Novel Low Complexity Biomedical Signal Processing
Techniques for Online Applications

THESE N° 8522 (2018)

PRESENTEE LE 24 AOUT 2018

A LA FACULTE DES SCIENCES ET TECHNIQUES DE L'INGENIEUR
GROUPE SCI STI JMV
PROGRAMME DOCTORAL EN GENIE ELECTRIQUE

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Sasan YAZDANI

acceptée sur proposition du jury:

Prof. P. Frossard, président du jury
Dr J.-M. Vesin, directeur de these
Prof. D. Finlay, rapporteur
Dr M. Lemay, rapporteur
Prof. D. Atienza Alonso, rapporteur

(Pr

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Suisse
2018






" B SR Vit ¢ BT
“§38 OB B ek eha P
T :_HZ@'@@T( < Ié*é T
"Q¥6 &@-"(I"I'( [ Ié*é 3

i 1@ Gt @ In
e . TG YA F
i@ @A @riac
QA6 & A2 4 AT e °

o

He who knows and knows he knows
Rides his flying horsm top of theskies
He who knows but} < v k&ow he knows
Rush to wake him up, help him open his eyes
Hewho } *v[I&}A v Iv}Ae Z } ev[3 IV}A
Drags his limping mule through tloevs and highs
Hewho } evkBowand } Vv[I&}A Z } ev[§ IV}A
Remains unwise, till the day he dies
He who knows and wants to know
Will live in bliss, full of happiness
AZ} IviAe pus } ev[S IVIA Z Iv}A.
Walks around thirsty carryirgjug full of water
He who } <v kow but wants to know
Through lifetimeof efforts frees himself of ignorance
He who } evk&owand } v pdantto know
It a shame for this creature to be alive

- Ebnre YaminKnowledge and oblivion,
circa 1285t 1368)






Abstract

Biomedical signal processing has become a very active domain of research nowadays. With
the advent of portable monitoring devices, from accelerometer-enabled bracelets and smart-
phones to more advanced vital sign tracking body area networks, this eld has been receiving
unprecedented attention. Indeed, portable health monitoring can help uncover the underlying
dynamics of human health in a way that has not been possible before. Several challenges have
emerged however, as these devices present key di erences in terms of signal acquisition and
processing in comparison with conventional methods. Hardware constraints such as processing
power and limited battery capacity make most established techniques unsuitable and therefore,
the need for low-complexity yet robust signal processing methods has appeared. Another issue
that needs to be addressed is the quality of the signals captured by these devices. Unlike in clinical
scenarios, in portable health monitoring subjects are constantly performing their daily activities.
Moreover, signals maybe captured from unconventional locations and subsequently, be prone to
perturbations. In order to obtain reliable measures from these monitoring devices, one needs to
acquire dependable signal quality measures, to avoid false alarms.

Indeed, hardware limitations and low-quality signals can greatly in uence the performance
of portable monitoring devices. Nevertheless, most devices o er simultaneous acquisition of
multiple physiological parameters, such as electrocardiogram (ECG) and photoplethysmogram
(PPG). Through multi-modal signal processing the overall performance can be improved, for
instance by deriving parameters such as heart rate estimation from the most reliable and uncon-
taminated source.

This thesis is therefore, dedicated to propose novel low-complexity biomedical processing
techniques for real-time/online applications. Throughout this dissertation, several bio-signals
such as the ECG, PPG, and electroencephalogram (EEG) are investigated. The main contribu-
tion of this dissertation consists in two signal processing techniques : 1) a novel ECG QRS-
complex detection and delineation technique, and 2) a short-term event extraction technique for
biomedical signals. The former is based on a processing technique called mathematical morpho-
logy (MM), and adaptively uses subject QRS-complex amplitude- and morphological attributes
for a robust detection and delineation. This method is generalized to intra-cardiac electrograms
for atrial activation detection during atrial brillation. The second method, called the Relative-
Energy algorithm, uses short- and long-term signal energies to highlight events of interest and
discard unwanted activities. Collectively, the results obtained by these methods suggest that while
presenting low-computational costs, they can e ciently and robustly extract biomedical events
of interest.

Using the relative energy algorithm, a continuous non-binary ECG signal quality index is
presented. The ECG quality is determined by creating a cleaned-up version of the input ECG
and calculating the correlation coe cient between the cleaned-up and the original ECG. The
proposed quality index is fast and can be implemented online, making it suitable for portable
monitoring scenarios.

The proposed techniques are employed in two miscellaneous applications namely, 1) false
alarm reduction in intensive care units (ICU), and 2) the investigation of U-shaped patterns during

\Y



sleep in polysomnography recordings. The former is carried out to provide robust arrhythmia
detection in ICUs by means of multi-modal signal processing techniques. The latter explores U-
shaped phenomenon during sleep, studies their statistical properties, and provides an explanation
to how these patterns may correspond to movement events during sleep.

Keywords : Biomedical signal processing, Multi-modal signal processing, Electrocardiogram,
Intra-cardiac electrograms, Electroencephalogram, Electromyogram, Imaging photoplethysmo-
graphy, Polysomnography , Signal quality assessment, Arrhythmia analysis, ECG QRS-complex
detection, Atrial activity detection, EEG K-complex detection.
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R@sumd

Le traitement des signaux biom@dicaux est devenu de nos jours un domaine de recherche trts
actif . Avec I’avknement des dispositifs de surveillance portatifs, des bracelets acc@l@romttre
et des t@l@phones intelligents aux rdseaux de capteurs de signes vitaux plus avanc@s, ce domaine
a re u une attention sans pr@c@dent. En e et, le suivi d’@tat physique par dispositif portable
peut aider d@couvrir la dynamique sous-jacente de la sant@ humaine d’une manitre innovante.
Plusieurs d@ s sont apparus cependant, car ces dispositifs pr@sentent des di @rences importantes
en termes d’acquisition et de traitement du signal par rapport aux mgthodes conventionnelles.
Les contraintes mat@rielles telles que puissance de traitement et capacitd limitge de la batterie
rendent la plupart des techniques @tablies inadapt@es et, par cons@quent, le besoin de m@thodes
de traitement du signal la fois simples et robustes est apparu.

Un autre probltme  r@soudre est celui de la qualitd des signaux capt@s par ces appareils.
Contrairement ce qui se passe dans les sc@narios cliniques, les sujets sous surveillance pour-
suivent constamment leurs activit@s quotidiennes. De plus, les signaux peuvent Etre capturds sur
des emplacements non conventionnels et, de ce fait, Etre sujets des perturbations. A n d’obtenir
des mesures ables partir de ces dispositifs de surveillance, il est ngcessaire de d@velopper des
mesures robustes de qualitd de signal a n de minimiser les fausses alarmes.

Les limitations mat@rielles et les signaux de faible qualitd peuvent donc grandement in uen-
cer les performances des dispositifs de surveillance portables. Cependant, la plupart des disposi-
tifs permettent I’acquisition simultan@e de plusieurs paramttres physiologiques, tels que I’@lec-
trocardiogramme (ECG) et le photopldthysmogramme (PPG). Gr ¢ un traitement multimodal,
la performance globale peut Etre amg@lior@e, par exemple en d@rivant des paramt.tres tels que celui
de la frdquence cardiaque partir de la source la plus able et la moins contaminge.

Cette thtse est donc d@dide proposer des techniques nouvelles de traitement biom@dical
de faible complexitd pour des applications en temps rdel / en ligne. Tout au long de cette thtse,
plusieurs bio-signaux tels que I’ECG, le PPG, et I’@lectroenc@phalogramme (EEG) sont gtudids.

La contribution principale de cette dissertation consiste en deux techniques de traitement du
signal : 1) une nouvelle technique de dftection et de d@lindation du complexe QRS dans I’ECG,
et 2) une technique d’extraction d’@v@nements court terme pour les signaux biom@dicaux. Le
premier est bas@ sur une technique de traitement appel@e morphologie math@matique (MM), et
utilise de manitre adaptative les attributs morphologiques du complexe QRS pour une d@tection
et une d@limitation robustes. Cette mgthode est g@n@ralisde aux @lectrogrammes intra-cardiaques
pour la ddtection de I’activation auricular pendant la brillation auriculaire. La deuxitme mg-
thode, appel@e I’algorithme de I’@nergie relative, utilise des @nergies de signal court et long
terme pour mettre en @vidence les @v@nements d’intdrtt et rejeter les activitds inddsirables. Col-
lectivement, les r@sultats obtenus par ces m@thodes suggtrent que tout en pr@sentant de faibles
cofts de calcul, ils peuvent extraire de manitre e cace et robuste des @v@nements biom@dicaux
d’int@rt.

