Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Single step synthesis of Schottky-like hybrid graphene - titania interfaces for efficient photocatalysis
 
research article

Single step synthesis of Schottky-like hybrid graphene - titania interfaces for efficient photocatalysis

Yi, Zhifeng
•
Merenda, Andrea
•
Kong, Lingxue
Show more
May 25, 2018
Scientific Reports

The development of 2D nanomaterial coatings across metal surfaces is a challenge due to the mismatch between the metal microstructure and the nanoscale materials. The naturally occurring thin oxidative layer present across all metal surfaces, may lead to low adherence and connectivity. In this paper, graphene/titania/Titanium hybrid films were for the first time fabricated by a single step chemical vapour deposition process across Titanium foils. The presence of graphene as a dopant was found to enhance the photocatalytic performance of the final products, applied to the degradation of organic molecules and to lead to Schottky-like junction formation at the metal/oxide interface. These Schottky junctions, where vacancies are present across the titania material due to the graphene doping and where Ti3+ ions are predominantly located, yield enhanced catalytic performance. The highest degradation rate was found to be 9.66 × 10−6 min−1, achieved by the sample grown at 700 °C for 5 min, which was 62% higher than the sample just treated at that temperature without graphene growth. This work provides evidence that graphene may be grown across pure Titanium metal and opens new avenues in biomedical devices design, tribological or separation applications.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Single step synthesis of Schottky-like hybrid graphene - titania interfaces for efficient photocatalysis.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

2.09 MB

Format

Adobe PDF

Checksum (MD5)

3afa1ed82ee6a1425b049db31ae47119

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés