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"I’d put my money on the sun and solar energy,

what a source of power. I hope we don’t have to

wait until oil and coal run out, before we tackle that."

— Thomas Edison, 1931





Abstract
Nowadays the photovoltaics market is dominated by crystalline silicon solar cells. As their

efficiency approaches the theoretical efficiency limit, novel solutions have to be found for

photovoltaics to further enhance its competitiveness with other energy sources, in particular

the fossil fuels. One of the most promising approaches lies in combining market-proven

silicon solar cell technology, having a low optical band gap, with an efficient near-infrared

transparent wide-band gap top cell to form a tandem cell, as a mechanically stacked or mono-

lithically integrated device. This strategy will enable ultra-high performance photovoltaic

energy harvesting systems with low additional costs. Organic-inorganic halide perovskite

solar cells are promising candidates for top cells, showing high efficiencies with simple and

potential cost-effective device fabrication.

In this thesis, we develop perovskite solar cells specifically for tandem applications. We de-

velop and optimize an hybrid sequential deposition method combining thermal evaporation

and solution processing to fabricate perovskite absorber materials with specifically tailored

optoelectronic properties. These materials are systematically investigated for their optical,

structural and electronic properties, including their complex refractive indices which can be

used for optical simulations. We then apply these absorbers in perovskite solar cells both in

n-i-p and p-i-n configurations, for which we show several charge transport materials combi-

nations.

As a replacement for the standard metal opaque rear electrode of perovskite cells, we de-

scribe the development of a TCO-based transparent electrode, for which sputtered IZO is

presented as a good candidate thanks to its high carrier mobility and broadband transparency.

Sputtering-induced damages are reduced by the introduction of a buffer layer: molybdenum

oxide (MoOx ) for cells in n-i-p configuration and tin oxide (SnO2) for cells in p-i-n config-

uration. The parasitic absorption losses in the MoOx are described in details, including a

solution to minimize these losses with a carbon dioxide (CO2) plasma treatment. We then

discuss the parasitic absorption losses in charge transport layers and TCOs, with experimental

comparison of various materials. The optimisation of the perovskite absorber deposition

method and the improvement of the charge transport layers and transparent electrode allows

the fabrication 1 cm2area semitransparent perovskite solar cells with >16% efficiency.

We then integrate the semitransparent perovskite cells in mechanically stacked 4-terminal

tandem solar cells. The challenges in reducing the strong parasitic absorption and reflection

losses are first discussed, including solutions with the introduction of optical coupling liq-

uid, antireflective foils and less absorbing TCOs. With these improvements, we demonstrate
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4-terminal tandem measurements with >25% total efficiency with a small area top cell. With

larger 1 cm2 area top cells, we fabricate integrated 4-terminal tandem devices with both sub-

cellshaving similar size and total efficiency >23%.

The integration of perovskite solar cells in 2-terminal monolithically connected tandem solar

cells with silicon heterojunction bottom cells is finally presented. This configuration is the

most promising architecture for a future commercialization. First, we show the development

of a transparent conductive oxide (TCO)-based recombination layer. Then, the important

reflection losses and interference effects observed in all-flat devices are discussed, including

solutions to these issues. The origins of parasitic absorption losses in monolithic tandem are

then explained and, supported by optical simulations, new architectures and materials are

investigated. We then replace the polished wafers by fully textured silicon bottom cells for

better light management: an attempt of planarization with LPCVD ZnO is first described with

its inherent technical difficulties; then the development of a tandem device with the top cell

conformally coated onto the textured bottom cell is explained, leading to >25% certified power

conversion efficiency. Finally, the end of the thesis presents preliminary but promising results

on the up-scalability and light soaking stability of the developed textured tandems, as well as

a proof-of-concept of a first perovskite/perovskite/silicon triple junction solar cell on textured

wafers.

Key words: tandem solar cells, silicon, perovskite, high-efficiency, monolithic interconnection,

2-terminal, 4-terminal, sputtering, evaporation, spin-coating, transparent conductive oxide,

transition metal oxide, light management, optical losses, parasitic absorption.
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Résumé
Le marché du photovoltaïque est largement dominé par les cellules en silicium cristallin. Ce-

pendant, comme leur rendement approche la limite théorique, de nouvelles solutions doivent

être envisagées pour continuer à améliorer la compétitivité du photovoltaïque envers les

autres sources d’énergie. Une des solutions les plus prometteuses est de combiner les techno-

logies du silicium, largement éprouvées par le marché industriel et ayant une énergie de bande

interdite faible, avec une cellule solaire à large bande interdite et transparente dans le spectre

des infrarouges pour former une cellule solaire tandem. Les deux cellules absorbent chacune

une partie spécifique du spectre de la lumière et la cellule tandem peut être construite soit en

empilant mécaniquement les deux cellules connectées alors en configuration 4-terminaux, ou

en faisant croître la cellule à large bande interdite directement sur la cellule silicium. La cellule

tandem avec intégration monolithique est alors connectée en 2-terminaux. Cette stratégie

pourrait permettre la fabrication de systèmes photovoltaïques à très haut rendement, avec

peu de coûts additionnels. Les cellules photovoltaïques hybrides organique-inorganique à

pérovskites sont d’excellentes candidates pour une application en tandem avec le silicium

cristallin, grâce à leur haut rendement et leurs techniques de fabrication simples et à bas

coûts.

Dans cette thèse, nous développons des cellules à pérovskites spécifiquement pour des appli-

cations en tandem. Pour la couche absorbante, nous adaptons et optimisons une méthode de

croissance hybride, combinant une étape d’évaporation thermique d’halogénures de plomb

et de césium suivie par un dépôt par centrifugation d’une solution d’halogénure organique.

Cette méthode permet la fabrication de couches en pérovskites avec des propriétés optoélec-

troniques adaptées, et facilement adaptables aux nécessités spécifiques des applications en

tandem. Ces matériaux avec des bandes interdites d’énergies variable entre 1.5 et 1.8 eV sont

étudiés systématiquement pour leur propriétés optiques, structurelles et électroniques, avec

en particulier la mesure de leur indice de réfraction utile pour la modélisation optique de

cellules solaires. Nous fabriquons ensuite des cellules solaires avec ces nouveaux matériaux

pérovskites, soit en polarité n-i-p ou p-i-n. Des matériaux de transport de charges sont spécifi-

quement choisis et testés pour chacune des configurations, afin d’obtenir des cellules solaires

pérovskites opaques ayant un rendement suffisant.

En lieu et place du contact arrière typiquement en métal, nous présentons une électrode trans-

parente à base d’un oxyde transparent et conducteur déposé par pulvérisation cathodique.

Les dommages engendrés par cette méthode de dépôt sont limités par l’introduction d’une

couche tampon, en oxyde de molybdène pour les cellules n-i-p et en oxyde d’étain pour les
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cellules p-i-n. Nous discutons ensuite les pertes en absorption parasitique dans les couches

de transport de charges et dans l’électrode transparente. Après optimisation du processus de

fabrication et des diverses couches, des cellules semitransparente à pérovskites sont démon-

trées avec des rendements >16% sur une taille de cellule >1 cm2.

Nous intégrons ensuite ces cellules semitransparentes dans des tandems en 4-terminaux.

Après une étude systématique des pertes optiques liées à cette configuration et une re-

optimisation du procédé, nous pouvons démontrer des tandems en mesure 4-terminaux

avec des rendements totaux >25%, avec une cellule à pérovskites de petite taille, et jusqu’à

23% avec une surface de 1 cm2.

Finalement, nous présentons l’intégration monolithique en tandem 2-terminaux, l’architec-

ture la plus prometteuse en vue d’une future commercialisation. Nous montrons l’utilisation

d’un oxyde conducteur et transparent pour le contact intermédiaire de recombinaison de

charge. Les importantes pertes optiques dues aux réflexions engendrées par l’utilisation de

surfaces polies sont discutées, ainsi que des solutions pour les atténuer. L’origine des pertes

par absorption parasitique est ensuite expliquée et soutenues par une combinaison de si-

mulations optiques et de mesures expérimentales. Les plaquettes de silicium polies sont

ensuite remplacées par des plaquettes texturisées, pour une meilleure gestion de la lumière

en minimisant les pertes par réflexion. Le développement d’une cellule tandem monolithique

2-terminaux ayant une cellule à pérovskites déposée de manière conforme sur la surface des

pyramides de silicium permet enfin la démonstration de rendements certifiés >25%, établis-

sant un nouveau record du monde pour la technologie. La fin de la thèse présente des résultats

préliminaires pour des cellules tandem plus larges, pour leur stabilité sous lumière et pour

une première démonstration d’une cellule à triple jonctions : pérovskites/pérovskites/silicium

sur substrats texturisés.

Mots-clés : cellules solaires en tandem, silicium, perovskite, haute efficacité, interconnection

monolithique, 2-terminaux, 4-terminaux, pulverisation cathodique, évaporation, dépôt par

centrifugation, oxyde transparent conducteur, oxyde de métaux de transition, gestion de la

lumière, pertes optiques, absorption parasitique.
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1 Introduction

1.1 Photovoltaics: a clean sustainable energy?

The world energy demand has constantly increased over history and is predicted to continue

to climb in the coming years, with a 30% expansion by 2040 as compared to today [2]. The

pollution created by the use of fossil fuels is undeniably impacting the climate of our planet

and our everyday life through the increasing number of smog days, natural disasters, geopo-

litical conflicts for access to resources... The development of a clean and sustainable energy

system is therefore one of the most important challenges of our time. The access to energy is a

trigger for economic growth and often the key to expand the education and health systems,

particularly in under-developed and isolated regions 1.

What are the options? There are currently several renewable energy technologies under de-

velopment, from which the top three are: wind, hydro and solar. These energy resources are

intermittent but also complementary. Indeed, wind does not blow all the time, neither does

the sun shine all the time. But combined in a smart electricity grid including storage capability

(batteries, fuel production, pumped-storage hydro), they can be largely sufficient to provide

all energy we need, whenever we need.

Solar energy is particularly interesting, as it provides an inexhaustible and universal source

of energy, available everywhere on Earth with typically around 1000 W/m2 on the ground

and 1367 W/m2 in space for satellites powering. If we consider the total energy consump-

tion in Switzerland in 2016 as reported by the Swiss Federal Office of Energy [3], 854’300 TJ,

≈1200 kWh/m2 average solar radiation per annum2 in Switzerland and 15% efficient pho-

Parts of this introduction Chapter are based on a review paper published in Advanced Materials Interfaces and
adapted with permission from [1]. The Sections taken in part or fully from this publication are marked with an
asterisk *.

1e.g. https://lighteducationdevelopment.org/solar-lights/ or in Ladakh: http://www.ghe.co.in/
2≈1450 kWh/m2 in South roof orientation, ≈850 kWh/m2 in North roof orientation, according to

https://www.uvek-gis.admin.ch/BFE/sonnendach/?lang=en

1



Chapter 1. Introduction

tovoltaic modules, we can calculate that it would require only ≈3.2% of Switzerland surface

to fully cover its energy needs. This number drops to 2.2% if we use the best photovoltaic

commercial module currently available with a module efficiency of 22% [4] and down to

1.6% if the efficiency can be increased to 30%, which is the practical target of the technology

studied in this thesis. This corresponds roughly to three times the size of the Lake of Neuchâtel,

which could be then disseminated on building roofs and facades, transportation vehicles,

electronic wearables, roadsides, hydropower dam lakes. . . and free-up all the space currently

used by other polluting power generation systems such as gas thermal power plants or nuclear

plants. Furthermore, these calculated required surfaces might well be in reality much smaller,

as currently around 75% of the total energy consumption in Switzerland is in the form of

fuels. The near-future wide-spread introduction of electrical vehicles or fuel cells cars should

considerably reduce the total energy consumption and therefore the required photovoltaic

surface.

Solar energy has therefore an enormous potential and will largely contribute to our electrified

and sustainable future society. In the rest of this thesis, only solar photovoltaics (PV) – direct

conversion of solar energy to electricity – will be considered and the following Sections of this

introduction will enter more into details on the challenges faced by this technology and the

possible solutions proposed by this thesis work.

1.2 The limitations of PV: Physics and Economics

1.2.1 Fundamental limits

Sunlight is composed of photons with in the spectral range from the infrared to the visible and

ultraviolet (see Figure 1.1a). Indeed, the irradiation spectrum of the sun is close to a black

body with a temperature of 5778 K. When this light passes through the Earth’s atmosphere, it

is attenuated through interactions with among others O2, H2O and CO2 molecules. Therefore,

part of the light is scattered and reflected back and part is absorbed by these molecules, which

can be clearly seen in the irradiation spectrum measured on the ground. The irradiation

spectrum outside the atmosphere is usually called AM0 and the spectrum on the ground

with the sun directly perpendicular (shortest path from space to ground) is called AM1. In

order to take into account the additional distance of the light travelled in the atmosphere, the

spectrum AM1.5 describes the situation when the sun is at 48.2◦ zenith angle, which is a good

representation of the light seen by most of Europe and the United States of America. This

spectrum is therefore adopted as the standard for photovoltaic device testing [5].

A photovoltaic device absorbs this incident light and directly converts it into a usable electrical

power, via the photovoltaic effect discovered already in 1839 by Edmond Becquerel. However,

the first actual solar cell made out of silicon was developed only in 1954 at Bell laboratories

and showed a photoconversion efficiency of 6%. After over 60 years of research, the record

efficiency for silicon solar cells has reached 26.7% [6] and the single-junction solar cell record

is held by a GaAs cell with 28.8% efficiency [7]. These photoconversion efficiencies (PCE) –

ratio of the extracted power at maximum power point to the incident light power – can still

2
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Figure 1.1 – a) Solar spectrum; b) Fundamental losses limiting the power output of a solar cell; c) Reduction of
impact of the losses by increasing the number of junction, considering optimized band gap combinations. Adapted
from reference [8].

appear low, when we try to compare them to for example commercial Diesel engines with

energy conversion efficiencies about 40%.

To understand the fundamental limits of photovoltaic devices, we need first to describe a

typical solar cell. Similarly to all photovoltaic technologies, a solar cell is composed of an

absorber material, usually a semiconductor. When a photon is absorbed in such material,

it will excite an electron from a lower energy state (i.e. the valence band) to a higher energy

state (i.e. the conduction band), creating a so-called electron-hole pair. These negative and

positive charge carriers need then to be separated and extracted to flow through an external

load. This can be done by selective contacts, applied on either side of the absorber layer, which

will preferentially extract one kind of carrier. The device efficiency is then limited by losses

during those processes of absorption, charge excitation, separation and extraction. This can

be observed by their effect on either reducing the device voltage or photogenerated current

[8].

An important property of a semiconductor material is its optical bandgap (Eg ), which refers to

an energy range without electronic states. A photon will then be absorbed only if its energy is

larger than Eg , so that an electron from the valence band can effectively be excited across the

band gap and to the conduction band. The absorber material will then be transparent to all

photons with energies below Eg , i.e. they will pass through without interacting and be lost. If

the excited electrons received more energy than Eg , they will be excited to electronic states

above the conduction band and will quickly lose this excess energy by thermalisation to return

to the states with lowest energy in the conduction band. Thermalisation of charges by photons

with energies above Eg and transparency for photon energies below Eg are the most important

losses. Additional losses can be separated in emission losses, due to spontaneous emission as

the cell also acts as a blackbody, Carnot losses for the heat loss to the environment necessary

for the energy conversion, and Boltzmann losses describing the entropy generation due to

unbalanced absorption and emission [8]. Those losses can be qualified as intrinsic, as they

cannot be overcome by device and material optimization in a high performing device, and

lead to a fundamental efficiency limit of 33.7%, formulated in 1961 by Shockley and Queisser
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[9] for single-junction solar cells. A semiconductor material with a band gap of 1.34 eV offers

then the best compromise between current reduction due to below-Eg and emission losses

and voltage reduction due to thermalisation and the entropic losses.

Practically, a solar cell is not perfect and is subject to extrinsic losses, which are limiting

the real device record performance to values below this limit. These losses can be carrier

recombinations in the bulk (radiative, Auger or Shockley-Read-Hall [10]) or at the surfaces

or interfaces through defect states, limiting the achievable voltage. They can also be optical,

such as reflection losses or parasitic absorption in non-active layers such as the charge carrier

transporting layers or contacts, limiting the current. Finally, ohmic losses can further decrease

the device performance, through low shunt resistance (alternative current path contacting the

front and back electrodes) and high series resistance (transport losses). Extrinsic losses can

be minimized by improving the material optoelectronic quality and by optimizing both the

device design and fabrication process.

However, the efficiency limit of 33.7% is defined only for a single-junction solar cell, i.e. the cell

is composed of only one absorber having a defined band gap energy. A promising approach

to overcome this single junction limit is then to use multiple materials with different band

gap energies arranged in a multijunction solar cell so that they all absorb a specific part of

the spectrum. This concept is fundamental for this thesis and will be further developed in

Chapter 1.3.
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Figure 1.2 – International technological roadmap for photovoltaics between 2016 and 2027: a) Cost elements of PV
system in US and Europe for systems >100kW; b) Expected technological transitions in silicon industry, evolving
from BSF to PERC and SHJ, and finally to Si-based tandems after 2020. Adapted from reference [11].

1.2.2 It all comes down to costs *

In recent years, the costs of PV systems has decreased drastically while installations have

soared, making PV economically competitive with conventional energy resources, e.g. coal, in

many areas. As prices are falling, wholesale and retail grid parity should be reached in most

countries within a few years [12]. For a PV system, the levelized cost of electricity (LCOE) is

dominated by the balance of system (BOS) cost, including inverter, construction, connection,

and mounting structure, with a share of typically 50 to 60% of the total costs. Therefore, a
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straightforward approach to reduce the LCOE is to raise cell efficiency, which directly lowers

the area-related BOS costs (except for the inverter, all other BOS costs are area-related), if

implemented without significant additional processing costs [11]. As illustrated by Figure 1.2a,

the costs of PV systems are expected to continue to decrease in the coming decade, sup-

ported by the replacement of older aluminum back surface field (Al-BSF) solar cells with

more recent and more efficient technologies such as passivated emitter rear contact (PERC) or

amorphous-silicon/crystalline-silicon heterojunction solar cell (SHJ), as shown in Figure 1.2b.

Any new photovoltaic technology needs therefore to compete directly with the mass-produced

silicon cells, in terms of production costs, market price and trust from customers, industry

and investors (bank loan). Consequently, most thin-film companies could not survive this

competition and the whole photovoltaic industry has a large inertia to implement innovative

approaches, e.g. the PERC concept. However, further efficiency improvement of silicon photo-

voltaics will soon become difficult by small technological variations and, in order to continue

to lower the price of PV electricity, new concepts will have to be developed and adopted by the

industry. The most promising one of them is going for multijunction solar cells.

1.3 Multijunction solar cells

1.3.1 The concept

As illustrated in Figure 1.1c, the most effective solution to reduce the intrinsic fundamental

losses described in a previous Section is to combine several absorber materials with different

band gaps in a multijunction solar cell. Each material’s band gap is tuned to effectively harvest

a specific part of the spectrum. The stack is arranged with the widest band gap material facing

the sun, letting through the sub-band gap photons which can be absorbed in the following

absorbers with decreasing band gap energies from top to bottom. This strategy serves to both

reduce the thermalisation losses, as the band gap better matches the photon energy, and the

below-Eg losses, as the photons not absorbed in one material can be transmitted to the next

one and still be absorbed. The simplest multijunction configuration is the so-called tandem

solar cell combining two subcells. However, theoretically an infinite number of junctions

could be made, each of them matching one photon energy. This idealistic device could reach

efficiencies as high as 86.8% under concentrated light [13]. Practically, 46% efficiency is the

maximum demonstrated performance for a quadruple junction III-V solar cell under con-

centration and around 38% under 1 sun illumination [7]. The most efficient tandem device

(2 junctions) at 1 sun illumination is currently a GaAs//Si 4-terminal tandem with 32.8%

efficiency by Essig et al. [14].

The main problem is the cost/efficiency trade-off. Highly efficient multijunction solar cells

are fabricated with III-V semiconductor materials, which are complex and expensive both

in terms of the materials and the required processing methods [15]. Therefore, they can be

used only for concentration applications or niche applications where energy density is more

important than absolute cost (e.g. space, sensors). On the other hand, multijunction solar cells

can also be made very cheap with the example of the micromorph silicon solar cells, using a
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Figure 1.3 – Single-junction solar cell schematics: a) passivated emitter rear contact (PERC) solar cell; b) amorphous-
silicon/crystalline-silicon heterojunction solar cell (SHJ); c) mesoporous perovskite solar cell, semitransparent
(TCO-based) and opaque (Au or Ag), using a TiO2-based electron contact; d) planar perovskite solar cell, semi-
transparent (TCO-based) and opaque (Au or Ag), which can be in either polarities: p-i-n (hole transporting layer
deposited on the glass/ITO substrate) or n-i-p (electron transporting layer deposited on the glass/ITO substrate).

stack of amorphous and microcrystalline silicon thin films [16, 17]. They were however not

efficient enough to find a market and most companies producing these cells unfortunately

went bankrupt or stopped production.

In order to apply the multijunction concept to utility scale PV systems, it must rely on sim-

ple and cost-effective technologies and still provide significantly improved performance so

that it become actually worth choosing them instead of a well-established silicon technol-

ogy. The following Section presents the two best candidates currently available to reach this

challenging target.

1.3.2 Which are the perfect candidates?

1.3.2.1 A long-lasting market leader: Silicon *

Crystalline silicon-based technologies have been dominating the PV market for decades (>90%

in 2017 [11]), thanks to their low fabrication costs and high reliability of their material and

fabrication processes [18]. Silicon is a widely abundant element on Earth, a stable, low cost,

non-toxic and well-known and studied material, after decades of research and applications in

microtechnologies. Typical crystalline silicon (c-Si) module efficiencies are now about 17-18%,

with a record commercial product efficiency of 22.2% [19, 4]. Research cell record efficiencies

are approaching 27% with the latest certified record of Kaneka at 26.7% [20, 6]. Therefore, only

marginal improvements in performance are still possible, considering the 29.4% theoretical
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limit for c-Si single junction solar cells [21], imposed by Auger recombination.

For tandem applications, c-Si solar cells are nearly ideal in the role of the low band gap bottom

cell due to their suitable band gap of 1.1 eV, high open circuit voltage (V oc ) of up to 750 mV

[22], high infrared response [23], cost-competitive manufacturing based on their market

dominance, and high efficiency [6]. Silicon solar cells have become mass-production products,

fabricated in a highly competitive industry system. This competition is however at the cost of

innovation and reactiveness: it is nowadays extremely difficult for any new technology to enter

the photovoltaic market and sustain the competition with c-Si. Therefore, innovation and

disruption has a better chance to succeed in a collaborative manner: developing strategies

to further improve the efficiency or reduce the cost of c-Si solar cells by adding or changing

some steps in the production line, rather than trying to replace it entirely.

1.3.2.2 A disrupting newcomer: Perovskites *

Finding the ideal wide-band gap partner for c-Si is considerably more difficult. III-V solar cells

have been proposed for their high efficiency and tunable band gap, and mechanically stacked

4-terminal tandem cells with >32% efficiency were recently demonstrated [14]. However, the

high manufacturing costs of III-V solar cells hinders their large-scale deployment for terres-

trial applications. Also, epitaxial growth of high-quality III-V layers on silicon substrates for

monolithic tandem cells remains challenging [24]. A possible answer to this quest for high

efficiency and low cost came with the emergence of perovskite solar cells [25, 26].

Perovskite is the name given to materials having the ABX3 crystal structure, as illustrated

in Figure 1.4. The A-site is filled with cations such as methylammonium, C H3N H3 (MA),

formamidinium, [R2N −C H = N R2]+ (FA), or Cs, either alone or mixed. The B-site contains

the metal element, usually Pb, Sn or a mix of both. And the X-site has the halide elements,

e.g. I, Br, Cl.

Organic-inorganic lead halide perovskite solar cells present several advantages that make

them highly interesting for their use as a top cell in silicon-based tandem solar cells. The

performance of perovskite cells has been rapidly raised to >22% [7], with an increasing number

of research groups showing >20% efficient cells [27, 28, 29, 30, 31, 32]. Their exceptional opto-

electronic properties are also well suited for tandem applications, including a high absorption

coefficient, low sub-band gap absorption, and a steep absorption edge [33]. Moreover, per-

ovskite solar cells offer band gap tunability throughout a wide spectral range [34], high V oc

with low potential loss [35], high defect tolerance, long charge carrier diffusion lengths [36],

and photon recycling [37]. Importantly, perovskite solar cells combine high efficiencies and

excellent optoelectronic properties with the potential for low-cost processing and abundant

availability of the constituent elements [38, 39]. Reported fabrication protocols for perovskite

solar cells include a variety of deposition techniques based on solution processes, such as

spin coating [29] or slot-die coating [40], as well as vacuum-based methods, such as thermal

evaporation [?] or chemical vapor deposition [41].
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Figure 1.4 – ABX3 crystal structure of perovskite materials and chemical structure of the
two most used A-site cations: methylammonium and formamidinium. Adapted from
https://chemicalstructure.net/portfolio/perovskite/

1.3.3 Tandem architectures *

A tandem solar cell can be made in several configurations, each of them having specific advan-

tages and disadvantages, which will hereafter shortly be introduced and compared.

The most simple tandem device architecture from a process development point of view is

the mechanically stacked 4TT (Figure 1.5a). The two subcells are fabricated independently,

stacked on top of each other and contacted individually. This has the obvious advantage

of process simplicity, allowing for the use of the optimal fabrication conditions specific to

each subcell, e.g. concerning cell polarity, substrate roughness, process temperature, and

solvents. This configuration requires four electrodes, with at least three of them showing

high transparency in a wide spectral range for the front window electrode and at least in the

infrared spectral region for the other two. Minimizing parasitic absorption and manufacturing

costs for these electrodes is therefore crucial for the viability of this tandem configuration.

During operation, the two subcells can be independently kept at their maximum power points,

with separate tracking systems. This in particular reduces the constraints on the choice of the

top cell band gap and makes the system less sensitive to spectral variations. As a result, 4TT

cells can reach high efficiencies with a broad range of top cell band gaps ranging from 1.6-2 eV,

with an optimum at 1.81 eV when using a crystalline silicon bottom cell [42]. However, using

4 terminals implies also doubling all the power electronics, e.g. inverters, which comes at a

cost. As a possible solution to this problem, mechanically stacked voltage-matched tandem

modules have been proposed, using only 2 terminals and arranging the cells in sub-modules

connected in parallel [43, 44]. As the open-circuit voltage varies logarithmically with light

intensity, a voltage-matched connection can be more resilient toward spectral variations

compared to a current-matched connection.

Other 4TT concepts were demonstrated, such as spectral splitting systems [45, 46, 47] or
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1.3. Multijunction solar cells

Figure 1.5 – Schematics of several perovskite/silicon tandem architectures: a) 4-terminal mechanically stacked; b)
2-terminal monolithically integrated; c) 4-terminal optical spectral splitting; d) 4-terminal reflective tandem. For
all these configurations, the perovskite top cell has a higher band gap (Eg ) than the crystalline silicon bottom cell
with Eg = 1.1 eV. Reproduced with permission [1]. Copyright 2017, John Wiley and Sons.

reflective tandems [48, 49]. A 4-terminal spectral splitting tandem device consists of a dichroic

mirror, which splits the light toward the high and low band gap cells, as illustrated in Figure 1.5c.

This has the advantage that standard cells can be used without any specific adaptation, particu-

larly without the need for additional transparent electrodes. However, the optical components

are usually expensive, limiting the economic viability of this tandem architecture for non-

concentrated photovoltaic systems. Reflective tandems could be an interesting alternative.

The PVMirror concept, introduced recently by Holman et al. [49], consists of placing the cheap-

est subcell in a curved arrangement and use either a short-pass or a long-pass dichroic mirror

to reflect and concentrate respectively the long or short wavelengths of light onto the more

expensive subcell. The concept therefore offers high flexibility in terms of manufacturing and

system integration, as it can be combined with other solar energy harvesting technologies,

e.g. solar thermal collectors. However, such approaches, which require solar tracking, will be

poor at collecting the diffuse light present in the solar spectrum, and their performance might

strongly be impacted by module soiling.

Due to the limitations and the rather complex system integration for spectral splitting and

reflective tandem cells, the focus of the rest of this Section will be set on 2-terminal and

4-terminal planar modules.

Figure 1.5b presents a monolithically integrated 2-terminal perovskite/silicon tandem solar

cell. This architecture consists of a perovskite top cell, which is deposited onto the silicon

bottom cell. The two subcells are then electrically connected in series, through a recombina-

tion layer or tunnel junction. Compared to the 4-terminal mechanically stacked tandem, this

architecture therefore requires only one transparent electrode, lowering the manufacturing

costs due to reduced material usage and fewer deposition steps. The reduced number of elec-

trodes also leads to less parasitic absorption in the non-active layers, which is why 2-terminal

tandems have a high practical efficiency potential. Following Kirchhoff’s law, a monolithic

tandem will have a voltage equal to the sum of the ones of the two subcells, which is beneficial

as high voltages result in reduced resistive losses in PV systems. However, 2-terminal tandem

cells also have some constraints: The two subcells must be designed to generate similar pho-

tocurrent under operation, as the tandem current will be limited by the subcell with the lower

current. This current matching requirement limits the ideal top cell band gap to a narrow
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range of 1.7-1.8 eV and makes the system also more sensitive to spectral variations, requiring

for optimal operation a specific design for a specific geographic location. Finally, as the top

cell layers are deposited onto the bottom cell, the top cell processing has to be performed

such that the bottom cell performance is not affected. In addition, the bottom cell has to act

as a suitable substrate, which is especially challenging for cells with textured surfaces, as it is

typically the case for crystalline silicon cells.

Using detailed-balance calculations, including Auger recombination limiting the silicon single

junction cells to 29.4% [21], the theoretically achievable efficiency for perovskite/silicon tan-

dem cells in the 2-terminal and 4-terminal configurations can be calculated [50, 51, 52]. An

efficiency limit of about 43% was found for both configurations, with steeply falling values for

non-ideal top cell band gaps in case of the 2-terminal tandem due to the current matching

restriction. The optimal top cell band gap is considerably broader for the 4-terminal configu-

ration as the subcell currents do not have to be matched.

Perovskite solar cells are suitable partners not only for crystalline silicon but also for emerging

thin film technologies, such as chalcogenides [53, 54, 55], kesterites [56] or polymer solar

cells [57]. Clear efficiency gains have already been demonstrated, compared to the individ-

ual subcell performances, with a 4TT measurements over 23% with CIGS bottom cells [55].