En utilisant I’algorithme d’@nergie relative, un indice de qualit? du signal ECG, non binaire et
continu, est prgsent@. La qualit@ de I’ECG est dgterminfe en crant une version nettoyde de I’ECG
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d’entrfe et en calculant le coe cient de corr@lation entre I’'ECG nettoy@ et I’'ECG d’origine.
L’indice de qualitd propos@ est rapide et peut Etre misen uvre en ligne, ce qui le rend approprid
pour des sc@narios de surveillance portables.

Les techniques propos@es sont employ@es dans deux applications diverses savoir, 1) la
rgduction des fausses alarmes dans les unitds de soins intensifs (USI), et 2) I’ftude des motifs
U pendant le sommeil dans les enregistrements de polysomnographie. Le premier est rdalisg
pour fournir une d@tection d’arythmie robuste dans les unitds de soins intensifs au moyen de
techniques de traitement de signaux multimodaux. le deuxi@me explore le ph@nomtne des motifs
en U pendant le sommeil, gtudie leurs proprift@s statistiques et leur relation aux @pisodes de
mouvement pendant le sommeil.

Mots-cl@s : Traitement du signal biom@dical, Traitement du signal multimodal, Electrocardio-
gramme, Electrogrammes intra-cardiaques, lectroenc@phalogramme, lectromyogramme, Pho-
topl@thysmographie par imagerie, Polysomnographie, valuation de la qualitg du signal, Ana-
lyse d’arythmie, Dgtection ECG complexe QRS, D@tection de I’activitd auriculaire, D@tection
EEG K-complexe .
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Introduction

1.1 Motivation and Problem Statement

We live in exciting times. The willingness to preserve precious lives is getting realized
through medical advances made possible by technological breakthroughs. The advent of por-
table monitoring devices and body area networks (BAN) enables us to record physiological data
and assess di erent aspects of human health. BANs open new horizons to a better understanding
of health through the continuous recording of bio-signals over long spans of time (from several
hours up to several days), a feat that could not be achieved until recently. Thanks to these por-
table devices and now ever present smart-phones, we are able to monitor the healthy population
alongside the unhealthy. This allows for the identi cation and subsequently preemptive treat-
ment of subjects who are either prone to certain conditions, or are in the early stages of serious
health problems.

Nowadays, vast amounts of physiological data can be recorded through BANs. Indeed, the
raw data captured through electrocardiography (ECG), photoplethysmography (PPG), etc., must
be further processed in order to obtain sensible measures of health. This however, calls for
e cient low-cost algorithms that can provide precise and reliable measures of patient health.
Due to this need, even fundamental problems such as ECG-based heartbeat detection, which has
already been extensively addressed in conventional settings, have become hot research topics
again.

This thesis therefore aims to present e cient and low-cost biomedical signal processing
techniques with an emphasis on cardiac bio-signals, suitable for real-time/online scenarios. In-
deed, cardiac data embodies the majority of the information recorded by BANs. Cardiac pro-
blems are also the main mortality factor worldwide. The rst step to assess cardiac health is
studying the time variability of successive heartbeats. However, reliable heartbeat detection is of
utmost importance to achieve precise measurement. The ECG re ects electrical activity of the
heart through time, captured at body surface. Yet, ECGs are often pollutecebgndipertur-
bation sources such as power-line interference, muscle activity and base-line wander [1]. This
is especially true for portable devices, with subjects physically active, unlike in clinical settings.
Continuous heartbeat detection in scenarios in which perturbations contaminate ECGs, can be an
especially di cult task as signal characteristics vary overtime and become non-stationary.

Another issue that needs to be addressed with the rise of portable monitoring devices is the
reliable measurement of signal quality. To put things in perspective, one can speak of ECG
waveform delineation. Heartbeat classi cation and subsequently arrhythmia analysis can be
realized through a good QRS-complex ducial point extraction. Analyses based on heartbeat
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morphology [2-4] and its time-frequency properties [5], have shown to provide reliable results.
However, morphological properties can be altered with high levels of noise. Moreover, the wa-
veform delineation performance will not be as accurate for noisy ECGs [6]. Therefore, a drop in
heartbeat classi cation performance is inevitable, which can then lead to unreliable arrhythmia
analysis[7]. In clinical studies, low quality signals can be manually discarded from analysis
to avoid this problem. However, in a portable setting one needs to assess the quality of signals
recorded by the device. This is especially true for ECGs, continuous blood pressure recordings,
and PPG signals since they constitute a set of fundamental signals from which, several measures
such as heart rate, systolic-, diastolic-, and mean-blood pressures are derived. To some extent,
PPG and blood pressure quality assessment has been addressed in the literature. Li and Cli ord
have shown that beat-to-beat variation of ducial point amplitudes and signal slopes can be used
to measure the quality of pulsatile signals (blood pressure and PPG) [8, 9]. ECG quality asses-
sment techniques have also been proposed in the literature. Methods based on missing lead and
at-line information [10+=13], high-frequency activity [12, 1:4,:15], and impulsive noise detection
[11,:13] have been proposed to detect noisy signals in a binary fashion. However, there is a
sensible lack of continuous non-binary ECG signal quality assessment, which this thesis aims to
address.

Additionally, portable e-health devices usually measure several bio-signal in a continuous
and instantaneous fashion. Therefore, multi-modal signal processing schemes can be employed
to provide reliable measurements. To clarify, consider the intensive care unit, where bedside
cardiac monitoring devices have been associated with high false alarm:rates [16]. The limited
performance of these bedside monitors can have severe repercussions such as desensitization of
medical sta and longer response times. However, one can use multi-modal signal processing
schemes to alleviate this issue. In a portable setting, for instance, one can estimate the heart rate
from either the ECG and/or pulsatile waveforms, by performing quality assessment and using the
more reliable bio-signal.

The aforementioned issues are of high concern. Most portable devices today, such as sport-,
activity monitors, and GPS watches can only be used as a nice gadget for technology fans. Only
by addressing these issues can we depend on the measures provided by portable e-health moni-
toring systems; Devices that have gone through regulatory procedures and can provide clinically
acceptable results.

1.2 Objectives

Although fundamental analyses of biomedical signals, such as ECG heartbeat detection, have
been thoroughly carried out in the recent years, the state-of-the-art focuses on conventional set-
tings such as standard 12-lead ECGs and hospital recoding conditions. Top performing algo-
rithms are mostly specialized for speci ¢ settings or biomedical applications and therefore, when
exposed to real-life situations, most techniques are unable to perform at the same level as that
of the clinical settings. With the rise of portable recordings, these fundamental analyses have
become hot topics of research again. There is an emphasis on reliability and robustness-to-noise,
while at the same time computational complexity must be kept low. The assessment of noise in
the signal also needs to be addressed as even in the conventional settings, this issue has not been
alleviated thoroughly.

This dissertation aims at proposing novel biomedical signal processing techniques that work
in near real-time/online scenarios with low computational cost. Throughout this thesis, there is
a especial focus on algorithms suitable for portable health monitoring and BANs. As the most
common bio-signals recorded today, ECGs, EEGs, and PPGs are the main focus here, however,
ECGs are primarily investigated as their importance in uncovering the underlying dynamics of
the heart cannot be underestimated.
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In summary and as an abstract outlook, the objectives of this dissertation are as follows:
To develop a robust ECG QRS-complex detection and delineation technique.
QRS-complex ducial point extraction.
Investigation of possible extension of the technique to intra-cardiac electrograms
for atrial activation detection.

To investigate the potential of multi-modal bio-signal processing and the application of
false alarm detection in the intensive care unit.

To develop a short-term event extraction technique designed for biomedical signals.
ECG QRS-complex detection.
EEG K-complex extraction.
Imaging PPG peak detection.

To provide a technique for instantaneous measure of ECG signal quality.

1.3 Organization

Throughout this dissertation, two novel techniques are described, which are then supplemen-
ted by their extension to biomedical applications. This dissertation comprises eight chapters and
four appendices, the details of which are as follows.

