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Abstract

In this thesis we address the computation of a spectral decomposition for symmetric
banded matrices. In light of dealing with large-scale matrices, where classical dense
linear algebra routines are not applicable, it is essential to design alternative techniques
that take advantage of data properties. Our approach is based upon exploiting the
underlying hierarchical low-rank structure in the intermediate results. Indeed, we study
the computation in the hierarchically off-diagonal low rank (HODLR) format of two
crucial tools: QR decomposition and spectral projectors, in order to devise a fast spectral

divide-and-conquer method.

In the first part we propose a new method for computing a QR decomposition of a
HODLR matrix, where the factor R is returned in the HODLR format, while @ is given
in a compact WY representation. The new algorithm enjoys linear-polylogarithmic com-

plexity and is norm-wise accurate. Moreover, it maintains the orthogonality of the @ factor.

The approximate computation of spectral projectors is addressed in the second part.
This problem has raised some interest in the context of linear scaling electronic structure
methods. There the presence of small spectral gaps brings difficulties to existing algo-
rithms based on approximate sparsity. We propose a fast method based on a variant of
the QDWH algorithm, and exploit that QDWH applied to a banded input generates a
sequence of matrices that can be efficiently represented in the HODLR format. From
the theoretical side, we provide an analysis of the structure preservation in the final
outcome. More specifically, we derive a priori decay bounds on the singular values in
the off-diagonal blocks of spectral projectors. Consequently, this shows that our method,
based on data-sparsity, brings benefits in terms of memory requirements in comparison to
approximate sparsity approaches, because of its logarithmic dependence on the spectral
gap. Numerical experiments conducted on tridiagonal and banded matrices demonstrate

that the proposed algorithm is robust with respect to the spectral gap and exhibits
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linear-polylogarithmic complexity. Furthermore, it renders very accurate approximations

to the spectral projectors even for very large matrices.

The last part of this thesis is concerned with developing a fast spectral divide-and-conquer
method in the HODLR format. The idea behind this technique is to recursively split the
spectrum, using invariant subspaces associated with its subsets. This allows to obtain
a complete spectral decomposition by solving the smaller-sized problems. Following
Nakatsukasa and Higham, we combine our method for the fast computation of spectral
projectors with a novel technique for finding a basis for the range of such a HODLR
matrix. The latter strongly relies on properties of spectral projectors, and it is analyzed
theoretically. Numerical results confirm that the method is applicable for large-scale

matrices, and exhibits linear-polylogarithmic complexity.

Keywords. Symmetric eigenvalue problem, fast spectral divide-and-conquer, spectral
projectors, spectral gap, large-scale problems, hierarchical matrices, HODLR format,

low-rank structure, QR decomposition
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Estratto

L’oggetto di questa tesi é il calcolo della decomposizione spettrale di matrici simmetriche
a banda. Nell’ottica di affrontare problemi a larga scala, in cui gli algoritmi classici di
algebra lineare densa non sono applicabili, ¢ essenziale progettare tecniche alternative
che si avvantaggino di particolari proprieta dei dati. Il nostro approccio si basa sullo
sfruttare la struttura gerarchica di rango basso presente nei risultati intermedi. Infatti,
studiamo il calcolo nel formato HODLR di due strumenti cruciali: la fattorizzazione
QR e i proiettori spettrali, al fine di ottenere un metodo spettrale divide et impera con

complessita subquadratica.

Nella prima parte, proponiamo un nuovo algoritmo per il calcolo della fattorizzazione QR
di una matrice HODLR che restituisce il fattore R nel formato HODLR e la matrice ()
nella sua rappresentazione WY compatta. Questa procedura ha complessité lineare poli-

logaritmica ed ¢ accurata in norma. Inoltre, riesce a mantenere I’ortogonalita del fattore Q).

Il calcolo approssimato dei proiettori spettrali e trattato nella seconda parte. Questo pro-
blema ha recentemente destato interesse nel contesto di metodi numerici per la struttura
elettronica. In questa applicazione, la prossimita di due o pia autovalori (gap spettrale)
causa difficolta agli algoritmi esistenti, che si basano su approsimare la sparsita dei
risultati intermedi. Proponiamo una variante del metodo QDWH che sfrutta il fatto
che il metodo QDWH, applicato ad una matrice a banda, genera una successione di
matrici che possono essere approssimate efficientemente nel formato HODLR. Dal punto
di vista teorico, forniamo un’analisi della preservazione della struttura nel risultato finale.
In particolare, deriviamo stime a priori del decadimento dei valori singolari nei blocchi
fuori dalla diagonale dei proiettori spettrali. Queste stime evidenziano una dipendenza
del rate di decadimento dal logaritmo del gap spettrale. Di conseguenza si giustifica il
vantaggio, in termini di utilizzo di memoria, di sfruttare la data-sparsité rispetto agli

approcci basati sulla sparsita. Gli esperimenti numerici effettuati su matrici tridiagonali
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¢ a banda dimostrano che l'algoritmo proposto ¢ robusto rispetto al gap spettrale ed
ha complessita lineare polilogaritmica. Inoltre, riesce a fornire approssimazioni accurate

anche per matrici di dimensioni considerevoli.

L’ultima parte di questa tesi & dedicata allo sviluppo di un metodo spettrale divide
et impera per matrici nel formato HODLR. L’idea alla base di questa tecnica & di
dividere ricorsivamente lo spettro e calcolare i corrispondenti sottoinsiemi degli autovalori
utilizzando appropriati sottospazi invarianti. Questo consente di ottenere la fattorizzazione
spettrale completa risolvendo problemi analoghi di dimensioni pit piccola. Seguendo
lo schema di Nakatsukasa e Higham, combiniamo il nostro metodo per il calcolo veloce
dei proiettori spettrali con un nuovo metodo per estrarre una base dell’immagine di una
matrice nel formato HODLR. Le garanzie di funzionamento di quest’ultimo sono garantite
dalle proprieta dei proiettori spettrali, che vengono analizzate teoricamente. I risultati
numerici confermano la scalabilitd del metodo a matrici di grandi dimensioni, essendo la

sua complessita lineare polilogaritmica.

Parole chiave. Problema agli autovalori simmetrico, metodo veloce divide et impera
spettrale, proiettore spettrale, gap spettrale, problemi a larga scala, matrici gerarchiche,

formato HODLR, struttura di rango basso, fattorizzazione QR
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I} Introduction and background

This thesis is concerned with the computation of a complete spectral decomposition of a
large-scale n-by-n symmetric banded matrix. In particular, we develop a new fast spectral
divide-and-conquer method for the computation of all eigenvalues and eigenvectors, with
the eigenvectors given in a structured form. Our approach is based on the fast computation
of spectral projectors associated with roughly half of the spectrum, and the extraction of
the related invariant subspaces. The underlying structure of spectral projectors of banded
matrices motivates the use of data-sparse formats and the related approximate arithmetics,
which results in methods with linear-polylogarithmic complexity. More specifically, in

this thesis we focus on the HODLR format.

The thesis is organized as follows. In Chapter 2 we review the HODLR format and
the related matrix formats, alongside the HODLR arithmetics. We develop a new fast
method for the computation of a QR decomposition of a HODLR matrix. Chapter 3 is
an overview chapter, which discusses several existing eigenvalue methods for hierarchical
matrices. Chapter 4 is concerned with the fast computation of spectral projectors of
banded matrices. Lastly, in Chapter 5 we present a new fast spectral divide-and-conquer

method for banded matrices.

In the rest of this chapter we first provide a concise introduction to the main ingredients
of this thesis: the symmetric eigenvalue problem and data-sparse formats, followed by an

overview of important definitions. The chapter is concluded with the thesis’ contributions.



Chapter 1. Introduction and background

1.1 Symmetric eigenvalue problem

For a symmetric matrix A € R™*" a pair (), ¢) satisfying
Ag=Xg, AER,geR" q#0,

is called an eigenpair of A. The scalar A is called an eigenvalue of A, and the vector ¢ is
a corresponding eigenvector. The set of all eigenvalues {A1, Aa,..., A\, } of A is called the

spectrum of A, and is denoted by o(A). Matrix A admits a spectral decomposition

A= QAQT, (L1)
with A = diag(A1, A2, ..., A,) and @ € R™ " orthogonal.

The symmetric eigenvalue problem is one of the most studied problems in the field of
numerical linear algebra, with wide applications in science and engineering, varying from
quantum mechanics, structural engineering, through graph theory, Markov chains to data

and market analysis, and many more.

Depending on a specific application, it is required to compute the extremal eigenpairs, a

]

subset of eigenpairs, or a complete spectral decomposition. In the last decades, a numbe

of methods have been developed to tackle this problem.

Most of the approaches for solving a symmetric eigenvalue problem proposed in the
literature consists of two steps: reducing a dense symmetric matrix to tridiagonal form,
which is followed by the computation of the spectral decomposition of a tridiagonal
matrix. The second step is performed with a combination of standard methods, such as
the QR algorithm [52, 53, 82, 94], the classical divide-and-conquer (D&C) method [36, 64]
or the algorithm of multiple relatively robust representations (MRRR) [43, 44]. These
methods exhibit O(n?) complexity or higher, since all eigenvectors are computed and
stored explicitly. When interested in a large scale eigenvalue problem, there is therefore a
necessity to exploit a hidden structure in the data, in addition to sparsity, in order to

reduce both the computational and the storage complexity.

A growing line of research takes advantage of the underlying matrix structure to derive
fast methods for the symmetric eigenvalue problem. This involves eigenvalue methods

for hierarchical matrices and H* matrices [16, 18, 61, 70|, quasiseparable matrices [48],



1.2. Data-sparse formats

(hicrarchically) semiseparable matrices [110, 111, 114], and for rank structured matrices
given in terms of Givens-weight representations [39, 40|, such as the QR algorithm,
bisection method, preconditioned inverse iteration, and the divide-and-conquer method.

Several of these approaches involving hierarchical matrices are reviewed in Chapter 3.

1.2 Data-sparse formats

The simplest form of structured matrices are sparse matrices. We say that an n x n
matrix is sparse if it can be represented with only O(n) parameters. An important class
of sparse matrices are banded matrices, arising for instance in the discretization of 1D
partial differential equations. Fast methods based on approzimate sparsity, such as the
computation of matrix functions or fast linear solvers, have already been addressed in
literature; see e.g. [21, 22, 23, 59, 99]. In particular, for a banded A and a function f
that can be well approximated by a low-degree polynomial on the spectrum of A, f(A)
admits a good approximation by a sparse matrix. Nevertheless, this approach is limited
to a certain class of functions, and performs badly for functions with singularities close
to the spectrum. However, if instead of polynomials one considers a larger family of
approximants, rational functions, it might be beneficial to turn to more general matrix
structures as well, to the so called data-sparse formats. Specifically, a n x n matrix is

said to be data-sparse if it allows a representation using much less than n? parameters.

An advantage of using a data-sparse format is easily noticed for the inverse of a tridiagonal

matrix. Consider

A= (256 +1)2 R € R26x256,

and its inverse. All elements in A~! are larger than machine precision, which implies
that the sparsity is lost. In theory, a result by Demko et al. [41] gives a justification to
approximate A~! by a banded matrix. However, Figure 1.1 reveals that the decay in the

off-diagonal elements is very slow, and therefore the approach based on the approximate

3



Chapter 1. Introduction and background

sparsity does not seem to be adequate for this case.

50

100

150

200

250

50 100 150 200 250

Figure 1.1 — The intensity plot in 2D (left) and 3D (right) of the elements of the inverse of a
tridiagonal matriz A with k(A) = 2.7-10%,

On the other hand, the inverse of a triangular matrix exhibits an important property - all
off-diagonal submatrices in A~! are of rank one [109, Chapter 1|. Hence by subdividing the
diagonal blocks of A~! recursively into four submatrices and representing the off-diagonal
blocks via their rank-1 factors, as explained in Chapter 2, the memory needed to exactly

store A~! can be reduced to O(nlogn).

In the 1990s Hackbusch [66] introduced a concept of hierarchical matrices in the context
of integral equations. Hierarchical matrices are a data-sparse format built upon the
fact a matrix allows a decomposition into submatrices, where suitable submatrices can
be well approximated by a low-rank matrix. This in turn results in the reduction of
storage demands to O(nlogn). Depending on the matrix subdivision and the presence of
additional structure properties, e.g. nestedness condition, we obtain different possible
hierarchical matrices. This includes HODLR matrices [67, 69], H% matrices [29] and
hierarchically semiseparable (HSS) matrices [32, 115]. We note that another line of research
concerning rank structured matrices also includes the efficient handling of semiseparable
matrices [109, 110], and quasiseparable matrices [45, 46, 47, 48|.

The arithmetics with hierarchical matrices is approximative, involving a compression
in the low-rank blocks, with respect to a given accuracy or a prescribed rank, in order

to keep ranks reasonably low. Most of the dense linear algebra operations, such as

4



1.3. Background

matrix-vector products, matrix-matrix products, matrix decompositions, solving lincar
equations, etc., can be performed with linear-polylogarithmic cost, O(nlog®n), with
a > 1. Almost linear storage requirements and fast arithmetics allow us to treat
a wide variety of large-scale computational problems, especially considering a huge
demand for dealing with big data problems in the last years. To name a few, the
applications include matrix function computations |9, 55, 56, 62, 68, 80|, design of fast
linear solvers [3, 32, 33, 57, 92, 97, 113, 115] and many others. A more thorough overview
is given in Chapter 2.

1.3 Background

This section is devoted to review some of the basic definitions and matrix decompositions
which are heavily used throughout this thesis. For a deeper insight into the topics, we
refer the reader to the books [60, 77, 79].

Banded matrix. Let A € R™" and b € {0,1,...n—1}. We say that A = (a;;) is a
banded matriz with bandwidth b if a;; = 0 whenever |i — j| > b. A tridiagonal matrix is

1-banded matrix, while a diagonal matrix is O-banded matrix.

Hessenberg matrix. A matrix A € R"" A = (ay;), is called upper Hessenberg if
a;; = 0 for all 4,7 such that ¢ > j 4+ 1. A is said to be b-upper Hessenberg if A;; = 0
whenever i > j + b.

Cholesky decomposition. Let A € R™*" be symmetric positive definite matrix. Then
there exists a unique upper triangular matrix R € R"*™ with positive diagonal elements
such that A = RTR.

QR decomposition. Let A € R™™. Then there exist an orthogonal Q € R™*"™ and
an upper trapezoidal R € R™ " guch that A = QR. If A has a full column rank, then
the thin QR decomposition A = QR is unique with an orthonormal matrix @ € R™*"™

and an upper triangular matrix R with positive diagonal elements. We note that R is a

Cholesky factor of AT A.



Chapter 1. Introduction and background

SVD decomposition. Let A € R™*™. Then there exist orthogonal matrices U € R™*"
and V € R™™ such that

A=UxvT ¥ =diag(o1,09,...,0p), p=min{n,m}.

The scalars o1 > 09 > ... > 0 > 0 are called the singular values of A, while the columns
of U and V are the left and right singular vectors of A, respectively. The rank of A is
equal to the number r of positive singular values of A. The 2-norm condition number of

A is given as k(A) = 01 /0.

Polar decomposition. Let A € R™™™ with n > m. Then there exist an orthonormal

RnXm Rme

matrix U € and a unique symmetric positive semi-definite matrix H € such
that

A=UH, U'v=1I

If A has a full column rank, then H is positive definite and U is unique as well.

Matrix functions. Let A € R™*" be symmetric with the spectral decomposition (1.1).

We say that a function f is defined on the spectrum of A if all values

exist. For a function f defined on the spectrum of A, we can define f(A) as

f(A) = Qf(M)QT = Qdiag(f(M), f(N2),---, F)QT

We note that there exist other equivalent definitions to f(A), given in terms of the Hermite

interpolation polynomial, or the Cauchy integral formula; see [77]| for more details.

1.4 Contributions of the thesis

Chapter 2. We discuss several structured matrix formats, such as HODLR matrices,
HSS matrices, general hierarchical and H2-matrices. Our focus is in particular on the
HODLR format, which can be used to efficiently store spectral projectors of banded

matrices. We derive the arithmetic operations within the HODLR format, which will

6



1.4. Contributions of the thesis

be used in the subsequent chapters, and show that they can be performed cfficiently,

exhibiting a linear-polylogarithmic complexity.

In Section 2.2.9 we propose a new fast method for the computation of a QR decomposition
of a HODLR matrix. The new method is based on a recursive block column approach,
which exploits a compact WY representation to efficiently and accurately compute the
orthogonal factor in the HODLR format. The implementation requires some attention,
because of a block structure in the HODLR format. Moreover, we examine the performance
of our method on several examples, and compare it to an existing method. The experiments
indicate that our method yields satisfactory results, both in terms of accuracy and

orthogonality.

Furthermore, Section 2.2.11 describes the functionalities of our MATLAB package, which

implements all algorithms described in Chapter 2.

Chapter 3. We review state-of-the-art methods for the symmetric eigenvalue problem

involving hierarchical matrix formats.

Chapter 4. We consider the approximate computation of spectral projectors for syi-
metric banded matrices. While this problem has received considerable attention, especially
in the context of linear scaling electronic structure methods, the presence of small relative
spectral gaps challenges existing methods based on approximate sparsity. In this work,
we show how a data-sparse approximation based on hierarchical matrices can be used to

overcome this problem.

We propose a new fast method based on a variant [91] of the QR-based dynamically
weighted Halley algorithm (QDWH) [89]. Our approach relies on the fact that the HODLR
format is well suited for representing the iterates of the QDWH algorithm applied to a
banded matrix. In Section 4.2, we study the off-diagonal blocks of spectral projectors.
Based on the best rational approximation to the sign function, we derive a priori bounds
on the singular values in the off-diagonal blocks of spectral projectors, and prove that
the memory needed for storing the approximate spectral projector in the HODLR format
depends only logarithmically on the spectral gap. This represents a major improvement
over approximate sparsity approach, where the gap enters memory requirements inverse

proportionally. The implementation of the QDWH algorithm in the HODLR format

7



Chapter 1. Introduction and background

requires some care, in particular, concerning the computation of the first iterate, which is
addressed in Section 4.3. One major contribution of Chapter 4 is to provide a justification

TTATNT

format.

Using the arithmetic in the HODLR format, our new method exhibits a linear-polylogarithmic
complexity. Numerical experiments demonstrate that the performance of our algorithm is
robust with respect to the spectral gap. A preliminary MATLAB implementation becomes
faster than eig already for matrix sizes of a few thousand. Moreover, the favorable
complexity allows to deal with large scale matrices, up to n = 1000000 on a desktop

computer.

This chapter is largely based on the published article [81]. The additional content is added
in Section 4.1, where we give a deeper insight into the QDWH method. In Section 4.2,
in particular Example 4.9, we demonstrate the quality of our a priori singular values’
bounds. Moreover, in Section 4.3 we extend the proof of Theorem 4.11 to a more general
case, given in Theorem 4.13, which shows a bound for the off-diagonal ranks in the first
iterate of the QDWH algorithm for banded matrices.

Chapter 5. We propose a new fast method for computing all eigenvalues and eigen-
vectors of a symmetric banded matrix. Our approach is based on the spectral divide-
and-conquer method from [91], which recursively splits the matrix spectrum using the
invariant subspaces obtained from spectral projectors associated with roughly half of the

spectrum.

The computation of spectral projectors is carried out in the HODLR format, employing
the method developed in Chapter 4. Following the new method for the QR decomposition
presented in Chapter 2, we derive a new algorithm for computing the first iterate in the
QDWH algorithm for general symmetric HODLR matrices. This allows us to apply the

spectral divide-and-conquer method even for matrices with small spectral gaps.

The computation of an invariant subspace requires to determine a basis for the range of a
spectral projector. Given that spectral projectors are stored in the HODLR format, this
represents a major challenge, and makes the standard pivoting approaches inapplicable to
our case. We therefore derive a novel method for extracting a set of linearly independent

columns of a spectral projector in the HODLR format, and provide its theoretical analysis.

8



1.4. Contributions of the thesis

The new method, presented in Section 5.2, is built upon a block Cholesky decomposition

with local pivoting.

The numerical experiments demonstrate that our algorithm exhibits linear-polylogarithmic

complexity and allows for conveniently dealing with large-scale matrices.

This chapter mostly follows the submitted preprint [108]. The content of the chapter
contains a major change, which concerns the first iteration of the QDWH algorithm.
Indeed, the preprint [108] implements the first iterate using the Cholesky decomposition,
while in this work the first iterate is performed using a new method for computing a QR
decomposition of a 2n x n matrix [A I]7, where A is a HODLR matrix. This results in a
more accurate and stable method in comparison to [108], in particular for matrices with

small spectral gaps.






Matrices with hierarchical low-rank

structure

In the last decades, hierarchical matrix representations and the associated arithmetics have
become a crucial tool when dealing with large-scale matrices coming from applications
with an underlying geometry. Hierarchical matrices are data-sparse approximations of
a class of dense matrices. The concept of hierarchically low-rank matrices is based on
the observation that certain submatrices can be recursively subdivided and that certain
sub-blocks can be well represented in terms of their low-rank approximations. For this
class of matrices standard linear algebra operations, like matrix-vector products, matrix
factorizations, solving linear equations, etc., are typically defined in a block-wise manner

and can be performed in almost linear complexity.

Hierarchical matrices, or more specifically HODLR matrices, are essential objects in
this work. The aim of this chapter is to introduce all necessary ingredients to work
with HODLR matrices. In particular, in Section 2.1, we first review different matrix
formats with hierarchical structure: HODLR matrices, H—matrices based on a strong
admissibility condition and HSS matrices. Section 2.2 is dedicated to the arithmetics in the
HODLR format, which will be heavily used in subsequent chapters. More specifically, we
describe arithmetic operations, such as addition, multiplication, Cholesky decomposition,

submatrix selections in detail and provide complexity estimates.

Additionally, in Section 2.2.9 we propose a new algorithm for the computation of a QR
decomposition in the HODLR format. Our method is performed recursively by block
columns, and exploits a compact WY representation to store the @) factor, which yields

satisfactory results in terms of orthogonality. Our approach exhibits linear-polylogarithmic

11



Chapter 2. Matrices with hierarchical low-rank structure

complexity. Finally, the chapter is concluded by Section 2.2.11, where we give an overview

of the functionalities of our HODLR MATLAB package.

The material covered in this chapter up to Section 2.2.9 mostly follows [8, 67] and

references therein.

2.1 Hierarchical matrix formats

Hierarchical (H-) matrices have been introduced by Hackbusch [66] in the context of
solving boundary integral equations, and since then have been used in [10, 11, 12, 14,
29, 35, 58, 63, 67, 87| and other. H-matrix structures are based on a hierarchical
matrix partitioning into sub-blocks, where blocks are split into two groups based on
an admissibility condition. Admissible blocks are stored as low-rank matrices, while
inadmissible blocks are either further decomposed or stored as dense matrices. For more

details on a construction of hierarchical matrices we refer to [67].

In addition to already mentioned discretizations of integral and partial different equations,
a wide variety of applications include hierarchical matrices. In the following we provide a
short list of applications; for an abundant overview we refer to [67]. In the context of Riccati
and Lyapunov matrix equations, the computation of the sign function of an ‘H-matrix has
been discussed in [9, 62|, alongside with a divide-and-conquer method using hierarchical
matrices [80]. The work in [55, 56, 62, 68| involves the H-—matrix approximation of
resolvents, which is then used to compute the matrix exponential and related matrix
functions. Methods for computing (partial) spectral decompositions in H-matrix formats,
including HODLR, HSS and H? matrices, have been developed in [16, 18, 20, 70, 61, 111].
Hierarchical matrix techniques have been employed in preconditioning [54, 93] and for
developing (sparse) direct solvers in [3, 57, 92, 97, 113, 115]. Several other applications
include kernel approximation in machine learning [103, 112], as well as sparse covariance

matrix estimation |2, 7] in the HODLR and H-matrix formats.

Hierarchically semi-separable (H?-) matrices are a class of H-matrices, where the general
low-rank representation of the matrix sub-blocks is replaced by a nested multilevel
representation that takes advantage ol the relationships between dillerent submadtrices;
see [29] and references therein for more details. This representation leads to reduced

storage requirements and lower arithmetical cost of the matrix operations in comparison

12



2.1. Hierarchical matrix formats

to the H—matrix format. However, the nestedness condition makes the implementation of

algebraic operations significantly more involved than for other H—matrix formats.

Hierarchically off-diagonal low-rank (HODLR) matrices form the simplest class of hierar-
chical matrices [67], with low-rank off-diagonal blocks at multiple levels. In the HODLR
matrix structure only the diagonal blocks are further subdivided into low-rank and full-
rank blocks, whereas for general H—matrices the off-diagonal blocks are decomposed as
well. Thus, the HODLR format yields a much simpler representation and is often used

because of its simplicity compared to general H—matrices.

Hierarchically semiseparable (HSS) matrices, proposed in [32, 33|, are a class of HODLR
matrices that allow a hierarchical representation based on a recursive row and column
partitioning. Unlike for HODLR matrices, where the off-diagonal blocks are stored
independently, HSS matrices have the off-diagonal blocks with hierarchically nested

structure. This also implies that HSS matrices form a subset of H? matrices.

In Figure 2.1 we show the relations between the mentioned hierarchical matrix structures.
Although subsequent chapters do not involve computations with H? and HSS matrices,

because of their close relation with HODLR matrices, they are introduced for completeness.

‘H—matrices

HSS

HODLR H2-matrices
banded

Figure 2.1 — An Fuler diagram of different matriz structures, given that admissible blocks have
ranks bounded by k.

13



Chapter 2. Matrices with hierarchical low-rank structure

2.1.1 HODLR matrices

Given an n x m matrix M let us consider a block matrix partitioning of the for

[V REYS)
M = [ 1 2l (2.1)
M21 M22

where Ml(é),MQ(i) are matrices with low rank, and Mﬁ)’Mz(;) are dense matrices or
matrices of the form (2.1). This partitioning is applied recursively p times to the
diagonal blocks, until their sizes have reached a certain minimal block-size, leading to the

hierarchical partitioning shown in Figure 2.2.

ﬂg

Figure 2.2 — Illustration of HODLR matrices for different recursion levels p. From left to right:
p=2,p=3, and p = 4. The diagonal blocks (gray) are stored as dense matrices, while the
off-diagonal blocks (white) are stored in terms of their low-rank factors.

We say that M is a HODLR matriz of level p and HODLR rank £ if all off-diagonal blocks
seen during this process have rank at most k. In the HODLR format, the off-diagonal
blocks are stored, more efficiently, in terms of their low-rank factors. For example, for
p =2, the HODLR format takes the form

. ]
o () e (Vu))T
T 1 2
b ) )
- T
@ [, \T M3 U§2)(V4(2))
U (Vl ) @ ()" 2)
i Uy (Vs ) My
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2.1. Hierarchical matrix formats

The definition of a HODLR matrix depends on how the partitioning (2.1) is chosen on

each level of the recursion. This choice is completely determined by the integer partitions
n=mniy+ng+---nop, m=mi-+mo -+ -+ Mmop. (2.2)

Depth p of the recursion and integers n;, m;, similar in size, are chosen such that n;, m; are
nearly equal to a given minimal block-size nmyin, meaning that the integer partitions (2.2)
are balanced. Here n; x mj, j = 1,...,2P, correspond to the sizes of the diagonal blocks

Ml(zf), ceey Még?gp on the lowest level of the recursion, which are stored as dense matrices.

Given specific integer partitions (2.2), formally we define the set of HODLR matrices of
level p and of HODLR rank k as

Hysem (k) := {M € R™™ :rank Mog < k

V off-diagonal block M|.g in the recursive subdivision}.

(2.3)

Remark 2.1. In practice, for a given matrix M € R™*™ and a prescribed minimal block-
size Nyin, the integer partitions (2.2), and hence a specific HODLR format, are generated

imposing that matrices Mﬁ), Mz(;) in (2.1) satisfy Ml(}) e RlEIx1%] , Mz(;) c RIE]x i%i,
and by applying the same rule for sizes of the diagonal blocks in subsequent levels of
the recursive subdivision. This choice of matrix division leads to a balanced partitioning
of the matrix. In case m = n = 2Pn;,, we get that the integer partitions (2.2) satisfy

M; = N = Nmin, for ¢ = 1, ..., 2P yielding a perfectly balanced partitioning.

Computing HODLR representation

Given an n x m dense matrix M and integer partitions (2.2), the computation of its
approximation in the HODLR format can be carried out in the following fashion. The
diagonal blocks on the lowest level of recursion are stored explicitly, while low-rank

representations of the off-diagonal blocks need to be computed.

A number of methods exist for computing a low-rank approximation of a matrix, such as
adaptive cross approximation [67, Chapter 9], randomized techniques [74], rank-revealing
algorithms [65], Krylov-based algorithms [104] and SVD-based algorithms [60, Chapter
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Chapter 2. Matrices with hierarchical low-rank structure

2]; sce also [8, 67| for more details and references.

In this work we compute low-rank representations using the truncated singular value
decompositions of the off-diagonal blocks of M. For simplifying the presentation, we
often assume that the ranks in the off-diagonal blocks are all bounded by the same
integer k. For an arbitrary A € R™*™ let A = UXV” be an SVD decomposition of A,
with ¥ = diag(oy, ... ,amin{mm}), and 01 > 02 > Opinfn,m}- We define a truncation

operator 7 as

Ti(A) := UpZyViE, &k < min{n, m}, (2.4)
where Uy = (u1,...,u), Vi = (v1,...,vx) are left and right singular vectors of A, respec-
tively, corresponding to the k largest singular values oy, ..., 0% and X = diag(oq, ..., 0%).

Then T;(A) is the best rank-k approximation to A in the matrix 2-norm [79, Chapter 3].
Moreover, the truncated SVD Ty (A) yields a low-rank representation UV of A given as

U:=Un/S, V=VivVZs,

under the assumption that k& < min{n, m}. Finally, this low-rank representation requires

(n + m)k units of storage, instead of nm when A is stored as a dense matrix.