All-perovskite tandems were also already demonstrated. With the recent development of low-

band gap perovskite materials, their performance was rapidly raised to >20% [58, ?, 59, 60, 61].

On the other hand, silicon solar cells can also be combined with other top cell technologies,

such as III-V cells [14]. This type of cells has been successfully applied in satellites and terres-

trial concentration systems, and allows for high efficiencies with material compositions having

ideal top cell band gaps of 1.7-1.8 eV. However, the bottleneck for III-V/silicon tandem cells is

the production costs of the top cell: For one-sun terrestrial applications these tandem cells

become economically viable only if the GaAs or InGaP cells can be manufactured at a similar

price as the silicon cell [15], a cost target which has so far not been reached. Nevertheless,

III-V/silicon tandems might find usefulness in applications where space constraints (e.g. small

roofs) and/or weight saving and power density are more important than achieving the lowest

cost.

1.4 The childhood of perovskite/silicon tandem solar cells *

Even though perovskites have already been studied in the 1990s for light emitting diodes

in particular by Mitzi et al. [62], the first publication showing a solar cell with a perovskite

absorber material was published only in 2009 by Miyasaka’s group [63]. The efficiency was

only 3.8% with a device life time in the range of minutes due to the use of a liquid electrolyte.

However, this launched an incredible competition in the photovoltaics research community,

leading to 22.7% certified efficiency in 2018. A dedicated review was published elsewhere,

providing more in-depth historical details on the birth of the perovskite solar cell [25].

Perovskite materials quickly triggered interest for multijunction solar cells. Already in his origi-

nal paper [63], Miyasaka demonstrated high band gap materials showing high photovoltage
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and band gap tunability in the range 1.5-2.1 eV. Later, the possibility to make planar thin film

solid-state devices [64] and to use vacuum-based techniques [65] confirmed the potential of

this technology to partner with silicon for low-cost tandem cells [66].

In 2014, De Wolf et al used photothermal deflection and photocurrent spectroscopy tech-

niques to measure the absorption spectrum of methylammonium lead triiodide (MAPbI3),

the most wide-spread perovskite composition [33]. Remarkably, this study showed that this

composition has a very large absorption coefficient, with sharp absorption edge and low

sub-band gap absorption, typical of direct semiconductors, such as III-V materials. These

optoelectronic properties are essential for a top cell in a tandem solar cell, as they allow for the

use of relatively thin absorber layers and lead to minimal parasitic absorption in the sub-band

gap spectral region where the light has to be transmitted to the bottom cell.

At the same time, several publications presented simulations based on optical modelling

[50, 51, 67, 68, 69], establishing the requirements and challenges to reach efficiencies beyond

30%. Light management and parasitic absorption were already early identified as major chal-

lenges, which will be discussed in more detail in the following Chapters.

The development of any flat plate tandem solar cell in the 4-terminal or 2-terminal config-

uration involves replacing the opaque metal rear contact used in single-junction perovskite

solar cells with a transparent electrode. The first reports of semitransparent perovskite solar

cells and mechanically stacked tandem cells were published at the end of 2014 by Löper

et al. [70] and by Bailie et al. [71], showing 13.4% and 17% 4-terminal tandem efficiencies,

respectively. Löper et al. used a sputtered indium tin oxide (ITO) transparent electrode, which
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had however suboptimal electronic properties, as the high-temperature treatment normally

necessary to reach a low sheet-resistance would have severely damaged the perovskite cell.

The same group showed later that using an amorphous TCO, in this case indium zinc oxide

(IZO), instead of ITO can solve this issue as it can be used as-deposited and still has a high

carrier mobility and low sheet resistance [72]. Bailie et al. used a silver nanowire mesh, which

was first formed by spray coating on a polymer foil and then mechanically transferred onto

the perovskite cell layer stack. They could show high transparency and low sheet resistance,

but the reproducibility due to the mechanical transfer was still challenging [71].

Soon after that, this same group collaborated with the Buonassisi group at MIT to fabricate

the first perovskite/silicon monolithic tandem using the same silver nanowire electrode [81].

Using a mesoporous perovskite top cell and a diffused junction silicon bottom cell with a

silicon tunnel junction, they showed a 13.7% efficient monolithic tandem with still modest

V oc of 1.58 V. Parasitic absorption in the charge transporting layers was drastically limiting

Table 1.1 – Evolution of 4-terminal and 2-terminal perovskite/silicon tandem efficiency. * designates steady state
efficiencies. SHJ: silicon heterojunction solar cell; PERL: passivated emitter with rear locally diffused solar cell;
IBC: interdigitated back contact solar cell; nc-Si: nanocrystalline silicon [70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88]. Note that EPFL LPI is the laboratory for photonic interfaces of Prof. Michael Graetzel,
and EPFL otherwise designates EPFL PV-Lab, the laboratory of photovoltaics of Prof. Christophe Ballif.

Mechanically stacked 4-terminal 
Perovskite Eg, 

eV 
Silicon Area, cm2 

top; bottom 
PCE % 
top + bottom = total 

Institute Year 

MAPbI3 1.55 SHJ 0.25; 4 6.2+7.2=13.4 EPFL/CSEM 2014 
MAPbI3 1.55 Multi-Si 0.39; 0.39 12.7+4.3=17.0 Stanford/MIT/EPFL 2014 
MAPbI3 1.55 SHJ 0.25; 4 10.4+7.8=18.2 EPFL/CSEM 2015 
FACsPbI3-xBrx 1.74 SHJ 0.09; na 12.5+7.3=19.8* Oxford/HZB 2016 
MAPbI3 1.55 PERL 0.25; 4 12.2+7.9=20.1* ANU 2016 
MAPbI3 1.55 SHJ 0.075; 4 16.5+6.5=23.0 UNL/ASU 2016 
MAPbI3 1.55 SHJ  0.25; 4 16.4+8.8=25.2* EPFL/CSEM 2016 
MAPbI3 1.55 SHJ  1; 4 14.5+8.5=23.0* EPFL/CSEM 2016 
CsMAFAPbI3-xBrx 1.63 IBC-SHJ 0.36; 4 16.6+7.9=24.5* ANU 2016 
RbCsMAFAPbI3-xBrx 1.74 IBC 0.16; 4 16.0+10.4=26.4* ANU 2017 
MAPbI3 (module) 1.55 IBC 4; 4 12.0+8.2=20.2 IMEC 2017 
MAPbI3 1.55 PERL 0.1; 1 17.1+9.6=26.7 Erlangen 2018 
MAPbI3 1.55 IBC 0.1; 1 17.1+8.1=25.2 Erlangen 2018 
CsFAPbIBr 1.56 IBC 4; 4 15.3+8.6=23.9* IMEC 2018 
Monolithically integrated 2-terminal 
Perovskite Eg, 

eV 
Silicon Recomb. layer Area, 

cm2 
PCE  
% 

Institute Year 

MAPbI3 1.55 Homojunction n++/p++ Si tunnel 1 13.7 MIT/Stanford 2015 
FAMAPbI3-xBrx 1.56 SHJ ITO 0.12 18.1* HZB/EPFL 2015 
MAPbI3 1.55 SHJ IZO 0.17 21.2* EPFL/CSEM 2015 
MAPbI3 1.55 SHJ IZO 1.43 20.5* EPFL/CSEM 2016 
MAPbI3 1.55 Homojunction ZTO 1.43 16.0* EPFL/CSEM 2016 
CsFAPbI3-xBrx 1.63 SHJ ITO 1 23.6* Stanford/ASU 2017 
CsFAPbI3-xBrx 1.63 SHJ nc-Si tunnel 0.25 22.8 EPFL/CSEM 2017 
CsFAPbIBr 1.63 SHJ nc-Si tunnel 12.93 18.0* EPFL/CSEM 2017 
CsRbFAMAPbIBr 1.6 Homojunction ITO/Cr/Pd/Ag 1 22.5* ANU 2018 
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the performance of this monolithic tandem device. These first publications launched an

efficiency race, as illustrated in Figure 1.6 and summarized in Table 1.1, showing the main

perovskite/silicon tandem experimental results published in the years 2014-2018.

At the end of 2015, Albrecht et al. used a silicon heterojunction solar cell as the bottom cell for

a monolithic tandem with 18.1% efficiency [82], exploiting their high near-infrared spectral

response and high voltage. It was also the first demonstration of a low-temperature planar

perovskite solar cell using an atomic layer deposition (ALD)-grown SnO2 layer as the electron

transporting layer. The monolithic tandem efficiency record was improved two months later

by Werner et al. with a PCBM-based planar perovskite top cell and an IZO intermediate recom-

bination layer, reaching 21.2% steady-state efficiency [83]. This cell was limited by the bottom

cell current, due to the use of a double-side polished silicon wafer. In August 2016, the bottom

cell current was improved with the introduction of rear-side textured silicon wafers, and an

efficiency of 20.5% was demonstrated on a 1.4 cm2 monolithic tandem cell, as compared to

the previous monolithic tandem cells demonstrated on sizes <0.3 cm2 [76].

In the meantime, progress was made on the development of perovskite materials with wider

band gaps containing cesium (Cs) cations, resulting in improved device stability and higher

reproducibility [89]. McMeekin et al. then used a Cs-FA double cation perovskite material to

open the band gap to ≈1.74 eV, the ideal value for a top cell absorber material [73].

Device stability is a major challenge for the development of perovskite solar cells and par-

ticularly for their implementation in tandem solar cells with silicon technologies. Thermal

stability is necessary for the cell to survive conventional encapsulation with >100◦C annealing

temperature and to pass damp-heat testing protocols. Bush et al. demonstrated that perovskite

solar cells featuring TCO front and rear electrodes (and thus suitable for tandem integration)

show improved thermal stability as compared to cells with a metal rear electrode. The TCO

rear electrode can act as an efficient barrier for moisture ingress and should prevent the loss

of volatile organic compounds from the absorber layer [90].

In February 2017, the same group managed to pass a 1000-hour damp heat test at 85◦C and

85% relative humidity with a semitransparent perovskite solar cell, using a p-i-n polarity and a

CsFA double cation perovskite material. In the same publication, a 1 cm2 monolithic tandem

with 23.6% efficiency was demonstrated [85], the published record value for a perovskite/sili-

con monolithic tandem cell at the time of writing this thesis3.

The performance of mechanically stacked 4-terminal tandem cells also gradually increased,

mostly driven by the improved efficiency of single-junction semitransparent perovskite cells.

Important progress was made in 2016 with the first experimental demonstration of >25%

total efficiency [76]. The Catchpole group at ANU then pushed this performance to 26.4% by

developing wide band gap multication perovskite absorber [78] and Brabec’s group in Erlan-

gen further improved it recently to 26.7% by better controlling electrical and optical losses

[80]. These 4-terminal tandem measurements were combining small <0.2 cm2 top cell with

larger 1-4 cm2 silicon bottom cell. Until now, this was the case for most published 4-terminal

results, based on indirect performance measurements of the two subcells. However, first

3Tandem cells with >25% efficiencies were however announced by several groups in conferences between
March and May 2018, including EPFL/PV-lab (see Section 5.4.3)
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progress in up-scaling the perovskite top cell has already been made. 1 cm2 semitransparent

perovskite cells were demonstrated with 14.5% efficiency [76, 85]. When combined into a fully

integrated 4-terminal tandem device with a silicon heterojunction bottom cell of the same

size, an efficiency of 23.2% was reached [91]. Further up-scaling typically involves reducing

resistive losses in the transparent electrodes and scribing of the layer stack to define segments

and to interconnect them into a module. Semitransparent modules with an aperture area of

4 cm2 were recently demonstrated, reaching an efficiency of 12%, which led to a module-on-

cell 4-terminal tandem with 20.2% efficiency [79]. The same group then further improve this

performance to 23.9% by reducing reflection losses with the introduction of a microtextured

antireflective foil (ARF) and an intermediate optical coupling liquid [88].

1.5 Techno-economic considerations for tandem solar cells *

Several studies have addressed the economics of perovskite solar cells [92, 93, 94]. In this

Section 4 , we focus on monolithic 2-terminal tandem cells, guided by simple considerations of

manufacturing processes in production lines, keeping in mind that no fully defined industrial

manufacturing process for perovskite-based cells exists yet. For this analysis, we consider

the number of process steps required in addition to those for the silicon bottom cell (which

could be Al-BSF, PERC or SHJ). In particular, metallization costs of the front are not included,

being already part of the silicon cells. Each process step specific to the perovskite top cell

has related investments, costs of consumables, and operational costs (personal, facilities and

maintenance). In Table 1.2 we assume that each process step has related investment costs in

the range of 1-3 million €, allowing for the processing of 3000 wafers per hour or an equivalent

of around 400’000 m2 of panels per year. We make an assumption of 15% operational cost per

year compared to investments, and of 1.5 €/m2 of consumables per step. The proposed values

are in the range of what is possible either for coating on c-Si wafers (e.g. SiN layer, or ultra-thin

ALD films), or for thin film processes with low-cost materials (e.g. thin semiconductor layer,

70-100 nm TCO layer). Table 1.2 shows that, for instance, a 4% absolute efficiency increase,

equal to the power output of an additional 40 W/m2, would result in manufacturing costs of

26 €cts per additional watt of output power of the module in the case of 4 extra process steps,

with 1.5 M€ investment per step. A similar cost can also be achieved with more steps, which

would however require a higher increase in efficiency.

This represents a good target value, considering the roadmap of c-Si module costs, which

are expected to reach 25-30 €cts/W within the next five to ten years [95]. It is also possible to

make a rough estimation of the value related to the enhanced module efficiency. Assuming

that the area-related costs are in the range of 27 €/m2 for solar parks (all costs excluding

inverter) and 63 €/m2 for small rooftop systems, the efficiency gain translates into a saving in

a range of a few cents (here 2.1 €cts/W to 2.7 €cts/W for solar parks and 6.4 to 7.6 €cts/W for

rooftops). These values show that even though it will be challenging to reach considerably

4This Section is taken from a review paper that we published in Advanced Materials Interfaces [1] and was written
by Prof. Christophe Ballif. It gives an important message for the future commercialization of the perovskite/silicon
tandem technology developed during this thesis.
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1.5. Techno-economic considerations for tandem solar cells *

Table 1.2 – Guideline for estimating potential manufacturing costs of the perovskite top cell in a monolithic
perovskite/silicon tandem cell. We consider only the extra-steps induced by the perovskite top cell deposition (and
not the potential steps saved on the c-Si cell). The equipment is depreciated over 7 years. Consumable costs of 1.5
€/m2 per step and 15% operational costs per year as fraction of CAPEx (including facilities, maintenance personals)
are assumed. For the area related costs savings, 18% nominal module efficiency is considered. Reproduced with
permission [1]. Copyright 2017, John Wiley and Sons.

 

Number 
of extra-
steps 

Investment 
[M€/step] 

Depreciation 
[€/m2] 

Consumables 
[€/m2] 

Operational 
costs [€/m2] 

Total 
process 
costs 
[€/m2] 

Abs. 
Eff. 
Gain 
[%] 

Manufacturing 
costs [€cts/W] 

Area 
related 
BOS cost 
saving 
[€cts/Wp] 

Area 
related BOS 
cost saving 
[€cts/Wp] 

                Parks Roof top 

3 1.5 1.61 4.5 1.69 7.79 4 19.5 2.7 6.4 
4 1.5 2.14 6 2.25 10.39 4 26 2.7 6.4 
5 1.5 2.68 7.5 2.81 12.99 4 32.5 2.7 6.4 
3 3 3.21 4.5 3.38 11.09 4 27.7 2.7 6.4 
4 3 4.29 6 4.5 14.79 4 37 2.7 6.4 
5 3 5.36 7.5 5.63 18.48 4 46.2 2.7 6.4 
4 2 2.86 6 3 11.86 3 39.5 2.1 5 
4 2 2.86 6 3 11.86 5 23.7 3.3 7.6 

lower module production costs per Watt compared to single-junction c-Si in the mid-term,

perovskite/silicon tandem PV systems could be cost competitive as a result of their higher

performance, especially for applications where surface area is limited. Then the higher we can

increase the efficiency gain, the more BOS cost we can save.

The final production costs will include other possible positive factors (reduced costs of metal-

lization thanks to the high-voltage, low-current device), and potentially also negative ones

such as yield (possibility of shunting the top cell) or the requirement for edge sealants in

modules. Similarly, the energy yield might be favored by the good temperature coefficient

of the top cell, whereas spectral mismatch effects, long-term degradation and bankability

(meaning higher cost of capital) might penalize the cost of electricity produced by such mod-

ules. As a general guideline, in addition to demonstrating real long term stability, the viability

is ensured by two important factors: the increased efficiency gain compared to the original

single-junction solar cells, and the reduction of the number of additional process steps (or of

the costs associated with each step). Finally, this simple calculation also shows that all usage

of expensive material (typically >10 €/m2) will likely prevent any market penetration of this

technology.
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1.6 Objectives and structure of the thesis

1.6.1 Objectives

The objective of this thesis is to develop perovskite/crystalline silicon tandem solar cells, with

efficiencies beyond the state-of-the-art single-junction silicon solar cells and cell size >1 cm2.

This requires the combination of two very different photovoltaic technologies in a single

device, while maintaining their individual performances. The scientific challenges are in

developing new perovskite absorber materials with appropriate optical band gap and stability,

as well as the charge transporting layers and transparent contacts with minimized parasitic

absorption. The technological challenges are the development of the device structure, the

development of the absorber and contact material deposition processes and the practical

demonstration of large size perovskite-based solar cells while using industrially compatible

and available processing techniques that can be easily implemented into a standard silicon

process line at low additional costs.

1.6.2 Structure

The structure of this thesis is as follows:

• Chapter 2 presents the development of a low temperature hybrid sequential deposition

technique for the perovskite absorber and the fabrication of single junction opaque

perovskite solar cells with tunable band gap.

• Chapter 3 investigates the replacement of the standard opaque metal electrode of

perovskite cells by a broadband transparent electrode based on sputtered TCOs.

• Chapter 4 presents the application of semitransparent perovskite cells in mechanically

stacked 4-terminal tandem solar cells.

• Chapter 5 investigates the integration of perovskite solar cells in monolithic tandem

solar cells, from flat to fully textured devices.

• Chapter 6 concludes this thesis by summarizing the work and providing a perspective

outlook for future research on the topic.

1.7 Contribution to the field

The present work contributes to the fields of silicon photovoltaic devices and of perovskite

solar cells as follows:

As a replacement to the gold opaque rear metallization of perovskite single junction cells, we

demonstrated a broadband transparent electrode based on a sputtered amorphous indium

zinc oxide [72]. We optimized the device performance by introducing a transition metal oxide
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buffer layer to protect the sensitive organic layers from the plasma environment. In-depth

investigations of these metal oxides revealed interesting interactions with temperature, Ar ion

bombardment or plasma luminescence, which can be prevented by a CO2 plasma treatment

[96].

For the perovskite absorber layer, we developed an hybrid sequential deposition method

involving a first co-evaporation of cesium-based compounds with lead iodide and then a

transformation to the perovskite phase by spin coating the organo-halide solution followed

by thermal annealing. With a systematic investigation of the optical, structural and elec-

tronic properties of perovskite materials with various optical band gaps, the performance

of perovskite solar cells in both n-i-p and p-i-n configuration was improved and optimized

for tandem integration. Also, refractive index and extinction coefficient were measured for

perovskite materials with optical band gap between 1.5 and 1.8 eV, which is required for

multijunction optical modelling [97].

We applied the semitransparent perovskite cells in mechanically stacked 4-terminal tandem

cells and demonstrated up to 25.6% total efficiency with a top cell having 0.25 cm2 area, and

up to 23.2% with a 1 cm2 area top cell. This last performance was measured in an integrated

device where both subcells had the same size and were attached together with a PDMS optical

coupling layer [76, 91]. This result is so far the only demonstration of perovskite/silicon 4TT

integrated device, making it the most comparable with III-V/c-Si state-of-the-art 4TT devices.

Finally, we developed monolithically integrated tandem devices. By implementing the ad-

vancements in our perovskite single junction cells development, we showed high performance

monolithic tandem cells first in n-i-p configuration with all flat surfaces and later in p-i-n

configuration with fully textured bottom cells and conformal top cell coating. With this last

close-to-optically optimal cell, record certified efficiencies up to 25.2% were demonstrated

[83, 76, 84, 98].

These findings open the way for >30% efficient silicon-based photovoltaics, with low addi-

tional manufacturing cost and high potential for industrialization. Finally, this thesis work con-

tributes to other related investigations on transition metal oxides [99, 100], on perovskite/per-

ovskite tandem devices [101], and on studies toward a better understanding of perovskite

materials and devices [102, 103, 104, 105, 106, 107, 108, 109, 86]

17





2 Toward a tandem-specific perovskite
cell: method, materials and device
development

Summary

This chapter presents first the requirements a perovskite top cell should meet for an optimal

integration in a silicon-based tandem device. Then the method used throughout this thesis

for the perovskite absorber deposition is described in detail. This method is based on an

hybrid sequential deposition technique involving a thermal evaporation of PbI2 followed

by an organo-halide solution spin coating. Perovskite materials with various optical band

gaps are fabricated and characterized through a large optical, structural and electronic study.

In particular, their complex refractive indices are compared and discussed in function of their

fabrication conditions. Finally, devices in both n-i-p and p-i-n polarities are presented using

the various perovskite absorber materials.

Parts of this chapter are based on published work. The Sections reproduced in part or fully are marked with
an asterisk ∗. Section 2.1 is adapted with permission from a review article published in Advanced Materials
Interfaces [1]. Section 2.2.2 is partially adapted with permission from an article published in The Journal of Physical
Chemistry Letters [83]. Sections 2.2.3 and 2.3.2 are adapted with permission from an article published in ACS Energy
Letters [97]. The initial n-i-p mesoporous devices, which led to the article published in Solar Energy Materials
and Solar Cells [72], were developed with the help of Dr. Soo-Jin Moon and Dr. Jun-Ho Yum. The development of
the sequential hybrid deposition method was carried out in collaboration with my colleagues Dr. Björn Niesen,
Arnaud Walter, Dr. Matthias Bräuninger and Florent Sahli. I greatfully acknowledge Gizem Nogay for performing
the fitting on the ellipsometric data, Dr. Chien-Jen Terry Yang for his help with PDS, FTPS and PL measurements,
Dr. Matthias Bräuninger for the AFM imaging and surface roughness calculation, Dr. Quentin Jeangros for the
TEM/EDX characterization and Florent Sahli for the XRD measurements.
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Chapter 2. Toward a tandem-specific perovskite cell: method, materials and device
development

2.1 Introduction *

Developing perovskite-based tandem solar cells necessarily requires an adaptation of the

single-junction cell fabrication process. Historically, perovskite solar cells were first based on

the dye-sensitized solar cell architecture, including a mesoporous titan dioxide (mp-TiO2)

scaffold layer requiring a sintering step at 500◦C [72]. This relatively high temperature is

not of concern for 4-terminal tandem cells, where both subcells are fabricated separately.

For monolithic tandem cells, however, this process temperature limits the options for the

silicon bottom cell to diffused-junction or “tunnel oxide” cells. Silicon heterojunction solar

cells, currently the crystalline silicon technology with the highest performance and therefore

especially interesting for high-efficiency silicon-based tandems, are only compatible with

top cell processes up to ≈200◦C. Above this temperature, the hydrogen from the amorphous

silicon layers passivating the wafer surfaces starts effusing, which strongly affects passivation

and hence leads to reduced V oc [18].

After an initial phase, when mesoporous perovskite solar cells were dominating the field,

planar, i.e. scaffold-free, cells started to catch up, driven by improvements of the perovskite

material quality and better interface control [110]. The removal of the scaffold structure

enabled the development of highly efficient perovskite cells, which are fully processed at

low temperatures (<200◦C) and compatible with silicon heterojunction bottom cells [76, 111,

112, 113]. Charge transporting layers deposited at low temperatures include p-type 2,2’,7,7’-

Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9’-spirobifluorenes (spiro-OMeTAD), poly(3,4-

ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), poly(triarylamine) (PTAA) and

NiOx , as well as n-type titan dioxide (TiO2), SnO2, Buckminsterfullerene (C60) and phenyl-

C61-butyric-acid-methyl-ester (PCBM), among others [110, 114, 115].

The most widely used perovskite material composition is MAPbI3 with a band gap of ≈1.55 eV,

which is below the optimal value of ≈1.73 eV for an ideal top cell in monolithic tandems with

silicon bottom cell. For 4-terminal tandem cells, the ideal band gap is slightly larger, even

though high efficiencies can also be reached with non-ideal top cell band gaps due to the

considerably less pronounced performance drop for lower band gaps [116]. Although MAPbI3

top cells were well suited for initial proof-of-concept tandem devices, demonstrating efficien-

cies beyond the single-junction silicon record, especially for monolithic tandems, requires

top cells with a ≈0.2 eV higher band gap. This increase in band gap has to be reached while

still preserving material and interface quality, to obtain a corresponding increase in V oc . The

band gap of MA-based perovskites can easily be increased by substituting part of the iodine

with bromine, yielding values between 1.55 eV and >2 eV [117]. However, the stability of these

compounds has been found to be highly limited, subject to photo-induced phase segregation

and phase separation [118, 119, 120, 121].

A breakthrough concerning phase stability was reached with the introduction of perovskite

materials containing the Cs and FA cations, either partially or fully replacing MA [73, 89]. For

example, using the (F A0.83C s0.17Pb(I0.6Br0.4)3) material with a band gap of 1.74 eV, perovskite

cells with up to 17% efficiency were demonstrated, yielding a V oc of 1.2 V with the theoretical

potential of 1.42 V [73]. Moreover, Beal et al. showed that the MA cation is volatile and tends to
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evaporate from the device under thermal stress during device operation, such that replacing it

with Cs considerably improves the thermal stability [122]. The purely inorganic CsPbBrI2 ma-

terial showed a suitable band gap close to 1.9 eV. However, the cell performance was still very

limited due to a non-optimized deposition process and too thin absorber layer. The CsPbI3

composition would be highly suitable for tandem applications as well, with a band gap of

1.73 eV [123]. Unfortunately, its photoactive phase is unstable at room temperature [124].

Unger et al. compared reported data of perovskite cells with band gaps between 1.2 and 2.2 eV

and found that most reported V oc followed the expected monotonic increase for band gaps up

to ≈1.7 eV. For larger band gaps, strong deviations were observed, which they attributed to

a phase separation, resulting in a lower V oc [34]. Further work will therefore be required to

improve the crystallinity and ionic homogeneity in wide-band gap perovskite materials.

The charge extraction layers must also be adapted to these new compositions with higher

band gaps as shown by Lin et al. [125]. Increasing the band gap typically shifts the conduction

band toward higher energies (toward the vacuum energy level). Thus, adapting the energy

levels of the electron transporting layer helped to increase the V oc and reach efficiencies as

high as 18.5% with a band gap of 1.71 eV.

Even though the optimal top cell band gap is 1.73 eV for ideal monolithic tandem cells, in

state-of-the-art devices, current matching could be reached with band gaps of 1.6-1.65 eV, due

to the parasitic absorption in the UV/visible spectral part in the transparent front electrode

and the charge transporting layers. These devices did not reach ultimate performance, but

further increasing the top cell band gap will also not be beneficial before the top cell spectral

response is increased in that wavelength range. In addition, monolithic tandem cells typically

show their highest performance at a slight current mismatch, when the subcell with the higher

fill factor is current limiting [126]. Assuming that high-performance silicon bottom cells typ-

ically still exhibit higher fill factors, the ideal top cell band gap might be slightly below the

above mentioned ideal values.

2.1.1 The requirements for tandem applications

We can therefore define the requirements for an ideal top cell in a silicon-based tandem:

• The entire cell layer stack must be processed at low temperature <200◦C, in order to stay

compatible with SHJ bottom cells.

• The usage of toxic solvents should be reduced as much as possible for environmental

concerns and for the safety of the laboratory workers [127]. Examples of solvents with

high health concerns include dimethylsulphoxide (DMSO),N, N-dimethylformamide

(DMF) or chlorobenzene. The toxicity of the materials used in the device should also be

considered, e.g. lead content.

• The processing techniques used for the perovskite absorber as well as for the charge

transporting layer should be up-scalable, industrially compatible and highly repro-

ducible.
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• A planar architecture should be preferred, as it is simpler, leads to easier fabrication

procedures and enhances direct optical coupling between the tandem subcells.

• The method for depositing the perovskite absorber should be compatible with rough

substrate and yield conformal layers on silicon textured wafers.

• This method should be flexible enough to allow material compositional engineering,

to easily tune the band gap and adapt the composition for optimal performance and

stability.

• The perovskite material should have high optoelectronic quality, to allow high device

performance. It should also be compact, pin-hole free, with low surface roughness in

order to allow the use of thin charge transporting layers.

• The perovskite top cell must show minimal parasitic absorption losses over the entire

spectral region, i.e. both in the low-wavelength region to minimize the losses in the

top cell, and similarly in the longer wavelength region (sub-band gapregion of top cell)

for the bottom cell, i.e. the device must feature broadband transparent electrodes and

charge transporting layers.

• The materials used for the perovskite absorber, the charge transporting layers and

electrodes should show a good chemical and environmental stability, ideally inert and

non-volatile.

These requirements were the underlying motivations for the choices we made throughout

this thesis, both for the methods and materials we used. The following Sections present

the development of a perovskite cell toward the completion of these requirements. The

development of transparent electrodes and near-infrared (NIR)-transparent perovskite cell

will be the subject of the next Chapter 3.

2.2 A sequential 2-step hybrid deposition method

2.2.1 Presentation of the method

We chose to adopt and develop an interdiffusion method involving three important steps:

first the inorganic components are deposited on the substrate, e.g. lead iodide (PbI2), CsI,

CsBr...; then an organo-halide-containing solution is spin coated; finally, the bilayer precursor

is annealed on an hotplate to promote the interdiffusion of the organo-halide compounds

into the PbI2 layer and their chemical reaction leads to the formation of the final crystallised

perovskite film.

The sequential method was first demonstrated in 2013 by Burschka et al. [128]. In this pub-

lication, the PbI2/DMF solution was infiltrated in a mp-TiO2 layer and then converted to

MAPbI3 by dipping the substrates into a 2-propanol solution of methylammonium iodide,

C H3N H3I (MAI). Our early experimentation with this method revealed that the control of the
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Figure 2.1 – Schematic description of the hybrid sequential 2-step deposition method.

concentration of MAI in the solution was difficult to keep constant and the dipping timing

was crucial, impacting the reproducibility and yield. Other groups demonstrated that the

solution-processed PbI2 can be replaced by a thermally evaporated PbI2 layer, then converted

by spin coating a MAI in 2-propanol solution on this seed layer [112, 129].