Introduction to bio-signals used in the context of this thesis

Chaptet'2 provides some introductory information on the aspects of human physiology stu-
died in this thesis. This chapter describes the human heart and its electrical conduction system.
The electrocardiogram, normal and abnormal cardiac cycles are explained, and the description
of the most common cardiac arrhythmia is provided.

ECG QRS-complex detection and delineation

A novel heartbeat detection and delineation algorithm is introduced and evaluated in Chapter
:3. Through a technique called mathematical morphology, this algorithm adaptively detects and
delineates QRS-complexes in the ECG. During its adaptation phase, the morphological attributes
of the detected heartbeats are used for robust heartbeat extraction and waveform delineation.
The algorithm is thoroughly evaluated on standard and wearable ECG databases. Furthermore,
in Chaptet 4 the algorithm is used in a multi-modal signal processing scheme to detect false
alarms in intensive care units. As a part of an international competition, the proposed scheme
outperformed all other algorithms, achieving the highest percentage of false alarm suppression
in the Physionet/CinC 2015 challenge.

Short-term event extraction in biomedical signals

Chaptet'5 proposes a novel event detection technique for biomedical signal processing ap-
plications. The proposed method is easy to implement and is computationally uncostly. Furt-
hermore, it 0 ers a small number of parameters for event extraction. These parameters are easy
to determine and near optimal values do not drastically change the performance obtained by
the algorithm. Three biomedical signal processing applications were used to assess the propo-
sed method namely, ECG QRS-detection, EEG K-complex detection, and heartbeat detection in
imaging PPG.
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Continuous ECG signal quality assessment

Based on the same event-extractor algorithm, an ECG signal quality index is developed in
Chaptef’6. While easily computed, this quality index can be implemented in near real-time, pro-
viding continuous measure of ECG quality. The algorithm is thoroughly tested against di erent
types of noise and standard databases.

Miscellaneous

As an exploratory application to the event-extraction algorithm proposed in Chapter 5, a
phenomenon referred to as U-patterns in polysomnography recordings is studied. Chapter 7 is
focused on these patterns taking place during sleep, providing a de nition, detection scheme, and
studying the possible correlation between these events and movements during sleep.

Finally, Chaptel 8 provides a conclusion to this dissertation with a summary of achievement
and possible perspectives. The appendices provide introductory information on adaptive fre-
guency tracking, and two-class machine learning evaluation metrics that are used throughout this
dissertation. Moreover, they provide detailed results on some applications discussed in the thesis.

1.4 Original Contributions

The main contribution§ of this thesis are:
Development of robust event extraction techniques for biomedical signal processing.
Low complexity ECG QRS-complex detection schemes.
QRS-complex ducial point detection and delineation.
EEG K-complex extraction.
Imaging PPG heartbeat detection.

Multi-modal bio-signal analysis.

Analyzing ECG, blood pressure and PPG signals to identify false alarms in inten-
sive care units.

Detection of life threatening arrhythmias such as tachycardia, bradycardia, ventri-
cular tachycardia, ventricular utterbrillation, and asystole.

Development of a continuous on-line ECG signal quality assessment technique.

De nition of U-pattern phenomenon taking place during sleep in polysomnography (PSG)
recordings.
A robust scheme for U-pattern extraction from PSG recordings.
Study of U-pattern statistical attributes during sleep deprivation and over-training.
Study of the correlation between U-patterns and movement events during sleep.

.....



The Human Heart,
Cardiac Regulation and
the Electrocardiography

This chapter provides an introduction to the human heart, the cardiac conduction system,
the study of electrical characteristic of the heart, and the in uence of the autonomic nervous
system on heart. Furthermore, electrocardiography is described with introduction to normal and
abnormal electrocardiograms. Finally, a short description of the most common arrhythmia is
provided with an especial focus on the ones used within the context of this dissertation.

2.1 The Human Heart and the Cardiac Cycle

The human heart is a muscular organ that performs the task of re-oxygenation and distribution
of the re-oxygenated blood through the body. Located in the middle and slightly to the left of
the chest, between the two lungs, it comprises four main chambers as illustrated in 2.1. The
two upper chambers, called the atria, are relatively smaller than the two bottom chambers, the
ventricles. The right atrium receives the de-oxygenated blood from the body through the superior
and inferior venae cavae and through the tricuspid valve, pumps it into the right ventricle. While
contracting, the right ventricle ejects the blood into the lungs for re-oxygenation. The left atrium
gets the oxygenated blood from the lungs via pulmonary veins and pumps it through the mitral
valve, to the left ventricle, which then pumps the oxygenated blood to the body [17].

Figure 2.1 — The human heart and its four main chambers, the left and right atria and ventricles.



6 TheHumarHeart, CardiacRegulation and theElectrocardiography

The contraction of atria and ventricles are due to the stimulating electrical signals trans-
mitted by the electrical conduction system of the heart, as illustrated in Fig. 2.2. The normal
heartbeat contraction starts by an electrical signal generated in the sinoatrial (SA) node in the
right atrium, depolarizing cardiac cells and propagating through both atria, causing simultaneous
atrial contraction:[18, 19]. Once the electrical signal reaches the bottom of the right atrium to
the atrioventricular (AV) node, it traverses the node and the bundle of His, splits through the left
and right bundle branches, and causes ventricular contraction once it reaches the Purkinje bers
[20].

Figure 2.2 — The cardiac electrical conduction system showing nodes, bundles and Purkinje -
bers. cc OpenStax, Anatomy & Physiology.

After contraction (depolarization), cardiac cells undergo a relaxation (repolarization) phase,
during which they cannot be depolarized until they reach their resting potential. The myocar-
dium contracts again as a new electrical stimulus is generated in the SA node and propagated
throughout the heart. This cycle of depolarization and repolarization of the myocardium is called
the cardiac cycle.

2.2 Heart Rate Control

Heartbeats are initiated by the electrical stimulus generated from the SA node. However,
the rate of these initiations is controlled by the human nervous system and more speci cally
the autonomic nervous system (ANS) {21]. Fig.:2.3 illustrates a block diagram of the human
nervous system. Based on the feedback from the sensory division, via the peripheral nervous
system, the central nervous system (CNS) provides the necessary control for the motor division.
In the motor division, the somatic nervous system is in charge of conveying directives to skeletal
muscles, while the ANS is in control of heartbeat regulation. ANS has two subdivisions namely,
the sympathetic and parasympathetic nervous systems. The sympathetic division, also known as
the " ght or ight" system, is the accelerator and is typically active when quick responses are
required, while the parasympathetic division, known as the "rest and digest" system, is involved
with functions that do not need quick reaction, such as food digestion [22].
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Figure 2.3 — Diagram of the human nervous system.

Both subdivisions of the ANS innervate the heart with the parasympathetic division stimu-
lating the SA and AV nodes, while the sympathetic e erent nerves are present throughout the
atria (especially the SA node) and ventricles. The in uence of the sympathetic and parasympat-
hetic divisions of the ANS is illustrated in Fig. 2.4. Although these divisions have contradictory
functions, they have a more complementary than an antagonistic behavior. The parasympathe-
tic division, also known as the vagal division, lowers the heart rate by releasing acetylcholine.
Conversely, the sympathetic division increases the heart rate based on both internal and external
stimuli by releasing noradrenaline, which not only increases the SA node ring rate, but also
increases the velocity in the heart conduction system as well as the ventricular contraction force
[23].

Figure 2.4 — Heart innervation of sympathetic and parasympathetic divisions of the ANS. Taken
from [23] with permission.
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2.3 Electrocardiography

The electrical activity propagated through the heart can be captured at body surface using the
electrocardiograph. As the cardiac cycle takes place, the electrocardiograph records the electrical
changes through its leads, which are placed at di erent positions on the body. The electrocardi-
ograph leads can be placed either on the limbs (limb leads) or on the chest (precordial leads).

Limb leads are located one on each arm and one on the left leg. Lead |, I, and IIl are
respectively de ned as the voltage between the left (LA) and right (RA) arms, left leg (LL) and

.......

I =Via Vra (2.1)
Il = V|_|_ VRA (22)
Il = V|_|_ VLA (23)

Moreover, three augmented leads can be derived from leads |, Il, and Il Fig. 2.5 demonstra-
tes how the limb leads and augmented limb leads are calculated.

Figure 2.5 — lllustration of normal (I, I, and 1ll) and augmented limb leads (aVF, aVL, aVR).
cc Nicholas Patchett, Rice University.

In Fig.:2.5, aVR, aVL and aVF respectively stands for augmented vector right, augmented
vector left and augmented vector foot. These three augmented leads can be calculated through
the Eq: 2.4-2.6

(R

1

avVR= Vra E(VLA + Vi) (2.4)
1

avL=Via E(VRA"' Vi) (2.5)
1

avVF =V E(VRA"' Via) (2.6)

On the other hand, precordial leads comprise six leads, V1-V6, placed on subject chest, as
illustrated in Fig: 2.6. The heart surface is very close to the chest and therefore, each precordial



2.3 Electrocardiography

lead mainly records the electrical potential of the cardiac muscle structure directly underneath
them. In this way, even minuscule ventricular abnormalities can be detected by studying precor-
dial lead electrocardiograms.

Figure 2.6 — lllustration of the positioning of precordial leads.

The 12-lead ECG is the standard setting used for electrocardiography, which is measured by
the six precordial leads and the four limb leads. Table 2.1, summarizes the location used for each
lead with regard to the body surface. Furthermore,Fig. 2.7 illustrates a normal ECG captured in
a 12 lead setting.

Table 2.1 — Lead locations used in the 12-lead ECG setting.

Lead Name| Lead Location on with Regard to the Body

RA On the right arm, avoiding muscles to reduce muscle activity interferer
LA At the same location where RA was placed, but on the left arm.

RL On the right leg, lower end of calf muscle. Works as the ECG ground.
LL At the same location where RL was placed, but on the left leg.

V1 Between ribs 4 and 5 just to the right of the sternum.

V2 Between ribs 4 and 5 just to the left of the sternum.

V4 Between ribs 5 and 6 in the mid-clavicular line.

V3 Between leads V2 and V4.

V5 Horizontally even with V4, in the left anterior axillary line.

V6 Horizontally even with V4 and V5 in the midaxillary line.

ces.

Figure 2.7 — 12-lead standard ECG of a normal heart (author's ECG). Vertical grid lines represent
the amplitude with lines spaced at 1mV. Horizontal lines represent time with lines corresponding

to 250ms.
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2.3.1 Electrocardiogram (ECG)

The electrocardiogram (ECG) shows the electrical activity changes of heart through time.
Repolarization and depolarization of atria and ventricles manifest themselves di erently in the
ECG. Fig. 2.8 shows a normal cardiac cycle for a human heart as seen on the ECG.

Figure 2.8 — ECG of a normal cardiac cycle and the manifestation of repolarization and depola-
rization on heart muscles.

In this gure, three major waves can be observed, namely the P-wave, the QRS-complex,
and the T-wave. P-wave represents the depolarization of right and left atria, starting from the
SA node towards the AV node. The QRS-complex is the depolarization of the ventricles. As the
ventricles are much larger than the atria, the QRS-complex has a more prominent amplitude than
that of the P-wave. The T-wave represents the repolarization of the ventricles. When studying the
ECG, intervals between these waveforms reveal various information on subject health. The PR-
interval, measured from the beginning of the P-wave to the start of the QRS-complex, denotes
the propagation time of the electrical stimulus from the SA node through the AV node. The
QT-interval represents the cycle of depolarization and repolarization of the ventricles. PR- and
ST-segment respectively represent the AV traversal time and the interval in which the ventricles
remain depolarized [24]. Fig. 2.9 illustrates di erent steps in the cardiac cycle and its correlation
with the ECG.

Alongside inter-cycle intervals, inter-beat intervals (IBI) also reveal important information
of subject health. More speci cally, in the ECG, the successive di erence between R-waves,
i.e. the peak in the QRS-complex, constitute a time-series known as the RR-intervals. Fig. 2.10
illustrates an RR-interval time series extracted from an ECG in normal sinus rhythm. As demon-
strated in Fig; 2.10-b, the interval between successive heartbeats uctuates through time. This

uctuation is known as heart rate variability (HRV)_[25]. Over the past decades, the relevant
literature has provided several HRV indexes that facilitated the understanding of the underlying
mechanism of the ANS [25]. By performing spectral analysis of RR-intervals in di erent fre-
guency bands one can obtain useful information on the symapatho-vagal balance. Especially,
the power in the low frequency (LF) band [0.04 - 0.15] Hz is known to re ect both sympathetic
and parasympathetic activities, while the high frequency (HF) band [0.15 - 0.4] Hz is known
to represent solely parasympathetic activity. Furthermore, the peak frequencies and powers in
the LF and HF bands change through time, which is believed to re ect ANS modulation of the
heart [26-28]. HRV analysis has been used to study cardiac and mental health. Several works
have reported the usefulness of HRV indexes in the detection of myocardial dysfunction [29, 30],
cardiac arrhythmia [31, 32], sepsis {33, 34], and schizophrenja [35, 36]. Furthermore, HRV has
been used as a marker of stress [37, 38], or even emotion_[39, 40], which shows the importance
of HRV analysis.
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Figure 2.9 — The cardiac cycle and its correspondence to ECGG. OpenStax, Anatomy &
Physiology.

Figure 2.10 — lllustration of RR-intervals. a) ECG together with the detected QRS-complexes
b) The extracted RR-interval time series, de ned as the successive tiereriie between the
detected R-waves.
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2.4 Normal and Abnormal ECG

The ECG helps reveal the electrical conduction mechanism of the heart. A normal conduction
originates from the pacemaker cells in the SA node and reaches the ventricles via the AV node.
Therefore, a normal sinus rhythm ECG comprises the P-wave, the QRS-complex, and the T-wave.
Deviation from this pattern is generally considered abnormal, with di erent abnormalities having
di erent e ects on the ECG. These abnormalities are known as cardiac arrhythmia and can be
categorized in multiple fashions. For instance to identify the origin of the cardiac arrhythmia, it
can be classi ed as supra-ventricular (i.e. originating in the atria), junctional (junction between
atria and ventricles), or ventricular (i.e. originated in the ventricles). Another way to categorize
them is to study arrhythmia separately or in a sequence, which are introduced next.

2.4.1 Cardiac Ectopy

This type of arrhythmia is caused by electrical discharges, self generated from a group of
cardiac cells that are not a part of cardiac electrical conduction system. Ectopic beats can be
sub-categorized as follows:

Premature Atrial Contraction (PAC). This arrhythmia occurs when a region within

the atria depolarizes before the electrical stimulus generated from the SA node [41]. The
cause of PACs is unclear but it is common in healthy young and elderly subjects {42, 43].
Fig. :2.11-a illustrates an example of this arrhythmia. On the ECG, PACs are characte-
rized by a di erent P-wave morphology. As the source of PAC is initiated in the atria,
the electrical stimulus traverses the AV node normally and therefore the QRS-complex

generally has a normal shape.

Premature Junctional Contraction (PJC) . Similarly to the PACs, this arrhythmia is
due to impulses being generated by cells in the AV node. This rhythm generally manifest
itself with an inverted P-wave or without a P-wave, a narrower QRS-complex, and can be
diagnosed by studying the ECG [44, 45]. Fig. 2.11-b shows a premature junctional beat.
Premature Ventricular Contraction (PVC). This arrhythmia takes place when ventri-
cular contraction is initiated by Purkinje bers ahead of the electrical stimulus from the
SA node [45], as illustrated in Fig. 2.11-c. These ectopic beats have a di erent QRS-
complex morphology that that of a normal heartbeat, creating wider complexes with ge-
nerally more prominent T-waves. [46]. PVCs have been associated with ine cient heart
muscle oxygenation, but are often benign and can be seen even in healthy. hearts [47].

2.4.2 Di erential Arrhythmia

This type of arrhythmia comprise of groups of events in which cardiac cycles are irregular.
These arrhythmias can be supra-ventricular or ventricular, and are generally associated with heart
rate. The main di erential arrhythmias studied in the context of this dissertation are listed below.
Further information on rhythmic arrhythmia can be found in [43-45].

Cardiac Bradycardia. This arrhythmia is de ned as a slow cardiac rhythm with less
than 60 beats per minute. Bradycardia are due to slowed SA activation or caused by
blocks in either the SA node or the AV node, where the electrical activity stimulus is
unable to travel its normal path.
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Figure 2.11 — lllustration of cardiac ectopic beats. a) Isolated premature atrial contraction, tape
100 from the MIT/BIH arrhythmia database [48]. b) Isolated premature junctional contraction,
taking place right after a premature ventricular contraction, tape 114 from the MIT/BIH ar-
rhythmia database. c) Isolated premature ventricular contraction, tape 100 from the MIT/BIH
arrhythmia database. All depicted ECGs are recorded in modi ed lead Il con guration [48].

Cardiac Tachycardia. Inversely to bradycardia, tachycardia is de ned as fast heart rates
above 100 beats per minute. Of course an increase in heart rate due to physical activity
and stress is normal but if not generated from the SA node, for instance due to electrical
activity re-entry in the atria, it might need to be treated.

Bigeminy and Trigeminy. These arrhythmia are due to the continuous alternation of
sinus rhythm and ectopic beats. They can be both atrial or ventricular and are de ned as
a premature beat after one (bigeminy) or two (trigeminy) normal sinus beats. . [45, 49].
Fig.:2.12 illustrates two ECG excerpts with bigeminy in sub- gure 2.12-a and trigeminy

Atrio-Ventricular Blocks. AV blocks are due to slowed to intermittent conduction ( rst
and second degree AV blocks), or even a complete block on electrical stimulus in AV
node (third degree block), sée 2.13-b. These blocks can be seen in the ECG as PR-

interval prolongation or as a P-wave without a following QRS-complex, usually detected
by analyzing the RR-intervals.

Bundle Branch Blocks (BBB).These blocks are due to the heart electrical pathway de-
fects, which alter conduction pathways and subsequently, alter the depolarization of the
ventricles. This arrhythmia can alter the left (left bundle branch block ) or the right (right
bundle branch block) ventricle pathways. Fig. 2.13 illustrates two ECG excerpts with left

The electrical conduction system of the heart is designed to propagate the electrical stimulus
from one end to the other, i.e. top to bottom form atria to ventricles. However, sometime the elec-
trical stimulus travels in a circular path due to slow conduction in a region of atria or ventricles.
Since cardiac cells are able to propagate the electrical stimulus once they reach their resting po-
tential, this slow conductance can create vertices of electrical impulses propagating haphazardly
through the heart. This re-entry of electrical stimulus that is not due to impulses generated form
the SA node can result in supra-ventricular or ventricular brillatiotter. As in the context of
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this dissertation, both atrial and ventricular brillation/ utter are studied, a detailed description
of these arrhythmia is provided next.

Figure 2.12 — lllustration bigeminy and trigeminy arrhythmias. a) bigeminy with highlighted pre-

mature ventricular contractions, tape 228 from the MIT/BIH arrhythmia database. a) trigeminy
with highlighted premature ventricular contractions, tape 219 from the MIT/BIH arrhythmia da-

tabase. All depicted ECGs are recorded in modi ed lead Il con guration [48].

Figure 2.13 — lllustration of bundle branch block arrhythmia. a) Left bundle branch block, tape
214 from the MIT/BIH arrhythmia database. b) Right bundle branch block together with a full
AV block in between, tape 232 from the MIT/BIH arrhythmia database. All depicted ECGs are

recorded in modi ed lead Il con guration [48].
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2.5 Ventricular and Atrial Fibrillation-Flutter

2.5.1 Ventricular Fibrillation (VF)

Identi ed as the most dangerous cardiac arrhythmia, ventricular brillation (VF) is almost
certain to be fatal, if the patient is not resuscitated within one to three minutes with cardiac de-
brillators [23; 50,:51]. This arrhythmia is due to the unpredictable electrical stimulus behavior
within the ventricular muscle. The source of this stimulus is known to start from one region
of the ventricular muscle multiple times to a point that it eventually feeds itself and completely
overrides the stimulus generated from the SA node [23]. During this arrhythmia, certain regi-
ons of ventricles contract while other regions relax, and therefore the ventricle cells are never
working in harmony. This leads to little to no blood ejection and subsequently, the patient lo-
ses consciousness [23]. Fig. 2.14 depicts the initiation of ventricular brillation as well as the

stimulus propagation during this arrhythmia.

Figure 2.14 — a) The initiation of ventricular brillation and b) propagation of electrical stimulus
during ventricular brillation. Taken from: [23] with permission.

Ventricular brillation manifest in the ECG with a sinusoidal behavior, which is completely

irregular in terms of amplitude, duration and the frequency, as illustrated in Fig. 2.15.

Figure 2.15 — Behavior of ventricular brillation on the ECG. Modi ed from [23] with permis-
sion.

2.5.2 \Ventricular Flutter

Ventricular utter, is a ventricular tachycardia (VT) with extremely rapid heart rates which
vary between 250 to 350 beats per minute. Ventricular utter is an unstable arrhythmia that is
hardly seen, and is known to be the transition to ventricular brillation. On the ECG, ventricular
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utter manifests itself as high amplitude oscillations with no clear QRS-T waveform de nition.
Fig.:2.16 illustrates an ECG during ventricular utter.

Figure 2.16 — Behavior of ventricular utter on the ECG. Ventricular utter begins after second
294. Thisis a Lead Il ECG taken from the 2015 Physionet/CinC Challenge database [9].

2.5.3 Atrial Fibrillation (AF)

As previously pointed out, the electrical stimulus generated from the SA node can only reach
the ventricles through AV node. This is because the ventricle muscles are separated from that of
the atria by some brous tissue_[23]. Therefore, the brillatory wave generated in the ventricles
does not a ect the atria. However, the brillatory wave can also initiate somewhere within the
atria and cause what is known as atrial brillation (AF). The mechanism for AF is identical to
that of the VF. One of the common causes of AF is the enlargement of atria, which is believed to
be caused by valve lesions. These lesions do not allow for the atria to empty properly and over
time the atrial wall dilates, which enhances the chances of brillatory wave propagation within
the atria [23]. Similarly to VF, during AF, the atria do not pump the blood to the ventricles,
causing a decrease (up to 30%) in cardiac blood pumping e ciency. Unlike VF, this arrhythmia
is not imminently fatal but can cause severe health problems over time.

As the ventricular muscles are separated from the atrial muscles, and the AV node has a
refractory period (period to reach the resting state after excitation), the ventricles do not get exci-
ted periodically but their contraction become irregular, in uencing the characteristics of cardiac
cycles onthe ECG. As illustrated in Fig. 2.17-a, during AF, P-waves are replaced by rapid oscil-
lations called the f-waves ( brillatory waves), which vary in small amplitudes, as well as shape,
and timing. The QRS-T segment of the ECG remains normal, unless the patieetisgtrom
some ventricular pathology. At the same time the RR-intervals become completely irregular, as
illustrated in Fig; 2.1:7-b.

AF may occur as a unique episode or be recurrent. Depending on the duration of the episode,
recurrent AF is further classi ed as: paroxysmal if it terminates spontaneously within 7 days,
persistent if sustained beyond 7 days (<7 days if cardioversion, medical treatment to convert
tachycardia to normal rhythm, is performed) or longstanding persistent in case of a continuous
episode lasting more than one year. Finally, AF is de ned as permanent if cardioversion has
failed or was not attempted.[53,.54].

AF is the most common arrhythmia in clinical practice, and is the leading cause for hospita-
lizations due to arrhythmias, heart failure and strokes. AF a ects 2% of the general population
[55] and its prevalence increases with age, from 0:5% between 50-59 years to 9% between 80-
89 years:[56, 57]. AF is complicated by hemodynamic impairment (loss of atrial contraction,
irregular and rapid ventricular rate). This condition may lead to a tachycardia-induced atrial and
ventricular cardiomyopathy with severe ventricular dysfunction and heart failure [58]. The most
common and severe complications of AF are related to thromboembolic events [59]. AF com-
promises the mechanical function of both atria, leading to blood stasis and thrombus formation.
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Figure 2.17 — Behavior of atrial brillation on the ECG. a) ECG during AF together with the
detected R-waves. b) The RR-interval time series during AF. ECG from tape A00739 from the
2017 Physionet/CinC Challenge database [52], a custom lead representing the di erence between
left and right arms.

Dislodgement of thrombus secondary to AF is estimated to account for 20% of all ischemic stro-
kes [57]. Importantly, AF is also associated with a 1.5- to 1.9-fold mortality risk [60]. With
increasing life expectancy, the prevalence of AF is expected to double over the next fty ye-
ars. There is thus a growing need to develop curative strategies of AF, which, by restoring sinus
rhythm, may prevent morbid and fatal complications.

2.5.4 Atrial Flutter

Atrial Flutter is a supra-ventricular tachycardia, similar to AF except that the electrical stimu-
lus does not propagate randomly but rather in a circular path, as illustrated jn Fig. 2.18. During
this arrhythmia the atrial contraction rate varies between 200-350 beats per minute. The atrial
pumping e ciency is higher compared to atrial brillation, but still ine cient. On the ECG,
the RR-intervals remain irregular while the characteristics of the P-wave change (see Fig. 2.19-

b). Similar to ventricular utter, the saw-toothed utter wave (F-wave) oscillations are easily
discernible, as illustrated in Fig. 2:19-a.

Figure 2.18 — Electrical stimulus propagation in the atria during atrial utter (on the left) and
atrial brillation (on the right). Taken from [23] with permission.
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Figure 2.19 — Behavior of atrial utter on the ECG. a) ECG during atrial utter together with the
detected R-waves. b) The RR-interval time series during atrial utter. ECG from tape A00542
from the 2017 Physionet/CinC Challenge database [52], a custom lead representing the di erence

between left and right arms.



Real-Time QRS-complex
Detection and Delineation
In the ECG

3.1 Introduction

As mentioned in Chaptér 2, the electrocardiogram (ECG) comprises di erent electrical wa-
veforms, each representing either depolarization or repolarization of di erent muscles in the
heart. Among these waveforms, the QRS-complex, corresponding to the ventricular contraction
is the most prominent. The shape of this complex as well as the time of its appearance provides
signi cant information for arrhythmia [7, 61-63], and heart rate variability analysis. [37, 64, 65].
Due to its peaky shape and the fact that other waveforms can be small, or in some cases not even
present in the ECG, the QRS-complex plays a fundamental role in the automatic detection of
heartbeats [1].

However, the detection of QRS-complexes in the ECG is not always an easy task due to the
physiological variability of the QRS and more importantly, the presence of perturbations caused
by di erent sources such as power-line interference, muscle activity and baseline drift.

Generally, approaches consider two stages in QRS-complex detection, namely the lItering
stage and the decision stage. In most methods, the ECG is rst preprocessed by a low-pass
Iter to remove power-line interference at 50 Hz. Some approaches employ a band-pass lIter
with cuto frequencies at about 10 and 25 Hz not only to suppress the acquisition noise and the
baseline drift, but also other waveforms such as P-waves, T-waves.

Subsequently, in the decision stage, a feature signal is extracted from the Iter output and
compared with some heuristically chosen thresholds to determine whether a QRS-complex is
taking place at a certain point in the ECG.

Over the years, several QRS detection approaches have been proposed in the literature.
Derivative-based techniques, which can normally be found in the older studies, take advantage
of the steep slope characteristic of the QRS-complex in the detection phase [66—72]. Approaches
have used di erence equations based on the rst- [66, 69, 70], second derivatives [67, 71] or a
combination of the former and latter [71].

More sophisticated algorithms were introduced in the literature based on digital :lters [72—
83]. Among these approaches, Pan and Tompkins [73] is maybe the most popular. This algorithm
takes advantage of the amplitude, width and the steep slope characteristic of the QRS-complex
for heartbeat detection. It is carried out by applying a bandpass Iter on the original ECG fol-
lowed by di erentiation. Then, a feature signal is obtained by calculating the average of the
squared di erentiated signal. Subsequently, QRS-complexes are extracted by comparing the fe-
ature signal against an amplitude threshold.

Wavelet and Iter bank methods have also been used for QRS-complex detection {74, 84—

19
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89]. Li et al. [84] applied a wavelet transform (WT) to the ECG and found that R-peaks can be
picked out from perturbations such as baseline drift and other waveforms if there are concurrent
local modulus maxima at di erent WT scales, a detection logic concept also used in [85; 86, 88].
This work has had a major in uence on other wavelet-based QRS-complex detectors. The work
of Bahoura et al..[87] proposes a simpli ed version.of [84].

Trahanias [53] used mathematical morphology (MM) operators on the ECG, both in the noise
removal and detection phases, in which a di erent xed structuring element (SE) was used. More
recently, Zhang and Lian [90] proposed a three-stage MM approach. They studied how SEs with
di erent lengths and slopes a ect the output of the MM operators. Yet, at each lItering stage, a
xed SE was employed by the MM operators. Finally, the extracted feature signal was compared
with a xed or adaptive threshold to detect R-peaks.

Various other automatic QRS-detection techniques based on matched Itering [91-93], Hid-
den Markov Models.[94], genetic algorithm [95], Shanon entropy [96], zero-crossing.[97, 98],
KNN classi ers [99], and other heuristics known as the length- and energy transforms have also
been proposed in the literature [100-102]. Thorough reviews and comparisons of these methods
can be found in:[1, 103, 104].

The automatic detection of QRS-complexes is generally carried out by applying thresholds on
the output of a Itering phase. These thresholds comprise physiological constraints, e.g. the time
interval between two beats cannot be smaller than 250 milliseconds, and arbitrary thresholds, e.g.
comparing the feature signal to a speci c value to decrease the false detection rate. The former
are always valid and can be useful for detection but the latter are based on the data at hand, can be
hard to adapt when dealing with several subjects, or may need adjustment in di erent acquisition
scenarios.

Even though automatic detection of QRS-complexes has been extensively investigated over
the past few decades, some issues remain pending due to the diversity of QRS-complex shapes
and perturbations, notably baseline drift. This is especially true for ECG signals acquired using
wearable devices. The method proposed in this chapter aims at extracting QRS-complexes and
their ducial points using mathematical morphology (MM) with an adaptive structuring element,
on a beat-to-beat basis. The structuring element is updated based on the characteristics of the
previously detected QRS-complexes for a more robust and precise detection. Moreover, this
method takes advantage of physiological constraints alongside a few, empirically selected, arbi-
trary thresholds. The MIT-BIH arrhythmia and Physionet QT databases were used to assess the
detection performance of R-waves and other ducial points. Furthermore, the proposed method
was evaluated on a wearable-device dataset of ECGs during vigorous exercises.

The rest of this chapter is organized as follows. Section 3.2 focuses on a brief introduction
on MM. The proposed approach and its |mplementat|on are explained in Section 3.3. Section
3.4 provides the description of the evaluation databases used in this study. In Section 3.5, the
experlmental results are presented and the quality of the QRS-complex detection is validated.
Finally in Section 3.6, the main conclusions of this work are drawn. Elements of the methods
and results in this chapter were originally presented as a conference:paper [105], then published
as a journal paper [6].

3.2 Mathematical Morphology (MM)

MM is a methodology proposed to extract topological information based on the analysis of
geometrical structures. MM was rst introduced for binary images with strong set-theoretic con-
cepts, designed to extract useful information in images regarding shape and size [106]. Operators
in MM non-linearly transform the signal of interest using another signal called the structuring
element (SE) . The outcome of an MM operator depends on the shape and length of the SE.

Essentially, MM is based on two elementary operators named dilation and erosion. Com-
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bining dilation and erosion leads to additional operators such as opening, closing, top-hat and
bottom-hat, the de nitions of which are:

Dilation : (f  g)(n)=maxf(n i) +glg (3.1)
Erosion : (f g)(n)=miinff(n+i) a(g (3.2)
Opening : f g=(f @) g (3.3)
Closing : f g=(f 9 ¢ (3.4)
Top Hat: THat(f)=f f g (3.5)
Bottom Hat: BHat(f)=f f g (3.6)

Whereg represents the SE of length f is the signal with a length oN to which the
MM operator is applied. These operators are easy to compute and simply de ned. Therefore,
they constitute a suitable option in cases where computation load plays an important role such
as body-area networks. Figufes:3.3-b through 3.3-g illustrate examples of these MM operators
applied to an ECG. In these gures a peaky SE is used to enhance QRS-complexes.

In biomedical signal processing and more speci cally QRS-complex detection, MM can be
very useful due to their distinctive shape. By employing a peaky structure in MM operations,
a Iter can be designed which makes QRS-complexes more prominent and suppresses other
waveforms, the desired e ect sought in QRS-complex detection.

