown in Figure 8.7. This version has

an additional construct for negating a complex number, specified by the unary_- method.

212



8.4. Compiler-Compilation

// Shallow expression
new Complex(2, 3) - Complex.zero()
// Lifted expression
ComplexSub(
ComplexNew(
DoubleConstant(2), DoubleConstant(3)

), ComplexZero()
)

Figure 8.6 – An example expression and its lifted version in Complex DSL.

@deep
class Complex(val re: Double, val im: Double) {
@name("ComplexAdd")
def +(c2: Complex): Complex =
new Complex(this.re + c2.re, this.im + c2.im)

@name("ComplexNeg")
def unary_-(): Complex =
new Complex(-this.re, -this.im)

@sugar
def -(c2: Complex): Complex =
this + (-c2)

}
object Complex {
def zero(): Complex =
new Complex(0, 0)

}

Figure 8.7 – The third version of the annotated Complex DSL implementation.

Subtracting two complex numbers is a syntactic sugar (annotated with @sugar) for adding the

first complex number with the negation of the second complex number.

Polymorphic embedding [153] (or tagless final [50]), is an approach for implementing ED-

SLs where every DSL construct is converted into a function (rather than an ADT) and the

interpretation of these functions are left abstract. Thus, it is possible to provide such abstract

interpretations with different instances, such as actual evaluation, compilation, and partial

evaluation [153, 50].

Figure 8.8 shows the polymorphic embedding interface generated by Alchemy for the third

version of the Complex DSL. The type member Rep[T] is an abstract type representation for

different interpretations of Complex DSL programs.

Figure 8.9 shows the generated deep embedding interface for the polymorphic embedding of

the Complex DSL. Instead of using ADTs for defining IR nodes, this time we use generalized

algebraic data types (GADTs). The invocation of each DSL construct method results in the

creation of the corresponding node. As the subtraction of two complex numbers is a syntactic

sugar, no corresponding IR node is created for it. Instead, the complexSub method results in

the invocation of the complexAdd and complexNeg methods, which is generated using the liftExp

method of Alchemy.

Figure 8.10 shows the lifted expression of the example of Figure 8.6. In this case, instead of

converting expressions to their ADT definition, Alchemy converts them to their corresponding

213



Chapter 8. Compiler-Compilation for Embedded DSLs

trait ComplexOps {
type Rep[T]
def doubleConst(d: Double): Rep[Double]
def complexAdd(self: Rep[Complex],

c2: Rep[Complex]): Rep[Complex]
def complexNeg(self: Rep[Complex]): Rep[Complex]
def complexSub(self: Rep[Complex],

c2: Rep[Complex]): Rep[Complex]
def complexZero(): Rep[Complex]
def complexNew(re: Rep[Double],

im: Rep[Double]): Rep[Complex]
}

Figure 8.8 – The generated polymorphic embedding interface for the Complex DSL.

DSL method definition in polymorphic embedding. In addition, this figure shows the gen-

erated IR nodes for this program, in which the subtraction construct is desugared into the

addition and negation nodes. Note that the negation of zero and addition with zero can be fur-

ther simplified by providing yet another optimized interface implementation in polymorphic

embedding. Examples of such simplifications are given later in Section 8.5.4.

Up to now, we have used simple expression terms for the definition of IR nodes. Alchemy

can easily generate other types of IR nodes such as A-Normal Form [110], where the children

of a node are either constant values or variable accesses. This means that all non-trivial

sub-expressions are let-bound, which helps in applying optimizations such as common-

subexpression elimination (CSE) and dead-code elimination (CSE). Such normalized types of

IR nodes are used in various optimizing compilers such as Graal [369], LMS [288], Squid [268],

and SC. We will see more detailed examples of SC in the next section.

8.5 SC (The Systems Compiler)

When specializing data analytics systems code, an optimizing compiler effectively needs to

specialize high-level systems code which will naturally employ a hierarchy of components

and libraries from relatively high to very low level of abstraction. To scale to such complex

code bases, an optimizing compiler must guarantee two properties, not offered by existing

compiler frameworks for generative programming.

First, existing optimizing compilers expose a large number of low-level compiler internals

such as nodes of an intermediate representation (IR), dependency information encoded in IR

nodes, and code generation templates to their users. This necessary interaction with low-level

semantics when coding optimizations, but more importantly the introduction of the IR as an

additional level of abstraction, significantly increases the difficulty of debugging, as developers

cannot easily track the relationship between the source code, its optimizated form – expressed

using IR constructs – and the final, generated code [177, 322].

Second, to achieve maximum efficiency, developers must have tight control over the compiler’s

phases – admitting custom optimization phases and phase orderings. This is necessary as code

214



8.5. SC (The Systems Compiler)

// Predefined by a compiler expert
trait Exp[T]
case class DoubleConstant(d: Double) extends Exp[Double]
// Automatically generated by Alchemy
case class ComplexNew(re: Exp[Double],

im: Exp[Double]) extends Exp[Complex]
case class ComplexAdd(self: Exp[Complex],

c2: Exp[Complex]) extends Exp[Complex]
case class ComplexNeg(self:Exp[Complex])extends Exp[Complex]
case class ComplexZero() extends Exp[Complex]

trait ComplexExp extends ComplexOps {
type Rep[T] = Exp[T]
def doubleConst(d: Double): Rep[Double] =
DoubleConstant(d)

def complexAdd(self: Rep[Complex],
c2: Rep[Complex]): Rep[Complex] =

ComplexAdd(self, c2)
def complexNeg(self: Rep[Complex]): Rep[Complex] =
ComplexNeg(self)

def complexSub(self: Rep[Complex],
c2: Rep[Complex]): Rep[Complex] =

complexAdd(self, complexNeg(c2))
def complexZero(): Rep[Complex] =
ComplexZero()

def complexNew(re: Rep[Double],
im: Rep[Double]): Rep[Complex] =

ComplexNew(re, im)
}

Figure 8.9 – The generated IR node definitions and deep embedding interface for the Complex
DSL.

transformers with different optimization objectives may have to be combined in arbitrary

orderings, depending on architectural, data, or query characteristics. However, existing

generative programming frameworks do not offer much control over the compilation process.

This absence of control effectively forces developers to provision for all possible optimization

orderings. This pollutes the code base of individual optimizations, making some of them

dependent on other, possibly semantically independent, optimizations. In general, the code

complexity grows exponentially with the number of supported transformations.2

In this section, we present a new compilation framework, called the Systems Compiler (SC).

SC’s native language is Scala, and the system as well as the compiler extensions are all written in

plain Scala,3 admitting its advanced software composition features to allow for well-designed

systems and compiler extensions. SC gives full control over the compilation process including

the stack of compiler phases without exporting compiler internals such as intermediate

representations, thanks to Alchemy.

2 As an example, consider the case of a compiler that is to support only two optimizations: 1) data-layout
optimizations (i.e. converting a row layout to a column or PAX-like layout [12]) and 2) data-structure specialization
(i.e. adapting the definition of a data structure to the particular context in which it is used). This means that if
the second optimization handles three different types of specialization, one has to provision for 2×3 = 6 cases to
handle all possible combinations of these optimizations.

3The principles described in this section can be applied to a wider range of host-languages and are not limited
to Scala.

215



Chapter 8. Compiler-Compilation for Embedded DSLs

// lifted expression in polymorphic embedding
complexSub(
complexNew(
doubleConst(2), doubleConst(3)

), complexZero()
)
// generated IR nodes
ComplexAdd(
ComplexNew(
DoubleConstant(2), DoubleConstant(3)

), ComplexNeg(
ComplexZero()

)
)

Figure 8.10 – Polymorphic embedding version of the example in Figure 8.6, and the generated
IR nodes.

Annotated 
Shallow EDSL

DSL Developer

Alchemy

Deep 
EDSL

SC
Compilation 

Pipeline

SC
Plugin

Domain-Specific 
Optimizations

Figure 8.11 – Overall design of SC used with Alchemy.

8.5.1 Overall Design

SC (the Systems Compiler) is a compilation framework for building compilation-based systems

in the Scala programming language. Different system component libraries can be considered

as different DSLs, for which system developers extend SC to build DSL compilers. To hide

the internal implementation details of the compiler, Alchemy provides an abstraction layer

between the system component libraries and the SC optimizing compiler itself. Figure 8.11

shows the overall design of Alchemy and SC, which operates as follows.

The system developer (who is actually a DSL developer) uses the SC plugin of Alchemy to

create a DSL compiler. Many systems optimizations are automatically converted by Alchemy

to functions that manipulate the IR of the compiler. The system developer uses a set of anno-

tations provided by the compiler expert of the SC framework, to specify the IR transformations.

To provide more advanced domain-specific optimizations that cannot be encoded by anno-

tations, as well as compilation phases, the system developer uses the transformation API

provided by SC.

SC converts the systems code to a graph-like intermediate representation (IR). As SC fol-

216



8.5. SC (The Systems Compiler)

lows the polymorphic embedding approach [153] for deeply embedding DSLs, SC uses Yin-

Yang [177]4 which applies several transformations (e.g., language virtualization [51]) in order

to convert the plain Scala code into the corresponding IR.

We have used SC to build two different compilation-based query engines: a) an analytical

query processing engine [300, 301], and b) a transactional query processing engine [83].

From the perspective of the abstraction level of a program, the transformations are classified

into two categories. First, optimizing transformations transform a program into another

program on the same level of abstraction. Second, lowering transformations convert a program

into one on a lower abstraction level. SC provides a set of built-in transformations out-of-the-

box. These mainly consist of generic compiler optimizations such as common-subexpression

elimination (CSE), dead-code elimination (DCE), partial evaluation (PE), etc.

The last phase in the SC compiler is code generation where the compiler generates the code

based on the desired target language. Observe that since each lowering transformation

brings the program closer to the final target code, this provides the excellent property that

code generation (e.g., C code generation) in the end basically becomes a trivial and naïve

stringification of the lowest level representation.

For converting from host to target languages, SC can make use of the same infrastructure.

To do this conversion, a DSL developer only has to express the constructs and the necessary

data-structure API of the target language as a library inside the host language. Then, there is

no need for the DSL developer to manually provide code generation for the target language

using internal compilers APIs as is the case with most existing solutions. In contrast, Alchemy

automatically generates the transformation phases needed to convert from host language IR

nodes to target language IR nodes (e.g., from Scala to C).

An important side-effect of our design is that since the plain Scala code of a system does

not require any specific syntax, type or IR-related information from SC, this code is directly

executable using the normal Scala compiler. In this case, the Scala compiler will ignore all

Alchemy annotations, and interpret the code of the system using plain Scala. Alchemy can

thus be seen as a system for converting a system interpreter (which executes the systems code

unoptimized) into the corresponding system compiler along with its optimizations.

Next, we briefly provide more details about the two categories of transformations that SC

supports.

8.5.2 SC Transformations

SC classifies the transformations into two categories, which we present in more detail next

while also highlighting differences from previous work in each class.

4We note that Yin-Yang, in contrast to our work, handles only the conversion from plain Scala code to IR,
without providing any functionality related to code optimization of the systems library.

217



Chapter 8. Compiler-Compilation for Embedded DSLs

class MyTransformer extends RuleBasedTransformer {
analysis += rule { case Pattern =>
// gather necessary information for analysis

}
rewrite += rule { case Pattern =>
/* use analysis information while generating

the appropriate transformed node */
}
rewrite += remove { case Pattern =>
/* use analysis information to remove node */

}
}

Figure 8.12 – Offline Transformation API of SC.

Online transformations are applied while the IR nodes are generated. Every construct of

a DSL is mapped to a method invocation, which in turn results in the generation of an IR

node [50, 153]. By overriding the behavior of that method, an online transformation can result

in the generation of a different (set of) IR node(s) than the original IR node. Even though

a large set of optimizations (such as constant folding, common subexpression elimination,

and others) can be expressed using online transformations, some optimizations need to be

preceded by analysis over the whole program.

For a restricted set of control-flow constructs, namely structured loops, it is possible to use

the Speculative Rewriting [218] approach in order to combine the data-flow analysis with an

online transformation, thus bypassing the need for a separate analysis pass. However, we have

observed that there exists an important class of transformations in which the corresponding

analysis cannot be combined with the transformation phase. This class of optimizations,

which cannot be handled by existing extensible optimizing compilers, is presented next.

Offline transformations need whole program analysis before applying any transformation.

Figure 8.12 shows the SC offline transformation API. The analysis construct specifies the

information that should be collected during the analysis phase of a transformation. The

rewrite construct specifies the transformation rules based on the information gathered during

the analysis phase. Finally, the remove construct removes the pattern specified in its body.

The Alchemy annotation processor takes care of converting the Scala annotations of the

systems library, which express optimizations, into IR transformers which manipulate the

intermediate representation of SC. This is explained in more detail in Section 8.5.4.

8.5.3 SC Annotations

In this section, we present in more detail the different categories of annotations implemented

for SC.

Side-Effects. These are annotations that guide the effect system of the optimizing compiler.

218



8.5. SC (The Systems Compiler)

@deep
@inline
abstract class Operator[A] {
abstract def init(): Unit

}

@deep
@inline
class ScanOp[A](table: Array[A]) extends Operator[A]{
var i = 0
@inline
def init() = {
while (i < table.length) {
child.consume(table(i))
i += 1

}
}

}

@deep
@inline
class HashJoinOp[A,B,C](val leftParent: Operator[A],
val rightParent: Operator[B], ...) extends
Operator[CompositeRecord[A, B]] {

@inline var mode = 0
@inline
def init() = {
mode = 0
// phase 1: leftParent will call this.consume
leftParent.init()
mode = 1
// phase 2: rightParent will call this.consume
rightParent.init()
mode = 2

}
@inline
def consume(tuple: Record): Unit = {
if (mode == 0) {
/*phase1 -- elided code for left side of join*/

} else if (mode == 1) {
/*phase2 -- elided code for right side of join*/

}
}

}

Figure 8.13 – Inline annotations of two operators in our analytical query engine.

For example, a method annotated with @pure denotes that this method does not cause any

side effects and the expressions that call this method can be moved freely throughout the

program. In addition, Alchemy provides more fine-grained effect annotations that keep track

of read and write mutations of objects. More precisely, if a method is annotated with read or

write annotations, then there exists a mutation effect over the specific object (i.e., this) of that

particular class. Similarly, an annotated argument may include read or write effects over that

argument.

Inline. The @inline annotation guides the inlining decisions of the compiler. This annotation

can be applied to methods, whole classes as well as class fields, with different semantics in

each case. Methods annotated with the @inline annotation specify that every invocation of

that method should be inlined by the compiler. For classes, the @inline annotation removes

219



Chapter 8. Compiler-Compilation for Embedded DSLs

the abstraction of the specific class during compilation time. In essence, this means that

the methods of an inlined class are implicitly annotated with the inline annotation and are

subsequently inlined. This makes inlined classes in Alchemy semantically similar to value

classes [291]. Finally, a mutable field of a class can also be annotated with @inline, which

means that all the usages of this field are partially evaluated during compilation time.

Figure 8.13 shows the scan and hash-join operators annotated with the @inline annotation.

In this example, all methods of the HashJoinOp class are automatically inlined, as the HashJoinOp

class is marked with the @inline annotation. Furthermore, the mutable field mode is partially

evaluated at compilation time and, as a result, the corresponding branch in the consume method

is also partially evaluated at compilation time. More concretely, both leftParent.init and

rightParent.init invoke the consume method of the HashJoinOp class. However, the former inlines

the code in the phase1 block whereas the latter inlines the phase2 code block. This is possi-

ble as mode is evaluated during compilation time and, thus, there is no need to generate any

code for it and the corresponding if condition checks. We have found that there are multi-

ple examples where such if conditions can be safely removed in our analytical query engine

(e.g., in the case of configuration variables whose values are known in advance at startup time).

Algebraic Structure. These are annotations for specifying the common algebraic rules that

occur frequently for different use cases. For example, @monoid specifies a binary operation

of a type that has a monoid structure. In the case of natural numbers, @monoid(0) over the

+ operator represents that a+0=0+a=a. The annotation processor generates several constant

folding optimizations which benefit from such algebraic structure and significantly improve

the performance of systems that use them.

Furthermore, the @commutative annotation specifies that the order of the operands of a binary

operation can be changed without affecting the result. This property is useful for applying

constant folding on cases in which static arguments and dynamic arguments are mixed in an

arbitrary order, thus hindering the constant folding process. For example, in the expression

1 + a + 2, constant folding cannot be performed without specifying that the commutativity

property of addition on natural numbers is applicable in this case. However, if we push the

static terms to the left side of the expression while we generate the nodes, we generate the IR

which represents the expression 1 + 2 + a instead of the previous expression. Then, it becomes

possible to apply constant folding and get the expression 3 + a.

8.5.4 Generating Transformation Passes

As discussed in Section 8.5.2, these transformation passes are classified into two categories:

online and offline transformations. In this section, we demonstrate how Alchemy generates

online and offline transformation passes.

220



8.5. SC (The Systems Compiler)

@deep
@reflect[Int]
class AnnotatedInt {
@commutative
@monoid(0)
@pure
def +(x: Int): Int

}

Figure 8.14 – Alchemy annotations of the Int class. The AnnotatedInt class is a mirror class for
the original Int Scala class.

Generating Online Transformations. In general, Alchemy uses node generation (online trans-

formation) in order to implement the appropriate rewrite rules for most annotations. As we

discussed in Section 8.4.5, every construct of a DSL is mapped to a method invocation, which

in turn results in the generation of an IR node [50, 153].

For example, in the case of addition on natural numbers, the default behavior for the method

int_plus is shown in lines 1-3 of Figure 8.15. This method generates the IntPlus IR node, which

is also automatically generated by Alchemy. However, when this method is annotated with the

@monoid and @commutative annotations, this results in the generation of an online transformation.

More specifically, the annotated method automatically generates the code shown in lines 5-14

of the same figure. First, as the method is pure, SC checks if both arguments are statically

known. This is achieved by checking if the expressions are of Constant type or not. In this case,

SC performs partial evaluation by computing the result through the addition of the arguments.

Second, if only one of the arguments is statically known and it is equal to 0, the monoid

property of this operator returns the dynamic operand. Third, if only one of the arguments is

statically known (but it is not zero), then the static argument is pushed as the left operand, as

we know that this operator is commutative. Finally, if none of the previous cases is true, then

the default behavior is used and the original IntPlus IR node is generated.

Alchemy also generates an online transformation out of the @inline annotation. For methods

with this annotation, instead of generating the corresponding node, Alchemy generates the

nodes for the body of that method. In the special case of dynamic dispatch, the concrete type

of the object is looked up and based on its value Alchemy invokes the appropriate method.

For example, the annotated code for the scanning operator of the analytical query engine,

shown in Figure 8.13, generates the compiler code shown in Figure 8.16. There the scanOpInit

method represents the corresponding method which is invoked in order to generate an ap-

propriate IR. As is the case with integer addition, the default behavior of this method, which

results in creating the ScanOpInit IR node, is shown in lines 1-3. The rest of the code presents

the implementation of the @inline annotation for this operator, which results in inlining the

body of this method while generating the IR node. The method scanOpInit is automatically

generated by Alchemy which generates the body of the init method. As described earlier,

all method invocations lead to the generation of the corresponding IR nodes. For example,
__whileDo results in creating an IR node for a while loop. Finally, for inlining the init method of

221



Chapter 8. Compiler-Compilation for Embedded DSLs

trait Base {
type Rep[T]

}

trait BaseExp extends Base {
type Rep[T] = Exp[T]

}

trait IntOps extends Base {
def int_plus(a: Rep[Int], b: Rep[Int]): Rep[Int]

}

trait IntExp extends IntOps with BaseExp {
// default IR generation
def int_plus(a: Exp[Int], b: Exp[Int]): Exp[Int] =
IntPlus(a, b)

}

trait IntExpOpt extends IntExp {
// optimized IR generation
override
def int_plus(a: Exp[Int], b: Exp[Int]): Exp[Int] =
(a, b) match {
case (Constant(aStatic), Constant(bStatic)) =>
Constant(aStatic + bStatic)

case (Constant(0), bDynamic) => bDynamic
case (aDynamic, Constant(0)) => aDynamic
case (aDynamic,Constant(bStatic)) => int_plus(b,a)
case (_, _) => super.int_plus(a,b)

}
}

Figure 8.15 – The generated online transformation by Alchemy for addition on Int.

the Operator class, we need to handle dynamic dispatch, as we described earlier. We do so by

redirecting to the appropriate method based on the type of the caller object. An alternative

design is to use multi-stage programming for encoding the fact that the objects of Operator

class are staged away. This is achieved by generating the deep embedding interface of all

operator classes as partially static. With a similar design, one can support staging for other li-

braries implemented using design patterns that require abstraction overheads such as generic

programming [210, 372].

Generating Offline Transformations. The generated transformations are not limited to online

transformations. Alchemy also generates offline transformation passes. Figure 8.17 shows

the implementation of three different transformations for the Seq class5, in plain Scala code.

The first implementation uses a linked list for storing the elements of the sequence. The

second implementation stores the elements in an array data-structure.6 Finally, the third

implementation uses a g_list data-structure, provided by GLib. The generated transformation

from this class can be used for using data structures provided by GLib in the generated C code.

These implementations can be used for debugging the correctness of the transformers. For

5By a Seq data type, we mean a collection where the order of its elements does not matter.
6This implementation assumes that the number of the elements in the collection does not exceed MAX_BUCKETS.

In cases where this assumption does not hold, one has to make the corresponding field mutable, and add an
additional check while inserting an element.

222



8.5. SC (The Systems Compiler)

trait OperatorOps extends Base {
def operatorInit[A:Type](self:Rep[Operator[A]]):Rep[Unit]

}

trait ScanOpOps extends OperatorOps {
def scanOpInit[A:Type](self: Rep[ScanOp[A]]): Rep[Unit]

}

trait OperatorExp extends OperatorOps with BaseExp {
def operatorInit[A:Type](self: Exp[Operator[A]]) =
OperatorInit(self)

}

trait ScanOpExp extends ScanOpOps with OperatorExp {
// the default behavior of scanOp.init operation
def scanOpInit[A:Type](self: Exp[ScanOp[A]]) =
ScanOpInit(self)

}

trait ScanOpInline extends ScanOpExp {
// the inlined behavior of scanOp.init operation
override
def scanOpInit[A:Type](self: Exp[ScanOp[A]]) =
__whileDo(self.i < (self.table.length), {
self.child.consume(self.table.apply(self.i))
self.i = self.i + unit(1)

})
// handling of dynamic dispatch for operator.init
override
def operatorInit[A:Type](self: Exp[Operator[A]]) =
self.tpe match {
case ScanOpType(_) =>
scanOpInit(self.asInstanceOf[Exp[ScanOp[A]]])

// the rest of the operator types ...
}

}

Figure 8.16 – The generated online transformations by Alchemy for the scan operator of the
analytical query engine.

using them in the DSL compiler, Alchemy generates offline transformations based on the

SC API (cf. Figure 8.12). Figure 8.18 shows the generated offline transformation for the

implementation of the Seq data-structure using an array. This transformation lowers the

objects of a Seq data structure into records with two fields: 1) the underlying array, 2) the

current size of the collection. The nodes corresponding to each method of this data structure

are then rewritten to the IR nodes of the implementation body provided in the reflected type.

Many offline transformations require inspecting the generated IR nodes to check their ap-

plicability. In some of these cases, compiler experts can provide annotations to generate the

required analysis passes. However, in many cases, the analysis requires more features than

the ones provided by the existing annotations. Implementing such analysis passes can be

facilitated by using quasi-quotations [268, 270, 297]. More details about the implementation

of quasi-quotations and their usages are beyond the scope of this thesis.

The aforementioned design provides several advantages over previous work. First, the Alchemy

annotation processor uses Scala annotations. This means that there is no need to provide spe-

223



Chapter 8. Compiler-Compilation for Embedded DSLs

@offline
@reflect[Seq[_]]
class SeqLinkedList[T] {
var head: Cont[T] = null

def +=(elem: T) =
head = Cont(elem, head)

def foreach(f: T => Unit)
= {
var current = head
while (current != null) {
f(current.elem)
current = current.next

}
}

}

@offline
@reflect[Seq[_]]
class SeqArray[T: Manifest]

{
val array =
new Array[T](MAX_BUCKETS)

var size: Int = 0
def +=(elem: T) = {
array(size) = elem
size += 1

}
def foreach(f: T=>Unit) =
for (i <- 0 until size) {
val elem = array(i)
f(elem)

}

}

@offline
@reflect[Seq[_]]
class SeqGlib[T] {
var gHead:

Pointer[GList[T]] = null

def +=(x: T) =
gHead =
g_list_append(gHead,

&(x))

def foreach(f: T=>Unit) =
{
var current = gHead
while (current != NULL) {
f(*(current.data))
current =

g_list_next(current)
}

}
}

Figure 8.17 – Different transformations for the Scala Seq class. The transformations are written
using plain Scala code.

cific infrastructure for an external DSL, as opposed to the approach of Stratego/Spoofax [186].