In practice, we choose the ranks in the off-diagonal blocks adaptively based on an absolute

truncation tolerance €. To this end, we employ a truncation operator 7T, defined as
Te(A) :=Tr.(A), with k.= HED IT(A) — All2 <e. (2.5)

Computing a low-rank representation from 7¢(A) allows to choose the truncation rank %
to attain a prescribed accuracy. However, using 7. possibly yields different ranks for each
off-diagonal block in the HODLR format.

Storage requirements

Assume that the integer partitions (2.2) are balanced and p = O(logn). For M € Hy,xm (k)
all off-diagonal blocks are stored in terms of their low-rank representations. In particular,
from Figure 2.2 we can see that on level 0 < [ < p the matrix M has 2! off-diagonal
blocks. Thus the storage complexity of the off-diagonal blocks on level [ is (n+m)k. This
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implies that the overall memory required for storing all off-diagonal blocks is p(n + m)k.

On the lowest level of recursion, the diagonal blocks are stored as n; x m; dense matrices,

1 =1,...,2P and their storage requires
nymy + ...ngpmaopr = O(n - maxm;)
K3

units of memory. Thus, assuming that max m; = O(k), the storage complexity of a n x m
7

HODLR matrix of rank k& sums up to

O(knlogn), n = max{n,m}.

2.1.2 Hierarchical matrices

H-matrices are a generalization of HODLR matrices that allow for more flexibility in the
choice of blocks to be approximated by a low-rank matrix. In this section we focus on a
particular variant of hierarchical matrices that is inspired by the discretization for 1D

integral equations [66].

For simplicity, we assume n = 2Pn,;, for some integers p and npyi,. Let I ={1,2,...,n}
denote the row and column index sets of a matrix M € R™ ™. To consider more general
hierarchical matrices, we define a partition P of I x I as follows. On level [ = 0, the index
set 19 := I is partitioned into J® = I U}, with I = {1,..., 2} and IJ = {2 +1,...,n}.
At this point, the partition P contains five blocks: I x I and IZ-1 X Ijl for i,5 = 1,2.
The subdivision continues as follows: on each level [l = 1,...,p — 1 the index sets Ié are
partitioned into sets Ié;r_ll and Iéjl of equal size, contributing the blocks I f“ x I ]Hl for
i, =1,...,2" to the partition P. The recursion terminates when a block If X I]l- satisfies

a certain admissibility condition or when min{|I}|, |I ]l|} < Nyin holds.

We consider the following variant of the so-called standard admaissibility condition:

block 7 =t x s is admissible <= min{diam(¢),diam(s)} < dist(¢, s), (2.6)
where
di t) = i —J dist(t = min |7 — j|.
fam(t) := max i —j|, dist(t,s) := min |i —j|
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Chapter 2. Matrices with hierarchical low-rank structure

Sce Figure 2.3 for an illustration of the resulting partition P. Given P, the set of

H-matrices with block-wise rank & is defined as

H(P, k) := {M € R"*™ : rank M|, < k for all admissible blocks T € P} .

RES

Figure 2.8 — Hierarchical matrices with admissibility condition (2.6) for p =2, p=3 and p = 4.
Blocks colored in grey are stored as dense matrices, while blocks colored in white are stored in
terms of their low-rank factors.

The resulting structure is very similar to the HODLR format, with a finer subdivision

around the diagonal, allowing more matrices to be stored as dense.

Let us remark that the HODLR format likewise can be generated using an admissibility

condition. Using the so-called weak admissibility condition [69], given as:
block 7 =t x s is admissible <= t # s. (2.7)

every off-diagonal block is considered admissible. This implies that the off-diagonal blocks
are given in terms of their low-rank factors, which exactly corresponds to the HODLR

format.

Example 2.2. (Comparison between HODLR and H—matrix format) We inves-
tigate the potential of the HODLR and H-matrix formats to efficiently store spectral
projectors of banded matrices, whose computation is addressed in Chapter 4. For this
purpose, we have generated, as explained in Section 4.5.1, a symmetric b-banded matrix
A € R16000x16000 with eigenvalues in [—1, —gap]U[gap, 1], such that half of the spectrum
is negative. The memory needed to store the full spectral projector ITo(A) associated
with the negative eigenvalues in double precision is 2048 MB. We choose npyin = 250, and
obtain the integer partition generating the HODLR format as explained in Remark 2.1.

Moreover, we use the truncation tolerance ¢ = 10719, and gap € {107!,107%}. Table 2.1

18



2.1. Hierarchical matrix formats

reveals that the HODLR format often requires less memory to store the approximation of
ITo(A), unless both gap and the bandwidth are large. However, in terms of computational
time, the outcome is even clearer. For bandwidth b = 8 and gap = 10~!, a situation that
favors the H—matrix format in terms of memory in Table 2.1, we have run the algorithm
described in Section 4.4 in both formats. It turned out that the use of the HODLR format
led to an overall time of 608 seconds, while the H—matrix format required 792 seconds.

Table 2.1 — Memory required Lo approzimalely store speclral projeclors [or the banded malrices in
HODLR and H-matriz format.

gap = 1071 H HODLR H H-matrix gap = 1074 H HODLR || ‘H-matrix

b=1 55.72 MB 95.16 MB b=1 86.03 MB || 128.58 MB
b=2 79.38 MB 96.42 MB b =2 129.71 MB || 160.56 MB
b=4 127.04 MB || 106.54 MB b=4 206.32 MB || 225.72 MB
b=38 219.92 MB || 151.06 MB b=38 340.88 MB || 352.54 MB
b =16 395.91 MB || 291.85 MB b =16 567.69 MB || 583.93 MB

Based on the evidence provided by Example 2.2, we have concluded that more general
H—matrix formats bring little advantage and therefore focus on the HODLR, format in

the subsequent chapters.

2.1.3 Hierarchically semiseparable matrices

As aforementioned, hierarchically semiseparable matrices are a special case of HODLR
matrices. Starting from a given HODLR format generated by the integer partition (2.2),
we consider an off-diagonal block of a HODLR matrix M on level 0 < [ < p. Assuming
that the off-diagonal blocks have exact rank k, their low-rank representations can be also

written as -
M) =vPsP(vi0)', with 8 e RFF, fori £
HSS matrices additionally satisfy that the ases for the off-diagonal blocks on different

)

levels are nested. More specifically, there exist matrices R(l), Wj(l) € R?*F guch that

(1+1) @
! Uy~ 0 I . l R o
v = R R with R = [ O (2.8)
9 i,2i
v w®
vO = [Pt L w0, i w® = T 2:9)
0 v ! ! Wiz
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Chapter 2. Matrices with hierarchical low-rank structure

Using the conditions (2.8) and (2.9), the row and column bases UY and V® can be

constructed from the bases on the highest level, i.e., the bases on levels 0 < [ < p can be
retrieved recursively from the bases Ui(p ) and Vj(p ) and the matrices Rf;l) and Vv’j(l). For

instance, for p = 2, the HSS format takes the form

2 2) (2 o\ T T

M2 uPs (V) PRI o [P

o 2) p) | P12 |12 75(1)

sy e v RB) 57 |V
N T 2) @) @ (O
U3(2)R§11) 551) Vl(Q)Wl(P] M33 ., Us™ S5 (V4 )

2 1 1 2 1
o RD| |y L) MY

This means that the storage requirements of an HSS matrix is determined by the cost
of storing the dense diagonal blocks Mi(ip ) on the highest level, the bases Ui(p ) and Vj(p ),
likewise REZ), Wj(l) and Sééll,Qi, Séli?%il. Thus the storage complexity for a matrix in the
HSS format with rank & sums up to O(kn). Compared to the storage of a HODLR matrix

of rank k, a logn factor can be avoided as a result of the nestedness condition.

For a b-banded matrix M its HSS representation with rank & can be computed exactly,
with k& = 2b. The following result relates representations in the HODLR, and HSS formats

for general matrices.

Lemma 2.3. (Lemma 2.5.9 in [85]) Let M € R™*"™, where n satisfies the integer parti-
tion (2.2). Then:

) s an matrix of leve with ran then 5 a matrix of leve
) If M HSS f level p h k k, then M HODLR f level
p with rank k.

ii) If M a HODLR matrixz of level p with rank k, then M is an HSS of level p with
rank kp.

Similarly as for other hierarchical formats, the HSS format allows for approximate
arithmetic operations. We refer the reader to [33, 115| for a detailed description of
hierarchically semiseparable matrices and the associated arithmetics. Compared to the
HSS format, the HODLR matrices are much simpler as they lack the nested off-diagonal
bases. However, this makes the implementation of the arithmetic operations in the

HODLR format less tedious and more straightforward.
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2.2. HODLR arithmetics

Example 2.4. (Comparison between HODLR and HSS formats) We also provide
a comparison of the storage requirements in the HODLR, and the HSS formats. We first
consider spectral projectors of banded matrices of size n = 8000, generated as explained
in Section 4.5.1. The eigenvalues of the considered matrices are in [~1, —107'JU[107!, 1].
We compute both the HODLR and the HSS representation of the spectral projectors
using the truncation tolerance ¢ = 10710, In the second case, we investigate the storage
of a random matrix of size n = 8000 with a prescribed off-diagonal rank k. This
means that these matrices can be stored exactly in the HODLR and the HSS formats,
therefore compression is not performed. In both cases, the minimal block-size is set
to nmin = 250, and the obtained integer partition is as in Remark 2.1. To compute
an HSS representation of a matrix, we make use of the hm-toolbox, available at https:
//github.com/numpi/hm-toolbox. In Table 2.2 (left) we see the advantages of the HSS
format in terms of storage for banded matrices for smaller bandwidths. Additionally,
Table 2.2 (right) shows that for the considered n, as the prescribed rank increases, the
benefits of the HSS format become insignificant compared to the HODLR, format.

Table 2.2 — Left: Memory required to store spectral projectors of banded matrices in the HODLR
and the HSS formats. Right: Memory required to store random matrices with the off-diagonal
rank k in the HODLR and the HSS formats.

band || HODLR || HSS random || HODLR |  HSS

b=1 | 268MB [ 214 MB k=1 [[15b.9MB [ 15.9 MB
b=2 || 36.9MB | 29.1 MB k=10 || 21.4 MB | 23.6 MB
b =4 53.0 MB 47.8 MB k=20 || 27.5 MB || 36.4 MB

b=38 89.4 MB || 103.8 MB k=40 || 39.7 MB || 75.3 MB
b =16 || 159.0 MB || 213.0 MB k=80 || 64.1 MB || 141.2 MB

2.2 HODLR arithmetics

Several arithmetic operations can be performed efficiently in the HODLR format. However,
the need for truncation in addition, multiplication, inversion and computation of Cholesky
or LU decomposition in order to keep the ranks bounded, makes the arithmetic involving
HODLR matrices an approximative one. Because of their structure, operations with
HODLR matrices are performed recursively in a block-wise manner, resulting in a linear-

polylogarithmic complexity.
In order to simplify the presentation we use the following assumptions. Firstly, we assume
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that for the size of HODLR matrices it holds n = 2Pny;,,. Moreover, we assume the
integer partitions explained in Remark 2.1. The complexity analysis is derived under the

assumption that the off-diagonal ranks are bounded by a constant k.

2.2.1 Preliminaries on low-rank matrix arithmetics

As low-rank matrices are a fundamental tool when dealing with arithmetic operations in
the HODLR format, we first recall several operations with low-rank matrices. We assume
that low-rank matrices are given in terms of their low-rank factors, and that their rank is

significantly smaller than the matrix size.

Matrix-vector multiplication. Let A = UAVAT, with Uy € R"*ka v, € R™**a and
x € R™. The multiplication y = Ax is performed in the following two steps:
1. §=Vig,

2. y=Uay.

This leads to a computational cost 2(n + m)ka.

Matrix-matrix multiplication. Let A = UAVE,B = UBVE with Uy € R™ka vy e
R™%ka and U € R™*¥8 Vi € R™>k5. We note that there are two possible low-rank

representations of the product AB:

1. AB = (UaV}Up)VE, calculated with 2(m + 1)kakp operations,

2. AB = Uy (VIURVY), calculated with 2(n +m)kakp operations.

Matrix compression. Given A = UAVAT, with Uy € R™¥ka YV, € R™*ka and k <
ka < min{n,m}, the aim is to compute a rank-k approximation to A. This can be done

by using the following procedure.

1. Compute Uy = Qu Ry and V4 = Qu Ry, the economic QR decompositions of Uy
and Vy, respectively.
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2.2. HODLR arithmetics

2. Compute the truncated SVD of a kg x ky matrix: E(RURg) = UXV, with T
defined in (2.4).

3. Set Uy = QuUVE and V4 = QyVVE.

The described procedure requires O ((n + m)ki) operations to perform two QR decom-
positions, and additionally O(k%) operations for the computation of the truncated SVD.

Hence, the overall cost is linear in n and m.

The truncation with respect to a prescribed tolerance € is performed in an analogous way,

by employing the operator 7¢ given in (2.5) in place of 7.

Matrix addition. For A =UaV] and B = UgV}} with U € R"**4, V4 € R™**4 and
Up € R™F8 Vg € R™**5_ the sum of A and B can again be represented as a low-rank

matrix:

A+ B=[UaUg|[VaVg]".

—~
[\]
A
)

=

In this case, no arithmetic operations need to be performed. However, the rank of the
resulting representation increases to k4 + kp. If k4 + kp is larger than the exact rank of
A+ B, or larger than a prescribed rank k, it is beneficial to perform a compression of
the low-rank representation in (2.10). Thus when truncation is involved, we say that a
formatted addition is performed. In this case, the cost of adding two low-rank matrices
corresponds to the cost of compression, i.e., O ((ka + kp)® + (n+ m)(ka + kp)?).

2.2.2 HODLR matrix-vector multiplication

Given a HODLR matrix M € Hy,xn(k) and a vector v € R", a matrix-vector multiplication
y = Mwv can be performed without involving the truncation operation, i.e., the result is

exact up to machine precision. For a level p HODLR matrix

My UV
UsViE Mo
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v
and a vector v = [ 1] partitioned accordingly, the resulting vector y = [y1
V2

computed as

y1 = Miyvy + Up (V4 va), (2.11)
Y2 = Magvg + Up(Vi'v). (2.12)

We have two types of operations in (2.11) and (2.12):

1. the multiplication of a level p — 1 HODLR matrix with a vector, and

2. the multiplication of a low-rank matrix with a vector.

In case 1, we proceed recursively until level 0 HODLR matrices have been reached. Thus,
at the end of the recursion a standard matrix-vector multiplication is performed, whereas

in case 2 low-rank arithmetics is used.

Let Cpy(n) denote the computational cost of a HODLR matrix-vector multiplication of
size n. Using the results from Section 2.2.1, it follows that the overall computational cost

of a matrix-vector multiplication satisfies the recursion

Cara() 2nmin, if n = numin (p = 0),
Hv\N) =
2Cho (%) + (4k + 1)n, otherwise.

Then from the Master theorem [34, Chapter 4|, we conclude that the computational

complexity of a matrix-vector multiplication is
Chy(n) € O(knlogn). (2.13)

The pseudocode is presented in Algorithm 2.1. For completeness, we note that the
multiplication with a (low-rank) matrix V' € R"*! is performed analogously, and that its
cost Crr(n) satisfies Cir(n) =1 - Cay(n). Moreover, similar recursive procedures can be

derived for the multiplication from the left with a vector and with a (low-rank) matrix.
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2.2. HODLR arithmetics

Algorithm 2.1 Matrix-vector multiplication
Input: M € H,xn(k) of level p, v € R™.
Output: Vector y = Mv € R™.

1: function y = hMV(M, v)
2: if p =0 then
3:  Return y = Mw.
4: else ) .
.. My U1V, ] [01]
5.  Partition M = and v = conformally.
UoViT Mo vy ¥y

. Call recursively y; = hMV(My1,vy1) + Uy (Vi vg).
7. Call recursively yo = hMV(Mag, va) + Us (VL vy).

8  Return y = 1
2

9: end if
10: end function

2.2.3 HODLR matrix addition

Given two HODLR matrices M, N € H,,xn (k) of level p, we consider the computation of
A= M + N. The sum of HODLR matrices can be represented in the HODLR format as

My U Vg

Nip o XiYy
X0V Ny

M+N =

My + Ny VL + XYy ]
UpVi' + XoY" Mg 4 Nop J ’

where My, Mg, N11, Nag are HODLR matrices of size n/2 and level p — 1. The diagonal
blocks are computed recursively, whilst for the off-diagonal blocks the low-rank arithmetics
is used. In particular, two types of operations are employed when performing matrix

addition:

1. the addition of two HODLR matrices of size n/2,

2. the addition of two rank-k matrices of size n/2.

In case 1 recursive calls continue until level 0 HODLR matrices have been reached. On
2

the lowest level of the recursion, a standard matrix addition is used, with the cost n_; .
In case 2 we perform the formatted addition of two low-rank matrices, explained in
Section 2.2.1. This guarantees that all off-diagonal ranks in the sum are bounded by k.

Finally, this leads to the pseudocode given in Algorithm 2.2.
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Algorithm 2.2 Matrix addition (+%)

Input: M, N € Hpxn(k) of level p.
Output: A =M +4 N € Hyxn(k) of level p.

1: if p =0 then
2:  Return A = M + N.
3: else

r T
4:  Partition M = [MH UiV ] and N = [ Nu XYy ]

UsViE Mo XoY' Ny
Call recursively A1 = My1 4+ Nq1.

Call recursively Ao = Moo 474 Noo.

Compute Z1 Wi = Tp.([U1 X1][Va Yo]T).

Compute ZoW{ = Tp.([U2 X2][Va Ya]T).

A W ]
9: Return A = .
|:Z2 WlT AQQ

10: end if

The complexity of a HODLR matrix addition of size n, denoted by C4r(n), thus satisfies

the recurrence

2

min’

2Ch+m (%) + O(k* + k?n), otherwise.

n if 1= Nmin (p = 0),

Crin(n) =
Lastly, using the Master theorem, we get
Crir(n) € O(k3n + k*nlogn). (2.14)

Similarly, the sum of a HODLR matrix and a low-rank matrix can be computed in
the HODLR format. In order to perform the addition, we first need to partition the
low-rank matrix according to the HODLR matrix. Let M € Hyxn(k) and R = ABT,
with A, B € R™*. Then

M+R = My UiV5|  |(AB")1 (AB")12 _ | M+ (ABT)1n  U1Vy 4 (ABT)19
Us Vi Moo (ABT)91 (ABT)g UsVIE + (ABT)y1 Mo + (AB)L,

The computation of the diagonal and off-diagonal blocks in the sum is processed as
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2.2. HODLR arithmetics

aforementioned. The computational cost Cr4r(n) of the addition satisfies

(2k + 1)n2 ifn = Nmin (p - 0)7

min’

Ch+r(n) =
2Cu4r (%) + O(k* + k?n), otherwise.

Thus the asymptotic complexity coincides with the complexity Cpi g (n).

2.2.4 HODLR matrix-matrix multiplication

We now have all the needed ingredients to compute a product of two HODLR matrices.
Suppose M, N € Hyxn(k) of level p. Then, the computation of their product is carried

out block-wise:

Us Vi Moo

Nii XhYy
XoYh Ny

MN =

My Ni + UV Xo Vi My Xa YS! + U Vi Nog
UsVIE N1 + Mo XoYiE U VIE X Y5 + Moo Noo

9

where M1, Mago, N11, Nog are HODLR matrices of size n/2 and level p — 1. The ansatz
is that the resulting matrix has the same block structure as M and N. The following
operations are involved when computing the product of two HODLR matrices:

1. the multiplication of two HODLR matrices,

2. the multiplication of a HODLR matrix with a low-rank matrix,

3. the multiplication of two low-rank matrices,

4. the addition of a HODLR matrix and a low-rank matrix,

5. the addition of two low-rank matrices.

The operations in 2, 3, 4 and 5 have already been discussed, together with their computa-
tional cost. As stated in Section 2.2.2 and Section 2.2.1, the computations in 2 and 3,
respectively, are performed exactly, since those operations do not increase ranks. On the
other hand, as showed in the previous section, performing the computations in 4 and 5

involves the truncation operator 7Ty, in order to keep the ranks bounded. The computation

27



Chapter 2. Matrices with hierarchical low-rank structure

in 1 is carried out recursively, and performs a standard matrix-matrix multiplication on
level 0 HODLR matrices, with the computational cost O(n3 ). A pseudocode of the

procedure is given in Algorithm 2.3.

Algorithm 2.3 Matrix multiplication ()
Input: HODLR matrices M, N € Hy,xn(k) of level p.
Output: A= M sy N € Hyxn(k).

1: if p =0 then
2:  Return A = MN.
3: else

4:  Partition M =
[U2V1T Moo X0V Noo

Call recursively A11 = My x4 Nij.

Compute Aqq < A1 +4 Ul(vaXg)YlT.

Compute Z; Wi = Tp([aMV(My1, X1) Up][Y2 hMV(Ny, V2)]).
Compute ZoW{ = Tp.([aMV(Maz, Xo) Us][Y1 hMV(NT;, V1)]).
Call recursively A22 = M22 *7q N22

10: Compute Agg < Ao +4 UQ(VlTXl)YQT.

[ An zwf
11:  Return A = [Z2W1T Ay |

My U1V2T] and N — [ Nu X1Y2T]

12: end if

Let Cyp(n) designate the computational cost of the HODLR matrix-matrix multiplication

of size n. The previous developments lead to

Cru(n) OMain); if = nin (p = 0),
aH(n) =
20nu (%) + O(k*n + k*nlogn) + O(k* + k*n), otherwise.

Finally, we derive that

Cru (n) € O(k3nlogn + k*nlog?n). (2.15)

In addition to the presented matrix-matrix multiplication, we will also consider the
multiplication of rectangular HODLR matrices. Assuming that the partitions of the
involved matrices are compatible, the multiplication in the HODLR format is completed

analogously as for square matrices. Moreover, the asymptotic computational cost amounts

to CHH(n)
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2.2.5 HODLR triangular linear systems

in the HODLR format. In the following we focus on solving lower triangular linear systems.

Analogous developments and analysis follow for upper triangular systems as well.

Linear systems with dense right-hand side

Given a lower triangular invertible matrix M € H,x,(k) and a vector y € R", the
solution of a system Mz = y can be computed exactly in the HODLR format. We derive

a procedure for solving a linear system by considering partitions of M,z and y

M1 0 e T y= Y1
(]2V1T Moo ' T2 ’ (7P] ’
with M1, Mas HODLR matrices of size n/2 and level p — 1. Thus the procedure,

summarized in Algorithm 2.4, consists of the following steps:

e solve recursively the lower triangular system

MHCCl = Y1 (216)

e solve recursively the lower triangular system

Maoszo = yp — Up(ViL 7). (2.17)

The computation of the right-hand side in (2.17) is executed exactly, as only the multipli-
cation of a low-rank matrix with a vector is needed, alongside with the vector subtraction.
As seen in Section 2.2.1, these operations can be performed with (2k + 1)n operations.
The recursive calls in (2.16) and (2.17) are done using forward substitution, until the

considered HODLR matrices are of level p = 0. In the latter case, a standard dense solver

2

for forward substitution of complexity O(n: ;) is applied. Hence, solving a triangular

HODLR system with a dense right-hand side does not require rank truncation.
Let Crsolve(n) denote the computational cost of the summarized procedure. Then
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O(nfnin% ifn= Nmin (p = 0),
CTSolve(n) =
2Crsolve (%) + (2k + 1)n, otherwise.

Finally it follows

CrSolve(n) € O(knlogn). (2.18)

Algorithm 2.4 Solving a triangular system with a dense right-hand side

Input: Lower triangular invertible M € Hy (k) of level p, and y € R™.
Output: Solution = € R" of a linear system Mx = y.

1: function x = TSolve(M,y)

2: if p =0 then

3:  Return z = M\y.

4: else

5. Partition M = [é\j ‘l/iT ]\;22] and y = [gy/j conformally.
6:  Call recursively y; = TSolve(Mi1,y1).

7. Compute S =y — Us (Vi 21).

Call recursively zo = TSolve(Mas, S).

9:  Return z = [ml] .
)

10: end if
11: end function

When the right-hand side is a matrix Y € R™*!, an analogous procedure and complexity

estimates can be derived. This leads to an algorithm with the computational complexity

Crsolve, (1) € O(kinlogn). (2.19)

Linear systems with HODLR right-hand side

Sometimes it is of interest to solve a triangular linear system when the right-hand side is a
HODLR matrix. For a given invertible lower triangular M € Hyxn(k), and Y € Hyxn(k),
suppose we aim to find a solution X € H,xn(k) of a system MX =Y. Block-wise
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partitions of M, X and Y

X1 X1y
XV Xo

Yii Wi
ZoWE Yoo

? 9

My 0
UaViE M|’

yield four matrix equations. Thus the solution X can be computed block-wise as:

e solve recursively the lower triangular system for the diagonal block X1

M1 X1 = Y11, (2.20)

e solve the lower triangular systems for the off-diagonal blocks

My XYy = ZWi, (2.21)
Mo XoYH = Ti([Zo Us) Wy — XL V1)), (2.22)

e solve recursively the lower triangular system for the diagonal block X9

Moo Xoy = Yag — UV X1V (2.23)

The computation of the off-diagonal blocks in (2.21) and (2.22) can be carried out with
Algorithm 2.4. Here, instead of a vector as a right-hand side we take a (low-rank) matrix.
Thus the complexity of (2.21) and (2.22) amounts to 2Crsowver (n/2) € O(k*nlogn),
where we also count the compression of the right-hand side in (2.22) that requires
O(k3 4 k%n) arithmetic operations. The recursive calls in (2.20) and (2.23) are continued
until level 0 HODLR matrices have been reached, where the complexity of performing

a standard forward substitution is O(n2. ). Algorithm 2.5 summarizes the described

procedure.

Let Cprsolve(n) denote the computational cost of Algorithm 2.5. Then the following

recursion holds

5 O(nf)nin)’ if 7 = Npin (p = 0)’

(/hTSolve(n) =
2ChTsolve (3) + O(k*n + k*nlogn), otherwise.
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Algorithm 2.5 Solving a triangular system with a HODLR right-hand side
Input: Lower triangular invertible M € H,,x, (k) of level p, and Y € H,,xn (k).
Output: Solution X € H,xn(k) of a linear system MX =Y.

1: function X = hTSolve(M,Y)
2: if p =0 then
3:  Return X = M\Y.

4: else v i . o T
. . - 11 _ 11 Wy

5. Partition M = [UQVIT Mﬂ] and Y = [Z2W1T Yoy

Call recursively X717 = hTSolve(Miq, Y11).

Compute X; = TSolve(Mii, Z1) and set Yo = Wo.

Compute ZoW{ = Ti([Z2 Us)[W1 — X1 V7).

Compute X9 = TSolve(Mao, Zg) and set Y; = Wj.

10: Compute S =Yy —y UQVITX1Y2T.

11:  Call recursively X99 = hTSolve(Mao, S).

X11 X1Y2T]

12: Return X = .
[X2Y1T Xoo

13: end if

14: end function

] conformally.

Finally, from the Master theorem we retrieve

Chrsolve() € O(k3nlogn + k*nlog? n). (2.24)

2.2.6 HODLR Cholesky decomposition

The hierarchical Cholesky decomposition is an approximate triangular factorization. As
in the standard case, this factorization decomposes a HODLR matrix into a product of a

lower and an upper triangular matrix.

In the following, we discuss an inexact computation of the Cholesky decomposition for a
symmetric positive definite HODLR matrix M € H,,xn (k) of level p. The Cholesky factor
is also represented in the HODLR format, as an upper triangular matrix, with the same

hierarchical structure as M. Starting from the partition of M and the decomposition

| Mn U Vg _RTp_ RT 0 Ry X Y
VUL My, VoXT RLI| 0 Ry |’
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we get three equalities:
My = Rf\Ri1, UiV =R X1Y), My = RRys + V2 XT X1V

where Mj; and Myy are HODLR matrices of size n/2 and level p — 1. If the computations
in (2.25) and (2.27) can be carried out, the computation of the approximate Cholesky

decomposition is performed as follows:

e compute recursively the Cholesky factor Rq1 of M1y

My = RT Ry, (2.25)

e set Yo = V5 and solve for X by forward substitution

R X, =1y, (2.26)

e compute the Cholesky factor Raa of the Schur complement

RERyy = Moy —y YoXT X1V, (2.27)

Again, we note that the solution in (2.26) is exact, as no truncation operator is involved.
When computing the Schur complement in (2.27), we perform a truncated subtraction to
keep ranks uniformly bounded. However, this might cause a loss of positive definiteness,
which has been discussed in [13]. On the lowest level of recursions in (2.25) and (2.27)
standard dense Cholesky decompositions are computed, contributing with the cost (’)(nf’nin).
This leads to Algorithm 2.6.

Hence, the computational cost of an approximate Cholesky decomposition in the HODLR

format satisfies

C ( ) O(nilin% if n = npin (p = 0),
hchol (V) =
2Chehol (%) + O(k3n + k?nlogn), otherwise.

Applying the Master theorem to the previous recurrence yields
Chenol(n) € O(k3nlogn + k*nlog®n). (2.28)
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Algorithm 2.6 Approximate Cholesky decomposition

Input: Symmetric positive definite M € H,,x,, (k) of level p.
Output: Upper triangular R € H,,«n(k) of level p such that M ~ RTR.

1: function R = hchol(M)
2: if p =0 then
3:  Return R = chol(M).

4: else " —
. .- - 11 Vs

5. Partition M = |:V2U1T Moy ]

Call recursively Rj; = hchol(Myq).

Solve RlTlX 1 = Uy for X1 by forward substitution.

Set Y2 = V2.

Compute S = May —y Yo X{ X YL

10:  Call recursively Rgy = hchol(sS).

T
11:  Return R = [RH X1Y; ]

0 Roo
12: end if
13: end function

We mention that the computation of an approximate LU decomposition in the HODLR
format is derived and computed similarly [67, Chapter 3].

2.2.7 Submatrix selection

In this work, we also consider the extraction of submatrices of HODLR matrices. Let
M € H,xn(k), associated with an integer partition n = nj + - -+ + nge, and consider a
subset of indices C' C {1,...,n}. Then the submatrix M (C,C) is again a HODLR matrix.
To see this, consider the partitioning (2.1) and let C' = C; U Cy with C; = C N1, '71(11)]

and Co = C'N [ngl) + 1, 7], where ngl) is the size of Mﬁ) Then

[ M0 | MG (01, )

M(C,C) =
| MY (C, C1) | MG (Ca, Co)
[ T
B Py | uPen) (VP e
- T
UG (V) | MY (a0
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Hence, the off-diagonal blocks again have rank at most k. Applying this argument
recursively to Mﬁ)(Cl, Cy), MQ(;)(CQ, Cy) establishes M (C,C) € Hyxm(k), associated

with the integer partition
|C| =m=mi+mg—+---Mop,

where my is the cardinality of C'N [1,n1], ma is the cardinality of C' N [ny + 1,n;1 + na),
and so on. Note that it may happen that some m; = 0, in which case the corresponding
blocks in the HODLR, format vanish. Formally, this poses no problems in the definition
and operations with HOLDR matrices. In practice, these blocks are removed to reduce

overhead.

2.2.8 Existing HODLR QR decompositions

To our knowledge, three different algorithms [11, 17, 84| have been proposed so far for
computing a QR decomposition in the hierarchical matrix format. However, each of them
seems to have some drawbacks, e.g., failing to achieve a highly accurate decomposition or
leading to loss of orthogonality in the orthogonal factor in typical applications. In the

following we provide a review of these methods.

Additionally, we mention that in Chapter 5 we employ one of the existing algorithms
to compute an orthonormal factor from the QR decomposition of a well-conditioned
rectangular matrix. In particular, we use an algorithm proposed by Lintner in [84]; see
the method below.

Lintner’s QR decomposition

Let M € R™™ with full column rank, and let M = QR be the QR decomposition of M.
Then the following equalities hold

MTM = RT"QTQR = R"R,

since () is orthogonal. It follows that the upper triangular factor R is the Cholesky factor
of the positive definite matrix M7 M. Thus, the QR decomposition can be obtained in

two steps:
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1. compute the Cholesky factor R of MT M,

2. solve the upper triangular system M = QR.

This method is also known as the Cholesky QR method [106, 107].

For a HODLR matrix M € H,,x, (k) of level p, steps 1 and 2 can be performed using only
the operations discussed in Sections 2.2.4, 2.2.5 and 2.2.6. Therefore Lintner’s method
can be implemented in the HODLR format with the complexity O(k*nlog®n). The
pseudocode is provided in Algorithm 2.7.

Algorithm 2.7 Lintner’'s HQR decomposition
Input: M € H,xm(k) of level p.
Output: Orthonormal Q € H,,xm(k), upper triangular R € H,,xm (k) with M ~ QR.

: Compute B = M7 %3 M.

: Compute R = hchol(B).

: Solve the upper triangular system M = Q)R using a variant of Algorithm 2.5.
: Return @ and R.

= W N =

The biggest disadvantage of this simple method is the squaring of the condition number
when computing R. Indeed, we have that x(M”? M) ~ r(M)?2. Therefore, for a badly
conditioned matrix M, this causes a loss of orthogonality in (), and lack of accuracy. This

can be easily noticed in Example 2.5 and Example 2.6.

To reduce the deviation from the orthogonality in @, Lintner proposed to perform a
reorthogonalization step as follows. Assuming that (Q and R are computed as aforemen-
tioned, we have

A=QR=Q1R:R,

where ) = Q1R is a QR decomposition of (). This leads to a QR decomposition of A
with the orthogonal factor (); and the upper triangular factor R R.

Indeed, as shown in [116], this approach, called the CholeskyQR2 algorithm, improves
both accuracy and orthogonality if the matrix condition number is not too large. However,
for hierarchical matrices, as a result of the approximative arithmetic, several reorthogo-
nalization steps might be needed to obtain the orthogonal factor, which could potentially

lead to a significant increase of the computational cost.
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To cope with the squaring of the condition number arising in the previous approach, Lintner
derived an alternative method which involves the computation of the polar decomposition
via an iterative method similar to the sign-function iteration [75]. However, this method
involves the matrix inversion in each iteration, which makes it more expensive than other
approaches. Still, the asymptotic complexity is shown to be linear-polylogarithmic for a

hierarchical matrix A.

In particular, Lintner suggests to perform the following steps: first compute the polar
decomposition A = QH. Then compute the Cholesky decomposition of H = RTR,
followed by the Cholesky QR decomposition RY = @{R;. This results in the QR
decomposition of A

A =QH = QR'R = (QQ1)(R:R),

with the orthogonal factor equal to QQ1 and the upper triangular factor to Ry R. This
approach is appealing since the Cholesky QR decomposition is applied to matrices with
k(R) = \/k(A).

Bebendorf’s QR decomposition

The method proposed by Bebendorf [11, Chapter 2| applies a sequence of orthogonal
matrices to a hierarchical matrix in order to reduce the matrix to an upper triangular

form. Let M € R™*™ be partitioned as

M M
M= 11 12 ’
Moy Moo

and Mj; invertible. Then by setting X = M12M1_11, we can compute the Cholesky
decompositions of the symmetric positive definite matrices I + XTX and I + X X7,
denoting the corresponding Cholesky factors by R; and Rs, respectively. Using these

Cholesky factors we define the orthogonal matrix ) as

R;T 0

©= 0 R;T

I X7
X 1|
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In fact, the transformation @ can be considered as a block Givens rotation, since det(Q) =

1. Applying @ to M from the left yields an upper triangular matrix:

_ [FaMn Ry (Mg + XT My)

QM _
0 Ry T (May — X M)

This procedure is then applied recursively to the diagonal blocks. For a hierarchical
matrix M, the recursion stops on the lowest hierarchical level, where the standard QR
decomposition is computed. All involved operations can be performed efficiently in the
hierarchical matrix format. Furthermore, Bebendorf showed that this method exhibits

O(k*nlog®n) computational cost.

We remark that in each recursion step the first diagonal block needs to be inverted, which

can potentially cause problems with the execution of the method.

Benner’s and Mach’s QR decomposition

Benner and Mach [17] have developed a method for computing a QR decomposition
of a hierarchical matrix, based on a block recursive QR decomposition [60]. The idea
is to recursively split the matrix into block columns corresponding to the hierarchical
partitioning, and to compute dense QR decompositions on the lowest level of subdivision.
In particular, their approach is based on the following procedure. Let M € R™*"™ have
the QR decomposition M = QR. Partitioning M as

Ri1 Rio
0 Ro

9

[My Ms] = [Q1 Q2]

with ny = [§], M1,Q1 € R™" and Ma, Q2 € R™"™™  yields three steps:

1. computing the QR decomposition M; = Q1 R,
2. solving for Rio the system QlTMg = Ry9, and
3. computing the QR decomposition My — Q1 R12 = Q2 Roo.

Finally, steps 1 and 3 are computed recursively, where the recursion is terminated for

sufficiently small block columns. All three steps can be efficiently performed in the
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hierarchical matrix arithmetic, as only matrix-matrix multiplications and additions are
needed on higher levels of the hierarchical structure. On the lowest level of hierarchical
structure, the authors suggest to compute QR decompositions of compressed block
columns, similarly as described in Section 2.2.9 below. Moreover, the orthogonalization is
performed using a block modified Gram-Schmidt procedure. The computed matrices )
and R have the same hierarchical structure as the starting matrix. Moreover, the method

exhibits O(k?nlog?n) computational complexity.

The analysis in [17] has shown that none of the three presented methods is superior to
each other. Moreover, their efficiency in terms of accuracy, and orthogonality in ) seems

to be problem dependent.

2.2.9 A new method for computing HODLR QR decomposition

In this section we present a new method for computing a Householder based QR decom-
position of a n x n HODLR matrix. Given M € Hy,xn(k) of level p with the integer

partition (2.2), we aim to compute its QR decomposition
M=(I-YTYT)R, (2.29)

where the orthogonal factor @ is given in terms of a compact WY representation, and
matrices Y, T, R € Hpxn(k) have the same HODLR structure as M. The new method is
applied in a recursive way on block columns, akin to the method proposed by Benner
and Mach. The fundamental differences arise in the computation and in the storage of
the orthogonal factor @, likewise in the orthogonalization step. As mentioned earlier,
the authors in [17]| perform the orthogonalization using a block modified Gram-Schmidt
procedure, which in comparison to the Householder based approach in general results

with poorer orthogonality [60, Section 5.2].

In the following we start by recalling Householder reflectors, and the storage efficient
WY representation of an orthogonal factor. Moreover, we describe a block recursive
procedure for computing a QR decomposition of a matrix proposed in [51], which serves
as a basis for our method. The derivation of the new method is proceeded in two stages:
first we derive the computations on the lowest level of subdivision of HODLR structure.
Here we compute a QR decomposition of a compressed sub-block column utilizing a

compact WY representation. Then we describe how to process the intermediate results
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to obtain the decomposition on higher levels of HODLR, structure. In particular, only
HODLR addition and the multiplication with low-rank matrices are required to perform
the computations on higher levels. Moreover, we show that this leads to a method with a

linear-polylogarithmic complexity.

Similar ideas based on compressed block columns have been pursued in the process of
compression of a dense matrix into the HSS format, as well as for obtaining a fast ULV
solver in the HSS format; see |33]. However, we are not aware of such methods being used
for the computations within the HODLR format.

Preliminaries

An n x n Householder reflector takes the form
_ T n _ 2
H_I_/BU/U ’ veR ) 5_2/“””2

The vector v is the Householder vector. For a vector x € R" there always exists v € R"
such that Hz is a scalar multiple of the first unit vector ey, i.e. Hx = £||z|2e;. For a
matrix M € R™ " its QR decomposition can therefore be obtained by applying a sequence
of Householder reflectors Hy, ..., H,, from the left to M, as shown in Algorithm 2.
Moreover, the orthogonal factor @) is the product of m Householder reflectors Hj, j
1,...,m, [60, Section 5.2].

oo

As shown in [101], a product of m Householder projectors can be compactly written as
H\Hy - Hp=I-YTYT, (2.30)

where a lower trapezoidal Y € R"*™  as in Algorithm 2.8, contains the corresponding
Householder vectors and 7' € R™*"™ is an upper triangular matrix. The factorization (2.30)
is the so-called compact WY representation, and allows for efficiently storing m House-
holder reflectors, as well as for applying a sequence of Householder reflectors in terms
of matrix—matrix products. The computation of a compact WY representation can be

carried out as given in Algorithm 2.9.

Our method is based on a recursive block column approach for the computation of a QR

decomposition using the compact WY representation, which is also suggested in [51].
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Algorithm 2.8 Householder QR
Input: M € R™"™ with n > m.
Output: A lower trapezoidal Y € R™*™ with Y storing Householder reflectors generators,

scalars (3;, an upper triangular R € R”*™ such that M = @ []g] , with an orthogonal

Q= (I - pvwl)-(I - Bromvl).

: Set Y = 0n><m'

:for j=1,...m do
Generate a Householder reflector H; = I — ﬁjvjva for annihilating M (j : n, 7).
Set Y(j:n,j) =v;.
Update M(j :n,j:m)=H;M(j:n,j:m).

end for

: Set R=M(1:m,1:m).

: Return Y, B1,..., 8, and R.

Algorithm 2.9 Compact WY representation of a product of m Householder reflectors

Input: A lower trapezoidal Y € R™ " containing the Householder vectors, and the
associated scalars 3,7 = 1,...m, generating Householder reflectors Hy, ... H,,.
Output: An upper triangular 7' € R™*™ such that Hy ---H,, =1 - YTY".

1: for j=1,...mdo

2: if j =1 then

3: Set T'= f4.

4: else

5: Compute 2z = —3;TY (:,1: j — 1)TY (s, 4).
T =z

6: Set T'= [0 53’].

7. end if

8: end for

For M € R™"™_ its QR decomposition

M M
M= 11 12 | _ 0
My Mo

Ri1 Rio

, 2.31
0 Ry (2.31)

is obtained by first recursively computing a QR decomposition of the first block column

consisting of |4 ] columns,

M R
Yl=@u | with Q=T - Ty Y (2.32)
Moy 0
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The sccond block column of M is updated using the QR decomposition of the first block

column
M. R
QU "7 =17, (2.33)
Moo Moo
and lastly the QR decomposition of My is computed recursively
My = Q2Rpo, with Qs = I — YoThoYy . (2.34)

The recursion is terminated when the number of columns in the matrix to be factorized

is less than a prescribed block column size ny,.
By setting

Ri1 Riz

Q = @ diag(1, Q2)a R= 0 Ry

9

we obtain the QR decomposition (2.31) of M. Moreover, compact WY representa-
tions (2.32) and (2.34) of Q1 and Q2 can be used to represent @ in the same format.

Indeed, by appending a zero matrix to Y5 such that Y5 :=
2

rows as M, we obtain that the orthogonal factor () can be written as

0] has the same number of

Q=T -YVTnY I —YoTnnY)=T-YTYT, (2.35)

where

T —T1 Y YaTo

2.36
0 Tho ( )

Y= v, T=

Therefore, the computation of the factors Y and 7', representing the orthogonal factor @),
can be performed in a recursive manner, with the recursion applied on block columns.
Algorithm 2.10 summarizes the described procedure, and its computational cost for an n

by m matrix, with n > m, is O(m?n).

In the subsequent sections we tailor this method to the HODLR format. Furthermore,
Algorithm 2.10 is used on the lowest level of the HODLR subdivision.
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2.2. HODLR arithmetics

Algorithm 2.10 Recursive block QR decomposition
Input: Matrix M € R™*™, with n > m, minimal block column size ny.

Output: QR decomposition of M = Q [lg], where orthogonal @ € R™*" is stored as

Q=1-YTYT, with lower trapezoidal Y € R™*™ and upper triangular T, R € R"™*™,

1: function [Y, T, R] = blockQR(M, n;)

2: if m < ny then

3:  Apply Algorithm 2.8 and Algorithm 2.9 to M to compute Y, T, R.
4: else

5. Set my = |m/2].

6:  Compute [Y1,T11, Ri1] = blockQR(M (:, 1 : mq),nyp) recursively.

7. Compute M(:,;my +1:m) < (I —=VTY )T M(:;,my +1:m).

8:  Compute [Y2, Tha, Rao] = blockQR(M (m1 + 1 :n,mq 4+ 1: m),ny) recursively.
9: end if .
10: Return Y = [V; Y| and T' = [731 _T“%zYZT”], with Y5 = [32].
11: Return R = Ry M(L:ma,ma+1: m)]

0 Ros

12: end function

QR decomposition of a block column on the lowest HODLR level

Let M € Hypxn(k) of level p with the integer partition (2.2), and let n() = 23':1
i=1,...,2P and n0 = . Thus, on the lowest HODLR, level, M is divided into 2P block

columns of size n x n;, 7 = 1,...2P, where each block column contains exactly one dense

n;, for

diagonal block MZ-(Z-p ). Let us enumerate those block columns from 1 to 2P.

Motivated by (2.34), we consider a sub-block of the ith block column of M, i.e. M; :=
MmUY +1:n,n0-D +1:n®). Let b denote the number of the off-diagonal blocks
that intersect with M;, and that are below the diagonal block Mi(ip ); see Figure 2.4 for an

illustration. Then we obtain the following factorization

e e
U v

RV o A
= = diag(1,Q1,....Qp) | . | =@V =Q . (2.37)
Uy RV ]
where U; = Q;R; is a QR decomposition of Uj;,j = 1,...,b. For the off-diagonal
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Chapter 2. Matrices with hierarchical low-rank structure

blocks of with the column size larger than n;, matrices V; denote the restrictions of the
corresponding right low-rank factors V) on the block column, as shown in Figure 2.4.
QR decompositions of the factors U; are computed only the first time an off-diagonal
block contributes to a block column, and they are reused for the computations in the
subsequent block columns. Moreover, factors V() are multiplied from the left by R; the

first time the corresponding off-diagonal block intersects a block column.

| |
'l 'l
| |
B |
| I
Tl il
| |
e 'l

Figure 2.4 — Left: Highlighted block column is considered in (2.37) for i = 1. Right: Highlighted
block column is considered in (2.37) for i =5.

The computation of the QR decomposition in (2.37) is proceeded by obtaining a House-
holder QR decomposition of the compressed ith block column, i.e. dense matrix
V e RMitbk)xni anq by storing its orthogonal factor in the compact WY form. In

particular, we get

A

R
0

A A A A

V=-vTYT) (2.38)

Incorporating decomposition (2.38) into decomposition (2.37), and subdividing Y accord-

ingly to the blocks in V, we obtain a QR decomposition with the orthogonal factor @ in
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2.2. HODLR arithmetics

the compact WY form

M@ 410,000 41:00) = Q01 - VIVT) l:
- 1 r . AT
Vil . | Q1Y ; . R
s Q1' e Ql' 1 — (I - YiIYT) ' (2.39)
: : 0 0
QY| | @QeYs

The orthogonality in (2.39) is verified by a straightforward computation.

We note that Y; is the ith sub-block column of a lower triangular HODLR matrix Y
from (2.29). In particular, matrix Yj; is the dense diagonal block in the ith block column
of Y, while matrices Qj,f/j,j =1,...,b are low-rank factors of the corresponding off-
diagonal blocks. Moreover, matrices R and T are dense diagonal blocks in the ith block

column of matrices R and T in (2.29), respectively.

Moreover, we remark that for a block column enumerated with an odd number, we always
need to perform at least one QR decomposition of a left low-rank factor of an off-diagonal
block, while for a block column enumerated with an even number this operation is never
performed. In fact, since this procedure is applied to all block columns on the lowest
HODLR level, QR decompositions of all left low-rank factors in the lower off-diagonal
blocks ought to be computed.

The procedure described above is summarized in Algorithm 2.11. This algorithm requires
only standard matrix-matrix multiplications and standard QR decompositions, implying

that the accuracy of the computed decomposition is inherited from the standard operations.

The computational complexity of Algorithm 2.11 depends on the number of QR de-
compositions computed in Line 2. The maximal computational cost occurs in the first
block column of a HODLR matrix, when QR decompositions of all off-diagonal blocks
intersecting the block column need to be computed. Its impact on the computational

complexity of the overall algorithm is provided later on.

In the following, we illustrate the computations in the second block column on the lowest

level of the HODLR format, as this will be insightful for developing and understanding a
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Chapter 2. Matrices with hierarchical low-rank structure

general scheme for computing HODLR QR decomposition.

Algorithm 2.11 QR decomposition of a block column on the lowest HODLR, level
Input: Block column M; = M(nC~D+1:n,n0"D41:n®) asin (2.37) of M € Hypun(k),

minimal block column size np.

A~

Output: QR decomposition of M;, M; = (I — YzTYZT) [R

0], as in (2.39).

1: for j=1,...,bdo

2:  Compute a thin QR decomposition U; = Q;R; (if needed).
3: end for

4 Assemble VT = [()" VBT ... VR[]

5: Compute [V, T, ]A%] = blockQR(V, ).

6: Return Qj,7 =1,...,b.

7. Return Y, T, R

Illustration of the update in the second block column

Suppose the QR decomposition of the first block column of M on the lowest HODLR level
had been obtained by the procedure explained above, yielding the representation (2.39).
This implies that the first block columns of Y, T and R in (2.29) had been computed as

well.

Analogously to (2.33), we proceed by updating the second block column of M by mul-
tiplying it from the left with (I — Ylif’TYlT), computed in (2.39). Taking into account
the computations for the off-diagonal blocks in the first block column of M in (2.37), the

second block column can be written as

‘Ul(p) (Vz(p) )T‘ 'Ul(p) (Vz(p) )T‘
i i
My = | QxRV | =diag(l,I,Q2,...,Qp) RyV3 . (2.40)
Qv RV | | RV

The update (I — YlleT)TMg can therefore be performed in an inexpensive manner by

exploiting the structure of blocks in (2.39) and (2.40). In particular, the representation
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of the update is as follows

. 7 ) i

}/u }/“ Ul(p) (' ’Q(P))T
Ql?vl Ql?vl M2]27)
(I_HTTle)]\Zé = dlag(.[’ I, QQ, ey Qb) I — Y2 TT Y'Q R2V2
- Y . L Y i i RV,

(2.41)

Hence, to perform the update (2.41), operations on the compressed first block column of
Y and the compressed second block column of M are employed. In fact, the computation
in (2.41) does not involve the multiplication with diag(l, 1, Q2,...,Qs), i.e. only the
multiplication of the second part is performed, as illustrated in Figure 2.5. In order to

carry out the calculation the low-rank matrix arithmetic is used.

I_,|:| )
T

]E
) o

1
-

3
- B3

UH:

~

Mo

Figure 2.5 — Illustration of the update of the second block column on the lowest HODLR level.

Thus, from the computations shown in Figure 2.5, we obtain a factorization of (2.41):

Ul(p) (‘72(17) )T

(I - T"Y" )M, = diag(I, 1, Q... Qp) (242)

~

My
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The computation of a QR decomposition of the second block column is completed after
applying Algorithm 2.11 to My = diag(I, Q2,. .., Qp) M.

QR decomposition for HODLR matrices

Having described a method for computing a structured QR decomposition of a block
column on the lowest level of HODLR structure, and the computation of the update in
the second block column, we derive a QR decomposition of a complete HODLR matrix,

based on a recursive block column approach.

For a HODLR matrix M € Hpxn(k), its QR decomposition in the HODLR format is
given in terms of triangular matrices Y, T, R € H,xn(k), as given in (2.29). Our method
for computing a HODLR QR decomposition therefore consists of the following steps:

1. the computation of a QR decomposition of the first block column recursively until
the lowest HODLR level had been reached;

2. the computation of the update in the second block column;

3. the computation of a QR decomposition of the updated second biock column
(starting from a diagonal block), recursively until the lowest HODLR level had been

reached.

In particular, for a HODLR matrix M, based on its HODLR partitioning

My UV

M =
UsVIE Mo

9

we decompose M into two block columns M = [Ml Mg}, with

My,
UV

UL Vy
Moo

M, = ’ 9 =

Firstly, the computation of a QR decomposition of Mj is carried out recursively in the
HODLR arithmetics, yielding M; = Q1 *4 R1, with @1 stored in terms of the compact
WY representation. After updating the second block column by exploiting the structure
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2.2. HODLR arithmetics

of @1, as in Figurc 2.5:
ULV

18 Y
= Q7 %y M,
My e

we compute recursively a QR decomposition of My, with the orthogonal factor given in the
compact WY representation. Moreover, the computation of the upper off-diagonal block
of T is performed as in (2.36) by using the HODLR arithmetic and taking advantage of the
structure of the block columns of a lower triangular matrix. Analogously to (2.35), this

method yields a QR decomposition of M and the pseudocode is provided in Algorithm 2.12.

Algorithm 2.12 Householder QR decomposition of a HODLR matrix (hQR)
Input: A HODLR matrix M or a block column M of a HODLR matrix, minimal block

column size ny, truncation tolerance e.

Output: HODLR QR decomposition (2.29) of M.

1: function [Y, T, R] = hQR(M, ny, €)

2: if on the lowest HODLR level then

3:  Return Y, T, R by applying Algorithm 2.11 to M.

4: else

5. Set [n,m]| = size(M).

6 Partition M into two block columns M = [Ml Mz], with M; of size n X ny and
MQ of size n x m — ny, according to the HODLR partitioning.

Compute [Y7, Ty, Ri1] = hQR(Mq,np, €), with Q1 = I — Y1 T1Y{L.

. Update My = QT %3 My (see Figure 2.5).

9:  Compute [Ya, Tho, Roo] = hQR(MQ(nl +1:n,:),np,€).

10: Compute Tip = ~Tiy sy (Vi1 %3¢ Ya) sy Toa, with V3 [%?_m]

® 3

2
11: end if B
. _ R VATRV AT ~|Ri1 Ma(1:nq,1:nq)
12: Return Y = [Y7 Y3, T = [ 5 T22], and R = [ § R .

13: end function

Complexity analysis

In the following we derive the complexity of Algorithm 2.12. To simplify the computations
we assume that n = 2Pny, and thus n; = nyi,, for ¢ = 1,...,2P in the integer partition
associated with M. Moreover, we work with the assumption that all off-diagonal ranks

seen in the process are bounded by a constant k.
The computational cost on the lowest HODLR level arises from:
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i) QR decompositions computed for all left factors in the lower off-diagonal blocks,

and updating all right factors by multiplying with upper triangular R factors,

ii) compact WY representations of compressed block columuns.

We first discuss the flop count for i). On level I > 1 of HODLR, subdivision there are 2/~1
lower off-diagonal blocks and their left and right low-rank factors are of size 2P=lp i X k
and k x 2P lna,, respectively. The operations performed in one off-diagonal block on
level [ are O(2P~1n1,k?), where we consider the computation of the QR decomposition
of the left factor, and the update of the right factor. Thus summing over the cost all

levels of subdivision, we obtain

0@ 2 gy k?) € O(k*nlogn).
=1

Now we focus on ii). A HODLR matrix of level p has 2P block columns on the lowest level
of subdivision. Compressed block columns are of size nmin + bk X Timin, Where b; is the
number of the lower off-diagonal blocks intersecting ith block column. Then using that

b; < p, the cost of computing compact WY representations on the lowest HODLR level is

op
Z O((nmin + blk)n?mn) < O(2p(n§nin + pkn?nin)) € O(kn log n)
=1

Hence, we get that the total number of flops required in Line 3, which uses standard QR

decompositions, is O(k*nlogn).

On higher HODLR levels we perform the update in Line 8, and compute the upper
off-diagonal block in 7" in Line 10. These operations are repeated logn times. Because
of the structure of the block columns of HODLR matrices involved, we only require the
low-rank matrix arithmetics and the addition of a HODLR matrix with a low rank matrix
to carry out these operations. The most expensive step occurs when working with two
block columns of size n/2, with the cost O(k3n + k*nlogn). Therefore, we obtain that
the total cost of these operations adds up to O(k*nlogn + k?nlog®n).

Summing up all derived costs, for the computational cost of an approximate QR decom-
position in the HODLR format computed by Algorithm 2.12 it holds

Chgr(n) € O(k*nlogn + k*nlog? n). (2.43)
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2.2. HODLR arithmetics

Numerical results

In this section we demonstrate the efficiency of our method on several examples. Further
examples and applications of our new method are presented in Chapter 5, in the context
of a spectral divide-and-conquer method. The computations were performed in MATLAB
version R2016b on a machine with the dual Intel Core i7-5600U 2.60GHz CPU, 256
KByte of level 2 cache and 12 GByte of RAM, using a single core. We note that this is a
preliminary implementation, which can be optimized further by, e.g., implementing some
steps in C using the MEX-function capabilities of MATLAB with direct calls to BLAS

routines.

To assess the performance of our method, we examine the accuracy of the computed QR

decomposition, as well as the orthogonality of ). To this end, we consider two error

measures:
eorth = [|QTQ — I||2, with Q =1 —-YTY7T, (2.44)
Cacc = HQR_MH% (2.45)

where M is a given HODLR matrix. In the following, we compute the errors for the new
hQR algorithm and Lintner’s algorithm, denoting the errors obtained with superscripts
h@QR and L, respectively.

Example 2.5 (Performance versus n). We first investigate the performance of our
method on randomly generated HODLR matrices. We construct the HODLR structure
given the minimal block size nmin = 250 and fill the dense blocks with random matrices
of the corresponding size, and the off-diagonal blocks with random low-rank factors of
rank 1. We set the truncation tolerance to ¢ = 10719, and the minimal block column
size needed for Algorithm 2.11 to n, = 32. In Figure 2.6 we present the computational
times of the hQR algorithm, and Lintner’s method. The new method nicely matches the
O(k*nlog? n) reference line. Moreover, compared to a much simpler Lintner’s method,

our method is approximately only two times slower.

Furthermore, Table 2.3 demonstrates that the new hQR algorithm is robust with respect
to the increasing condition number, and provides good results both in terms of accuracy
and orthogonality. Moreover, it confirms that the orthogonality in Lintner’s algorithm

deteriorates as the condition number of a matrix increases.
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0=
--New hQR
—Lintner’s hQR
- O(nlog®n)
10"
»
c
= 0
o 10
E
107
-2 1
10
103 104 10°

Figure 2.6 — Example 2.5. The computational time of the hQR algorithm 2.12, and Lintner’s
algorithm 2.7 applied to randomly generated HODLR matrices with off-diagonal rank 1, with
respect to n.

Table 2.3 — Example 2.5. Accuracy and orthogonality with respect to the matrix condition number
in the hQR algorithm and Lintner’s algorithm applied to randomly generated HODLR matrices
with off-diagonal rank 1.

n r(M) g ebin eha’
1000 || 1.7-10° || 6.8-107* | 6.4-107° || 8.7-10"3 | 2.10713
2000 |[3.9-10° || 1.2-1073 | 3.6-107% || 2.1-10712 | 1.4-10"!2

4000 || 6.9-10° || 4.1-10712 | 84-1077 | 1.1-10710 | 2.6- 1011

8000 || 9.8-105 || 1.9-107'2 | 51-106 | 1.9-10710 | 9.1.10710

12000 || 4.5-10° || 1.1-1071 | 6.2-1072 || 5.8-10710 | 4.6- 1010

Additionally, we examine the numerical off-diagonal ranks in the computed decomposition.
Table 2.4 shows that the off-diagonal ranks in the computed matrices Y, T are smaller than
the off-diagonal ranks in R by factor of 2, and that rank seems to grow logarithmically
with n. Howeover, in the following example we show that for matrices with a stronger

underlying structure, the ranks in Y and 7" remain bounded.
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Table 2.4 — Example 2.5. HODLR ranks in the factors Y,T and R from the QR decomposition.

n rank in Y | rank in 7" | rank in R
1000 2 2 4
8000 5 5 10

64 000 8 8 16
256 000 10 10 20

Example 2.6 (Accuracy and orthogonality for Cauchy matrices). In this example

we consider Cauchy matrices of size n = 2000, where

o (My)ij = 1/(x; — y;), with © = (2;),y = (y;) vectors of points in the intervals
[—1.25,998.25] and [—0.7,998.9], respectively.

o (My)ij = 1/(x; — y;), with x = (x;),y = (y;) vectors of points in the intervals
[—1.25,998.25] and [—0.45,999.15], respectively.

o (M3);j = 1/(z; —y;), with @ = (x;),y = (y;) vectors of points in the intervals
[—1.25,998.25] and [—0.15,999.45], respectively.

The intervals are chosen in this way in order to obtain matrices with full rank, and
to control the condition number. In all three cases, z and y are vectors of equally
spaced points perturbed with +2 - 1072, where the sign is chosen at random. The
matrices are represented in the HODLR format using the truncation tolerance e = 10719
for compressing the off-diagonal blocks, and the minimal block size nyin = 250. The
computed HODLR representations have maximal off-diagonal ranks 22. The minimal

block column size is set to n, = 32.

Table 2.5 reports the obtained results, and shows that the new method exhibits satisfactory
orthogonality and accuracy results. We note that Lintner’s method fails to carry out
the computations for a matrix with a condition number of order 10'2, due to the loss
of positive-definiteness. Furthermore, the numerical off-diagonal ranks in matrices Y
and 7" are lower than in R, with maximal off-diagonal ranks 22,20 and 35 in Y,7 and R

respectively.
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Table 2.5 — Accuracy and orthogonality in the hQR algorithm and Lintner’s method for Cauchy

matrices with varying condition number.

K“(M’L) e];er}? egrth eZéQCR eécc
M || 48-10° || 25-10719 | 1.5-1077 |/ 9.7-10710 | 1.4.10710
My || 1.3-10% || 39-10719 | 1.3.-1071 || 23-1072 | 9.5-10710
Ms || 2.9-10"2 || 3.2.10710 - 1.7-107° -
Conclusion

In this section, we have derived a new fast method for computing a QR decomposition in
the HODLR format. The new method is based on a recursive block column approach,
and computes the orthogonal factor in terms of a compact WY representation. Numerical
experiments reveal the efficiency of the method both in terms of accuracy and orthogonality,

even for badly conditioned matrices.

2.2.10 Summary of HODLR arithmetics

Having derived arithmetic operations in the HODLR format needed in this work, for
completeness we conclude this section by giving a summary of these operations.
we include Table 2.6 which summarizes their computational complexities. The operations
listed in Table 2.6 with subscript H employ the recompression in the off-diagonal blocks
in order to limit the increase of off-diagonal ranks. We note again that the recompression
is done adaptively, such that the 2-norm approximation error in each off-diagonal block is

bounded by a prescribed truncation tolerance e.

Table 2.6 — Complexity of some arithmetic operations involving HODLR matrices: M € Hyxn (k)
symmetric positive definite, T € Huypxm (k) triangular and invertible, My, Mo € Hypxm(k), Ms €
Homxp(k), B€R™*P v e R™.

Operation Computational complexity

O(knlogn), with n = max{n, m}
O(k*nlogn), with 7 = max{n, m}
O(k*mlog®m), with m = max{n, m,p}

Matrix-vector multiplication: Mjv
Matrix addition: M; +4 Mo
Matrix-matrix multiplication: My %y M3

Cholesky decomposition: hchol(M) O(k*nlog?n)
QR decomposition : hQR(M;) O(k*nlog®n)
Solution of triangular system: 7! B O(kmlogm)

Multiplication with (triangular)=': My xy 7! O(k*7ilog? 1), with i = max{n,m}
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2.2.11 MATLAB package for HODLR arithmetics

We have developed a MATLAB package that contains the implementations of the algorithms
introduced in this chapter for matrices stored in the HODLR format. The package is
freely available at https://anchp.epfl.ch /hodlr. In the following we give a brief overview

of the data structures used and functionalities provided in the package.

The core object is a HODLR matrix implemented as a structure hmatrix. First we discuss

the construction of matrices in the HODLR format.

Generating HODLR structure. As mentioned in Remark 2.1, we construct a specific
HODLR format based on a prescribed minimal block-size nyi,. For a given matrix of size
n x m, we perform a matrix subdivision into four sub-blocks, such that the block (1, 1) is
of size | 5] x |5 ], while the other block sizes are obtained accordingly. The off-diagonal
blocks (1,2) and (2,1) are not further subdivided, whereas the diagonal blocks (1, 1) and
(2,2) are recursively partitioned into four sub-blocks as long as their size is larger than
Nmin- 1Lhe off-diagonal blocks are represented in terms of their low-rank factors, and the
diagonal blocks on the lowest level of recursion, i.e. on the lowest HODLR level, are

stored as dense matrices.

Let b denote the total number of blocks obtained by dividing a matrix in the described
manner. Then a HODLR matrix represented as a structure hmatrix is given in terms of

the following data types:

e blocktype, an array of size b such that

1, if the i-th block is a diagonal block further subdivided,
blocktype(i) = { 2, if the i-th block is an off-diagonal block,

2
3, if the i-th block is a diagonal block on the lowest HODLR level;

e children, a 2 x 2 x (b — [) tensor, where [ is the number of diagonal blocks on
the lowest HODLR level. For the i-th block, each component of the 2 x 2 matrix
children(:,:,1) enumerates one of its four sub-blocks. For an off-diagonal block i,

children(:,:,i) is the 2 X 2 zero matrix.

e ind is a b x 4 matrix, where ind(i,:) contains the row and column indices of the i-th
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block in the original matrix. The first two components of ind(i,:) are row indices

of the block and the second two are column indices.

e U is a cell array of size b that stores the diagonal blocks:

U [, il the 4-th block is further subdivided,
i =
dense matrix, otherwise.

e (' and D are cell arrays of size b—1 that store the low-rank factors of the off-diagonal
blocks:

oD low rank matrix, if the i-th block is an off-diagonal block,
i, i =
[, otherwise.

Moreover, an off-diagonal block i is represented as a product C;D;, i.e. C stores

the left low-rank factors and D the right low-rank factors.

We now demonstrate the computation of a HODLR approximation for the matrix M3
from Example 2.6, which is obtained by using the function full2hmatrix. We use the
parameters nmin, = 250 and € = 10719, as in Example 2.6. The computed approximation

is a HODLR matrix, stored as a structure H shown below.

>> nmin = 250;

>> epsilon = 1e-10;

>> H = full2hmatrix(M_3, nmin, epsilon);

>> H

>> blocktype: [1 1 2 2 1 1 2213 223322312213
2 2 3 3 2 2 3]

>> children: [2x2x21 double]

>> ind: [29x4 double]

>> U: {1x29 cell}

>> C: {1x28 cell}

>> D: {1x28 cell}

For instance, to see the enumeration of the four sub-blocks of the original matrix, we

write
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1 |>> H.children(:,:, 1)

This shows that the (1, 1) diagonal block on the first level of the subdivision is enumerated
by 2. In order to get its row and column indices with respect to Ms, we type H.ind(2,:).

1|>> H.ind (2, :)
2 [>> 1 1000 1 1000

In order to check the off-diagonal ranks in H, it suffices to type H.C'. This lists all left

low-rank factors of the off-diagonal blocks, as shown below.

1(>> H.C =

2 Columns 1 through 11

3 [1 [1 [1000x22 double] [1000x19 double] [] [] [500x20
double] [500x18 double]l [] [] [250x18 double]

4 Columns 12 through 22

5 [250x16 double] [1 [] [250x18 double] [250x16 double] []1 []
[500x20 double] [500x18 doublel [1 [

6 Columns 23 through 28

7 [250x18 double] [250x16 double]l [] [] [250x18 double]
[250x16 doublel

Moreover, to verify the accuracy of the computed HODLR approximation, we convert H
into a dense matrix via the function h2full, and can compute the following difference in

the matrix 2-norm.

1[>> norm(M_3 - h2full(H))
2 | >> 8.7944e-11

HODLR arithmetics. The operations discussed in the previous sections have been im-
plemented taking into account the data structure hmatrix. A list of functions performing

the aforementioned operations is given in Table 2.7.
We now demonstrate several functionalities of our package via simple examples.
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Chapter 2. Matrices with hierarchical low-rank structure

The hsum function implements the addition of two HODLR matrices Hy and Hs, and
computes
H, < aH; +bHy, a,beR,

for given scalars a and b. A MATLAB call to the function is shown below. The third

argument is the label of blocks in H; and Hy whose sum is computed.

> H_ 1 = ... % set HODLR H_1
> H_2 = ... % set HODLR H_2
>> epsilon = % set epsilon
> a = ... } set a

> b = ... % set b

>> H_ 1 = hsum(H_1,H_2,1,epsilon,a,b);

Matrix-matrix multiplication is implemented in the hmultiplication function. For

HODLR matrices H; and Hs, and a scalar a € R, the function computes

H <+ H + aHHs.

The corresponding MATLAB code is as follows.

> H = ... % set HODLR H
>> H_1 = ... % set HODLR H_1
>> H_2 = ... % set HODLR H_2

>> epsilon % set epsilon

>> a = ... } set a

>> H = hmultiplication(H_1,H_2,H,1,1,1,epsilon,a);

Alongside the standard arithmetic operations, we have also implemented algorithms for

the Cholesky decomposition and a QR decomposition.

For symmetric positive definite (SPD) matrices, the HODLR Cholesky decomposition
is implemented in the hchol function. For an SPD matrix H, the function returns an

upper triangular factor R such that
H=R"R.
The following code shows how this can be done in our MATLAB package.
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2.2. HODLR arithmetics

> H = ... % set HODLR H

>> epsilon

>> R = hmatrix(H.children ,H.ind,H.blocktype,cell(1_1,1),
cell(1_2,1),cell(1_2,1));

>> R = hchol(H,R,1,epsilon);

% set epsilon

For instance, for n = 2000 in Example 2.5, we generate H as

>> n = 2000;

>> nmin = 250;

>> epsilon = 1e-10;

>> k = 1; 7 the off-diagonal rank

>> H = create_rand_hodlr(n,n,nmin, k) ;

With the utilities of our package, we can also easily implement Lintner’s method for

computing a QR decomposition given in Algorithm 2.7.

> H = ... % set H
>> epsilon = ... % set epsilon
>> 1_1 = length(H.U);

>> 1_2 length (H.C) ;
>> R = hmatrix(H.children ,H.ind ,H.blocktype,cell(1_1,1),
cell(1_2,1),cell(1_2,1));

>> Q = R;

>> B = R;

>> B = hmultiplication(htranspose(H) ,H,B,1,1,1,epsilon,1);
>> R = hchol(B,R,1,epsilon);

>> Q = hTSolve_upper (R,H,Q,1,epsilon); % solve H = QR

Moreover, for H generated above, the errors in Lintner’s method are displayed below.

>> Q = h2full(Q);
>> R = h2full(R);
>> norm(Q’*Q - eye(n))
3.5861e-8
>> norm(Q*R - h2full (H))
>> 1.4032e-12

29



Chapter 2. Matrices with hierarchical low-rank structure

For more details on the functionalities of cach of the functions in Table 2.7, type help

<function name>.

Table 2.7 — A list of some functions implemented in the HODLR format.

Function Description
create_rand_hodlr Compute random HODLR matrix.
h2full Convert HODLR matrix into dense matrix.
full2hmatrix Convert dense matrix to HODLR matrix.
hadd_ceye Add multiple of the identity matrix to IIODLR matrix.
hadd_rk Compute sum of HODLR matrix and low-rank matrix.
hchol Compute the Cholesky decomposition of HODLR matrix.
hextract_row_col Extract submatrix of HODLR matrix with given rows and colums.
hMV Compute product of HODLR matrix and dense matrix.
hmultiplication Compute product of two HODLR matrices.
hscalar Compute scalar multiple of HODLR matrix.
hsum Compute sum of two HODLR matrices.
htrace Compute trace of HODLR matrix.
htranpose Compute transpose of HODLR matrix.

hTSolve_lower

hTSolve_upper
TSolve_lower
TSolve_upper

Solve lower triangular HODLR linear system with HODLR right-hand side.
Solve upper triangular HODLR linear system with HODLR right-hand side.
Solve lower triangular HODLR linear system with a dense right-hand side.
Solve upper triangular HODLR linear system with a dense right-hand side.
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8] Existing hierarchical methods for

eigenvalue problems

In this chapter we provide a brief overview of related existing methods which address the
symmetric eigenvalue problem in the context of hierarchical matrices, HODLR matrices
and HSS matrices. For further details we refer to the monograph [67] and the references

therein.

3.1 Projection method

The method described in the following has been proposed in [70] for computing a subset

of eigenvalues contained in a specified interval.

Let M € R™ ™ have real spectrum. Let a,b € R be such that a part of the spectrum of
M lies in the interval (a,b). The aim is to find a spectral projection onto o(M) N (a,b).
The optimal projection is built upon the function x : R — R, defined as

A, if A€ (a,b),
xX(A) =
0, otherwise.

The authors in [70] propose the following rational approximation to y

- . 2A—b—a
X(A) = m, with  T(\) = ﬁ’l e N.
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Chapter 3. Existing hierarchical methods for eigenvalue problems

This is then used to obtain the projected matrix M , defined as

M = (M) = (I +T(M)*) M.

Indeed, M is an approximation to a projection onto the invariant subspace spanned by
eigenvectors associated with the eigenvalues contained in (a,b). The computation of M
requires [ matrix-matrix multiplications and one matrix inversion, which can be performed
efficiently in the context of hierarchical matrices. However, for large [, when y(\) provides
a good approximation to x(\), the matrix I + T'(M )2l is badly conditioned. The authors
suggest to overcome this problem by using a preprocessing step. Moreover, the non-zero
eigenvalues of M are the eigenvalues of M inside the interval (a,b). Their computation is
performed by using the generalized Rayleigh quotient. The complexity of computing all

eigenvalues is quadratic-polylogarithmic.

3.2 LR Cholesky algorithm

In this section we review a method that has been proposed in [19] for computing the

spectrum of symmetric matrices.

The authors extend the LR Cholesky algorithm [98] to compute eigenvalues of symmetric
HODLR matrices. Let M € R™ "™ be symmetric positive definite. The LR Cholesky

algorithm computes the iterates

RZ-THRZ-H = M; — ;I (Cholesky decomposition)
M1 = R\ MiRi1 = Ria Ry + il

with My := M = ROTRO. The sequence of matrices M; converges to a diagonal matrix of
eigenvalues of M, while the shifts u; are computed so that the matrices M; are positive
definite. All operations required to perform the LR Cholesky algorithm can be efficiently
computed in the HODLR arithmetic. In particular, for M € H,x, (k) of level p, the
iterates M; stay within the set Hy,xn(pk). Therefore, the method exhibits O(k?n? log* n)

complexity for the computation of the complete spectrum.

The analysis provided in [19] shows that for general hierarchical matrices this method

requires O(n*) operations, as a result of the rank growth.
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3.3. Vector iterations

3.3 Vector iterations

In this section we review the power iteration and the preconditioned inverse iteration in

the context of hierarchical matrices. The latter has been proposed in [20].

3.3.1 Power iteration

For a given matrix M and a starting vector xq, the power iteration
Tiy1 = Mz;/||zs)2,

see, e.g. [100], computes the eigenvector of M related to the largest eigenvalue in the
absolute sense. Because of its simple formulation, the power iteration can be performed
exactly and with an almost linear cost for a hicrarchical matrix M. The corresponding

eigenvalue can be obtained via Rayleigh quotient

w) = (M, )/ |3

For the computation of an invariant subspace of dimension [, a block version of the power

iteration can be used, the so-called, simultaneous iteration.

The power iteration has already been utilized for hierarchical matrices and H2-matrices

for estimating the 2-norm of a matrix; see [30, 29, 62, 80|.

3.3.2 Inverse power iteration

When the computation of the smallest eigenvalue and/or corresponding eigenvector is
required, the power iteration can be applied to M ~!. This results in the inverse power

iteration

Tiv1 = Mo/ | M a2

see |100]. For obtaining eigenvalues close to a given shift p € R, the inverse power
iteration can be applied to M — pl. This also improves the convergence of the inverse

power iteration.

The authors in [20] have suggested to use the preconditioned inverse power iteration to

compute the smallest eigenvalue and the associated eigenvector for general symmetric
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hicrarchical matrices. The iteration takes a form
wip1 =z — TN (Ma; — pai)a;),

where the preconditioner 1" is computed as the approximate inverse of M or the approx-
imate Cholesky decomposition of M, in order to speed up the convergence. Moreover,
all required operations can be performed with linear-polylogarithmic complexity for hi-
erarchical matrices. This method has been extended for the computation of [ smallest
eigenvalues and eigenvectors by means of a simultaneous iteration. Additionally, the
authors have shown that the computation of interior eigenvalues close to a shift p can be

carried out by applying these methods to (M — ul)?.

The presented method requires O(k*n log? n) operations to compute one eigenvalue, and

it is applicable to HODLR matrices as well.

3.4 Bisection method

The method given in this section has been derived in [18] for rank-k HODLR matrices, and

can be used for computing a part of the spectrum, as well as for the complete spectrum.

Let M € R™™ be symmetric with the ordered eigenvalues \;,i = 1,...,n, and p € R.

Function
v:N—=N, v :=#{i| N <p, i €o(M)},

computes the number of eigenvalues of M in the interval (—oo, ;). This function allows
to compute a particular eigenvalue of M, by ”slicing the spectrum”. Suppose that the
eigenvalue )\; is of interest and that function v(+) is known. Then \; can be computed by

the following bisection method:

i) Find a starting interval [a, b], such that v(a) <1 < v(b).

ii) Compute the evaluation in the middle point V(“T‘Fb). If I/(GT-H)) > [, proceed with
the computation in the interval [a, %2], otherwise in [4F2, b].

iii) Repeat step ii), until reaching a sufficiently small interval.

The authors propose to evaluate v(-) by computing an approximate LDL decomposition
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of M — pI. In particular, for a given M, the LDL decomposition [60]
M — I = LDLT,

with L lower triangular and D diagonal, is a congruence transformation. The number of
negative entries in D corresponds to v(u), because of Sylvester’s inertia law [60]. The
implementation of one LDL decomposition in the HODLR format requires O(k?*nlog?n)
operations and consequently, the computational cost for obtaining one eigenvalue scales
as O(k*nlogn). The authors also address the computation of the method in the HSS

format. However, this method does not compute eigenvectors.

For general hierarchical matrices, the bisection method based on approximate LDL
decompositions is possible. However, it might occur that the diagonal matrix D is not
congruent to M — pl, as a result of truncation errors, as shown in [18|. Additionally, this
method has been extended to the case of H?-matrices; see [16]. The computational cost

per eigenvalue in that case is O(nlogn).

3.5 Divide-and-conquer methods

The main idea of the methods presented in this section is based on the classical divide-
and-conquer method for symmetric tridiagonal matrices [36]. This method recursively
divides a symmetric tridiagonal matrix 71" into a block diagonal matrix plus a rank-1
update as follows:

Ty O

15

+ abb”,

with 77 € R™M*™M and Ty € R"2*"2 gymmetric tridiagonal and b € R™. Suppose that
spectral decompositions 7} = Q1 A1QT and Ty = Q2A2Q7 are obtained recursively. Then

T can be written as

T = diag(Q1, @) ( diag(A1, As) + abi" ) diag(Q1, @2)",

with b = diag(QT, Q1)b. The computation of the spectral decomposition of 7" is completed
once the eigenvalues and eigenvectors of the matrix diag(Ay, Ag) + abb! are obtained.
Employing a stable and efficient method proposed in [64] for the computation of eigen-

vectors, the divide-and-conquer method exhibits O(n?) complexity for computing the
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Chapter 3. Existing hierarchical methods for eigenvalue problems

complete spectral decomposition.

3.5.1 Divide-and-conquer for H,y,(1)

We now describe a divide-and-conquer method proposed in [61] for HODLR matrices

with the off-diagonal rank one.

Consider a symmetric M € Hyxn(1) of level p, given as

M, wT
M = ;
vul My

with My, My € H%X%(l) of level p — 1 and u,v € R2. If the eigenvalue problems for
M, = QlAlQlT and My = QQAQQQT are computed by recursion, then updating M by a

similarity transformation diag(Q1,@Q2) yields

M= with @ = Qu, v = Qav.
vu 2

Ay a@T]

Unlike for the standard tridiagonal eigenvalue problem, the authors in [61] propose a

rank-2 update to a block diagonal matrix:

M = diag(Qn, Qg)(dia,g(Al, As) + aaT — bbT) diag(Q1, Qa)T.

The eigenvalues are computed using bisection and Newton’s method, while the eigenvectors
can be computed by the inverse iteration. The complexity of the presented algorithm is

O(n?) for computing the spectrum.

3.5.2 Divide-and-conquer for HSS matrices

Recently, a new method based on the classical divide-and-conquer approach has been
proposed in [111] for the computation of a complete spectral decomposition. In particular,
the authors in [111] extend the classical divide-and-conquer approach to HSS matrices.
Unlike for the method described in the previous section, here the authors employ a
strategy which involves a rank-k update to a block diagonal matrix, instead of a more

straightforward rank-2k update. More specifically, for a symmetric HSS matrix M € R™*"



3.5. Divide-and-conquer methods

with off-diagonal rank k, the divide step is performed as follows
M = diag(M,, M) + BBT, (3.1)

where M, M, are HSS matrices of size n /2 and level p — 1, and B € R™**. Moreover,
M, and M, are rank-k updates to the starting diagonal blocks. The conquer step is
performed analogously to the classical divide-and-conquer method, but by applying &

times a rank-1 update as a result of (3.1).

The proposed procedure exploits the nestedness of bases in the HSS format, as well as
the fast-multipole method to speed up the computations. The computational complexity
of the method is O(k?nlogn) + O(knlog?n). Additionally, the matrix of eigenvectors is

returned in factored form, requiring O(knlogn) memory.
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tors of banded matrices

Given a symmetric banded matrix A € R"*" with eigenvalues
AL S A < p <A S S Ay,

we consider the computation of the spectral projector II.,(A) associated with the
eigenvalues A1, ..., \,. We specifically target the situation where both n and v are large,
say n. = 100000 and » = 50000, which makes approaches based on computing eigenvectors
computationally expensive. For a tridiagonal matrix, the MRRR algorithm requires O(vn)

operations and memory [44] to compute the v eigenvectors needed to define IT.,(A).

There are a number of applications giving rise to the problem under consideration. First
and foremost, this task is at the heart of linear scaling methods for the calculation of the
electronic structure of molecules with a large number of atoms. For insulators at zero
temperature, the density matrix is the spectral projector associated with the eigenvalues
of the Hamiltonian below the so called HOMO-LUMO gap'; see [59] for an overview. The
Hamiltonian is usually symmetric and, depending on the discretization and the structure
of the molecule, it can be (approximately) banded. A number of existing linear scaling
methods use that this sometimes implies that the spectral projector may also admit a
good approximation by a banded matrix; see [21] for a recent survey and a mathematical
justification. For this approach to work well, the HOMO-LUMO gap should not become
too small. For metallic systems, this gap converges to zero, which makes it impossible to

apply an approach based on approximate bandedness or, more generally, sparsity.

"HOMO = highest occupied molecular orbital; LUMO = lowest unoccupied molecular orbital
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Chapter 4. Fast computation of spectral projectors of banded matrices

Another potential important application for banded matrices arises in dense symmetric
eigenvalue solvers. The eigenvalues and eigenvectors of a symmetric dense matrix A are
usually computed by first reducing A to tridiagonal form and then applying the QR
algorithm, divide-and-conquer method or MRRR; see, e.g. |6, 42| for recent examples. It
is by no means trivial to implement the reduction to tridiagonal form efficiently so that it
performs well on a modern computing architecture with a memory hierarchy. Most existing
approaches [5, 26, 71, 73, 105, with the notable exception of [96], are based on successive
band reduction [27]. In this context, it would be preferable to design an eigenvalue solver
that works directly with banded matrices, bypassing the need for tridiagonal reduction.
While we are not aware of any such extension of MRRR, this possibility has been explored
several times for the divide-and-conquer method, e.g., in [4, 72]. The variants proposed
so far seem to suffer either from numerical instabilities or from a complexity that grows
significantly with the bandwidth. The method proposed in this work can be used to
directly compute the spectral projector of a banded matrix, which in turn can be used as

a basis for a fast spectral divide-and-conquer algorithm in the spirit of Nakatsukasa and
Higham [91].

To deal with matrices exhibiting a small relative gap, defined as

gap = (Avy1 — )/ (An — A1),

one needs to go beyond sparsity. It turns out that hierarchical matrices are much better
suited in such a setting. Intuitively, this can be well explained by considering the approx-
imation of the Heaviside function Il ,(x) on the eigenvalues of A. While a polynomial
approximation of II., corresponds to a sparse approximation of Il (A) [21], a rational
approximation corresponds to an approximation of Il (A) that features hierarchical
low-rank structure. It is well known, see, e.g., [95], that a rational approximation is more

powerful in dealing with nearby singularities, such as @ = p for Il ().

In addition to the existing approaches that use hierarchical low-rank structures for the
fast computation of matrix functions discussed in Chapter 2, we mention that Beylkin,
Coult, and Mohlenkamp [25] proposed a combination of the Newton—Schulz iteration with
the HODLR format to compute spectral projectors for banded matrices. However, the
algorithm does not fully exploit the potential of low-rank formats, as it converts a full
matrix to the HODLR format in each iteration of the algorithm.
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Other hicrarchical matrix techniques for cigenvalue problems include slicing-the-spectrum,
which uses LDLT decompositions to compute eigenvalues in a specified interval for
symmetric HODLR and HSS matrices [18] as well as H> matrices [16]. Approximate H—
matrix inverses can be used as preconditioners in iterative eigenvalue solvers; see [83, 85]
for examples. Recently, Vogel et al. [111] developed a fast divide-and-conquer method for
computing all eigenvalues and eigenvectors in the HSS format. However, as the matrix
of eigenvectors is represented in a factored form, it would be a nontrivial and possibly
expensive detour to compute spectral projectors via this approach. We refer to Chapter 3

for an overview.

We propose a new method based on a variant [91] of the QR-based dynamically weighted
Halley algorithm (QDWH) for computing a polar decomposition [89]. Our method
exploits the fact that the iterates of QDWH applied to a banded matrix can be well
approximated in the HODLR format. In fact, we show that the memory needed for storing
the approximate spectral projector depends only logarithmically on the spectral gap, a
major improvement over approximate sparsity. We discuss in detail the implementation
of QDWH in the HODLR format, and in particular, we focus on the efficient and accurate
representation of the first iterate, which One major contribution of this chapter is to show

how this can be done efficiently.

The remainder of the chapter is organized as follows. In Section 4.1, we review the QDWH
algorithm for computing a spectral projector II-,(A). In Section 4.2 we derive new a
priori bounds on the singular values for off-diagonal blocks of I, (A) based on the best
rational approximation to the sign function, from which we deduce bounds on the memory
required to store Il (A) approximately in the HODLR format. Section 4.3 discusses the
efficient realization of the QR decomposition required in the first iterate of the QDWH
algorithm. Section 4.4 summarizes our newly proposed QDWH algorithm in the HODLR
format and provides implementation details. Finally, numerical experiments both for

tridiagonal and banded matrices are shown in Section 4.5.

The content presented in this chapter is based on the published article [81].
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4.1 Computation of spectral projectors via QDWH

In the following, we assume g = 0 without loss of generality, and thus consider the
computation of the spectral projector IIo(A) associated with the negative eigenvalues of
a symmetric nonsingular matrix A € R™*"™. We first start by recalling several essential

definitions.

Let A = QAQT be a spectral decomposition of A such that A = diag(A_, Ay ), where A_
and Ay are diagonal matrices containing the v negative and the n — v positive eigenvalues
of A, respectively. The spectral projector associated with the negative eigenvalues is given
by

I, 0
- o

while the spectral projector related to the positive eigenvalues is defined by

0 O
o = Q [0 In_,,] Q. (4.2)
Additionally, the closely related matrix sign function is defined by
-1, 0
sign(4) = Q [ 0 1 ] Q. (4.3)

As the matrix sign function is in the core of our computations, in the following theorem
we present a summary of some important properties of sign(A), and for completeness

provide its proof.

Theorem 4.1. (Theorem 5.1. in [77]) Let A € R™" symmetric matriz with no zero
eigenvalues and let S = sign(A). Then
i) 82 =1 (S is involutory);
ii) S is diagonalizable with eigenvalues +1;
iii) A and S commute, i.e. SA = AS;

w) $(I—5) and 3(I1+S) are spectral projectors onto the invariant subspaces associated

with the negative and positive eigenvalues, respectively.
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4.1. Computation of spectral projectors via QDWH

Proof. i) The involutory property follows from the definition (4.3) of S and the
orthogonality of matrix Q:

-1, 0 -1, 0
SQ—Q[() . ]QTQlo . ]QT—QQT—I-

ii) From the definition (4.3) follows that the eigenvalues of S are +1 and the matrix of

eigenvectors is Q.

iii) Writing A in terms of its spectral decomposition A = QDQ” leads to

AS_QD[_OI” OIQT_Q[_L’ 0 DQT = S A,

In_y 0 In_y

where we utilize the property that two diagonal matrices commute. We also note

the commutation property holds for general matrix functions.

iv) We first show that 3 (I —S) corresponds to IT<o(A) given in (4.1). Inserting the
definition of S yields

1 1 ~I, 0 s Lol .o \
5(1—5)—§Q<I—[0 In_,,]>Q —Q[O 0]@ = Io(4),

where the last equality holds because of (4.1). Analogously, we obtain that (I +S)
equals to IT5o(A) given in (4.2).

Following [91], our approach for computing IT.(A) is based on a well-known connection
to the polar decomposition. The polar decomposition [60, Chapter 9] of A takes the form
A = UH for an orthogonal matrix U and a symmetric positive definite matrix H. Given

the spectral decomposition of A

A=QAQT = Qdiag(A_, A+)QT

= Qdiag(_IV’ In—V)QT : Q diag(|A—" ‘A+|)QT
=U =H

the polar decomposition of A follows. In particular, this shows that the matrix sign
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function sign(A) coincides with the orthogonal factor U from the polar decomposition.
More importantly, II-o(A) = %(I — U). Similarly, the spectral projector associated with
the positive eigenvalues equals to Ilso(A4) = (I + U).

4.1.1 QDWH algorithm

In this section we recall the QDWH algorithm for computing the polar decomposition of
A proposed in [89)], likewise its variant proposed in [91]. In particular, we mostly follow

the exposition given in [89].
Starting from the Halley iteration for computing the orthogonal polar factor U of A

XO = A)
X1 = Xe (B3I + XTI Xp)(I + 3XTXp)™Y, k>0, (4.4)

in order to enhance its convergence, the authors in [89| consider the dynamically weighted
Halley (DWH) iteration:

X() = A/Oz,
Xpy1 = Xp(apl + bp XEX) (I + e XFX) 7Y, k>0,

—~
iy
c

N2

with a = ||A||2 and nonnegative scalars ay, by, cx. These weighting parameters are chosen
such that the value l;y1, depending on ag, by, i, is maximized and satisfies that the

interval [l4+1, 1] contains all singular values of the iterate Xp.

To show how the weighting parameters need to be chosen, let us first examine the behavior
of the singular values of the iterates X}. To this end, suppose that X, = WX, Z7 is the

singular value decomposition of X}, and let [ satisfy
[Umin(Xk)7 Umax(Xk)] - [lk, 1] C [07 1]a (46)

given that the smallest singular value of the initial iterate satisfies opin(Xo) = 1/6(4) = .

After applying one step of the DWH iteration (4.5), we can express Xgi1 as

Xiy1 = W Si(apI + X3 (I + e X3) 1 27T, (4.7)

Ykt
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Thercfore the singular values of Xy, arc given in terms of the singular values of Xj,

with
O-’i(Xk+1) = ’rk(o—i(Xk))’ i = 17 e, Nn, (48)

where 7 is a rational function of type (3,2) given as

ap + kaQ
rr(e) =t =5

= . 4.9
. 1+ CkCCQ ( )

In particular, (4.7) and (4.8) show that the iterates in (4.5) have mutual singular vectors,

while the singular values are defined via mappings ry, as a diagonal matrix ¥ satisfies

Ser1 = m.(Sk) = =+ (11 (Zo)) - ),
with the matrix function on the right-hand side defined in the classical sense.

From (4.13) and (4.8) it follows that

[Omin(Xk+1)s Omax(Xk+1)] € | min ri(z), max ri(z)| . (4.10)

Since the polar factor U is an orthogonal matrix, all its singular values equal to 1, and
it is therefore a reasonable way to examine the distance of the iterate Xy from U by
measuring how far are the iterate’s singular values from 1. Hence, a choice of parameters

ag, b, ¢ ought to be such that two following conditions are satisfied:

i) 0<rp(x) <1, forz e[l 1], (4.11)

1) max min rg(z). (4.12)
b, ek €[, 1]

Finally, when parameters ag, by, ¢ satisfying (4.11) and (4.12) are computed, for the

singular values of the iterate Xj;1 we obtain
[Umin(Xk+1); O'max(Xk:-i-l)] G [lk‘-f—lu 1] C [O, 1], with [k-i-l = min T‘k(x) (4.13)

The computation of the parameters ag, b, ¢ requires solving the optimization prob-
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lem (4.11) and (4.12). The solution of this optimization problem is given by

ap =h(ly), bp=(ar—1)*/4, cx=ap+bp—1, (4.14)
where the function h is defined as
1 8(2 — 12) S[4(1 = 12)
h(l) =+/1 —4/8—4 I =/ —=.
(1) +7+2\/ "ty ) 7
The parameter [; is determined by the recurrence
I =lg1(ap_1 +bp1l3_) /(1 +cpalZ_y), k>1, ly=1/k(A). (4.15)

Moreover, it can be shown that when [ converges to 1, the weighting parameters converge

to (ag, b, cr) — (3,1,3), which are the weighting parameters of the Halley iteration (4.4).

Remark 4.2. Although in this presentation we use the exact singular values of A when
deriving the parameters of the DWH iteration, in practice this is often not doable. Instead
of using o = ||Al|2 and lop = 1/k(A), it is sufficient to obtain their estimates & and [,

respectively, with the property
[omin(4/@), 1] € [lo,1] < [0, 1)

The efficient estimation of the parameters a and lp, required to start the recurrence (4.5),

will be discussed in Section 4.4.

The following result reveals the asymptotic behavior of the DWH iteration.

Theorem 4.3. (Theorem 3.1. in [89]) For a nonsingular matriz A, the iterates X
generated by the DWH iteration (4.5) converge to the polar factor U of A. Moreover, the

asymptotic convergence of the iteration is cubic.

To derive a meaningful stopping criterion for the DWH iteration, and the overall number
of iterations required for convergence, we measure the distance of the iterates from the
polar factor U

[ Xk = Ullz = |1 = omin(Xg)| = |1 = L.

The smallest integer k& with the property |1 — Ix| < u™!, where u ~ 1.1 - 10716 is the unit

roundoff in IEEE double-precision arithmetics, gives an upper bound on the number of
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4.1. Computation of spectral projectors via QDWH

iterations needed for the recurrence (4.5) to converge to the polar factor U of A. This
number can be deduced from the scalar recursion (4.15), using a starting parameter
lo = 1/k(A). Table 4.1 summarizes the number of iterations with respect to a matrix

condition number.

Table 4.1 — The number of iterations k of the recurrence (4.5) with respect to the condition number

of a starting matriz (k(A)) [89].

k(A) || 10! | 10% | 10° | 108 | 10%° | 10'2 | 10'6
k 3 14| 5|5 5 5 6

Results in Table 4.1 suggest that the DWH iteration converges within at most six steps

for any matrix with the condition number x(A4) < 10716,

QR-based iteration

The recurrence (4.5) has the equivalent form

Xo = A/a, (4.16a)
X _Fx _ 4.16b
k1= X + N (ak ch) 1Q>, ( )

with the QR decomposition

[ﬁX’“] _ |9 R (4.17)
I Q2

Throughout this work, we refer to the iteration (4.16) as a QR-based iteration. For a
symmetric matrix A, the arithmetic cost of one QR-based iteration amounts to 4.5n°
flops, by taking into account the structure of matrices in (4.17); we refer the reader to [91]

for a more detailed analysis.

The DWH iteration implemented in terms of (4.16) is referred to as the QDWH algorithm.

For completeness, we provide the pseudocode in Algorithm 4.1.
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Algorithm 4.1 QDWH algorithm

Input: Nonsingular matrix A € R™*",
Output: Approximation U € R™ " to the orthogonal polar factor of A.

1: Set the initial parameters «;, lp.
2: Xg = A/a.
3 k=0.
4: repeat
5 Compute ay, b, ¢ according to the recurrence (4.14).
X
6:  Compute the QR decomposition [\/7; k] = [gl] R.
2
7. Compute X1 = g—:Xk + (ak — g—:) Q1Q7.
k=Fk+1.

9:  Compute I, = lp_1(ar_1 + bk,ll,%_l)/(l + ck,lli_l).
10: until convergence
11: U = Xg.

Cholesky-based iteration

As observed in [91], the DWH recurrence (4.5) can also be rewritten in an equivalent way
involving the Cholesky decomposition. In particular, the Cholesky-based iteration of the

DWH recurrence is given by

Zy, =1 + e, X Xg, Wy, = chol(Zy), (4.18a)

b b e
X1 = éXk + (ak — i) X hw T, (4.18Db)

where chol(Zy) denotes the Cholesky factor of Z;. For a symmetric matrix A, the
implementation of one Cholesky-based iteration (4.18) requires in total 3n® — n3/6 flops.
This includes the computation of a symmetric positive definite matrix Z;, requiring n3/2
operations, the computation of its Cholesky factor W}, with n3/3 operations, and finally
solving two triangular linear systems with 2n3 operations. Thus, this variant of the
DWH recurrence requires less arithmetic operations than the evaluation of the QR~based

iteration.

Additionally, we mention that a higher—order variant of QDWH, called Zolo-pd, has
recently been proposed by Freund and Nakatsukasa [90]. This method approximates the
polar decomposition in at most two iterations but requires more arithmetic operations

per iteration.
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4.1. Computation of spectral projectors via QDWH

4.1.2 Switching between QR-based and Cholesky-based iterations

eration (4.18) is faster than one QR-based iteration (4.16). However, when Zj is ill-
conditioned, which is signaled by a large value of ¢, the numerical stability of (4.18)
can be compromised. To avoid this, it is proposed in [91] to switch from QR-based
iteration (4.16) to Cholesky-based iteration (4.18) as soon as ¢ < 100. Since ¢ converges
monotonically from above to 3, this implies that this hybrid approach will first perform a
few QR-based iterations and then switch for good to Cholesky-based iterations. In fact,
numerical experiments presented in [91] indicate that at most two QR-based iterations

are performed.

For reasons explained in Section 4.2 below, we prefer to perform only one QR-based
iteration and then switch to Cholesky-based iterations. To explore the impact of this
choice on numerical accuracy, we perform a comparison of the QDWH algorithm proposed
in [91] with a variant of QDWH that performs only one QR-based iteration. We consider

the following error measures:

ed = U* ~ 1|,
@ = |trace(U) — trace(sign(A))|,

etrace

1
G o= 5~ 0) -l

—~
N
R
Nej

SN

)

2

where U denotes the output of the QDWH algorithm, and II.o(A) the spectral projector
returned by the MATLAB function eig.

Example 4.4. Let A € R2000x2000 16 5 symmetric tridiagonal matrix constructed as
described in Section 4.5.1, such that half of the spectrum of A is contained in [—1, — gap]
and the other half in [gap, 1], for gap € {10_1, 107°,10719, 10_15}. As can be seen in
Table 4.2, the errors obtained by both variants of the QDWH algorithm exhibit a similar
behavior. Even for tiny values of gap, no significant loss of accuracy is observed if only

one QR-based iteration is performed.

We would like to emphasize that Example 4.4 provides numerical evidence but does not
prove that one QR iteration is enough to obtain a numerically stable algorithm. As the
error analysis from [91] does not allow to draw this conclusion, it remains open to perform

an analysis that supports our choice.
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Table 4.2 — Comparison of errors in the QDWH algorithm with one or several QR-based iterations.

Algorithm [91] gap 10-¢ 10-° 10710 1071
2o 5.55-10717 | 7.22.10710 | 2.22.107%0 | 1.11-107'¢

one QR-based Q —15 —15 —15 ~15

iteration (4.16) e 1.15- 10 2.41-10 1.84-10 1.82-10
e 1.87-107" | 435-107'2 | 1.88-1076 | 1.91-1072
e . 5.55-10717 | 1.22.10715 | 1.53-10716 | 6.25. 1016

semenal e 1.15-107% | 2.58- 1071 | 1.81-1071% | 2.04- 10710

QR-based iter-

ations (4.16) s 1.87-10 ™ [ 2.12-10 2 | 2.82-10°6 | 3.06-10 2

# of (4.16) 1 2 2 3

4.2 Hierarchical matrix approximation of spectral projec-

tors

In Section 2.1.2 we have discussed the storage of spectral projectors of banded matrices
within the HODLR and a more general H—matrix format, generated by the admissibility
condition motivated by the 1D integral equations. In particular, the analysis provided
in Example 2.2 has shown that it is more beneficial to use the HODLR format for
the computation of spectral projectors of banded matrices than the hierarchical format

presented in Section 2.1.2.

To implement a variant of the QDWH algorithm for computing an approximation of
a spectral projector in the HODLR format, we use algorithms from Section 2.2. The
computation of a Cholesky-based iteration (4.18) can be completely efficiently carried out
within the HODLR format. However, the QR-based iteration (4.16) of QDWH requires
the computation of the QR decomposition (4.17). As discussed in Section 2.2.8, unlike
for hierarchical Cholesky decomposition, there is no straightforward way of performing
QR decompositions in hierarchical matrix arithmetics. Hence, instead of using any of
the existing algorithms, we develop a novel method in Section 4.3 to compute the QR
decomposition (4.16) that exploits the particular structure of the matrix in the first
iteration of the QDWH algorithm. This allows us to represent the matrices 1 and Q2
from (4.17) exactly in the HODLR format.

In the following we derive a theoretical storage complexity for spectral projectors given in
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4.2. Hierarchical matrix approximation of spectral projectors

the HODLR format and show its logarithmic dependence on the spectral gap.

4.2.1 A priori bounds on singular values and memory requirements

To study the approximation of TI-o(A) in the HODLR format, we first derive bounds for
the singular values of the off-diagonal ranks based on rational approximations to the sign
function. In the following, we say that a rational function r is of type (k, s) and write

r € Ry, if = p/q holds for polynomials p and ¢ of degree at most k and s, respectively.

Rational approximation of sign function

Given 0 < ¢ < d < 00, the min-max problem

' |sign(z) — r(@)], siga@) =4 SO (4.20)
min max Slgn X)) — T e 5 Slgn xIr) = A
r€Rm, ma€[—d,—c]U[c,d] -1, z¢€ [_d’ —C],

has a unique solution s,, [1, Chapter 9]), the so-called Zolotarev function, which takes

the form

L5 2 4 ca)

Sl = Mz .
172 (22 + caia)

The coefficients ¢; are given in terms of the Jacobi elliptic function sn(-; k):

Sn2(iK(K) ‘K)

m 7

c=e ‘ , (4.21)
' 1— sn2(—ZKn(f) P K)

where k = y/1 — (¢/d)? and K is defined as the complete elliptic integral of the first kind

x 1
K@»:/Q——J@———:/‘ dt L 0<z<l.
0 v/1—22sin20 0 \/(1 —t2)(1 — x%t?)

The constant M is uniquely determined by the condition

in 1+ = max 1 — ;
SRy om(@) = = s (2)
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Figure 4.1 — Zolotarev’s rational approximations for the domain [—10, —1] U [1, 10]. The lines
colored red are the best rational Ry, m approzimation to the sign function on [—10, 10], while
blue lines represent the approximation errors on [—10, —1] and [—1, 10]. Left: The best rational

approximation in Ry 4. Right: The best rational approzimation in Rss. These plots were produced
by using RKToolbox [24].

Let us define by E,, the maximal approximation error on the domain [—d, —c] U [c, d]:

By i= xe[fglflc)](u[c,dﬂ sign(z) — sm ()]

As shown in [15], lower and upper bounds on E,, are given by

—m

4p

— _ << E,<4p™™ 4.22
(1+p72m)4— m = 3P ’ ( )

where p = p(k) = exp <% (15”2)>

The following lemma derives a bound from (4.22) that reveals the influence of the gap on

the approximation error F,,.

Lemma 4.5. With the notation introduced above and gap = c¢/d, it holds that

2
Ep < dexp (— T ) (4.23)
2log (4/gap + 2)
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Proof. Following Bracss and Hackbusch [31], we have

K(\/ 1-— /<;2) = K(gap) > 7/2,
K(k) = K<\/1 - gapQ) <log(4/gap +2).

Thus, the upper bound in (4.22) implies

7r2’m
Epn <4 = .
me e ( 2log(4/gap +2)

O

It is simple to bound the ranks of the off-diagonal blocks for a rational function applied

to a banded matrix. We first recall an important result.

Corollary 4.6. (Corollary 1.36 in [109]) Suppose A € R™™ is a nonsingular matriz and
o, B nonempty subsets of N :={1,2,...,n}, with |a| <n and |f| < n. Then

rank(A™(a, B)) = rank(A(N\B, N\a)) + |a| + |B] — n,

where A(a, B) denotes a submatriz of A with row indices o and columns indices 3. In
particular,
rank(A ™! (a, N\«)) = rank(A(a, N\a)).

This corollary states that rank of the off-diagonal blocks is preserved under inversion.

Lemma 4.7. Consider a b-banded matrix A € R™™™ and a rational function r,, of type
(m,m), with poles disjoint from the spectrum of A. Then the off-diagonal blocks of ry,(A)

have rank at most mb.

Proof. Assuming that ry, has simple poles, let 7, () = > it; wi(z — p;) ! be a partial
fraction expansion of r,, with w;, u; € C,i =1,...,m. Thus, r,,,(A) is a sum of m shifted
inverses of A. By Corollary 4.6, the off-diagonal blocks of each summand B = A — ;[
satisfy

rank B~1|,q = rank B|og.

Noting that rank B|og = b, because B has bandwidth b, this completes the proof for the

case of simple poles.
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Now, supposc that r,, has non-simple poles. Because the poles of ry, arc disjoint from
the eigenvalues of A by assumption, there is for every ¢ > 0 a rational function 7,
of type (m,m) with simple poles (still disjoint from the spectrum of A) such that
lrm(A) = 7 (A)|l2 < e. Since every off-diagonal block of 7,,(A) has rank bounded by mb,
it follows from the semi-continuity of the rank function that every off-diagonal block of

rm(A) has rank at most mb by letting e — 0. O

It is worth noting that, since the coefficients co;—1 are all distinct, a partial fraction
expansion of a Zolotarev function s,, always has simple poles. Moreover, it is interesting
to remark that Nakatsukasa and Freund [90] noted that the rational function (4.9) in
the QDWH algorithm is, up to a scaling factor, the best rational approximation of
type (3,2) to the sign function on [—1, —ly] U [lp, 1]. Moreover, since a composition of
Zolotarev functions is a Zolotarev function [90], the mapping function in the kth iteration
of the QDWH algorithm is the best rational approximation to the sign function of type
(3%,3% — 1) on [~1,—lo] U [ly, 1], which provides a theoretical justification for the fast
convergence of the QDWH algorithm.

Singular value decay of off-diagonal blocks

The results of Lemma 4.5 and Lemma 4.7 allow us to establish exponential decay for the
singular values of the off-diagonal blocks in ITo(A) or, equivalently, in sign(A) for any
symmetric banded matrix A. By rescaling A, we may assume without loss of generality
that its spectrum is contained in [—d, —c] U [¢, d]. We let o;(-) denote the ith largest

singular value of a matrix.

Theorem 4.8. Consider a symmetric b-banded matriz A € R™"™ with the eigenvalues

off-diagonal block Tl-o(A)|or satisfy

Tmb+1(H<o(A)ofr) < 2exp ( mm ) (4.24)

 2log(4/gap + 2)

Proof. Let sy, denote the solution of the min-max problem (4.20). Because s;,(A)|ox has

rank at most mb by Lemma 4.7, and the best rank-¢ approximation error is governed by
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the (7 + 1)th largest singular value, it follows from (4.23) that

Omb+1(sign(A)logr) < [[sign(A) —sm(A)ll2 < max  |sign(z) — spm(z)]
z€[—d,—c]U[c,d]

<Ade mm
xp [ — .
- P 2log(4/gap + 2)

The statement therefore follows from the relation Io(A)|og = — 2 sign(A)]of- O

Example 4.9. This example gives an insight on the quality of the bound obtained in
Theorem 4.8. For this purpose, we construct, as explained in Section 4.5.1, symmetric
b-banded matrices of size n = 2000 with eigenvalues uniformly distributed in [-1, — gap|U
[gap, 1], with half of the spectrum negative, and the other half positive. In particular,
we consider two matrices: a tridiagonal matrix with gap = 107!, and a 4-banded
matrix with gap = 10~*. In both cases the spectral projector I is computed using
MATLAB’s built-in function eig. The decay in the singular values of the upper off-diagonal
blocks II¢(1 : n/2,n/2 4+ 1:n) is reported in Figure 4.2, together with the theoretical
bound (4.24). In case of a large relative spectral gap, the bound is tight and nicely follows
the decay of singular values; see Figure 4.2 (left). However, for a smaller spectral gap, in
Figure 4.2 (right) we notice that a rate of the decay in the theoretical bound is slower

than the singular value decay.

100 ‘ ; i 10°
T =0 4m+1
--Theorem 9 bound -e-Theorem 9 bound
10°° 10°°
g g
=) =
g g
@ 5]
= ,-10 S n-
310 510 10
2 2
n n
107° 10°71°
0 0 100
m m

Figure 4.2 — Example 4.9. Comparison of the singular value decay in the off-diagonal blocks of a
spectral projector Io(A) with the theoretical bound from Theorem 4.8. Left: A is a tridiagonal
matriz with a spectral gap 10", Right: A is 4-banded matriz with a spectral gap 10~%.
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Memory requirements with respect to gap

Theorem 4.8 allows us to study the memory required to approximate IT_g(A) in the
HODLR format to a prescribed accuracy. For this purpose, let II”* denote the best
approximation in the Frobenius norm of II.¢(A) in the HODLR format with all off-
diagonal ranks bounded by mb. Necessarily, the diagonal blocks of IT* and IT1o(A) are

the same. For an off-diagonal block of size k, Theorem 4.8 implies

k fk/’ﬂ
Teo(A)log — T eg |7 = ) os(Mco(A)og)? < Z bojps1(M<o(A)lo)?
i=mb-+1 j=m
[k /b]—m
4b
< 27 2m
4b Z T SI—TQT ,
j=m

with 7 = exp ( — Wiw-ﬂ))' Taking into account the total number of off-diagonal

blocks, we arrive at

8b

IMeo(A) = T < —= (/i — 1)7°™

Thus, the value of m needed to attain ||[IIoq(A) — I1*|| < 6 for a desired accuracy ¢ > 0
satisfies m = O (\ log gap | - log (b'r&5’1| log gap |> ) The corresponding approximation IT7

requires

(’)<|loggap\ -log (bn51|loggap|>bnlogn> (4.25)
memory. Up to a double logarithmic factor, this shows that the memory depends
logarithmically on the spectral gap.

Comparison to approximate sparsity

We now compare (4.25) with known results for approximate sparsity. Assuming we are
in the setting of Theorem 4.8, it is shown in [21] that the off-diagonal entries of IIo(A)

satisfy
o 1 1+ gap
I A 5 < a‘l .7‘ :—l
|(H<0(A))ij| < Ce ? T Og<1—gap>,
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for some constant C' > 0 depending on ¢ and d. Let II(™) denote the best approximation
in the Frobenius norm to IIo(A4) by a matrix of bandwidth m. Following |21, Theorem
7.7], we obtain

m ¢ —am
Teo(A) — T p < %\/ﬁe .

Choosing a value of m that satisfies m = (’)(b gap~!log <Cbn5*1 gap~! )) thus ensures
an accuracy of § > 0, where we used o ~ gap /b. As the storage of I1(™) requires O(mn)

memory, we arrive at

N
)
(@)}

N——

(@) (L log (C’Imé_1 gap ! )bn) (4.
gap

memory. In contrast to the logarithmic dependence in (4.25), the spectral gap now enters

the asymptotic complexity inverse proportionally. On the other hand, (4.25) features a

factor logn that is not present in (4.26). For most situations of practical interest, we

expect that the much milder dependence on the gap far outweighs this additional factor.

Hence, the comparison between (4.25) and (4.26) provides strong theoretical justification

for favoring the HODLR, format over approximate sparsity.

4.3 QR-based first iteration of QDWH

The first QR-based iteration of the QDWH algorithm requires computing the QR decom-

position

cA
I

Q1

R 4.27
Q2 20

for some scalar ¢ > 0. Without loss of generality, we suppose that ¢ = 1. In this section, we
develop an algorithm that requires O(b?n) operations for performing this decomposition
when A is a b-banded matrix and storing @)1 and (o implicitly. This is then used to
directly compute 1 and @ in the HODLR format with O(bnlogn) operations. Since it
is significantly simpler, we first discuss the case of a tridiagonal matrix A before treating

the case of general b.

It is interesting to note that the need for computing a QR decomposition of the form (4.27)
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also arises in the solution of ill-posed inverse problems with Tikhonov regularization;
see, e.g., [28]. However, when solving ill-posed problems, usually only the computation
of the upper triangular factor R is required, while the QDWH algorithm requires the

computation of the orthogonal factor.

4.3.1 QR decomposition of [ﬂ for tridiagonal A

For the case of a bidiagonal matrix A, Eldén [49] proposed a fast algorithm for reducing
a matrix {‘ﬂ to upper triangular form. In the following, we propose a modification of

Eldén’s algorithm suitable for tridiagonal A.

Our proposed algorithm is probably best understood from the illustration in Figure 4.3
for n = 4. In the ith step of the algorithm, all subdiagonal elements in the ith column of
[‘ﬂ are annihilated by performing Givens rotations either with the diagonal element, or
with the element (n + 1,4). By carefully choosing the order of annihilation, only one new
nonzero subdiagonal element is created in column ¢ + 1. The detailed pseudocode of this
procedure is provided in Algorithm 4.2. We use G (i, j, &) to denote a Givens rotation of

angle a that is applied to rows/columns ¢ and j.

Algorithm 4.2 Fast QR decomposition (4.27) for tridiagonal A
Input: Tridiagonal matrix A.
Output: Factors @, R of a QR decomposition of [‘?] .

Q<+ I, R+ {’;‘]
Construct G(1,n + 1, 81) to annihilate R(n + 1,1).
Update R+ G(1,n+1,31)TR and Q + QG(1,n+1,51)
Construct G(1,2,~;) to annihilate R(2,1).
Update R + G(1,2,71)TR and Q + QG(1,2, ).
fori=2,...,ndo
Construct G(n + 1,n + 4, ;) to annihilate R(n + i,1).
Update R+ G(n+1,n+i,0;) TR and Q < QG(n + 1,n +1, ;).
Construct G(i,n + 1, 3;) to annihilate R(n + 1,1).
Update R + G(i,n+1,3)"R and Q + QG(i,n+ 1, 3;).
if + < n then
Construct G(i,7 + 1,;) to annihilate R(i + 1,4).
Update R + G(i,i+ 1,%)T R and Q + QG(i,i + 1,7;).
end if
: end for

e e e
A e

0]
(0]
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X E X X X X X X X X
X X X ® x x 0 x x 0 X
X X X X X X X X X X X
X X X X X X X
D x -0 - dE LT ® x
1 1 @ 0
1 1 1 1
1 1 1
G(1,5.8)T T G(1240)T T G(5.6,a2)T T G(2,5,82)T
(x x x ] [x x x ] [x x ] [x x
|0 X X 0 x x X 0 x x X 0 x x
b X x x 0 x X 0 X P 0
x x|, X X _)[ x x|, L X®
0 0 x 0 0 0 0 @ X 0 0 O
0 [ 0 0 0
1 @D 0 0
1 1 1
G237 TR AT C T G(3,5.85)T T G(3,4,43)7
[x x x ] [x x x ] (% x x ]
0 x x X 0 x x X 0 x x X
0 x X 0 x x 0 x X
0 x %[: 0 N 0 X
0O 0 O 0 0 O @ 0O 0 0 O
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0 0 0
@] I o] | 0]
G(5,8,04)T G(4,5,84)7T

Figure 4.3 — Fast QR decomposition of [ﬂ for tridiagonal A and n = 4. In each step, a Givens

rotation is applied to the rows denoted by the arrows. Crosses denote generically nonzero elements,
bozed/circled crosses are used to define Givens rotations, while red crosses denote the fill-in during
the current operation.

Algorithm 4.2 performs 3n — 2 Givens rotations in total: two in the first and in the last
column, and three in each of the remaining n — 2 columns. By exploiting its sparsity in
a straightforward manner, only O(n) operations and memory are required to compute
the upper triangular factor R. The situation is more complicated for the orthogonal
factor. Since Q is dense, it would require O(n?) operations and memory to form @ using
Algorithm 4.2. In the following section, we explain how the low-rank structure of ) can

be exploited to reduce this cost to O(nlogn).
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Ranks of off-diagonal blocks and fast computation of orthogonal factor

For our purposes, it suffices to compute the first n columns of the 2n x 2n matrix @), that
is, the n x n matrices Q1 = Q(1: n,1:n) and Q2 = Q(n+1:2n,1: n). The order of
Givens rotations in Algorithm 4.2 implies that () is an upper Hessenberg matrix, while
(2 is an upper triangular matrix. The result of Theorem 4.10 implies that all off-diagonal

blocks of )1 and @5 have rank at most two.

Theorem 4.10. For the orthogonal factor QQ returned by Algorithm 4.2, it holds that the
matrices Q(1 : k,k+1:n) and Q(n+1:n+k,k+1:n) have rank at most two for all
1<k<n.

Proof. We only prove the result for Q(1 : k, k+1 : n); the proof for Q(n+1: n+k,k+1 : n)

is analogous.

During steps 1, ...,k — 1 of Algorithm 4.2, Q(1: k,k+ 1 : n) is not modified and remains
zero. In step k of Algorithm 4.2, column & + 1 of @ is modified, while Q(1: k,k+2:n)

remains zero. After step k has been completed, let us set
U :=span{Q(1: k,k+1),Q(1: k,n+1)} Cc R~ (4.28)

By construction, spanQ(1 : k,k + 1 : n) C U. In the following, we show by induction
that this relation holds for all subsequent steps of Algorithm 4.2. Suppose that span Q(1 :
k,k+1:n) C U holds after i steps for some i with &k <i <n — 1. In step i + 1, the

following is performed:

1. G(n+1,n+1i+ 1,0;41) is applied to columns n + 1 and n + i 4+ 1 of ). Because
Q(1: k,n+1+1) is zero before applying the rotation, this simply effects a rescaling
of column n + 1 and thus Q(1 : k,n + 1) € U remains true.

2. G(i+1,n41,5;41) is applied to columns i + 1 and n + 1 of @), which preserves
spanQ(1: k,k+1:n) CU.

3. If i <n, G(i+1,i+2,7,41) is applied to columns i + 1 and 7 + 2 of @, which again
preserves span Q(1 : k,k+1:n) C U.

After completion of the algorithm, the column span of Q(1 : k,k+ 1 : n) is thus contained

in a subspace of dimension at most two. This proves the statement of the theorem. [
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4.3. QR-based first iteration of QDWH

The QDWH algorithm makes use of the matrix product Q;Q3, sce (4.16b). Theorem 4.10,
together with the upper Hessenberg and upper triangular structure, directly implies that
the ranks of the lower and upper off-diagonal blocks of Qng are bounded by three and

two, respectively. In fact, the following theorem shows a slightly stronger result.

Theorem 4.11. Every off-diagonal block of Q1Q% for the orthogonal factor returned by
Algorithm 4.2 has rank at most 2.

Proof. By Algorithm 4.2 and Theorem 4.10, the matrices @; and (2 admit for any
1 < k < n a partitioning of the from

X | mvE Y, | Vg
Q1= = ; 9 = :
oere, | X 0 Y

where X; € RF*¥* X, € R?™#*"=F are upper Hessenberg, Y; € RF*k Y, € R*=FXn=F are
upper triangular, Uy, Us € R¥*2 V1 Vo € R #*2 5 € R, and ey, e;, denote unit vectors
of appropriate lengths. The upper off-diagonal block of Q1Qf equals to a product of

rank-2 matrices

(@Y1 kk+1:n) =X, -0+ U VIV = VT
%/—/
vir

Moreover, the lower off-diagonal block amounts to a sum of a rank-1 and a rank-2 matrix

T T~ T T
k+1:n,1:k)=o0ceierY; + XoVoU
(@1Q2)( ) 1€ Y7 2725

Va
=oge V10, k)T + VaUY .

If o = 0, the statement holds. Otherwise, we first show that the vectors Yi(:, k) and
Us(:, 1) are collinear. Let us recall that the vectors Yi(:, k), Us(:, 1) coincide with the
vectors Qn+1:n+k+1,k), Qn+1:n+k+1,k+ 1) computed during step k of
Algorithm 4.2. As Q(n+1:n+k+1,k) and Qn+1:n+k+ 1,k + 1) are collinear
after performing step k, the same holds for Yi(:, k), Ua(:,1), and Y1 (:, k) = nUs(:, 1) for

some 1 € R. Hence, we obtain
(@QQY)(k+1:n,1: k) = aneiUs(:, 1)T + VUL = VU7,
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which completes the proof. O

We note that Theorem 4.11 and the recurrence (4.16) imply that the first iterate of the
QDWH algorithm can be exactly represented in the HODLR format with off-diagonal

ranks at most 3.

Fast computation of factors )1 and -

The fast computation of factors Q1 and Q2 needed in the QR-based iteration (4.16) begins
after all Givens rotations in Algorithm 4.2 had been generated, and stored as a sequence

of 2 x 2 matrices G(a), where

Gla) ( cos(a) sin(a)) .

—sin(a) cos(«)

We start by setting @1 = Q(1:n,1:n) =1, and Q2 = Q(n+1:2n,1:n) =0, in
the HODLR format. The computation of the diagonal blocks, which are stored as dense
matrices, of the HODLR matrices ()1 and () is obtained by applying Givens rotations to
the columns of the corresponding block from the right. Following Algorithm 4.2, in each
step which affects a diagonal block, at most two columns of the block are modified and
column Q(:,n + 1) is updated. This implies the computation of p x p diagonal blocks in

Q1 and Q- requires only O(p?) arithmetic operations.

On the other hand, the proof of Theorem 4.10 can be turned into a procedure for directly
computing low-rank representations for the off-diagonal blocks of (1 and ()2 in the
HODLR format. As a result the structure of Q1 and @2, all lower off-diagonal blocks
have ranks 1 and 0 respectively, and the computation of their low-rank representations is
straightforward. We therefore only consider the computation of low-rank representations
for the upper off-diagonal blocks in ()1 and ()2. The detailed pseudocode is given in
Algorithm 4.3, and an illustration of the algorithm is provided in Figure 4.4.

The upper off-diagonal p x s blocks in @1 and Q2 correspond to Q(r+1:r+p,k+1: k+s),
k+s <mn,forr+p<kandr—n-+p <k, respectively. The construction of their
rank-2 representations UV begins in step k of Algorithm 4.2. During step k only vector
Q(r+1:r+p, k+1) is modified and becomes a scalar multiple of Q(r+1: r+p, k). After
step k is completed, following (4.28), we set U = [Q(r+1 : 7+p, k+1), Q(r+1 : r+p,n+1)].
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4.3. QR-based first iteration of QDWH

As V stores the coefficients of the columns of the block in the basis U, in steps k+1, ..., k+s
of Algorithm 4.2 we apply Givens rotations only to the rows of V. Moreover, knowing that
Q(r+1:r+pn+1)e€span{U(:,1),U(:,2)} in steps k+1,...,k+ s an additional vector
is needed to keep its coefficients in the basis U updated. Hence, using Algorithm 4.3, the
overall complexity for computing a low-rank representation of an upper-diagonal p x s
block is O(max{p, s}).

Algorithm 4.3 Computation of an off-diagonal block Q(r +1:7+p,k+1:k+ s)

Input: Givens rotations generated by Algorithm 4.2, vectors Q(r+1 : r+p, k+1), Q(r+1:
r + p,n + 1) obtained after computing Q(r + 1 : r + p, k) in Algorithm 4.2.

Output: Rank 2 representation UV7T, with U € RP*2.V € R**2, of the off-diagonal
block, updated vectors Q(r +1:r+p,k+s+1)and Q(r+1:r+p,n+1).

U+—[Qr+1:r+pk+1),Q(r+1:r+pn+1).
V [61,0] € R5*2,
Vnt1 < [0,1] € R2.
for j=1,...,sdo
Update V(s +1:,) < cos(ajpr)V (s +1,:).

6. Update [V(j")] — G(Bj4r)T [V(j")].

Un+1 Un+1

. if j+ k <n then
8: if j < s then
o Update V([j,j+1},5) « Glyyee) ™V (g + 11,5).
10: else
11: Update Q(r+1:r+p,k+s+1) < sin(ysyk) (U(:, DV (s, )+ U(:,2)V (s, 2)) .
12: Update V (s, :) < cos(vs+k)V(s,:).
13: end if
14:  end if
15: end for

16: Update Q(r+1:r+p,n+1) < U(:,D)vp+1(1) + U5, 2)vp41(2).
17: Return U and V.
18: Return Q(r +1:7+p,n+1).

The overall computational complexity for computing @ in the HODLR format is derived
as follows. For simplicity we assume that n = 2Pny;,. Then the diagonal blocks are
computed with O(n) operations. Moreover, on each level of HODLR subdivision, there are
2= upper off-diagonal blocks, with low-rank factors of size n/2! x 2. By Algorithm 4.3,

each off-diagonal block can be computed with linear complexity. Summing over all upper
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off-diagonal blocks, the number of performed operations amounts to
P n
Z =10 (?) = pO(n) =~ O(nlogn).
=1

Therefore, the number of operations needed to compute Q1 in the HODLR format is

O(nlogn). The computational analysis for Q2 is derived in an analogous way.

Figure 4.4 — The computation of one upper off-diagonal block in Q1 using Algorithm 4.5. Left: Q1
prior to the execution of Algorithm 4.3. Right: Q1 after the execution of Algorithm 4.3. Blocks
denoted blue are computed before the execution of Algorithm 4.3, and remain unchanged while
performing Algorithm 4.3. Columns denoted green are the input of Algorithm 4.3, while columns
and rows denoted red are the output of Algorithm 4.3.

4.3.2 QR decomposition of [ﬂ for banded A

In this section, we discuss the QR decomposition of [ﬂ for a banded symmetric matrix
A with bandwidth b > 1. Let us first note that Eldén [50] proposed a fast algorithm for
reducing a matrix [ﬂ with an upper triangular banded matrix L. Eldén’s algorithm
does not cover the fast computation of the orthogonal factor and requires the application
of (2b+ 1)n+ nb — %b2 — %b Givens rotations. In the following, we propose a different
algorithm that requires a fewer number of Givens rotations. In particular, the newly

proposed algorithm requires (2b + 1)n — b — b Givens rotations.

Figure 4.11 illustrates the idea of our algorithm for n = 6 and b = 3. In the ith step
of the algorithm, the subdiagonal elements in the ith column of [’ﬂ are annihilated as

follows. A first group of Givens rotations («; ;) annihilates all elements in row n + 1,
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4.3. QR-based first iteration of QDWH

which consists of the diagonal element of I and the fill-in introduced in the previous step.
Then a Givens rotation (f;) annihilates the element (n + 1,7). Finally, a second group of
Givens rotations (v; ;) annihilates all subdiagonal elements in the ¢th column of A. The

detailed procedure is given in Algorithm 4.4.

Algorithm 4.4 Fast QR decomposition (4.27) for banded A
Input: Banded matrix A with bandwidth b.
Output: Factors @, R of a QR decomposition of [‘?}

1: Q< Iy, R« m

2: Construct G(1,n + 1, 51) to annihilate R(n + 1,1).

3: Update R+ G(1,n+1,81)TR and Q + QG(1,n + 1, 5;)

4: for j=2,...,b+1do

5. Construct G(1, j,71,;) to annihilate R(j,1).

6: Update R <+ G(l,j, 'yl,j)TR and Q <+ QG(l,j, 'yl,j).

7: end for

8 fori=2,...,ndo

9:  Construct G(n + 1,1 + 4, «;;) to annihilate R(n + 1,1).

10:  Update R« G(n+1,n+i,0;;) R and Q + QG(n+ 1,n +1i,q;;).
11: forj=i+1,...,min{n,b+i— 1} do

12: Construct G(n +1i,n + j, a; ;) to annihilate R(n 4+ 4, j).

13: Update R <+ G(n+i,n+ j,q; ;)T R and Q + QG(n +i,n+ j, ;).
14:  end for

15:  Construct G(i,n + 1, 3;) to annihilate R(n + 1,1).

16:  Update R <+ G(i,n+1,5;)TR and Q + QG(i,n + 1, 5;).

17 if ¢ <n then

18: for j=i+1,...,min{n,b+1i} do

19: Construct G(i, J,7:,;) to annihilate R(j,17).

20: Update R + G(i,j,%"j)TR and Q + QG(Z,], 'Yi,j)-
21: end for

22:  end if

23: end for

Ranks of off-diagonal blocks and fast computation of orthogonal factor

Due to the order of annihilation in Algorithm 4.4, it follows that @1 = Q(1 : n,1 : n)
is a b-Hessenberg matrix (that is, the matrix is zero below the bth subdiagonal) while
Q2 = Q(n+1:2n,1:n)is an upper triangular matrix. The following result and its
proof yield an O(b?n) + O(bnlogn) algorithm for computing @ and Q2 in the HODLR
format, analogous to Theorem 4.10, Section 4.3.1 and Algorithm 4.3.
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X X X X X X X X X X X X X X X X X X
0 X X X X 0 x x x X 0 x X x X
0 x X X x X 0 X X X X X 0 X X X x X
0 x X X x X 0 X X X X X 0 X X X x X
X X X X X X X X X X X X X X X
X X X X X X X X X X X X
E 0 X X - 0 x x X - 0 x X X
D x x E 0 ® x 0 0 ®
1 m x [ X X
1 1 0
1 1 1
1 1 1
) G2.1,a01)7T } ) G(2,3,00.3)T ) ) G(2.4,0a0.4)T }
[x x x x x X] [x x x x x X] (x x x x x X]
0 X X X E 0 X X X X 0 X X X X
0 X X X X X 0 ® x x x X |: 0 0 X X X x
0 X X X X X 0 X X X X X 0 ® X X X X
X X X X X X X X X X X X X X X
X X X X X X X X X X X X
0 X x x x 700 x x x 7l 0 x x x
0 0 0 0O 0 0 0 0 0
X X X X X X
X X X
1 1 1
1 1 1
i G(2,n41,85)7 i i C(2,372,3)T i i G(2.4,72,0)7 i
(x x x x x x| [x x x x x x|
0 X X X X 0 x X X X X
0 0 x x x x 0 0 x x x X
0 0 x x x x 0 0 x x x X
X x x x X 0 X X X X
X X X X X X X X
0 0 X X x 7510 0 X X e
0 0 0 [ 0 0 O
XX X x x
X X
1 1
1] i 1]
G(2,5,72,5)T G(3,1,a3,1)"

Figure 4.5 — Second step of fast QR decomposition (Algorithm 4.4) of [ﬂ for banded A with
n =06 and b = 3. In each step, a Givens rotation is applied to the rows denoted by the arrows.
Crosses denote generically nonzero elements, boxed/circled crosses are used to define Givens
rotations, while red crosses denote the fill-in during the current operation.



4.3. QR-based first iteration of QDWH

Theorem 4.12. For the orthogonal factor @ returned by Algorithm 4.4, it holds that the
matrices Q(1 : k,k+1:n) and Qin+1:n+k,k+1:n) have rank at most 2b for all
1<k<n.

Proof. Again, we prove the result for Q(1 : k, k+1 : n) only. After k steps of Algorithm 4.4

have been performed, we define the subspace

U:=span{Q(l: k,k+1),...,Q(1: kk+0),Q(1l:kn+1),
Ql:kn+k+1),....,.Q1:k,n+k+b—1)},

which is of dimension not larger than 2b. At this point, the columns Q(1 : k, j) are zero
forj=k+b+1,...,nand j=n-+k+0b,...,2n. Thus,

spanQ(l: k,k+1:n+1)CU, spanQ(l: k,n+k+1:2n)CU (4.29)

hold after k steps of Algorithm 4.4. We now show by induction that this relation holds

for all subsequent steps.

Suppose that (4.29) holds after ¢ steps with & <i < mn — 1. In step i + 1, the following
operations are performed by Algorithm 4.4:

1. G(n+ 1,n+i+1,a;11,44+1) is applied to columns n + 1 and n + i+ 1 of @), which
affects and preserves both inclusions in (4.29). Then G(n + i+ 1,n + j, aq1 ) is
applied to columns n + i+ 1 and n+ j of @, for j =i+ 2 : min{n,7 + b}, hence
span Q(1: k,n+ k+ 1:2n) C U remains true.

2. G(i+1,n+1, ;1) is applied to columns i+ 1 and n+ 1 of @, preserving span Q(1 :
kk+1:n+1)CU.

3. Ifi+1<n, G(i+1,7,7+1,;) is applied to columns ¢ + 1 and j of @, for j =i +2:
min{n,i + b+ 1}, which retains spanQ(1: k,k+1:n+1) CU.

Therefore (4.29) holds after Algorithm 4.4 has been completed, which completes the proof
of the theorem. O

The following result is an extension of Theorem 4.13 from the tridiagonal to the banded

case.
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Theorem 4.13. FEvery off-diagonal block of Qng for the orthogonal factor returned by
Algorithm 4.4 has rank at most 2b.

Proof. We first note that for k£ < 2b the statement readily follows, as one dimension of

the off-diagonal blocks is in this case smaller than 2b; thus the same holds for ranks.

On the other hand, similarly as in Theorem 4.11, for any k such that 1 < 2b < k <n
Algorithm 4.4 and Theorem 4.12 imply that the matrices ()1 and )2 can be decomposed

as

RLEL | Xo

A%
0 Y,

) 2 —

Q=

where X; € RF*k X, € RPFxn—k gpe b-upper Hessenberg matrices, Y, € REXE Yy, e
R kxn=k are upper triangular matrices, Uy, Uy € RFX20 v Vy € R %20 while Ry, €
R?=*xb with Ry (1:b,1 :b) upper triangular and Ej, € R #*b with E,z = [Opxn—t—b Ip)-

The expression for the upper off-diagonal block immediately yields that its rank is bounded
by 20b:

QN1 ik k+1:n) = (VYY) = UV, with Vi = Y1y € RPFX2,

In the following we prove the statement of the theorem for the lower off-diagonal block.

To bound the rank of the lower off-diagonal block given as

(@) (k+1:n,1:k) = RpELYT + (XoVa)UT,
=RYi(k—b+1: k)" +VBUT, (4.30)

we utilize the relation between the column spaces of matrices Y7 and Us. After step
k of Algorithm 4.4, vectors Q(n+1:n+kk—-0+1:k) =Yi(:,k—b+1:k)and
Qn+1:n+kk+1:k+0b)=Us(:,1:b) span the same vector space. Therefore there
exists a matrix S € R®*® such that Yi(:,k —b+1: k) = Us(:,1 : b)S, which inserted
in (4.30) yields

QN (k+1:n,1: k) = (RkST +V(, 1 b)) Us(:,1:0)T+V (5, b41 : 20)Us(:, b+1 : 2b)7.
Therefore the desired result follows. O
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4.4 hQDWH algorithm

In this section we provide an overall algorithm for computing spectral projectors of banded
matrices in the HODLR format. Algorithm 4.5 summarizes the hQDWH algorithm
proposed in this chapter.

Algorithm 4.5 hQDWH algorithm

Input: Symmetric banded matrix A with bandwidth b > 1, minimal block-size nyi, > 2,

truncation tolerance € > 0, stopping tolerance § > 0.

Output: Approximation P in the HODLR format to spectral projector I1.o(A).

1:
2:
3:
4:
5
6

7

9:
10:
11:
12:

13:

14:
15:
16:
17:
18:
19:
20:

Choose initial parameters «, ly of QDWH according to (4.31).
XO = A/a
k=0.
while |1 — ;| > ¢ do
Compute ay, by, ¢ according to the recurrence (4.14).
if £ =0 then
Apply Algorithm 4.2, for b=1 o [\/%Xo
Algorithm 4.4, for b>1 I
Givens rotations.
Compute @)1 and Q2 from G in the HODLR format, generated by nmin, using
Section 4.3.1 and Algorithm 4.3.
X1 =%X)+ \/_16_0 (ao - 2—3) @1Q7 .
else
Compute Wy, = hchol(] + ckX,? sy Xp)-
Solve upper triangular system YW = X}, in the HODLR format using a variant
of Algorithm 2.5.
Solve lower triangular system VkaT = Y} in the HODLR format using Algo-
rithm 2.5.
Compute X1 = IC)—];Xk +x (ak — 2—:) Vi.
end if
k=k+1.
U = lp—1(ap—1 + bg—1l3_) /(L + cral?_,).
end while
Set U = Xg.
Return P = (I - U).

] and store resulting array GG of

In the following, we comment on various implementation details of Algorithm 4.5, as well

as its computational complexity.

Line 1 As proposed in [91], the parameters o 2 ||Al|2 and lp S omin(X0) needed to start
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the QDWH algorithm are estimated as

a =normest(A), ly=||A/all1/(v/n - condest(A/a)),

—~
H~
w
—

~—

where normest and condest denote the MATLAB functions for estimating the matrix
2-norm using the power method and the 1-norm condition number using [78],
respectively. Both functions exploit that A is sparse and require O(bn) and O(b*n)

operations, respectively.

Line 7 Following [89], the algorithm stops when [ is sufficiently close to 1, which is

measured by some stopping tolerance §.

Lines 7— 9 This part of the algorithm deals with the implementation of the first QR-
based iterate (4.16). The generation of Givens rotations by Algorithms 4.2 and 4.4
for reducing [@XO] to triangular form has been implemented in a C function,
making use of the LAPACK routine DLARTG. The function is called via a MEX
interface and returns an array G containing the cosines and sines of all rotations.
This array is then used in step 8 to generate ()7 and @2 in the HODLR format,
whose precise form is defined by the input parameter nyi,. Symmetry of the first

iterate X is enforced in the addition in step 9.

Lines 14— 17 The computation of the kth iterate X, £ > 1, involves the Cholesky
decomposition, addition, and the solution of triangular linear systems in the HODLR
format. Existing techniques for HODLR matrices have been used for this purpose,
introduced in Chapter 2, and repeated recompression with the absolute truncation
tolerance € is applied. Symmetry of the kth iterate is enforced in the addition in
step 14 and step 17.

Remark 4.14. Algorithm 4.5 extends in a straightforward way to the more general
hierarchical matrix format from Section 4.2. The only major difference is the need for
converting the matrices after Line 9 from the HODLR to the hierarchical matrix format.

This extension of Algorithm 4.5 was used in Example 2.2.

Assuming that all ranks in the off-diagonal blocks are bounded by k& > b, we conclude
that Algorithm 4.5 requires O(kn logn) memory and O(k?*nlog®n) operations.
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4.5 Numerical experiments

In this section, we demonstrate the performance of our preliminary MATLAB implementa-
tion of the hQDWH algorithm. All computations were performed in MATLAB version
2014a on an Intel Xeon CPU with 3.07GHz, 4096 KByte of level 2 cache and 192 GByte
of RAM, using a single core. The storage requirements are obtained experimentally, using

MATLAB built-in functions.

To measure the accuracy of the QDWH algorithm, we use the functions ei%, egace, egP

defined in (4.19). The error measures e/t, e .. e, for the hQDWH algorithm are
defined analogously. For the computation of eiﬁ and e%{P matrices given in the HODLR
format are first transformed into dense matrices, followed by the computation of the

matrix 2-norm.

In all experiments, we used the tolerance § = 10~ for stopping the QDWH /hQDWH
algorithms. Unless stated otherwise, the truncation tolerance for recompression in the
HODLR format is set to ¢ = 10710; the minimal block-size is set to nmin = 250 for

tridiagonal matrices and nmin = 500 for banded matrices.

The performance of the algorithm is tested on various types of matrices, including synthetic
examples as well as examples from widely used sparse matrix collections. Firstly, we

discuss the fast construction of synthetic test matrices used in our experiments.

4.5.1 Construction of synthetic test matrices

Given a bandwidth b and a prescribed set of eigenvalues Aq,..., \,, we construct a
symmetric b-banded matrix with given eigenvalues by an orthogonal similarity transfor-
mation of A = diag(A1,...,A,). For this purpose, we perform the following operation for

i=n,n—1,...,2.

First, a Givens rotation G(i — 1,14, o;) is created by annihilating the second component
of the vector [al“] The update A < G(i — 1,4,a;)T AG(i — 1,14, ;) introduces nonzero
off-diagonal elements in A. For ¢ =n,...,n — b+ 1, this fill-in stays within the b bands.
For ¢ < n — b, two undesired nonzero elements are created in row ¢ — 1 and column
1 — 1 outside the b bands. These nonzero elements are immediately chased off to the

bottom right corner by applying n — b — i + 1 Givens rotations, akin to Schwarz band
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reduction [102].
When the procedure is completed, the b bands of A are fully populated.

In all examples presented below, we choose the eigenvalues to be uniformly distributed
in [—1,—gap] U [gap, 1]. Our results indicate that the performance of our algorithm is
robust with respect to the choice of eigenvalue distribution. In particular, the timings stay

almost the same when choosing eigenvalues geometrically graded towards the spectral

gap.

4.5.2 Results for tridiagonal matrices

In this section we demonstrate the performance of the hQDWH algorithm 4.5 for symmetric
tridiagonal matrices. We compare our new algorithm with two existing methods for
computing spectral decompositions: the MATLAB function eig and MRRR. Moreover, we
demonstrate the behavior of the hQDWH algorithm on matrices of varying difficulties.

Example 4.15 (Accuracy versus gap). First we investigate the behavior of the errors
for both the hQDWH and the QDWH algorithm with respect to the spectral gap. Using
the construction from Section 4.5.1, we consider 10000 x 10000 tridiagonal matrices
with eigenvalues in [~1, — gap] U [gap, 1], where gap varies from 107! to 10~!. From
Figure 4.6 (left), it can be seen that tiny spectral gaps do not have a significant influence
on the distance from identity and the trace error for both algorithms. On the other hand,
both eglp and egp are sensitive to a decreasing gap, which reflects the ill-conditioning of

the spectral projector for small gaps.

Example 4.16 (Accuracy versus the truncation tolerance €¢). We again consider a
tridiagonal matrix A € R10000x10000 with the eigenvalues in [—1, —10~*]U[107*, 1]. The
truncation tolerance e for recompression in the HODLR format is varied in the interval
[10 15,10 5]. Figure 4.6 (right) shows the resulting errors in the hQDWH algorithm. As

expected, the errors eﬁ, e{races

H
trace

egfp increase as € increases. Both eifg‘ and egfp grow linearly

with respect to e, while e appears to be a little more robust.
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Figure 4.6 — Left (Example 4.15): Comparison of accuracy for the hQDWH and the QDWH
algorithm applied to 10000 x 10000 tridiagonal matrices with varying spectral gap. Right (Exam-
ple 4.16): Accuracy of the hQDWH algorithm applied to a 10000 x 10000 tridiagonal matriz with
the spectral gap 10~ for different truncation tolerances.

Example 4.17 (Accuracy for examples from matrix collections). We test the
accuracy of the hQDWH algorithm for several matrices from applications, that have also

been considered in [86]:

e Matrices from the BCSSTRUCI set in the Harwell-Boeing Collection [38]. In these
examples, a finite element discretization leads to a generalized eigenvalue problem
Kx = MMz, where K, M are symmetric positive definite matrices. We consider
the equivalent standard eigenvalue problem L™ 'K L T2 = Az, where L denotes the
Cholesky factor of M. We shift the matrix L™K L~7 such that approximately half
of its spectrum is negative. Finally, the matrix is reduced to a tridiagonal matrix

using the MATLAB function hess.

e Matrices from UF Sparse Matrix Collection [38]. We consider the symmetric
Alemdar and Cannizzo matrices, as well as a matrix from the NASA set. Again, the
matrices are shifted such that roughly half of their spectrum is negative, followed

by a reduction to tridiagonal form using the MATLAB function hess.

Table 5.3 reveals that the hQDWH algorithm yields accurate approximations also for
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Chapter 4. Fast computation of spectral projectors of banded matrices

Table 4.3 — Accuracy of the hQDWH algorithm. for tridiagonal matrices from several matrix
collections in Example /.17 in terms of the errors measures e?&‘, and e%“P, The last column
reveals the spectral gap associated to the spectral projector .

H
etracef

matrix n 6?3 ez-léace eng H : ||2 gap

5 besst08 1074 | 107" | 107 | 1077 | 1.68-107 | 7.5-107"
o~

3 besst09 1083 | 10710 | 10~ | 1078 | 4.29- 10 | 3.5-10%

R besst11 1473 | 10719 | 1072 [ 107 | 4.75-10° | 4.7-10°6

Cannizzo matrix || 4098 | 1071 | 10719 | 107 | 3.07-10% | 2.4-107?

nasa4704 4704 | 10710 | 10712 | 1072 | 2.07-10% | 9.8-10°8

Alemdar matrix || 6245 | 10710 | 10711 | 1077 69.5 7.5-107°

applications’ matrices. More specifically, in all examples, e?j and et}r‘ace obtain values of

order of the truncation tolerance €, while e%"P shows dependence on the relative spectral

gap.

Example 4.18 (Breakeven point relative to eig and MRRR). To compare the
computational times of the hQDWH algorithm with eig, we consider tridiagonal matrices
with eigenvalues contained in [—1, —gap] U [gap, 1] for various gaps. We have written
a MEX function with a direct call to the LAPACK routine DSTEVD, to verify that the
MATLAB function eig indeed is based on the divide-and-conquer algorithm. Table 4.4
shows the resulting breakeven points, that is, the value of n such that hQDWH is faster
than eig for matrices of size at least n. Not surprisingly, this breakeven point depends
on the gap, as ranks are expected to increase as the gap decreases. However, even for
gap = 1074, the hQDWH algorithm becomes faster than eig for matrices of moderate
size (n > 3250) and the ranks of the off-diagonal blocks in the HODLR representation of

the spectral projector remain reasonably small.

Moreover, we compare the computational time of the hQDWH algorithm with the MRRR
algorithm. We have written a MEX—function with a direct call to the LAPACK routine
DSTEMR, which implements the MRRR algorithm. Table 4.4 also shows the resulting
breakeven points with respect to MRRR. However, we notice that, compared to breakeven
points with respect to eig, breakeven points in this case are higher. This is partly due to
the fact that, unlike eig, MRRR allows to specify the part of spectrum that needs to be

computed.
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Table 4.4 — Breakeven point of the hQDWH algorithm relative to eig and MRRR for tridiagonal
matrices. The last column shows the maximal off-diagonal rank in the output of the hQDWH
algorithm.

gap || eig breakeven point || MRRR breakeven point || max off-diagonal rank
10~! n = 2250 n = 4700 18
1072 n = 2500 n = 5300 28
1073 n = 2750 n = 7100 35
1074 n = 3250 n = 7500 37

Example 4.19 (Performance versus n). In this example, we investigate the asymptotic
behavior of the hQDWH algorithm, in terms of computational time and memory, for
tridiagonal matrices with eigenvalues in [-1, —107%]U[107%, 1]. The left plot of Figure 4.7
indicates that the expected O(n log? n) computational time is nicely matched. Likewise,
the right plot of Figure 4.7 confirms theoretical O(nlogn) memory requirement. The
faster increase for smaller n is because of the fact that the off-diagonal ranks first grow

from 30 to 64 until they settle around 64 for sufficiently large n.

10° ‘ 10%
4 d
107 ¢ E 1
104}
3
10 o .
) = 10
£ .2 £
2 10 °
g © 2
- 510 ;
101} @
. -hQDWH : ~-hQDWH
e -+-eig 101 5 -+-eig
10°%; o -- O(nlog®n) reference | -- O(nlogn) reference
fl -o-MRRR -e-MRRR
107 ‘ ' 10° ‘ : )
108 104 . 10° 108 10° 10 . 10° 10°

Figure 4.7 — Example 4.19. Performance with respect to n of the hQDWH algorithm, eig and
MRRR applied to tridiagonal matrices. Left: Computational time with respect to n. Right:
Memory requirements with respect to n.

Example 4.20 (Performance for 1D Laplace). It is interesting to test the perfor-
mance of the hQDWH algorithm for matrices for which the spectral gap decreases as n

increases. The archetypical example is the (scaled) tridiagonal matrix from the central
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difference discretization of the 1D Laplace operator, with cigenvalues A\ = 2 — 2 cos nkT7-T1

for k = 1,...,n. The matrix is shifted by 2, such that half of its spectrum is negative

and the eigenvalues become equal to A\, = —2cos nk—j:l The spectral gap is given by
sin —2(7:{-1)
gap = . (- = (’)(1/71)
sin 5=

According to Theorem 4.8, the numerical ranks of the off-diagonal blocks depend loga-
rithmically on the spectral gap. Thus, we expect that the hQDWH algorithm requires
O(nlog* n) computational time and O(n log? n) memory for this matrix. Figure 4.8 nicely

confirms this theoretical expectation.
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100F,7 ——eig ——cig
--O(nlog"n) reference -- O(nlog’ n) reference
-1 L L 0 L L
10 10
103 104 10° 108 103 104 10° 108
n n

Figure 4.8 — Example 4.20. Performance with respect to n of the hQDWH algorithm and eig for
discretized (shifted and scaled) 1D Laplace. Left: Computational time with respect to n. Right:
Memory requirements with respect to n.

4.5.3 Results for banded matrices

In this section we demonstrate the performance of the hQDWH algorithm for banded
matrices with bandwidth b > 1. More specifically, we test the accuracy, the computational
and the storage complexity for various banded matrices, and compare the performance to
the MATLAB function eig.

Example 4.21 (Accuracy versus gap). Similarly to Example 4.15, we study the impact
of the spectral gap on the accuracy of the hQDWH and the QDWH algorithm for banded

106



4.5. Numerical experiments

matrices. Using once again the construction from Section 4.5.1, we consider 10 000 x 10 000
banded matrices with bandwidth 8 and eigenvalues in [-1, — gap] U [gap, 1], where gap
varies from 1071% to 10!, The left plot of Figure 4.9 reconfirms the observations from
Example 4.15. More specifically, again we can notice that the errors e7s"P and egp are
more sensitive to a decreasing gap, while tiny spectral gaps do not impact the distance

from identity and the trace error for both algorithms.

10°

R
b

1075}

10410 r

10715

-20
10 10-15

Figure 4.9 — Left (Example 4.21): Comparison of accuracy for the hQDWH and the QDWH
algorithm applied to banded matrices with bandwidth 8 with varying spectral gap. Right (Exam-
ple 4.22): Accuracy of the hQDWH algorithm applied to a banded matriz with bandwidth 8 and
the spectral gap 10~*, with respect to different truncation tolerances.

Example 4.22 (Accuracy versus the truncation tolerance ¢). In this example
we investigate the influence of the truncation tolerance ¢ on accuracy of the hQDWH
algorithm for an 10000 x 10 000 banded matrix with bandwidth b = 8 and the eigenvalues
contained in [—1, —107*] U [10™%, 1]. The right plot of Figure 4.9 presents the resulting
errors in the hQDWH algorithm and reconfirms the observations from Example 4.16. In

particular, it shows that the errors eiﬁ, egtp increase linearly with respect to e.

Ctrace>

Example 4.23 (Breakeven point relative to eig). The aim of this example is to
examine when the hQDWH algorithm becomes faster than eig, depending on a bandwidth
and a spectral gap. Table 4.5 shows when the hQDWH outperforms eig for n x n banded
matrices with eigenvalues contained in [—1, —gap] U [gap, 1] for gap = 10~ and 10~
Compared to Table 4.4, the breakeven point is lower for bandwidths b = 2 and b = 4
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Chapter 4. Fast computation of spectral projectors of banded matrices

than for bandwidth 1 for both considered gaps. These results occur because eig needs to
perform tridiagonal reduction for matrices with bandwidth b > 2.

Table 4.5  Breakeven point of the hQ DWH algorithm relative to eig applied for banded matrices
with various bandwidths and spectral gaps.

b 2 4 8 16
gap

101 n=1250 | n=1750 | n = 2500 | n = 5250
1074 n=1750 | n = 2500 | n = 5000 | n = 9500

Example 4.24 (Performance versus n). To test the computational and the storage
complexity of the algorithm, we now consider banded matrices with bandwidth 4 and
with eigenvalues contained in [-1, —107'J U [107!, 1]. As in Example 4.19, the left plot
of Figure 4.10 confirms that the computational time of hQDWH scales like O(nlog?n),
while the right plot of Figure 4.10 shows that the memory scales like O(nlogn), and
therefore confirms theoretical complexity. Note that the maximal rank in the off-diagonal
blocks of the spectral projector is 66 for n = 1000, and 71 for n = 500 000.

10°
104} /
3 [an]
» 10 s
< £
[ (0]
E &
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w
—hQDWH
10" QR
—--eig
g - -O(nlog®n) reference
of ‘
10
10° 10% 10° 108 108

Figure 4.10 — Example 4.24. Performance with respect to n of the hQDWH algorithm and eig
applied to banded matrices with bandwidth 4 and the spectral gap 10~. Left: Computational time
with respect to n. Right: Memory requirements with respect to n.

Example 4.25 (Performance versus b). To verify the influence of the matrix band-
width on the performance of our algorithm, we consider 100 000 x 100 000 banded matrices

with eigenvalues contained in [—1, —107¢]U[1076, 1]. The left plot of Figure 4.11 clearly

108



4.6. Conclusion

demonstrates that computational time grows quadratically. Additionally, the right plot of
Figure 4.11 shows that memory grows linearly with respect to the bandwidth b. Therefore,

both theoretical bounds are confirmed.
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Figure .11 — Example 4.25. Performance with respect to bandwidth b of the hQ DWH algorithm
applied to 100 000 x 100000 banded matrices with the spectral gap 1076, Left: Computational time
with respect to b. Right: Memory requirements with respect to b.

4.6 Conclusion

We have developed a fast algorithm for computing spectral projectors of large-scale
symmetric banded matrices. For this purpose, we have tailored the ingredients of the
QDWH algorithm, such that the overall algorithm has linear-polylogarithmic complexity.
This allows us to compute highly accurate approximations to the spectral projector for
very large sizes (up to n = 1000000 on a desktop computer) even when the involved

spectral gap is small.

The choice of hierarchical low-rank matrix format is critical to the performance of our
algorithm. Somewhat surprisingly, we have observed in Chapter 2 that the relatively
simple HODLR format outperforms a more general H-matrix format. We have not
investigated the implementation of our algorithm in a format with nested low-rank factors,
such as HSS matrices. While such a nested format likely lowers asymptotic complexity, it

presumably only pays off for larger values of n.
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5] A fast spectral divide-and-conquer

method for banded matrices

Given a large symmetric banded matrix A € R"*™ we consider the computation of its

complete spectral decomposition
A=QAQT, A=diag(\i,)o,..., ), (5.1)

where A\;,i = 1,...,n are the eigenvalues of A and the columns of the orthogonal matrix
Q € R™" the corresponding eigenvectors. This problem has attracted quite some
attention from the early days of numerical linear algebra until today, particularly when A

is a tridiagonal matrix.

A number of applications give rise to banded eigenvalue problems. For example, they
constitute a critical step in solvers for general dense symmetric eigenvalue problems.
Nearly all existing approaches, with the notable exception of [91], first reduce a given
dense symmetric matrix to tridiagonal form. This is followed by a method for determining
the spectral decomposition of a tridiagonal matrix, such as the QR algorithm, the classical
divide-and-conquer (D&C) method or the MRRR algorithm. All these methods have
complexity O(n?) or higher; simply because all n eigenvectors are computed and stored

explicitly.

As already mentioned in Chapter 4, on a modern computing architecture with a memory
hierarchy, it turns out to be advantageous to perform the tridiagonalization based on
a successive band reduction [27], with a symmetric banded matrix as an intermediate

step [5, 26, 71, 73, 105|. In this context, it would be preferable to design an cigenvalue
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Chapter 5. A fast spectral divide-and-conquer method for banded matrices

solver that works directly with banded matrices, therefore avoiding the reduction from
banded to tridiagonal form. We recall that such a possibility has been explored for
classical D&C in [4, 72]. However, the proposed methods seem to suffer from numerical

instability or an unsatisfactory complexity growth as the bandwidth increases.

In this chapter we propose a new and fast approach for computing the spectral decomposi-
tion of a symmetric banded matrix. This is based on the spectral D&C method from [91],
which recursively splits the spectrum using invariant subspaces extracted from spectral
projectors associated with roughly half of the spectrum. In Chapter 4 we have developed
a fast method for approximating such spectral projectors in the HODLR format. However,
the extraction of the invariant subspace, requires to determine a basis for the range of the
spectral projector. This represents a major challenge. We present an cfficient algorithm
for computing an orthonormal basis of an invariant subspace in the HODLR format,
which heavily exploits properties of spectral projectors. The matrix of eigenvectors is
stored implicitly, via orthonormal factors, where each factor is an orthonormal basis for

an invariant subspace. Our approach extends to general symmetric HODLR matrices.

Several existing approaches that use hierarchical low-rank formats for the fast solution of
eigenvalue problems are based on computing (inexact) LDL” decompositions in such a
format; see [67, Section 13.5] and Chapter 3 for an overview. These decompositions allow
to slice the spectrum of a symmetric matrix into smaller chunks and are particularly well

suited when only the eigenvalues and a few eigenvectors are needed.

To the best our knowledge, the only existing fast methods suitable for the complete
spectral decomposition of a large symmetric matrix are based on variations of the classical
D&C method by Cuppen for a symmetric tridiagonal matrix [36]. One recursion of the
method divides, after a rank-one perturbation, the matrix into a 2 x 2 block diagonal
matrix. In the conquer phase the rank-one perturbation is incorporated by solving a
secular equation for the eigenvalues and applying a Cauchy-like matrix to the matrix of
eigenvectors. Gu and Eisenstat |64] not only stabilized Cuppen’s method but also observed
that the use of the fast multipole method for the Cauchy-like matrix multiplication reduced
its complexity to O(n?) for computing all eigenvectors. As mentioned in Chapter 3, Vogel
et al. [111] extended these ideas beyond tridiagonal matrices, to general symmetric
HSS (hierarchically semiseparable) matrices. Moreover, by representing the matrix of
eigenvectors in factored form, the overall cost reduces to O(nlog?n). While our work

bears similarities with [111], such as the storage of eigenvectors in factored form, it differs
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in several key aspects. First, our developments use the HODLR format while [111] uses
the HSS format. The latter format stores the low-rank factors of off-diagonal blocks in a
nested manner and thus reduces the memory requirements by a factor logn if the involved
ranks stay on the same level. However, one may need to work with rather large values of
n in order to gain significant computational savings from working with HSS instead of
HODLR. A second major difference is that the spectral D&C method used in this work
has, despite the similarity in name, little in common with Cuppen’s D&C. One advantage
of using spectral D&C is that it conveniently allows to compute only parts of the spectrum.
A third major difference is that [111] incorporates a perturbation of rank r > 1, as it
is needed to process matrices of bandwidth larger than one by sequentially splitting it
up into r rank-one perturbations. The method presented in this work processes higher
ranks directly, avoiding the need for splitting and leveraging the performance of level 3
BLAS operations. While the timings reported in [111] cover matrices of size up to 10240
and appear to be comparable with the timings presented in this work, our experiments
additionally demonstrate that our newly proposed method allows for conveniently dealing

with large-scale matrices.

The rest of this chapter is organized as follows. In Section 5.1, we recall the spectral
divide-and-conquer algorithm for computing the spectral decomposition of a symmetric
matrix, as well as a fast computation of spectral projectors. By extending the newly
proposed method for computing a QR decomposition of a HODLR matrix in Chapter 2, we
derive a new efficient method for the first iterate of the QDWH algorithm for a symmetric
HODLR matrix. In Section 5.2 we discuss the fast extraction of invariant subspaces from
a spectral projector given in the HODLR format. Section 5.3 presents the overall spectral
D&C algorithm in the HODLR format for computing the spectral decomposition of a
symmetric matrix. Numerical experiments are presented in Section 5.4, and conclusion in

Section 5.5.

This chapter is largely based on the preprint [108].
5.1 Spectral divide-and-conquer method

In this section we recall the spectral D&C method by Nakatsukasa and Higham [91] for

a symmetric n x n matrix A with spectral decomposition (5.1). We assume that the
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cigenvalues are sorted in the ascending order and choose a shift 1 € R such that
M <A << A <<, an/2

The relative spectral gap associated with this splitting of eigenvalues is defined as

o A1/—}—1 _)\V
gap = N — A

As mentioned in Section 4.1, the spectral projector associated with the first v eigenvalues
is the orthogonal projector onto the subspace spanned by the corresponding cigenvectors.

Given (5.1), it takes the form

I, O
H<M—Q[O O] QT-

Note that II., satisfies the following properties:
qu = H2<u = Iley, trace(ll.,) = rank(Il.,) = v.

The spectral projector associated with the other n — v eigenvalues is given by

H>M:Q[8 IO ]QT

and satisfies analogous properties.

The method from [91] first computes the matrix sign function and then extracts the

spectral projectors via the relations

1
Moy = 5(T—sign(A—pul)), Ty =1-Tg,

The ranges of these spectral projector are invariant subspaces of A — uI and, in turn,
of A. Letting Q<, € R™" and Q- € R™ ("=¥) denote arbitrary orthonormal bases for
Range(Il<,) and Range(II ), respectively, we therefore obtain

Aoy 0

) 5.2
Vo (5.2)

[Q<u Q>M}TA[Q</L Q>u] =
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where the cigenvalues of Ao, = QzuAQ<u arc Ai,..., A, and the cigenvalues of A, =
Qg NAQ> u are Ayti,..., A,. Applying the described procedure recursively to A.,, and
A, leads to Algorithm 5.1. When the size of the matrix is below a user-prescribed
minimal size ng0p, the recursion is stopped and a standard method for computing spectral

decompositions is used, denoted by eig.

Algorithm 5.1 Spectral D&C method
Input: Symmetric matrix A € R"*™,
Output: Spectral decomposition 4 = QAQT.
1: function [Q, A] = sdc(A)
2: if n < ngiop then
Return [Q,A] = eig(A).
4: else
5. Choose shift pu.
6:  Compute sign function of A — pf and extract spectral projectors I, and Il ,.
7. Compute orthonormal bases @<, @, of Range(Il.,), Range(IL ).
8
9

@

Compute A<ﬂ = QE,UAQ<M and A>M = Q,Z;,LLAQ>M‘
. Call recursively [Q1,A1] = sdc(A<,) and [Q2, Ag] = sdc(As,,).
A0
10: Set Q < [Q</LQ1 Q>MQ2]7 A= |: 01 A2:| .
11: end if
12: end function

In the following sections, we derive ingredients for the efficient implementation of Algo-
rithm 5.1 in the HODLR format.

5.1.1 Computation of spectral projectors in the HODLR format

In Chapter 4 we have introduced a method for computing spectral projectors of banded
matrices based on the dynamically weighted Halley iteration from [89, 91]. In this chapter,
in order to perform Algorithm 5.1 completely in the HODLR format, we also need a slight

variation of that method for dealing with general symmetric HODLR matrices.

The algorithm hQDWH presented in Chapter 4 for banded A is essentially an implemen-
tation of the DWH recurrence (4.5) in the HODLR matrix arithmetic, with one major
difference. Following [91], the first iteration of hQDWH avoids the computation of the
Cholesky factorization for the evaluation of (I + coX{ Xo)™! = (I + co/a?A?)~! in the
first iteration. Instead, a QR decomposition of a 2n x n matrix {@XO} is computed,

as explained in Section 4.3. This improves numerical stability and allows us to safely
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determine spectral projectors even for relatives gaps of order 10716, In order to complete
Algorithm 5.1, one needs to compute spectral projectors of symmetric HODLR matrices
as well. For reasons explained in Section 2.2.8, existing algorithms for performing QR
decompositions of HODLR matrices come with various drawbacks. However, the newly
proposed algorithm for computing QR decompositions presented in Section 2.2.9 can
be extended and tailored for computing a QR decomposition of {@XO], when Xy is
HODLR. An extension of Algorithm 2.12 is derived in the following section.

QR-based first iteration for HODLR A

Following the method developed in Section 2.2.9 for computing a QR decomposition of
a HODLR matrix in terms of a compact WY representation, we derive a new method
for performing the first step of the QDWH algorithm. In particular, we recall that a
QR-based iteration (4.16) requires the computation of

A
1

Q1
Q2

R, (5.3)

where A is a symmetric HODLR matrix.

Given a QR decomposition

A
I

R
0

Y1
Y,

Y1
Yo

—Q |7 =(1- , (5.4)

with the orthogonal factor @ given in a compact WY representation, it follows that the
factors @1 and @2 from (5.3) can be obtained as

Qi =1-YTY!, Q»=-YoTY{.
The hQR algorithm for computing a QR decomposition of a n x n HODLR matrix is per-

formed in a recursive block column manner. We proceed analogously for computing (5.3).

The main difference occurs when performing operations with block columns of B = [’?] .

For A € Huxn(k) of level p, associated with the integer partition (2.2), the identity
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matrix I in (5.3) is stored in the HODLR format gencrated by the same integer partition.
This implies that I also has 2P block columns on the lowest level of subdivision. Then
B is represented in terms of two HODLR matrices, with the same HODLR structure.
Therefore, we can define a block column of B by extracting the corresponding block
columns from A and /. In particular, on the lowest level of subdivision in B, a block
column consists of a block column on the lowest HODLR level of A appended by a block
column on the lowest HODLR level of I. Moreover, the orthogonal factor @ in (5.4) is
stored in terms of triangular n x n HODLR matrices Y7, Y2 and T'. Thus the computation

by block columns of B results in the computation of the corresponding block columns in
Y1,Ys and T

As a result of the structure of I, block columns on the lowest level of subdivision on
which we apply Algorithm 2.11, consist of p + 2 blocks: a dense matrix (a diagonal block
from A), p off-diagonal blocks from A and I, and the identity matrix (a diagonal block
from 7). Indeed, as discussed in Section 2.2.9, in the computation of the compact WY
representation on the lowest HODLR level, sub-block columns consisting of a diagonal
block and the lower off-diagonals blocks are needed; see Figure 2.4 for an illustration.
The lower off-diagonal blocks in I do not contribute to the compact WY representation,
as they are zero prior to the computation. Moreover, the update of the second column is
performed analogously to the computations shown on Figure 2.5, also taking into account

the triangular structure of the matrix in the lower n x n block.

As the method for computing (5.4) in terms of the compact WY representation in the
HODLR format is an analogous extension of Algorithm 2.12; but requires cumbersome

notation, we omit to provide a pseudocode.

General algorithm for spectral projectors

When the starting matrix in Algorithm 5.1 is banded, spectral projectors are computed

using the hQDWH algorithm; see Algorithm 4.5.

The parameters a and lp needed to start the QDWH algorithm for a HODLR matrix A
are computed by applying a few steps of the (inverse) power method to A? and A2%/a?,
respectively. The complete algorithm for computing spectral projectors of banded and

general symmetric HODLR matrices is provided in Algorithm 5.2.
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Algorithm 5.2 hDWH algorithm
Input: Symmetric b-banded A € R™*™ or symmetric A € H,xn(k), truncation tolerance
e > 0, stopping tolerance € > 0.
Output: Approximate spectral projectors Il and I1-g in the HODLR format.
1: if A is banded then
2:  Compute II¢ and IT5o using the hQDWH algorithm (see Section 4.4.)
3: else
4:  Compute initial parameters a 2 || A2 via power iteration on A% and ly < omin(A/a)
via inverse power iteration on A?/a?.

5: Xo = A/a.
6: k=0.
0 While‘l—lk‘ > e do
8: Compute ay, by, ¢, according to the recurrence (4.14).
9: if £ =0 then .
10: Compute [\/%XO] = (I— [Vl] sy T %y [Vl] ) xy R using Algorithm 2.12.
I Vs Vs
11: Compute Q1 = I — V3 #y Ty Vi¥ and Qg = —Va sy T 3 VL.
12: Compute X7 = %XO 4+ \/10—0 (ao — 2—8) Q1 3 QF.
13: else
14: Compute Wy, = hchol(] + ckaT xqy X))
15: Solve upper triangular system Y, Wj; = X} in the HODLR format using a
variant of Algorithm 2.5.
16: Solve lower triangular system VkaT = Y} in the HODLR format using Algo-
rithm 2.5.
17: Compute Xy, = z—:Xk 4 <ak — 2’—:) V.
18: end if
19: k=Fk-+1.
20: Compute [j, according to the recurrence (4.15).

21:  end while

22: Set U = X}.

23:  Return g = 3(I — U) and IIo = (I 4+ U).
24: end if

Taking into account the complexity of operations used in Algorithm 5.2, and assuming that
a constant number of iterations is needed and that the HOLDR ranks of all intermediate

quantities are bounded by k, the complexity of Algorithm 5.2 is O(k?nlog®n).

Remark 5.1. As a result of the new algorithm for computing the QR-based iteration
for general symmetric HODLR matrices, the DWH iteration can be implemented in the

HODLR format using only the QR-based iteration. However, because of a lower flop count,
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and alrcady demonstrated numerical accuracy, we always perform QR-based iteration

only in the first step, and then switch to the Cholesky-based iteration.

5.2 Computation of invariant subspace basis in the HODLR

format

This section addresses the efficient extraction of a basis for the range of a spectral projector
II., given in the HODLR format.

Assuming that rank(Il.,) = v, the most straightforward approach to obtain a basis for
Range(Il.,) is to simply take its first v columns. Numerically, this turns out to be a

terrible idea, especially when A is banded.

Example 5.2. Let n be even and let A € R™™" be a symimetric banded matrix with
bandwidth b and eigenvalues distributed uniformly in [-1, —1071J U [107}, 1]. In par-
ticular, rank(Il-9) = n/2. Figure 5.1 shows that the condition number of the first n/2
columns of II.¢ grows dramatically as n increases. By computing a QR decomposition
of these columns, we obtain an orthonormal basis Q1 € R™*"™/2. This basis has perfect
condition number but, as Table 5.1 shows, it represents a rather poor approximation of
Range(IT-¢).

Table 5.1 — Example 5.2. Angles (in radians) between Range(Il.o) and Range(Q1), with Q1 an
orthonormal basis for Range(IT<o(:,1: §)).

n H 4(Range(T1<q), Range(Q1)))

64 4.4916e — 02
256 1.5692¢ + 00
1024 1.5700e + 00
4096 1.5707¢e + 00

There exist a number of approaches that potentially avoid the problems observed in
Example 5.2, such as a QR factorization with pivoting [60, Chapter 5.4] for II5. None
of these approaches has been realized in the HODLR format. In fact, techniques like

pivoting across blocks appear to be incompatible with the format.

In the following, we develop a new method for computing a basis for Range(Il<,) in the

HODLR format, which consists of two steps:
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Figure 5.1 — Example 5.2. The condition number of the first n/2 columns of the spectral projector
.o for matrices with bandwidths b =1,2,4,8.

1. We first determine a set of well-conditioned columns of II., by performing a
Cholesky factorization with local pivoting. As we will see below, the number of

obtained columns is generally smaller than v, but not much smaller.

2. A randomized algorithm is applied to complete the columns to a basis of Range(Il<,).

5.2.1 Column selection by block Cholesky with local pivoting

The spectral projector I, is not only symmetric positive semidefinite but it is also idem-

potent. The (pivoted) Cholesky factorization of such matrices has particular properties.

Theorem 5.3 (|76, Theorem 10.9]). Let B € R™*™ be a symmetric positive semidefinite
matriz of rank r. Then there is a permutation matriz P such that PTBP admits a

Cholesky factorization:

R1 Ry

PT'BP=R"R, R=
0 0

9

where Ry is a r X r upper triangular matrix with positive diagonal elements.

Note that, by the invertibility of R;, the first 7 columns of BP form a basis for Range(B).
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5.2. Computation of invariant subspace basis in the HODLR format

The same holds for [R;  Ra]”. The latter turns out to be orthonormal if B is idempotent.

Lemma 5.4 (|88, Corollary 1.2.]). Suppose, in addition to the hypotheses of Theorem 5.3,

that B2 = B. Then
R

Ry

Ry Ry ~ 1.

The algorithm described in [76, Chapter 10| for realizing Theorem 5.3 chooses the maximal
diagonal element as the pivot in every step of the standard Cholesky factorization algorithm.
In turn, the diagonal elements of the Cholesky factor are monotonically decreasing and it
is safe to decide which ones are considered zero numerically. Unfortunately, this algorithm,
which will be denoted by cholp in the following, cannot be applied to Il because the
diagonal pivoting strategy destroys the HODLR format. Instead, we use cholp only for
the (dense) diagonal blocks of II,.

To illustrate the idea of our algorithm, we first consider a general symmetric positive
semidefinite HODLR matrix M of level 1, which takes the form

My U Vg

M =
VoUL Mo

with dense diagonal blocks M1, Mss. Applying cholp to M;j; gives a decomposition
PlT M P, = RlTan, with the diagonal elements of Ri; decreasing monotonically. As
M, and in turn also Mjq, will be chosen as a principal submatrix of II.,, Lemma 5.4
implies that ||R;1||2 < 1. In particular, the diagonal elements of R;; are bounded by 1.
Let s; denote the number of diagonal elements not smaller than a prescribed threshold
0. As will be shown in Lemma 5.5 below, choosing ¢ sufficiently close to 1 ensures that
Ry1(1:sq,1:s;) is well-conditioned. Letting 7; denote the permutation associated with

Py and setting C7 = m1(1 : s1), we have
Mi1(Cy,Cr) = Rii(1:s,1: S)TR11(1 :s,1:8).

The Schur complement of this matrix in M (without considering the rows and columns

neglected in the first block) is given by
S = My — VoU1(Ch, )" M1 (Cy, C1) ' UL (Ch, )V = Mas — RiyRus, (5.5)

where the rank of Ris := Ri1(1:s1,1:81)"TUL(Cy, :)VQT is not larger than the rank of
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U, V4. We again apply cholp to S and only retain diagonal clements of the Cholesky
factor Roo larger or equal than §. Letting Cs denote the corresponding indices and setting

sg = |Cy|, C = Cy U(ny + C2), where ny is the size of My, we obtain the factorization

R11(1 L S1, 1: 51) RlQ(:,CQ)

M(C,C)=RTR with R=
0 Rao(1: s9,1: s9)

For a general HODLR matrix, we proceed recursively in an analogous fashion, with the
difference that we now form submatrices of HODLR matrices (see Section 2.2.7) and the

operations in (5.5) are executed in the HODLR arithmetic.

The procedure described above leads to Algorithm 5.3. Based on the complexity of
operations stated in Table 2.6, the cost of the algorithm applied to an n X n spectral
projector <, € Hyxn(k) is O(k*nlog?n). The linear system in Line 9 is solved as
explained in Section 2.2.5. In Line 10 we update a HODLR matrix with a matrix given
by its low-rank representation. This operation essentially corresponds to the addition
of two HODLR matrices; see Section 2.2.3. In Line 10 we also enforce symmetry in the

Schur complement.

Algorithm 5.3 Incomplete Cholesky factorization with local pivoting for symmetric
positive semidefinite HODLR matrices
Input: Positive semidefinite HODLR matrix M € H,«n (k) of level p, tolerance § > 0.
Output: Indices C' C [1,n] and upper triangular HODLR matrix R such that M(C,C) =
RTR, with 7; > 0 fori=1,...,|C]|.

1: function [C, R] = hcholp inc(M)

2: if p =0 then

3. Compute [R, 7] = cholp(M) such that M(m,7) = RTR.
4 Set s such that 11 >6,...,rss >0 and 7541 541 < 0 (or s =n).
5. Return C =n(1:s) and R=R(1:s,1:5).
6
7

. else

T
Partition M = [M” UrVy ]

VUL Moy
8:  Call recursively [C1, R11] = hcholp_inc(Miy).
9:  Compute Uy = RﬁTUl(CL, ).
10: Compute S = Moo —H VQU{‘FU1V2T.
11:  Call recursively [Co, Ra2] = hcholp_inc(S).
~ 3 3 AT
12:  Return C = Cy U (n; + C2) and HODLR matrix R = ROH UIVQ}%CQ’ ) )
22
13: end if

14: end function
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Analysis of Algorithm 5.3

The indices C selected by Algorithm 5.3 applied to 11, need to attain two goals:

1. II,(:,C) has moderate condition number;

2. |C] is not much smaller than the rank of II.,.

In the following analysis, we show that the first goal is met when choosing ¢ sufficiently
close to 1. The attainment of the second goal is demonstrated by the numerical experiments

in Section 5.4.

Our analysis needs to take into account that Algorithm 5.3 is affected by an error due
to the truncation in the HODLR arithmetic. On the one hand, the input matrix, the
spectral projector I, computed by Algorithm 5.2, is not exactly idempotent:

H2<u =y + F, (5.6)

with a symmetric perturbation matrix F' of small norm. On the other hand, the incomplete

Cholesky factor R returned by Algorithm 5.3 is inexact as well:
M., (C,C)=RTR+E, (5.7)

with another symmetric perturbation matrix £ of small norm. For a symmetric matrix
I, satistying (5.6), Theorem 2.1 in [88] shows that

IMalle < 14 ]l (5.8)

The following lemma establishes a bound on the norm of the inverse of Il ,(C, C).

Lemma 5.5. With the notation introduced above, set ey = || E||2 + ||F||2 and r = |C]|,

and suppose that 1 — 6% 4+ ey < 1/r. Then ||Il<,(C,C)7 |2 < %m

Proof. Using (5.7) and (5.8), we obtain
IRTR|l2 < IMeu(C,O)ll2 + |1 Ell2 < [Hepllz + [ Bll2 < 1+ ep.

We now decompose R=D+ T, such that D is diagonal with d;; = 7 > 0 and T is
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strictly upper triangular. Then
|ID?> +TTD+ DT +TTT |y <1+ ey
Because the matrix on the left is symmetric, this implies
Amax (D> +TTD4+ DT +TTT) < 14e3 = Max(TTD+DT+TTT) <1-6% +ey.
On the other hand,

Amin(TTD + DT + TTT) > duin(TT D 4 DT)
> _(T - 1))\maX(TTD + DT) 2 —(’l” - 1)(1 - (52 -+ E’H),

where the second inequality uses that the trace of T7D + DT is zero and hence its

eigenvalues sum up to zero. In summary,
|ITTD + DT+ T7T||a < (r — 1)(1 — 6% + e3),

and TI.,(C,C) = D? + F with |[E||2 < (r — 1)(1 — §2) + rey. This completes the proof

because

1

—1 < —2 —2~—1 <
(@O M < DRI+ DB) e < e =gy —ar

1 1
rd2—1+1/r—ey’

where the inverse exists under the conditions of the lemma. O

The following theorem shows that the columns II.,(:,C) selected by Algorithm 5.3
have an excellent condition number if § is sulliciently close to 1 and the perturbations

introduced by the HODLR arithmetic remain small.

Theorem 5.6. Let C denote the set of r indices returned by Algorithm 5.3 and suppose
that the conditions (5.6) and (5.7) as well as the condition of Lemma 5.5 are satisfied.
Then it holds for the 2-norm condition number of Il.,,(:,C) that

14+ ey

_ o o 2
T = L1801 =8 o)

KT (,0)) <
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5.2. Computation of invariant subspace basis in the HODLR format

Proof. By definition, s(Il<,(:,C)) = ||H<u(3aC)H2||H<u(:aC)THZ- From (5.8) we get

M O)ll2 < Tfl2 < 14 [[Ff2-

—~~
S)'l
©

~—

To bound the second factor, we note that ||TI<,(:,C)T||2 < ||I<,(C, )72 and apply

Lemma 5.5. Using the two bounds, the statement follows. O

The condition of Lemma 5.5, 1 — 6% < 1/r, requires § to be very close to 1. We conjecture
that this condition can be improved to a distance that is proportional to 1/log, 7 or even
a constant independent of r. The latter is what we observe in the numerical experiments;
choosing § constant and letting r grow does not lead to a deterioration of the condition

number.

5.2.2 Range correction

As earlier, let C denote a set of indices obtained by Algorithm 5.3 for a threshold §, and
r = |C|. We recall that the dimension of the column space of II.,, can be easily computed
knowing that trace(Il.,) = rank(Il.,) = v. If r = v, then it only remains to perform
the orthogonalization to get an orthonormal basis of Range(Il.,). However, depending
on the choice of 4, in practice it can occur that the cardinality of C' is smaller than v,
which implies that the selected columns cannot span the column space of Il.,. In this

case additional vectors need to be computed to get a complete orthonormal basis for
Range(Il.,).

An orthonormal basis for Range(Il<,(:,C')) in the HODLR format can be computed using
Lintner’s QR decomposition [83], reviewed in Section 2.2.8. The basis can be obtained by

solving an upper triangular HODLR system, and is given as

M.,(;,C) %3 R71. (5.10)

The biggest disadvantage of this method is the loss of orthogonality in badly conditioned
problems, caused by squaring of the condition number when computing R. However,
choosing only well-conditioned subset of columns of II.;, allows us to avoid dealing with

badly conditioned problems, and thus prevents potential loss of orthogonality in (5.10).
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In case r < v, we complete the basis (5.10) to an orthonormal basis for Range(Il,)
by computing an orthonormal basis of the orthogonal complement of Range(I1<,(:,C))
in Range(Il.,). First we detect the orthogonal complement of Range(Ii<,(:,C)) in
Range(Il<,).

Lemma 5.7. If (Range(Il<,(:,C)))* is the orthogonal complement of Range(Il<,(:, C)),
then

Rfi_, ¢ = (Range(Il<,(:,C)))* NRange(Il,,)

is the orthogonal complement of Range(Il<,(:,C)) in the vector space Range(Il<,). More-
over, dim(Rﬁq’c) = rank(Il.,) — 7.

Proof. The statements follow directly from the definition of RIJT_@,C' O

Using (5.10) we construct an orthogonal projector
Poo =T —Tc,(;,C) %y RV sy (e (5, C) 5y R7HT (5.11)

onto (Range(I1<,(:, C)))*. From (5.10) it readily follows that Range(Pp11l<,) = Rﬁ@,c'
Thus computing an orthonormal basis for Pn.Il., allows us to obtain a complete

orthonormal basis for Range(Il.,).

To this end, we employ a randomized algorithm [74] to compute an orthonormal basis of

dimension v — r for Range(Po.11.,):

1. multiply Py II., with a random matrix X € R"* (v=r+5) where s is an oversampling

parameter;

2. compute its economic QR decomposition with pivoting.

As singular values of Il are either unity or zero, the multiplication with the orthogonal
projector Pp 1, generated by the linearly independent columns C', gives a matrix whose
singular values are well-separated as well. In particular, the resulting matrix has v —r
singular values equal to 1, and the others equal to zero. Indeed, in the exact arithmetics

Pp1 1., has the exact rank v — r, and then oversampling is not required [74]. However,
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5.2. Computation of invariant subspace basis in the HODLR format

because of the use of formatted arithmetics, we employ a small oversampling parameter s
to improve the accuracy. As only v — r columns are required to complete the basis for
Range(Il.,,), after computing an economic QR decomposition with pivoting in step 2, we

keep only the first v — r columns of the orthonormal factor.

The pseudocode for computing a complete orthonormal basis for Range(Il<,) is presented
in Algorithm 5.4. Note that II.,(:,C) is a rectangular HODLR matrix, obtained by
extracting columns with indices C' of a HODLR matrix, as explained in Section 2.2.7.
This implies that the complexity of operations stated in Table 2.6 carries over for the
operations involving HODLR matrices in Algorithm 5.4. The complexity of the algorithm
also depends on the number of the missing basis vectors. However, in our experiments we
obscrve that v — r is very small with respect to v and n for the choice of paramecter §
used, which makes the cost of operations in Line 3 and Line 4 negligible. In the setup
when v ~ n /2, the overall complexity of Algorithm 5.4 is governed by solving a triangular

system in Line 5 or Line 7, i.e. the complexity of the algorithm is O(k?nlog? n).

Algorithm 5.4 Computation of a complete orthonormal basis for Range(Il,)

Input: Spectral projector II.,, € R™" in the HODLR format with rank(Il.,) = v,
column indices C' and the Cholesky factor R returned by Algorithm 5.3, an oversampling
parameter s.

Output: Orthonormal matrix Q., € R™” in the HODLR format such that

Range(Q<,) = Range(Il.,).

1. if |C] < v then

2. Generate a random matrix X € R"*#=7+9) for r = |C]|.
3 Z=M, X — T ,(:,O) (RN R T, (C,:) (I, X)))).
4:  Compute [Q.,~,~] = qr(Z,0).

5 Return Q. = Mo, (:,C) ¥y R™Y Qe 1:v—7)].

6: else

7. Return Q< = [H<u(:,C) #3¢ R7Y).

8: end if

Storing additional columns

When the range correction is performed, we additionally need to store the tall-and-skinny
matrix (. from Algorithm 5.4. The idea is to incorporate columns of (). into an existing
HODLR matrix I, (:,C) %y R! of size n x r to get a HODLR matrix of size n x v.
More specifically, we append v — 7 columns after the last column of I1.,(:, C) *y R, by
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enlarging all blocks of I, (:, C) *y R~ that contain the last column. Recompression is
performed when updating the off-diagonal blocks. It is expected that the off-diagonal ranks
in the updated blocks grow. However, numerical experiments in Section 5.4 demonstrate

that the increase is not significant.

5.3 Divide-and-conquer method in the HODLR format

In this section we give the overall spectral divide-and-conquer method for computing the
eigenvalue decomposition of a symmetric banded matrix A € R™*". For completeness,
we also include a pseudocode given in Algorithm 5.5. In the following we discuss several

details related to its implementation and provide the structure of the eigenvectors matrix.

Algorithm 5.5 Spectral divide-and-conquer algorithm in the HODLR format (hSDC)

Input: A symmetric banded or HODLR matrix A € R™**".
Output: A structured matrix () containing the eigenvectors of A and a diagonal matrix
A containing the eigenvalues of A.

1: function [@, A] = hsdc(A)

2: if n < ngop then

3 [Q,A] =eig(A).

4: else

5. Compute ;1 = median(diag(A)).

6:  Compute spectral projectors I, and II., in the HODLR format by applying
Algorithm 5.2 to A — pul.

7. Compute column indices C<;, and C, by applying Algorithm 5.3 to Il and Il ,,
respectively.
Compute @<, and @, by applying Algorithm 5.4 to II.,,C,, and 11, C5,.

. Form A<u:Q£# *q Axy Qcy and A, :Qzu k9 Axp Qs
10:  Call recursively [Qq1,A1] = hsdc(A~,) and [Q2,Ag] = hsdc(As,).

131 Set @ [Q<u Q>u] * |:%1 632:| and A = |:A/?)1 182:|

12: end if
13: end function

5.3.1 Computing the shift

The purpose of computing shift p is to split a problem of size n into a two smaller
subproblems of roughly the same size. In this work, the computation of a shift is

performed by computing the median of diag(A), as proposed in [91]. Although this way
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of estimating the median of cigenvalues may not be optimal, it is a cheap method and
gives reasonably good results. For more details regarding the shift computation, we refer
the reader to a discussion in [91]. Moreover, we note that it remains an open problem to

develop a better strategy for splitting the spectrum.

5.3.2 Terminating the recursion

The recursion in Algorithm 5.5 is stopped when the matrix attains the minimal prescribed
size Nsiop. The final step of diagonalization is performed by using MATLAB built-in
function eig. In a practical implementation, we set ngop depending on the breakeven

point of the hQDWH algorithm relative to eig presented in Section 4.5.

5.3.3 Matrix of eigenvectors

For simplicity, without loss of generality we assume that for size of a given matrix A holds
n = 2Pngiop, for p € N. We say that Algorithm 5.5 performed a level [ divide step, with
0 <1 < p, if all matrices of size n/2' had been subdivided.

The eigenvectors matrix is given as an implicit product of orthonormal HODLR matrices.
After level [ divide step of Algorithm 5.5, structured matrix @) has the form

Q=00 sy QW sy 55, QU

QM e R™" ( < i <, are block-diagonal matrices with 2° diagonal blocks, where each
diagonal block is an orthogonal matrix of the form [Hy Hs], with Hy, Hy orthonormal
HODLR matrices computed in Line 8 of Algorithm 5.5. The computation of the eigenvec-
tors matrix is completed by computing Q), a block-diagonal orthogonal matrix with 2P

orthogonal dense diagonal blocks that are computed in Line 3 of Algorithm 5.5.

The overall storage required to store @ equals to the sum of memory requirements for
matrices Q)0 < i < p. Assume that the off-diagonal ranks occurring in matrices Q9
0 <i < p, are bounded by k. To determine the storage, we use that Q(i), for 0 <17 < p,
has 2¢ diagonal blocks of the form [Hy Hs], where the storage of both H; and Hj requires
O(iﬂ% log 47) memory. Hence we get that the storage for matrices QW, 0 <i<p, adds
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up to
P n n ok (p—1)p \
> o1l o7 o7 —

Moreover, the storage of a block diagonal matrix Q® with 27 dense diagonal blocks
requires 2pn§t0p = NMNgtop Units of memory. Hence, from the latter and (5.12) follows that

the overall memory needed for storing the matrix of eigenvectors @ is O(fm log?n).

5.3.4 Computational complexity

Now we derive the theoretical complexity of Algorithm 5.5, based on the complexity
of operations presented in Table 2.6. Additionally, the numerical results presented in
Section 5.4 give an insight how the algorithm behaves in practice, and moreover, they

confirm the theoretical results.

We first note that for a HODLR matrix of size m x m and with the off-diagonal rank
k the complexity of one divide step, computed in Line 5—Line 9, is (’)(/~62mlog2 m).
When performing level [ divide step, the computation involves 2 HODLR matrices
of size n/2! x n/2!. Denoting with k the maximal off-diagonal rank appearing in the
process, similarly as in the previous section we derive the computational complexity of

our algorithm:

p-1 n n p-1 n
§ 7.20l 2 7.2 E 2
=0 =0

~ —1)(2p—1
= knp <10g2n —(p—1)lognlog2 + MGP) log? 2> .

(5.13)

At the final level of recursive application of Algorithm 5.5, when the algorithm is applied
to matrices of size not larger than ngp, the complexity comes from diagonalizing 27

dense matrices, i.e., equals to O(nn?2,, ). Therefore, from (5.13) we obtain that the overall

stop
computational complexity of Algorithm 5.5 is O(k*nlog®n).

130



5.4. Numerical experiments

5.4 Numerical experiments

In this section, we show the performance of our MATLAB implementation of the spectral
divide-and-conquer method in the HODLR, format for various matrices. All computations
were performed in MATLAB version R2016b on a machine with the dual Intel Core
i7-5600U 2.60GHz CPU, 256 KByte of level 2 cache and 12 GByte of RAM, using a single
core. The memory requirements shown in Example 5.12 are obtained experimentally,

using MATLAB built-in functions.

In all experiments, we set the truncation tolerance to ¢ = 1071, the minimal block-size
Nmin = 250 for tridiagonal matrices and ny;y = 500 for b-banded matrices with b > 1.
We use n;, = 32 as the minimal column block size in Algorithm 2.12. Moreover, the
stopping tolerance in the hDWH algorithm is set to € = 107°. In Algorithm 5.4 we use
the oversampling parameter s = 10. We use breakeven points from Chapter 4 to set the
termination criterion in Algorithm 5.5. For tridiagonal matrices we use ngiop = 3250, for
2-banded matrices ngop = 1750 and ngiop = 3000 for b-banded with b > 2.

The efficiency of our algorithm is tested on a set of matrices coming from applications, as

well as on various synthetic matrices.

5.4.1 Generation of test matrices

To generate synthetic matrices, we employ the procedure explained in Section 4.5.1 that
uses a sequence of Givens rotations to obtain a symmetric banded matrix with a prescribed
bandwidth and spectrum, starting from a diagonal matrix containing n eigenvalues. As
the accuracy of computed spectral projectors depends on the relative spectral gap, we
generate matrices such that gap is constant whenever the spectrum is split in half. We
generate such a spectrum by first dividing the interval [—1, 1] into [—1, — gap] U [gap, 1]
and then recursively apply the same procedure to both subintervals. In particular, interval
[c, d] is split into [e, # - % gap| U [# + % gap, d]. The recursive division stops when
the number of subintervals is < n/ngiop. We assign equal number of eigenvalues coming
from a uniform distribution to each subinterval on the lowest level of recursion. We

note that similar results for eigenvalues coming from a geometric distribution have been

observed, but we omit them to avoid redundancy.
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5.4.2 Results for the hDWH algorithm

Example 5.8 (Performance relative to gap). The purpose of this example is to verify
the accuracy of the newly proposed implementation of the QR-based iteration from
Section 5.1. We investigate the behavior of the errors arising in the computation of
spectral projectors I1o, which are also used in Section 4.5. In order to work with matrices
with a prescribed gap, we consider 10 000 x 10000 tridiagonal matrices with eigenvalues
in [—1, —gap] U [gap, 1], where gap varies from 107° to 10~!. Moreover, only for the
purpose of this example we consider tridiagonal matrices as general symmetric matrices
in Algorithm 5.2. Figure 5.2 shows that, when incorporating the new QR decomposition
for the first step of the hDWH alfgorithm, the errors exhibit similar behavior as in the
hQDWH algorithm; see Figure 4.6 (left) for comparison. This confirms the efficiency of

the new method.

1071° 10710 10°° 10°

Figure 5.2 — Example 5.8. Comparison of the accuracy for the hDWH algorithm, with a new
implementation of the first iterate, and the QDWH algorithm applied to matrices with varying
spectral gap.

5.4.3 Results for the hSDC algorithm

Example 5.9 (Percentage and conditioning of selected columns). We first inves-
tigate the percentage of selected columns throughout Algorithm 5.5 depending on a given
threshold §, together with the condition number of the selected columns. We show results
for matrices of size n = 10240, with bandwidths b = 1 and b = 8, and spectral gaps

gap = 1072 and gap = 1075, generated as described above. In this example we ensure
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that in all divide steps of Algorithm 5.5 the gap between separated parts of the spectrum
corresponds to gap, by computing the shift p as the median of eigenvalues of a considered
matrix. In each divide step in Algorithm 5.5 we compute the percentage of selected
columns, and finally we show their average for each d. Moreover, we present a maximal
condition number of the selected columns in the whole divide-and-conquer process for a
given §. As expected, smaller values of § lead to a higher percentage of selected columns;
however, the chosen columns exhibit a higher condition number as well. Figure 5.3 and
Figure 5.4 show that already for 6 > 0.4 we get a good trade-off between the percentage
of selected columns and their condition number. This also implies that the off-diagonal

ranks in the eigenvectors matrix remain low.

i x 100% x 100%

102 1 - - 108
0.9
0.8
0.7
%Oﬁ — §0.6

S05¢ 110"

rce

D04

P

P
Condition number

Condition number
rce

Figure 5.3 — Example 5.9. Percentage of selected columns and their condition number for a
tridiagonal matriz with eigenvalues in [—1,1] with relative spectral gap gap = 1072 (left) and
gap = 1075 (right).

Example 5.10 (Breakeven point relative to eig). Our runtime comparisons are
performed on generated n x n banded matrices. We examine for which values of n
Algorithm 5.5 outperforms eig. In Table 5.2 we show breakeven points for banded
matrices constructed as in Section 5.4.1, with gap € {1071,1072,1073,10~%}. We use the
threshold parameter § = 0.4. For b = 2 and b = 4 banded matrices our algorithm becomes
faster than eig for relatively small n. This is due to the fact that MATLAB’s eig first
performs tridiagonal reduction. Our results show the benefit of avoiding the reduction of
a banded matrix to a tridiagonal form, especially when the involved bandwidth is small.

Moreover, for tridiagonal matrices the breakeven point is attainable, but still relatively
high.
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Figure 5.4 — Example 5.9. Percentage of selected columns and their condition number for a
8-banded matriz with eigenvalues in [—1,1] with relative spectral gap gap = 1072 (left) and
gap = 1075 (right).

Table 5.2 — Breakeven point of hSDC relative to eig applied for banded matrices with various
bandwidths and spectral gaps.

cap b 1 2 4 8
101 n = 11200 || n = 2100 || n = 3200 || n = 5300
1072 n = 15600 || n = 2500 || » = 3800 || n = 8200
1073 n=17200 || n = 2800 || n» = 4900 || n = 8900

1074 n = 18500 || n = 3000 || n = 5200 [| n = 9500

Example 5.11 (Accuracy for various matrices). In this example, we test the accu-

racy of the computed spectral decomposition. Denoting with Q@ = [q1,...,¢,] and
A = diag(\i,...,\,) the output of Algorithm 5.5, and with Q = [§y,...,§n] and
A = diag(\1, ..., \,) the eigenvalue decomposition obtained using MATLAB’s eig, we

consider four different error metrics:

the largest relative error in the computed eigenvalues: ey = max |A\; — Xi|/||Al|2,
K]

the largest relative residual norm: eps = max ||Ag; — Aigil|2/[|A]|2,
2

the loss of orthogonality: eqn = max||Q7'q; — e;l|2,
(2

the largest error in the computed eigenvectors : eg = max |sin £(g;, ¢)|.
(2
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5.4. Numerical experiments

In the subsequent experiments we set 6 = 0.4.

1. We show the accuracy of the newly proposed algorithm for symmetric matrices
arising from applications, as well as some of the matrices suggested in [86]. For
matrices of size smaller than 3000, we use ngop = 500, which allows us to perform

at least one divide step in Algorithm 5.5.

e the BCSSTRUCI set in the Harwell-Boeing Collection [38]. Considered prob-
lems are in fact generalized eigenvalue problems, with M a mass matrix and
K a stiffnes matrix. Each problem is transformed into an equivalent standard
eigenvalue problem L~'K LTz = Az, where L denotes the Cholesky factor of

M. Finally, matrices are reduced to tridiagonal form via MATLAB function

hess.

e The symmetric Alemdar and Cannizzo matrix [38], as well as several matrices
from the NASA set [38]. These matrices are reduced to tridiagonal form using

MATLAB function hess.
e The (1,2,1) symmetric tridiagonal Toeplitz matrix.
e The Legendre-type tridiagonal matrix.
e The Laguerre-type tridiagonal matrix.
e The Hermite-type tridiagonal matrix.

e Symmetric tridiagonal matrices with eigenvalues coming from a random (0, 1)

distribution.

e Symmetric tridiagonal matrices with eigenvalues coming from a uniform distri-
bution on [—1,1].

In Table 5.3 we report the observed accuracies. The results are satisfactory, and the
eITorS €y, eres and egpy, are roughly of order of the truncation tolerance e = 10710,
However, the error eg varies from 1 to 1078, These results are a consequence of small
distances between the eigenvalues, and the observed results can be theoretically
justified by the sin @ theorem [37]. In particular, we note that for the examples
where the error eq is close to 1, i.e. for matrices besst08, besst09, besttll and the
Alemdar matrix, the smallest non-zero relative gaps between the eigenvalues are of
order 107, 107!®, 10717 and 10~'7, respectively.
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Chapter 5. A fast spectral divide-and-conquer method for banded matrices

Table 5.8 — Accuracy of the hSDC' algorithm for tridiagonal matrices considered in Example 5.11.

| | matrix | | n | ey | €orth €res €Q
3 besst08 1074 | 2.2-107 [ 1.3-10719 | 1.4- 10712 | 7.1- 107!
& besst09 1083 | 4.1-10°7 [4.9-1077 [6.3-10711 [ 9.9-107"
4 besst11 1473 [ 281077 [33-10710 [ 1.7-10~10 1
nasalg24 1824 [ 9.7-10713 [ 23.10710 | 1.1-107M | 7.3-1077
5 nasa2146 2146 | 4.9-10712 [ 1.7-10710 [ 35.107 | 3.6-1078
z nasa2190 2190 | 8.2-10713 1 6.1-10710 | 32.107*2 | 6.5-1076
nasa4704 4704 [ 89-107"2129-1071°[6.9-107"2 | 1.6-107°
Cannizzo matrix 4098 | 3.4-107" | 76-107'°{83-10710 | 8.8-1074
Alemdar matrix 6245 | 1.6-107' [ 9.2.10710 | 2.4- 107! 1
(1,2,1) matrix 10000 | 1.3-107"" [ 8.6-107"" | 7.3-107'0 | 4.4-107
Clement-type 10000 | 1.5-10"* | 3.8-10719 | 2.5-1071 [ 1.3-1077
Legendre-type 10000 | 2.7-107* | 8.4-1071 | 1.4-1071 | 2.8.1077
Laguerre-type 10000 | 3.8-10~' | 7.8-10710 | 3.8.10710 | 2.5-1077
Hermite-type 10000 | 3-107* [ 3.9-1070 ] 1.7-107° | 6.6-108
Random normal (0,1) || 10000 | 1.4-10"* | 1.1-1071° | 3.9-1071% | 8.4.107¢
Uniform in [—1, 1] 10000 | 5.1-107'* [ 6.5-10719 | 3.1-10710 | 4.8.107F
We also mention that the percentage of the selected columns, as well as the condition
number of the selected columns throughout Algorithm 5.5 were along the lines the
results presented in Example 5.9.
2. The aim of this part is to examine the dependency of the error measures defined

above on a decreasing spectral gap. To this end, we construct symmetric 8-banded
matrices of size n = 10240 with gap = 107%,¢ = 1,...,10 using a method from
Section 5.4.1. As in Example 5.9, we ensure that the gap between two separated
parts of spectrum in all divide steps of Algorithm 5.5 is the prescribed gap. Figure 5.5
shows that our algorithm preforms well for matrices with larger spectral gaps, and
confirms the expected behavior of errors, given that the used truncation tolerance
is € = 10710, The error growth is a result of a decreasing accuracy when computing
spectral projectors associated with decreasing spectral gaps. Similarly as in the
previous part, the error egp exhibits growth from 107® to 1 also as a result of

decreasing spectral gaps.

Example 5.12 (Scalability). For nxn tridiagonal matrices, generated as in Section 5.4.1
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5.4. Numerical experiments

with gap = 1072, we demonstrate the performance of our algorithm with respect to to the
matrix size n. Again we use the threshold parameter § = 0.4. We show that the asymptotic
behavior of our algorithm matches the theoretical bounds both for the computational
time and storage requirements. Figure 5.6 (left) shows that time needed to compute
the complete spectral decomposition follows the expected O(nlog®(n)) reference line,

whereas Figure 5.6 (right) demonstrates that the memory required to store the matrix of
eigenvectors has O(nlog?(n)) behavior.

10°

10-2,

1074+

1078

Error

-12
10710 1075
gap

Figure 5.5 — Example 5.11 (2). Behavior of the errors in the hSDC' algorithm with respect to a
decreasing spectral gap for symmetric 8-banded matrices of size n = 10240.
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Figure 5.6 — Example 5.12. Performance of the hSDC' algorithm and eig with respect to n for
tridiagonal matrices. Left: Computational time. Right: Memory requirements.
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Chapter 5. A fast spectral divide-and-conquer method for banded matrices

5.5 Conclusion

In this work we have proposed a new fast spectral divide-and-conquer algorithm for com-
puting the complete spectral decomposition of symmetric banded matrices. The algorithm
exploits the fact that spectral projectors of banded matrices can be efficiently computed
and stored in the HODLR format. We have presented a fast novel method for selecting
well-conditioned columns of a spectral projector based on a Cholesky decomposition with
pivoting, and provided a theoretical justification for the method. This method enables us
to efficiently split the computation of the spectral decomposition of a symmetric HODLR

matrix into two smaller subproblems.

The new spectral D&C method is implemented in the HODLR format and has a linear-
polylogarithmic complexity. In the numerical experiments, performed both on synthetic
matrices and matrices coming from applications, we have verified the efficiency of our
method, and have shown that it is a competitive alternative to the state-of-the-art methods

for some classes of banded matrices.
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Conclusion

In this thesis we have focused on the development of fast algorithms for addressing and
solving important problems in the numerical linear algebra field: QR decomposition,
spectral projectors and the symmetric eigenvalue problem. Our main tool is a subset of
hierarchical matrices, the HODLR format, that requires almost linear storage cost, and
allows for standard operations, such as matrix-vector multiplication, matrix-matrix addi-
tion and multiplication, and matrix factorizations, to be performed in the approximative

arithmetic with linear-polylogarithmic complexity.

After reviewing the HODLR arithmetic, in Chapter 2 we have developed a new method
for computing QR decompositions of HODLR matrices. As mentioned above, several
standard matrix operations already have efficient implementations in the HODLR, format.
However, three different algorithms that exist in the literature for computing a QR
decomposition of a hierarchical matrix seem to have certain drawbacks. Indeed, alongside
favorable complexity, the QR decomposition ought to be accurate and the orthogonality
in the factor ) attained. The algorithms developed so far show that for hierarchical
matrices it is rather difficult to meet all the requirements. We have derived a new method
based on a dense block QR decomposition that seems to have all desirable properties.
Our method is performed in a recursive block column manner, with the orthogonal factor
stored in terms of a compact WY representation in the HODLR format. The overall
cost of the method is O(k?nlog? n), where k is the off-diagonal rank, and n dimension of
a HODLR matrix. Moreover, the numerical results indicate that the method yields an
accurate decomposition, and preserves the orthogonality in @, even for badly conditioned

matrices.
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Chapter 6. Conclusion

In Chapter 4 we have derived a fast method for the approximate computation of spectral
projectors for symmetric banded matrices. Additionally, we have focused on the case when
the associated spectral gap is small, which poses problems in linear scaling approaches
based on approximate sparsity. The proposed method is built upon a variant of the QR-
based dynamically weighted Halley (QDWH) iteration [89, 91|, which computes the polar
decomposition. In our approach, iterates of the QDWH algorithm are implemented in the
HODLR format, such that the overall algorithm has linear-polylogarithmic complexity.
The first iteration of the QDWH algorithm has been discussed in detail. Moreover, we
have derived theoretical justifications and a fast novel method for representing the first

iterate exactly in the HODLR format.

Onc major theorctical contribution is an a priori bound for the singular valucs in the off-
diagonal blocks of spectral projectors. This theoretical result serves as a tool to show that
memory needed to store approximate spectral projectors in the HODLR format depends
only logarithmically on the spectral gap. In fact, this presents a big improvement in
comparison to approximate sparsity, where the spectral gap enters memory requirements
inverse proportionally. Numerical results show that our MATLAB implementation becomes
faster than eig already for matrix sizes of a few thousand. The effectiveness of our
method is demonstrated for small spectral gaps, and matrices of large size. Additionally,
the results provide evidence that the theoretical asymptotic O(k*nlog?n) complexity is

attained.

In Chapter 5 we have presented a new method for computing a complete spectral
decomposition of a banded matrix in the HODLR format. Our approach follows the
spectral divide-and-conquer method derived in [91], which computes a complete set of
eigenvalues and eigenvectors by recursively dividing a larger eigenvalue problem into
smaller ones by splitting the spectrum. In particular, this is performed by extracting
invariant subspaces associated with a part of the spectrum from related spectral projectors,
where the computation of spectral projectors is carried out in the HODLR format as
aforementioned. In order to determine an invariant subspace from a spectral projector,
one needs to find a basis for the range of the spectral projector. Given that spectral
projectors are rank deficient and represented in the HODLR format, this presents a great
challenge. A major contribution in this chapter is a novel fast method for finding a basis

for the range of a spectral projector, and its theoretical analysis.

Analogously to Chapter 4, we have addressed the computation of the first iterate in
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the QDWH algorithm for general symmetric HODLR matrices. We have extended the
method derived in Chapter 2 to obtain an accurate representation of the first iterate.
This allows for our spectral divide-and-conquer method to be successfully employed for
matrices with small spectral gaps. The matrix of eigenvectors is returned in a factored
form, given in terms of orthonormal factors, where each factor is an orthonormal basis
for an invariant subspace. The memory required to represent the matrix of eigenvectors
is O(knlog®n). Numerical results demonstrate that the method exhibits O(k*nlog®n)
computational complexity for obtaining a complete spectral decomposition. Moreover,
for several synthetic examples, and for matrices from various applications, the results

indicate that the method yields accurate spectral decompositions.
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