3.3 Adaptive Mathematical Morphology (AMM)

AMM is an MM ltering technique with an adaptive SE. This novel technique, proposed in
the context of this thesis, adaptively changes this element used in MM Iters for QRS-complex
detection and delineation. The adaptation takes advantage of the topological features of the sub-
ject's heartbeats and uses them for a more robust and precise detection. AMM can be considered
as a 4-step algorithm, a block diagram of which is shown in Figure 3.1.

Figure 3.1 — Block diagram of AMM.

Before the detection of QRS-complexes in the ECG is carried out, the signal must be con-
ditioned by removing various potential perturbations. Power-line interference, high frequency
muscle activity and low-frequency baseline drift are among the most dominant perturbations.
The proposed method, however, only uses a low-pass lIter with a cfraguency at 50 Hz,
mainly to remove the power-line interference.
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3.3.1 MM Filtering

As mentioned in Section 3.2, MM operators use an SE to manipulate the signal. However,
there is usually no information about the speci ¢ shape and magnitude of the QRS-complexes of
a speci c subject, before detecting heartbeats in the ECG. Therefore, a synthesized QRS-like SE
is necessary for the initialization of the AMM. This SE is synthesized using a priori knowledge
on a general QRS-complex. Like a typical heartbeat complex, this SE comprises ve ducial
points namely, R-peak, Q-point, S- point together with onset and o set, equally spaced in time in

which represents an average normal QRS duratlon [107].

Figure 3.2 — The synthesized structuring element used to initialize AMM. This structuring ele-
ment has a duration of 90 ms, with ducial points equally spaced in time. The vertical lines
before the Q-point and after the S-point respectively represent the onset and o set of the structu-
ring element. The iso-electric lines are added to this gure for demonstration purposes.

However, the magnitude of the SE is both lead- and subject-dependent and cannot be deter-
mined using a priori knowledge. Therefore, this value should be determined from the ECG at
hand. To initialize AMM, the magnitude of the SE is considered as the di erence between the
maximum and minimum of the rst two seconds of the ECG.

Using the synthesized SE, the average of top-hat and bottom-hat is calculated on a one-
second window of the ECG. This average can be computed using Equation 3.7, which results in
a feature signalKS) with only non-zero values at peaks and valleys, mostly corresponding to
QRS-complexes.

FS=f szg 3.7)

Figure: 3.3 shows the e ect of each MM operator using the structuring element described
above. It is worth mentioning that dilation and erosion operators not only expand and shrink
the QRS-complexes, but also have a direct impact on their amplitude. Opening and closing,
demonstrated in Figures 3.3-c and:3.3-e, are obtained by eroding the ECG with the SE, followed
by dilating the output with the same SE, and vice versa. The top- (Figure 3.3-d) and bottom-hat
(Figure: 3.3-f) operators respectively grve rise to peaks and valleys in their output. The average

original signal, i.e. f in Equatron 3.7, and discards other actlvmes
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Figure 3.3 — E ect of each MM operator on the ECG. a) The original ECG, tape 101 from the
MIT/BIH arrhythmia database, together with the output of b) dilation, ¢) opening, d) top-hat, e)
erosion, f) closing, and g) bottom-hat operators. h) The average of the top- and bottom-hats, i.e.
the feature signal.

3.3.2 Feature Signal Analysis and Peak Detection

After the MM lItering phase of AMM, the extracted feature signal is scrutinized for QRS-
complex detection. In this phase, rst, non-zero segments of the feature signal, de ned as seg-
ments in the feature signal without three consecutive zero values, are extracted. Then, non-zero
segments (referred to as active periods) with durations longer than 70ms are considered as QRS
candidates. This 70ms threshold on the minimum duration of a QRS candidate is set based on
the physiological constraint of minimum possible QRS-complex duration observed in patients
with extreme heart conditions [108][109].

Figure: 3.4 illustrates the feature analysis phase of AMM on an 8-second window of tape
101 from the MIT/BIH arrhythmia database. In this gure, a low-amplitude active period with
a duration of 8ms takes place around second 133 of the feature signal extracted from the tape,
and therefore it is discarded as a non-candidate section. The highlighted sections of this gure
represent the extracted QRS candidates.
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Figure 3.4 — lllustration of the extracted feature signal, i.e. the output of the MM ltering phase.
For the purpose of demonstration, the signal length of 8 seconds is chosen. Alsoy BC
value is added to the extracted feature signal.

Subsequently, active periods with duration longer than 70ms are further processed as follows:

1. QRS-onset and QRS-0 set are temporarily considered respectively as the start and end
of the active period.

2. R-peak is de ned as the most signi cant peak, and the polarity of R-peak are extracted
from the active period. Schematics of this sub algorithm is illustrated in Figure 3.5.

3. The minimum (maximum) between the onset and R-peak is considered as the Q-point of
the QRS-complex, in case R-peak has a positive (negative) polarity.

4. The minimum (maximum) between R-peak and the o set point is considered as the S-
point of the complex, in case R-peak has a positive (negative) polarity.

5. QRS-onset (QRS-0 set) is shifted to a maximum or minimum of the features signal, if it
exists between the provisional onset (0 set) and the Q-point (S-point).

In Figure; 3.4, highlighted sections show the extracted onset-o set periods for every viable QRS-
candidate, based on step 5.

Figure 3.5 — AMM approach on detecting the polarity of the QRS-complex.
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3.3.3 Structuring Element Update

After the detection of a QRS-complex, the update phase of AMM is invoked in order to adapt
the SE so that it best represents the current QRS morphology of the subject. In other words,
this phase extracts features such as shape, length and magnitude of the newly detected complex
and uses them to update the SE to enhance QRS detection. More speci cally, for each ducial
point, rstits amplitude and relative distance with respect to the QRS-onset are extracted from
the feature signal. Then, using a learning coe cient, location indices and amplitude values are
updated based on the extracted topological features from the newly detected QRS and the ones
from the synthesized QRS-complexes, as shown in the following equations:

NewLoc=(1 ) Curr_Loc+ ExtractedLoc (3.8)

NewAmp=(1 ) Curr_ Amp+ ExtractedAmp (3.9)

In these equations, represents the learning coe cient. For each ducial poiftyrr_Loc
is extracted from the current SE, calculated as its time distance with regard to the QRS-onset.
ExtractedLoc, is extracted in the same manner for each ducial point, using the feature sig-
nal. Additionally,Curr_ampandE xtractedAm pgepresent the amplitude of each ducial point
respectively in the current SE and the feature signal.

OnceNewLocandNewAmpvalues have been calculated using the extracted onset, o set, Q-
point, S-point and R-peak, the SE is reconstructed by means of linear interpolation. The updated
how the SE is updated after a QRS-complex is detected.

In this gure, (1 )-scaled Current SE andscaled Extracted SE illustrate simultaneous
changes on ducial points' amplitudes and locations, respectively on the current structuring ele-
ment and the extracted SE. The structuring element update of the AMM ensures that SE always
has a positive polarity. When inverted QRS polarities are detected, the update on SE is performed
on the negated amplitude values of the ducial points in order to avoid zeroing of the update SE.

Figure 3.6 — The structuring element update phase of AMM. This update takes place after de-
tection of a QRS-complex for a better and more precise detection of R-waves and other ducial
points in the complex. was considered as 0.4 for demonstration.

Generally, AMM processes the ECG on a non-overlapping second-by-second basis. Nevert-
heless, sometimes only a part of a QRS-complex is accessible through the one-second sliding
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window. In these cases where the feature signal ends while a nhon-zero period is not completely
extracted, the window is slided to the start of the nal non-zero period instead of the start of a
new one-second window.

Ideally, after the detection of a complex, the updated MM Iter should be applied to the signal
from the last extracted o set point. However, observations showed that the QRS-complex mor-
phology variations are usually small when multiple active periods are detected in the one-second
feature signal, for instance in case of tachycardia. Therefore, in order to avoid computational
overhead, the MM lter is applied only once to each window of the ECG signal. Still, the update
on the SE takes place after the detection of each heartbeat so that it represents the current QRS
morphology of the subject for the future ECG windows.

On the other hand, if the subject has an instantaneous heart rate lower than 60 beats per
minute, i.e. when dealing with bradycardia, Mobitz (atrioventricular block) or asystole ( at line
or no heartbeat for at least two seconds), it is possible that no active periods are found in the
feature signal. In these cases the MM ltering is applied to the next window of the ECG.