Second, developers can annotate the source code with appropriate annotations, without the

need to port it into another DSL, as opposed to the approach taken in Forge [322]. In other

words, developers use the signature of classes and methods as the meta-data needed for

specifying the DSL constructs, whereas in a system like Forge the DSL developer must use

Forge DSL constructs to specify the constructs of the DSL. Third, as we aim to give systems

developers the ability to write their systems in plain Scala code, we designed Alchemy so that

developers can place the annotations on the systems code itself, whereas an approach like

Truffle [159] focuses on self-optimizing AST interpreters. Thus, the latter annotates the AST

nodes of the language itself.

8.5.5 Productivity Evaluation

We use Alchemy to automatically generate the compiler interface for a subset of the standard

Scala library and two database engines: 1) an analytical query engine [300, 301], and 2) a

transactional query engine [83]. Table 8.1 compares the number of LoCs7 of the library classes

with the generated compiler interfaces. We make the following observations.

First, for the Scala standard library classes, the LoCs of the reflected classes are mentioned in

the table. These classes provide the method signatures of their original classes and are anno-

tated with appropriate effect and algebraic structure annotations (Section 8.5.3). However, in

most cases, developers do not need to provide the implementation of the methods of these

classes. As a result, the compiler interfaces of the Scala standard library classes can be gener-

7We used CLOC [77] to compare the number of LoCs.

224



8.6. Conclusions

class SeqArrayTransformer extends RuleBasedTransformer{
rewrite += rule { case SeqNew[T]() =>
val _maxSize = ("maxSize", true, unit(0))
val _array = ("array", false, __newArray[T](MAX_BUCKETS))
record[Seq[T]](_maxSize, _array)

}
rewrite += rule { case SetPlusEq[T](self, elem) =>
self.array.update(self.maxSize, elem)
self.maxSize_=(self.maxSize.+(unit(1)))

}
// Provides access to the fields of the
// generated record for Seq
implicit class SeqArrayOps[T](self: Rep[Seq[T]]) {
def maxSize_=(x: Rep[Int]): Rep[Unit] =
fieldSetter(self, "maxSize", x)

def maxSize: Rep[Int] =
fieldGetter[Int](self, "maxSize")

def array: Rep[Array[T]] =
field[Array[T]](self, "array")

}
}

Figure 8.18 – The generated offline transformations by Alchemy for Seq based on arrays.

ated with only tens of LoCs. The exception is the reflected classes responsible for generating

offline transformations (e.g., Seq Transformation and HashMap Transformation), where the

developer provides the implementation to which every method should be transformed into.

Furthermore, observe that the Int class contains more LoCs than the many other standard

library classes. This is because each operation of this class encodes different combinations

of arguments in its methods with other numeric classes (e.g., Int with Double, Int with Float,

and so on). Furthermore, the generated compiler interface of this class is also longer than

expected. This is because the generated compiler code contains the constant-folding opti-

mization (Section 8.5.3), which is encoded by Alchemy annotations. In addition, for the query

operators of the analytical query engine, the generated compiler interface encodes all online

partial evaluation processes annotated using the @inline annotation. This results in the partial

evaluation of mutable fields, function inlining, and virtual dispatch removal.

8.6 Conclusions

In this chapter, we have presented Alchemy, a compiler generator for DSLs embedded in Scala.

Alchemy automatically generates the boilerplate code necessary for building a DSL compiler

using the infrastructure provided by existing extensible optimizing compilers. Furthermore,

Alchemy provides an extensible set of annotations for encoding domain-specific knowledge

in different optimizing compilers. Finally, we have shown how to extend the Alchemy annota-

tions to generate the boilerplate code required for building two different query compilers on

top of an extensible optimizing compiler.

225



Chapter 8. Compiler-Compilation for Embedded DSLs

Type Library Compiler

Analytical Query Engine
Query Operators 541 3456
Monadic Interface 156 407
File Manager 254 291
Aux. Classes 100 749

Transactional Query Engine
In-Memory Storage 45 294
Indexing Data-Structures 69 394
Aux. Classes 58 364

Scala Library
Boolean 18 255
Int 85 970
Seq 39 334
Seq Trans. 176 329
Array 39 306
ArrayBuffer 52 453
HashMap 32 259
HashMap Trans. 162 305
C GLib 181 729
Other Classes 936 7007

Total 2943 16902

Table 8.1 – The comparison of LoCs of the (reflected) classes of the Scala standard library
and a preliminary implementation of two query engines together with the corresponding
automatically generated compilation interface.

226



9 Related Work

In this chapter, we discuss the related work for different systems presented in this thesis.

9.1 Compilation Frameworks

In this section we present and compare with related work in four categories: a) Existing frame-

works for defining domain-specific languages, b) The usage of annotations in order to guide

the optimizations performed by an optimizing compiler, c) The role and execution model of

partial evaluation, and, finally, d) The usage of DSLs and examples of language embedding.

We briefly discuss these areas below.

Frameworks for defining DSLs. Forge [322] is an embedded DSL in Scala for specifying other

DSLs. Forge is used by the Delite [215] and LMS [288, 290] compilation frameworks. This

approach requires DSL developers to learn a new specification language before implementing

DSLs. In contrast, SC developers write a DSL specification using plain Scala code. Then,

domain-specific knowledge is encoded using simple annotations provided by Alchemy.

In addition, there are numerous systems [105, 186, 307] for defining external DSLs. Strate-

go/Spoofax [186] uses strategy-based term-rewrite systems for introducing domain-specific

optimizations for DSLs. Stratego uses an approach similar to quasi-quotation [353] to hide

the expression terms from the user. For the same purpose, Alchemy uses annotations for

specifying domain-specific optimizations.

Yin-Yang [177] uses Scala macros for automatically converting shallow EDSLs to corresponding

deep EDSLs. Thus, it completely removes the need of providing the definition of a deep DSL li-

brary from the DSL developer. However, contrary to our work, Yin-Yang does not generate any

code related to optimizations of the DSL library. We have identified the task of automatically

generating the optimizations to be not only a crucial requirement for system programmers

but also one that is significantly more complicated than the one handled by Yin-Yang.

227



Chapter 9. Related Work

Guiding Compiler Optimizations via Annotations. Telescoping languages [191] as well as

Broadway [140] both use annotations on libraries in order to expose the DSL semantics to an

optimizing compiler. Similarly, Truffle [159] is an embedded DSL used to annotate the AST

nodes of a programming language. Similarly to Alchemy, Truffle annotations are converted to

optimization code. Truffle focuses mostly on dynamically typed languages and just-in-time

compilation based on runtime profile information collected by the Graal VM [369]. In contrast,

our work focuses mostly on providing a user-friendly way for expressing domain-specific

optimization opportunities for embedded DSLs, where the corresponding IR nodes are au-

tomatically generated by Alchemy. Our framework could use the Truffle/Graal framework in

order to benefit from runtime profiling information, e.g. for more precise information about

the preconditions encoded with Alchemy annotations.

Partial Evaluation and Staging. Multi-stage programming [329] performs partial evaluation

by using explicit annotations (i.e. the quotation mechanism for the MetaOCaml [328] and the

Terra [89] languages or the Rep type classes of LMS [288]). SC follows a similar approach to LMS

and distinguishes between static and dynamic variable binding time using type information,

as was first proposed by [79]. Moreover, SC uses a construct similar to exo-types [91] in order

to use staging for defining high-performance record types.

Online partial evaluation can be performed by specializing the code while the corresponding

IR is reified, as was first suggested in Finally Tagless [50]. With this approach function inlining

is possible while reifying the IR by simply performing beta-reduction on lambda expressions

followed by a function application. Furthermore, constant propagation and domain-specific

optimizations such as algebraic laws (e.g. distributivity) can be both encoded by defining

rewrite rules using pattern matching on the IR nodes. LMS [288, 290] and polymorphic

embedding [153] both follow this approach to perform the aforementioned optimizations.

SC uses the same method for performing online partial evaluation. However, the pattern

matching rewrite rules are not written by DSL developers but are automatically generated by

Alchemy. In addition, through the API exposed by SC, DSL developers can decide: a) the set

of rewrite rules to be applied as well as b) the order in which these rules are applied during

compilation. With this mechanism, DSL developers have full control over the generated rules

by properly annotating a library. More importantly, automatically generating the rewrite rules

means that DSL developers do not have to work with SC IR for encoding domain-specific

optimizations (as is the case with LMS).

Language Embedding and Usage of DSLs. Js.Scala [206] deeply embeds JavaScript in Scala.

However, Js.Scala handles only this particular combination of host and object languages, while

SC offers a more general language embedding mechanism. We use this mechanism to build

C.Scala which embeds the C language in Scala.

DSLs have been successfully used to generate highly optimized applications in the context of

228



9.2. Compilation for Query Engines

linear algebra and query operators by the Spiral [277] and OCAS [201] systems, respectively.

Our idea of considering different system components as different DSLs is similar to [336],

which defines languages as libraries in Racket as well as to Language-oriented program-

ming [361].

9.2 Compilation for Query Engines

We outline related work on compilation in query engines in seven areas: (a) Previous com-

pilation approaches, (b) optimizing database applications, (c) compiler optimizations in

high-performance computing, (d) language integrated queries in managed runtimes, (e) or-

thogonal techniques to speed up query processing, (f) a brief summary of work on Domain

Specific Compilation in the Programming Languages (PL) community, and, finally, (g) a com-

parison with a previous realization of the abstraction without regret vision. We briefly discuss

these areas below.

Previous Compilation Approaches. Historically, System R [53] first proposed code generation

for query optimization. However, query interpretation replaced compilation early (before

the first version of System R was released), since the additional effort of generating code

for an algorithm rather than to directly implement an algorithm substantially slowed down

prototyping in this pioneering project. The Daytona system [130] revisited compilation in the

late nineties.

The shift towards pure in-memory computation in databases, evident in the space of data

analytics and transaction processing has lead developers to revisit compilation. The reason is

that, as more and more data is put in memory, query performance is increasingly determined

by the effective throughput of the CPU. In this context, compilation strategies aim to remove

unnecessary CPU overhead. Examples of industrial systems in the area since the mid-2000s

include SAP HANA [106, 123], VoltDB [320, 178] and Oracle’s TimesTen [262].

Recent industrial systems that employ query compilation include Microsoft’s Hekaton [212],

Netezza [378], and MemSQL. In the academic context, interest in query compilation has also

been renewed since 2009 and continues to grow [10, 134, 208, 202, 255, 203, 85, 73, 252, 352,

205, 19, 72, 240].

All these works aim to improve database systems by removing unnecessary abstraction over-

heads. However, none embrace generative programming and source-to-source translation as

we do. As a consequence, we are able to, thoroughly and in a novel way, separate a high-level

system implementation from code transformers that are responsible for generating high-

performance code, and to automatically obtain a query compiler from an implementation of

a query interpreter. This solves the key problem of low productivity that caused the System R

team to abandon query compilation.

229



Chapter 9. Related Work

The compilation approach confirmed for System R and Hekaton is to achieve code generation

by template expansion. This refers to expanding every operator of a query plan (optimized by a

classical query optimizer) by a low-level code template, the composition of which yields a low-

level program for a query. It is hard to create template expanders that implement sophisticated

code optimizations, as multiple transformations that conceptually could be implemented

separately and applied in sequence have to be composed manually in all possible ways,

causing a code explosion [301]. Our approach solves this problem. The strong points of

template expanders are conceptual simplicity and that code generation is very fast.

Rao et al. propose to remove the overhead of virtual functions in the Volcano iterator model by

using a compiled execution engine built on top of the Java Virtual Machine (JVM) [283]. The

HIQUE system takes a step further and completely eliminates the Volcano iterator model in

the generated code [208]. It does so by translating the algebraic representation to C++ code

using templates. In addition, Zane et al. have shown how compilation can also be used to

additionally improve operator internals [378].

DBToaster [10, 202, 205] is one of the first academic systems to employ query compilation

and compilation to LLVM. Its goal is to perform incremental view maintenance, and thus it is

an instance of a system that may safely assume that queries are known in advance and code

can be specialized for them (in non TPC-H compliant ways). DBToaster uses a functional

intermediate language in which optimizations such as loop fusion are performed, avoiding

the disadvantages of template expansion.

The query compiler of the HyPer database system also uses query compilation [255]. This

work targets improving on the CPU overhead of the Volcano model while maintaining low

compilation times. This is achieved by a push-based operator interface. Such operators, when

composed and inlined, yield highly integrated code with fewer indirections than in Volcano-

style engines. The author uses a mixed LLVM/C++ execution engine where the algebraic

representation of the operators is mapped to low-level LLVM code, while the remaining

database code (e.g. management of data structures and memory allocation) is precompiled

C++ code called from the LLVM code whenever needed. The paper argues that optimizations

should happen completely before code generation (e.g. in the algebraic representation), which

suggests that HyPer does not perform code optimizations of its own that cannot be expressed

in the high-level plan language and that it uses template expansion to obtain LLVM code from

the optimized plan.

Of course, LLVM performs certain standard low-level optimizations out of the box, from

which all the code generators that employ LLVM (which includes HyPer [255], MemSQL,

Peloton [271, 240], and a number or recent and unpublished industrial projects) can profit.

In addition, LLVM as a framework for manipulating intermediate representations allows to

add code transformers similarly to SC, and it can even be “tricked” into accepting somewhat

high-level LLVM code through calls to external interfaces. This solves the code explosion

problem of template expanders. However, the ability to support high-level code is limited

230



9.2. Compilation for Query Engines

and pattern matching is not available for the implementation of transformers, making it

impractical to follow our approach by replacing SC and Scala by LLVM and C.

We note that other than for the systems mentioned, we are not aware of any publication

confirming or denouncing the choice of template expansion, but it appears that most systems

achieve code generation by template expansion.

There has recently been extensive work on how to specialize the code of query operators in

a systematic way by using an approach called Micro-Specialization [379, 380]. In this line of

work, the authors propose a framework to encode DBMS-specific intra-operator optimizations,

like unrolling loops and removing if conditions, as precompiled templates in an extensible way.

All these optimizations are performed by default by the SC compiler in DBLAB/LB. However,

in contrast to our work, there are two main limitations in Micro-Specialization. First, the

low-level nature of the approach makes the development process very time-consuming: it

can take days to code a single intra-operator optimization [379]. Such optimizations are very

fine-grained, and it should be possible to implement them quickly: for the same amount of

time we are able to provide much more coarse-grained optimizations in DBLAB/LB. Second,

the optimizations are limited to those that can be statically determined by examining the

DBMS code and cannot be changed at runtime. Our architecture maintains all the benefits of

Micro-Specialization, while it is not affected by these two limitations.

Optimizing Database Applications. Database applications are generally written using a com-

bination of procedural and declarative languages. More precisely, the business logic is usually

implemented in an imperative language such as Java, whereas the data access part is im-

plemented using SQL. Having two different environments can cause a performance penalty.

This is because, in our experience, neither of the environments can easily leverage oppor-

tunities available in the other. For example, the Java environment does not know about the

indexes in the database system, whereas the database system does not see the loops in the

Java code [302].

One way to optimize such programs is by using program analysis techniques to extract declar-

ative queries from the imperative code [59, 58, 56, 364, 365]. As a result, the extracted code can

benefit from the optimizations offered by the underlying database system. Furthermore, it is

possible to partition database applications between the application runtime and the database

system [56, 57], merge several related queries into a single query [139, 232], and prefetch the

query results [279, 54]. However, as SQL is not as expressive as an imperative language, this

approach is not applicable to all database applications. In addition, for applying optimizations

available at a lower level of abstraction (e.g. operator inlining, inter-operator optimization,

etc.), one should rely on the database system.

Compiler Optimizations in High-Performance Computing. There has been a large body

of work in the high-performance computing (HPC) community since the 1970s for opti-

231



Chapter 9. Related Work

mizing data-intensive programs [11]. The key optimizations for improving parallelization

and data locality are loop transformations such as loop fusion [14], loop interchange [366],

loop tiling [235], and loop-invariant code motion [11], as well as data layout transforma-

tions [75, 382].

Similar techniques can be used for optimizing database applications by rewriting both the

application logic and the data access part into an intermediate language that is built around

looping constructs, such as UniQL [302] and forelem [286]. This way, all the optimizations

happening in both the application runtime (e.g., the underlying optimizing compiler of the

application program) and the database system (e.g., query optimization) become applicable

directly. As the intermediate language in such systems is expressive enough, these systems

enable various optimizations such as classical compiler optimizations (e.g., DCE and CSE),

loop transformations (e.g., loop fusion and loop invariant code motion) [302, 285, 286], inter-

operator optimizations by merging query operators by removing the unnecessary interme-

diate materialized data [286], data-layout transformations [286], and even some forms of

data-structure specialization (such as using flat arrays instead of hash tables) [285]. More

recently, HPAT [341] and Weld [264] investigate the use of a similar loop-oriented intermediate

language for optimizing mixed data-intensive workloads such as SQL and machine learning.

In contrast, our approach utilizes multiple intermediate languages (DSLs) and, thus, makes it

possible to plug in optimizations available across different abstraction levels, which in some

cases leads to a simpler optimization than the one expressed in a single loop-oriented inter-

mediate language. As an example, expressing pushdown predicates is simpler in relational

algebra than loop-invariant code motion in a loop-oriented intermediate language.

Language Integrated Queries in Managed Runtimes. Developers can use language inte-

grated queries (LINQ [238]) as an interface for accessing databases in managed runtimes

such as JVM or CLR (Common Language Runtime). Recently, there were several efforts in

order to boost the performance of the database applications written using this approach

using database-inspired strategies and optimizations through code generation and just-in-

time compilation [134, 251, 252, 352]. In general, all these techniques employ compilation

techniques to convert high-level LINQ programs to more efficient, imperative low-level code.

This line of work is related to LegoBase/SC, since it mostly targets making query processing

of collections in the memory space of the application more efficient by leveraging database

technology. As an example, [252] improves the performance of the standard .NET collection

implementation behind LINQ (also known as LINQ-to-objects) by using code generation and

modifying the memory layout of a collection of records, from a generic array of pointers to

objects allocated on the managed heap, into an array of contiguous objects. However, due

to the lack of multiple intermediate languages in these systems, it is not possible to support

data-structure specialization. Having said that, it would be interesting to add a collection

programming frontend, similar to LINQ, to DBLAB/LB and see how such techniques can be

leveraged to improve the performance of our Scala-based query engines (e.g. those presented

in Figure 2.12), however we leave this for future work.

232



9.2. Compilation for Query Engines

Techniques to speed up query processing. There are many works that aim to speed up query

processing in general, by focusing on improving the way data is processed. Examples of

such works include block-wise processing [263], vectorized execution [308], compression

techniques to provide constant-time query processing [282] or a combination of the above

along with a column-oriented data layout [231]. These approaches are orthogonal to this

work as our framework provides a high-level framework for encoding all such optimizations

in a user-friendly way (e.g. we present the transition from row to column data layout in Sec-

tion 2.3.3).

Domain-specific compilation, which admits domain-specific optimizations, is a topic of

great current interest in multiple research communities. Once one limits the domain or lan-

guage, program analysis can be more successful. More powerful and global transformations

then become possible, yielding speedups that cannot be expected from classical compilers

for general purpose languages. To this end, multiple frameworks and research prototypes

[158, 105, 347, 191, 288, 7, 215, 177, 159], have been proposed to easily introduce and perform

domain-specific compilation and optimization for systems. Of interest is the observation

that domain-specificity has already benefited query optimization tremendously: Relational

algebra is a domain-specific language, and yields readily available associativity properties

that are the foundation of query optimization. Optimizing compilers can combine the perfor-

mance benefits of classical interpretation-based query engines with the benefits of abstraction

and indirection elimination by compilers. Finally, OCAS [201] has been developed within

the context of domain-specific synthesis and attempts to automatically generate optimized

out-of-core algorithms for a particular target memory hierarchy.

Previous realization of the abstraction without regret vision. In the context of database

systems, we have previously realized this vision in [199]. In Chapter 2 of this thesis, intended

as an expanded version of [199], we provide a from scratch implementation of the vision

using a new optimizing compiler, called SC, developed specifically to handle the optimization

needs of large-scale software systems. We also present a detailed analysis of the compiler

interfaces of SC as well as a significantly more thorough list of the optimizations supported by

the DBLAB/LB system in order to demonstrate the ease-of-use of our compiler framework

for optimizing database components that differ significantly in granularity and scope of

operations. Finally, we provide a more extensive evaluation where, along with a renewed

analysis of the previous results, we also evaluate three additional query engine configurations.

We do so in order to compare as fairly as possible the performance of our system with that of

previous work.

233



Chapter 9. Related Work

9.3 Fusion and Pipelining

Fusion in Array Languages. There are many array programming languages in the literature,

APL [165] being the pioneer among them. There are functional array languages such as

Futhark [148] and SAC [131] with support for fusion.

In array languages fusion can be achieved by using functional arrays known as push and pull

arrays [326, 15, 66]. A push-array is represented by an effectful function that, given an index

and a value, will write the value into the array. A pull-array is represented by the length of the

array and a function producing an element for a given index, similar to the build construct in

F̃.

Fusion in Functional Collections. Loop fusion or Deforestation [357] removes the intermedi-

ate collections in collection programs. By restricting the language to a pure functional DSL,

the intermediate collections can be removed using local transformations instead of global

transformations. This approach is known as short-cut deforestation. Short-cut deforestation

has been successfully implemented in the context of Haskell [325, 71, 121] and Scala-based

DSLs [175, 301]. This can be achieved either by pulling the stream of data [325, 71] or pushing

it [121].

Pipelining in Query Engines. The iterator model is the most widely used pipelining technique

in query engines, which was initially proposed in XRM [225], and was adopted in the Volcano

system [128]. Push-based engines are widely used in streaming systems [150]. The query

compilers of systems such as HyPer [255] and LegoBase [199, 300] (cf. Chapter 2) use a

push-based query engine approach. In Chapter 4, we showed the connection between the

push-based engines and the fold-fusion approach, as well as the pull-based engines and the

unfold-fusion approach.

9.4 Memory Management

Programming Languages without GC. Functional programming languages without garbage

collection dates back to Linear Lisp [24]. However, most functional languages (dating back to

Lisp in around 1959) use garbage collection for managing memory.

Region-based memory management [339] was first introduced in ML and then in an extended

version of C, called Cyclone [133], as an alternative or complementary technique to in order

to remove the need for runtime garbage collection. This is achieved by allocating memory

regions based on the liveness of objects. This approach improves both performance and

memory consumption in many cases. However, in many cases the size of the regions is not

known, whereas in our approach the size of each storage location is computed using the

shape expressions. Also, in practice there are cases in which one needs to combine this

technique with garbage collection [141], as well as cases in which the performance is still not

satisfying [36, 337]. Furthermore, the complexity of region inference hinders the maintenance

234



9.4. Memory Management

of the compiler, in addition to the overhead it causes for compilation time.

Safe [247, 246] suggests a simpler region inference algorithm by restricting the language to a

first-order functional language. Also, linear regions [111] relax the stack discipline restriction

on region-based memory management, due to certain usecases which use recursion and

need an unbounded amount of memory. A Haskell implementation of this approach is given

in [198]. The situation is similar for the linear types employed in Rust; due to loops it is not

possible to enforce stack discipline for memory management. However, F̃ offers a restricted

form of recursion, which always enforces a stack discipline for memory management.

Push-Arrays There is a close connection between so-called push arrays [326, 15, 66] and

destination-passing style. A push-array is represented by an effectful function that, given

an index and a value, will write the value into the array. This function closure captures the

destination, so a program using push arrays is also using a form of destination-passing style.

There are many differences, however. Our functions are transformed to destination-passing

style, rather than our arrays. Our transformation is not array-specific, and can apply to

any large object. Even though our basic array primitives are based on explicit indices, they

are referentially transparent and may be read purely functionally. Our focus is on efficient

allocation and freeing of array memory, which is not mentioned in the push-array literature. It

may not be clear when the memory backing a push-array can be freed, whereas it is clear by

construction in our work, and we guarantee to run without a garbage collector. Unsurprisingly,

this guarantee comes with a limitation on expressiveness: we cannot handle operations such

as filter, whose result size is data-dependent (cf. Section 5.3.7). Happily a large class of

important applications can be expressed in our language, and enjoy its benefits.

Estimation of Memory Consumption. One can use type systems for estimating memory

consumption. Hofmann and Jost [154] enrich the type system with certain annotations and

uses linear programming for the heap consumption inference. Another approach is to use

sized types [348] for the same purpose.