We quickly adopted this strategy, schematically illustrated in Figure 2.1, using a Lesker mini-

spectro thermal evaporator. This method was used for most devices presented in this thesis,

as it was early-on foreseen as the most promising way to achieve high performance tandem

solar cells on textured wafers, while allowing high freedom in the material composition devel-

opment, the choice of charge transporting layers and up-scalability, satisfying many of the

requirements stated in the previous Section.

2.2.2 Solvent engineering and perovskite morphology *

The perovskite layer morphology must be controlled to yield homogeneously distributed grain

size, low surface roughness, compact layer with gains growing vertically throughout the layer

and suppressed pin-holes formation. This can be achieved by controlling the evaporation

conditions for the PbI2 layer (shown in Figure 2.2) or by tuning the solvent during the solution

processing step to deposit the organo-halide compounds. 2-propanol was first used as the

solvent for MAI spin coating. It was however difficult to obtain a uniform layer on larger

samples (i.e. 2.5x2.5 cm2) without pin-holes. 20 mg/ml of 2-methoxyethanol were then added

Figure 2.2 – SEM topview image of an evaporated PbI2 layer on a glass/ITO substrate.
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Figure 2.3 – SEM and AFM characterization of a MAPbI3 perovskite layers grown without or with addition of
2-methoxyethanol in the MAI/2-propanol solution. The two pictures show 2.5x2.5 cm2 substrates covered with
the perovskite layer, illustrating the mirror-like appearance of the film when using the additive. Reproduced with
permission [83]. Copyright 2016, American Chemical Society.

to the MAI solution. As shown in Figure 2.3, this helped to reduce the surface roughness

of the perovskite layers from Rr ms=44.5 nm down to 9.6 nm, as measured by atomic force

microscope (AFM) [83]. The layers were then more homogeneous, more compact, contained

less pin-holes and had a shiny appearance, as shown in the photographs in Figure 2.3. These

observations were then confirmed by Ugur et al. in a larger study about glycol ether additives

[130].

Further tests were carried out with other solvents, as shown in Figure 2.4. Pure ethanol

was found to yield similar film morphology and device performance as the 2-propanol/2-

methoxyethanol solution, with the advantage to be easier and more controllable. Also, increas-

ing the annealing temperature of MAPbI3 films from 100◦C to 120◦C allowed to increase the

Figure 2.4 – SEM topview images of MAPbI3 perovskite layers grown with various solvent mixture for the organo-
halide solution, showing a solvent-dependent morphology.

24



2.2. A sequential 2-step hybrid deposition method

Figure 2.5 – Effect of the annealing temperature on the morphology and surface roughness of a MAPbI3 perovskite
layer grown with an ethanol solution: a), b), d) and e) scanning electron microscope (SEM) topview images. c) and
f) AFM topographic images.

grain size and further reduce pin-holes formation (Figure 2.5). These empirical observations

could unfortunately not be further studied and explained, due to time constraints imposed by

the fast-moving field. For the rest of the thesis, pure ethanol was used for all devices, if not

explicitly otherwise specified.

2.2.3 Perovskite material compositions with various band gaps*

The composition of the perovskite absorber, namely the cation (e.g. Cs, Rb, FA, MA and combi-

nations thereof), the metal (e.g. Pb and/or Sn) and the halide (e.g. I, Cl, Br), can be modified

to yield materials with absorption edges ranging from 1.2 eV up to >2 eV [34]. MAPbI3 per-

ovskites were the first widespread perovskite materials and was also therefore logically the first

perovskite absorber used for this thesis. MAPbI3 absorber layers however tend to be highly

sensitive to environmental factors such as temperature, humidity, light [131, 132]... The MA

cation was shown to become volatile at slightly elevated temperatures already around 85◦C,

leaving the layer decomposing back to PbI2 [133]. Furthermore, tandem applications require

materials with more optimized wider band gap energies in order to fine tune the current

distribution in the tandem device. MAPbI3 exhibits a band gap of only 1.55 eV, lower than

the theoretically optimal band gap value of 1.72 eV for 2-terminal tandems [116]. In practice,

we will see in Chapter 5 that the absorber material needs to be tuned rather between 1.6 and

1.7 eV to allow flexibility and to take into account parasitic absorption losses which reduces

the theoretically optimal band gap to values <1.7 eV. Replacing the MA cation by Cs and FA was

shown to yield more stable perovskite materials, while still preserving the high performance

and band gap tunability [89, 122, 73, 134]. CsFA double cation perovskite materials were
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also demonstrated with a sequential 2-step deposition method, using two spin coating steps

[135, 136].

Based on these first demonstrations, we tried to fabricate these more promising compositions

with the sequential 2-step hybrid deposition method described in the previous Section, com-

prising a co-evaporation step of a cesium halide compound and PbI2, followed by spin coating

of the FA halide solution [86, 97]. Three different cesium halides were used in this study:

cesium iodide (CsI), cesium chloride (CsCl) and cesium bromide (CsBr), all co-evaporated

with PbI2. The final cesium content in the perovskite films was controlled by adjusting the

evaporation rates of the Cs- and Pb-containing compounds. A mixture of formamidinium

iodide (FAI) and formamidinium bromide (FABr) dissolved in ethanol was then spin-coated

on this layer and subsequently annealed in air to form the final ≈320-nm-thick perovskite

layer. Overall, the final perovskite composition and layer morphology were defined by the

choice of the evaporated cesium halide compound, its evaporation rate with respect to the
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Figure 2.6 – Variable-angle spectroscopic ellipsometry measurements: a) Comparison of complex refractive indices
of two CsFAPbIBr perovskite compositions yielding a similar absorption edge at ≈1.69 eV and effect of humidity
level during perovskite annealing with ambient relative humidities of 35%RH or 50%RH; b) Comparison of complex
refractive indices of perovskite materials made with CsI, CsCl or CsBr; c) Absorption coefficient (α) spectra of
CsBr-based perovskite materials with absorption edges ranging from 1.54 eV to 1.74 eV, measured by photothermal
deflection spectroscopy (PDS); d) Comparison of the absorption coefficient spectra measured by PDS or from
ellipsometry measurements of k (α=4πk/λ). The legends indicate the ratio between the Cs halide evaporation rate
and the one of PbI2 (percentage) and the mixing ratio of the FAI and FABr in the spin-coated solutions. Reproduced
with permission [97]. Copyright 2018, American Chemical Society.
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Figure 2.7 – Environmental effects on the fabrication of CsFAPbIBr perovskite materials and their optical and
structural properties: a) & b) ellipsometry and c) reflectance measurements of perovskite materials annealed in
either ≈35%RH or ≈50%RH; d) XRD patterns of CsCl8%-1:3 with various spin coating speed, relative humidity
during layer annealing and annealing time. Reproduced with permission [97]. Copyright 2018, American Chemical
Society.

one of PbI2, and the composition of the FA-halide solution.

These perovskite films were characterized by variable-angle spectroscopic ellipsometry (VASE)

and photospectrometry. The resulting complex refractive indices (n + ik) are shown in Fig-

ure 2.6. The characterization and modeling protocols are based on our previous work on

methylammonium lead triiodide [103]. Figure 2.6a shows the complex refractive indices of

two perovskite materials, which exhibit similar absorption edges but were deposited using

either CsI or CsCl in the co-evaporation step. The differences in n and k values are a clear

indication that ellipsometry measurement results, and more generally the optical properties

of perovskite materials, are highly dependent on the exact composition and hence fabrication

procedure. For example, environmental aspects such as the presence of humidity during

the annealing step can drastically affect the optical properties, as shown in Figure 2.7 for

CsCl-based perovskite films. The real part of the refractive index is found to significantly

decrease with increasing ambient humidity levels. Note that the interdiffusion process is

known to be accelerated in the presence of humidity during the annealing of the film [137].

Indeed, it enhances the diffusivity of organo-halides in the PbI2-contaning layer, which in

turn reduces the amount of unconverted PbI2 residues in the final layer. This effect is also
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solutions. Reproduced with permission [97]. Copyright 2018, American Chemical Society.

clearly observed in the present experiment (Figure 2.7d), as illustrated by x-ray diffraction

(XRD) spectra of CsCl-based perovskite films prepared with different humidity levels, spin

speed during the FA-halide solution coating and annealing time. The amount of unconverted

lead iodide increases when the amount of spin-coated FA-halides is not sufficient (spin speed

too high or solute concentration too low), when the humidity level is too low or when the

samples are annealed for too long.

Figure 2.6b shows n and k data corresponding to four perovskite compositions having dif-

1.55 1.60 1.65 1.70
0

200

400

600

800

1.60 1.65 1.70 1.75 1.80 1.85
0

100

200

300

400

500

600

1.60 1.65 1.70 1.75 1.80 1.85
0

200

400

600

800

1000

1200

1400

P
L

in
te

ns
ity

(-)

Energy (eV)

2:1

P
L

in
te

ns
ity

(-)

Energy (eV)

1:2

initial peak
after 10min

P
L

in
te

ns
ity

(-)

Energy (eV)

0:1

a) b) c)

Figure 2.9 – Evolution of photoluminescence (PL) spectra recorded over 10 minutes for three CsFAPbIBr perovskite
compositions made with 10% CsBr during co-evaporation with PbI2 and FAI:FABr ratios of a) 2:1, b) 1:2 and c) 0:1
in the spin coated solution. PL was measured on perovskite layers on glass with a 514 nm laser with 10 mW power,
0.1 attenuation factor and 5 μm spot diameter, corresponding to an equivalent light intensity of ≈50 suns. The
spectra were recorded for 10 minutes at 10 s increments at room temperature. Reproduced with permission [97].
Copyright 2018, American Chemical Society.
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Figure 2.10 – Structural characterization: a) Surface roughness AFM measurements on glass substrates, as a
function of the CsFAPbIBr perovskite layer composition, showing a lower surface roughness with higher bromide
content; SEM top view images are given for some designated materials (scale bars represent 1μm); b)-d) STEM
cross-section images of perovskite solar cells in p-i-n configuration, with their corresponding EDX maps showing
the composition variation across the cell section. Reproduced with permission [97]. Copyright 2018, American
Chemical Society.
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ferent absorption onsets between ≈1.6 eV and ≈1.8 eV. In order to confirm the absorption

onsets from ellipsometry data, photothermal deflection spectroscopy (PDS) measurements

were carried out on selected samples and the resulting absorption coefficient (α) spectra are

shown in Figure 2.6c. As illustrated in Figure 2.6d, ellipsometry and PDS measurements are

well in agreement. The absorption onsets increase as expected with increasing Cs and/or

with increasing concentration of smaller anions (Cl, Br), as also shown in Figure B.1 using

Fourier-transform photocurrent spectroscopy (FTPS). This band gap widening is attributed to

a decrease of the lattice constant, which is observed by XRD as a shift of the (100) reflection

peak around 14◦ (Figure 2.8). The initial PL peaks of the CsBr-based perovskites are shown in

the inset to Figure 2.6c. They are located at photon energies ≈50 meV higher when compared

to the optical band gaps of these materials. As shown in Figure 2.9, recording PL spectra over

10 minutes revealed a drifting of the initial peak toward lower energies. This effect was the

most pronounced with wide band gap materials containing larger amounts of Br and was

previously attributed to light-induced halide segregation [119]. Abdi-Jalebi et al. recently

demonstrated that the photoluminescence of wide band gap perovskite materials can be

stabilized by passivating the absorber surface and grain boundaries with potassium halide

layers [32]. Introducing alkali halides into the perovskite material composition is currently

under investigation at PV-Lab by using triple co-evaporation with Cs-halides and Pb-halides.

A detailed characterization by AFM, SEM and scanning transmission electron microscope

(TEM) of the structural properties of these layers is shown in Figure 2.10. From energy-

dispersive X-ray spectroscopy (EDX) chemical maps, the Cs:Pb atomic concentration ratio in

the perovskite films could be estimated: 0.16 ± 0.03 with a 15% evaporation rate of CsI to PbI2

and 0.18 ± 0.03 with a 10% evaporation rate of CsBr to PbI2.

Figure 2.10 shows a STEM micrograph and corresponding EDX data of p-i-n perovskite cells

(see Section 2.3.2). In this case based on a perovskite layer made with the CsI precursor de-

posited at a deposition rate of 15% relative to that of PbI2 and using a pure FABr solution the

perovskite layer exhibits a compact microstructure, without large voids. While its interfaces

are slightly richer in I, Br still diffused down to the 2,2’,7,7’-Tetra(N,N -di-p -tolyl)amino-9,9-

spirobifluorene (spiro-TTB) interface during the annealing step. As shown in Figure 2.10,

a CsBr-based perovskite cell shows a similar microstructure, while a CsCl-based composi-

tion features a top surface composed of smaller grains and pores (arrowhead in Figure 2.10).

Interestingly, the surface roughness, as determined by AFM and shown in Figure 2.10, also

tends to decrease with increasing bromide content. This effect can be explained by looking

at the surface morphology of the perovskite film with a SEM. Excess iodide species tend to

stay on top of the perovskite grains, visible as white spots on the SEM image of the sample

with CsBr10% with pure FAI solution. Increasing too much the Cs content (higher rate ratio)

produces a similar morphology, as seen e.g. on the sample with CsCl17%.

It is important to note that structural and morphological variations resulting from differ-

ent compositions, deposition methods and environmental conditions, do affect ellipsomet-

ric data (e.g. see Figure 2.6a) and are at the origin of the large spread in published data

[138, 139, 140, 141, 103]. While absolute values should be assessed with caution, the n and

k data retrieved here enables reliable optical simulations and provides valuable insights to
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optimize devices as discussed later in Section 5.3.3.

2.3 Low-temperature planar device development...

2.3.1 ... in n-i-p polarity

The n-i-p polarity is historically the standard configuration, as the first cells were based on

TiO2 n-type contacts deposited on fluorine doped tin oxide (FTO)-coated glass substrates

already widespread for dye-sensitized solar cells. Spiro-OMeTAD was also the most common

hole transporting layer (and still is, though at a lower extent). This polarity was therefore

logically the first we adopted at the beginning of this thesis.

With the development of our 2-step hybrid deposition method and the use of only 2-propanol for

the organohalide solution, it was then possible to replace the TiO2 layers by thinner fullerene

layers, i.e. PCBM. Fullerenes were shown to enable the fabrication of planar perovskite solar

cells with low hysteresis and high efficiency [142, 143]. Spiro-OMeTAD was kept as the hole

transporting layer. The ITO/PCBM interface was modified with polyethyleneimine (PEIE)

spin coated layer, which helped to increase the yield and performance of the cells. PEIE

reduces the work function of ITO and improves the charge extraction with the fullerene layer

[111]. We used this device structure in references [83, 76]. Further development involved the

replacement of the spin coating processes by thermal evaporation: the 20-nm-thick solution

processed PCBM layer was replaced by 6-nm-thick thermally evaporated C60 layer and the

solution processed PEIE interlayer was replaced by a thermally evaporated 1-nm-thick lithium

fluoride (LiF) layer.

The spiro-OMeTAD p-type charge transporting layer was more difficult to replace. This topic

will be further discussed later in Section 3.3.2, about parasitic absorption reduction in charge

transporting layers.

2.3.2 ... in p-i-n polarity *

P-i-n perovskite solar cells were developed in the second half of this thesis, in order to re-

duce parasitic absorption losses (see Sections 3.3.2 and 5.3) and to make the perovskite cell

fabrication process compatible with textured silicon wafers (see Section 5.4). The following

paragraphs present the application of the perovskite materials described in Section 2.2.3.

Perovskite solar cells were developed using a 17-nm-thick spiro-TTB [144] hole transporting

layer thermally evaporated onto ITO-coated glass substrates. More details on the influence

of interlayers and spiro-TTB thickness are shown in Figures 2.11. The perovskite absorber

layer was then deposited with the 2-step method discussed above. The electron contact was

made of an evaporated bilayer of 20-nm-thick C60 and 5-nm-thick 1,3,5-Tri[(3-pyridyl) -phen-

3-yl]benzene (TmPyPB) [145], followed by Ag metallization. For tandem applications, the

opaque Ag electrode used for these cells would have to be replaced by a transparent electrode,

as discussed in Section 3.2.3. The cell fabrication process had therefore only 1 solution pro-
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Figure 2.11 – a) Schematic of a p-i-n opaque CsFAPbIBr perovskite cell with spiro-TTB hole transporting layer
and C60 electron transporting layer. b) current density/voltage (J-V ) curves of opaque p-i-n perovskite cells on
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c) J-V and d) external quantum efficiency (EQE) curves showing the impact of the spiro-TTB layer thickness on
the performance of an opaque p-i-n perovskite cell with structure as in a). An optimum can be found around
15-17 nm. The dashed lines in b-c) are reverse scans, whereas solid lines are forward scans.

cessing step left for the perovskite layer, which could in the future be replaced by a chemical

vapor deposition (CVD) process, as already demonstrated elsewhere [146, 41, 147], or a full

evaporation process [148]. The lead-compound, now evaporated, could also in the future be

deposited by sputtering [149].

The EQE measurements shown in Figure 2.12 demonstrate that a high spectral response can

be obtained with all the perovskite compositions investigated in Section 2.2.3. The photogen-

erated currents calculated from these spectra vary from ≈22 mA/ cm2 for the narrowest optical

band gap (≈1.51 eV) to ≈15 mA/ cm2 for the widest (≈1.8 eV), following an expected parallel

line to the maximum obtainable current for a given band gap and the AM1.5g spectrum, as

shown in Figure 2.13b. Figure 2.13c summarizes the optical band gaps for all investigated per-

ovskite compositions. This data, extracted from EQE curves, is confirmed by band gap values

measured from FTPS (Figure B.1), PDS measurements (Figure 2.6c), as well as the k values

determined from ellipsometry.

Additional current-voltage measurements can be found in the annexed Table B.1, showing,

amongst others, the increase in open-circuit voltage with optical band gap. The best cells
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are found to have band gaps between 1.6 and 1.65 eV and demonstrate efficiencies of ≈15%,

whereas the cell with the widest band gap of ≈1.8 eV had an efficiency of ≈12% at maximum

power point, as shown in Figure 2.14b. This cell still suffered from significant losses in V oc .

This observation was also correct for all other devices (see Figure 2.13a). Such differences

between the experimentally measured V oc and the expected value corresponding to the op-

tical band gap are known and frequently reported for perovskite solar cells, especially for

increasingly wide optical band gaps [34]. This effect is now sometimes referred to as the Hoke

effect, describing a photo-induced phase segregation [34, 119], and can also be observed in PL

measurements by a shift of the peak over time (see Figure 2.9).

The fill factor (FF) of spiro-TTB-based p-i-n cells was limited by low shunt resistance and

high interfacial series resistance. By replacing the thermally evaporated spiro-TTB layer by a

33



Chapter 2. Toward a tandem-specific perovskite cell: method, materials and device
development

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-15

-10

-5

0

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

-15

-10

-5

0

0 100 200 300 400 500 600
100

105

110

115

120

125

400 500 600 700 800
0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

Illumination intensity (%Sun)

J s
c

(m
A

/c
m

2 )

79

80

81

82

83

84

85

FF
(%

)

ITO/spiro-TTB/CsBr10%-0:1/C60/TmPyPB/Ag
ITO/NiO/CsBr10%-0:1/LiF/C60/TmPyPB/Ag

C
ur

re
nt

de
ns

ity
(m

A
/c

m
2 )

Voltage (V)

CsCl17%-0:1 - p-i-n opaque cell with NiO as HTL

C
ur

re
nt

de
ns

ity
(m

A
/c

m
2 )

Voltage (V)

Voc Jsc FF Eff
1107 15.7 70.5 12.3 reverse
1113 15.7 72.0 12.6 forward

P
m

pp
(W

/m
2 )

Time (s)

with ARF

E
Q

E
(-)

Wavelength (nm)

w/o ARF - 15.4 mA/cm2

with ARF - 16.4 mA/cm2

CsCl17%-0:1 - p-i-n opaque cell with NiO as HTL
Eg~1.8eV

a) b) c)
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sputtered nickel oxide (NiOx ) layer and changing the interface between the perovskite and

C60 layers with LiF, the FF could be significantly increased up to 80% at 1-sun illumination, as

shown in Figure 2.14a. This modification translated to an efficiency boost of >1%abs (details

in Table B.1). Low illumination current-voltage measurements also show that if interfacial

resistances could be further reduced, FF>80% could be achievable.

2.4 General conclusions on the chapter

In this chapter, we showed the development of a low temperature process for depositing the

perovskite absorber, based on a sequential 2-step hybrid method. We systematically tuned the

material composition and showed absorbers with optical band gap energies ranging from 1.5

to 1.8 eV. Their optical, structural and electronic properties were carefully studied, in order

to gain more knowledge on their usability for tandem applications and on their weaknesses

requiring further investigations.

We gradually modified the standard all-solution processed perovskite cell to a cell with fully

evaporated charge transporting layers and only one remaining solution processed step, i.e. the

organo-halide spin coating, which could in the near-future also be replaced by a CVD process.

All these vapor-phase deposition techniques are industrially available and known to be up-

scalable, either from Si industry or from OLEDs flat panel displays industry.

The device architecture was simplified from the mesoporous TiO2-based cell including thick

heavily doped spiro-OMeTAD, to an all planar device with thin, undoped evaporated charge

transporting layers. Indeed the latest p-i-n cells can be composed of a 15-nm-thick hole

transporting layer, the perovskite absorber and a 15-nm-thick electron transporting layer.
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Also, no toxic solvents are used any more, as only ethanol is necessary in the developed

method.

The next steps of this research should then be focused on further improving the optoelectronic

properties of the absorber layer and the quality of its interfaces with the charge transporting

layers to improve the single junction cell performance toward >20%. The main and crucial

challenge is however to improve the material stability and device reliability, which is still

largely unknown and could barely be addressed during this thesis.
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3 Near-Infrared-transparent perovskite
solar cell development

Summary

This chapter presents the development of semitransparent perovskite solar cells with high

near-infrared transparency. First, the development of a TCO-based transparent electrode is

described, as replacement for the standard metal opaque rear electrode of perovskite cells.

IZO is presented as a good candidate thanks to its high carrier mobility and broadband

transparency. Sputtering-induced damages are reduced by the introduction of a buffer layer:

MoOx for cells in n-i-p configuration and SnO2 for cells in p-i-n configuration. The parasitic

absorption losses in the MoOx is described in details, including a solution to minimize these

losses with a CO2 plasma treatment. Parasitic absorption losses in charge transporting layers

and TCOs are then discussed, with experimental comparison of various materials. Finally,

1 cm2 area semitransparent n-i-p perovskite solar cells with >16% efficiency are presented.

Parts of this chapter are based on published work. The sections reproduced in part or fully are marked with an
asterisk ∗. Section 3.1 is adapted with permission from a review article published in Advanced Materials Interfaces
[1]. Sections 3.2.1 and 3.2.2 are adapted with permission from an article published in Solar Energy Materials and
Solar Cells [72] and Section 3.3.1 is adapted from an article published in ACS Applied Materials & Interfaces [96].
I greatfully acknowledge Dr. Guy Dubuis and Dr. Monica Morales-Masis for their help to develop the IZO sput-
tering recipe, Dr. Jonas Geissbuehler for his fruitful collaboration and ideas during the study on transition metal
oxides [150], Dr. Brett Kamino and Dr. Davide Sacchetto for the collaboration during p-i-n semitransparent cell
development and Florent Sahli, Dr. Matthias Bräuninger and Dr. Bjoern Niesen for their input in the perovskite
cells development.
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Chapter 3. Near-Infrared-transparent perovskite solar cell development

3.1 Introduction*

3.1.1 Electrode requirements for tandem applications

In a tandem solar cell, the perovskite cell acts as the top cell, harvesting the visible light while

letting red and NIR light pass through to be absorbed in the narrower band gap silicon bottom

cell. However, perovskite solar cells typically feature a metal rear electrode, making the device

opaque. Therefore, a large part of the initial effort on perovskite/silicon tandem cell develop-

ment was dedicated to the search for an appropriate transparent electrode as replacement

for the opaque metal rear contact. This electrode is a key feature of both 2- and 4-terminal

tandems, and should be highly transparent in a wide spectrum range, including the NIR region

to maximize the amount of light transmitted to the bottom cell [151].

The requirements for this transparent electrode can be formulated as follow:

• The transparent contact should have a low sheet resistance.

• The deposition of the transparent contact must be soft and should not damage the sensi-

tive organic underlying layers, in order to preserve high device electrical characteristics.

• The materials of this contact must be stable and inert, to avoid any chemical reaction

with the materials of the other layers present in the cell during its field operation.

Possibly, it could also act as a diffusion barrier, keeping volatile species in the cell and

preventing moisture ingress from the environment.

• The electrode must be highly transparent over the whole solar spectrum.

• The materials and deposition technique should be cost-effective and up-scalable.

3.1.2 Literature overview

Several types of electrodes were intestigated over the last 4 years. Silver nanowire mesh

electrodes were demonstrated by several groups, usually deposited by spray coating and me-

chanical transfer [71, 152, 153]. Questions about stability were however rapidly raised, due to

the formation of silver halide complexes through reaction with ions from the perovskite layer

[85, 154]. Also, the complexity of the fabrication technique and the low reproducibility might

severely limit the application of silver nanowires in larger scale tandem devices. Graphene ox-

ide fabricated by chemical vapor deposition was shown to have a high transparency, however,

with a high sheet resistance of up to 350 Ω/sq [155, 156]. Transparent electrodes based on thin

evaporated metal layers were also demonstrated, e.g. Au [157], MoOx /Au/MoOx [158], and

Cu/Au [75]. They have the advantage of process simplicity, however with the disadvantage

of strong parasitic absorption, especially in the top cell sub-band gap spectral range. For

example, the Cu/Au bilayer electrode as presented in reference [75] leads to a perovskite top

cell sub-band gap absorption between 20 and 30% in the 800-1200 nm wavelength range
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3.2. Sputtered transparent conductive oxide

where the silicon bottom cell absorbs.

In contrast, TCOs are widely used materials in photovoltaics, combining high transparency,

conductivity, process adaptability and reproducibility [151]. Sputtering systems are commonly

used in industry and are compatible with large-area and high-throughput processing.

Figure 3.1 illustrates the state-of-the-art at the start of this thesis, as presented by Löper et

al. [70]. The perovskite top cell in this example was using a non-optimised ITO electrode. The

EQE measurement of the filtered bottom cell shows that the top cell was absorbing about

20-30% of the light in its sub-band gap spectral region, thus drastically limiting the possible

performance of the bottom cell. The following Sections cover the development of a sput-

tered TCO-based electrode with broadband transparency, the related challenges in terms of

sputtering damage and parasitic absorption losses, and the solutions developed though this

thesis.
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Figure 3.1 – EQE measurements of semitransparent MAPbI3 perovskite cell and a silicon bottom cell in 4TT
configuration, illustrating the state-of-the-art at the start of this thesis and the important optical losses in the
>800 nm wavelength spectral region. The data is extracted from Löper et al. [70].

3.2 Sputtered transparent conductive oxide

3.2.1 Initial developments: minimizing sputter damage *

The first development of a sputtered transparent electrode started at EPFL/PV-lab a couple

of months before the beginning of this thesis with one of the most commonly used TCO:

ITO [70]. It has however the disadvantage that it generally requires relatively high deposition

temperatures or post-deposition annealing to reach its crystalline structure with the lowest

resistivity [159, 160]. Such thermal treatments would degrade organic materials such as spiro-

OMeTAD. Therefore, the reported efficiency was limited due to the high resistivity of the

non-annealed ITO layer [70]. Amorphous TCOs, such as IZO, are therefore advantageous as

they can be deposited at low power, low temperature and without post-deposition thermal

treatment, while maintaining excellent electrical and optical properties [161]. Deposited on

glass substrates, IZO has already been applied as a front electrode in opaque perovskite [162]
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Figure 3.2 – a) Total transmittance (T) and absorptance (A) spectra of IZO layers deposited at several sputter powers
while keeping other sputter parameters constant, measured by UV-vis spectrophotometry. b) The influence of sput-
ter power on lateral conductivity, carrier density and electron mobility, determined by Hall effect measurements.
c) SEM cross-sectional image (scale bar is 250 nm) and d) schematic illustration of a typical mesoporous MAPbI3
perovskite solar cell structure with a transparent rear electrode and Au contact. J-V measurements: e) effect of
sputter power variation. f) & g) J-V curves at several illumination intensities, from 0.004 to 1 sun, normalized
at 0.2 V, for a cell with strong s-shaped J-V curve sputtered at 150 W (f) and one with moderate s-shaped J-V
curve sputtered at 60 W (g). h) Best semitransparent cell with IZO rear electrode, compared to an opaque cell with
IZO/Au electrode, the inset table provides the related J-V parameters. The IZO layers of these cells were deposited
at 60 W sputter power. Reproduced with permission [72]. Copyright 2015, Elsevier.

and dye-sensitized solar cells [163, 164].

We therefore developed sputtered IZO layers with the aim to reach both high conductivity

and high NIR transparency while minimizing sputter damage to the underlying layers. An RF

magnetron sputtering system1 was therefore chosen for its reduced physical impact compared

to direct-current sputtering [165]. The substrate temperature during deposition was fixed at

60◦C, as this was found to be a good compromise between enhancing the electrical properties

of the IZO layer and avoiding thermal damage to the organic layers in the perovskite cells. For

the process gas, we used pure argon, without the addition of oxygen, as this results in IZO

layers with both better electrical properties and less sputter damage due to fewer negative

ions in the plasma [166]. The as-deposited IZO layer was amorphous [161]. The sputter power

was varied to study its effects on the electrical and optical properties of IZO layers on glass, as

shown in Figure 3.2a and b. The absorptance of the IZO layer increases in the infrared with

increasing sputter power. This can be explained by free-carrier absorption due to the increase

in charge carrier density as seen in Figure 3.2b. Simultaneously, the Hall effect carrier mobility

decreases with increasing power. Overall, the conductivity is then reduced at low power. The

average absorptance of the IZO layer deposited at 60 W (0.76 W/ cm2) was less than 3% in

the 400–1200 nm wavelength range, which is below the limit of 5%, previously reported as a

requirement for the top-cell electrode in a high-efficiency tandem device [51]. In comparison,

transparent electrodes based on metals or metal nanowires typically show a considerably

1Note that for this early development, IZO layers were deposited in the Leybold Univex sputtering system. Later
on, a new system (baptized "TheBigLebowski") was build in-house combining sputtering with an IZO target and
thermal evaporation for organic charge transporting layers and metal oxides.
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3.2. Sputtered transparent conductive oxide

higher absorption [152].