Size slicing [146] uses a technique similar to ours for inferring the shape of arrays in the Futhark

programming language. However, in F̃ we guarantee that shape inference is simplified and is

based only on size computation, whereas in their case, they rely on compiler optimizations

for its simplification and in some cases it can fall back to inefficient approaches which in

the worst case could be as expensive as evaluating the original expression [154]. The FISh

programming language [166] also makes shape information explicit in programs, and resolves

the shapes at compilation time by using partial evaluation, which can also be used for checking

shape-related errors [167]. Our shape translation (Section 5.3.3) is very similar to their shape

analysis, but their purposes differ: theirs is an analysis, while ours generates for every function

f a companion shape function that (without itself allocating) computes f ’s space needs; these

companion functions are called at runtime to compute memory needs.

Optimizing Tail Calls. Destination-passing style was originally introduced in [213], then was

encoded functionally in [242] by using linear types [359]. Walker and Morrisett [360] use

235



Chapter 9. Related Work

extensions to linear type systems to support aliasing which is avoided in vanilla linear type

systems. The idea of destination-passing style has many similarities to tail-recursion modulo

cons [115, 356].

9.5 Differentiation

Automatic Differentiation. There is a large body of work on automatic differentiation (AD)

of imperative programming languages. Tapenade [143] performs AD for a subset of C and

Fortran, whereas, ADIFOR [37] performs AD for Fortran programs. Adept [155] and ADIC [254]

perform automatic differentiation for C++ by using expression templates. However, as we have

seen in our experimental results, an AD tool such as Tapenade misses several optimization

opportunities, mainly due to their limited support for loop fusion.

ADiMat [38], ADiGator [362], and Mad [112] perform AD for MATLAB programs, whereas Mu-

PAD [151] computes the derivatives using symbolic differentiation. AutoGrad [228] performs

AD for Python programs that use NumPy library for array manipulation, whereas Theano [31]

uses symbolic differentiation. Tensorflow [5] performs source-to-source reverse-mode AD,

and uses advanced heuristics to solve the memory inefficiencies. ForwardDiff [284] employs

vector forward-mode AD [194] for differentiating Julia programs. This system keeps a vector of

derivative values in the dual number instead of only a single derivative value. All these systems

miss important optimization opportunities such as loop fusion.

DiffSharp [28] is an AD library implemented in F#. This library provides both forward-mode

and reverse-mode AD techniques. As DiffSharp is a library implementation of AD (in contrast

to Lago, which implements AD as source-to-source transformation rules), it cannot not

support the simplification rules such as loop-invariant code motion, loop fusion, and partial

evaluation. Furthermore, Lago can efficiently manage memory by generating C code using

DPS, whereas DiffSharp should rely on the garbage collection provided by the .NET framework

for memory management.

Stalingrad [273] is an optimizing compiler for a dialect of Scheme with a first-class AD operator,

with the support for both forward mode and reverse mode of AD. One of the key challenges

that Stalingrad addresses is perturbation confusion [306], which occurs for computing the

derivative of the functions for which the derivatives are already computed, or the cases where

we need the computation of nested differentiation [272]. We have shown in Section 6.3.3 how

Lago resolves the perturbation confusion problem. One key limitation of Stalingrad is the lack

of support for variable-size vectors; Stalingrad only supports a statically-known-size list of

elements which are unfolded using Scheme macros.

Karczmarczuk [183] presents a Haskell implementation for both forward and reverse mode AD.

Elliott [98] improves this work by giving a more elegant implementation for its forward mode

AD. These implementations lack the optimizations offered by transformation rules, such as

loop fusion.

236



9.6. Incrementalization

Numerical DSLs and Differentiation. There are many DSLs for numerical workloads. These

DSLs can be classified in three categories. The first category consists of mainstream pro-

gramming languages used by data analysts such as MATLAB and R. These languages offer

many toolboxes for performing a wide range of tasks, however, from a performance point of

view the focus is only on the efficient implementation of the libraries. The second category

consists of DSLs such as Lift [315], Opt [90], Halide [278], Diderot [62], and OptiML [321],

which generate parallel code from their high-level programs. The third category is the DSLs

which focus on generating efficient machine code for fixed size linear algbra problems such as

Spiral [277] and LGen [310]. These DSLs exploit the memory hierarchy by relying on searching

algorithms for making tiling and scheduling decisions. Except the first category, for which

automatic differentiation tools exist, the other DSLs do not have any support for automatic

differentiation. Moreover, parallel code generation and efficient machine code generation are

orthogonal concepts and can be added to Lago in the future.

9.6 Incrementalization

Computer Algebra Systems. CAS are software programs for the automation of tedious and dif-

ficult algebraic manipulation tasks; some perform symbolic computations including differen-

tiation and integration. Examples include Mathematica [367], MAPLE [245] and Theano [334].

Lago performs symbolic computation in a sense that it derives ∆ expressions using the reduc-

tion rules that we present in this thesis. Lago differs from typical CAS in its ability to derive

incremental programs; perform cost-based optimization; and generate efficient specialized

code.

Automatic Differentiation. As we discussed, Automatic differentiation (AD) [187] tools au-

tomatically computie the derivative of a given program, which makes them an essential

component of the current machine learning frameworks. Even though there is a strong anal-

ogy between forward-mode AD and our delta derivation process (e.g., delta/differentiation

derivation rules such as ∆x 7→x+1(x2) → 2x +1 and (x2)′ → 2x and binding intermediate subex-

pressions to new variables), delta derivation is based on discrete differences rather than

differentials. It would be interesting to see if there is an equivalent of backward-mode AD for

incremental computation.

Abstract Interpretation. The idea of abstract interpretation dates back to the 70s [70]. In the

context of databases, this technique has been used by [250] to derive provenance information

in SQL programs. Lago uses abstract interpretation for guiding the synthesis of incremental

analytics; abstract interpretation provides a powerful framework for assigning semantics to

alternative optimizer options, allowing the generation of highly optimized code.

Scientific Databases. RasDaMan [26] and AML [233] represent database systems that are spe-

cialized in array processing. They provide infrastructure for expressing and optimizing queries

over multidimensional arrays. Queries are translated into an array algebra and optimized

using a large collection of transformation rules. ASAP [318] supports scientific computing

237



Chapter 9. Related Work

primitives on a storage manager optimized for storing multidimensional arrays. Additionally,

RIOT [381] provides an efficient out-of-core framework for scientific computing. However,

none of these systems support incremental computation. In contrast, Lago is specialized for

supporting IVM of matrix programs. Moreover, it provides a generic unified framework for

different semiring configurations of matrix algebra.

High Performance Computing. There is high demand for efficient matrix manipulation in

numerical and scientific computing. BLAS [95] exposes a set of low-level routines that repre-

sent common linear algebra primitives for higher-level libraries including LINPACK, LAPACK,

and ScaLAPACK for parallel processing. Hardware vendors such as Intel or AMD and code

generators such as ATLAS [363] provide highly optimized BLAS implementations for dense

linear algebra. Moreover, other works such as Combinatorial BLAS [48, 94] provide efficient

BLAS implementations dedicated for sparse linear algebra. All of this work is orthogonal to

Lago as it operates at a higher level of abstraction. In essence, IVM translates input matrix

programs to trigger code that calls cheaper matrix BLAS primitives.

Iterative Computation. Recently, there has been a growing interest in designing frameworks

for iterative and incremental computation. The differential dataflow model [236] presents a

new methodology to model incremental computation for iterative algorithms. Their approach

relies on the assumption that input changes result in small changes down the road. However,

this assumption does not hold for matrix algebra programs because of the avalanche effect

of input changes as described in this thesis. For iterative applications under the MapReduce

framework, several systems [46, 96, 380] have been proposed. They present techniques that

cache and index loop-invariant data on local disks and persist materialized views between

iterations. Moreover, Dryad [164] and Spark [377] represent systems that support iterative

computation under the general DAG execution model. Mahout, MLbase [207] and others [81,

351, 241] provide scalable machine learning and data mining tools. All these systems are

orthogonal to Lago. Our work is concerned with the design and implementation of a compiler

framework for the incremental view maintenance of matrix algebra. Moreover, the framework

can be easily coupled with any of these underlying systems at the code generation layer as we

illustrate in the evaluation section § 7.6 with Spark.

IVM and Stream Processing. Incremental View Maintenance techniques [39, 205, 138] support

incremental updates of database materialized views by employing differential algorithms to

re-evaluate the view expression. Chirkova et al. [61] present a detailed survey on this direction.

Moreover, data stream processing engines [1, 249, 18] incrementally evaluate continuous

queries as windows advance over unbounded input streams. In contrast to all the previous

approaches, Lago targets incremental maintenance of linear algebra programs as opposed

to classical database (SQL) queries. The linear algebra domain has different semantics and

primitives; thus, the challenges and optimization techniques widely differ.

Graph Analytics. There is plethora of frameworks dedicated for graph processing including

Powergraph [126], Pregel [230], GraphLab [226, 227], GraphChi [209], and Galois [256]. They

238



9.6. Incrementalization

provide various programming models specialized for graph processing based on Bulk Syn-

chronous Programming. Recently, there has been work on representing graph algorithms

using sparse matrix manipulation operations including CombBLAS [48] and [94]. However,

none of these systems support incremental computation. There have been several works

that target incremental computation of specific graph problems [65, 132], including connec-

tivity [156], minimum spanning tree [156], transitive closure [86, 87], and all-pairs shortest

path [88, 196, 88]. However, each of these solutions aim at a particular graph problem and

are not represented as matrix computations. In contrast, Lago provides a general matrix

framework that supports graph IVM, cost-based optimization, and low-level specializations.

Linear Algebra DSLs. The Spiral [277] project provides a domain-specific compiler for syn-

thesizing Digital Signal Processing kernels, e.g., Fourier transforms. The authors present the

SPL [371] language that expresses recursion and formulas in a mathematical form. They

present a framework that optimizes at the algorithmic and implementation level and that

uses runtime information to guide the synthesis process. The LGen compiler [309] targets

small scale basic linear algebra computations of fixed size linear algebra expressions which

are common in graphics and media processing applications. The authors present two level

DSLs, namely LL to perform tiling decisions and Σ-LL to enable loop level optimizations. The

generated output is a C function that includes intrinsics to enable SIMD vector extensions.

Orthogonally, Lago targets IVM of LA programs for different domains, i.e., semiring config-

urations, and is restricted to high-level optimizations. The closest to our work is the basic

linear algebra compiler presented in [104]. It decomposes a linear algebra target equation into

a sequence of computations provided by BLAS or LAPACK and generates associated Matlab

code. Similar to our work, their approach exploits domain knowledge and properties of the

operands by rewriting and inference rules. However, we focus on IVM and optimization under

this setting.

PageRank. There is a large body of literature focusing on various aspects of the PageRank

problem, including the Markov chain model, sensitivity and conditioning, and the updating

problem. Langville et al. [211] and Berkhin et al. [32] provide detailed surveys about such topics.

In particular, the updating problem examines the effect of delta perturbations on the various

Markov chain and PageRank models, ranging from sensitivity analysis to approximation

and exact evaluation methods. These methods and techniques particularly target specific

models. On the other hand, this report introduces a novel framework for efficient incremental

evaluation of general linear algebra programs under various semiring domains using domain-

specific transformations, cost-based optimizations, and efficient code generation.

Incremental Statistical Frameworks. Bayesian inference [30] uses the Bayes’ rule to update

the hypothesis’s probability estimate as additional evidence is acquired. A variety of applica-

tions can be built on top of these frameworks including pattern recognition and classification.

Our work focuses on incrementalizing applications that can be expressed as linear algebra

programs and generating efficient incremental programs for different runtime environments.

239



Chapter 9. Related Work

Incremental Computation in Programming Languages. The PL community has extensively

explored the direction of incremental computation and information flow [55]. They have

developed compilation techniques that translate high-level programs into executables that

are amenable to dynamic changes. Moreover, self-adjusting computation supports incremen-

tal computation by exploiting dynamic dependency graphs and change propagation algo-

rithms [6, 55]. However, these approaches differ from our work on several dimensions:a) Firstly,

they target general purpose programs in comparison to our domain-specific approach. b) Sec-

ondly, they require developer knowledge and involvement by annotating the modifiable parts

of the program. c) Finally, they cannot capture the propagation of deltas across statements

and efficiently represent them in a compressed form as presented in this thesis.

240



10 Conclusions and Future Work

The PL and compilers communities have a massive literature on optimizing programs written

in high-level languages. On the other hand, the DB community has introduced one of the most

successful domain-specific languages, SQL, together with many techniques for optimizing

queries in this language.

In this thesis, we showed how such multi-disciplinary techniques can be combined for building

three different data analytics systems. We first showed the design of SC, a compiler framework

for building efficient and high-level data analytics systems. Then, we presented the LegoBase

system and the challenges that we tackled for building efficient query engines in a high-level

language. Then, we presented the design and implementation of the dF̃ system for efficiently

computing the derivative of computer vision and machine learning programs. Finally, we

presented Lago, for efficiently and incrementally computing complex analytics tasks expressed

by linear algebra, such as some machine learning functions and all-pairs variants of several

graph algorithms.

There are still many existing techniques in these communities that can be adapted for effi-

cient data analytics. The idea of using search algorithms for optimizing programs has been

successfully used in the query optimizer component of database systems. We showed how

to use the cost-based optimization technique for the Lago system. Similary, this technique

can be used for automating the process of choosing the right set of optimizations for both

LegoBase and dF̃ systems.

There are two key challenges for using the cost-based optimization technique. First, one

has to have an estimatation of the run-time cost of a given program. Second, searching

among different versions of the same program becomes close to impossible for large search

spaces. The former problem has been the topic of research in the PL and formal methods

communities [176, 154, 78, 13]. Most of the existing work focuses mainly on the soundness

of the cost approximation, which is useful for verification purposes. However, in program

optimization we are more interested in the expected run-time cost. For Turing-complete

programming languages even determining the termination of a program is undeciable. By

241



Chapter 10. Conclusions and Future Work

restricting the programming language for which we perform the cost estimation, e.g., to a

restricted DSL, one can achieve more precise cost estimation, as demonstrated in OCAS [201]

and Lago. One solution to the latter problem is using randomized search algorithms such

as the ones used for query optimization [163] and Monte-Carlo Tree Search [84]. Also, it is

possible to use more advanced machine learning techniques such as deep reinforcement

learning, which is used for solving challenging AI problems such as beating professional

players in Atari games [243] and Go [304, 305].

Another future direction is to extend the incrementalization techniques used in Lago for other

types of applications that can be formulated using linear algebra. Also, another direction is to

support incrementalization for lower level languages such as F̃. This way, one can leverage

the benefits of incrementalization for a wider range of applications, such as differentiable

programming.

Furthermore, thanks to the extensibility of the systems presented in this thesis, one can add

other target backends. One possible direction is to generate JavaScript query engines similar

to AfterBurner [97] for performing in-browser analytics.

In all of the presented systems, we have either assumed that we run on a single-threaded

architecture, or we relied on the runtime environment for handling parallelism. As mentioned

in Section 3.8 one can use the well-studied intra-operator parallelism from the DB litera-

ture [128, 237], without modifications to the rest of the components. Also, one can exploit the

vectorization intrinsics offered by the underlying architecture (e.g., SIMD instructions [383])

for both LegoBase and dF̃ systems.

Finally, it has been already noted in the DB community [316] that the “one size fits all” belief

no longer holds; one should build a specialized DBMS for different types of workloads. The

systems presented in this thesis, as well as the ones we propose in this section, can be built as

a single framework. This enables sharing many components among these systems. By using a

library of optimizations, we can rely on the optimizing compiler to perform the specialization

process [204]. Similarly, one can extend the abstraction without regret vision for building other

types of performance-critical systems such as operating systems and networked systems.

242



A Absolute Execution Times of LegoBase
Experiments

For completeness, the following tables present the absolute performance results of all evaluated

systems and metrics in the experimental chapter of thesis.

System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

DBX 1790 396 1528 960 19879 882 969 2172 3346 985 461
Compiler of HyPer 779 43 892 622 338 198 798 493 2139 565 102
LegoBase
(Naive/C) – LLVM

3140 755 5232 10742 3627 357 2901 23161 26203 3836 409

LegoBase
(Naive/C) – GCC

3140 801 5204 10624 3652 423 2949 19961 25884 3966 445

LegoBase
(Naive/Scala)

3972 6910 11118 30103 10307 654 114677 9852 137369 18367 1958

LegoBase(TPC-H/C) 593 55 767 445 440 199 975 2871 2387 546 98
LegoBase(StrDict/C) 592 47 759 402 439 197 781 346 2027 544 103
LegoBase(Opt/C) 426 42 110 134 126 47 104 18 530 439 49
LegoBase(Opt/Scala) 2174 871 352 306 413 356 9496 104 2296 775 197

System Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

DBX 881 13593 823 578 12793 1224 4535 6432 744 1977 447
Compiler of HyPer 485 2333 197 229 590 490 3682 1421 277 1321 212
LegoBase
(Naive/C) – LLVM

3037 12794 1289 889 16362 18893 4135 2810 974 11648 1187

LegoBase
(Naive/C) – GCC

3286 13149 1398 899 16159 18410 4174 4460 1055 11848 1396

LegoBase
(Naive/Scala)

3565 7909 4424 1543 10568 3503 15798 4470 5301 50998 4207

LegoBase(TPC-H/C) 891 5106 244 550 2774 513 2725 2020 370 1992 453
LegoBase(StrDict/C) 688 910 204 535 702 445 2735 1222 370 1706 333
LegoBase(Opt/C) 120 516 11 46 695 11 133 19 130 388 79
LegoBase(Opt/Scala) 604 7743 136 234 2341 274 355 125 700 955 406

Table A.1 – Execution times (in milliseconds) of Figure 2.11 and Figure 2.12. The various
configurations of LegoBase are explained in more detail in Table 2.2 of this thesis.

243



Appendix A. Absolute Execution Times of LegoBase Experiments

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

LegoBase (Naive/C) – LLVM 3140 755 5232 10742 3627 357 2901 23161 26203 3836 409
+Struct Field Removal 3104 734 4480 10346 2983 202 2394 18707 24125 3323 403
+Domain-Specific Code Mo-
tion

1047 794 4283 10435 2902 196 2203 18507 23854 3177 332

+Data-Structure Specializa-
tion

497 44 918 148 130 172 96 75 498 610 52

+Date Indices 497 47 213 140 131 52 96 60 568 553 49
+String Dictionaries 497 43 158 140 130 51 94 17 533 552 47
LegoBase(Opt/C) 426 42 110 134 126 47 104 18 530 439 49

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

LegoBase (Naive/C) – LLVM 3037 12794 1289 889 16362 18893 4135 2810 974 11648 1187
+Struct Field Removal 2631 11291 812 420 16068 17953 4070 2550 736 10647 970
+Domain-Specific Code Mo-
tion

2553 9415 786 495 15251 18063 3050 2568 742 10386 985

+Data-Structure Specializa-
tion

467 2389 291 277 4243 47 2709 62 168 410 300

+Date Indices 308 2233 38 40 4737 39 2718 46 168 392 291
+String Dictionaries 125 1379 16 52 860 13 2730 20 136 389 299
LegoBase(Opt/C) 120 516 11 46 695 11 133 19 130 388 79

Table A.2 – Execution times (in milliseconds) of TPC-H queries with individual optimizations
applied (as shown in Figure 2.14 of this thesis). Each listed optimization is applied additionally
to the set of optimizations applied in the system specified above it.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

Memory Consumption 7.86 6.20 10.45 6.39 7.56 10.88 14.51 8.72 15.30 14.35 7.53
Loading Time (No opt.) 34 7 44 42 43 33 43 46 45 44 5
Loading Time (All opt.) 38 10 52 47 49 39 55 56 61 52 10
SC Optimization 429 633 482 323 663 128 547 918 608 498 317
CLang C Compilation 354 509 482 359 418 179 332 346 320 507 378

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Memory Consumption 9.73 8.72 11.06 11.64 1.81 9.26 10.92 7.81 11.77 7.86 5.36
Loading Time (No opt.) 41 9 36 34 7 34 42 35 38 41 9
Loading Time (All opt.) 53 135 42 38 10 47 47 52 53 52 13
SC Optimization 310 215 295 255 518 248 321 357 420 411 389
CLang C Compilation 449 386 454 329 563 461 382 552 566 507 365

Table A.3 – Memory consumption in GB, input data loading time in seconds, and optimiza-
tion/compilation time in milliseconds as shown in Figure 2.15, Figure 2.16, and, Figure 2.18 of
this thesis, respectively.

244



Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
DBX 87.56 80.01 79.85 82.23 83.37 78.35 84.83 87.22 79.97 80.49 86.82
HyPer 73.45 73.01 73.09 72.97 73.39 73.15 70.86 68.12 66.79 72.71 73.54
LegoBase 62.26 44.34 60.03 70.39 49.35 67.04 28.33 51.9 56.59 59.25 59.3

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22
DBX 82.25 81.11 87.1 88.15 80.83 94.37 88.34 86.45 79.44 96.49 96.77
HyPer 71.02 74.07 74.17 72.8 72.3 73.36 70.54 73.19 71.88 71.17 69.25
LegoBase 64.3 53.73 67.02 62.09 62.7 46.72 60.11 56.31 46.87 28.5 35.72

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
DBX 1.1 3.01 0.21 0.33 2.17 1.24 0.32 2.85 3.12 0.48 3.09
HyPer 2.26 2.41 2.37 2.38 2.47 2.38 2.36 2.41 2.37 2.46 2.44
LegoBase 1.66 0.95 1.55 1.83 1.71 2.19 1.85 2.4 1.77 1.69 0.59

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22
DBX 1.95 0.32 0.34 2.41 3.01 2.96 2.12 0.5 2.29 3.01 3.01
HyPer 2.38 2.57 2.81 2.41 2.55 2.59 2.32 2.35 2.43 2.59 2.59
LegoBase 2.22 0.46 1.85 2.38 0.88 1.7 1.28 2.22 1.47 1.8 2.58

Table A.4 – Cache Miss Ratio (%) and Branch Misprediction Rate (%) for DBX, HyPer and
LegoBase, respectively, as shown in Figure 2.13 of this thesis.

245





B Code Snippet for the Partitioning
Transformer of LegoBase

Next, we present a portion of the data partitioning transformation, an explanation of which

was given in Section 2.3.2. This code corresponds to the join processing for equi-joins (and

not the actual partitioning of input data), but similar rules are employed for other join types

as well. The aim of this snippet is to demonstrate the ease-of-use of the SC compiler.

/* A transformer for partitioning and indexing MultiMap data−structures. As a result,
this

transformation converts MultiMap operations to native Array operations. */
class HashTablePartitioning extends RuleBasedTransformer {

val allMaps = mutable.Set[Any]()
var currentWhileLoop: While = _

/* −−−− ANALYSIS PHASE −−−− */
/* Gathers all MultiMap symbols which are holding a record as their value */
analysis += statement {

case sym −> code"new MultiMap[_, $v]" if isRecord(v) => allMaps += sym
}

/* Keeps the closest while loop in scope (used in the next analysis rule)*/
analysis += rule {

case whileLoop @ code"while($cond) $body" => currentWhileLoop = whileLoop
}

/* Maintain necessary information for the left relation */
analysis += rule {

case code"($mm: MultiMap[_,_]).addBinding(struct_field($struct,
$fieldName),$value)"

=> mm.attributes("addBindingLoop") = currentWhileLoop
}

/* Maintain necessary information for the right relation */

247



Appendix B. Code Snippet for the Partitioning Transformer of LegoBase

analysis += rule {
case code"($mm : MultiMap[_, _]).get(struct_field($struct, $fieldName))" =>

mm.attributes("partitioningStruct") = struct
mm.attributes("partitioningFieldName") = fieldName

}

/* −−−− REWRITING PHASE −−−− */
def shouldBePartitioned(mm: Multimap[Any, Any]) = allMaps.contains(mm)

/* If the left relation should be partitioned, then remove the ‘addBinding‘ and ‘get‘
function calls for this multimap, as well as any related loops. Notice that there is
no need to remove the multimap itself, as DCE will do so once all of its dependent
operations have been removed.*/

rewrite += remove {
case code"($mm: MultiMap[Any, Any]).addBinding($elem, $value)" if

shouldBePartitioned(mm) =>
}

rewrite += remove {
case code"($mm: MultiMap[Any, Any]).get($elem)" if shouldBePartitioned(mm) =>

}
rewrite += remove {

case node @ code"while($cond) $body" if allMaps.exists({
case mm => shouldBePartitioned(mm) && mm.attributes("addBindingLoop") ==

node
}) =>

}

/* If a MultiMap should be partitioned, instead of the construction of that MultiMap
object, use the corresponding partitioned array constructed during data−loading.
This can be an 1D or 2D array, depending on the properties and relationships of the
primary and foreign keys of that table (described in Section 3.2.1 in more detail). */

rewrite += statement {
case sym −> (code"new MultiMap[_, _]") if shouldBePartitioned(sym) =>

getPartitionedArray(sym)
}

/* Rewrites the logic for extracting matching elements of the left relation (initially
using the HashMap), inside the loop iterating over the right relation. */

rewrite += rule {
case code"($mm:MultiMap[_,_]).get($elem).get.foreach($f)" if

shouldBePartitioned(mm) =>{
val leftArray = transformed(mm)
val hashElem = struct_field(mm.attributes("partitioningStruct"),

mm.attributes("partitioningField"))
val leftBucket = leftArray(hashElem)
/* In what follows, we iterate over the elements of the bucket, even though the

248



partitioned array may be an 1D−array as discussed in Section 3.1.2. There is
another optimization in the pipeline which flattens the for loop of this case. */

for(e <− leftBucket) {
/* Function f corresponds to checking the join condition and creating the join

output. This functionality remains the same, thus, we can simply inline the
related code here as follows */

${f(e)}
}

}

/* For a partitioned relation, there is no need to check for emptiness, due to primary /
foreign key relationship. The if (true) is later removed by another optimization. */

rewrite += rule {
case code"($mm: MultiMap[Any, Any]).get($elem).nonEmpty" if

shouldBePartitioned(mm) =>
true

}
}

249





C TPC-H Schema and Queries

The TPC-H schema is shown in the following figure, which is taken from the original bench-

mark specification [343]. SF stands for Scaling Factor, and configures the cardinality of each

relation. Attributes marked with the key symbol form the primary key of the corresponding

relation. The arrows point in the direction of the one-to-many relationships between tables.
TPC-H Q1

Figure C.1 – The TPC-H schema.

251



Appendix C. TPC-H Schema and Queries

SELECT L_RETURNFLAG, L_LINESTATUS, SUM(L_QUANTITY) AS SUM_QTY,
SUM(L_EXTENDEDPRICE) AS SUM_BASE_PRICE, SUM(L_EXTENDEDPRICE*(1−L_DISCOUNT)) AS SUM_DISC_PRICE,
SUM(L_EXTENDEDPRICE*(1−L_DISCOUNT)*(1+L_TAX)) AS SUM_CHARGE, AVG(L_QUANTITY) AS AVG_QTY,
AVG(L_EXTENDEDPRICE) AS AVG_PRICE, AVG(L_DISCOUNT) AS AVG_DISC, COUNT(*) AS COUNT_ORDER

FROM LINEITEM
WHERE L_SHIPDATE <= DATE ’1998−09−02’
GROUP BY L_RETURNFLAG, L_LINESTATUS
ORDER BY L_RETURNFLAG, L_LINESTATUS

TPC-H Q2
SELECT TOP 100 S_ACCTBAL, S_NAME, N_NAME, P_PARTKEY, P_MFGR, S_ADDRESS, S_PHONE, S_COMMENT
FROM SUPPLIER JOIN PARTSUPP ON S_SUPPKEY = PS_SUPPKEY

JOIN NATION ON S_NATIONKEY = N_NATIONKEY
JOIN PART ON PS_PARTKEY = P_PARTKEY
JOIN REGION ON N_REGIONKEY = R_REGIONKEY
JOIN (

SELECT P_PARTKEY, MIN(PS_SUPPLYCOST) AS MIN_PS_SUPPLYCOST
FROM SUPPLIER JOIN PARTSUPP ON S_SUPPKEY = PS_SUPPKEY

JOIN NATION ON S_NATIONKEY = N_NATIONKEY
JOIN PART ON PS_PARTKEY = P_PARTKEY
JOIN REGION ON N_REGIONKEY = R_REGIONKEY

WHERE P_SIZE = 43 AND P_TYPE LIKE ’%%TIN’ AND R_NAME = ’AFRICA’
GROUP BY P_PARTKEY

) AS TMP_VIEW ON P_PARTKEY = TMP_VIEW.P_PARTKEY AND PS_SUPPLYCOST = MIN_PS_SUPPLYCOST
WHERE P_SIZE = 43 AND P_TYPE LIKE ’%%TIN’ AND R_NAME = ’AFRICA’
ORDER BY S_ACCTBAL DESC, N_NAME, S_NAME, P_PARTKEY

TPC-H Q3
SELECT TOP 10 L_ORDERKEY, SUM(L_EXTENDEDPRICE*(1−L_DISCOUNT)), O_ORDERDATE, O_SHIPPRIORITY
FROM CUSTOMER JOIN ORDERS ON C_CUSTKEY = O_CUSTKEY

JOIN LINEITEM ON O_ORDERKEY = L_ORDERKEY
WHERE C_MKTSEGMENT = ’HOUSEHOLD’ AND

O_ORDERDATE < DATE ’1995−03−04’ AND L_SHIPDATE > DATE ’1995−03−04’
GROUP BY L_ORDERKEY, O_ORDERDATE, O_SHIPPRIORITY
ORDER BY REVENUE DESC, O_ORDERDATE

TPC-H Q4
SELECT O_ORDERPRIORITY, COUNT(*) AS ORDER_COUNT
FROM ORDERS LEFT SEMI JOIN LINEITEM ON O_ORDERKEY = L_ORDERKEY AND L_COMMITDATE < L_RECEIPTDATE
WHERE O_ORDERDATE >= DATE ’1993−08−01’ AND O_ORDERDATE < DATE ’1993−11−01’
GROUP BY O_ORDERPRIORITY
ORDER BY O_ORDERPRIORITY

TPC-H Q5
SELECT N_NAME, SUM(L_EXTENDEDPRICE*(1−L_DISCOUNT)) AS REVENUE
FROM REGION JOIN NATION ON R_REGIONKEY = N_REGIONKEY
JOIN CUSTOMER ON N_NATIONKEY = C_NATIONKEY
JOIN ORDERS ON C_CUSTKEY = O_CUSTKEY
JOIN LINEITEM ON O_ORDERKEY = L_ORDERKEY
JOIN SUPPLIER ON L_SUPPKEY = S_SUPPKEY AND N_NATIONKEY = S_NATIONKEY
WHERE R_NAME = ’ASIA’ AND O_ORDERDATE >= DATE ’1996−01−01’ AND O_ORDERDATE < DATE ’1997−01−01’
GROUP BY N_NAME
ORDER BY REVENUE DESC

TPC-H Q6
SELECT SUM(L_EXTENDEDPRICE * L_DISCOUNT) AS REVENUE FROM LINEITEM
WHERE L_SHIPDATE >= DATE ’1996−01−01’ AND L_SHIPDATE < DATE ’1997−01−01’
AND L_DISCOUNT BETWEEN 0.08 AND 0.1 AND L_QUANTITY < 24;

TPC-H Q7

252



SELECT N1.N_NAME, N2.N_NAME, YEAR(L_SHIPDATE), SUM(L_EXTENDEDPRICE*(1−L_DISCOUNT)) AS VOLUME
FROM NATION N1 JOIN NATION N2

JOIN SUPPLIER ON N1.N_NATIONKEY = S_NATIONKEY
JOIN LINEITEM ON S_SUPPKEY = L_SUPPKEY
JOIN ORDERS ON L_ORDERKEY = O_ORDERKEY
JOIN CUSTOMER ON O_CUSTKEY = C_CUSTKEY AND N2.N_NATIONKEY = C_NATIONKEY

WHERE ((N1.N_NAME = ’UNITED STATES’ AND N2.N_NAME = ’INDONESIA’) OR
(N1.N_NAME = ’INDONESIA’ AND N2.N_NAME = ’UNITED STATES’)) AND

L_SHIPDATE >= DATE ’1995−01−01’ AND L_SHIPDATE <= DATE ’1996−12−31’
GROUP BY N1.N_NAME, N2.N_NAME, O_YEAR
ORDER BY N1.N_NAME, N2.N_NAME, O_YEAR

TPC-H Q8
SELECT YEAR(O_ORDERDATE),
SUM(CASE WHEN N2.N_NAME = ’INDONESIA’ THEN L_EXTENDEDPRICE*(1−L_DISCOUNT) ELSE 0.0 END) /
SUM(L_EXTENDEDPRICE*(1−L_DISCOUNT))

FROM NATION N1 JOIN NATION N2
JOIN REGION ON N1.N_REGIONKEY = R_REGIONKEY
JOIN SUPPLIER ON N2.N_NATIONKEY = S_NATIONKEY
JOIN LINEITEM ON S_SUPPKEY = L_SUPPKEY
JOIN PART ON L_PARTKEY = P_PARTKEY
JOIN ORDERS ON L_ORDERKEY = O_ORDERKEY
JOIN CUSTOMER ON O_CUSTKEY = C_CUSTKEY AND N1.N_NATIONKEY = C_NATIONKEY

WHERE R_NAME = ’ASIA’ AND O_ORDERDATE >= DATE ’1995−01−01’ AND O_ORDERDATE < DATE ’1996−12−31’
AND P_TYPE = ’MEDIUM ANODIZED NICKEL’

GROUP BY O_YEAR
ORDER BY O_YEAR

TPC-H Q9
SELECT N_NAME, YEAR(O_ORDERDATE), SUM(L_EXTENDEDPRICE*(1−L_DISCOUNT)−PS_SUPPLYCOST *

L_QUANTITY)
FROM LINEITEM JOIN PART ON L_PARTKEY = P_PARTKEY

JOIN SUPPLIER ON L_SUPPKEY = S_SUPPKEY
JOIN NATION ON S_NATIONKEY = N_NATIONKEY
JOIN PARTSUPP ON L_PARTKEY = PS_PARTKEY AND L_SUPPKEY = PS_SUPPKEY
JOIN ORDERS ON L_ORDERKEY = O_ORDERKEY

WHERE P_NAME LIKE ’%%ghost%%’
GROUP BY N_NAME, O_YEAR
ORDER BY N_NAME, O_YEAR DESC

TPC-H Q10
SELECT TOP 20 C_CUSTKEY, C_NAME, SUM(L_EXTENDEDPRICE*(1−L_DISCOUNT)) AS REVENUE,

C_ACCTBAL, N_NAME, C_ADDRESS, C_PHONE, C_COMMENT
FROM LINEITEM JOIN ORDERS ON L_ORDERKEY = O_ORDERKEY

JOIN CUSTOMER ON O_CUSTKEY = C_CUSTKEY
JOIN NATION ON C_NATIONKEY = N_NATIONKEY

WHERE O_ORDERDATE >= DATE ’1994−11−01’ AND O_ORDERDATE < DATE ’1995−02−01’ AND L_RETURNFLAG = ’R’
GROUP BY C_CUSTKEY, C_NAME, C_ACCTBAL, C_PHONE, N_NAME, C_ADDRESS, C_COMMENT
ORDER BY REVENUE DESC

TPC-H Q11
SELECT PS_PARTKEY, SUM(PS_SUPPLYCOST*PS_AVAILQTY) AS VALUE
FROM NATION JOIN SUPPLIER ON N_NATIONKEY = S_NATIONKEY

JOIN PARTSUPP ON S_SUPPKEY = PS_SUPPKEY
WHERE N_NAME = ’UNITED KINGDOM’
GROUP BY PS_PARTKEY
HAVING VALUE > (

SELECT SUM(PS_SUPPLYCOST * PS_AVAILQTY * 0.0001000000) AS TOTAL
FROM NATION JOIN SUPPLIER ON N_NATIONKEY = S_NATIONKEY

JOIN PARTSUPP ON S_SUPPKEY = PS_SUPPKEY
WHERE N_NAME = ’UNITED KINGDOM’

)

253



Appendix C. TPC-H Schema and Queries

ORDER BY VALUE DESC

TPC-H Q12
SELECT L_SHIPMODE,

SUM(CASE WHEN O_ORDERPRIORITY = ’1−URGENT’ OR O_ORDERPRIORITY = ’2−HIGH’ THEN 1.0 ELSE 0.0 END)
AS HIGH_LINE_COUNT,

SUM(CASE WHEN O_ORDERPRIORITY <> ’1−URGENT’ AND O_ORDERPRIORITY <> ’2−HIGH’ THEN 1.0 ELSE 0.0 END )
AS LOW_LINE_COUNT

FROM ORDERS JOIN LINEITEM ON O_ORDERKEY = L_ORDERKEY
WHERE (L_SHIPMODE = ’MAIL’ OR L_SHIPMODE = ’SHIP’)

AND L_COMMITDATE < L_RECEIPTDATE AND L_SHIPDATE < L_COMMITDATE
AND L_RECEIPTDATE >= DATE ’1994−01−01’
AND L_RECEIPTDATE < DATE ’1995−01−01’

GROUP BY L_SHIPMODE
ORDER BY L_SHIPMODE

TPC-H Q13
SELECT C_COUNT, COUNT(*) AS CUSTDIST
FROM (
SELECT C_CUSTKEY, COUNT(O_ORDERKEY) C_COUNT
FROM CUSTOMER LEFT OUTER JOIN ORDERS ON C_CUSTKEY = O_CUSTKEY
AND O_COMMENT NOT LIKE ’%%customer%%complaints%%’
GROUP BY C_CUSTKEY

) AS C_ORDERS
GROUP BY C_COUNT
ORDER BY CUSTDIST DESC, C_COUNT DESC

Note that there exists an efficient imperative implementation of this query that does not re-

quire any join processing. This implementation operates in two phases. First, we sequentially

scan through the ORDERS table and extract which customers do not satisfy the predicate

O_COMMENT NOT LIKE %́%customer%%complaints%%,́ thus creating an 1-dimensional

array indexed by O_CUSTKEY. This array stores how many orders a specific customer has

(i.e. the C_COUNT aggregation of the query). This is feasible, since LegoBase collects statis-

tics during data loading and infers that C_CUSTKEY has sequential values in the range [0,

#NUM_CLIENTS], where C_CUSTKEY is a primary key. In the second phase, we simply iterate

through this aggregation array, re-aggregating based on the counts. We also note that convert-

ing the join-based physical query plan to the imperative query plan (as described above) is not

currently expressed as a compiler optimization. Instead, for all results reported in this thesis

for Q13, we have implemented the aforementioned logic directly in the physical query plan.

TPC-H Q14
SELECT SUM(CASE WHEN P_TYPE LIKE ’PROMO%%’ THEN L_EXTENDEDPRICE*(1−L_DISCOUNT) * 100 ELSE 0.0 END) /

SUM(L_EXTENDEDPRICE*(1−L_DISCOUNT)) AS PROMO_REVENUE
FROM PART JOIN LINEITEM ON P_PARTKEY = L_PARTKEY
WHERE L_SHIPDATE >= DATE ’1994−03−01’ AND L_SHIPDATE < DATE ’1994−04−01’

TPC-H Q15
SELECT S_SUPPKEY, S_NAME, S_ADDRESS, S_PHONE, TOTAL_REVENUE
FROM SUPPLIER JOIN (

SELECT L_SUPPKEY,
SUM(L_EXTENDEDPRICE*(1.0−L_DISCOUNT)) AS TOTAL_REVENUE

FROM LINEITEM
WHERE L_SHIPDATE >= DATE ’1993−09−01’ AND L_SHIPDATE < DATE ’1993−12−01’
GROUP BY L_SUPPKEY

254



) AS TMP_VIEW
ON S_SUPPKEY = L_SUPPKEY
ORDER BY TOTAL_REVENUE DESC

TPC-H Q16
SELECT P_BRAND, P_TYPE, P_SIZE, COUNT(*) AS SUPPLIER_CNT
FROM (

SELECT COUNT(*) AS CNT
FROM PART JOIN PARTSUPP ON P_PARTKEY = PS_PARTKEY

ANTI JOIN (
SELECT S_SUPPKEY
FROM SUPPLIER
WHERE S_COMMENT LIKE ’%%Customer%%Complaints%%’

) AS TMP_VIEW ON PS_SUPPKEY = S_SUPPKEY
WHERE P_BRAND != ’Brand#21’ AND

P_TYPE NOT LIKE ’PROMO PLATED%%’ AND
(P_SIZE = 23 OR P_SIZE = 3 OR P_SIZE = 33 OR P_SIZE = 29 OR
P_SIZE = 40 OR P_SIZE = 27 OR P_SIZE = 22 OR P_SIZE = 4)

GROUP BY P_BRAND, P_TYPE, P_SIZE, PS_SUPPKEY
) AS TMP_VIEW
GROUP BY P_BRAND, P_TYPE, P_SIZE
ORDER BY SUPPLIER_CNT DESC, P_BRAND, P_TYPE, P_SIZE

TPC-H Q17
SELECT SUM(L_EXTENDEDPRICE) / 7
FROM PART JOIN LINEITEM ON P_PARTKEY = L_PARTKEY

JOIN (
SELECT P_PARTKEY,

AVG(0.2 * L_QUANTITY) AS AVERAGE
FROM LINEITEM JOIN PART ON L_PARTKEY = P_PARTKEY
WHERE P_BRAND = ’Brand#15’ AND

P_CONTAINER = ’MED BAG’
GROUP BY P_PARTKEY

) AS TMP_VIEW
ON P_PARTKEY = TMP_VIEW.P_PARTKEY AND L_QUANTITY < AVERAGE
WHERE P_BRAND = ’Brand#15’ AND P_CONTAINER = ’MED BAG’

TPC-H Q18
SELECT C_NAME, C_CUSTKEY, O_ORDERKEY, O_ORDERDATE, O_TOTALPRICE,

SUM(SUM_L_QUANTITY) AS TOTAL_L_QUANTITY
FROM ORDERS JOIN CUSTOMER ON O_CUSTKEY = C_CUSTKEY

JOIN (
SELECT L_ORDERKEY, SUM(L_QUANTITY) AS SUM_L_QUANTITY
FROM LINEITEM
GROUP BY L_ORDERKEY
HAVING SUM_L_QUANTITY > 300

) AS TMP_VIEW ON O_ORDERKEY = TMP_VIEW.L_ORDERKEY
GROUP BY C_NAME, C_CUSTKEY, O_ORDERKEY, O_ORDERDATE, O_TOTALPRICE
ORDER BY O_TOTALPRICE DESC, O_ORDERDATE

TPC-H Q19
SELECT SUM(L_EXTENDEDPRICE* (1 − L_DISCOUNT)) AS REVENUE
FROM LINEITEM JOIN PART ON L_PARTKEY = P_PARTKEY
WHERE (P_BRAND = ’Brand#31’ AND

(P_CONTAINER = ’SM CASE’ OR P_CONTAINER = ’SM BOX’ OR P_CONTAINER = ’SM PACK’ OR P_CONTAINER = ’SM
PKG’)

AND L_QUANTITY >= 4 AND L_QUANTITY <= 14 AND P_SIZE<=5 AND
(L_SHIPMODE = ’AIR’ OR L_SHIPMODE = ’AIR REG’) AND L_SHIPINSTRUCT = ’DELIVER IN PERSON’

) OR (P_BRAND =’Brand#43’ AND
(P_CONTAINER=’MED BAG’OR P_CONTAINER=’MED BOX’OR P_CONTAINER=’MED PKG’OR P_CONTAINER=’MED

255



Appendix C. TPC-H Schema and Queries

PACK’)
AND L_QUANTITY >=15 AND L_QUANTITY <= 25 AND P_SIZE<=10 AND
(L_SHIPMODE = ’AIR’ OR L_SHIPMODE = ’AIR REG’) AND L_SHIPINSTRUCT = ’DELIVER IN PERSON’

) OR (P_BRAND = ’Brand#43’ AND
(P_CONTAINER = ’LG CASE’ OR P_CONTAINER = ’LG BOX’ OR P_CONTAINER = ’LG PACK’ OR P_CONTAINER = ’LG

PKG’)
AND L_QUANTITY >=26 AND L_QUANTITY <= 36 AND P_SIZE<=15 AND
(L_SHIPMODE = ’AIR’ OR L_SHIPMODE = ’AIR REG’) AND L_SHIPINSTRUCT = ’DELIVER IN PERSON’)

TPC-H Q20
SELECT S_NAME, S_ADDRESS
FROM SUPPLIER JOIN NATION ON S_NATIONKEY = N_NATIONKEY

JOIN (
SELECT SUM(0.5 * L_QUANTITY) AS TOTAL_L_QUANTITY
FROM PART JOIN PARTSUPP ON P_PARTKEY = PS_PARTKEY

JOIN LINEITEM ON PS_PARTKEY = L_PARTKEY AND PS_SUPPKEY = L_SUPPKEY
WHERE L_SHIPDATE >= DATE ’1996−01−01’ AND L_SHIPDATE < DATE ’1997−01−01’ AND

P_NAME LIKE ’azure%%’
GROUP BY PS_PARTKEY, PS_SUPPKEY, PS_AVAILQTY
HAVING PS_AVAILQTY > TOTAL_L_QUANTITY

) AS TMP_VIEW ON S_SUPPKEY = PS_SUPPKEY
WHERE N_NAME = ’JORDAN’
ORDER BY S_NAME

TPC-H Q21
SELECT S_NAME, COUNT(*) AS NUMWAIT
FROM NATION JOIN SUPPLIER ON N_NATIONKEY = S_NATIONKEY

JOIN LINEITEM L1 ON S_SUPPKEY = L_SUPPKEY
LEFT SEMI JOIN LINEITEM L2 ON L1.L_ORDERKEY = L_ORDERKEY AND L1.L_SUPPKEY != L_SUPPKEY
ANTI JOIN LINEITEM L3 ON L1.L_ORDERKEY = L_ORDERKEY AND L1.L_SUPPKEY != L_SUPPKEY
JOIN ORDERS ON L1.L_ORDERKEY = O_ORDERKEY

WHERE N_NAME = ’MOROCCO’ AND O_ORDERSTATUS = ’F’ AND
L1.L_RECEIPTDATE > L1.L_COMMITDATE AND L3.L_RECEIPTDATE > L3.L_COMMITDATE

GROUP BY S_NAME
ORDER BY NUMWAIT DESC, S_NAME

TPC-H Q22
SELECT SUBSTRING(C_PHONE,1,2) AS CNTRYCODE, COUNT(*) AS TOTAL, SUM(C_ACCTBAL) AS TOTACCTBAL
FROM (

SELECT C_PHONE, C_ACCTBAL
FROM CUSTOMER ANTI JOIN ORDERS ON C_CUSTKEY = O_CUSTKEY
WHERE (

C_PHONE LIKE ’23%%’ OR C_PHONE LIKE ’29%%’ OR C_PHONE LIKE ’22%%’ OR
C_PHONE LIKE ’20%%’ OR C_PHONE LIKE ’24%%’ OR C_PHONE LIKE ’26%%’ OR C_PHONE LIKE ’25%%’

)
HAVING C_ACCTBAL > (

SELECT AVG(C_ACCTBAL) AS CNT
FROM CUSTOMER
WHERE C_ACCTBAL > 0.00 AND (

C_PHONE LIKE ’23%%’ OR C_PHONE LIKE ’29%%’ OR C_PHONE LIKE ’22%%’ OR
C_PHONE LIKE ’20%%’ OR C_PHONE LIKE ’24%%’ OR C_PHONE LIKE ’26%%’ OR C_PHONE LIKE ’25%%’)

)
) AS TMP_VIEW
GROUP BY CNTRYCODE
ORDER BY CNTRYCODE

256



D Micro Benchmark Queries for Loop
Fusion

In this section, we present the corresponding SQL queries for the micro benchmarks used in

Section 4.7. These queries are presented in Table D.1. All these queries are using the LINEITEM

and ORDERS tables of TPC-H.

Name SQL Query

filter.count SELECT COUNT(*) FROM LINEITEM
WHERE L_SHIPDATE >= DATE ’1995-12-01’

filter.sum SELECT SUM(L_DISCOUNT * L_EXTENDEDPRICE) FROM LINEITEM
WHERE L_SHIPDATE >= DATE ’1995-12-01’

filter.filter.sum
SELECT SUM(L_DISCOUNT * L_EXTENDEDPRICE) FROM LINEITEM
WHERE (L_SHIPDATE >= DATE ’1995-12-01’) AND
(L_SHIPDATE < DATE ’1997-01-01’)

filter.filter.filter.sum
SELECT SUM(L_DISCOUNT * L_EXTENDEDPRICE) FROM LINEITEM
WHERE (L_SHIPDATE >= DATE ’1995-12-01’) AND
(L_SHIPDATE < DATE ’1997-01-01’) AND
(L_SHIPMODE = ’MAIL’)

filter.take.sum SELECT SUM(L_DISCOUNT * L_EXTENDEDPRICE) FROM LINEITEM
WHERE L_SHIPDATE >= DATE ’1995-12-01’ LIMIT 1000

filter.map.take SELECT L_DISCOUNT * L_EXTENDEDPRICE FROM LINEITEM
WHERE L_SHIPDATE >= DATE ’1995-12-01’ LIMIT 1000

take.sum SELECT SUM(L_DISCOUNT * L_EXTENDEDPRICE) FROM LINEITEM
LIMIT 1000

filter.XJoin(filter).sum
SELECT SUM(O_TOTALPRICE) FROM LINEITEM, ORDERS
WHERE O_ORDERDATE >= DATE ’1998-11-01’
AND L_SHIPDATE >= DATE ’1998-11-01’
AND O_ORDERKEY = L_ORDERKEY

Table D.1 – SQL queries of microbenchmark queries.