These IZO layers were then applied as transparent rear electrodes in perovskite solar cells with a

device architecture and layer morphology as shown in the scanning electron microscopy cross-

sectional image in Figure 3.2c and the schematic illustration in Figure 3.2d. The perovskite

cells were processed as mentioned in Section A.1.1 and the active area of the semitransparent

cells was defined by a thermally evaporated Au frame.

To assess the sputter damage when depositing IZO directly onto the spiro-OMeTAD layer, we

varied the sputter power from 50 W to 200 W. For this test, the rear electrode consisted of a

120-nm-thick IZO layer capped by a full-area evaporated Au contact to decouple the effect of

sputter damage from the sheet resistance of the IZO layer. The resulting J-V curves are shown

in Figure 3.2e. They show an inflection close to the V oc , usually referred to as an s-shape. In

organic solar cells, s-shaped J-V curves have been attributed to poor electrical properties or

the presence of energetic barriers at one or more interfaces [165, 167, 168]. Increasing the

sputter power resulted in an increasingly pronounced s-shape around the V oc . However, the

lowest power still showed an increased series resistance compared to the reference cell without

IZO. To reveal the origin of this s-shape, we used the methodology described in [167]: a cell

featuring an s-shaped J-V curve was illuminated at several intensities from 0.004 to 1 suns

and the resulting J-V curves were then normalized at 0.2 V, where the current was saturated

for all curves (see also Figure 3.2f). The increase in V oc with light intensity, combined with the

crossing of the curves in the fourth quadrant of the J-V graph, suggests that the s-shape can be

attributed to the presence of an extraction barrier for holes in the device. As a comparison, the

same method was used for a cell showing a less pronounced s-shape (see Figure 3.2g), whose

J-V curves exhibited strongly reduced curve crossing. From these results and the variation of

the s-shape with the sputter power, we attribute the extraction barrier to damage made to the

spiro-OMeTAD layer during IZO deposition. Using the deposition parameters that resulted

in the smallest extraction barrier (60 W sputter power), we made semitransparent cells with

an IZO rear electrode (i.e. without a full-area Au layer) sputtered directly on the sensitive

organic hole transporting layer and obtained a power conversion efficiency of up to 9.7%, with

a J-V curve as shown in Figure 3.2h. This curve still shows a small s-shape indicating that

sputter damage could not be entirely prevented by varying the deposition parameters. Note

the increase in J sc seen in Figure 3.2e, which is observed independent of the sputter power for

cells with the IZO/Au rear electrode. This indicates that the IZO layer introduced between the

organic layer and the Au contact acts as an optical spacer, modifying the interference pattern

within the layer stack.

3.2.2 Transition metal oxides as buffer layers in n-i-p cells *

To eliminate the hole extraction barrier caused by sputter damage, we inserted a thin buffer

layer between the spiro-OMeTAD hole transporting layer and the IZO rear electrode. This

buffer should allow efficient hole extraction and be resilient to the energetic plasma particle

bombardment during sputtering. Transition metal oxides have already proven to fulfil these

requirements and have been applied in organic electronic devices [169], silicon solar cells
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Chapter 3. Near-Infrared-transparent perovskite solar cell development

Table 3.1 – Cell parameters obtained from current density-voltage and external quantum efficiency measurements.
The IZO layers were 120-nm-thick and deposited at 60 W. All measurements were done with illumination through
the glass substrate.

Rear contact type Voc Jsc FF Eff. Roc Rsc

mV mA/cm2 % % Ohm.cm2 Ohm.cm2

spiro/Au 866 18.97 76.1 12.5 4.44 2108
spiro/MoOx 35 nm/Au 865 18.75 73.5 11.94 5.01 1957
spiro/MoOx 10 nm/IZO/Au 859 19.02 71.9 11.76 5.11 1360
spiro/MoOx 35 nm/IZO/Au 869 18.31 75.3 11.98 4.98 1918
spiro/MoOx 10 nm/IZO 870 17.51 68.0 10.36 7.06 7302
spiro/MoOx 35 nm/IZO 829 16.38 75.6 10.25 5.25 1861

[170, 99] and perovskite solar cells [171, 70].

We chose thermally evaporated MoOx as a buffer material and tested layers with a thickness

of either 10 nm or 35 nm. Two IZO sputter powers, 60 W and 150 W, were chosen to compare
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3.2. Sputtered transparent conductive oxide

the sputter damage and the capability of the buffer to protect the underlying layers. The J-V

curves and EQE spectra of these cells are shown in Figure 3.3, and their device characteristics

are summarized in Table 3.1. The IZO layers had a thickness of 120 nm and a sheet resistances

of 49 Ω/sq and 35 Ω/sq for 60 W and 150 W of sputter power, respectively. Figure 3.3b shows

the effect of the MoOx buffer thickness on the J-V parameters of the semitransparent cells.

The V oc is not affected by the presence of the buffer layer or of the IZO layer. Introducing

a thin layer of MoOx has a strong effect on the FF , especially for the 150 W samples, where

it improves from 36% to 70%. The FF continues to increase for the thicker buffer layer, but

to a much smaller extent. This indicates that there is still a degree of sputter damage in the

spiro-OMeTAD layer when capped with a 10-nm-thick MoOx layer. This damage is completely

eliminated only by the thicker buffer, as shown by FFs very similar to that of the reference cell

with the Au rear electrode. The similar FF of the opaque and semitransparent cells also shows

that the lateral conductivity of the IZO electrode was sufficiently high to not add strong losses

due to additional series resistance to the cell. Therefore the only significant FF losses can be at-

tributed to sputter damage for the cells with the thin buffer layer. However, as indicated by the

missing s-shape, and confirmed by illumination-dependent J-V measurements (Figure 3.3a),

the presence of the thin MoOx layer already suffices to fully remove the extraction barrier that

was observed in the cells lacking a MoOx buffer. It is also interesting to note that the presence

of a buffer layer strongly reduces the influence of the sputter power. A drawback of the thicker

buffer layer is the reduced J sc , as shown in Figure 3.3b. This is confirmed by the J sc values

obtained from EQE curves. Moreover, the significant discrepancy between J sc values obtained

from the J-V curves and the EQE spectra for the samples with the thicker MoOx buffer layer

indicates charge collection issues. This is also observed in the case of the opaque cell with a

35-nm-thick MoOx /Au electrode. The J sc values obtained from both techniques are however

rather consistent for the Au reference cell and the semitransparent and opaque cells with a

10-nm-thick MoOx buffer layer. The best semitransparent perovskite cell in this configuration

and with 60 W sputter power exhibited a power conversion efficiency of 10.3% and a J-V curve

without hysteresis. By comparing this semitransparent cell with opaque cells with either a Au

or MoOx /IZO/Au rear electrode, we can see that the main efficiency loss is due to reduced

J sc in the semitransparent cell. This can clearly be attributed to the lack of (internal) reflec-

tivity of the IZO compared to the Au electrode, as shown by the optical losses at wavelengths

above 600 nm (Figure 3.3d). Such optical losses could at least partially be compensated for

by properly designed low-refractive index coatings on front and rear electrodes, e.g. lithium

fluoride as demonstrated in reference [71]. However if the semitransparent cell is applied as

top cell in a tandem configuration, the photons that are not absorbed in a single pass through

the perovskite solar cell can still be harvested by the bottom cell, such that these optical losses

become less critical.

3.2.3 Semitransparent p-i-n perovskite cells

Following the development of opaque p-i-n perovskite cells described in Section 2.3.2, simi-

larly to the n-i-p cells, the rear metallization needs to be replaced by a transparent electrode.
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Figure 3.4 – J-V curves of semitransparent p-i-n CsFAPbIBr perovskite cells: a) comparison of buffer materials; b)
effect of temperature during the deposition of SnO2 by ALD; c) effect of SnO2 thickness.

However, in this case, it has to be deposited on a C60 electron transporting layer, instead of

spiro-OMeTAD hole transporting layer.

Zinc oxide nanoparticles were already used by other groups as a buffer layer protecting the

C60 layer during sputtering [152, 172, 90, 80]. However, solution processes should be avoided

for future integration on textured silicon wafers, as they are typically less conformal than

vapor-based techniques. Additionally, stability concerns about chemical reaction between

the perovskite elements and ZnO nanoparticles were raised by Cheng et al. [173]. We then

tried to apply the low-power IZO sputtering recipe described in the previous sections, but

unsuccessfully, as shown in Figure 3.4a with strong V oc losses. As shown in the same Figure,

using an evaporated tungsten oxide (WOx ) layer was not working either.

SnO2 layers deposited by ALD looked in contrary more promising and were then also demon-

strated by Bush et al. to be an effective buffer layer material for p-i-n semitransparent per-

ovskite cells [85]. Other groups have also shown that such layer can in addition act as a

moisture ingress barrier [174, 175].

A thermal ALD process was therefore developed jointly with the Swiss Center for Electronics

and Microtechnology (CSEM). Figure 3.4b shows that the deposition temperature has a drastic

effect on the device performance, with an optimal temperature around 100◦C. Lower tempera-

tures lead to the formation of J-V curves strongly s-shaped around V oc . Higher temperatures,

in conjunction with the water vapour necessary for the ALD process, tend to degrade the

perovskite layer. Figure 3.4c shows the effect of thickness for SnO2 layers deposited at 100◦C.

We can also observe an optimum around 9-10 nm, thick enough to avoid sputter damage

without increasing series resistance and optical losses.

3.3 Parasitic absorption losses

3.3.1 In transition metal oxide buffer layers *

Transition metal oxides (TMOs) are susceptible materials which are sensitive to their envi-

ronment, such as air or oxygen exposure [176], temperature [177, 178, 179, 180], UV-light

[181], UV-ozone [182], or plasma treatments [183, 184, 185, 186, 187]. This is because many
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3.3. Parasitic absorption losses

TMOs readily undergo redox reactions. Evaporated metal oxides are especially sensitive, as

they are often substoichiometric when as-deposited, due to an oxygen deficiency [188, 169].

The presence of oxygen vacancies creates positively charged structural defect states in the

band gap, which enables the attractive hole injection properties of TMOs despite their n-

type semiconductor character [188]. Some of the defect states also act as localized color

centers, resulting in absorption in the visible/near-infrared spectrum, spread at different

wavelengths around 800 nm depending on their oxidation states. This sensitivity and the

associated coloration are desirable for some applications such as gas and chemical sensing.

TMOs were for these reasons widely studied specifically for their photochromic [189, 190, 191]

and electrochromic [192] properties. However, for optoelectronic applications, where high

transparency is required in charge transporting layers, any color change could be detrimental

and result in performance reduction.

In particular, it was recently pointed out that the optical properties of TMO layers are strongly

affected during sputter deposition of a TCO overlayer, resulting in a more pronounced absorp-

tance of the TMO/TCO stack than the expected sum of their individual absorptance values

[72, 99]. If such a stack is used as a front window electrode in a solar cell, this increased

absorptance directly translates into a decreased photocurrent and, as a result, reduced device

performance.

It would therefore be highly interesting to find either a pretreatment method to prevent

the appearance of this absorptance increase or a post-treatment to recover sputter damage

(discoloration). Inspiration for this can be taken from an early study on photochromism of

amorphous transition metal oxides by Colton et al. [189] They showed that TMO films can be

bleached (decolored) by thermal annealing at 300◦C in an oxidizing atmosphere, preventing

simultaneously any further (post)coloration. However, high temperature annealing is not

desirable for many applications due to the temperature sensitivity of underlying films, such as

for perovskite solar cells [133], silicon heterojunction solar cells [18], or other organic opto-

electronic devices [169]. To date though, an alternative bleaching method at low temperature

has yet to be reported.

Here, we study the coloration of TMOs, induced by temperature, Ar plasma exposure, and

TCO overlayer sputter deposition, and demonstrate a low-temperature bleaching treatment

based on CO2 plasma exposure. We show how this treatment can prevent and recover TMO

layer coloration when applied respectively before or after Ar plasma exposure. To illustrate

this method, we investigate and compare two commonly used substoichiometric metal ox-

ides: molybdenum oxide (MoOx , x < 3) and tungsten oxide (WOx , x < 3). Their chemical and

optical properties are characterized by UV-vis spectrophotometry and x-ray photoelectron

spectroscopy (XPS), showing a larger resilience for WOx to sputter damage. Finally, we apply

the knowledge gained from these findings in semitransparent perovskite solar cells, showing

how parasitic absorption can be strongly reduced in the transparent electrode.

Figure 3.5 shows the absorptance and optical band gap energies calculated from Tauc plots

for three thermally evaporated TMOs: MoOx , WOx , and V2O5. These TMO layers had a device-

relevant thickness (≈8-12 nm), while keeping in mind that their coloration is a bulk effect and

thus scales with thickness [190]. For application as a front window layer in solar cells, V2O5 is
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not suitable because of its narrower optical band gap, causing a blue cutoff, and was therefore

not further considered in this study. We chose to use MoOx for most experiments presented

here, as it is the most studied and widely used TMO and was already demonstrated to work

well in several types of photovoltaic devices, including perovskite and silicon heterojunction

solar cells [72, 193, 99].

Figure 3.6a shows the main subject investigated in this section: the synergistic absorptance

effect observed in sequentially deposited TMO/TCO layer stacks, illustrated by the example of

MoOx . To demonstrate that this effect is not limited to MoOx , we tested other TMOs, namely

WOx and V2O5, and observed a similar synergistic absorptance increase (see Figure S1 of

reference [96]). By testing several types of TCO overlayers such as ITO, IZO, hydrogenated

indium oxide (IO:H), and zinc oxide (ZnO), we found that their chemical composition does

not seem to affect the observed absorptance effect (see Figure S2 of reference [96]). Moreover,

when depositing the TMO onto the TCO layer, this effect was not observed (see Figure S1 of

reference [96]). These findings confirm that the synergistic absorptance increase is exclusively

due to a modification of the TMO layer during the TCO sputtering process. Comparing the

observed color changes to optical spectra reported in the literature indicates that the TMO

layer is reduced during TCO sputtering, resulting in the formation of additional oxygen va-

cancies, as evidenced by a broad sub-band gap absorption peak centered at a wavelength

of ≈800 nm [169]. During TCO deposition by sputtering, the samples are in contact with a

plasma, which will slightly heat the sample (<100◦C) and lead to exposure with UV light as

well as ion bombardment. In order to gain a better understanding of the TMO modifications,

we assessed each of these factors individually.

The effect of thermal annealing on the absorption of a MoOx film is shown in Figures 3.6b

and 3.6c. When annealed in air, the MoOx layer absorptance increases up to ≈200◦C and then

starts to bleach again at higher temperatures (Figure 3.6b). This trend can be explained by the

competition between a reduction (Mo6+ to Mo5+) reaction, dominant at low temperatures,

and an oxidation (Mo5+ to Mo6+) process at high temperatures in the oxygen-rich atmosphere,
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confirming the observations reported by Colton et al. [189] As expected, in an inert atmo-

sphere, such as nitrogen, the same annealing treatment results in a similar coloration at low

temperatures (<200◦C) (Figure 3.6c). Leftheriotis et al. showed similar coloration of metal

oxide films when annealed in a vacuum [180]. They also demonstrated that bleaching the

films by annealing in an oxygen-rich atmosphere at high temperature led to a polycrystalline

film, losing its as-deposited amorphous nature. High-temperature reoxidation can therefore

be excluded as a bleaching solution for temperature sensitive optoelectronic applications.

Figures 3.6d and 3.6e show the effect of full Ar plasma or only of UV-light irradiation on the

optical absorptance of a MoOx layer. We observe that the coloration scales with the power

of the plasma and therefore with bombardment energy [183]. The influence of Ar ion bom-

bardment was already widely reported and known to reduce oxides to lower stoichiometry

due to the preferential sputtering of oxygen [187]. Also, when removing the effect of ion

bombardment by protecting the sample with a quartz plate, thus exposing the sample only to

plasma luminescence, the layer is still affected. This effect is not specific for transition metal

oxide; similar behavior was also observed for thin amorphous silicon passivation layers used

in silicon heterojunction technology [194]. UV light can also result in coloration, as shown in

Figure 3.6e and reported elsewhere [181].

After identifying that elevated temperature, UV light, and Ar ion bombardment all contribute

to the coloration of TMO layers during TCO overlayer deposition, we assessed several ap-

proaches to prevent coloration or bleach colored TMO layers at low temperatures.

First, we explored oxygen plasma [184, 195, 196] and UV-ozone [197, 182] treatments, which

are known to modify the work function and change the stoichiometry of metal oxide films. We

therefore exposed TMO layers to UV-ozone and could completely bleach the colored films
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(see Figure S3 of reference [96]). However, when re-exposed to an Ar plasma, the coloration

recovered to a large extent the initial intensity. Oxygen (O2) plasma exposure was found to

be inefficient as an oxidizing method (Figure 3.6f) due to the presence of ion bombardment

having a reduction effect similar, but to a lower extent, to the one of an Ar plasma treatment

[196]. This finding also suggests that introducing oxygen in the TCO sputtering gas mixture

would not help to lower the reducing effect of the plasma.

To the best of our knowledge, the use of a CO2 plasma has not yet been proposed to engineer

the optical properties of TMOs. Figures 3.7a and 3.7c show the absorptance spectra for MoOx

and WOx , when treated with CO2 and Ar plasmas. The Ar plasma was used here to “mimic”

the effect of a TCO deposition by sputtering on a TMO layer, without actual film deposition.

For comparison, Figures 3.7b and 3.7d show the closer to-device cases with the full TMO/TCO

stacks, with or without the CO2 plasma treatment before TCO sputtering. From Figure 3.7,

three main effects can be observed: (1) CO2 plasma pretreating of as-deposited MoOx or

WOx films considerably reduces the damage caused by a subsequent Ar plasma and thus can

prevent, at least partially, the coloration observed in TMO/TCO stacks; (2) a CO2 plasma can

be used to effectively bleach a colored film, which has been treated with an Ar plasma, and

thus recover the as-deposited optical properties; (3) compared to MoOx , WOx is inherently

less affected by Ar plasma exposure and ion bombardment and can be completely bleached

by CO2 plasma exposure.

In order to better understand the chemical modifications induced to the MoOx and WOx films

by the plasma treatments discussed above, XPS measurements were carried out on cotreated
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samples. The full set of XPS spectra are given in the Supplementary Information of reference

[96]. We only focus on the Mo and W core levels and carbon peaks to draw conclusions on

changes in the chemical states of these elements due to the plasma treatments.

Figure 3.8 shows the core levels of MoOx and WOx , their respective carbon peaks, and the

fraction of their oxidation states measured by fitting the core level curves after the plasma

treatments. Both Mo and W are known to have several stable oxidation states [169], and it is

widely accepted that they can be identified from their binding energies. In addition, the im-

pact of Ar plasma exposure on stoichiometric molybdenum oxide (MoO3) and stoichiometric

tungsten oxide (WO3) (with Mo6+ and W6+ oxidation states) has been studied in the past, and

it has been confirmed by XPS measurements that it leads to the appearance of lower oxidation

states of the metal atoms [187].

Figure 3.8a shows the two characteristic core level peaks of Mo, at 232.7 eV for Mo 3d5/2 and

at 235.8 eV for Mo 3d3/2, in the as-deposited MoOx film, in good agreement with the literature

[181]. This as-deposited MoOx is largely composed of Mo in the 6+ oxidation state, and the

fraction of Mo6+ even increases after CO2 plasma treatment, proving the oxidizing effect of this

treatment. The Ar plasma treatment carried out on as-deposited MoOx dramatically reduces

its oxygen content and causes the films to be largely composed of 5+ and 4+ oxidation states,

which are at the origin of the large absorptance of this film, as shown in Figure 3.7a. Conversely,

the CO2 plasma-treated MoOx is quite resilient to Ar plasma exposure and still contains 88

at.% Mo6+ oxidation states after going through the same Ar plasma treatment, resulting in the
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lower optical absorptance compared to the sample without CO2 plasma pretreatment.

The as-deposited WOx has a large content (≈25 at. %) of W5+ which is significantly larger than

the Mo5+ content in as-deposited MoOx layers. The effects of CO2 and Ar plasma exposure

follow the same trend as for the MoOx layers: The content of Mo6+ increases after CO2 plasma

treatment, and the film becomes then resilient to subsequent Ar plasma treatment, result-

ing in a final W5+ content <10 at.%. This confirms the spectrophotometric observations in

Figure 3.7c that a WOx film can be totally bleached by a CO2 plasma and that a CO2 plasma

pretreatment prevents further coloration. This pretreatment also prevents a valence band

shift and the appearance of Mo d states in the band gap observed for the untreated samples

after Ar plasma exposure.

Further investigations will be necessary to determine the origin of this resilience after CO2

plasma treatment, as observed in our current set of measurements. We carried out a prelimi-

nary Raman spectroscopy measurement of MoOx layers on glass to determine their structural

properties (see Figure S7 of reference [96]). It clearly indicates that the as-deposited layer

are amorphous, with very broad peaks around the expected position of the α-phase peaks.

The Raman spectrum is not affected by the CO2 plasma treatment, which indicates that the

observed resilience dos not originate from structural changes. One possible explanation in

the case of MoOx could be the formation of Mo-O-C bonds that appears as a shoulder in the C

1s peak after the CO2 plasma treatment. In fact, such a shoulder emerges in the C 1s core-level

spectra of Ar plasma-treated samples relative to the as-deposed MoOx (Figure 3.8b). However,

the same effect of the CO2 plasma is not visible in WOx XPS spectra.

Furthermore, it is evident from the spectrophotometric measurements that WOx is intrinsi-

cally more resilient to ion bombardment than MoOx . A possible explanation for this difference

was formulated by Meyer et al. [198] WOx could form nanocrystalline clusters (WO3)n, which

offer large cross section for incoming particles such as Ar+ ions. Another possible explanation

involves the comparison of the standard reduction potentials of MoO3 and WO3, +0.075E◦/V

and -0.090E◦/V, respectively [199]. The more positive the reduction potential of a material,

the more readily it can be reduced. Therefore, MoO3 is intrinsically more prone to reduction

compared to WO3.

As mentioned above, the coloration of TMO layers can induce optical losses when used for

transparent electrodes of optoelectronic devices and could therefore be detrimental to device

performance. On the basis of our present findings, we implemented different TMO/TCO

stacks - untreated and exposed to CO2 plasma - in solar cells, where they have recently found

widespread application. Specifically for semitransparent perovskite solar cells for building

integration or tandem applications, TMOs are used underneath the transparent top electrode

to avoid sputter damage to the sensitive charge transporting and perovskite layers during TCO

sputtering [72]. Until now, MoOx has typically been used for these applications [193, 83, 74].

Duong et al. recently pointed out that a significant part of the sub-band gap absorptance of

their mesoporous semitransparent perovskite solar cells originates from the MoOx /ITO elec-

trode [74]. Based on the results shown in Figure 3.7, it would be beneficial, at least in terms of

optical properties, to replace MoOx by WOx and possibly to introduce a CO2 plasma treatment

between the TMO evaporation and the TCO sputtering processes. We therefore implemented
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this absorption mitigation strategy to semitransparent perovskite solar cells, with a device

architecture as shown in the inset to Figure 3.9, and obtained similar electrical performances

with WOx and MoOx layers, with or without CO2 plasma treatment (Figure 3.10), showing

steady efficiencies between 11 and 13% during maximum power-point tracking. WOx -based

cells showed slightly increased series resistances, which we attribute to a non-optimized

thickness. Further work will be necessary to optimize the electrical performance of these cells.

The optical gains of these cells due to the CO2 plasma treatment and the use of WOx are

illustrated in Figures 3.9 and 3.11. Figure 3.9 shows the EQE measurements of semitransparent

perovskite cells with WOx and MoOx layers. Because of the reduced parasitic absorption

losses, the WOx -based cell has a higher spectral response compared to the MoOx -based cell,
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when illuminated through the transparent electrode comprising the TMO/TCO stack. This

configuration is particularly important for monolithic perovskite-based tandem cells (such

as perovskite on silicon or perovskite on CIGS), where the perovskite top cell has to be illu-

minated through this electrode. When illuminated from the other side (glass substrate side),

the two cells show similar EQE. This case is relevant for single-junction devices or for top

cells in mechanically stacked 4-terminal tandems. However, a gain can be observed in the

sub-band gap spectral region, as illustrated by Figure 3.11. Low values in this graph indicate

high transmittance through the perovskite top cell. Previously reported semitransparent

perovskite solar cells had over 20% sub-band gap absorptance due to the use of FTO-coated

glass substrates and suboptimal layer stacks [72, 193]. After changing the substrates to ITO,

the sub-band gap absorptance could be reduced to 10-12% [83, 74], corresponding to the

MoOx as deposited case in Figure 3.11. Replacing this MoOx layer by a WOx layer with a

CO2 plasma treatment helped to further reduce these sub-band gap parasitic absorptions

by 2-3%abs . In a tandem configuration, where this near-infrared light is transmitted to a

low-band gap bottom cell (e.g. , a wafer-based silicon solar cell), this would therefore lead

to an improved bottom cell photocurrent. For monolithic perovskite/silicon heterojunction

tandem solar cells, current gains in both top (+0.2 mA/cm2) and bottom (+0.7 mA/cm2) cells

were observed when replacing MoOx by WOx , demonstrating the benefit of using WOx in such

tandem cells (see reference [96]). The remaining parasitic absorptance is then mostly due to

the absorptance in the electron and hole transporting layers. These measurements clearly

demonstrate that replacing MoOx by WOx and applying a CO2 plasma pretreatment prior to

TCO deposition can strongly reduce the parasitic absorption losses and increase photocurrent

in both the top cell and the bottom cell of tandem devices.
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3.3.2 In charge transporting layers

In a monolithic tandem, as it will be discussed later in Chapter 5, the semitransparent per-

ovskite cell is illuminated in substrate configuration, i.e. through the transparent electrode

instead of through the glass as in the more commonly used superstrate configuration. As

shown in Figure 3.12 or B.2, spiro-OMeTAD absorbs strongly the light in the spectral range

below 400 nm wavelength, which can be evaluated to >1 mA/cm2 loss compared to the pho-

tocurrent when illuminated in the superstrate configuration. It is therefore important to find

an alternative solution resulting in lower parasitic absorption losses.

PTAA was demonstrated as an efficient alternative to spiro-OMeTAD in opaque perovskite

solar cells [200, 27]. Unfortunately, it also generates strong parasitic absorption losses when

applied in semitransparent cells measured in substrate configuration, as shown from EQE

measurements in Figure 3.12a.
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Thin thermally evaporated organic layers were more promising. Figure 3.12b shows that re-

placing a 150-nm-thick and heavily doped spiro-OMeTAD by a 15-nm-thick NPB layer helps to

gain ≈1 mA/ cm2 in the wavelength range below 450 nm. Unfortunately, the J-V characteristics

of such cells were suffering from s-shapes, which indicate the presence of interfacial barriers.

We only managed to overcome these electrical performance limitations when using thin

undoped p-type evaporated layers by inverting the device polarity, from n-i-p to p-i-n (see

Sections 2.3.1 and 2.3.2). This is in contrast to other laboratories, where such layers were

successfully used in n-i-p cells [144]. As shown in Figure 3.13a, the spectral response in

the low-wavelength region can then be high, while keeping correct electrical performance

(Figure 3.13b). The remaining current difference between substrate and superstrate illumina-

tion, observed both in EQE and J-V measurements, can be attributed to non-optimal carrier

extraction and parasitic absorption in the TCO, as discussed in the next Section.

3.3.3 In the transparent conductive oxide

As shown in Figure 3.14, choosing a wide band gap TCO can provide a slight increase in

current due to higher transparency in the low-wavelength region. In their as-deposited

conditions, IZrO showed the best spectral response in this region for the tested TCOs when

measured in substrate configuration. For example, replacing IZO by IZrO allows to gain

0.15 mA/cm2 in the <400 nm region, due to their different optical band gap. IO:H can have

a very similar optical performance once annealed, here done at 150◦C in nitrogen to not

degrade the perovskite material. IZrO and annealed IO:H have also higher carrier mobilities

>100 cm2V −1s−1, compared to ≈55 cm2V −1s−1 for IZO. High carrier mobility is important to

minimize free carrier absorption losses in the longer wavelengths spectral region.
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3.4 Toward efficient large area NIR-transparent perovskite cells

Figure 3.15 shows the highest performing semitransparent perovskite cells with 1 cm2 area

fabricated during this thesis. In the p-i-n configuration using spiro-TTB as hole transporting

layer, C60 as electron transporting layer and SnO2/IZO as transparent electrode, the cell had

an efficiency of around 13% under maximum power point tracking and 13.5% from reverse

J-V curve, without antireflective foil nor coating. In the n-i-p configuration using LiF/C60 as

electron transporting bilayer, spiro-OMeTAD as hole transporting layer and MoOx /IO:H/ITO

as transparent electrode, the best cell had an efficiency of around 15.7% under maximum

power point tracking without ARF (see Figure B.3). With ARF, the current density increased

to >20 mA/ cm2, which pushed the performance >16%. Both cells had still rather low FF ,

which can be attributed to interfacial series resistance losses, unoptimized thicknesses and

charge transporting materials properties, including energy levels alignment with the used

perovskite materials, as well as recombinations in the perovskite absorber and its interfaces.

Also additional efforts in metallization design and TCO deposition processes will be needed to

further improve FF and overall cell performance of the 1 cm2 cell.
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Figure 3.15 – Best 1 cm2 area semitransparent CsFAPbIBr perovskite solar cell in a) p-i-n and b) n-i-p polarity.
Device schematics are given in both subfigure, showing the materials used for the presented cells. The inset in a)
shows the maximum power point tracking curve and J-V parameters table. A picture of the cell is shown in b),
illustrating the cell design and metallization.

3.5 General conclusions on the chapter

In this chapter, the requirements for an optimal transparent electrode were defined and its

initial development was described. As replacement for the opaque rear metal contact, a

TCO-based electrode was developed using a high mobility amorphous TCO, namely IZO,

absorbing <3% in the 400-1200 nm spectrum. Sputter damage was minimized by careful

control of the deposition conditions and with the introduction of a transition metal oxide

buffer layer, MoOx or WOx , thermally evaporated on the spiro-OMeTAD hole transporting

layer of n-i-p cells. Parasitic absorption losses in the buffer layer appeared to be important
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and a more in-depth investigation revealed that transition metal oxides are sensitive to the

sputtering plasma environment: light, temperature, argon bombardment... A method based

on an oxidizing CO2 plasma pre-treatment was developed to prevent the appearance of the

absorption peak in the buffer layer after TCO deposition. It was also shown that WOx is

intrinsically more resilient to sputtering damage compared to MoOx , and should provide

better transparency to the electrode. Similarly to the n-i-p cells, a transparent electrode was

developed for the p-i-n cells and the buffer layer was SnO2 deposited by ALD. The deposition

temperature was found to be an important parameter, with s-shaped J-V curves appearing

with too low or too high temperatures. 100◦C was found to give the best device performance.

Parasitic absorption losses are also important in the charge transporting layers. It was rapidly

found that spiro-OMeTAD was the source of strong parasitic absorption losses especially for

semitransparent cells measured in substrate configuration with direct illumination through

the spiro-OMeTAD electrode stack. Investigations were carried out to find a replacement that

is undoped, thinner and thermally evaporated. Only p-i-n cells allowed the use of both elec-

tron and hole transporting layers satisfying these criteria. Finally, 1 cm2 area semitransparent

perovskite cells were demonstrated in both p-i-n and n-i-p configurations, with efficiencies

up to ≈16%.

The semitransparent perovskite cells presented in this chapter are suitable for tandem appli-

cations, as they satisfy the requirements specified in the introduction. They were then applied

in perovskite/silicon tandem solar cells in both 4-terminal and 2-terminal architectures, as

presented in Chapter 4 and Chapter 5 respectively.

Future investigations on transparent electrodes for tandem applications should then focus

on further reducing parasitic absorption losses, and also incorporate constraints linked to

stability. Indeed, the electrode should also be designed so that it can provide a protection for

the perovskite absorber against the environment, e.g. moisture ingress, and at the same time a

barrier for volatile elements of the cell, e.g. effusion of organo-iodide components. Mechanical

stability of the electrode and its interfaces should also be improved in order to pass stress tests

such as damp heat or thermal cycling.
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4 Mechanically stacked 4-terminal
tandem solar cells

Summary

This chapter presents the integration of n-i-p semitransparent perovskite solar cells in me-

chanically stacked 4-terminal tandem solar cells. The challenges in reduction of the strong

parasitic absorption and reflection losses are first discussed, including solutions with the

introduction of optical coupling liquid, antireflective foils and less absorbing TCOs. Then,

4-terminal tandem measurements with >25% total efficiency are presented with a small area

top cell. Finally, larger 1 cm2 area top cells are integrated with similar size bottom cells to show

>23% efficient fully integrated 1 cm2 4-terminal tandem device.

4.1 Introduction

As soon as we had developed a perovskite solar cell with near-infrared transparency as pre-

sented in the previous chapter, the most straightforward way to assess its potential in a tandem

configuration with silicon was the 4TT architecture. The different tandem architectures cur-

rently under research are presented in the introduction chapter of this thesis (see Section 1.3.3),

where their advantages and disadvantages are also discussed. In the present chapter, we will

focus on the mechanically stacked 4TT configuration, where both subcells are fabricated and

characterized independently, thus reducing the constraints on mutual process compatibility.

The chapter is divided in two main parts: the initial tests on this tandem configuration are

first presented, showing the challenges and some simple solutions to parasitic absorption and

Parts of this chapter are based on published work. The sections reproduced in part or fully are marked with an
asterisk ∗. Section 4.2 is partially based on a publication in Solar Energy Materials and Solar Cells and adapted
with permission from [72]. Section 4.3 is partially based on a publication in ACS Energy Letters, adapted with
permission from [76], and a conference proceeding [91].
The bottom cells used in Figure 4.4 were developed by Loris Barraud at CSEM especially for the 1 cm2 area tandem
devices.
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reflection losses. Then, based on these initial observations, Section 4.3 shows the development

of the 4TT toward high efficiencies, from measurements with small top cells to more realistic

integrated larger area devices. For more detailed information on the characterization protocol

or fabrication processes, the reader should refer to the experimental method in Annexe A.

4.2 Initial tests: parasitic absorption and reflection losses reduc-

tion *

In 2014, at the beginning of this thesis, mesoporous perovskite solar cells using compact and

mesoporous TiO2 layers were the most advanced cell structure [201]. Therefore, as already

described in Section 3.2, our first semitransparent perovskite solar cells were based on this

device structure. FTO coated glass substrates were initially used for their high thermal stability,

necessary to maintain good electrical properties after TiO2 sintering at 500◦C. When first

applying these newly developed NIR-transparent perovskite solar cells in a 4TT configuration,

it became rapidly clear that the FTO was the main contributor to the top cell’s sub-band

gap parasitic absorption. A 4TT measurement consisted here of measuring the J-V parameters

of the semitransparent perovskite cell, then measuring its EQE curve. This cell is then used as

a filter to measure the EQE of the bottom cell as it would appear in a tandem configuration,

with still an air gap between the top and bottom cells. As shown in Figure 4.1, the increased

absorptance in the red and NIR spectral region due to larger free-carrier density in FTO (see

Figure 4.1e) translates directly in the bottom cell’s EQE by a loss of >1 mA/cm2 compared to a

measurement with a similar perovskite cell using a less absorbing ITO front electrode. We can

however see that even with ITO, having lower free-carrier absorption, further improvements

are still necessary to match the non-filtered reference silicon cell, as shown in Figure 4.1b.

The bottom cell current can be further improved by reducing parasitic absorption losses in

the front transparent electrode. Indeed the MoOx buffer layer needed to protect the sensitive

organic underlying layers from the rough sputtering conditions was found to contribute sig-

nificantly to the parasitic absorption losses. This increased absorption after TCO deposition is

explained with more details in Section 3.2.2. In brief, the argon (Ar) bombardment, plasma

luminescence and temperature during TCO sputtering were found to reduce the metal ox-

ide by increasing the oxygen vacancies density, which can act as absorbing optical centers.

This increased parasitic absorption can be directly observed in the bottom cell EQE in a 4TT

measurement, as shown in Figure 4.1b. This Figure clearly shows that the perovskite top cell

without MoOx buffer layer was more transparent in the wavelength range between 600 and

1000 nm. However, this top cell was also less efficient due to more intense sputter damage and

degraded spiro-OMeTAD hole transporting layer, creating a trade-off between reduced sputter

damage and increased parasitic absorption when introducing the MoOx buffer layer.

IZO as front TCO was chosen for its good electrical and optical properties in its as-deposited

state (see Section 3.2). The higher carrier mobility of IZO compared to ITO or FTO can be

observed in Figure 4.1e, with clearly different absorptance spectra in the long wavelengths due

to free-carrier-absorption. In the shorter wavelength range, IZO is however penalized by its
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for better comparison; f) EQE measurement of a semitransparent perovskite cell, illuminated either in substrate
(through the IZO/MoOx /spiro-OMeTAD electrode) or superstrate (through the glass).

narrower optical band gap. This issue is more important for monolithic tandem solar cell, as it

will be discussed in the next chapter. Indeed in the 4TT configuration, the top cell illumination
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orientation can be freely chosen to the more advantageous superstrate architecture (light

enters the cell through the glass substrate). This situation reduces the constraints on the

TCO optical band gap and on the short wavelengths transparency of the charge transporting

layer, here spiro-OMeTAD, which is known to strongly absorb in the <400 nm wavelength

range. Figure 4.1f illustrates these two situations with a semitransparent cell measured in

substrate (from IZO) and superstrate (from glass) configurations. The charge transporting

layers can however also contribute to the parasitic absorption losses in the longer wavelengths,

mainly through their dopants, as shown in Figure 4.1d demonstrating the effect of thinning

down the top cell’s hole transporting layer (HTL) on the quantum efficiency response of the

bottom cell. The improved bottom cell’s response here can also be partially attributed to

different reflectance, changing the interference pattern in the tandem device. Thinning down

spiro-OMeTAD however leads to reduced electrical performance of the top cell, which largely

outweigh the gain in the bottom cell for the total tandem efficiency.

Reflection losses were also found to be significant. In the presently investigated 4TT archi-

tecture, the two subcells are mechanically stacked on top of each other, leaving an air gap in

between. The refractive index mismatch in the layer sequence TCO/Air/TCO (n=≈2/1/≈2)

induces large reflection losses for the bottom cell. The introduction of an optical coupling

layer between the subcells helped to further increase the bottom cell current as shown in

Figure 4.1a&c , e.g. PDMS has n≈1.4, canola oil has n≈1.47. The reflection on the front glass

surface can be reduced by either depositing an antireflective coating (e.g. LiF, magnesium

fluoride (MgF2), porous silicon dioxide (SiO2)) or using a ARF (described further in experimen-

tal method Section A.4.3). This foil can be applied directly on the glass during the J-V and

EQE measurement, helps to decrease the reflection and enhances light trapping for both the

top and bottom cell. An illustration of its impact on the bottom cell response can be seen in

Figure 4.1c and this technique was later on applied to all 4TT measurements.

From these preliminary observations, it is clear that the performance of the top perovskite

cell needs to be improved, while keeping in mind the crucial importance of low parasitic

absorption losses, in order for the tandem to outperform the silicon single junction cell.

4.3 Toward 1 cm2 area integrated 4TT tandem device *

Figure 4.2a shows a schematic of the 4TT architecture, as well as the top cell orientation in

superstrate configuration. All tandem results discussed in this Section will follow this arrange-

ment and include optical coupling and ARF.

Using semitransparent mesoporous perovskite solar cells (see device schematic in Figure 1.3

of introduction) grown on FTO substrates, 4TT measurements reached efficiencies up to 18%

[72]. As mesoporous cells require a TiO2 scaffold layer annealed at 500◦C, only FTO-coated

substrates could be used, thanks to their thermal stability. ITO has a higher carrier mobility

compared to FTO, and hence lower free carrier absorption in the long wavelengths spectral

range. However, the conductivity of ITO drastically decreases after 500◦C annealing. When

still relying on the high-temperature sintered TiO2 electron transporting layer, replacing FTO
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by ITO pushed the 4TT efficiency to 19.6%, thanks to its better transparency, and therefore

lower parasitic absorption in the NIR spectral region. The development of a low-temperature-

processed perovskite cell (described in Chapter 2) allowed us then to use ITO substrates, taking

advantage of their better transparency, without degrading their electrical properties. These

low-temperature cells were in n-i-p configuration using PEIE/PCBM as electron transport-

ing layer and spiro-OMeTAD as hole transporting layer. The performance of these MAPbI3

semitransparent perovskite cells could be raised up to 16.4% with an aperture area of 0.25 cm2.

By mechanically stacking this cell onto a 4 cm2 silicon bottom cell, a 4TT measurement of

25.2% could be demonstrated experimentally. The EQE and J-V curves of this tandem mea-

surement are shown in Figure 4.2. The perovskite absorber material was then modified toward

slightly higher band gaps by introducing FA as a second cation and bromine as second halide,

400 500 600 700 800 900 1000 1100
0.0

0.2

0.4

0.6

0.8

1.0

FAMAPbIBr, 1.65 eV
18.99 mA/cm2

17.43 mA/cm2

MAPbI3, 1.55 eV
19.51 mA/cm2

16.36 mA/cm2

E
Q

E
(-)

Wavelength (nm)

V oc J sc FF Eff. Pmppt

perovskite, 1.55 eV 1069 20.1 74.9 16.1 16.4
filtered silicon 693 15.98 79.5 8.8
4TT 25.2
perovskite, 1.65 eV 1086 20 77.1 16.8 16.2
filtered silicon 695 17 79.8 9.4
4TT 25.6

Figure 4.3 – EQE measurements of perovskite/silicon 4-terminal tandem cells, comparing two different perovskite
compositions: FAMAPbI3−x Brx and MAPbI3. The FAMA-based cell was fabricated by Florent Sahli. For more
detailed information on the characterization protocol or fabrication processes, the reader should refer to the
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increasing the band gap from 1.55 to 1.65 eV while keeping the top cell performance almost

unchanged. The total 4TT measurement efficiency was then raised to 25.6%. This slight per-

formance increase can be attributed to the additional current in the silicon bottom cell during

the 4TT measurement, as shown in Figure 4.3. This clearly shows the necessity of moving

to a larger top cell band gap for optimal tandem performance, which could be obtained by

changing MAPbI3 perovskite composition for a mixed-cation/halide perovskite material. This

was largely the reason for the latest improvements of the 4TT efficiency record: for example,

Duong et al. [78] used a quadruple cation (RbCsMAFA) perovskite absorber with 1.75 eV band

gap yielding 26.4% tandem efficiency (0.16 cm2 top cell area).

Nevertheless, these tandem measurements showed already an efficiency improvement of

>3%abs , as compared to the single-junction silicon heterojunction cells that were used as

bottom cells and which had 1-sun efficiencies around 22%. The experimental demonstration

of efficiencies beyond 25% with this tandem configuration also confirmed the potential of

perovskite solar cells to boost the performance of high-efficiency silicon technology in tandem

devices.

Demonstrating the same tandem device performance on >1 cm2 cell area is the necessary

next step toward a potential future industrialization. Therefore, after reaching >25% tandem

efficiencies with small area top cells, our focus was redirected to the fabrication of efficient

fully integrated tandem devices with both subcells having an aperture area of 1.03 cm2 and

being permanently attached to each other. We therefore further adapted the top cell to achieve

high performance on 1 cm2 area, which requires high uniformity in the deposition of all cell

layers and high film quality, especially for the perovskite absorber. The spin coated PCBM

electron transporting layer was thus replaced by a thin evaporated layer of C60, allowing for

better control on the layer thickness and pin-hole density difficult to achieve for <10 nm

solution processed films. The perovskite composition was adapted to CsFAPbI3−x Brx , which,

in our case, was key to fabricate high quality perovskite layers on larger areas. With these im-

provements, a 15.2% semitransparent top cell was fabricated and integrated on a SHJ bottom
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cell specifically designed with the same cell geometry and size. The two cells were optically

coupled and glued together with polydimethylsiloxane (PDMS). This fully integrated mechan-

ically stacked 4-terminal tandem device had an efficiency of 23.2%, as shown in Figure 4.4.

The top cell was limited by a fill factor of ≈70% and the bottom cell mainly by the current,

which was reduced by shadow losses due to the thick evaporated metal fingers used on the

top cell back electrode. Those two losses are directly linked and might be drastically reduced

by changing the metallization process from evaporation to screen printing. However, this

technique requires a temperature-stable cell, which could be achieved with inverted p-i-n

semitransparent perovskite cells as described in Chapter 3. However their performance at

the time of writing this thesis were not sufficient to outperform the n-i-p top cells in 4TT

devices. As presented in Chapter 3, 1 cm2area semitransparent n-i-p perovskite cells could be

fabricated with >16% efficiency. However, after integration on the silicon cell with ribbons

and PDMS, the cells usually lost some FF, which explains the 15.2% cell presented here (as

measured in the integrated device). Further optimization of the integration methodology

should help to reduce these losses.

4.4 General conclusions on the chapter

The potential of perovskite/silicon tandem solar cells was demonstrated with >25% total

efficiency in a 4TT measurement with a small area perovskite top cell and >23% in a fully

integrated 1 cm2 area tandem device. Such tandem devices showed already excellent perfor-

mance, especially in the blue spectral region where they outperform the SHJ single-junction

cell, which itself suffers from parasitic absorption in the amorphous silicon layers. Light man-

agement and parasitic absorption are unarguably an essential topic for future development,

which we showed by pointing out several issues in the choice of materials for the electrodes

and charge transporting layers. Parasitic absorption losses are also an intrinsic disadvantage

of the 4TT configuration as compared to monolithic tandem solar cells discussed in the next

chapter, due to the additional TCO layers required to contact the rear side of the top cell and

the front side of the bottom cell.

In terms of performance, the logical next goal is to reach >30% and reduce the efficiency gap

with the III-V/Si mechanically stacked tandem devices, for which the record tops at 32.8%

[14]. This should be practically possible, but still highly challenging, with further efficiency

improvement of the perovskite top cell toward 20%, while keeping high near-infrared trans-

parency and optical band gap closer to 1.7 eV. However, in order to stay relevant and directly

comparable with the III-V technology, >1 cm2 area devices should become the rule and not

the exception.

For strategic reasons, after the demonstration of the potential in 4TT, our focus was redirected

to the more industrially promising monolithic tandem solar cells, which are described in the

next chapter.
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5 Monolithically integrated 2-terminal
tandem solar cells

Summary

This chapter presents the integration of perovskite solar cells in 2-terminal monolithically

connected tandem solar cells with silicon heterojunction bottom cells. First the development

of a TCO-based recombination layer is described and a flat n-i-p tandem with 21.2% efficiency

is presented. Then, the important reflection losses and interference effects observed in all-flat

devices are discussed, including solutions to these issues. The origins of parasitic absorption

losses in monolithic tandem are then explained and, supported by optical simulations, new

architectures and materials are investigated. Textured bottom silicon cells are then introduced:

an attempt of planarization with LPCVD ZnO is first described with its inherent technical

difficulties; then the development of a tandem device with the p-i-n top cell conformally

coated onto the textured bottom cell is explained, leading to 25.24% certified power conversion

efficiency, under maximum power point tracking. Finally, the up-scalability and light soaking

stability of the developed textured tandems are shortly discussed with preliminary results. The

chapter finishes with a proof-of-concept of a first perovskite/perovskite/silicon triple junction

solar cell on textured wafers and a conclusion and perspectives section.

Parts of this chapter are based on published work. The sections reproduced in part or fully are marked with
an asterisk ∗. Sections 5.1, 5.2 and 5.3.1 are partially based on a publication in The Journal of Physical Chemistry
Letters, adapted with permission from [83]. Section 5.2.1 is partially based on a publication in Applied Physics
Letters, adapted with permission from [84]. Section 5.3.2 is partially based on a publication in ACS Energy Letters,
adapted with permission from [76]. Section 5.3.3 is partially based on a publication in ACS Energy Letters, adapted
with permission from [97]. Sections 5.4.3 and 5.5 are based on results that were, at the time of writting, submitted
for publication in Nature Materials [98]. The first three paragraphs of Section 5.6 are adapted from reference [1].
The first paragraph of Section 5.5 is adapted from reference [1] and the stability results shown in this section were
submitted for publication in reference [98].
For the development of monolithic tandem cells, I acknowledge Quentin Jeangros for the FIB/TEM microscopy;
Arnaud Walter, Brett A. Kamino, Björn Niesen and Matthias Bräuninger for their experimental contributions, ideas
and discussions; Florent Sahli for the close collaboration in the last year to develop the textured tandem record
cell; the silicon teams of PV-Lab and CSEM for providing the bottom cells.
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5.1 Introduction *

In the case of monolithic tandems, the top cell is directly processed on the bottom cell. This

has the advantage of a reduced number of fabrication steps and fewer doped transparent

conducting electrodes, resulting in lower manufacturing costs and less parasitic absorption.

However, monolithic tandems require strict process compatibility, such that both top and

bottom cell fabrication schemes have to be specifically adapted for monolithic tandem inte-

gration: i) both subcells have to be optimized to produce the same current at maximum power

point, as the tandem current will be limited by the subcell with the lower current; ii) the per-

ovskite cell may have to be processed at low temperatures for temperature-sensitive bottom

cells, such as the SHJ solar cells, the silicon photovoltaic technology with currently the highest

performance; iii) bottom cells with front surface texture are not compatible with solution-

processing, which is typically used for the deposition of many layers during perovskite cell

fabrication. This implies a current loss due to the lack of light trapping normally provided

by the random pyramid texture of the silicon wafer; iv) the typically opaque rear electrode of

perovskite cells has to be replaced by a conductive layer with high transparency throughout

the visible and near-infrared spectrum; v) perovskite cells are usually much smaller than

the industrially established silicon cells, which requires up-scaling of perovskite deposition

processes or the development of efficient lab-scale silicon cells.

This chapter covers the results obtained during this thesis toward solving these problems: top

cell integration, intermediate contact development, parasitic absorption reduction, reflection

losses minimization by using fully textured wafers, up-scalability and demonstration of net

efficiency gain compared to single junction cells.

5.2 Intermediate recombination layer: ITO, IZO*

In the case of a monolithic tandem, the device is connected to an external load by 2 terminals,

one on the front of the tandem connecting the top cell front electrode and one on the rear

connecting the back contact of the bottom cell. The two subcells are then connected in series

through a recombination layer or tunnel junction: This feature is specific to this tandem

architecture and critical for the device performance. In an ideally current-matched tandem

cell, i.e. a tandem where both subcells are producing the same photogenerated current, an

equal number of charge carriers are flowing from both subcells. For example, in a rear emitter

device, the n-contact of the bottom cell is connected through the recombination layer to

the p-contact of the top cell, allowing the electrons and holes generated respectively in the

bottom and top cell to recombine. The intermediate contact must also be highly transparent

(especially between 600 nm and 1200 nm), chemically stable and rely on simple up-scalable

processes.

We initially chose to develop a recombination layer based on sputtered indium zinc oxide

(IZO) due to its optimal electro-optical properties [161]. Furthermore, IZO has already been

demonstrated to be an efficient intermediate contact in organic tandem solar cells [202]. The

patterned intermediate recombination layer and top electrode were aligned, defining the
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Figure 5.1 – a) EQE spectra of a perovskite/SHJ monolithic tandem with (solid lines) and without (dashed lines)
ARF as well as the corresponding reflectance (green curves). The integrated J sc for both top and bottom cells are
given in the legend (without ARF/with ARF). b) J-V measurements of the best perovskite/SHJ monolithic tandem
with 1.22 cm2 aperture area and of the single junction perovskite and double-side mirror polished (DSP)-SHJ cells.
Reverse (solid lines) and forward (dashed lines) scans are shown for perovskite single-junction and tandem cells.
The dotted red curve shows the J-V curve of the SHJ cell when illuminated at an intensity of 0.53 suns. c) J-V curves
of the best perovskite/SHJ monolithic tandem with 0.17 cm2 aperture area. The insets to panels b and c show the
maximum power point tracking curves of the tandem cells. d) EQE measurements of monolithic tandems with
200 nm spiro-OMeTAD for three different IZO thicknesses and e) with 26 nm IZO intermediate recombination layer
for three different spiro-OMeTAD thicknesses, measured without ARF foil. The inset pictures show the colors of
the devices after spiro-OMeTAD deposition. f,g) Transfer matrix simulations showing how the interference pattern
and current varies in the top cell in function of both IZO recombination layer and spiro-OMeTAD thicknesses. All
perovskite absorbers in this Figure have a MAPbI3 composition. Reproduced with permission [83]. Copyright 2016,
American Chemical Society.

active area of the tandem solar cell. We fabricated monolithic tandem cells with a planar

MAPbI3 perovskite top cell in n-i-p configuration deposited at a temperature below 150◦C
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Chapter 5. Monolithically integrated 2-terminal tandem solar cells

on an SHJ bottom cell, using DSP silicon wafers [83]. The choice of a polished bottom cell

was dictated by the top cell processes, employing spin-coated charge transporting layers,

i.e. spiro-OMeTAD and PCBM.

With an efficient and reliable semitransparent n-i-p perovskite solar cell and the IZO interme-

diate recombination layer, we could fabricate monolithic tandem solar cells with an efficiency

as high as 19.5% in forward direction scan, with a V oc of 1703 mV, FF of 70.9% and J sc of

16.1 mA/cm2. This cell was measured through a laser-cut mask with 1.22 cm2 aperture area

and showed a steady efficiency of 19.2%, when measured with a maximum power point track-

ing system. The complete set of results is detailed in Figure 5.1, and demonstrates that the

tandem performance is better than those of both subcells. The small difference in J sc between

J-V (16.1 mA/cm2) and EQE (16.8 mA/cm2) measurements is due to the shadowing induced

by the metal contact fingers, which cover 5% of the cell surface.

Efficiencies of up to 21.2% were reached on smaller tandem cells with an aperture area of

0.17 cm2, as shown in Figure 5.1c. The cell also shows negligible hysteresis and J sc is confirmed

by EQE measurements. Compared to the cell with a larger area, we observe a gain in FF due to

reduced current and series resistance.

During the second half of this thesis, we introduced a nanocrystalline silicon recombination

junction as a replacement to the TCO recombination layer. This innovation was published

by Sahli et al. [86] and helps to reduce parasitic absorption and internal reflection losses

between the subcells. Its lower lateral conductivity in the nanocrystalline silicon (nc-Si:H)

layers reduces the influence of shunt paths in the perovskite top cell, thus increasing the shunt

resistance of the tandem and facilitating its up-scaling.

5.2.1 High-temperature stability of recombination layer *

Due to the sensitivity to process temperature above 200–300◦C of SHJ cells, this type of bottom

cell is not compatible with high-efficiency mesoporous perovskite top cells. Indeed, this

perovskite cell architecture, which is at the origin of many recently certified single-junction

efficiency records, is commonly based on a mesoporous TiO2 scaffold layer, which typically

requires a 500◦C annealing step prior to perovskite absorber deposition. Incorporating this

type of perovskite cell in a monolithic tandem therefore requires both the silicon bottom

cell and intermediate recombination layer to be stable up to a temperature of 500◦C. Most

diffused-junction silicon solar cells could be designed to be compatible with a 500◦C step, as

they undergo typical diffusion/oxidation or firing steps close to 900◦C. The commonly used

indium tin oxide (ITO) or indium zinc oxide (IZO) is neither electrically nor optically stable

upon annealing in an oxygen containing environment at 500◦C and therefore is not compatible

with the mesoporous perovskite top cell fabrication procedure. We have therefore developed

a simple method to combine a mesoporous perovskite top cell with a homojunction silicon

bottom cell, using a sputtered zinc tin oxide (ZTO) recombination layer. ZTO has previously

been used as an electron transporting layer in organic optoelectronic devices [203, 204] and

in thin-film transistors as the channel material [205, 206]. It was shown to be a promising

indium-free n-type metal oxide with high electron mobility and transparency, as well as good
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permission [84]. Copyright 2016, AIP Publishing.

temperature stability and mechanical integrity [207]. These properties qualify ZTO as an

attractive candidate for the integration in monolithic tandem devices as an intermediate

recombination layer. As shown in Figure 5.2, thanks to the thermal stability of optical and

electrical properties up to 500◦C, it can indeed be used effectively in a tandem solar cell as

a recombination layer. As a proof-of-principle, we fabricated monolithic tandem cells with

efficiencies up to 16%, with an aperture area of 1.43 cm2. Figure 5.2c shows how the variation

of the recombination layer thickness influences the optical interference pattern in the device.

This device structure with diffused junction bottom cell and a mesoporous perovskite top cell

was however then left aside, in order to focus fully on the low-temperature processed cells

combining the sequential interdiffusion method for the top cell and silicon heterojunction

bottom cells, seen as more promising on the long-term.

5.3 Reflection and parasitic absorption losses

5.3.1 Controlling the interference pattern *

The planar and non-scattering configuration of DSP wafer-based tandem devices results in

strong optical interferences. This can clearly be identified in the EQE spectra, as shown in

Figure 5.1a. Therefore, several strategies were investigated to reach the high performances

presented in Figure 5.1c.

To increase the current of our devices, we applied microtextured anti-reflective foils (ARF)

on the front side of the cells during characterization [208, 17]. As shown in Figure 5.1a, this

strategy helps to drastically reduce reflection losses and to increase the current in the 1.22 cm2-

sized tandem cell by ≈10% in the top cell and by ≈16% in the bottom cell. Consequently, it

passes from a bottom-limited to a top-limited situation. Previous studies on multijunction

organic solar cells have shown that optical interferences can be tuned to maximize the light

intensity in the absorber layers by changing the effective optical path length. This is usually
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achieved by the insertion of an optical spacer [209, 210]. Motivated by these findings, we

experimentally tested the effect of thickness variations in our devices. First, we varied the in-

termediate recombination layer thickness between ≈25 and 70 nm. The resulting EQE curves

are shown in Figure 5.1d. We can observe a decrease in bottom cell current with increasing IZO

thickness. The lower thicknesses lead to a situation where the perovskite top cell is current-

limiting, whereas the highest thickness shifts the limitation to the bottom cell. An optimum

situation with closely matching currents is therefore achieved with a 40 to 50 nm thick IZO

layer. Similar results were obtained when using an ITO recombination junction. Then, the

spiro-OMeTAD hole transporting layer thickness was varied. We choose to test this layer in

particular because of its known high parasitic absorption, especially for wavelengths <400 nm,

as it was discussed in Chapter 3.3.2. Reducing parasitic absorption in the hole transporting

layer can then be achieved by either replacing spiro-OMeTAD by a more transparent material

or by reducing its thickness and doping.

Figure 5.1e shows the resulting EQE spectra of tandem cells with spiro-OMeTAD layer thick-

nesses of ≈200, ≈130, and ≈60 nm. Interestingly, this thickness variation had a much stronger

effect on the optical interference pattern compared with the IZO thickness variation. A small

current gain (+0.3 mA/cm2) can also be observed for wavelengths <400 nm, illustrating the

improved transparency for thinner spiro-OMeTAD layers; however, sub-100 nm layers induced

losses in V oc and FF for both tandem and single-junctions cells, reducing the overall device

performance.

To support these experimental results, we performed transfer matrix simulations of the tandem

layer stack. The calculated absorptance spectra for several spiro-OMeTAD layer thicknesses

are shown in Figure 5.1f. They accurately reproduce the interference patterns observed in the

measured EQE spectra. Figure 5.1g shows the effect of varying simultaneously the thicknesses

of the IZO recombination layer and the spiro-OMeTAD layer on the current generated in the

top cell. The simulations agree well with the experimental results, showing that a ≈40 nm thick

intermediate recombination layer and a 150 nm thick spiro-OMeTAD layer result in a local

maximum for the top cell current. In these simulations, the maximum current is obviously

obtained for a cell without spiro-OMeTAD layer, which would however result in drastically

reduced overall device performance.

Reflection losses could be further reduced by using a textured SHJ bottom cell to more effi-

ciently harvest infrared photons and further increase photocurrent. A rear texture could be

implemented while keeping the front side flat to remain compatible with solution-processed

top cells, as discussed in the next paragraph.

5.3.2 Bottom cell with rear-side texture for an enhanced infrared response *

As mentioned previously, monolithically integrated tandems are technically more challenging

to realize because of strict process compatibility restrictions, also involving the requirement

for a bottom cell with a sufficiently flat front surface for solution-processed top cells. Our first

reported monolithic perovskite/SHJ tandem cell thus featured a DSP bottom cell and reached

efficiencies of up to 19.2% for a cell area of 1.2 cm2 [83]. A major limitation of this device
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was the low spectral response at the silicon band edge due to the polished SHJ rear side. We

therefore then introduced a single-side textured (SST) SHJ bottom cell to enhance the bottom

cell current. Figure 5.3a provides schematic drawings of monolithic tandems with DSP and

SST bottom cells, the only difference being the textured rear side. To prepare SST bottom cells,

the process was started with double-side polished silicon wafers, on which one side was first

coated with a SiNx dielectric mask. The texturization step was then carried out, followed by a

cleaning and mask removal step in a diluted HF bath, resulting in a single-side textured wafer.

The plasma enhanced chemical vapor deposition (PECVD) recipes for the amorphous silicon

layers were then adapted to fit the front or rear surface finish.

The improvement in spectral response is illustrated by Figure 5.3b, showing a comparison

EQE spectra for monolithic tandems with DSP and SST bottom cells. We can observe that the

rear-side texture affects the EQE spectra only at wavelengths >1000 nm, as expected from the

literature [69, 68], enhancing the bottom cell current density by 0.77 mA/cm2 (without ARF).

This design upgrade of our monolithic tandem enabled us to fabricate a cell with up to 20.5%

initial steady-state efficiency under maximum power point tracking. The cell was measured

with an aperture area of 1.43 cm2, and an ARF was used to attenuate the interference pattern,

increasing J sc to 16.4 mA/cm2 (from J-V scans). The device was then current-limited by the

perovskite top cell, as shown by the tandem EQE curves in Figure 5.3b. To further improve

tandem performance, the perovskite top cell will therefore need to generate a larger current.

In addition, more advanced rear reflectors could be implemented to boost the bottom cell

infrared current, using dielectric materials to enhance rear internal reflectance and reduce

plasmonic absorption losses in the metallization [23, 211].

5.3.3 How to further reduce parasitic absorption and reflection losses? *

Light management is in any near-future research scenario unarguably an essential topic

in perovskite/silicon tandem development. Because we used the same top cell for both 4-

terminal (see Chapter 4) and 2-terminal (previous paragraph of this chapter) tandem cells,
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we can directly compare the mechanically stacked and monolithic tandem cells in terms of

their parasitic absorption and light management requirements. The so-far higher efficiency

demonstrated with the mechanically stacked configuration is directly linked to better light

trapping, no necessity for current matching, and a free choice in top cell illumination direction.

In this context, in a monolithic tandem, the perovskite n-i-p top cell has to be illuminated

through the spiro-OMeTAD layer, leading to severe parasitic absorption in the UV and visible

spectrum. These losses become apparent from Figure 5.4, by comparing the spectral response

in the <400 nm wavelength range of both tandem configurations. The mechanically stacked

tandem shows excellent performance in this spectral region, even outperforming the SHJ

single-junction cell, which itself suffers from parasitic absorption in the amorphous silicon

layers.

Overall, the perovskite top cell in the mechanically-stacked configuration shows a 2.8 mA/cm2

higher than that of the top cell in the monolithic tandem. By recovering about a third of these

losses in the perovskite cell, the monolithic tandem would become current-limited by the

bottom cell, even for a relatively thin perovskite cell. This clearly shows the necessity of moving

to a larger top cell band gap for optimal monolithic tandem performance, which could be

obtained by changing the standard MAPbI3 composition for a mixed-cation/halide perovskite

material, as discussed in Section 2.2.3.

The 4-terminal design of the mechanically stacked tandem, however, has a disadvantage: the

presence of the additional transparent ITO contact in this configuration leads to a significant

increase in parasitic absorption losses in the 850–1200 nm wavelength range due to free-carrier

absorption [96]. As a result, the bottom cell current in the monolithic tandem, which requires

only a very thin IZO intermediate recombination layer, is 1.2 mA/cm2 higher. Further current

gains in the bottom cell of monolithic tandems are expected by replacing IZO with a thin-film
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silicon recombination layer, reducing the refractive index mismatch. This has been then

demonstrated by Sahli et al. [86].

Interestingly, in the 550–800 nm spectral region, where free-carrier absorption in the transpar-

ent contacts is still negligibly small, the bottom cell current of both tandem configurations

is nearly identical. This indicates that light transmission to the bottom cell is not affected by

the absence or presence of a front-side texture in the wafer or whether the perovskite cell is

separated from the SHJ cell by an optical coupling film or directly deposited on it.

The summed current of both subcells is 34.3 mA/cm2 and 35.9 mA/cm2 for the monolithic

and mechanically stacked configuration, respectively, compared to 39.6 mA/cm2 (without

front-side metallization shadow losses) for the textured single-junction SHJ cell, which is

used for the 4-terminal tandem measurements. This difference can partially be explained by

parasitic absorption losses in the MoOx layer used in the tandem cell front electrode, which is

induced by sputter damage during the TCO layer deposition. Such losses could be reduced by

using the more resilient and transparent WOx , as discussed in Section 3.3.1.

Reflection losses also contribute to the difference between tandem and SHJ single-junction

EQE spectra. By replacing the rear-side textured wafer in the monolithic tandem with a

double-side textured one, while keeping everything else unchanged, we could expect to gain

≈2.6 mA/cm2, resulting in a summed current of >36.9 mA/cm2. Such a double-side textured

bottom cell requires the development of conformal perovskite cell deposition processes for

highly textured substrates, which we discussed in Sections 2.3.2 and 3.2.3. This calculation

however already shows that the parasitic absorption losses discussed above are more impor-

tant than reflection losses for the monolithic tandem with single-side textured bottom cell

and ARF. Considering the integration of monolithic tandems into glass-glass encapsulated
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modules, where the application of such an antireflective foil is expected to be less effective, the

use of a double-side textured wafer would have a more pronounced effect on cell performance.

As already introduced in Chapter 3, parasitic absorption losses can be reduced by using thin

undoped evaporated charge transporting layers in the p-i-n cell configuration (see e.g. Fig-

ure 3.14). Figure 5.5 shows an experimental comparison of monolithic tandems on DSP wafers

in either p-i-n or n-i-p configuration. These results show clearly the optical gains induced by

inverting the device polarity, considering the charge transporting materials available. In p-i-n

configuration, the current of the tandem cell was largely bottom limited, even if the top cell

band gap was already blue-shifted compared to the absorber material used in the cell in n-i-p

configuration. Using transfer matrix simulations, we can therefore now find optimization

directions for a perovskite/silicon monolithic tandem in rear-emitter configuration with a

p-i-n top cell. This includes a nc-Si:H tunnel junction [86] and a perovskite top cell with NiOx

as hole transporting layer and C60/SnO2/IO:H as the front contact stack. In order to limit

the complexity of the simulations presented here, all layers were considered to be flat (no

surface roughness or texture). Complex refractive indices were either measured in-house or

taken from literature [103, 212, 161, 213, 214, 215, 216]. The simulation results are shown in

Figures 5.6 and 5.7.

The current of a monolithic tandem solar cell is limited by the subcell that generates the lowest

current and the tandem voltage ideally is the sum of the subcells’ voltages. Therefore, the opti-

mal performance will be obtained when the top cell material is chosen such that it provides

the highest voltage possible, while allowing the tandem cell to stay close to a current-matched

situation [217]. Figure 5.7a illustrates a situation where the optical band gap of the top cell is

increased without adjusting its thickness, leading quickly to a large current mismatch outside

of the optimized region. Figure 5.7b shows the effect of varying the perovskite layer thickness
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5.3. Reflection and parasitic absorption losses

on the same tandem cell. As expected, this affects the top cell only for wavelengths λ > 500 nm,

where the perovskite absorbs in the low-finesse thin-film interference regime [218]. Further

research will therefore be necessary to develop thick perovskite layers (up to 1 μm) with still

high optoelectronic quality. It is also evident from this data that, due to parasitic absorption

losses and practical thickness constraints, the highest optical band gap which still allows for

a current-matched situation is lower (≈1.65-1.68 eV) compared to what would be expected

from an ideal, loss-free, tandem cell (≈1.75 eV) [219].

Parasitic absorption losses in a particular layer can be reduced by either tuning its material

properties or by reducing its thickness. For the p-i-n perovskite cells described in Section 2.3.2,

the C60 layer had a thickness of ≈20 nm. Figure 5.7c shows that in a monolithic tandem solar

cell, reducing this thickness would drastically increase the spectral response of the top cell in

the wavelength range <500 nm, which could translate to up to 1 mA/cm2 gain in current in the

perovskite cell. It was recently demonstrated that a C60 layer with thickness down to 1 nm is

practically feasible without significant electrical losses [220].

A similar effect can be observed with the NiOx layer, as shown in Figure 5.7d. However, thin-

ning this layer increases the silicon bottom cell current, which seems to stem from a reduced

reflection at the interfaces between the two subcells, as shown by the lowering of the reflection

peak at around 800 nm.

Transparent conductive oxides (TCO) used for the front electrode and intermediate recom-

bination layer are also a source of parasitic absorption. Figure 5.6 shows that proper choice

and design of the front TCO can improve the response of the tandem in the full spectral range.

Here, high-mobility TCOs were compared. Due to their already low free carrier absorption

compared to more standard TCOs, the influence on the long wavelength range was minimal.

However, their optical band gap and thicknesses influence the blue spectral response of the

tandem. Optically, it is clearly beneficial to use a front TCO as thin as possible. This of course

involves a trade-off with the electrical performance of the TCO electrode due to increased

sheet resistance for thinner layers.

When a TCO is used as an intermediate recombination layer, lowering its charge carrier den-

sity to a minimum helps reduce parasitic absorption losses as well as internal reflection in

the long wavelength range, as shown in Figure 5.7e. Changing the refractive index of this

layer was found to have also an important effect on the interference pattern mainly in the

bottom cell (Figure 5.7f). In the frame of these simulation conditions, a refractive index of

3 was found to be optimal, which is practically difficult to reach with the currently known

contact materials. In the future, more complex optical structures could be considered to act

as intermediate reflector for the photons with energies up to the perovskite absorption edge,

with high transmittance for the photons in the silicon absorption window [221, 222].

In summary, optical simulations showed that the tandem optical performance should be

improved by using fully textured bottom cells and conformal top cell coatings, which will en-

hance light trapping and minimize reflection losses. The top cell band gap should be adjusted

to satisfy the current-matching requirement and maximise the voltage/current compromise.

Finally, parasitic absorption losses should be minimised and can be controlled by a proper

materials choice, deposition conditions, thickness and doping.
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Figure 5.7 – Transfer-matrix modeling of perovskite/silicon heterojunction monolithic tandem solar cells with flat
interfaces: a) Variation of the perovskite layer composition and band gap. The inset graph shows the simulated
currents for the top and bottom cells when varying the top cell band gap without changing its thickness (580 nm);
b) Perovskite absorber thickness variation with a CsBr10%-1:2 material; c) C60 thickness variation; d) NiOx
thickness variation; e) effect of varying the carrier concentration in the ITO layer between the silicon tunnel
junction and the NiOx ; f ) effect of varying the refractive index of a layer between the silicon tunnel junction and
the NiOx ; The simulated tandem cell layer stack from back to front: Ag/a-Si:p/a-Si:i/c-Si/a-Si:i/a-Si:n/nc-Si:n/nc-
Si:p/ITO/NiOx /Perovskite/C60/SnO2/IO:H/MgF2 (explained in more details in the Supplementary Information).
Adapted with permission [97]. Copyright 2018, American Chemical Society.
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5.4 Toward fully textured perovskite/silicon monolithic tandem so-

lar cells

5.4.1 Statement of the problem

Absorber materials with indirect band gap, such as crystalline silicon, exhibit weak light ab-

sorption near their absorption edge. As a result, light trapping strategies have to be employed

to increase the path length toward the theoretical limit given by the Yablonovitch formula of

4n2, with n being the refractive index of the absorber material. Texturing both interfaces of

the silicon wafer is the most common strategy for crystalline silicon cells [223, 224]. From

simulations and optical modelling, it is clear that a fully textured bottom cell would yield the

highest current [212, 225], both by reduced reflection on the front surface (light can bounce

several time on the surface, which increases its chance to enter the wafer) and by better light

trapping of infrared light in the bottom cell. Also, the light path inside the wafer is extended

due to the non-perpendicular entry from the pyramids faces, which increases the chances

the light gets absorbed especially for photons with energies close to the band gap, normally

weakly absorbed. A textured cell is therefore "optically thick" compared to a flat cell.

Figure 5.8 illustrates the problems encountered when a solution processed perovskite cell

is deposited on a textured silicon substrate. The SEM cross-section images show that the

perovskite absorber layer deposited by all-solution techniques, based on spin coating the

precursor solution followed by an antisolvent dripping on the spinning substrate, is not con-

formal and tend to fill the valley of the pyramids and let their summit uncoated. Similar,

the spin coated spiro-OMeTAD layer also does not cover the summit of the pyramids. This

leads to a direct contact between the front TCO transparent electrode and the intermediate

Figure 5.8 – Cross sectional SEM images of solution processed perovskite cells on textured silicon bottom cells,
showing the non-conformality of the spin-coated layers, i.e. perovskite absorber layer, spiro-OMeTAD hole
transporting layer and mp-TiO2, and clear shunts by direct contact of front and intermediate TCO layers.
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Chapter 5. Monolithically integrated 2-terminal tandem solar cells

recombination layer, therefore shunting the top cell. Using solution processed perovskite and

charge transporting layers on textured silicon wafers is therefore very challenging and would

probably require the development of a new coating technique.

Note that atomically polished silicon wafers, as often used for perovskite/silicon monolithic

tandem cells [83, 76, 82, 85], are rather expensive and would hinder the commercialization of

this technology. However, the silicon industry has developed chemical processes to render a

wafer sufficiently flat to become compatible with solution processed top cells. Therefore, the

reason to use textured wafer is not so much industrial compatibility, but really better optical

performance.

5.4.2 Buried planarization layer: LPCVD ZnO

A textured silicon cell is useful to reduce reflection losses and enhance light trapping of

infrared light. But at the same time, solution processed perovskite cells require flat surfaces.

An interesting solution to satisfy both of these constraints is to use a buried planarization

layer on top of a double-side textured silicon bottom cell. Figure 5.9 gives a schematic of this

configuration, which was simulated by Santbergen et al. [225]. From optical modelling results,

they proposed that this layer should be highly transparent with low free-carrier absorption in

the infrared, its thickness should be larger than the size of the pyramids in order to cover them

fully (i.e. >10 μm), the refractive index should be around 2 and the conductivity can be kept

low as no lateral conductivity is needed (nor desired). The simulations showed that a buried

layer with these properties would allow an enhanced light absorption in the bottom cell as

compared to a situation with a flat front surface.

The perfect candidate was therefore ZnO by LPCVD, as it was proven for thin-film silicon solar

cells to be transparent, easily deposited in thick multi-micron layers, industrially deployable

and up-scalable to square meters substrates [226, 227].

Figure 5.9 – Schematic layout of a monolithic tandem cell with buried planarization layer and flat top cell. a) &
b) SEM images of textured silicon wafers planarized with a ZnO layer deposited by low-pressure chemical vapor
deposition (LPCVD) and mechanical polishing. A full planar perovskite top cell can be seen on top of the ZnO
layer. c) Surface defects due to the mechanical polishing, ripping off some ZnO regions. d) Cross-sectional view
of such defect showing how the top cell tends to fill the hole and become shunted on the edges of the defect. e)
Truncated silicon pyramid after a too long or too intense mechanical polishing.
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5.4.2.1 ZnO and mechanical polishing

The idea consists of depositing a thick layer (≈10-20 μm) of ZnO by LPCVD in order to entirely

cover the pyramids of a silicon wafer. Then this layer can be mechanically polished with a

chemical mechanical polishing (CMP) setup, which was custom built at EPFL/PV-Lab [228].

This technique was used to produce flat back reflectors for thin film silicon multijunction solar

cells [229]. The perovskite top cell can finally be processed on the planarized surface similarly

to flat glass substrates used for single-junction cells. The final device layout is schematically

illustrated in Figure 5.9.

The ZnO layer deposition and CMP treatment are described in previous theses by Peter

Cuony and Karin Söderström [228, 229]. The CMP step was taking about two hours per

2.5x2.5 cm2 substrate. As shown in Figure 5.9a and b, the ZnO indeed covered entirely the

silicon pyramids and the CMP method produced apparently flat surfaces on which a perovskite

top cell could be deposited by solution processing techniques.

However, several important issues should be explained here. Due to the large thickness re-

quired for this application, often large amount of stress built up in the film, which often led to

its delamination and pealing. Then, during the polishing, the slurry composition of silica par-

ticles and its concentration as well as the applied force had to be controlled carefully as their

variation impacts the polishing rate. Particulates in the slurry solution were also ripping off

some ZnO from the surface, creating holes in the planarization layer, as shown in Figure 5.9c.

Figure 5.9d shows that such holes are catastrophic for the top cell formation. The duration of

the polishing, the slurry concentration and the applied force dictates how much of the ZnO

layer is polished. The ZnO thickness needed to be adapted to the size of the silicon pyramids

and then the polishing time also adapted to avoid over-polishing the sample and destroying

the SHJ bottom cell passivation layer by cutting the pyramids, as shown in Figure 5.9e with a

truncated pyramid. As the thick ZnO layer was conductive, it had to be patterned in order to

define the top cell active region. This constraint required one additional step: after the LPCVD

and CMP processes, the active region was covered with a protective polymer layer (P70) and

the ZnO on the remaining parts of the sample could be etched off in a HCl solution.

Finally, another important problem was the yield: at the end of the bottom cell preparation

with the planarization layer, we had in average about 1 sample out of 10 initially that survived

and that was seemingly ready for top cell deposition. And then this yield was often further re-

duced by the surface damages and holes shorting the top cell or truncated pyramids damaging

the bottom cell. It was therefore extremely difficult to have a simply working tandem device.

Although the initial idea seemed appealing and simple on its principle, it revealed itself tedious,

time-consuming, and very difficult to reproduce. CMP was therefore not further considered.

5.4.2.2 Smooth ZnO recipe development and Ar plasma etching

Another method to obtain a planarization layer using LPCVD ZnO is to work on its deposition

conditions. The idea here is to deposit a ZnO layer with already small and smooth features,

no pyramids and relatively flat surface or with long waviness on silicon pyramids. The films
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Chapter 5. Monolithically integrated 2-terminal tandem solar cells

Figure 5.10 – SEM images of ZnO layer deposited by LPCVD. The deposition conditions are indicated in overlay
on each image, with the DEZ/B2H6/H2O flow rates (system’s units), the deposition temperature and, if any, the
post-treatment by Ar plasma.

should also be undoped to keep as high transparency as possible and an argon plasma post-

treatment can be used to further smooth the remaining sharp surface features.

The deposition conditions of ZnO were largely studied in the past for thin-film silicon solar cells

[230, 231, 232, 233, 229, 234, 235, 236]. Available parameters to be tuned include deposition

temperature, water to diethyl zinc (DEZ) ratio, total gas flow rate, film thickness, substrate

type and condition. Figure 5.10 shows SEM images of ZnO layers deposited on silicon wafers.

If the water content is low compared to DEZ, the film tends to take a yellow color, losing its

transparency. If in contrary the water content is too high, the ZnO grows with sharper and
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larger pyramids. A good compromise was found with water/DEZ ratio around 0.6, as shown

in Figure 5.10a and b. The remaining larger pyramids could be removed by increasing the

total gas flow rates, as shown in Figure 5.10c and 15 minutes of Ar plasma were then enough

to smooth the surface (Figure 5.10d). The deposition temperature had also an important

role in the growth of pyramidal features. Figure 5.10e and f show that slightly increasing the

temperature from 160◦C by 5 to 10◦ was already sufficient to lose the conditions producing the

small surface features. Lower temperatures led to stressed films, easily and rapidly cracking

during the deposition or right after when the film was cooled down. The substrate choice was

also important in the sense that controlling and knowing in advance the silicon pyramid size

needed to adapt the thickness of the ZnO layer: the larger the pyramid size the thicker the ZnO

layer must be. However, thicker films tend to crack and peal off more easily, especially with the

developed smooth recipe giving the small surface features shown in Figure 5.10c. If the size

of the pyramids was <3 μm, the ZnO can be grown, without cracking, thick enough to create

an overlay that planarizes the textured silicon wafer, as shown in Figure 5.10l, however with

still a remaining waviness. The silicon pyramid size was however found to be not all the time

the same, with batch to batch variations between ≈2 μm and >10 μm height. This variation

represents a serious difficulty for developing a reproducible ZnO recipe.

In conclusion, and similarly to the mechanical polishing method, the deposition of smooth

planarizing ZnO layers was not so straightforward and the idea was put aside, in order to

refocus our work force toward replacing all spin coated materials in the perovskite top cell

with evaporated or sputtered materials, which are intrinsically conformal and compatible with

textured surfaces, as shown in the next section.

5.4.3 >25% efficient fully textured monolithic tandem solar cells *

Fabricating monolithic tandem cells with textured silicon bottom cells requires a conformal

deposition of the perovskite absorber. As shown in Figure 5.11a-e, a perovskite layer can be

conformal on pyramids when deposited with the developed hybrid sequential method (as

described in Chapter 2). The layers in this Figure were fabricated with CsI-PbI2 as evaporated

precursor, ITO as recombination layer and spiro-TTB as hole transporting layer. It can easily

be observed that these perovskite layers contain many voids, cavities and defects, as well as a

large roughness. Also when finishing the devices with a transparent electrode as described in

Section 3.2.3, the V oc was very low, around 680-700 mV which corresponds approximatively

to a filtered silicon bottom cell (see Figure 5.12a-b) and indicates that the perovskite cell was

mostly shunted. The reason for this behaviour was found by analysing a tandem cell in a TEM.

Figure 5.12c-e shows STEM EDX images of textured tandem, with carbon indicated in red.

Several important observations could be made from these measurements: 1) The perovskite

layer was rough and non-continuous, with voids; 2) the C60 layer could therefore penetrate in

the perovskite layer and contact paths between the grains to the opposite contact, shunting

the cell; 3) the spiro-TTB layer was found to be absent from most of the surface of the pyramids

and to accumulate at their bottom, as shown in Figure 5.12e. We believe the spiro-TTB layer

is dewetting during the annealing step necessary to form the perovskite absorber. This was
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confirmed by a complementary experiment, shown in annexed Figure 5.13. These SEM top

view images show that spiro-TTB is perfectly conformal on the ITO-coated silicon pyramids

after evaporation, but dewets from the pyramid faces to slide in the valleys during annealing at

150◦C. This obviously leaves most of the surface uncovered with the hole transporting layer of

the top cell and was certainly the main responsible for the bad device performance shown in

Figure 5.12a. Interestingly, this effect of dewetting was not problematic on flat devices, using

the same layer stack and process sequence, as shown e.g. by the EQE measurement of a DSP

p-i-n tandem cell in Figure 5.5 which had 20.5% efficiency.

Several changes had therefore to be made. We further developed our perovskite deposition

method and, as discussed in Chapter 2, different Cs-containing precursors were investigated.

CsBr was found to be the most promising and yield the most conformal and compact per-

ovskite layer, without any apparent voids or pin-holes (see Section 2.2.3). The top cell band

gap was also adjusted to around 1.6 eV in order to have high current in the top cell and ap-

proach the >20 mA/cm2 current in the bottom cell already measured in Figure 5.12b. However,

the main change was to replace the ITO recombination layer with a nc-Si:H recombination

junction. This junction was developed in 2017 by Florent Sahli et al. [86] and showed high

promises already on flat tandem devices, by increasing the device shunt resistance thanks

to its low lateral conductivity. On textured wafers this silicon junction had the additional

advantage that, on this material, spiro-TTB was not dewetting and stayed conformal after

perovskite annealing. Also, the perovskite layer itself was found to become more compact

and with lower roughness. Further development of the absorber layer could then be carried

out, mainly by increasing its thickness, adapting the organo-halide solution concentration,

the annealing conditions and optimizing its band gap for best current-matching conditions.

These developments on the perovskite absorber layer were mostly carried out by Florent Sahli

and are discussed with more details in reference [98].

Figure 5.11 – a-c) Cross sectional SEM images of perovskite-silicon tandem on textured wafers; d-e) Focused ion
beam (FIB) cross sectional images of textured monolithic tandems; f) SEM and h) AFM top view images of a
perovskite-coated textured silicon wafers showing the grain morphology, as comparison to a bare silicon wafer in
g). The perovskite absorber composition is CsFAPbIBr, here with CsI-15% precursor.
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Figure 5.12 – a) J-V and b) EQE measurements of a textured monolithic tandem using ITO as recombination
layer and thermally evaporated spiro-TTB as hole transporting layer in the p-i-n CsFAPbIBr perovskite top cell; c)
STEM EDX analysis of the tandem measured in a), showing the dewetting of spiro-TTB from the silicon pyramids.
The spiro-TTB was found to accumulate in the valley of the pyramids as shown with a STEM high-angle annular
dark-field image in d) and a STEM EDX image in e). Si is shown in green, C in red, Pb in blue and In in cyan.

Following the implementation of an optimized perovskite absorber, an effective silicon re-

combination layer and improved charge transporting layers and electrode, a fully textured

perovskite/silicon tandem solar cell could be fabricated with record efficiency of 25.24% un-

der maximum power point tracking, independently certified by Fraunhofer ISE CalLab [98].

The main EQE and J-V characterization results are shown in Figure 5.14. Our in-house J-V

measurements showed a reverse scan efficiency of up to 26.0% with V oc of 1778 mV, FF of

Figure 5.13 – SEM top view images showing the dewetting of spiro-TTB on ITO-coated textured Si wafers after
annealing at 150◦C.
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74.8% and J sc of 19.6 mA/cm2 [98]. This new record represents an absolute increase of 1.6%

on the previous perovskite/silicon monolithic tandem record [85], >3% increase compared to

PV-lab SHJ baseline silicon cells, and similar performance as the state-of-the-art double side
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Figure 5.14 – a) EQE and b) J-V measurements of the record textured monolithic tandem solar cell. The inset
in b) shows the maximum power point tracking of the cell for >1000 seconds and a table summarizing the J-V
parameters in both scan directions (in-house measurements); c) schematic illustration of the textured monolithic
tandem; d) EQE measurements comparing the four monolithic tandem cells holding or that held the record
efficiency and the EQE of the best single junction SHJ cells from Kaneka with 26.6% and 25.1% efficiencies,
respectively for back-contacted and top/rear contacted configurations. The data was extracted from references
[6, 237, 98, 85, 83, 81]. This record device is the product of a close collaboration between Florent Sahli (FS) and the
author of this thesis (JW). FS developed the silicon recombination junction and adapted it to the textured wafers.
JW discovered the problem of dewetting of spiro-TTB (as shown in Figures 5.12 and 5.13), which was then solved
by FS with the silicon junction. FS worked on the perovskite absorber growth on textured substrates, including the
optimization of the PbI2 thickness and organo-halide solution concentration. JW (together with Brett Kamino)
developed the electron contact, including the transparent electrode (see Figure 3.4). JW and FS processed and
characterized together the device batch including the record tandem cell.
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5.4. Toward fully textured perovskite/silicon monolithic tandem solar cells

contacted SHJ cells from Kaneka with 25.1% efficiency [237, 20].

Figure 5.14d shows the evolution of perovskite/silicon monolithic tandem solar cells in four

years, passing from flat n-i-p device using high temperature processed mesoporous perovskite

top cells [81], to flat low-temperature n-i-p planar perovskite cells [83] and then to the inverted

polarity p-i-n but still on flat front surfaces [85], and finally on fully textured silicon wafers [98]

(presented here). This comparative Figure shows clearly that a significant part of the efficiency

evolution from 13.7% in 2015 [81] up to 25.2% in 2018 [98] is due to a better light management

and increased current. When comparing the textured tandem cell to the best silicon single

junction back-contacted cell from Kaneka with record efficiency of 26.6%, it becomes clear

that the tandem cell is close to the optimum in the long wavelengths >700 nm, where both

EQE curves overlap. In the short wavelengths <700 nm, the interdigitated back-contacted

silicon cell has the advantage of lower parasitic absorption at the front, as it does not use any

TCO or absorbing charge transporting layer such as used in the tandem cell. Comparing the

back-contacted record cell to the record SHJ cell with top/rear contacts shows clearly this

effect in the short wavelengths (see Figure 5.14d), significantly reducing the difference with

our tandem cell. The difference in total current calculated from the difference of the back-

contacted Kaneka EQE and our textured tandem total EQE curves amounts to 2.1 mA/cm2,

from which 1.92 mA/cm2 is in the <700 nm spectral region. This difference is reduced to

0.97 mA/cm2 when comparing to the top/rear contacted Kaneka cell. This current loss in

the tandem cell could with further optimization still be lowered, mainly by thinning down

the electron transporting layer and by using a more transparent TCO such as IZrO. Then,

the current obtained from the J-V measurements could still be improved by replacing the

evaporated silver metallization by a screen printed grid, using thinner fingers, and thus with

reduced shadowing.

Therefore, it is safe to say that a textured tandem cell is close to an optimal optical system

and further performance improvements should rather be expected from increased FF and

V oc . The holy grail, 30% efficiency, is therefore now practically possible: V oc of 1875 mV, J sc of

20 mA/cm2 and FF of 80%. These values were individually already demonstrated: V oc >1.2 V

was shown for perovskite materials with similar band gap around 1.6 eV [238] but deposited

by an all-solution processed method; the previous two record monolithic tandem devices

already had FF of ≈79% [83, 85]; a J sc of 20 mA/cm2 is already demonstrated here with EQE

measurements (Figure 5.14) and is within reach in J-V measurements.

5.4.4 Reflection, scattering and angular dependence

Figure 5.16f shows a comparison of reflectance spectra for monolithic tandems and a typical

silicon heterojunction single junction cell. It is evident that devices with a flat front surface

dramatically suffer from strong reflection losses with peaks up to 30% throughout the entire

spectrum. These interference peaks can be lowered to around 10% when incorporating a

microtextured antireflection foil. However, Figure 5.16f also shows that the best strategy to

reduce reflection losses is to use silicon bottom cell with random pyramid textured front and

back surfaces. The reflectance of a textured monolithic tandem is then even lower than the
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reflection from a SHJ cell in the low-wavelengths (<500 nm) spectral region as well as in the

near-infrared region (900-1100 nm). This can be attributed to the double antireflection coating

effect provided by the IZO/MgF2 front stack, and also to a large extent to the entire perovskite

cell acting as a multiple layer antireflection stack for the silicon wafer.