257





E An of Example the Fusion Process

This section demonstrates the transformations applied for performing push and pull-based

loop fusion on the working example. Note that, here, inlining a particular definition is always

assumed together with β-reduction (inlining) of the accompanying function values. As an

example, in Figure E.1, inlining fold means that we also inline the function value passed as the

input parameter to fold.

259



Appendix E. An of Example the Fusion Process

val l1 = fromArray(R)
val l2 = l1.filter(r => r.A < 10)
val l3 = l2.map(r => r.B)
return l3.fold(0.0)((s, r) => s + r)y (inline fromArray & filter)

val l1 = build { k1 =>
var index = 0
while(index < R.length) {
k1(R(i))

}
}
val l2 = build { k2 =>
l1.foreach { e1 =>
if(e1.A < 10)
k2(e1)

}
}
val l3 = l2.map(r => r.B)
return l3.fold(0.0)((s, r) => s + r)y (fuse l1.foreach)

val l2 = build { k2 =>
var index = 0
while(index < R.length) {
val e1 = R(i)
if(e1.A < 10)
k2(e1)

}
}
val l3 = l2.map(r => r.B)
return l3.fold(0.0)((s, r) => s + r)y (inline map)

val l2 = build { k2 =>
var index = 0
while(index < R.length) {
val e1 = R(i)
if(e1.A < 10)
k2(e1)

}
}
val l3 = build { k3 =>
l2.foreach { e2 =>
k3(e2.B)

}
}
return l3.fold(0.0)((s, r) => s + r)

y (fuse l2.foreach)

val l3 = build { k3 =>
var index = 0
while(index < R.length) {
val e1 = R(i)
if(e1.A < 10)
k3(e1.B)

}
}
return l3.fold(0.0)((s, r) => s + r)y (inline fold)

val l3 = build { k3 =>
var index = 0
while(index < R.length) {
val e1 = R(i)
if(e1.A < 10)
k3(e1.B)

}
}
var sum = 0.0
l3.foreach { e3 =>
sum = sum + e3

}
return sumy (fuse l3.foreach)

var sum = 0.0
var index = 0
while(index < R.length) {
val rec = R(index)
index += 1
if(rec.A < 10)
sum += rec.B

}
return sum

Figure E.1 – Transformations needed for applying fold fusion on the example query.

260



val l1 = fromArray(R)
val l2 = l1.filter(r => r.A < 10)
val l3 = l2.map(r => r.B)
return l3.fold(0.0)((s, r) => s + r)y (inline fromArray & filter)

var index = 0
val l1 = generate { () =>
if(index < R.length) {
val elem = R(index)
index += 1
elem

} else { null }
}
val l2 = l1.destroy { n1 =>
generate { () =>
var elem: R = null
do {
elem = n1()

} while (elem!=null && !(elem.A<10))
elem

}
}
val l3 = l2.map(r => r.B)
return l3.fold(0.0)((s, r) => s + r)y (fuse l1.destroy)

var index = 0
val l2 = generate { () =>
var elem: R = null
do {
if(index < R.length) {
elem = R(index)
index += 1

} else { elem = null }
} while (elem != null && !(elem.A < 10))
elem

}
val l3 = l2.map(r => r.B)
return l3.fold(0.0)((s, r) => s + r)y (inline map)

var index = 0
val l2 = generate { () =>
var elem: R = null
do {
if(index < R.length) {
elem = R(index)
index += 1

} else { elem = null }
} while (elem != null && !(elem.A < 10))
elem

}
val l3 = l2.destroy { n2 =>
generate { () =>
val elem = n2()
if(elem == null) null
else elem2.B

}
}
return l3.fold(0.0)((s, r) => s + r)

y (fuse l2.destroy)

var index = 0
val l3 = generate { () =>
var elem: R = null
do {
if(index < R.length) {
elem = R(index)
index += 1

} else { elem = null }
} while (elem != null && !(elem.A < 10))
if(elem == null) null
else elem2.B

}
return l3.fold(0.0)((s, r) => s + r)y (inline fold)

var index = 0
val l3 = generate { () =>
var elem: R = null
do {
if(index < R.length) {
elem = R(index)
index += 1

} else { elem = null }
} while (elem!=null && !(elem.A<10))
if(elem == null) null
else elem2.B

}
return l3.destroy { n3 =>
var sum = 0.0
while(true){
val elem = n3()
if(elem == null) break
else sum = sum + elem

}
sum

}y (fuse l3.destroy & partial evaluation)

var sum = 0.0
var index = 0
while(true) {
var elem: R = null
do {
if(index < R.length) {
elem = R(index)
index += 1

} else { elem = null }
} while (elem != null && !(elem.A < 10))
if(elem == null) break
else sum = sum + elem.B

}
return sum

Figure E.2 – Transformations needed for applying unfold fusion on the example query.

261





F Impact of the Underlying Optimizing
Compiler on Loop Fusion

In Section 4.2.3, we have seen that the control flow of pull engines is more complicated than

push engines. However, a careful examination of the optimized machine code generated by

the CLang compiler shows that the optimizing compiler partially compensates this limitation

of pull engines.

Figure F.1 shows the CFG of the specialized pull-engine for the filter.map.sum query. These

graphs are obtained by using the opt -dot-cfg command for the generated LLVM code, which

is generated by compiling C code using clang -emit-llvm.

The CFG of the generated machine code when one does not use any optimization is shown in

Figure F.1a. This CFG is as complicated as the one shown in Section 4.2.3. Figure F.1b shows the

CFG of the generated machine code after performing the following two optimizations, which

are both enabled by using the -O1 and -O3 optimization flags. First, the -mem2reg optimization is

responsible for promoting memory references to register references. Second, the -simplifycfg is

responsible for simplifying the CFG. The generated machine code has a much more simplified

CFG than the machine code without any optimizations. Finally, Figure F.1c shows the CFG

of the generated machine code by using the -O1 or -O3 optimization flags. We observed that

adding the -jump-threading optimization flag, which is responsible for further simplification

of CFG, to the existing set of optimization flags (-mem2reg -simplifycfg) achieves a similar CFG.

This CFG is as simple as the CFG of the specialized push engine presented in Section 4.2.3.

263



Appendix F. Impact of the Underlying Optimizing Compiler on Loop Fusion

6

12

10

3-5

12

16

7,8

13

1,2

12

14

(a) Without any optimization
flags.

3-5

12

16 14

6-13

13

1,2

(b) With the memory to refer-
ence promotion and CFG sim-
plification optimizations.

1,2

16

14

12,13

6-13

3-5

(c) With the most aggressive opti-
mization flags.

Figure F.1 – Control flow graph of the specialized pull-based engine for the filter.sum query,
compiled with different optimization flags in the CLang compiler.

264



G Loop Fusion for the Limit and Merge Join Operators

In this chapter, we investigate the loop fusion process for two problematic operators for push-

based engines. First, in Section G.1 we show the translation of the limit operator. Then, in

Section G.2 we give more details on the translation of the merge join operator.

G.1 Translating the Limit Operator

In this section, we show the translation of the limit operator in pull and push-based engines.

The implementation of the limit operator for a pull-based engine is presented in Figure 4.4a.

If the limit threshold was not reached, the limit operator returns the next element of its source

operator. Otherwise, if the limit threshold was reached, the limit operator produces a null

value, specifying that the end of stream is reached. However, in a push-based engine there is

no straightforward way for the destination operator to send a signal to the source operator

specifying that the limit was reached. Hence, the limit operator is implemented by not passing

the element to the destination operator if the limit was reached. This means that the source

operator continues producing more elements, even though these elements will be ignored by

the subsequent operators (c.f. Figure G.1a).

Consider a query similar to the take.sum presented in Section 4.7. This query for a given

collection of numbers (array of a thousand integers), returns the sum of the first five elements.

The corresponding C code for pull and push-based engines can be found in Figure G.2a and

Figure G.2b, respectively. In a pull-based engine, when the fifth element is reached, no further

element is processed thanks to the break expression in line 10 of Figure G.2a. However, a

push-based engine ignores the elements after the fifth element, without early termination of

the loop, as it can be observed in Figure G.2b.

One could argue that a smart enough compiler can compensate the mentioned limitation of a

push-based engine. However, examining the generated assembly code by CLang 3.9.1, when

the -O3 optimization flag is used, shows that this claim is not necessarily true. Figure G.2c

demonstrates the generated assembly code for a pull-based engine. This figure shows that the

265



Appendix G. Loop Fusion for the Limit and Merge Join Operators

class LimitOp[R](n: Int) {
var i = 0
def consume(e: R): Unit =
if(i < n) {

dest.consume(e)
i += 1

}
}

(a) Push-based query engine.

class QueryMonad[R] {
def take(n: Int) = build { k =>
var i = 0
for(e <- this)
if(i < n) {

k(e)
i += 1

}
} }

(b) Fold fusion of collections.

Figure G.1 – Push-based query engine and fold fusion of collections for the Limit operator.

optimizing compiler successfully unrolled the loop to process the sum of the first elements in

five assembly instructions. However, the generated assembly code for a push-based engine is

not as elegant as the one for a pull-based engine. The generated assembly code processes the

elements of the array two-by-two, however it does not perform the early termination that is

happening in a pull-based engine. The 12th line of Figure G.2d corresponds to the 7th line of

Figure G.2b, which continues iterating the main loop, until all elements of the array have been

processed (without terminating it early).

G.2 Translating the Merge Join Operator

In this section, we investigate in more detail the merge join operator in pull and push-based

engines. The implementation of this operator for these engines is given in Figure G.3.

Figure G.3a presents the implementation of the merge join operator in a pull-based engine.

The elements of both relations are iterated in parallel until either the elements of both relations

can be joined or one of the relations reaches the end. The local variables leftProceed and

rightProceed are introduced in order to have only one invocation for the next method of the

source operators (c.f. lines 10 and 11 of Figure G.3a). This is in essence similar to the trick we

used in the inline-friendly implementation of the Selection operator.

In a push-based engine, as opposed to a pull-based engine, one has to materialize the left

relation. This is because there is no way for the destination operator to control which source

operator should produce the next element. Hence, the merge join operator materializes

the elements of the left source operator, when it is consuming those elements (c.f. line 8 of

Figure G.3b). This way, the merge join operator can control how to consume the (materialized)

elements of the left source operator.

Consider the following query which is similar to the filter.mJoin(filter).sum query presented

in Section 4.7:
SELECT SUM(R.B * S.B) FROM R, S WHERE R.B > 10 AND R.A = S.A

The corresponding generated code for pull and push-based engines is presented in Figure G.4.

In a pull-based engine the elements of each relation are processed on the fly, without materi-

266



G.2. Translating the Merge Join Operator

1 int mapTake(int* arr) {
2 const int N = 1000;
3 int res = 0;
4 int cnt = 0;
5 int i = 0;
6 while(1) {
7 if(i < N) {
8 int rec = 0;
9 if(cnt < 5) rec = arr[i];

10 else break;
11 res += rec;
12 cnt++;
13 i++;
14 } else break;
15 }
16 return res;
17 }

(a) C code for pull engine.
1 int mapTake(int* arr) {
2 const int N = 1000;
3 int res = 0;
4 int cnt = 0;
5 int i = 0;
6 while(i < N) {
7 if(cnt < 5) {
8 res += arr[i];
9 cnt ++;
10 }
11 i++;
12 }
13 return res;
14 }

(b) C code for push engine.

1 mapTake(int*): # @mapTake(int*)
2 mov eax, dword ptr [rdi + 4]
3 add eax, dword ptr [rdi]
4 add eax, dword ptr [rdi + 8]
5 add eax, dword ptr [rdi + 12]
6 add eax, dword ptr [rdi + 16]
7 ret

(c) Generated assembly code for pull engine.

1 mapTake(int*): # @mapTake(int*)
2 xor ecx, ecx
3 mov edx, 1
4 xor eax, eax
5 .LBB0_1: # =>This Inner Loop Header
6 cmp ecx, 4
7 jg .LBB0_3
8 add eax, dword ptr [rdi+4*rdx-4]
9 inc ecx
10 .LBB0_3: # in Loop: Header=BB0_1
11 cmp ecx, 5
12 jge .LBB0_5
13 add eax, dword ptr [rdi+4*rdx]
14 inc ecx
15 .LBB0_5: # in Loop: Header=BB0_1
16 add rdx, 2
17 cmp rdx, 1001
18 jne .LBB0_1
19 ret

(d) Generated assembly code for push engine.

Figure G.2 – The generated C and assembly code for a simple query which returns the sum of
the first five elements of an array of a thousand elements in pull and push-based engines.

alizing the elements of any of the two relations (c.f. Figure G.4a). However, in a push-based

engine the filtered elements of the left relation are materialized into an intermediate collec-

tion (c.f. lines 6-11 of Figure G.4b). The creation of this intermediate collection justifies the

performance gap observed in Section 4.7 for the micro benchmark of the merge join operator

and TPCH query 12.

267



Appendix G. Loop Fusion for the Limit and Merge Join Operators

1 class MergeJoinOp[R, S]
2 (cond: (R, S) => Int) {
3 var rec1: R = null
4 var rec2: S = null
5 var leftProceed = true
6 var rightProceed = true
7 def next(): (R, S) = {
8 var elem: (R, S) = null
9 while(true) {
10 if(leftProceed) rec1 = left.next()
11 if(rightProceed) rec2 = right.next()
12 if(rec1 != null && rec2 != null) {
13 leftProceed = cond(rec1, rec2) < 0
14 rightProceed = !leftProceed
15 if(cond(rec1, rec2) == 0) {
16 elem = rec1.concat(rec2)
17 rightProceed = true
18 break
19 } } else
20 break
21 }
22 return elem
23 } }

(a) Pull-based query engine for Merge Operator.

class MergeJoinOp[R, S]
(cond: (R, S) => Int) {

val leftBuf = new ArrayBuffer[R]()
var leftIndex = 0

def consumeLeft(e: R): Unit = {
leftBuf += e

}

def consumeRight(e: S): Unit = {
while(leftIndex < leftBuf.length &&

cond(leftRel(leftIndex), e)<0) {
leftIndex += 1

}
if(leftIndex < leftBuf.length &&

cond(leftBuf(leftIndex), e) == 0) {
val res = leftBuf(leftIndex).concat(e)
dest.consume(res)

}
}

}

(b) Push-based query engine for Merge Operator

Figure G.3 – Pull and push-based query engines for Merge Join operator.

268



G.2. Translating the Merge Join Operator

1 var sum = 0.0
2 var i1 = 0; var i2 = 0
3 var rec1 = null; var rec2 = null
4 var leftProceed = true
5 var rightProceed = true
6 while(true) {
7 if(leftProceed) {
8 do {
9 if(i1 < R.length) {

10 rec1 = R(i1)
11 i1 += 1
12 } else {
13 rec1 = null
14 break
15 } } while (rec1.B <= 10)
16 }
17 if(rightProceed) {
18 if(i2 < S.length) {
19 rec2 = S(i2)
20 i2 += 1
21 } else
22 rec2 = null
23 }
24 if(rec1 != null && rec2 != null) {
25 leftProceed = rec1.A < rec2.A
26 rightProceed = !leftProceed
27 if(rec1.A == rec2.A)
28 sum += rec1.B * rec2.B
29 } else {
30 break
31 } }
32 return sum

(a) Inlined query in pull engine.

var sum = 0.0
var i1 = 0
var i2 = 0
val leftBuf = new ArrayBuffer[R]()
var leftIndex = 0

// Materialize an intermediate collection
while(i1 < R.length) {
if(R(i1).B > 10) {
RB += R(i1)

}
i1 += 1

}

// Use the intermediate collection
while(i2 < S.length) {
val rec2 = S(i2)

while(leftIndex < leftBuf.length &&
leftBuf(leftIndex).A < rec2.A) {

leftIndex += 1
}

if(leftIndex < RB.length &&
leftBuf(leftIndex).A == rec2.A)
sum += leftBuf(leftIndex).B * rec2.B

i2 += 1
}

return sum

(b) Inlined query in push engine.

Figure G.4 – Complied version of a query with a merge join operator in pull and push engines.
Note that both versions are derived after several optimization passes.

269





Bibliography

[1] D. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. Hwang, W. Lindner, A. Maskey,

E. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The design of the Borealis stream

processing engine. In CIDR, 2005.

[2] D. Abadi, S. Madden, and M. Ferreira. Integrating Compression and Execution in

Column-Oriented Database Systems. In Proceedings of the 2006 ACM SIGMOD interna-

tional conference on Management of data, pages 671–682. ACM, 2006.

[3] D. J. Abadi, S. R. Madden, and N. Hachem. Column-Stores vs. Row-Stores: How Different

Are They Really? In the 2008 ACM SIGMOD International Conference on Management of

Data, SIGMOD’08, pages 967–980, New York, NY, USA, 2008. ACM.

[4] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. R. Madden. Materialization Strategies in a

Column-Oriented DBMS. In Data Engineering, 2007. ICDE 2007. IEEE 23rd International

Conference on, pages 466–475. IEEE, 2007.

[5] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning. In OSDI,

volume 16, pages 265–283, 2016.

[6] U. Acar, G. Blelloch, M. Blume, R. Harper, and K. Tangwongsan. An experimental analysis

of self-adjusting computation. TOPLAS, 32(1), 2009.

[7] S. Ackermann, V. Jovanovic, T. Rompf, and M. Odersky. Jet: An embedded DSL for high

performance big data processing. In Int’l Workshop on End-to-end Mgmt of Big Data,

2012.

[8] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski. Bundle adjustment in the large. In

European conference on computer vision, pages 29–42. Springer, 2010.

[9] E. Agichtein, E. Brill, and S. Dumais. Improving web search ranking by incorporating

user behavior information. In SIGIR, 2006.

[10] Y. Ahmad and C. Koch. DBToaster: A SQL Compiler for High-performance Delta Pro-

cessing in Main-Memory Databases. Proc. VLDB Endow., 2(2):1566–1569, Aug. 2009.

271



Bibliography

[11] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools,

volume 2. Addison-Wesley Reading, 2007.

[12] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis. Weaving relations for cache

performance. In Proceedings of the 27th International Conference on Very Large Data

Bases, VLDB’01, pages 169–180, 2001.

[13] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper Bounds in Static

Cost Analysis. Journal of Automated Reasoning, 46(2):161–203, 2011.

[14] F. Allen and J. Cocke. A Catalogue of Optimizing Transformations. 1971.

[15] J. Anker and J. Svenningsson. An EDSL approach to high performance haskell program-

ming. In ACM Haskell Symposium, pages 1–12, 2013.

[16] A. W. Appel. SSA is functional programming. SIGPLAN notices, 33(4):17–20, 1998.

[17] A. W. Appel. Compiling with continuations. Cambridge University Press, 2006.

[18] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, K. Ito, R. Motwani, U. Srivastava, and

J. Widom. Stream: The Stanford data stream management system. Technical report,

2004.

[19] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan, M. J.

Franklin, A. Ghodsi, and M. Zaharia. Spark SQL: Relational Data Processing in Spark.

In Proceedings of the 2015 ACM SIGMOD International Conference on Management of

Data, SIGMOD’15, pages 1383–1394, New York, NY, USA, 2015. ACM.

[20] K. Asai, H. Masuhara, and A. Yonezawa. Partial evaluation of call-by-value λ-calculus

with side-effects. PEPM ’97, pages 12–21. ACM, 1997.

[21] E. Axelsson, K. Claessen, G. Dévai, Z. Horváth, K. Keijzer, B. Lyckegård, A. Persson,

M. Sheeran, J. Svenningsson, and A. Vajda. Feldspar: A domain specific language for

digital signal processing algorithms. In IEEE/ACM International Conference on Formal

Methods and Models for Codesign (MEMOCODE), pages 169–178. IEEE, 2010.

[22] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query recommendation using query logs

in search engines. In EDBT, 2004.

[23] P. Bailis. Coordination Avoidance in Distributed Databases. PhD thesis, University of

California, Berkeley, USA, 2015.

[24] H. G. Baker. Lively linear lisp: ‘look ma, no garbage!’. ACM SIGPLAN notices, 27(8):89–98,

1992.

[25] S. Bauman, C. F. Bolz, R. Hirschfeld, V. Kirilichev, T. Pape, J. G. Siek, and S. Tobin-

Hochstadt. Pycket: A Tracing JIT for a Functional Language. In Proceedings of the 20th

ACM SIGPLAN International Conference on Functional Programming, ICFP 2015, pages

22–34. ACM, 2015.

272



Bibliography

[26] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann. The multidimensional

database system RasDaMan. In SIGMOD, 1998.

[27] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation

in machine learning: a survey. arXiv preprint arXiv:1502.05767, 2015.

[28] A. G. Baydin, B. A. Pearlmutter, and J. M. Siskind. Diffsharp: Automatic differentiation

library. arXiv preprint arXiv:1511.07727, 2015.

[29] C. Beeri and Y. Kornatzky. Algebraic optimization of object-oriented query languages.

In ICDT ’90, volume 470 of Lecture Notes in Computer Science, pages 72–88. 1990.

[30] J. Berger. Statistical decision theory and Bayesian analysis. Springer, 1985.

[31] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian,

D. Warde-Farley, and Y. Bengio. Theano: A CPU and GPU math compiler in Python. In

Proc. 9th Python in Science Conf, pages 1–7, 2010.

[32] P. Berkhin. A survey on PageRank computing. Internet Mathematics, 2(1), 2005.

[33] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons. Algorithms

and applications for approximate nonnegative matrix factorization. In Computational

Statistics and Data Analysis, 2006.

[34] A. Biboudis, N. Palladinos, G. Fourtounis, and Y. Smaragdakis. Streams à la carte:

Extensible Pipelines with Object Algebras. In 29th European Conference on Object-

Oriented Programming, page 591, 2015.

[35] C. Binnig, S. Hildenbrand, and F. Färber. Dictionary-Based Order-Preserving String

Compression for Main Memory Column Stores. In SIGMOD’09, pages 283–296. ACM,

2009.

[36] L. Birkedal, M. Tofte, and M. Vejlstrup. From region inference to Von Neumann machines

via region representation inference. In Proceedings of the 23rd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL’96, pages 171–183, NY, USA,

1996. ACM.

[37] C. Bischof, P. Khademi, A. Mauer, and A. Carle. ADIFOR 2.0: Automatic differentiation of

Fortran 77 programs. IEEE Computational Science and Engineering, 3(3):18–32, 1996.

[38] C. H. Bischof, H. Bucker, B. Lang, A. Rasch, and A. Vehreschild. Combining source trans-

formation and operator overloading techniques to compute derivatives for MATLAB

programs. In Source Code Analysis and Manipulation, 2002. Proceedings. Second IEEE

International Workshop on, pages 65–72. IEEE, 2002.

[39] J. Blakeley, P. Larson, and F. Tompa. Efficiently updating materialized views. In SIGMOD,

1986.

273



Bibliography

[40] C. Böhm and A. Berarducci. Automatic Synthesis of Typedλ-Programs on Term Algebras.

Theoretical Computer Science, 39:135–154, 1985.

[41] P. Boncz, T. Neumann, and O. Erling. TPC-H Analyzed: Hidden Messages and Lessons

Learned from an Influential Benchmark, pages 61–76. Springer International Publishing,

Cham, 2014.

[42] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-Pipelining Query Execu-

tion. In CIDR 2005, Second Biennial Conference on Innovative Data Systems Research,

Asilomar, CA, USA, January 4-7, 2005, Online Proceedings, pages 225–237, 2005.

[43] E. Book, D. V. Shorre, and S. J. Sherman. The cwic/36o system, a compiler for writing

and implementing compilers. SIGPLAN Notices, 5(6):11–29, June 1970.

[44] V. Breazu-Tannen, P. Buneman, and L. Wong. Naturally Embedded Query Languages.

Springer, 1992.

[45] V. Breazu-Tannen and R. Subrahmanyam. Logical and Computational Aspects of Pro-

gramming with Sets/Bags/Lists. Springer, 1991.

[46] Y. Bu, B. Howe, M. Balazinska, and M. Ernst. HaLoop: Efficient iterative data processing

on large clusters. PVLDB, 3(1), 2010.

[47] P. Buchlovsky and H. Thielecke. A Type-theoretic Reconstruction of the Visitor Pattern.

Electronic Notes in Theoretical Computer Science, 155:309 – 329, 2006.

[48] A. Buluç and J. R. Gilbert. The combinatorial blas: Design, implementation, and ap-

plications. International Journal of High Performance Computing Applications, page

1094342011403516, 2011.

[49] P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles of programming with complex

objects and collection types. Theor. Comput. Sci., 149(1):3–48, Sept. 1995.

[50] J. Carette, O. Kiselyov, and C.-C. Shan. Finally tagless, partially evaluated: Tagless

staged interpreters for simpler typed languages. Journal of Functional Programming,

19(05):509–543, 2009.

[51] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. Sujeeth, P. Hanrahan, M. Odersky, and

K. Olukotun. Language virtualization for heterogeneous parallel computing. SIGPLAN

Notices, 45(10):835–847, Oct. 2010.

[52] M. M. Chakravarty, G. Keller, and P. Zadarnowski. A functional perspective on SSA

optimisation algorithms. Electronic Notes in Theoretical Computer Science, 82(2):347–

361, 2004.

[53] D. D. Chamberlin, M. M. Astrahan, M. W. Blasgen, J. Gray, W. F. King III, B. G. Lindsay,

R. A. Lorie, J. W. Mehl, T. G. Price, G. R. Putzolu, P. G. Selinger, M. Schkolnick, D. R. Slutz,

I. L. Traiger, B. W. Wade, and R. A. Yost. A History and Evaluation of System R. CACM,

24(10):632–646, 1981.

274



Bibliography

[54] M. Chavan, R. Guravannavar, K. Ramachandra, and S. Sudarshan. Program transforma-

tions for asynchronous query submission. In Data Engineering (ICDE), 2011 IEEE 27th

International Conference on, ICDE’11, pages 375–386. IEEE, 2011.

[55] Y. Chen, J. Dunfield, and U. Acar. Type-directed automatic incrementalization. In PLDI,

2012.

[56] A. Cheung, O. Arden, S. Madden, A. Solar-Lezama, and A. C. Myers. Statusquo: Making

familiar abstractions perform using program analysis. In CIDR’13, 2013.

[57] A. Cheung, S. Madden, O. Arden, and A. C. Myers. Automatic partitioning of database

applications. Proc. VLDB Endow., 5(11):1471–1482, July 2012.

[58] A. Cheung, S. Madden, A. Solar-Lezama, O. Arden, and A. C. Myers. Using program

analysis to improve database applications. IEEE Data Eng. Bull., 37(1):48–59, 2014.

[59] A. Cheung, A. Solar-Lezama, and S. Madden. Optimizing database-backed applications

with query synthesis. In Proceedings of the 34th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI’13, pages 3–14, New York, NY, USA,

2013. ACM.

[60] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y.-K. Chen, A. Baransi, S. Kumar,

and P. Dubey. Efficient Implementation of Sorting on Multi-core SIMD CPU Architecture.

PVLDB, 1(2):1313–1324, Aug. 2008.

[61] R. Chirkova and J. Yang. Materialized views. Foundations and Trends in Databases, 4(4),

2012.

[62] C. Chiw, G. Kindlmann, J. Reppy, L. Samuels, and N. Seltzer. Diderot: A Parallel DSL for

Image Analysis and Visualization. In Proceedings of the 33rd ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI’12, pages 111–120. ACM,

2012.

[63] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff. Escape Analysis for Java.

Acm SIGPLAN Notices, 34(10):1–19, 1999.

[64] J. Cieslewicz and K. A. Ross. Adaptive aggregation on chip multiprocessors. VLDB’07,

pages 339–350. ACM, 2007.

[65] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati. Theory of privacy and

anonymity. In M. Atallah and M. Blanton, editors, Algorithms and Theory of Computation

Handbook (2nd edition). CRC Press, 2009.

[66] K. Claessen, M. Sheeran, and B. J. Svensson. Expressive array constructs in an embedded

gpu kernel programming language. In Proceedings of the 7th Workshop on Declarative

Aspects and Applications of Multicore Programming, DAMP ’12, pages 21–30, NY, USA,

2012. ACM.

275



Bibliography

[67] C. Click and K. D. Cooper. Combining analyses, combining optimizations. TOPLAS,

17(2):181–196, Mar. 1995.

[68] J. Cohen. Graph twiddling in a mapreduce world. Computing in Science and Eng.,

11(4):29–41, 2009.

[69] P. Cousot. Types as abstract interpretations, invited paper. POPL’97, pages 316–331,

Paris, France, 1997. ACM Press, New York, NY.

[70] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. POPL’77, pages

238–252, New York, NY, USA, 1977. ACM.

[71] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion: From lists to streams to

nothing at all. In ICFP, pages 315–326, New York, NY, USA, 2007. ACM.

[72] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, C. Binnig, U. Cetintemel, and S. Zdonik. An

Architecture for Compiling UDF-centric Workflows. PVLDB, 8(12):1466–1477, 2015.

[73] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, U. Cetintemel, and S. Zdonik. Tupleware:

Redefining modern analytics. CoRR, abs/1406.6667, 2014.

[74] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, U. Çetintemel, and S. B. Zdonik. Tupleware:

"Big" Data, Big Analytics, Small Clusters. In CIDR, 2015.

[75] S. Curial, P. Zhao, J. N. Amaral, Y. Gao, S. Cui, R. Silvera, and R. Archambault. MPADS:

Memory-Pooling-Assisted Data Splitting. In Proceedings of the 7th International Sympo-

sium on Memory Management, pages 101–110. ACM, 2008.

[76] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently computing

static single assignment form and the control dependence graph. TOPLAS, 13(4):451–

490, 1991.

[77] A. Danial. Cloc–count lines of code. http://cloc.sourceforge.net/., 2018. Accessed:

2018-07-03.

[78] N. A. Danielsson. Lightweight Semiformal Time Complexity Analysis for Purely Func-

tional Data Structures. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages, POPL’08, pages 133–144, New York,

NY, USA, 2008. ACM.

[79] O. Danvy. Type-directed partial evaluation. In Proceedings of the 23rd Symposium on

Principles of Programming Languages, POPL’96, pages 242–257. ACM, 1996.

[80] A. Darte. On the complexity of loop fusion. Parallel Computing, 26(9):1175 – 1193, 2000.

[81] S. Das, Y. Sismanis, K. Beyer, R. Gemulla, P. Haas, and J. McPherson. Ricardo: Integrating

R and Hadoop. In SIGMOD, 2010.

276

 http://cloc.sourceforge.net/.


Bibliography

[82] M. Dashti, S. Basil John, A. Shaikhha, and C. Koch. Transaction repair for multi-version

concurrency control. In Proceedings of the 2017 ACM International Conference on

Management of Data, SIGMOD’17, pages 235–250, New York, NY, USA, 2017. ACM.

[83] M. Dashti, S. B. John, T. Coppey, A. Shaikhha, V. Jovanovic, and C. Koch. Compiling

database application programs. CoRR, abs/1807.09887, 2018.

[84] F. De Mesmay, A. Rimmel, Y. Voronenko, and M. Püschel. Bandit-based optimization

on graphs with application to library performance tuning. In Proceedings of the 26th

Annual International Conference on Machine Learning, pages 729–736. ACM, 2009.

[85] J. Dees and P. Sanders. Efficient many-core query execution in main memory column-

stores. In ICDE’13, pages 350–361, April 2013.

[86] C. Demetrescu. Fully dynamic algorithms for path problems on directed graphs, 2001.

[87] C. Demetrescu and G. F. Italiano. Fully dynamic transitive closure: Breaking through the

o(n/sup 2/) barrier. FOCS, 2000.

[88] C. Demetrescu and G. F. Italiano. A new approach to dynamic all pairs shortest paths.

ACM, 51(6), Nov. 2004.

[89] Z. DeVito, J. Hegarty, A. Aiken, P. Hanrahan, and J. Vitek. Terra: a multi-stage language

for high-performance computing. In ACM SIGPLAN Notices, volume 48, pages 105–116.

ACM, 2013.

[90] Z. DeVito, M. Mara, M. Zollhöfer, G. Bernstein, J. Ragan-Kelley, C. Theobalt, P. Hanrahan,

M. Fisher, and M. Nießner. Opt: A domain specific language for non-linear least squares

optimization in graphics and imaging. arXiv preprint, 2016.

[91] Z. DeVito, D. Ritchie, M. Fisher, A. Aiken, and P. Hanrahan. First-class runtime generation

of high-performance types using exotypes. In Proceedings of the 35th Conference on

Programming Language Design and Implementation, page 11. ACM, 2014.

[92] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stonecipher, N. Verma, and

M. Zwilling. Hekaton: SQL Server’s Memory-optimized OLTP Engine. In Proceedings of

the 2013 ACM SIGMOD International Conference on Management of Data, SIGMOD’13,

pages 1243–1254, New York, NY, USA, 2013. ACM.

[93] S. Doeraene and T. Schlatter. Parallel incremental whole-program optimizations for

scala.js. Acm SIGPLAN Notices, 51(10):59–73, 2016.

[94] S. Dolan. Fun with semirings: a functional pearl on the abuse of linear algebra. In ACM

SIGPLAN Notices, volume 48, pages 101–110. ACM, 2013.

[95] J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff. A set of level 3 basic linear algebra

subprograms. TOMS, 16(1), 1990.

277



Bibliography

[96] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox. Twister: A

runtime for iterative MapReduce. In HPDC, 2010.

[97] K. El Gebaly and J. Lin. In-Browser Interactive SQL Analytics with Afterburner. In

Proceedings of the 2017 ACM International Conference on Management of Data, pages

1623–1626. ACM, 2017.

[98] C. M. Elliott. Beautiful differentiation. In ACM SIGPLAN Notices, volume 44, pages

191–202. ACM, 2009.

[99] B. Emir, M. Odersky, and J. Williams. Matching Objects with Patterns. In Proceedings

of the 21st European Conference on Object-Oriented Programming, ECOOP’07, pages

273–298, Berlin, Heidelberg, 2007. Springer-Verlag.

[100] EPFL DATA Laboratory. SC - Systems Compiler. http://data.epfl.ch/sc, 2018.

[101] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann. Sugarj: Library-based syntactic

language extensibility. In Proceedings of the 2011 ACM International Conference on

Object Oriented Programming Systems Languages and Applications, OOPSLA’11, pages

391–406, New York, NY, USA, 2011. ACM.

[102] S. Erdweg and F. Rieger. A framework for extensible languages. In Proceedings of the

12th International Conference on Generative Programming: Concepts & Experiences,

GPCE’13, pages 3–12, New York, NY, USA, 2013. ACM.

[103] S. Erdweg, T. Van Der Storm, M. Völter, M. Boersma, R. Bosman, W. R. Cook, A. Gerritsen,

A. Hulshout, S. Kelly, A. Loh, et al. The state of the art in language workbenches. In

International Conference on Software Language Engineering, pages 197–217. Springer,

2013.

[104] D. Fabregat-Traver and P. Bientinesi. A domain-specific compiler for linear algebra

operations. CoRR, abs/1205.5975, 2012.

[105] R. E. Faith, L. S. Nyland, and J. F. Prins. Khepera: A system for rapid implementation of

domain specific languages. In Proceedings of the 1997 Conference on Domain-Specific

Languages, volume 97 of DSL’ 97, pages 19–19, Berkeley, CA, USA, 1997. USENIX Associ-

ation.

[106] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner. SAP HANA database

– data management for modern business applications. SIGMOD Record, 40(4):45–51,

2012.

[107] L. Fegaras and D. Maier. Optimizing Object Queries Using an Effective Calculus. TODS,

25(4):457–516, Dec. 2000.

[108] M. Felleisen. On the expressive power of programming languages. In ESOP’90, pages

134–151. Springer, 1990.

278

http://data.epfl.ch/sc


Bibliography

[109] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph and its

use in optimization. TOPLAS, 9(3):319–349, July 1987.

[110] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The Essence of Compiling with

Continuations. In ACM SIGPLAN Notices, volume 28, pages 237–247. ACM, 1993.

[111] M. Fluet, G. Morrisett, and A. Ahmed. Linear regions are all you need. In European

Symposium on Programming, ESOP ’06, pages 7–21. Springer, 2006.

[112] S. A. Forth. An efficient overloaded implementation of forward mode automatic differen-

tiation in MATLAB. ACM Transactions on Mathematical Software (TOMS), 32(2):195–222,

2006.

[113] M. Fowler. Language workbenches: The killer-app for domain specific languages. 2005.

Accessed: 2018-07-03.

[114] F. Franchetti, Y. Voronenko, and M. Püschel. Formal loop merging for signal transforms.

In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI’05, pages 315–326.

[115] D. Friedman and S. Wise. Unwinding stylized recursions into iterations. Comput. Sci.

Dep., Indiana University, Bloomington, IN, Tech. Rep, 19, 1975.

[116] Y. Futamura. Partial evaluation of computation process–an approach to a compiler-

compiler. Higher-Order and Symbolic Computation, 12(4):381–391, 1999.

[117] B. Gedik, H. Andrade, K.-L. Wu, P. Yu, and M. Doo. SPADE: the System S Declarative

Stream Processing Engine. In SIGMOD, 2008.

[118] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani, S. Tatikonda,

Y. Tian, and S. Vaithyanathan. Systemml: Declarative machine learning on mapreduce.

In Data Engineering (ICDE), 2011 IEEE 27th International Conference on, pages 231–242.

IEEE, 2011.

[119] J. Gibbons and B. Oliveira. The Essence of the Iterator Pattern. Journal of Functional

Programming, 19(3-4):377–402, 2009.

[120] J. R. Gilbert, S. Reinhardt, and V. B. Shah. High-performance graph algorithms from

parallel sparse matrices. In PARA, 2007.

[121] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to deforestation. In Proceedings

of the Conference on Functional Programming Languages and Computer Architecture,

FPCA ’93, pages 223–232, New York, NY, USA, 1993. ACM.

[122] A. J. Gill. Cheap deforestation for non-strict functional languages. PhD thesis, University

of Glasgow, 1996.

279



Bibliography

[123] A. K. Goel, J. Pound, N. Auch, P. Bumbulis, S. MacLean, F. Färber, F. Gropengiesser,

C. Mathis, T. Bodner, and W. Lehner. Towards scalable real-time analytics: An architec-

ture for scale-out of olxp workloads. PVLDB, 8(12):1716–1727, Aug. 2015.

[124] A. Goldberg and R. Paige. Stream processing. In Proceedings of the 1984 ACM Symposium

on LISP and Functional Programming, LFP ’84, pages 53–62, New York, NY, USA, 1984.

ACM.

[125] J. Goldstein and P.-Å. Larson. Optimizing queries using materialized views: a practical,

scalable solution. In ACM SIGMOD Record, volume 30, pages 331–342. ACM, 2001.

[126] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph: Distributed

graph-parallel computation on natural graphs. In Presented as part of the 10th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 12), pages 17–30,

2012.

[127] G. Graefe. Query Evaluation Techniques for Large Databases. CSUR, 25(2):73–169, June

1993.

[128] G. Graefe. Volcano – An Extensible and Parallel Query Evaluation System. IEEE Transac-

tions on Knowledge and Data Engineering, 6(1):120–135, Feb 1994.

[129] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow,

and H. Pirahesh. Data cube: A relational aggregation operator generalizing group-by,

cross-tab, and sub-totals. Data Min. Knowl. Discov., 1(1):29–53, Jan. 1997.

[130] R. Greer. Daytona And The Fourth-Generation Language Cymbal. In the 1999 ACM

SIGMOD international conference on Management of data, SIGMOD’99, pages 525–526.

ACM, 1999.

[131] C. Grelck and S.-B. Scholz. SAC—A functional array language for efficient multi-threaded

execution. Int. Journal of Parallel Programming, 34(4):383–427, 2006.

[132] J. L. Gross, J. Yellen, and P. Zhang. Handbook of Graph Theory, Second Edition. 2nd

edition, 2013.

[133] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-based

Memory Management in Cyclone. In Proceedings of the ACM SIGPLAN 2002 Conference

on Programming Language Design and Implementation, PLDI’02, pages 282–293, NY,

USA, 2002. ACM.

[134] T. Grust, M. Mayr, J. Rittinger, and T. Schreiber. FERRY – Database-Supported Pro-

gram Execution. In Proceedings of the 2009 ACM SIGMOD International Conference on

Management of Data, SIGMOD’09, pages 1063–1066, New York, NY, USA, 2009. ACM.

[135] T. Grust, J. Rittinger, and T. Schreiber. Avalanche-Safe LINQ Compilation. PVLDB,

3(1-2):162–172, Sept. 2010.

280



Bibliography

[136] T. Grust and M. Scholl. How to Comprehend Queries Functionally. Journal of Intelligent

Information Systems, 12(2-3):191–218, 1999.

[137] G. Guennebaud, B. Jacob, et al. Eigen. URl: http://eigen. tuxfamily. org, 2010.

[138] A. Gupta and I. Mumick. Materialized Views. MIT Press, 1999.

[139] R. Guravannavar and S. Sudarshan. Rewriting procedures for batched bindings. Proc.

VLDB Endow., 1(1):1107–1123, Aug. 2008.

[140] S. Z. Guyer and C. Lin. An annotation language for optimizing software libraries. ACM

SIGPLAN Notices, 35(1):39–52, 2000.

[141] N. Hallenberg, M. Elsman, and M. Tofte. Combining Region Inference and Garbage

Collection. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming

Language Design and Implementation, PLDI’02, pages 141–152, NY, USA, 2002. ACM.

[142] S. Harizopoulos, V. Liang, D. J. Abadi, and S. Madden. Performance tradeoffs in read-

optimized databases. In VLDB, VLDB’06, pages 487–498. VLDB Endowment, 2006.

[143] L. Hascoet and V. Pascual. The Tapenade Automatic Differentiation Tool: Principles,

Model, and Specification. ACM Trans. Math. Softw., 39(3):20:1–20:43, May 2013.

[144] J. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek, K. Ng, C. Welton,

X. Feng, K. Li, and A. Kumar. The MADlib analytics library or MAD skills, the SQL.

PVLDB, 5(12), 2012.

[145] J. M. Hellerstein, M. Stonebraker, and J. Hamilton. Architecture of a Database System.

Foundations and Trends® in Databases, 1(2):141–259, 2007.

[146] T. Henriksen, M. Elsman, and C. E. Oancea. Size Slicing: A hybrid approach to size

inference in Futhark. In Proceedings of the 3rd ACM SIGPLAN Workshop on Functional

High-performance Computing, FHPC ’14, pages 31–42, New York, NY, USA, 2014. ACM.

[147] T. Henriksen and C. E. Oancea. Bounds checking: An instance of hybrid analysis. In

Proceedings of ACM SIGPLAN International Workshop on Libraries, Languages, and

Compilers for Array Programming, ARRAY ’14, NY, USA, 2014. ACM.

[148] T. Henriksen, N. G. Serup, M. Elsman, F. Henglein, and C. E. Oancea. Futhark: purely

functional GPU-programming with nested parallelism and in-place array updates. In

Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design

and Implementation, pages 556–571. ACM, 2017.

[149] R. Hinze, T. Harper, and D. W. H. James. Theory and Practice of Fusion. In Proceedings

of the 22Nd International Conference on Implementation and Application of Functional

Languages, IFL’10, pages 19–37, Berlin, Heidelberg, 2011. Springer-Verlag.

281



Bibliography

[150] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm. A Catalog of Stream Processing

Optimizations. ACM Comput. Surv., 46(4):46:1–46:34, Mar. 2014.

[151] F. Hivert and N. Thiéry. MuPAD-Combinat, an open-source package for research in

algebraic combinatorics. Sém. Lothar. Combin, 51:70, 2004.

[152] C. Hofer and K. Ostermann. Modular Domain-specific Language Components in Scala.

In Proceedings of the Ninth International Conference on Generative Programming and

Component Engineering, GPCE’10, pages 83–92, New York, NY, USA, 2010. ACM.

[153] C. Hofer, K. Ostermann, T. Rendel, and A. Moors. Polymorphic embedding of DSLs.

In Proceedings of the 7th International Conference on Generative Programming and

Component Engineering (GPCE’08), pages 137–148. ACM, 2008.

[154] M. Hofmann and S. Jost. Static Prediction of Heap Space Usage for First-order Functional

Programs. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL’03, pages 185–197, New York, NY, USA, 2003. ACM.

[155] R. J. Hogan. Fast Reverse-Mode Automatic Differentiation Using Expression Templates

in C++. ACM Trans. Math. Softw., 40(4):26:1–26:16, July 2014.

[156] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-

dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectiv-

ity. ACM, 48(4), July 2001.

[157] Z.-K. Huang and K.-W. Chau. A new image thresholding method based on gaussian

mixture model. Applied Mathematics and Computation, 205(2):899–907, 2008.

[158] P. Hudak. Building domain-specific embedded languages. ACM Comput. Surv., 28(4es),

Dec. 1996.

[159] C. Humer, C. Wimmer, C. Wirth, A. Wöß, and T. Würthinger. A domain-specific language

for building self-optimizing ast interpreters. In Proceedings of the 2014 International

Conference on Generative Programming: Concepts and Experiences, GPCE 2014, pages

123–132, New York, NY, USA, 2014. ACM.

[160] R. Hundt. Loop Recognition in C++/Java/Go/Scala. In Proceedings of Scala Days 2011,

2011.

[161] G. C. Hunt and J. R. Larus. Singularity: Rethinking the Software Stack. SIGOPS Oper. Syst.

Rev., 41(2):37–49, 2007.

[162] S. Idreos, F. Groffen, N. Nes, S. Manegold, S. Mullender, M. Kersten, et al. MonetDB: Two

decades of research in column-oriented database architectures. IEEE Data Eng. Bull.,

35(1):40–45, 2012.

[163] Y. E. Ioannidis and Y. Kang. Randomized algorithms for optimizing large join queries. In

ACM Sigmod Record, volume 19, pages 312–321. ACM, 1990.

282



Bibliography

[164] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-parallel

programs from sequential building blocks. In EuroSys, pages 59–72, 2007.

[165] K. E. Iverson. A Programming Language. In Proceedings of the May 1-3, 1962, spring

joint computer conference, pages 345–351. ACM, 1962.

[166] C. B. Jay. Programming in FISh. International Journal on Software Tools for Technology

Transfer, 2(3):307–315, 1999.

[167] C. B. Jay and M. Sekanina. Shape checking of array programs. Technical report, In

Computing: the Australasian Theory Seminar, Proceedings, 1997.

[168] JetBrains. Meta programming system. http://www.jetbrains.com/mps, 2018. Accessed:

2018-07-03.

[169] H.-J. Z. Ji-rong Wen, Jian-Yun Nie and. Query clustering using user logs. ACM Transac-

tions on Information Systems, 20(1), 2002.

[170] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3hopp: A high-compression indexing scheme for

reachability query. SIGMOD’09, pages 813–826, 2009.

[171] S. C. Johnson et al. Yacc: Yet another compiler-compiler, volume 32. Bell Laboratories

Murray Hill, NJ, 1975.

[172] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program

Generation. Peter Sestoft, 1993.

[173] S. Jones. Compiling haskell by program transformation: A report from the trenches. In

H. Nielson, editor, Programming Languages and Systems - ESOP ’96, volume 1058 of

Lecture Notes in Computer Science, pages 18–44. Springer Berlin Heidelberg, 1996.

[174] S. P. Jones, C. Hall, K. Hammond, W. Partain, and P. Wadler. The Glasgow Haskell Com-

piler: A Technical Overview. In Proc. UK Joint Framework for Information Technology

(JFIT) Technical Conference, volume 93. Citeseer, 1993.

[175] M. Jonnalagedda and S. Stucki. Fold-based Fusion As a Library: A Generative Program-

ming Pearl. In Proceedings of the 6th ACM SIGPLAN Symposium on Scala, pages 41–50.

ACM, 2015.

[176] S. Jost, K. Hammond, H.-W. Loidl, and M. Hofmann. Static Determination of Quantita-

tive Resource Usage for Higher-order Programs. In Proceedings of the 37th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL’10, pages

223–236, New York, NY, USA, 2010. ACM.

[177] V. Jovanović, A. Shaikhha, S. Stucki, V. Nikolaev, C. Koch, and M. Odersky. Yin-Yang:

Concealing the Deep Embedding of DSLs. In Proceedings of the 2014 International

Conference on Generative Programming: Concepts and Experiences, GPCE 2014, pages

73–82. ACM, 2014.