This low reflectance is also explained by a close-to-ideal Lambertian scattering system, as

shown in Figure 5.16b. The angular dependence of optoelectronic properties of the tandem

device can then also be studied with angular dependent EQE measurements (see Figure 5.16c-

e). During field operation, the light incidence angle changes constantly during the day and over

the year, impacting the energy yield. These measurements suggest that, compared to tandem

cells with flat front side, textured tandem devices should perform better in a photovoltaic

system without active tracking. Interestingly, as shown in Figure 5.15, our experimental

data correlates well with the simulation results published by Hörantner et al. [239], who

concluded that, at high incidence angles, tandem cells would perform better than single SHJ

cells. However, such specific implications for energy yield calculations should be taken with

precaution and ideally also include the effect of an encapsulant and the glass cover present in

a real module, which could be itself textured.

Overall, the reflection losses in a textured perovskite/silicon monolithic tandem cell can still

be marginally reduced, most likely by better tuning the thicknesses in the front electrode stack.

Parasitic absorption losses are however clearly more critical and have a far greater potential

for improvement.

5.5 Light soaking stability test *

Stability has been a serious concern since the very beginning of the perovskite cell devel-

opment. In the early 90s, Mitzi et al. did not pursue his work on perovskite materials for
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photovoltaics exactly because of their poor stability [62]. Later on, the first solar cells with

a perovskite absorber were stable for only a couple of minutes, at the time mainly because

of the use of a liquid electrolyte [63]. However, in the last five years, tremendous progress
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point tracking in air without encapsulation, kept at 25◦C, with regular J-V loop scans; b) the corresponding J-V
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Only the normalized current is given here as the cell was measured without mask and illumination intensity was
not accurately known and controlled at the time of the experiment. The sourcemeter setup used to record the
electrical parameters is described in Appendix C.

was achieved and more and more research groups have shown hundreds to thousands of

hours of reliability data according to standardized degradation protocols. For market entry,

perovskite/silicon tandem cells will have to pass reliability protocols according to the Inter-

national Electrotechnical Commission (IEC) standards, including damp heat at 85◦C/85%

relative humidity, thermal cycling, and extended light soaking tests at 1 sun illumination. It

should be noted that IEC tests only provide an indication of the chance of products to survive

in the field. However, as long as the exact degradation mechanisms and the activation energies

of theses mechanisms are neither known nor understood, it cannot be assumed that IEC tests

are sufficient.

So far, in the literature, only single junction perovskite cells were tested for stability, including

damp heat test for 1000 hours [85] and light soaking under different atmosphere [240].

We believe that tandem cells will have their own degradation mechanisms and therefore their

stability might not be directly extrapolated from single junction cells data. We therefore tested

directly the textured monolithic tandem cells under light soaking. In a first experiment, a

non-encapsulated tandem device was measured under maximum power point tracking in air

with 1 sun illumination intensity and without any UV blocking filters. As shown in Figure 5.17,

the test lasted for 61 hours with regular J-V loop scans to record the evolution of all electrical
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parameters. The cell had an initial efficiency of about 24%, which remained stable for about

6 hours. Then, the power linearly decreased to end up around 22% (≈90% of initial power)

after 61 hours. The hysteresis was found to increase during the experiment mostly due to a FF

decreasing slightly more rapidly in the forward direction compared to the reverse. The exact

interpretation of this phenomenon and its origin are still under discussion.

In a second phase, a monolithic tandem cell was encapsulated with a simple glass/glass

scheme, including a butyl-edge sealant but no polymer lamination. The cell was placed in

a class AAA light soaking chamber under ≈0.7 sun illumination intensity and 30◦C constant

temperature. The cell was kept at maximum power point with an in-house made Arduino-

based sourcemeter (described in Appendix C). The setup was programmed to also regularly

measure J-V scans in reverse direction, in order to precisely track the evolution of the main

electrical parameters. As shown in Figure 5.17c, the power exponentially decayed during the

first 20 hours and then linearly decreased to end up at ≈90% of its initial value after 270 hours.

Figure 5.17 shows that J sc follows the same trend with a clear exponential decay followed

by a linear decrease to finish with 4% loss. The V oc however first increased in the first few

hours before also decreasing and losing about 20 mV after 270 hours. The cell has not seen

any sudden failure but rather a constant decay without apparent stabilization. Further tests

are currently ongoing to understand the reason for this decay. After this degradation period,

the encapsulated cell was opened and brought in a FIB for cross-section imaging. It revealed

that the evaporated silver metallization seemed to be unstable and migrating out through the

MgF2 layer. AgI was also found on the rear side metallization (apparent as black marks on the

silver pad). This can be an indication that some iodine was leaving the perovskite absorber

during the test.

A follow-up test was therefore started to compare evaporated to screen-printed Ag, and this

time at 1 sun irradiation and 50◦C. The test is ongoing at the time of writing this thesis. The

encapsulation scheme will also be improved in collaboration with CSEM to include a polymer

encapsulant that should offer a better protection to the cell from moisture ingress and UV

light. Further experiments comparing tandem and single junction cells with same layer stack

and composition should also help at understanding differences rising specifically from the

tandem integration.

5.6 Large area textured tandems *

Most single junction perovskite solar cells, including the devices with record efficiencies

[29], have been demonstrated on small active areas of typically <0.3 cm2. A first up-scaling

step for perovskite cells to 1 cm2 area already necessitates dedicated work to carefully con-

trol film uniformity and reduce pinhole density. Chen et al. demonstrated one of the first

1 cm2 perovskite solar cell with certified efficiency of 15% using a planar architecture [241].

They showed that by using a heavily doped NiMgLiO inorganic hole transporting layer with

only 10–20 nm thickness, the shunt resistance of larger cells can be greatly reduced. This may

be attributed to a lower pinhole density and fewer structural defects over the full device area.
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For mesoporous cells, improving the perovskite layer quality was found to be the key for high

efficiencies on larger cell areas. Li et al. developed a vacuum-assisted solution process to fabri-

cate smooth and uniform perovskite layers [242]. They could demonstrate 20.5% efficiency

(19.6% certified), with high uniformity of current generation over the 1 cm2 cell area. Tan et

al. recently also improved low temperature planar perovskite cells, filling the performance gap

with the high-temperature mesoporous cells by showing 20.3% efficiency on 1 cm2 area (19.5%

certified) [243]. Here, reducing interface recombination on the TiO2 layer was reached by

chlorination. This low-temperature method is particularly interesting for tandem applications.

Further up-scaling requires different approaches, depending on the application. A perovskite

single-junction or top cell for a 4-terminal tandem with silicon bottom cell will be fabricated

in the form of a thin-film module made by monolithically inter-connected segments. Laser-

scribing techniques have recently been adapted for segment definition and interconnection in

perovskite modules, leading to a rapid decrease in dead area, boosting aperture area efficiency

[244, 245, 246].

The development of monolithic 2-terminal tandems so far mostly focused on aperture areas

between 0.16 and 1.4 cm2 [81, 82, 83, 76, 85]. Up-scaling of this tandem configuration to

an industrial level requires different adaptations as compared to single-junction perovskite

cells or 4-terminal tandems. This is mostly because 2-terminal tandem modules consist of

wafer-size cells placed next to each other and interconnected by metal ribbons, and not of

a single module-size substrate with interconnected segments. As a result, cell up-scaling is

limited to the current industrial silicon cell size of 6 inches. However, additional requirements

exist due to cost constraints, as the use of mechanically polished wafers, typically used for

most monolithic perovskite/silicon tandem cells so far, is not an option. Scalable fabrication

techniques that enable processing the perovskite top cell on fully textured wafers typically

used in industry are thus required, such as sputtering, plasma-enhanced or low-pressure

chemical vapour deposition, electrodeposition, or thermal evaporation, which was so far

less relevant for the silicon photovoltaic industry but used, e.g. for organic light emitting

diode manufacturing. In addition, to enable the integration of the technology in a silicon

photovoltaic production line, a high throughput (≈1 wafer per 1.5 s) and high yield (≈98%)

have to be targeted.

Low-temperature planar perovskite cells currently seem to be the most suitable option for

2-terminal tandem up-scaling, as they are compatible with silicon heterojunction bottom

cells and can readily be made in either polarity, making them suitable for both n- and p-type

silicon bottom cell technologies [82, 83]. For this device architecture, the perovskite layer can

be deposited by thermal coevaporation of the precursors [247, 248], e.g. PbI2, PbBr, CsI, MAI,

FAI, or FABr. This approach is however still challenging, due to the difficulty of controlling

accurately the evaporation rates of materials with significantly different volatility. A two-step

interdiffusion technique, as developed during this thesis, might have advantages considering

the integration in an in-line process, because the complex perovskite material formation

can be separated in dedicated process steps: the lead halide compound can be thermally

evaporated and then converted to the perovskite material by reaction with the organohalide

precursors in the gas phase, using a chemical vapor deposition method [249, 146, 41]. Finally,
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Figure 5.18 – a) J-V curves of a large textured perovskite/silicon monolithic tandem solar cells with 12.96 cm2 aper-
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the size of the sample.

series resistance losses in monolithic tandems might be less challenging to mitigate compared

to a single-junction thin-film module. The front contact can be made of a TCO and metalliza-

tion, ultimately by screen printing with a low-temperature silver paste or electroplating as

used in silicon heterojunction solar cells [250]. Internal interfacial resistances are here a major

challenge, which requires further intense research.

The first academic larger sized monolithic tandem was demonstrated at EPFL/PV-lab by Sahli

et al. [86], with 18% efficiency for 12.9 cm2 aperture area. This was made with a n-i-p per-

ovskite top cell and SST SHJ bottom cell.

Since then we could further improve the monolithic tandem solar cells performance with

the introduction of textured rear emitter cells and Figure 5.18 shows a first demonstration

of >20% efficient large area (12.9 cm2) perovskite/silicon monolithic tandem. The cell was

deposited on a 5x5 cm2 silicon wafer with similar composition and device structure as the

one used in Figure 5.14. As explained before, all layers were deposited by PECVD (for the

silicon passivation layers), by sputtering (for the TCO and rear Ag), by thermal evaporation (for

organic charge transporting layers and perovskite precursor) or by ALD (for the SnO2 buffer).

The only step that required a slight adaptation to the larger substrate size was the remaining

spin coating step for the organo-halide solution, for which a pipette tip with larger opening

was used in order to have a better coverage of the substrate as shown in Figure B.4.

As compared to the >25% record device, Figure 5.18a shows that J sc was slightly lower due

to larger shadowing from the metallization and that FF was the main limiting factor for the

device performance. A direct improvement of FF will be possible by replacing the thermally

evaporated Ag grid by a screen printed one, offering largely enhanced conductivity in the

fingers, which can be made also thinner to reduce their impact on the current by shadowing.

This will be further investigated by CSEM. Increasing the FF of this large cell from 65% to 75%,

as demonstrated on 1.4 cm2 area record cells, would directly improve its performance to >25%

while keeping the other J-V parameters obtained in the reverse scan identical. This result is

therefore very promising and shows that the processes demonstrated in this thesis are indeed

up-scalable and >25% large area tandem cells are finally within reach.
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5.7 Beyond tandems: perovskite/perovskite/silicon triple junction

High efficiency multijunction solar cells with over 2 subcells were so far only demonstrated

with III-V materials [251, 252]. However, due to their high costs of fabrication, they can be

used only in power generators for space satellites and terrestrial high-concentration systems.

Thin-film silicon-based triple and quadruple junction solar cells were also demonstrated for

low-cost applications but their efficiency remains modest and not competitive with single-

junction cells [227, 253]. For non-concentrated light irradiation and triple junction cells, the

record efficiency is held by Sharp with an InGaP/GaAs/InGaAs cell showing 37.9% efficiency.

For Si-based multijunction solar cells, Fraunhofer ISE has made 2-terminal triple junction

cells either by wafer bonding, with a GaInP/GaAs//Si showing 33.3% efficiency [254], or by

monolithic growth, with a GaInP/GaAs/Si showing 19.7% efficiency. All-silicon triple junction

cells can be made from amorphous and nanocrystalline thin-film silicon layers, a-Si/nc-Si/nc-

Si, and the record stabilized efficiency tops at 14.0% [251].

Here, we present a perovskite-based triple junction solar cell, using a textured silicon hetero-

junction bottom cell. The top and middle perovskite subcells were fabricated with the same

process sequence as for the record tandem cell presented in the previous section. Figure 5.20a

shows the schematic of the device layer stack. In this very first trial, the middle cell band

gap was set around 1.55 eV by using 9% CsBr during the coevaporation with PbI2 and pure

FAI for the organo-halide spin coated solution. The top cell band gap was around 1.78 eV

by increasing slightly the CsBr rate to about 16% and using pure FABr in solution. Also, the

thickness of the top cell was slightly reduced to 250 nm of PbI2 compared to 450 nm for the

middle cell. Finally, the annealing temperature for the perovskite formation was 130◦C for the

top cell and 150◦C for the middle cell.

Figure 5.20b and c show SEM and FIB cross-section images, respectively, of a triple junction

cell. The middle and top cells are clearly visible, separated with the IZO recombination layer.

All layers were conformal and both perovskite layers were compact without apparent pin-
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holes.

The junction between the bottom cell and the middle cell was made of the nc-Si:H recombina-

tion junction also used for the tandem cells and spiro-TTB was directly evaporated onto these

silicon layers. The junction between the middle and top cells had to be made with a TCO, here
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IZO. Therefore, for the hole transporting layer in the top cell, spiro-TTB could not be used as it

gave the same issue as for tandem cell, discussed in Section 5.4.3. Figure 5.19 shows that using

spiro-TTB on top of IZO for the top cell resulted in a drastic loss of V oc comparable to the top

cell expected contribution, decreasing to close to 1.7 V, similar to a tandem cell. To solve this

problem, NiOx was deposited by sputtering instead of spiro-TTB.

As shown in Figure 5.20d, this device structure was able to give up to 12.6% efficiency under

maximum power point tracking and 14% under reverse J-V scan. The V oc was close to 2.7 V

and J sc at 7.7 mA/cm2. FF was depending on the scan direction but always below 70%. Fig-

ure 5.20e shows the EQE measurement of this triple junction cell. It is clear that the middle

cell was limiting the total current. In the next phase of optimization, the total current will have

to be better distributed among the subcells. The middle cell band gap needs to be lowered

to around 1.4 eV and the top cell band gap increased around 1.9 eV. Then the fine-tuning of

current distribution can be done by playing on their absorber layer thicknesses. The total EQE

curve shows also that parasitic absorption losses will need to be reduced significantly. Overall,

13 mA/cm2 current matched should be practically feasible with reasonable amount of further

experimental work. The V oc could also still be improved by at least 150 mV, with a longer-term

practical potential for ≈3 V. In this early test, the NiOx layer could not be annealed at 200◦C

as required normally to improve its electronic properties, most likely resulting in V oc losses.

Other voltage losses could certainly be attributed to the recombination junction between the

top and middle cells, which was here a non-optimized IZO layer, deposited with the same

recipe as for the front electrode.

We can therefore clearly see that competing with all-III-V triple junction cells will be com-

plicated in terms of efficiency, as 3 V * 13 mA/cm2 * 77% makes just 30% efficient cells. A

significant improvement in FF (>80%) as well as parasitic absorption reduction will therefore

be necessary. But in terms of costs, the story might be different and this type of structure

might allow some cost reduction in some applications such as solar-driven electrochemical re-

duction of CO2 for the production of fuels and chemicals [255], or other applications requiring

high voltage.

5.8 General conclusions on the chapter

In this chapter, the development of monolithic tandem solar cells was presented. The first

tandems were fabricated in n-i-p configuration with double-side polished silicon bottom cells.

The low temperature planar perovskite cells described in previous Chapters 2 and 3 were

integrated in monolithic tandem cells using an intermediate recombination layer based on a

TCO. ITO, IZO and ZTO were tested for this purpose. IZO showed the best device performance

for low temperature devices with SHJ bottom cells whereas ZTO was found useful to allow the

integration of high temperature TiO2 scaffold layers in the perovskite top cell with a diffused-

junction silicon bottom cell. Flat devices were found to produce strong interferences as shown

in EQE measurements and strong reflection losses. ARF were used to reduce the impact of

these interferences and reflection, and significantly boost the photogenerated current of the
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tandem devices. With a planar n-i-p perovskite cell, a IZO recombination layer and a SHJ DSP

bottom cell, the first perovskite/silicon monolithic tandem cell with >20% efficiency could

be demonstrated with 0.17 cm2 aperture area. This was shortly followed by the first >20%

efficient tandem with >1 cm2 area thanks to the introduction of a rear-side texture, enhancing

the current in the bottom cell.

In order to decide how to continue the research and define the pathway to 25% efficiency,

simulations and careful analysis of experimental data were carried out to define the materials

to be replaced. Spiro-OMeTAD was quickly found to be the weakest link and new materials

were investigated. It was only by inverting the polarity of the cell to p-i-n configuration that

thin undoped charge transporting layers with reduced parasitic absorption losses could be

integrated in perovskite cells and monolithic tandems.

Minimizing the reflection losses passes by using fully textured silicon solar cells, taking advan-

tage of the double-bounce effect on the pyramids and enhanced light trapping. A first solution

investigated involved the fabrication of a buried planarization layer based on a ZnO layer

deposited by LPCVD. This approach revealed itself unsuccessful due to important technical

difficulties. However, the development of p-i-n perovskite solar cells with evaporated charge

transporting layers combined with an hybrid sequential deposition technique for the per-

ovskite absorber allowed the use of fully textured silicon bottom cells with the goal of making

conformally deposited top cells. This ambitious device structure made rapid progress: after

some early investigations on morphology and wetting properties, it yielded record efficiencies

>25% for the first time with perovskite/silicon monolithic tandem solar cells. The cells were

mainly limited by low FF. Textured tandems were then used to carry out some preliminary

experiments on light soaking stability, showing promising initial results, as well as up-scaling

the device to 12.9 cm2 with >20% efficiency. Finally, a first proof-of-concept triple junction

solar cell could be demonstrated, showing high V oc of ≈2.7 V and high potential for CO2

electrochemical reduction.

In the near future, the road for tandem cells is paved and clear to >30% efficiency by fine-

tuning the contacts, thinning down the charge transporting layers, optimizing the interfaces

for best V oc and FF and improving the perovskite absorber optoelectronic quality. The main

challenge is clearly the material stability and device reliability, still largely under-investigated

and misunderstood.
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This conclusion chapter summarizes the key achievements of this thesis toward the develop-

ment of high efficiency perovskite/silicon tandem solar cells and presents perspectives for

future research directions that could enable further performance enhancement, as well as

better device reliability.

6.1 Conclusions

The perovskite solar cell research field has grown at an unprecedented pace during the last

four years and tremendous progress was made. This offered many opportunities for the rapid

development of perovskite/silicon tandem solar cells, toward high efficiencies >25% in both

4-terminal tandem and 2-terminal tandem architectures.

In order to reach such high performance, we had to develop a perovskite absorber with high

optoelectronic quality and appropriately tuned optical band gap. We chose to use and develop

an hybrid sequential deposition method, mixing thermal evaporation and solution processing,

providing the possibility to deposit the perovskite layer on any substrate and charge transport-

ing layer without the risk of damaging them with aggressive solvents. Planar low temperature

cells could then be fabricated. The perovskite composition was modified along the way follow-

ing discoveries coming from the perovskite community. CsFA-based perovskite compositions

were adopted instead of the original MA-based material. This double-cation perovskite mate-

rial allowed us to develop absorber layers with an optical band gap precisely tunable between

1.5 and 1.8 eV, which is crucial for current-matching optimization in monolithic tandem solar

cells. The optical properties of these materials were also characterized, including complex

refractive indices and absorption coefficients, helpful for optical simulations of multijunction

solar cells.

The charge transporting layers were investigated and solution processed layers were replaced

with thermally evaporated or sputtered ones, which is necessary for monolithic tandem inte-

gration. We therefore replaced the initial c-TiO2 layer by first PCBM and then a thin evaporated

C60 layer as the electron contact. The replacement of the standard spiro-OMeTAD hole trans-
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porting layer was significantly more difficult. It required to invert the polarity of the cell

from n-i-p to p-i-n, in order to start the cell fabrication by a thermally evaporated undoped

spiro-TTB or sputtered NiOx and finish with the C60 electron contact on the other side of the

absorber. These charge transporting layers are now thin, undoped and conformally deposited,

and still allowed good device performance.

An important development step toward a functional perovskite/silicon tandem solar cell

was the replacement of the standard opaque metal rear contact of perovskite solar cells with

a broadband transparent electrode. Our investigations focused on TCO-based electrodes,

and particularly on IZO, an amorphous high mobility TCO which does not require any post-

deposition thermal treatment. For n-i-p perovskite cells, a transition metal oxide buffer layer

was introduced to protect the sensitive hole transporting layer and perovskite absorber. This

lead us to study the behaviour of these oxides when exposed to the sputtering plasma environ-

ment and discover a method based on a CO2 plasma treatment to prevent and/or recover from

the sputtering-induced damages. For p-i-n perovskite cells, an ALD-deposited SnO2 layer was

developed as buffer to protect the fullerene electron transporting layer.

Semitransparent perovskite cells were first applied in 4TT. Rapid progress could be made and

over 25% efficiency was demonstrated in a measurement involving a small 0.25 cm2 area top

cell and a larger bottom cell. A tandem with 23.2% efficiency could be also demonstrated with

a fully integrated device where both subcells had the same size of 1 cm2. The research focus

was then fully redirected to 2-terminal tandem cells.

The development of monolithically integrated tandem cells started with the development

of the intermediate recombination layer. IZO was found to be well suited and allowed per-

formance up to 21.2% efficiency in small area and 20.5% with 1 cm2 area, which were at the

time the first demonstration of over 20% perovskite/silicon tandem cells. These tandems were

mainly limited by their optics and light management, as they were grown on bottom cells

with a flat front surface, generating large reflection losses and strong optical interferences in

the device. Our effort was therefore directed toward the integration on fully textured silicon

bottom cells. This challenging task came to success after the development of a perovskite top

cells with all evaporated charge transporting layers and the replacement of the TCO recom-

bination layer by a nc-Si:H recombination junction. We could then demonstrate monolithic

tandem cells with >25% efficiency at maximum power point, which was also independently

certified by Fraunhofer ISE CalLab at 25.24%. Finally, first tests could be made toward larger

tandem devices with 12.9 cm2 aperture area and >20% efficiency. The light stability of tandem

cells was tested with continuous light soaking and electrical characterization, showing promis-

ing first results. Also, the development of a robust monolithic tandem fabrication process

allowed us to go a step further and make a first proof-of-concept of triple junction solar cells.

These perovskite/perovskite/silicon multijunction solar cells showed conformal layers in both

middle and top cells and decent performance around 12% with V oc ≈2.7 V.
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6.2 Perspectives

To be viable for a silicon-based tandem PV product, the perovskite top cell is required to

comply with the typical field warranty for PV panels, i.e. the power output should remain >80%

after 25–30 years. In addition, tandem cells must be manufactured on industrial-scale wafers

(typically 6 in.), with techniques and materials that add limited costs to the final product,

which also concerns production throughput and yield. Stability, up-scalability, and cost-

effectiveness are therefore the three most important keys for a possible commercialization.

Between 4-terminal mechanically stacked and 2-terminal monolithically integrated tandems,

we consider the 2-terminal the most interesting and promising architecture, with the highest

potential for commercialization, thanks to the smaller number of layers compared to 4TT,

enabling low production costs, high efficiency potential with limited parasitic absorption, and

simpler implementation at the PV system level.

The costs of a PV installation is directly linked to the performance of the used cell technology,

by saving area-related BOS costs. The path for tandem cells with beyond 30% efficiency is

now clear and practically possible in the near future as discussed in Chapter 5. The challenge

is to combine the state-of-the-art V oc and FF demonstrated individually for single junction

perovskite solar cells and implement them with the high current already demonstrated in tex-

tured tandems. Research should then focus on stabilizing wide band gap perovskite materials,

reducing recombination paths through grain boundaries and interfaces passivation, improve

charge extraction and reduce resistive losses in transparent electrodes and metallization.

Considering the cost calculation Table 1.2 presented in the introduction chapter, we can now

make some rough estimations on the cost potential of the textured tandem cell presented

in Chapter 5.4.3. Apart from the silicon bottom cell and the front TCO electrode, which are

already part of a standard SHJ cell, 4 layers were added for the perovskite top cell: a hole

transporting layer, the perovskite absorber, an electron transporting layer and the buffer

layer. All materials were deposited with industrially already available and known techniques,

e.g. magnetron sputtering, thermal evaporation, ALD (or spatial-ALD), therefore minimizing

the investment costs on the development of new specific methods. These materials such as

C60 or spiro-TTB are rather low cost and could still be replaced by other cheaper materials

as already presented here, e.g. NiOx instead of spiro-TTB. In terms of performance, we have

used silicon bottom cells that had efficiencies around 22% as single junction. The absolute

efficiency gain was therefore over 3% at the cell level. Considering the promising results for

up-scaling (Section 5.6) and the recent industrial developments, with for example Oxford

PV showing 6 inches tandem cells, we can reasonably assume a similar gain at the module

level (still to be confirmed). We can then estimate manufacturing costs just below 40 €cts per

additional watt of output power, leading to around 5 €cts/Wp area related BOS cost saving for

a typical roof top installation. Further increasing the cell performance to over 30% efficiency

and/or using cheaper materials would obviously further increase the cost saving and render

this tandem concept even more economically attractive.

The main challenges for commercialization are however not efficiency or up-scalability. The

main concerns are about materials toxicity, material stability and device reliability:
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The silicon PV industry is moving to lead-free soldering, which is expected to gradually be-

come the leading technology for interconnections over the next decade [11]. The industrial

development of perovskite/silicon tandem cells can therefore be expected to also follow this

trend and anticipate future more strict regulations. Research toward lead-free, or lead-less

perovskite solar cells has therefore already started, although device efficiencies still lie far

behind those of state-of-the-art lead-containing compounds.

Material and device stability are the biggest challenge of any perovskite-based solar cells.

Perovskite/silicon tandem solar cells must show the same reliability and trust level as all other

silicon-based PV technologies, with 30 years industrial warranty on photovoltaic modules.

The perovskite solar cell stability already improved massively from the few minutes in 2009 to

several months at the present state-of-the-art. However, there are still issues in materials’ in-

trinsic instability with e.g. phase segregation under illumination or their sensitivity to extrinsic

environmental conditions such as humidity, temperature variation or heat. So far, perovskite

solar cells were typically tested with non-standard reliability testing. Future research should

aim at studying these cells with industrially accepted degradation protocols, understand-

ing the related degradation mechanisms and develop new perovskite specific standard tests.

Through a deep understanding of the degradation origin, the device stability can then be

improved by modifying accordingly the absorber material composition, the contacts materials

and their interfaces, paving the way for industrially-viable perovskite-silicon tandem cells

with operational lifetimes >30 years.

Perovskite will certainly continue to surprise us. Considering the amazing development of the

field of perovskite solar cells and perovskite-based tandem in the last 5 years, we can sincerely

hope for a successful future for this technology, which could lead to virtually unlimited clean

energy at affordable cost, to power our daily life from utility scale, building-integrated systems,

to wearable electronics and mass transportation.
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A.1 Perovskite cell fabrication

A.1.1 Mesoporous n-i-p opaque cells

Mesoporous perovskite solar cells were used in references [72] and [84]. A compact titan

dioxide (c-TiO2) layer with a thickness of 20 nm was sputtered on a cleaned, laser-patterned

fluorine doped tin oxide (FTO) substrate (Solaronix TCO22-15), followed by a 300-nm-thick

mesoporous titan dioxide (mp-TiO2) deposited by spin coating. The TiO2-coated substrate was

then annealed at 500◦C for 15 min. The C H3N H3PbI3 perovskite absorber layer was deposited

following the procedure described by Jeon et al [201]. A 1.2 M solution of lead iodide (PbI2)

and methylammonium iodide, C H3N H3I (MAI) at a molar ratio of 1:1 was prepared at 60◦C

in a 7:3 v/v γ-butyrolactone/dimethyl sulfoxide mixture. This solution was then spin coated at

room temperature on the mp-TiO2/c-TiO2/FTO/glass substrates at 1000 rpm for 15 s followed

by 5000 rpm for 30 s. Ten seconds before the end of the second spin coating step, toluene

was dripped on the rotating sample. The sample was then annealed at 100◦C for 10 min. The

spiro-OMeTAD solution (72.3 mg/ml, 2,2’,7,7’-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9’-

spirobifluorenes (spiro-OMeTAD) (Merck), 28.8 μl/ml 4-tert-butylpyridine (Sigma-Aldrich),

17.5 μl/ml stock solution of 520 mg/ml lithium bis (trifluoromethylsulfonyl) imide (Sigma-

Aldrich) in acetonitrile, dissolved in chlorobenzene) was finally spin coated at 4000 rpm for

30 s. The opaque cells were finally metallized with ≈70 nm of gold, deposited by thermal

evaporation at ≈ 5×10−6 mbar base pressure.

A.1.2 Planar n-i-p opaque cells

Planar n-i-p perovskite cells were used in references [83, 76, 96]. 15 Ω/� ITO-coated glass sub-

strates (Kintec) were first cleaned with a 10-15 min UV-ozone treatment. Then a polyethyleneimine

(PEIE) (Mw 70’000, 80% ethoxylated solution, Sigma-Aldrich, diluted to 0.05% w/w in DI water)

layer and a 20-nm-thick phenyl-C61-butyric-acid-methyl-ester (PCBM) (99.5%, Solenne) layer

were spin coated at 5000 rpm during 60 s and 3000 rpm during 30 s, respectively. The substrates
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were annealed at 150◦C for 10 min between PEIE and PCBM and at 70◦C for 10 min after PCBM,

in a nitrogen (N2)-filled glovebox. Then a 150-nm-thick lead iodide (PbI2) layer was thermally

evaporated at a rate of 1 Å/s in a Lesker mini-spectros system, with substrate temperature of

80◦C and a base pressure of 1.5× 10−6 torr. The PbI2 layer was transformed to the final per-

ovskite phase by spin coating a 50 mg/ml solution of methylammonium iodide (MAI, Dyesol)

in isopropanol, containing 24.8 μl/ml 2-methoxyethanol [83], or pure ethanol [76]. The sub-

strate was set in rotation and only after speed stabilization the solution was dripped on the

rotating substrate (spin and drop method). The film was then annealed on a hotplate inside

a nitrogen-filled glovebox at 100-120◦C for 30 min. A spiro-OMeTAD solution in chloroben-

zene (72.3 mg/ml, 2,2’,7,7’-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9’-spirobifluorenes

(spiro-OMeTAD) (Lumtec), 28.8 μl/ml 4-tert-butylpyridine (TCI), 17.5 μl/ml stock solution of

520 mg/ml lithium bis trifluoromethylsulfonyl imide (Sigma-Aldrich) in acetonitrile) was then

spin coated at 4000 rpm for 30 s. The opaque cells were finally metallized with ≈70 nm of gold,

deposited by thermal evaporation at ≈ 5×10−6 mbar base pressure.