283

 http://www.jetbrains.com/mps


Bibliography

[178] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P. C. Jones, S. Madden,

M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi. H-Store: A High-Performance,

Distributed Main Memory Transaction Processing System. PVLDB, 1(2):1496–1499,

2008.

[179] J. Kam and J. Ullman. Monotone data flow analysis frameworks. Acta Informatica,

7(3):305–317, 1977.

[180] J. B. Kam and J. D. Ullman. Global data flow analysis and iterative algorithms. J. ACM,

23(1):158–171, Jan. 1976.

[181] B. Kanagal, J. Li, and A. Deshpande. Sensitivity analysis and explanations for robust

query evaluation in probabilistic databases. SIGMOD’11, pages 841–852, New York, NY,

USA, 2011. ACM.

[182] S. Kaplan. Conditional rewrite rules. Theoretical Computer Science, 33(2):175 – 193,

1984.

[183] J. Karczmarczuk. Functional differentiation of computer programs. ACM SIGPLAN

Notices, 34(1):195–203, 1999.

[184] M. Karpathiotakis, I. Alagiannis, and A. Ailamaki. Fast Queries Over Heterogeneous Data

Through Engine Customization. Proceedings of the VLDB Endowment, 9(12):972–983,

2016.

[185] M. Karpathiotakis, I. Alagiannis, T. Heinis, M. Branco, and A. Ailamaki. Just-in-time data

virtualization: Lightweight data management with ViDa. In CIDR, 2015.

[186] L. C. L. Kats and E. Visser. The spoofax language workbench: rules for declarative

specification of languages and ides. In ACM SIGPLAN Notices, volume 45, pages 444–463.

ACM, 2010.

[187] G. Kedem. Automatic differentiation of computer programs. ACM Trans. Math. Softw.,

6(2):150–165, June 1980.

[188] R. A. Kelsey. A correspondence between continuation passing style and static single

assignment form. In ACM SIGPLAN Notices, volume 30, pages 13–22. ACM, 1995.

[189] A. Kennedy. Compiling with continuations, continued. In ACM SIGPLAN Notices,

volume 42, pages 177–190, 2007.

[190] K. Kennedy. A survey of data flow analysis techniques. IBM Thomas J. Watson Research

Division, 1979.

[191] K. Kennedy, B. Broom, A. Chauhan, R. J. Fowler, J. Garvin, C. Koelbel, C. McCosh, and

J. Mellor-Crummey. Telescoping languages: A system for automatic generation of

domain languages. Proceedings of the IEEE, 93(2):387–408, 2005.

284



Bibliography

[192] K. Kennedy and K. McKinley. Maximizing loop parallelism and improving data locality

via loop fusion and distribution. In Languages and Compilers for Parallel Computing,

pages 301–320. Springer Berlin Heidelberg, 1994.

[193] J. Kepner and J. Gilbert. Graph algorithms in the language of linear algebra, volume 22.

SIAM, 2011.

[194] K. A. Khan and P. I. Barton. A vector forward mode of automatic differentiation for

generalized derivative evaluation. Optimization Methods and Software, 30(6):1185–

1212, 2015.

[195] W. Kim. On Optimizing an SQL-like Nested Query. ACM Trans. Database Syst., 7(3):443–

469, Sept. 1982.

[196] V. King. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive

closure in digraphs. In Proceedings of the 40th Annual Symposium on Foundations of

Computer Science, FOCS, 1999.

[197] O. Kiselyov, A. Biboudis, N. Palladinos, and Y. Smaragdakis. Stream fusion, to complete-

ness. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming

Languages, POPL 2017, pages 285–299, New York, NY, USA, 2017. ACM.

[198] O. Kiselyov and C.-c. Shan. Lightweight monadic regions. In ACM SIGPLAN Notices,

volume 44, pages 1–12. ACM, 2008.

[199] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi. Building efficient query engines in a

high-level language. PVLDB, 7(10):853–864, 2014.

[200] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi. Errata for "Building Efficient Query Engines

in a High-level Language": PVLDB 7(10):853-864. PVLDB, 7(13):1784–1784, Aug. 2014.

[201] Y. Klonatos, A. Nötzli, A. Spielmann, C. Koch, and V. Kuncak. Automatic Synthesis of

Out-of-core Algorithms. In ACM SIGMOD, SIGMOD’13, pages 133–144. ACM, 2013.

[202] C. Koch. Incremental query evaluation in a ring of databases. In Proceedings of the

Twenty-ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems, PODS ’10, pages 87–98, New York, NY, USA, 2010. ACM.

[203] C. Koch. Abstraction without regret in data management systems. In CIDR, 2013.

[204] C. Koch. Abstraction without regret in database systems building: a manifesto. IEEE

Data Eng. Bull., 37(1):70–79, 2014.

[205] C. Koch, Y. Ahmad, O. Kennedy, M. Nikolic, A. Nötzli, D. Lupei, and A. Shaikhha.

DBToaster: Higher-order delta processing for dynamic, frequently fresh views. VLDBJ,

23(2), 2014.

285



Bibliography

[206] G. Kossakowski, N. Amin, T. Rompf, and M. Odersky. Javascript as an embedded DSL. In

ECOOP 2012–Object-Oriented Programming, pages 409–434. Springer, 2012.

[207] T. Kraska, A. Talwalkar, J. Duchi, R. Griffith, M. Franklin, and M. Jordan. MLbase: A

distributed machine-learning system. In CIDR, 2013.

[208] K. Krikellas, S. Viglas, and M. Cintra. Generating Code for Holistic Query Evaluation.

In ICDE, ICDE ’10, pages 613–624, Washington, DC, USA, March 2010. IEEE Computer

Society.

[209] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: large-scale graph computation on just

a pc. In Presented as part of the 10th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 12), pages 31–46, 2012.

[210] R. Lämmel and S. P. Jones. Scrap your boilerplate with class: Extensible generic functions.

In Proceedings of the Tenth ACM SIGPLAN International Conference on Functional

Programming, ICFP’05, pages 204–215, New York, NY, USA, 2005. ACM.

[211] A. Langville and C. Meyer. Deeper inside PageRank. Internet Mathematics, 1(3), 2004.

[212] P. Larson, M. Zwilling, and K. Farlee. The hekaton memory-optimized OLTP engine.

IEEE Data Eng. Bull., 36(2):34–40, 2013.

[213] J. R. Larus. Restructuring symbolic programs for concurrent execution on multiprocessors.

PhD thesis, 1989.

[214] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program Analysis

& Transformation. In Proceedings of the International Symposium on Code Generation

and Optimization: Feedback-directed and Runtime Optimization, CGO ’04, pages 75–86,

Washington, DC, USA, 2004. IEEE Computer Society.

[215] H. Lee, K. J. Brown, A. K. Sujeeth, H. Chafi, T. Rompf, M. Odersky, and K. Olukotun.

Implementing domain-specific languages for heterogeneous parallel computing. IEEE

Micro, 31(5):42–53, Sept. 2011.

[216] V. Leis, P. Boncz, A. Kemper, and T. Neumann. Morsel-driven Parallelism: A NUMA-

aware Query Evaluation Framework for the Many-core Age. SIGMOD’14, pages 743–754,

New York, NY, USA, 2014. ACM.

[217] D. Leivant. Reasoning about functional programs and complexity classes associated

with type disciplines. In FOCS, pages 460–469, Nov 1983.

[218] S. Lerner, D. Grove, and C. Chambers. Composing dataflow analyses and transforma-

tions. In ACM SIGPLAN Notices, volume 37, pages 270–282. ACM, 2002.

[219] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection.

http://snap.stanford.edu/data, June 2014.

286

http://snap.stanford.edu/data


Bibliography

[220] K. Levenberg. A method for the solution of certain non-linear problems in least squares.

Quarterly of applied mathematics, 2(2):164–168, 1944.

[221] Z. Li and K. A. Ross. Fast Joins Using Join Indices. The VLDB Journal, 8(1):1–24, 1999.

[222] L. Libkin. Expressive Power of SQL. Theor. Comput. Sci., 296(3):379–404, Mar. 2003.

[223] C. Liu, H.-c. Yang, J. Fan, L.-W. He, and Y.-M. Wang. Distributed nonnegative matrix

factorization for web-scale dyadic data analysis on mapreduce. In Proceedings of the

19th international conference on World wide web, pages 681–690. ACM, 2010.

[224] D. H. Lorenz and B. Rosenan. Cedalion: A language for language oriented programming.

In Proceedings of the 2011 ACM International Conference on Object Oriented Program-

ming Systems Languages and Applications, OOPSLA’11, pages 733–752, New York, NY,

USA, 2011. ACM.

[225] R. A. Lorie. XRM: An extended (N-ary) relational memory. IBM, 1974.

[226] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein. Distributed

graphlab: a framework for machine learning and data mining in the cloud. Proceedings

of the VLDB Endowment, 5(8):716–727, 2012.

[227] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin, and J. Hellerstein. Graphlab:

A new framework for parallel machine learning. arXiv preprint arXiv:1408.2041, 2014.

[228] D. Maclaurin, D. Duvenaud, and R. P. Adams. Autograd: Effortless gradients in numpy.

In ICML 2015 AutoML Workshop, 2015.

[229] G. Mainland, R. Leshchinskiy, and S. Peyton Jones. Exploiting Vector Instructions with

Generalized Stream Fusion. In Proceedings of the 18th ACM SIGPLAN International

Conference on Functional Programming, ICFP’13, pages 37–48, New York, NY, USA, 2013.

ACM.

[230] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski.

Pregel: a system for large-scale graph processing. In Proceedings of the 2010 ACM

SIGMOD International Conference on Management of data, pages 135–146. ACM, 2010.

[231] S. Manegold, M. L. Kersten, and P. Boncz. Database Architecture Evolution: Mammals

Flourished long before Dinosaurs became Extinct. PVLDB, 2(2):1648–1653, 2009.

[232] A. Manjhi, C. Garrod, B. M. Maggs, T. C. Mowry, and A. Tomasic. Holistic query transfor-

mations for dynamic web applications. ICDE’09, pages 1175–1178. IEEE, 2009.

[233] A. Marathe and K. Salem. Query processing techniques for arrays. VLDBJ, 11(1), 2002.

[234] D. W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters.

Journal of the society for Industrial and Applied Mathematics, 11(2):431–441, 1963.

287



Bibliography

[235] A. McKellar and E. G. Coffman Jr. Organizing matrices and matrix operations for paged

memory systems. Communications of the ACM, 12(3):153–165, 1969.

[236] F. McSherry, D. Murray, R. Isaacs, and M. Isard. Differential dataflow. In CIDR, 2013.

[237] M. Mehta and D. J. DeWitt. Managing Intra-operator Parallelism in Parallel Database

Systems. In Proceedings of the 21th International Conference on Very Large Data Bases,

VLDB’95, pages 382–394, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers

Inc.

[238] E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconciling Object, Relations and XML in

the .NET Framework. In Proceedings of the 2006 ACM SIGMOD International Conference

on Management of Data, SIGMOD’06, pages 706–706. ACM, 2006.

[239] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai,

M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar.

Mllib: Machine learning in apache spark. The Journal of Machine Learning Research,

17(1), 2016.

[240] P. Menon, T. C. Mowry, and A. Pavlo. Relaxed operator fusion for in-memory databases:

Making compilation, vectorization, and prefetching work together at last. Proc. VLDB

Endow., 11(1):1–13, Sept. 2017.

[241] S. Mihaylov, Z. Ives, and S. Guha. REX: Recursive, delta-based data-centric computation.

PVLDB, 5(11), 2012.

[242] Y. Minamide. A functional representation of data structures with a hole. In In Confer-

ence Record of the 25th Symposium on Principles of Programming Languages (POPL’98,

POPL’98, pages 75–84, 1998.

[243] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep

reinforcement learning. Nature, 518(7540):529–533, 2015.

[244] G. Moerkotte and T. Neumann. Accelerating queries with group-by and join by groupjoin.

PVLDB, 4(11), 2011.

[245] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, J. McCarron, and

P. DeMarco. Maple 10 Programming Guide. Maplesoft, 2005.

[246] M. Montenegro, R. Peña, and C. Segura. A type system for safe memory management

and its proof of correctness. In Proceedings of the 10th international ACM SIGPLAN

conference on Principles and practice of declarative programming, PPDP ’08, pages

152–162. ACM, 2008.

[247] M. Montenegro, R. Peña, and C. Segura. A simple region inference algorithm for a first-

order functional language. In International Workshop on Functional and Constraint

Logic Programming, pages 145–161. Springer, 2009.

288



Bibliography

[248] J. J. Moré. The levenberg-marquardt algorithm: implementation and theory. In Numeri-

cal analysis, pages 105–116. Springer, 1978.

[249] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Olston,

J. Rosenstein, and R. Varma. Query processing, approximation, and resource manage-

ment in a data stream management system. In CIDR, 2003.

[250] T. Müller and T. Grust. Provenance for sql through abstract interpretation: Value-less,

but worthwhile. PVLDB, 8(12):1872–1875, Aug. 2015.

[251] D. G. Murray, M. Isard, and Y. Yu. Steno: Automatic Optimization of Declarative Queries.

In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI’11, pages 121–131, New York, NY, USA, 2011. ACM.

[252] F. Nagel, G. Bierman, and S. D. Viglas. Code generation for efficient query processing in

managed runtimes. Proc. VLDB Endow., 7(12):1095–1106, Aug. 2014.

[253] S. Najd, S. Lindley, J. Svenningsson, and P. Wadler. Everything old is new again: Quoted

domain-specific languages. In Proceedings of the 2016 ACM SIGPLAN Workshop on

Partial Evaluation and Program Manipulation, PEPM 2016, pages 25–36, New York, NY,

USA, 2016. ACM.

[254] S. H. K. Narayanan, B. Norris, and B. Winnicka. ADIC2: Development of a component

source transformation system for differentiating C and C++. Procedia Computer Science,

1(1):1845–1853, 2010.

[255] T. Neumann. Efficiently Compiling Efficient Query Plans for Modern Hardware. PVLDB,

4(9):539–550, 2011.

[256] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure for graph analytics.

In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,

SOSP ’13, 2013.

[257] F. Nielsen and K. Sun. Guaranteed bounds on information-theoretic measures of uni-

variate mixtures using piecewise log-sum-exp inequalities. Entropy, 18(12):442, 2016.

[258] M. Nikolic, M. ElSeidy, and C. Koch. LINVIEW: Incremental View Maintenance for

Complex Analytical Queries. In SIGMOD, 2014.

[259] P. Norvig. Paradigms of Artificial Intelligence Programming: Case Studies in Common

Lisp. Morgan Kaufmann, 1992.

[260] M. Odersky and M. Zenger. Scalable Component Abstractions. In OOPSLA, OOPSLA’05,

pages 41–57, New York, NY, USA, 2005. ACM.

[261] G. Ofenbeck, T. Rompf, A. Stojanov, M. Odersky, and M. Püschel. Spiral in Scala: Towards

the systematic construction of generators for performance libraries. In Proceedings of

the 12th International Conference on Generative Programming: Concepts & Experiences,

GPCE’13, pages 125–134, New York, NY, USA, 2013. ACM.

289



Bibliography

[262] Oracle Corporation. TimesTen In-Memory Database Architectural

Overview, 2006. http://download.oracle.com/otn_hosted_doc/timesten/603/

TimesTen-Documentation/arch.pdf.

[263] S. Padmanabhan, T. Malkemus, A. Jhingran, and R. Agarwal. Block Oriented Processing

of Relational Database Operations in Modern Computer Architectures. In ICDE, pages

567–574, 2001.

[264] S. Palkar, J. J. Thomas, A. Shanbhag, D. Narayanan, H. Pirk, M. Schwarzkopf, S. Amaras-

inghe, M. Zaharia, and S. InfoLab. Weld: A common runtime for high performance data

analytics. In Conference on Innovative Data Systems Research (CIDR), 2017.

[265] V. Pankratius, F. Schmidt, and G. Garreton. Combining functional and imperative

programming for multicore software: An empirical study evaluating Scala and Java. In

ICSE 2012, pages 123–133.

[266] J. Paredaens and D. V. Gucht. Possibilities and Limitations of Using Flat Operators

in Nested Algebra Expressions. In Proceedings of the Seventh ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, March 21-23, 1988, Austin, Texas,

USA, pages 29–38, 1988.

[267] Y. Park, S. Seo, H. Park, H. K. Cho, and S. Mahlke. SIMD Defragmenter: Efficient ILP

Realization on Data-Parallel Architectures. In ACM SIGARCH Computer Architecture

News, volume 40, pages 363–374. ACM, 2012.

[268] L. Parreaux, A. Shaikhha, and C. E. Koch. Quoted staged rewriting: A practical approach

to library-defined optimizations. In Proceedings of the 16th ACM SIGPLAN International

Conference on Generative Programming: Concepts and Experiences, GPCE 2017, pages

131–145, New York, NY, USA, 2017. ACM.

[269] L. Parreaux, A. Shaikhha, and C. E. Koch. Squid: Type-safe, hygienic, and reusable

quasiquotes. In Proceedings of the 8th ACM SIGPLAN International Symposium on Scala,

SCALA 2017, pages 56–66, New York, NY, USA, 2017. ACM.

[270] L. Parreaux, A. Voizard, A. Shaikhha, and C. E. Koch. Unifying analytic and statically-

typed quasiquotes. Proc. ACM Program. Lang., 2(POPL):13:1–13:33, Dec. 2017.

[271] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma, P. Menon, et al. Self-driving database

management systems. In CIDR’17, 2017.

[272] B. A. Pearlmutter and J. M. Siskind. Lazy multivariate higher-order forward-mode ad. In

ACM SIGPLAN Notices, volume 42, pages 155–160. ACM, 2007.

[273] B. A. Pearlmutter and J. M. Siskind. Reverse-mode AD in a functional framework:

Lambda the ultimate backpropagator. ACM Transactions on Programming Languages

and Systems (TOPLAS), 30(2):7, 2008.

290

http://download.oracle.com/otn_hosted_doc/timesten/603/TimesTen-Documentation/arch.pdf
http://download.oracle.com/otn_hosted_doc/timesten/603/TimesTen-Documentation/arch.pdf


Bibliography

[274] S. Peyton Jones, R. Leshchinskiy, G. Keller, and M. M. Chakravarty. Harnessing the Mul-

ticores: Nested Data Parallelism in Haskell. In LIPIcs-Leibniz International Proceedings

in Informatics, volume 2. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2008.

[275] B. C. Pierce. Types and Programming Languages. MIT press, 2002.

[276] O. Polychroniou, A. Raghavan, and K. A. Ross. Rethinking SIMD Vectorization for In-

Memory Databases. In Proceedings of the 2015 ACM SIGMOD International Conference

on Management of Data, SIGMOD’15, pages 1493–1508, New York, NY, USA, 2015. ACM.

[277] M. Puschel, J. M. F. Moura, J. R. Johnson, D. Padua, M. M. Veloso, B. W. Singer, J. Xiong,

F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL:

code generation for DSP transforms. Proceedings of the IEEE, 93(2):232–275, 2005.

[278] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe. Halide:

A language and compiler for optimizing parallelism, locality, and recomputation in

image processing pipelines. In Proceedings of the 34th ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI’13, pages 519–530, New York,

NY, USA, 2013. ACM.

[279] K. Ramachandra and S. Sudarshan. Holistic optimization by prefetching query results.

In Proceedings of the 2012 ACM SIGMOD International Conference on Management of

Data, pages 133–144. ACM, 2012.

[280] R. Ramakrishnan and J. Gehrke. Database Management Systems. Osborne/McGraw-Hill,

2nd edition, 2000.

[281] G. Ramalingam. The undecidability of aliasing. TOPLAS, 16(5):1467–1471, Sept. 1994.

[282] V. Raman, G. Swart, L. Qiao, F. Reiss, V. Dialani, D. Kossmann, I. Narang, and R. Sidle.

Constant-Time Query Processing. In ICDE, ICDE ’08, pages 60–69, 2008.

[283] J. Rao, H. Pirahesh, C. Mohan, and G. Lohman. Compiled Query Execution Engine using

JVM. In ICDE, ICDE ’06, pages 23–34, Washington, DC, USA, 2006. IEEE Computer

Society.

[284] J. Revels, M. Lubin, and T. Papamarkou. Forward-mode automatic differentiation in

Julia. arXiv preprint arXiv:1607.07892, 2016.

[285] K. F. Rietveld and H. A. Wijshoff. Re-engineering compiler transformations to out-

perform database query optimizers. In International Workshop on Languages and

Compilers for Parallel Computing, pages 300–314. Springer, 2014.

[286] K. F. Rietveld and H. A. Wijshoff. Reducing layered database applications to their essence

through vertical integration. Transactions on Database Systems, 40(3):18, 2015.

[287] T. Rompf. Lightweight Modular Staging and Embedded Compilers: Abstraction Without

Regret for High-Level High-Performance Programming. PhD thesis, EPFL, 2012.

291



Bibliography

[288] T. Rompf and M. Odersky. Lightweight Modular Staging: A Pragmatic Approach to Run-

time Code Generation and Compiled DSLs. In Generative Programming and Component

Engineering, GPCE’10, pages 127–136, New York, NY, USA, 2010. ACM.

[289] T. Rompf and M. Odersky. Lightweight Modular Staging: A Pragmatic Approach to

Runtime Code Generation and Compiled DSLs. CACM, 55(6):121–130, June 2012.

[290] T. Rompf, A. K. Sujeeth, N. Amin, K. J. Brown, V. Jovanovic, H. Lee, M. Jonnalagedda,

K. Olukotun, and M. Odersky. Optimizing data structures in high-level programs: New

directions for extensible compilers based on staging. In Proceedings of the 40th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL’13,

pages 497–510, New York, NY, USA, 2013. ACM.

[291] J. Rose. Value types and struct tearing. 2014. https://blogs.oracle.com/jrose/entry/

value_types_and_struct_tearing.

[292] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global Value Numbers and Redundant

Computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Princi-

ples of Programming Languages, POPL’88, pages 12–27. ACM, 1988.

[293] S. Roy, L. Kot, G. Bender, B. Ding, H. Hojjat, C. Koch, N. Foster, and J. Gehrke. The

homeostasis protocol: Avoiding transaction coordination through program analysis. In

SIGMOD’15, pages 1311–1326, 2015.

[294] Y. Saad. SPARSKIT: a basic tool kit for sparse matrix computations - Version 2, 1994.

[295] M. Scherr and S. Chiba. Almost first-class language embedding: Taming staged em-

bedded dsls. In Proceedings of the 2015 ACM SIGPLAN International Conference on

Generative Programming: Concepts and Experiences, GPCE 2015, pages 21–30, New York,

NY, USA, 2015. ACM.

[296] S. Schuh, X. Chen, and J. Dittrich. An experimental comparison of thirteen relational

equi-joins in main memory. 2016.

[297] D. Shabalin, E. Burmako, and M. Odersky. Quasiquotes for scala. Technical report, EPFL,

2013.

[298] A. Shaikhha, M. Dashti, and C. Koch. Push versus Pull-Based Loop Fusion in Query

Engines. Journal of Functional Programming, 28:e10, 2018.

[299] A. Shaikhha, A. Fitzgibbon, S. Peyton Jones, and D. Vytiniotis. Destination-passing

Style for Efficient Memory Management. In Proceedings of the 6th ACM SIGPLAN

International Workshop on Functional High-Performance Computing, FHPC 2017, pages

12–23, New York, NY, USA, 2017. ACM.

[300] A. Shaikhha, Y. Klonatos, and C. Koch. Building efficient query engines in a high-level

language. ACM Transactions on Database Systems, 43(1):4:1–4:45, Apr. 2018.

292

https://blogs.oracle.com/jrose/entry/value_types_and_struct_tearing
https://blogs.oracle.com/jrose/entry/value_types_and_struct_tearing


Bibliography

[301] A. Shaikhha, Y. Klonatos, L. Parreaux, L. Brown, M. Dashti, and C. Koch. How to architect

a query compiler. In Proceedings of the 2016 International Conference on Management

of Data, SIGMOD’16, pages 1907–1922, New York, NY, USA, 2016. ACM.

[302] X. Shi, B. Cui, G. Dobbie, and B. C. Ooi. Towards unified ad-hoc data processing. In

Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data,

SIGMOD’14, pages 1263–1274. ACM, 2014.

[303] O. Shivers and M. Might. Continuations and Transducer Composition. In Proceedings of

the 27th ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion, PLDI’06, pages 295–307. ACM, 2006.

[304] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-

twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go

with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

[305] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,

L. Baker, M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge.

Nature, 550(7676):354–359, 2017.

[306] J. M. Siskind and B. A. Pearlmutter. Perturbation confusion and referential transparency:

Correct functional implementation of forward-mode ad. 2005.

[307] A. M. Sloane. Lightweight language processing in kiama. In Generative and Transforma-

tional Techniques in Software Engineering III, volume 6491 of Lecture Notes in Computer

Science, pages 408–425. 2011.

[308] J. Sompolski, M. Zukowski, and P. Boncz. Vectorization vs. Compilation in Query Execu-

tion. In the Seventh Intern. Workshop on Data Management on New Hardware, DaMoN

’11, pages 33–40. ACM.

[309] D. G. Spampinato and M. Püschel. A basic linear algebra compiler. CGO ’14, pages

23:23–23:32. ACM, 2014.

[310] D. G. Spampinato and M. Püschel. A basic linear algebra compiler for structured

matrices. In Proceedings of the 2016 International Symposium on Code Generation and

Optimization, pages 117–127. ACM, 2016.

[311] S. Sra and I. S. Dhillon. Nonnegative matrix approximation: algorithms and applications.

Technical report, 2006.

[312] F. Srajer, Z. Kukelova, and A. Fitzgibbon. A benchmark of selected algorithmic differenti-

ation tools on some problems in machine learning and computer vision. 2016.

[313] J. Stanier and D. Watson. Intermediate representations in imperative compilers: A

survey. CSUR, 45(3):26:1–26:27, July 2013.

[314] G. Steele. Common LISP: the language. Elsevier, 1990.

293



Bibliography

[315] M. Steuwer, C. Fensch, S. Lindley, and C. Dubach. Generating Performance

Portable Code Using Rewrite Rules: From High-level Functional Expressions to High-

performance OpenCL Code. In Proceedings of the 20th ACM SIGPLAN International

Conference on Functional Programming, ICFP 2015, pages 205–217, New York, NY, USA,

2015. ACM.

[316] M. Stonebraker. Technical perspective one size fits all: an idea whose time has come

and gone. Communications of the ACM, 51(12):76–76, 2008.

[317] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin,

S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik. C-store: A Column-

oriented DBMS. In Proceedings of the 31st International Conference on Very Large Data

Bases, VLDB’05, pages 553–564. VLDB Endowment, 2005.

[318] M. Stonebraker, C. Bear, U. Cetintemel, M. Cherniack, T. Ge, N. Hachem, S. Harizopoulos,

J. Lifter, J. Rogers, and S. Zdonik. One size fits all? Part 2: Benchmarking results. In CIDR,

2007.

[319] M. Stonebraker, J. Becla, D. DeWitt, K. Lim, D. Maier, O. Ratzesberger, and S. Zdonik.

Requirements for science data bases and SciDB. In CIDR, 2009.

[320] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Helland.

The end of an architectural era (it’s time for a complete rewrite). In VLDB, VLDB’07,

pages 1150–1160, 2007.

[321] A. Sujeeth, H. Lee, K. Brown, T. Rompf, H. Chafi, M. Wu, A. Atreya, M. Odersky, and

K. Olukotun. OptiML: An Implicitly Parallel Domain-Specific Language for Machine

Learning. In Proceedings of the 28th International Conference on Machine Learning

(ICML-11), ICML ’11, pages 609–616, 2011.

[322] A. K. Sujeeth, A. Gibbons, K. J. Brown, H. Lee, T. Rompf, M. Odersky, and K. Oluko-

tun. Forge: Generating a high performance DSL implementation from a declarative

specification. In GPCE’13, pages 145–154, New York, NY, USA, 2013. ACM, ACM.

[323] E. Sumii and N. Kobayashi. A hybrid approach to online and offline partial evaluation.

Higher Order Symbol. Comput., 14(2-3):101–142, Sept. 2001.

[324] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J. Anderson, S. G. Vadlamudi,

D. Das, and P. Dubey. GraphMat: High Performance Graph Analytics Made Productive.

VLDB, 8(11), 2015.

[325] J. Svenningsson. Shortcut fusion for accumulating parameters & zip-like functions.

In Proceedings of the Seventh ACM SIGPLAN International Conference on Functional

Programming, ICFP’02, pages 124–132, New York, NY, USA, 2002. ACM.

[326] B. J. Svensson and J. Svenningsson. Defunctionalizing push arrays. In Proceedings of the

3rd ACM SIGPLAN Workshop on Functional High-performance Computing, FHPC ’14,

pages 43–52, NY, USA, 2014. ACM.

294



Bibliography

[327] D. Syme. Leveraging .NET Meta-programming Components from F#: Integrated Queries

and Interoperable Heterogeneous Execution. In Proceedings of the 2006 Workshop on

ML, ML ’06, pages 43–54, New York, NY, USA, 2006. ACM.

[328] W. Taha. A gentle introduction to multi-stage programming. In Domain-Specific Pro-

gram Generation, pages 30–50. Springer, 2004.

[329] W. Taha and T. Sheard. Multi-stage programming with explicit annotations. In ACM

SIGPLAN Notices, volume 32 of PEPM ’97, pages 203–217, NY, USA, 1997. ACM, ACM.

[330] W. Taha and T. Sheard. MetaML and Multi-Stage Programming with Explicit Annotations.

Theor. Comput. Sci., 248(1-2):211–242, 2000.

[331] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality saturation: A new approach to

optimization. In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL’09, pages 264–276. ACM.

[332] J. Taylor, R. Stebbing, V. Ramakrishna, C. Keskin, J. Shotton, S. Izadi, A. Hertzmann,

and A. Fitzgibbon. User-specific hand modeling from monocular depth sequences. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR

’14, pages 644–651, 2014.

[333] The GNOME Project. GLib: Library package for low-level data structures in C – the

reference manual, 2013. https://developer.gnome.org/glib/2.38/.

[334] Theano Development Team. Theano: A Python framework for fast computation of

mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016.

[335] R. Tibbetts, S. Yang, R. MacNeill, and D. Rydzewski. StreamBase LiveView: Push-Based

Real-Time Analytics. StreamBase Systems (Jan 2012), 2011.

[336] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and M. Felleisen. Languages as

libraries. In ACM SIGPLAN Notices, volume 46, pages 132–141. ACM, 2011.

[337] M. Tofte, L. Birkedal, M. Elsman, and N. Hallenberg. A retrospective on region-based

memory management. Higher Order Symbol. Comput., 17(3):245–265, Sept. 2004.

[338] M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg, T. H. Olesen, P. Sestoft, and P. Bertelsen.

Programming with regions in the ml kit. Technical report, DIKU Rapport, 1997.

[339] M. Tofte and J.-P. Talpin. Region-based memory management. Information and Com-

putation, 132(2), 1997.

[340] L. Torczon and K. Cooper. Engineering A Compiler. Morgan Kaufmann Publishers Inc.,

2nd edition, 2011.

[341] E. Totoni, T. A. Anderson, and T. Shpeisman. HPAT: High Performance Analytics with

Scripting Ease-of-use. In Proceedings of the International Conference on Supercomputing,

ICS ’17, pages 9:1–9:10, New York, NY, USA, 2017. ACM.

295

https://developer.gnome.org/glib/2.38/


Bibliography

[342] S.-A.-A. Touati and D. Barthou. On the decidability of phase ordering problem in

optimizing compilation. In Proceedings of the 3rd Conference on Computing Frontiers,

CF ’06, pages 147–156, 2006.

[343] Transaction Processing Performance Council. TPC-H, an Ad-Hoc, Decision Support

Benchmark, 1999.

[344] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon. Bundle adjustment—a

modern synthesis. In Inter. workshop on vision algorithms, pages 298–372. Springer,

1999.

[345] P. Trinder. Comprehensions, a Query Notation for DBPLs. In Proc. of the 3rd DBPL

workshop, DBPL3, pages 55–68, San Francisco, CA, USA, 1992. Morgan Kaufmann

Publishers Inc.

[346] D. Turner. Total functional programming. Journal of Universal Computer Science,

10(7):751–768, 2004.

[347] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An annotated bibli-

ography. SIGPLAN Notices, 35(6):26–36, June 2000.

[348] P. B. Vasconcelos. Space cost analysis using sized types. PhD thesis, University of St

Andrews, 2008.

[349] T. L. Veldhuizen. Leapfrog Triejoin: A Simple, Worst-Case Optimal Join Algorithm. In

Proc. 17th International Conference on Database Theory (ICDT), Athens, Greece, March

24-28, 2014., pages 96–106, 2014.

[350] S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung, and R. S. Schreiber. Presto: Distributed

machine learning and graph processing with sparse matrices. In EuroSys, 2013.

[351] S. Venkataraman, I. Roy, A. AuYoung, and R. Schreiber. Using R for iterative and incre-

mental processing. In HotCloud, 2012.

[352] S. Viglas, G. M. Bierman, and F. Nagel. Processing Declarative Queries Through Gen-

erating Imperative Code in Managed Runtimes. IEEE Data Eng. Bull., 37(1):12–21,

2014.

[353] E. Visser. Meta-programming with concrete object syntax. In Proceedings of the 1st ACM

SIGPLAN/SIGSOFT Conference on Generative Programming and Component Engineering,

GPCE’02, pages 299–315, London, UK, 2002. Springer-Verlag.

[354] E. Visser, Z. Benaissa, and A. Tolmach. Building Program Optimizers with Rewriting

Strategies. In Proceedings of the Third ACM SIGPLAN International Conference on

Functional Programming, ICFP’98, pages 13–26, 1998.

[355] J. Vlissides, R. Helm, R. Johnson, and E. Gamma. Design Patterns: Elements of Reusable

Object-Oriented Software. Reading: Addison-Wesley, 49(120):11, 1995.

296



Bibliography

[356] P. Wadler. Listlessness is better than laziness: Lazy evaluation and garbage collection

at compile-time. In Proc. of ACM Symp. on LISP and functional programming, pages

45–52, 1984.

[357] P. Wadler. Deforestation: Transforming Programs to Eliminate Trees. In ESOP’88, pages

344–358. Springer, 1988.

[358] P. Wadler. Comprehending Monads. In Proceedings of the 1990 ACM Conference on LISP

and Functional Programming, LFP ’90, pages 61–78, New York, NY, USA, 1990. ACM.

[359] P. Wadler. Linear types can change the world. In IFIP TC, volume 2, pages 347–359.

Citeseer, 1990.

[360] D. Walker and G. Morrisett. Alias types for recursive data structures. In Inter. Workshop

on Types in Compilation, pages 177–206. Springer, 2000.

[361] M. P. Ward. Language-oriented programming. Software-Concepts and Tools, 15(4):147–

161, 1994.

[362] M. J. Weinstein and A. V. Rao. Algorithm: ADiGator, a toolbox for the algorithmic

differentiation of mathematical functions in MATLAB using source transformation via

operator overloading. ACM Trans. Math. Softw, 2016.

[363] C. Whaley and J. Dongarra. Automatically tuned linear algebra software. In PPSC, 1999.

[364] B. Wiedermann and W. R. Cook. Extracting queries by static analysis of transparent

persistence. In Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL’07, pages 199–210, New York, NY, USA,

2007. ACM.

[365] B. Wiedermann, A. Ibrahim, and W. R. Cook. Interprocedural query extraction for

transparent persistence. In Proceedings of the 23rd ACM SIGPLAN Conference on Object-

oriented Programming Systems Languages and Applications, OOPSLA’08, pages 19–36,

New York, NY, USA, 2008. ACM.

[366] M. J. Wolfe. Techniques for Improving the Inherent Parallelism in Programs. PhD thesis,

Department of Computer Science, University of Illinois at Urbana-Champaign, 1978.

[367] S. Wolfram. The mathematica. Cambridge university press Cambridge, 1999.

[368] L. Wong. Kleisli, a functional query system. J. Funct. Program., 10(1):19–56, Jan. 2000.

[369] T. Würthinger. Extending the Graal Compiler to Optimize Libraries. In Companion to

the 26th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications, pages 41–42. ACM, 2011.

[370] T. Würthinger, A. Wöß, L. Stadler, G. Duboscq, D. Simon, and C. Wimmer. Self-optimizing

AST Interpreters. In Proceedings of the 8th Symposium on Dynamic Languages, DLS ’12,

pages 73–82, New York, NY, USA, 2012. ACM.

297



Bibliography

[371] J. Xiong, J. Johnson, R. Johnson, and D. Padua. SPL: A Language and Compiler for DSP

Algorithms. In Proceedings of the ACM SIGPLAN 2001 Conference on Programming

Language Design and Implementation, PLDI’01, pages 298–308, New York, NY, USA,

2001. ACM.

[372] J. Yallop. Staged generic programming. Proceedings of the ACM on Programming

Languages, 1(ICFP):29, 2017.

[373] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran, D. Padua, K. Pingali,

P. Stodghill, and P. Wu. A comparison of empirical and model-driven optimization. In

Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design

and Implementation, PLDI’03, pages 63–76, New York, NY, USA, 2003. ACM.

[374] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and J. Currey. Dryadlinq:

A system for general-purpose distributed data-parallel computing using a high-

level language. In Proceedings of the 8th USENIX Conference on Operating Systems

Design and Implementation, OSDI’ 08, pages 1–14, Berkeley, CA, USA, 2008. USENIX

Association.

[375] C. Zach. Robust bundle adjustment revisited. In European Conference on Computer

Vision, pages 772–787. Springer, 2014.

[376] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker,

and I. Stoica. Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-memory

Cluster Computing. In Proceedings of the 9th USENIX Conference on Networked Systems

Design and Implementation, NSDI’12. USENIX Association, 2012.

[377] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and I. Stoica. Spark: Cluster

computing with working sets. In HotCloud, 2010.

[378] B. M. Zane, J. P. Ballard, F. D. Hinshaw, D. A. Kirkpatrick, and L. Premanand Yer-

abothu. Optimized SQL Code Generation (US Patent 7430549 B2). WO Patent App. US

10/886,011, 2008.

[379] R. Zhang, S. Debray, and R. T. Snodgrass. Micro-Specialization: Dynamic Code Special-

ization of Database Management Systems. In the Tenth ACM International Symposium

on Code Generation and Optimization, CGO ’12, pages 63–73, New York, NY, USA, 2012.

ACM.

[380] R. Zhang, R. T. Snodgrass, and S. Debray. Micro-Specialization in DBMSes. In ICDE,

pages 690–701, Washington, DC, USA, 2012. IEEE Computer Society.

[381] Y. Zhang, H. Herodotou, and J. Yang. RIOT: I/O-efficient numerical computing without

SQL. In CIDR, 2009.

[382] P. Zhao, S. Cui, Y. Gao, R. Silvera, and J. N. Amaral. Forma: A framework for safe automatic

array reshaping. TOPLAS, 30(1):2, 2007.

298



Bibliography

[383] J. Zhou and K. A. Ross. Implementing Database Operations Using SIMD Instructions.

In Proceedings of the 2002 ACM SIGMOD International Conference on Management of

Data, SIGMOD’02, pages 145–156, New York, NY, USA, 2002. ACM.

[384] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-Scalar RAM-CPU Cache Compres-

sion. In Proceedings of the 22Nd International Conference on Data Engineering, ICDE

’06, pages 59–, Washington, DC, USA, 2006. IEEE Computer Society.

299





Amir Shaikhha

Av. du Tir-Fédéral 92 Cell: +41 78 7135670
1024 Ecublens, Switzerland amir.shaikhha@epfl.ch

http://people.epfl.ch/amir.shaikhha

Contact
Information

Research
Interests

• Database Systems

• Programming Languages

• Compilers

• Domain-Specific Languages

Education • Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. Sep.
2013 - June 2018 (Expected)
Ph.D. in Computer Science, Overall GPA: 5.71/6
Thesis: Compilation and Code Optimization for Data Analytics
Courses: Semester Project in Computer Science (6/6), Synthesis, Verification and Anal-
ysis (6/6), Advanced Compilers (5.5/6), Applied Data Analytics (5.5/6).

• Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. Sep.
2011 - August 2013
M.Sc. in Computer Science, Overall GPA: 5.72/6
Thesis: An Embedded Query Language in Scala (6/6)
Relevant Courses (GPA: 5.72/6): Semester Project in Computer Science (6/6), Op-
tional Project in Computer Science (6/6), Advanced Databases (5.5/6), Distributed Al-
gorithms (6/6), Foundation of Software Systems (5.5/6), TCP/IP (5.5/6), Concurrent
Algorithms (5.5/6), Program parallelization on PC clusters (5.5/6).

• Sharif University of Technology, Tehran, Iran. Sep. 2007 - June 2011
B.S. in Information Technology, Overall GPA: 18.15/20 (3.84/4)
Thesis: Exact Graph Coloring on Multicore Systems (20/20)

Professional
Experience

• Research Intern, Microsoft Research, Cambridge, UK, July-September 2016.

• Software Engineering Intern, Typesafe Inc., February-August 2013.

• Software Engineering Intern, Typesafe Inc., July-September 2012.

Honors and
Awards

• Best Paper Award, GPCE 2017.
• Most Reproducible Paper Award, SIGMOD 2017.
• Google PhD Fellowship, 2017.
• Teaching Assistant Award, IC EPFL, 2016.
• Ranked 2nd, in Iranian National Scientific Olympiad for University Students in Com-

puter Engineering, September 2011.
• Ranked 1st, in Cumulative GPA among more than 30 students of the Information Tech-

nology, Class of 2011 students, Sharif University of Technology, June 2011.
• Granted admission from Talented Student Office of Sharif University of Technology for

graduate study.

Publications • Efficient Differentiable Programming in a Functional Array-Processing Lan-
guage; A. Shaikhha, A. Fitzgibbon, S. Peyton-Jones, D. Vytiniotis, C. Koch, Under
submission.

• Synthesis of Incremental Analytics; A. Shaikhha, M. El Seidy, D. Espino, S. Mi-
haila, and C. Koch, Under submission.

• Building Efficient Query Engines in a High-Level Language; A. Shaikhha, Y.
Klonatos, C. Koch, TODS 2018.



• Push vs. Pull-Based Loop Fusion in Query Engines; A. Shaikhha, M. Dashti, C.
Koch, JFP 2018.

• Unifying Analytic and Statically-Typed Quasiquotes; L. Parreaux, A. Voizard,
A. Shaikhha, and C. E. Koch, POPL 2018.

• Quoted Staged Rewriting: a Practical Approach to Library-Defined Opti-
mizations; L. Parreaux, A. Shaikhha, and C. E. Koch, GPCE 2017 (Best Paper
Award).

• Squid: Type-Safe, Hygienic, and Reusable Quasiquotes; L. Parreaux, A. Shaikhha,
and C. E. Koch, SCALA 2017.

• Destination-Passing Style for Efficient Memory Management; A. Shaikhha, A.
Fitzgibbon, S. Peyton-Jones, D. Vytiniotis, FHPC 2017.

• Repairing Transaction Conflicts in Optimistic Multi-Version Concurrency
Control; M. Dashti, S. John, A. Shaikhha, C. Koch, SIGMOD 2017 (Most Repro-
ducible Paper Award).

• How to Architect a Query Compiler; A. Shaikhha, Y. Klonatos, L. Parreaux, L.
Brown, M. Dashti, C. Koch, SIGMOD 2016.

• Yin-Yang: Concealing the Deep Embedding of DSLs; V. Jovanovic, A. Shaikhha,
S. Stucki, V. Nikolaev, C. Koch, M. Odersky, GPCE 2014.

• DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh
Views; C. Koch, Y. Ahmad, O. Kennedy, M. Nikolic, A. Nötzli, D. Lupei, A. Shaikhha,
The VLDB Journal, 2014.

Research
Experience

• SC: A Framework for Systems-Compiler Co-Design; EPFL, Under supervision
of Prof. Christoph Koch, in collaboration with Lionel Parreaux.

• DBLAB: A Framework for Building Database Systems by High-Level Pro-
gramming; EPFL, Under supervision of Prof. Christoph Koch, in collaboration with
Yannis Klonatos.

• OCAS: Automatic Synthesis of Out-of-Core Algorithms; EPFL, Under super-
vision of Prof. Christoph Koch, in collaboration with Yannis Klonatos.

• LAGO: A Holistic Approach Towards Matrix Algebra; EPFL, Under supervision
of Prof. Christoph Koch, in collaboration with Mohammed ElSeidy.

• Yin-Yang: A Library for Deep Embedding of DSLs in Scala; EPFL, Under
supervision of Prof. Martin Odersky and Prof. Christoph Koch, in collaboration with
Vojin Jovanovic.

Teaching
Experience Teaching Assistant Master in Data Science – EPFL

• Systems for Data Science; (Spring 2018, ∼ 40 students)

Master in Computer Science – EPFL

• Database Systems; (Spring 2016, Spring 2017, > 100 students)

• Foundation of Software; (Fall 2015, Fall 2016, Fall 2017, ∼ 50 students)

• Big Data; (Spring 2014, Spring 2015, > 100 students)

Bachelor in Mathematics & Bachelor in Physics – EPFL

• Information, Computation, Communication; (Fall 2014, > 250 students)

Bachelor in Computer Engineering – Sharif University of Technology

• Introduction to Programming (C++); (Spring/Fall 2008)

• Advanced Programming (Java); (Spring/Fall 2009, Spring/Fall 2010, Spring 2011)

• Data Structures and Algorithms; (Spring 2009, Spring/Fall 2010)

• Computer Structure and Language; (Spring 2009)



• Computer Networks; (Spring/Fall 2010, Spring 2011)

• Artificial Intelligence; (Fall 2010)

Teaching

• Domain-Specific Languages; Winter 2017; A workshop organized by the Students
Scientific Chapter of Sharif University of Technology.

• J2ME Programming; Summer 2009, Summer 2010; The course maintained by the
Students Scientific Chapter of Sharif University of Technology.

Advising &
Mentoring

• Michal Pleskowicz, Bachelor Project, A Query Optimizer for DBLAB, Spring 2018.

• Parand Alizadeh, Mohsen Ferdosi, Summer Internship Project, A Frontend for
DBToaster in DBLAB, Summer 2017.

• Daniel Espino, Master Thesis, Cost-Based Optimization of Iterative Linear Algebra,
Spring 2016.

• Matthieu Rudelle, Master Semester Project, Optimization of a Distributed Informa-
tion Retrieval System, Fall 2015.

• Khayyam Guliyev, Master Semester Project, Using SC as the Backend for DBToaster,
Spring 2015.

• Stefan Mihaila, Master Thesis, Incremental Computation and Symbolic Differentiation
of Matrices, Spring 2015.

• Robin Hahling, Kevin Gillieron, Laurent Weingart, Master Semester Project,
DevMine: A Developer Search Engine and Source Code Analysis Framework, Fall 2014
& Spring 2015.

• Lewis Brown, Master Semester Project, C.Scala: Shallow Embedding of C in Scala,
Fall 2014.

Projects • F̃: A Subset of F# that Generates Fast Code for Numerical Workloads; Mi-
crosoft Research, Cambridge, Under supervision of Dr. Andrew Fitzgibbon, Dr. Simon
Peyton-Jones, Dr. Don Syme, and Dr. Dimitrios Vytiniotis.

• Deep Embedding in Slick using Yin-Yang; Typesafe Inc., Under supervision of
Prof. Martin Odersky, Stefan Zeiger.

• Type Providers in Slick; Typesafe Inc., Under supervision of Prof. Martin Odersky,
Stefan Zeiger.

• Play Plugin for Scala IDE; Typesafe Inc., Under supervision of Dr. Iulian Dragos.

• Domain Maintenance in DBToaster; EPFL, Under supervision of Prof. Christoph
Koch.

• Web-Based Virtual PCR-RFLP and Finding Maximum Correspondence in
Phylogenetic Trees; University of Tehran, Under supervision of Prof. A. Sharifi.

• Design and Implementation of a Simulator and Assembler for IBM Sys-
tem/370; Sharif University of Technology, Under supervision of Prof. H. Sarbazi-Azad.

Activities • PhD Students’ Representative, IC EPFL, 2017-2018.

• Member of EPIC PhD Student Association, IC EPFL, 2017.

• Elected Member and Head of Students Scientific Chapter (SSC), Department of Com-
puter Engineering, Sharif University of Technology, 2010-2011.

Skills • Programming Languages: Scala , C/C++, Pascal, C#, F#, Java(J2SE, J2ME),
Prolog, Assembly(x86, IBM S/370, Motorolla 68000), Verilog, MATLAB, GPGPU Pro-
gramming with CUDA, Cell BE Programming, OCaml.

• Operating Systems: Linux, Dos, Windows, Mac OS.



• Web/DB Technologies: HTML, CSS, Javascript, PHP, MySQL, ASP.NET, Symfony,
J2EE, Play.

• Typesetting: TEX, LATEX, Microsoft Word.

Hobbies • Sports: Ping Pong, Karate (Shito-Ryu).

Available upon requestReferences

Last update: June 15, 2018