A.1.3 Near-infrared transparent n-i-p cells

To fabricate semitransparent perovskite cells in n-i-p configuration, the cells were fabricated

with the same sequence as described above for either mesoporous or planar cells, and stop-

ping after the spiro-OMeTAD spin coating. Then, instead of the gold metallization, 10-15 nm

of molybdenum oxide (stoichiometric MoO3 or WO3 powder, 99.9995% Alfa Aesar, at a base

pressure of 3-5×10−6 mbar and rate of 0.2-1 Å/s) was thermally evaporated as protective

buffer layer, using Mo box boats. This was followed by the transparent conductive oxide (TCO)

deposition by RF magnetron sputtering. Several TCO were used in this thesis: indium zinc

oxide (IZO) (IZO, 4-inches target, composition 90 wt% In2O3 and 10 wt% ZnO, in Leybold

Univex or home-made "Lebowski"), hydrogenated indium oxide (IO:H, in MRCII), indium tin

oxide (ITO, in MRCII), zinc tin oxide (ZTO, in Oerlikon Clusterline). The MoOx /TCO stack was

deposited through a shadow mask. Then a metal (Au or Ag) frame was thermally evaporated

around the active area to enhance carrier extraction.

For the work in reference [72], IZO was deposited by RF magnetron sputtering at 60 W

(0.76 W/cm2) with a working pressure of 2.1×10−3 mbar using pure argon gas. The chamber

base pressure was at 5.5×10−6 mbar, the substrate temperature at 60◦C and the sample-target

distance at 13 cm.

For the work in references [76] and [84], a 110-nm-thick IO:H/ITO bilayer was deposited

sequentially in the same chamber without breaking the vacuum. The IO:H film was prepared

by using an In2O3 target and introducing H2O vapor in the Ar/O2 flux to incorporate hydrogen

in the layer [256].

For the fabrication of monolithic tandem solar cells, the process flow is the same as the single

junction perovskite cells, by just replacing the glass/ITO substrate with the silicon bottom cell

as described below.
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A.1.4 Planar p-i-n opaque cells

As described and used for example in reference [97], planar p-i-n perovskite cells were grown

in superstrate configuration on 15 Ω/� ITO-coated glass substrates (Kintec). The hole contact

was either 17 nm of 2,2’,7,7’-Tetra(N,N -di-p -tolyl)amino-9,9-spirobifluorene (spiro-TTB)

(spiro-TTB, Lumtec >99%), thermally evaporated in an alumina crucible, or 20 nm of sputtered

nickel oxide. In both cases, the perovskite layer was formed using a sequential 2-step hybrid

deposition method, consisting of first thermally co-evaporating a Cs-halide compound and

PbI2. The evaporation rate of PbI2 was fixed at 1 Å/s and the Cs-halide rate was then adjusted

to obtain the desired Cs content. This rate is indicated in the manuscript as a percentage of

the PbI2 rate, i.e. CsI15% corresponds to a rate of 0.15 Å/s, co-evaporated with a 1 Å/s rate of

PbI2. The PbI2 thickness was set to 180 nm for the CsI and CsBr samples and 160 nm for the

CsCl samples. The Cs halides were purchased from Abcr and had purities >99%. The CsX-PbI2

layer was then transformed to the final perovskite layer by spin coating a 0.445M ethanol

solution of formamidinium iodide (FAI) and/or formamidinium bromide (FABr) (Dyesol), with

specific molar ratio given throughout the thesis, i.e. 1:2 corresponds to a mixture of 1 mol of

FAI for 2 mol of FABr. The solution was spin coated inside a nitrogen-filled glovebox. Then

the samples were taken in air and annealed on a hotplate at 150 ◦C for 25 min. The cells were

finished with the electron contact consisting of a thermally evaporated bilayer of 20 nm of

C60 (>99.95%, NanoC) and 5 nm of TmPyPB (1,3,5-Tri[(3-pyridyl) -phen-3-yl]benzene, >99%,

Lumtec), followed by 110 nm of thermally evaporated silver.

A.1.5 Near-infrared transparent p-i-n cells

After the C60 deposition, the samples were transferred to an ALD chamber (Oxford Instrument),

where ≈10 nm of SnO2 were grown from TDMSASn and H2O precursors. The main controlled

parameters were the purge time, the number of cycles and the temperature. A TCO was

subsequently deposited on the SnO2 layer to make the transparent electrode, similarly to the

n-i-p cells. Finally, a Ag metal grid was thermally evaporated and covered with an evaporated

antireflective coating of MgF2.

A.2 Silicon cell fabrication

A.2.1 Silicon heterojunction solar cells

As presented in references [72] or [76], the silicon bottom cells used for mechanically stacked

4-terminal tandem measurements were amorphous silicon/crystalline silicon heterojunction

solar cells (SHJ), fabricated with n-type-doped crystalline silicon float-zone wafers (resistivity

of 1-5 Ohm; thickness ≈300 μm). After standard double-side texturization in a KOH-based

solution, the wafers were passivated and carrier-selective contacts were created by deposition

of intrinsic and doped hydrogenated amorphous silicon layers by PECVD. The cells were

then finished with ITO deposition and metallization with full-area silver on the rear-side and
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screen-printed silver grid on the front-side to define 4-cm2-sized cells.

For monolithic tandem solar cells as presented in references [83] or [76], the silicon bottom

cells were double-side mirror polished (DSP), single-side textured (SST) or double-side tex-

tured (DST). For DSP cells, we used double-side mirror polished, n-type doped, crystalline

silicon float-zone wafers with a (100) surface orientation, a resistivity of 1-5 Ohm.cm and a

thickness of 260-300 μm. After a 60 s dip in hydrofluoric acid (5% aqueous solution) to strip off

the native oxide layer at the surface, the wafer surfaces were passivated and carrier-selective

contacts were created by deposition of intrinsic and doped (n or p) hydrogenated amorphous

silicon layers. For this we used our standard PECVD process, which we adapted for polished

wafers. For SST cells, the process was also started with DSP silicon wafers. But then one

side was first coated with a dielectric mask and a standard KOH texturization step was then

carried out, followed by a cleaning and mask removal step in a diluted HF bath, resulting

in a single-side textured wafer. The PECVD recipes for the amorphous silicon layers were

then adapted to fit the front or rear surface finish. The prepared 4-inch wafers were then

coated with ITO and Ag by sputtering on the rear side in full area, followed by laser cutting to

2.5×2.5 cm2 samples. Finally, the intermediate recombination layer was made of a sputtered

IZO layer, deposited at room temperature with 100 W sputter power at 1 μbar of pure argon,

through a shadow mask defining the active area of the cells on which the front top electrode

will later be aligned. This TCO layer was deposited directly on the p-type amorphous silicon

emitter layer. The perovskite top cell was then grown on the recombination layer, following

exactly the same process as for the single junction cells.

The TCO recombination layer was later replaced by a nanocrystalline silicon tunnel junction,

as demonstrated by F. Sahli et al. [86].

For monolithic tandem solar cells presented in Chapter 5, fully textured silicon bottom cells

were prepared using n-type-doped crystalline silicon float-zone wafers, standard double-side

texturization in a KOH-based solution and standard passivation and carrier-selective contact

deposition. The bottom cells used for fully-textured tandems were in the rear-emitter configu-

ration and all using a nanocrystalline silicon tunnel junction, without TCO as intermediate

contact, if not specified otherwise. The rear side ITO/Ag stack was patterned (in contrast to

the front emitter bottom cells previously described), centered on 2.5×2.5 cm2 samples and

aligned with the front side transparent contact finishing the cell on top of the perovskite top

cell.

A.2.2 Low-pressure chemical vapor deposition (LPCVD)

LPCVD was used to deposit zinc oxide (ZnO) layers, in an attempt to planarize the surface of a

textured silicon wafer (see Chapter 5.4). The system had three gas entries: diethylzinc (DEZ,

Zn(C2H5)2), H2O and diborane as dopant (B2H6). The samples were placed on an aluminum

plate, which was held at a constant temperature (i.e. 170 ◦C). All gas fluxes and substrate

temperature could be controlled. The used parameters are indicated in the discussion in the

related Section of Chapter 5.4.
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A.3 Thin film characterization

Thin films were deposited on SCHOTT AF32 glass substrates, if not otherwise stated.

A.3.1 UV-visible spectrophotometry

A PerkinElmer Lambda 950 spectrophotometer was used to determine total and diffuse re-

flectance and transmittance of thin-films on glass substrate and reflectance of silicon wafers

or tandem cells. The absorptance was calculated as: A(λ) = 100%−T T (λ)−T R(λ). The setup

was equipped with a 150-mm InGaAs integrating sphere. All measurements were carried out

at room temperature in ambient air.

A.3.2 Variable-angle spectroscopic ellipsometry (VASE)

VASE was mainly used to obtain complex refractive indices of perovskite materials as pre-

sented in references [103, 97]. VASE measurements were carried out with a Horiba Jobin Yvon

UVISEL iHR320 ellipsometer under incident angles of 50, 60 and 70◦ for photon energies

between 0.6 and 4 eV with 50 meV increment. The ellipsometric models for the complex

refractive index were developed using three substrate types to decouple intrinsic properties

from substrate dependent artefacts: glass, double-side polished silicon and oxidized silicon.

Surface roughness was measured by atomic force microscopy and integrated into the models.

Reflectance and transmittance data were acquired using the UV-vis spectrophotometer. All

measurements were carried out at room temperature in ambient air.

A.3.3 Fourier-transform photocurrent spectroscopy (FTPS)

FTPS was carried out on a Thermo Nicolet 8700 FTIR spectrophotometer equipped with

an external 100 W halogen light source. The measurements were carried out on full solar

cell stacks. All measurements were carried out at room temperature in ambient air. More

information can be found in reference [33, 104].

A.3.4 Photothermal deflection spectroscopy (PDS)

PDS measurements were performed by immersing a perovskite layer deposited on a glass

substrate in a FluorinertTM FC-72 temperature-sensitive liquid. More information can be

found in reference [33, 104].

A.3.5 X-ray diffraction (XRD)

As presented in reference [97], XRD measurements were carried out in an Empyrean diffrac-

tometer (Panalytical) equipped with a PIXcel-1D detector. The diffraction patterns were
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measured using a Cu Kα radiation (wavelength of 1.54Å). The measurements were carried out

in ambient air.

A.3.6 Transparent conducting oxide (TCO) characterization

The film thickness was determined with a step profiler (AmBios XP-2). The sheet resistance

(Rsq ) was measured with a four-point-probe setup. Electrical conductivity, carrier Hall mo-

bility and carrier density were obtained from Hall-effect measurements in the van der Pauw

configuration on an Ecopia HMS-5000 system at room temperature, ambient air and in the

dark. For these measurements, the TCO layers were deposited on glass substrates and placed

close to the devices during the deposition, acting as witness sample.

A.3.7 Microscopy techniques

Atomic force microscopy was used to determine the surface roughness of perovskite layers,

using a Bruker Dimension Edge atomic force microscope.

The SEM images were acquired using a JEOL JSM-7500TFE SEM at an accelerating voltage of

5 kV and using a working distance of 5 mm.

For TEM, cross sections of perovskite cells were prepared using the conventional focused ion

beam lift-off technique, which was performed on a Zeiss Nvision 40 FIB/SEM workstation.

The lamellae were then transferred quickly (<2 min in air) to a high-resolution transmission

electron microscope (either FEI Tecnai Osiris or an image and probe Cs-corrected FEI Titan

Themis microscope) operated at 200 kV. More details on the TEM/EDX characterization of

perovskite cells can be found in a previous publication [102]. The Cs/Pb atomic ratio was

estimated from EDX spectra using the Cliff-Lorimer method (using the Pb L and Cs K edges,

with all the other elements deconvoluted).

A.4 Solar cell characterization

A.4.1 External quantum efficiency

An external quantum efficiency (EQE) is defined as the ratio of the number of photogenerated

and collected carriers over the number of incident photons at a specific wavelength. This

measurement helps to quantify the optical performance of a solar cell and its wavelength

dependent absorption and carrier collection capability. EQE spectra were measured with a

custom made spectral response setup equipped with a white halogen lamp, a Horiba micro

HR grating monochromator and lock-in amplifiers. The setup allowed measuring EQE in a

spectral range from 310 nm to 1190 nm. The influence of chopper frequency, voltage bias

and white light bias was tested for mesoporous perovskite cells and shown in Figure A.1.

Accordingly, the chopper frequency was fixed at 10 Hz for TiO2-based mesoporous cells, due

to their slow response time. For fullerene-based planar perovskite cells, the chopper frequency
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was set at 232 Hz, as this type of cell was not sensitive to the chopper frequency. The J sc was

determined from EQE measurements by convolution of the EQE spectra with the AM1.5g

solar spectrum. The single junction perovskite cells were measured without any backreflector,

white light bias or voltage bias, if not otherwise specified.

In the case of monolithic tandem solar cells, light bias and voltage bias were used in order to

gain access to the contribution of each subcell. As the two subcellsare connected in series, the

current generated by the tandem device is limited to the lowest photogenerated current of

the two subcells. Therefore, to measure the EQE curve of the perovskite top cell, the tandem

device was illuminated with infrared light (using an IR filter at 830 nm), which was saturating

the silicon bottom cell. Blue light was used in the same principle to measure the EQE of the

silicon bottom cell. The exact spectra of the light bias used throughout this thesis can be

found in a previous thesis by Karin Söderström [229], p.33. Voltage bias were applied during

measurements: 0.9-1V during the measurement of the bottom cell and 0.6-0.7 V during the

measurement of the top cell. The effects of light and electrical biases as well as frequency were

carefully tested. For example that they had no significant effect on one of our early monolithic

tandem cell [83]. This effect was regularly tested every time a new type of cell was measured

for the first time.

A.4.2 Current-voltage measurements

J-V measurements provide probably the most important set of information in the development

of a photovoltaic device, as they allow to assess its performance. J-V characteristics were

acquired with a class-AAA WACOM continuous light solar simulator, using a halogen and a

xenon lamp to match the AM1.5g irradiance spectrum and 1000 W/m2 irradiation intensity.

Fitting the J-V curves allowed to extract the open circuit voltage (V oc ), the short circuit current

density (J sc ), the fill factor (FF), the series resistance (Roc), the shunt resistance (Rsc), the

voltage, current and power at maximum power point (V mpp ,Jmpp ,Pmpp ) (see Figure A.2a).

All cells were measured through laser cut shadow mask, defining the illumination area and

therefore the device area. Single junction cells were measured with a black background to

minimize back reflection, especially important for semitransparent solar cells. Wafer-based

cells were measured on a temperature controlled chuck, acting as back contact, and four-point

kelvin probes were used for the front contacts. The temperature was fixed at 25◦C and all

measurements were carried out in ambient air, without encapsulation, if not stated otherwise.

Illumination intensity dependent measurements were carried out using neutral density filters

placed between the cell and the sun simulator.

Due to the slow response and often hysteretic behavior of perovskite-based solar cells (see

hysteresis illustration in Figure A.2a), the J-V scan parameters, such as delay between two

measurements, the integration time at each point, the number of point in a voltage interval,

the starting voltage and ending voltage, were carefully chosen and readapted for all cell types.

For example, mesoporous TiO2-based perovskite solar cells had very slow response and the

observed hysteresis was very sensitive to scan speed variations. They were therefore scanned

at around 33 mV/s. In contrast, planar fullerene-based perovskite cells had a faster response
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Figure A.1 – External quantum efficiency (EQE) spectra. (a) Effect of chopper frequency on EQE of a semitrans-
parent cell with MoOx 10 nm/IZO 60 W rear electrode. (b) Effect of voltage bias on a semitransparent cell with
MoOx 35 nm/IZO 150 W rear electrode. (c) Effect of attaching a white, diffusive back reflector on the rear side of a
semitransparent cell with MoOx 35 nm/IZO 60 W rear electrode. (d) Effect of white light bias and back reflector on
the EQE of a semitransparent cell with IZO rear electrode.

time and were less sensitive to sweep parameters. They were usually scanned at 100 mV/s.

For all perovskite-based cells, the hysteresis was systematically checked by scanning the

cell both in reverse (V oc to J sc ) and forward (J sc to V oc ) directions, in a loop scan without

turning off the light and without additional delay. Finally, the slow response of perovskite cells

can also be observed by a significant change of J-V parameters in several consecutive scans.

Therefore we usually also actively tracked the maximum power point for several hundreds of

seconds until the power output stabilized. A MPPT algorithm was written and integrated in

our sun simulator LabVIEW software. It was based on a three-point weight MPPT algorithm

[257], which was chosen to avoid oscillation problems often seen with perturbe-and-observe

algorithms [258], with Figure A.2b showing a typical oscillation example on a mesoporous

perovskite cell.
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Figure A.2 – MPPT measurement of a mesoporous perovskite solar cells with a perturbe-and-observe algorithm,
showing oscillations linked to chosen time parameters.

A.4.3 Microtextured antireflective foils and antireflective coatings

Microtextured antireflective foils were fabricated in-house by Xavier Niquille. The procedure

was described in detail in previous publications and theses [259, 208, 229]. During this thesis,

replicates of silicon random pyramids and of cube-corner structures as shown in Figure A.3

were used, fabricated on PEN flexible foils with Ormostamp resin. The foils were applied on

the solar cells with canola oil as optical coupling liquid.

Figure A.3 – SEM topview images of microtextured antireflective foils with Si pyramids.

A.4.4 Mechanically-stacked 4-terminal tandem measurements

When the perovskite cell had a significantly slower size (i.e. ≈0.25 cm2) compared to the silicon

cell (i.e. 4 cm2), we defined the tandem as a mechanically stacked 4TT measurement, and
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not device, which was kept for the case where both sub cells had the same size and were

integrated (see below). As presented in references [72, 76], 4TT measurements consisted on

first measuring the J-V and EQE characteristics of the near-infrared transparent perovskite

cell as a single-junction. Then, the EQE of a SHJ bottom cell (4 cm2) was measured through

the perovskite cell, acting as filter. The EQE beam size was 1×2 mm2, therefore smaller than

the active area of the perovskite cell and small than the Ag fingers spacing on the silicon cell.

This measurement provided a J sc value that was then multiplied by a shadowing factor, in

order to be closer to a realistic situation where the top cell would also be larger and have a

metal grid that we assume to be the same as the one of the bottom cell. This shadowing factor

was therefore defined as the ratio of the silicon cell J sc including the front metal grid and

the silicon cell J sc without metal grid. The obtained corrected J sc was then corresponding

to the current that would be generated in the bottom cell and was then used to measure the

J-V characteristics of the bottom cell. The illumination intensity of the sun simulator was

adjusted with neutral density filters to match the measured J sc , which allowed to measure

the V oc and FF accurately. The tandem total efficiency was then calculated by summing the

measured individual performance of both the near-infrared transparent perovskite top cell

and the filtered silicon bottom cell. The validity of this protocol was confirmed by using larger

area perovskite cell dummy filters and measuring the current of the bottom cell directly. Also

using neutral density filters yield identical results as when using a long-wave pass filter, which

was tested both on silicon heterojunction (SHJ) cells and passivated emitter with rear locally

diffused (PERL) cells, as shown in Figure A.4.

For integrated mechanically stacked 4-terminal tandem devices, the two sub cells had the same

size and geometry. The top and bottom cells were specifically designed to have 1.03 cm2 aper-

ture area, with both metal finger grid aligned. The contacts were made with metal ribbon and
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Figure A.4 – J-V curves of silicon heterojunction (SHJ) or passivated emitter rear locally diffused (PERL) solar cells
when using either a long-pass filter or neutral density filter, showing a perfect superposition for these two cases.
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A.4. Solar cell characterization

the top cell was glued to the bottom cell with PDMS, which was also acting as optical coupling

layer. J-V and EQE characteristics could then be directly measured on the device for both sub

cells. This integrated device configuration with larger cell areas is a more realistic demon-

stration of a real 4-terminal tandem system, whereas the above-discussed measurement with

dissimilar cell sizes should be seen as a demonstration of the efficiency potential.
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Figure B.1 – FTPS measurements of perovskite solar cells with various compositions indicated in the legend with
their experimental conditions. Reproduced with permission [97]. Copyright 2018, American Chemical Society.
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Table B.1 – Best J-V parameters for all investigated cell compositions from section 2.2.3 and their corresponding
EQE-extracted short circuit current and optical band gap.

 Cell type Composition Eg (EQE) Jsc (EQE) ARF? Ap. area scan dir. Voc Jsc FF Eff. Pmpp 
   eV mA/cm2 - cm2 - mV mA/cm2 % % mW/cm2 

n-
i-p

 se
m

itr
an

sp
ar

en
t 4 CsBr10%-1:0 1.56 19.13 no 0.25 reverse 1025 19.40 78.5 15.6 15.5 

4 CsBr10%-1:0 1.55 20.62 yes 0.25 reverse 1031 21.11 78.7 17.1 16.7 
4 CsBr10%-2:1 1.61 18.91 no 1.03 reverse 1052 19.40 76.2 15.5 15.7 
4 CsBr10%-2:1 1.61 19.84 yes 1.03 reverse 1079 20.20 75.9 16.6  
4 CsBr10%-1:2 1.68 16.96 no 0.25 reverse 1126 16.81 77.5 14.7 14.5 
4 CsBr10%-0:1 1.74 15.28 no 0.25 reverse 1144 15.35 75.4 13.2 13.2 
4 CsI15%-1:2 1.64 17.96 no 0.25 reverse 1111 18.10 73.5 14.8 14.5 
4 CsI15%-0:1 1.70 16.72 no 0.25 reverse 1164 16.55 72.1 13.9 12.9 

             

p-
i-n

 o
pa

qu
e 

1 CsBr10%-1:0 1.53 22.16 no 0.25 forward 1005 21.69 60.7 13.2 13.2 
1 CsBr10%-1:2 1.65 19.00 no 0.25 reverse 1082 18.74 75.0 15.2 15.0 
1 CsBr10%-0:1 1.72 17.47 no 0.25 forward 1088 15.69 69.6 11.9 11.6 
3 CsBr10%-0:1 1.73 16.03 no 0.25 reverse 1085 15.72 80.0 13.6 13.2 
1 CsI15%-1:0 1.51 22.14 no 0.25 forward 851 17.15 54.3 7.9  
1 CsI15%-1:2 1.62 19.77 no 0.25 forward 1049 19.63 75.5 15.6 14.7 
1 CsI15%-0:1 1.69 18.01 no 0.25 forward 1107 18.09 74.1 14.8 14.6 
1 CsCl8%-1:3 1.70 18.17 no 0.25 reverse 1086 18.05 72.4 14.2  
2 CsCl8%-0:1 1.75 16.11 no 0.25 forward 1053 15.99 76.1 12.8 13.4 
1 CsCl12%-1:3 1.72 17.45 no 0.25 forward 1104 17.07 76.8 14.5 13.9 
1 CsCl12%-0:1 1.77 16.48 no 0.25 reverse 1131 16.18 74.6 13.7 13.0 
2 CsCl17%-0:1 1.80 15.40 no 0.25 forward 1150 15.03 67.8 11.7 11.0 
2 CsCl17%-0:1 1.79 16.36 yes 0.25 forward 1113 15.74 72.0 12.6 12.0 

             
1 p-i-n: ITO/spiro-TTB/Perovskite/C60/TmPyPB/Ag       
2 p-i-n: ITO/NiO/Perovskite/C60/TmPyPB/Ag       
3 p-i-n: ITO/NiO/Perovskite/LiF/C60/TmPyPB/Ag       
4 n-i-p: ITO/LiF/C60/Perovskite/spiro-OMeTAD/MoOx/IO:H/ITO       
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Figure B.4 – Pictures of 5x5 cm2area textured silicon wafer coated with a perovskite cell, showing the effect of the
opening size of the dispersing tip used for the organo-halide solution. This tip opening trick was made available to
the author by Dr. Soo-Jin Moon, while she was working on up-scaling solution processed perovskite cells to larger
modules.
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C Labview and Python applications
written during the thesis

All source codes can be made available upon request to the author.

Labview-based MPPT

In order to measure a stabilized power output and be less prone to discussion around hysteresis

in perovskite solar cells, I had to implement a maximum power point tracking (MPPT) system

in our sun simulator software. The MPPT software is shown in Figure C.1, showing the front

and backend of the Labview program. Here only the 3-point weight algorithm is shown as this

was the most adapted to perovskite cells, and so the most used throughout this thesis. More

standard Perturn & Observe algorithms were however also coded for comparison. It allowed

to observe live the evolution of the maximum power and voltage and current at maximum

power point, as well as to change live some parameters such as the voltage step or delay time.

This software is used on a daily basis by all members of the perovskite group.

Data analysis Python software

The study of solar cells can generate a large amount of data. I therefore started from the

beginning of my thesis to program several piece of code allowing to faster treat, analyze and

summarize the raw data generated by J-V and EQE. After having started with Mathematica, I

then migrated the code to Python in order to include a graphical user interface and make the

software more easy to use for people not familiar with programming. The Figure C.2 shows

what the user can see and do with this software, including a main window from which pop-up

windows allows access to the specific softwares for each characterization technique. At the

time of writing this thesis, the software is capable of analyzing J-V , MPPT, EQE, spectropho-

tometry, QSSPC, Hall effect, photoluminescence and ellipsometry data, as well as transfer

matrix modeling for optical optimization of complex thin film multilayer stacks. The software

is now used by over 10 people in the group in a daily basis to minimize the time spent on

otherwise time-consuming data processing tasks.
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Figure C.1 – Front and backend of the Labview-based maximum power point tracking system implemented on the
IV Malibu sun simulator and based on a three-point-weight algorithm.

Arduino-based sourcemeter with Python GUI: The Sourcuino

Together with Jonas Geissbuehler, we fabricated a sourcemeter based on an Arduino Uno and

PCB board. The system was designed to be cheap (<100 CHF including all components), easily

transportable (reduced it to fit the size of the Arduino board), and able to measure without

significant noise small cells with around 1 cm2area. I designed and coded the graphical user

interface with Python, taking particular attention for user-friendlyness, as the software and
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Figure C.2 – Overview of the graphical user interfaces of the Data Analysis software written in Python.

setup are meant to be used for both exhibitions, presentations for young students, and also

for solar cell long-term degradation. To this end, the software has a function to alternate MPP

tracking and J-V curve scanning with user-defined parameters (shown in Figure C.3). The setup

can handle two devices in parallel and was used for the stability testing of perovskite/silicon

tandem solar cells under light soaking with continuous MPPT and regular automatized J-V

scans (see chapter 5).
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Figure C.3 – Graphical user interface view of the Sourcuino in "Degradation" configuration.
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Glossary

FF fill factor.

Jmpp current density at maximum power point.

J sc short circuit current density.

Pmpp power at maximum power point.

Rsq sheet resistance.

V mpp voltage at maximum power point.

V oc open circuit voltage.

J-V current density/voltage.

4TT 4-terminal tandem.

AFM atomic force microscope.

Al-BSF aluminum back surface field.

ALD atomic layer deposition.

Ar argon.

ARF microtextured antireflective foil.

BOS balance of system.

C60 Buckminsterfullerene.

c-Si crystalline silicon.

c-TiO2 compact titan dioxide.

CMP chemical mechanical polishing.

CO2 carbon dioxide.
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Glossary

Cs cesium.

CsBr cesium bromide.

CsCl cesium chloride.

CSEM Swiss Center for Electronics and Microtechnology.

CsI cesium iodide.

CVD chemical vapor deposition.

DEZ diethyl zinc.

DMF N, N-dimethylformamide.

DMSO dimethylsulphoxide.

DSP double-side mirror polished.

DST double-side textured.

Eg optical bandgap.

EDX energy-dispersive X-ray spectroscopy.

EQE external quantum efficiency.

FA formamidinium, [R2N −C H = N R2]+.

FABr formamidinium bromide.

FAI formamidinium iodide.

FIB focused ion beam.

FTO fluorine doped tin oxide.

FTPS Fourier-transform photocurrent spectroscopy.

HTL hole transporting layer.

IO:H hydrogenated indium oxide.

ITO indium tin oxide.

IZO indium zinc oxide.

IZrO indium zirconium oxide.
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Glossary

LCOE levelized cost of electricity.

LiF lithium fluoride.

LPCVD low-pressure chemical vapor deposition.

MA methylammonium, C H3N H3.

MAI methylammonium iodide, C H3N H3I .

MAPbI3 methylammonium lead triiodide.

MgF2 magnesium fluoride.

MoO3 stoichiometric molybdenum oxide.

MoOx molybdenum oxide.

mp-TiO2 mesoporous titan dioxide.

MPPT maximum power point tracking.

N2 nitrogen.

nc-Si:H nanocrystalline silicon.

NiOx nickel oxide.

NIR near-infrared .

NPB N,N’ -Bis(naphthalen-1-yl)-N,N’ -bis(phenyl)-benzidine.

O2 oxygen.

PbI2 lead iodide.

PCBM phenyl-C61-butyric-acid-methyl-ester.

PDMS polydimethylsiloxane.

PDS photothermal deflection spectroscopy.

PECVD plasma enhanced chemical vapor deposition.

PEDOT:PSS poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate).

PEIE polyethyleneimine.

PERC passivated emitter rear contact.

PL photoluminescence.
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Glossary

PTAA poly(triarylamine).

SEM scanning electron microscope.

SHJ amorphous-silicon/crystalline-silicon heterojunction solar cell.

SiO2 silicon dioxide.

SnO2 tin oxide.

spiro-OMeTAD 2,2’,7,7’-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9’-spirobifluorenes.

spiro-TTB 2,2’,7,7’-Tetra(N,N -di-p -tolyl)amino-9,9-spirobifluorene.

SST single-side textured.

TCO transparent conductive oxide.

TEM transmission electron microscope.

TiO2 titan dioxide.

TMO transition metal oxide.

TmPyPB 1,3,5-Tri[(3-pyridyl) -phen-3-yl]benzene.

V2O5 vanadium pentoxide.

VASE variable-angle spectroscopic ellipsometry.

WO3 stoichiometric tungsten oxide.

WOx tungsten oxide.

XPS x-ray photoelectron spectroscopy.

XRD x-ray diffraction.

ZnO zinc oxide.

ZTO zinc tin oxide.
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