Figure: 3.7 illustrates a beat-to-beat evolution of the SE on an ECG from the MIT/BIH ar-
rhythmia database. As seen in this gure, QRS-complexes with high amplitude do not drastically
alter the synthetic SE as the learning coe cient is set to gradually change the morphology of the
synthetic SE. Once QRS-complexes following these high amplitude heartbeats are detected, the
synthetic SE gradually morphs back to the shape it had before these beats in the span of two to
ve heartbeats.

Figure 3.7 — Beat-to-beat structuring element update of AMM. a) The original ECG together
with the detected R-waves (Tape 104 from the MIT/BIH arrhythmia database). b) Beat-to-beat
evolution of the SE.
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3.3.4 Parameter Update

Due to perturbations, small activity periods of the non-zero feature signal, yet longer than
70ms, may be spotted at positions where QRS-complexes do not occur. Observations have shown
these non-zero activities mostly occur right before or after an actual heartbeat due to P-waves
or T-waves that take place closer than usual to the QRS-complexes. To address this issue, an
additional feature is extracted for each active period in the feature signal ¢xdlldActivity
(PA). This feature is de ned as follows.

X
PAgRscandidate = JFS() (3.10)

i2Nonzero Activity

whereFS is the extracted feature signal. Since the feature signal artifacts are usually located
right after or before an actual QRS-complex, they can be e ortlessly removed since it is phy-
siologically unlikely to have two consecutive heartbeats within 250ms [110]. Therefore, if two
QRS consecutive candidates take place in an interval smaller than 250ms, the candidate with the
biggerPAvalue is selected.

Another issue is that a xed learning coe cient in Equations :3.8-3.9 might lead to active
periods in the feature signal that cannot precisely estimate the onset and o set points of the
corresponding QRS-complex. To alleviate this issue, after the detection of a complex, the newly
extractedPAfeature is compared with that of the previous heartbeat and as a result, the learning

coe cient is updated using Equation 3:11.

PAExtracted< PAPrevious thIow (311)

8
§ PAExtracted> PAPrevious thhigh
:§ =+

-0:3  otherwise

where is the step size with which the learning coe cient is adjustetyign andthjg, re-
spectively de ne the lower and highé?A thresholds. PAg xracted aNd P Aprevious respectively
represent the extracted and previous peak activities.

Results showed that a defaultvalue of 0:3 and a of 0:05 are optimal for the learning
coe cient. Also, th, andthygn were chosen as 0:9 and 1:1 respectively (see ng(::t:ipn 3.5). Since
the initializing SE does not fully represent the QRS-complex morphology of the subjést,
set to 0.9 at the beginning of the algorithm. After detection of the second QRS-complex, the
PeakActivityfeature of the newly detected QRS-complex is compared to that of the previous

This PA feedback plays an important role when large changes take place in the ECG, for
instance when respiration highly modulates the amplitude of the R-waves. When there is a
decrease larger than 10 percentP, the SE should be updated to look more like the newly
found QRS since a sudden change takes place in the ECG. This phenomenon is usually observed
when baseline drift contaminates the ECG. On the other hand, a sudden increAseditates
that the SE should be less a ected to avoid miss detection of future beats. Thus, the decrease in
is needed when an irregular beat with higR&roccurs in the ECG, such as premature ventricular
contraction. Results show not only this adaptation improves heartbeat detection but also provides
accurate positions of the Q, S, onset and o set points.

The last phase of the algorithm, i.e. the SE and parameter update, makes AMM exible and
robust again perturbations. Figure 3.8 illustrates the performance of AMM on a part of tape
number 108 of the MIT/BIH arrhythmia database. This tape is among the most di cult ones
since it is polluted with high-amplitude perturbations.
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Figure 3.8 — lllustration of AMM performance on tape 108 from the MIT/BIH arrhythmia. A
DC value of 1:8mv is added to the feature signal for demonstration.

3.4 Evaluation Databases

In order to nd the optimal parameters for AMM as well as to evaluate the performance of the
proposed method, the MIT/BIH arrhythmia [48] and Physionet QT [111] databases were used
for the detection of QRS and other ducial points.

3.4.1 The MIT/BIH Arrhythmia Database

The MIT/BIH arrhythmia database consists of 48 half-hour two-lead ECG recordings with a
sampling rate of 360 Hz and an 11-bit resolution within the range of 10 mV. Heartbeats in the
ECGs were annotated by two or more cardiologists, who independently studied the two leads
and annotated the ECG recordings. Disagreements in their annotations were resolved to have a
reference annotation for the QRS-complexes for each records. The evaluation on this database
was performed on the rst lead, which is either a modi ed lead Il (46 records) or lead V5 (two
records). Results were checked with the reference annotation le provided for this database.

3.4.2 The Physionet QT Database

The QT database, designed for waveform boundary evaluation, consists of 105 15-minute
two-channel ECGs with a variety of QRS morphologies sampled at 250 Hz. The QT database
was used in order to evaluate the delineation performance of AMM. In this database, for each
record at least 30 beats (from 30 to more than 100 beats) were manually annotated. The records
for the QT database were annotated by two cardiologists, who provided annotations by examining
both ECG channels. One expert annotated all tapes in the database while the other only provided
annotations for 11 records. In this study, for a precise evaluation on boundary and ducial point
detection, only the manually annotated waveforms, totaling 3622 beats, were considered in the
experiments. In other words, only the annotations provided by the cardiologist who examined all
records of the QT database was used. In order to have a fair comparison with the cardiologist's
annotations, both channels were processed separately by AMM and for each ducial point the
channel with less error was selected.

3.4.3 The Green Goblin Wearable ECG Database

In order to evaluate AMM performance on wearable acquisition platforms, the algorithm was
tested on an energy expenditure database recorded from smart shirts, developed at the Swiss Cen-
ter for Electronics and Microtechnology (CSEM). In this database, ECGs were acquired at 250
Hz from chest-located dry electrodes, over 13 healthy male subjects in laboratory settings. The
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distribution of anthropometric parameters of the subjects is shown in ;Table 3.1. The standardi-
zed protocol consisted in three 3-minute phases of resting (lying down, standing up and sitting)
and 3-minute walking/running phases (from 0.5 m/s to exhaustion; with steps of 0.5 m/s). ECG
segments were annotated by experts for performance evaluation.

Table 3.1 — Anthropometric parameters of the subjects in the wearable technology database.

| Characteristic | mean std(N=13)[ Range |

Age (years) 35:95 6:74 27 46
Height (m) 1:82 0:07 1:72 1:95
Weight (kg) 75:88 6:35 65 87

3.5 Results and Discussion

As the core of all MM operations, the shape and length of the SE should be carefully chosen
as they play important roles in the outcome of these operators [53][90][106]. For instance, the
average of an opening and closing of a signal with a small length at SE, e.g. a 6 ms zero vector,
can be used for noise suppression [53] while the same average with a peaky SE tends to enhance
peaks and valleys in the signal and discard other activities.

In ECG waveform detection, speci cally QRS-complex detection, MM approaches use xed-
shape and -magnitude QRS-like SE to manipulate the signal and detect the R-waves. However,
the magnitude and length of the SE are important factors. The steeper the slope, the less sensitive
the operator becomes to low amplitude activities in the signal. Therefore, when perturbations are
present in a part of a signal, SEs with steeper slopes tend to detect more dominant changes,
resulting in a better feature signal. However, if the magnitude is too large, sometimes the QRS-
complexes may not be detected. This phenomenon can be observed when arrhythmia is present.
The length of the SE is decisive as well. A longer SE has more averaging e ect, and therefore
removes more unwanted activities. However, this noise reduction signi cantly decreases the am-
plitude of the R-waves. Also, it changes the relative positions of other ducial points, especially
the onsets and o sets. For this reason, a compromise should be made in order to have a more
e cient detection.

Observations led to the conclusion that a xed SE may not always detect QRS-complexes,
especially when sudden changes, amplitude modulation, or baseline drift are present in the ECG.
Figure 3.9-a illustrates the xed-SE problem. In this example, the SE is simply too large in mag-
nitude to detect all heartbeats. As a result, low amplitude heartbeats are considered as undesired
ECG activities. Once the heartbeats get larger again at the end of the signal, they are correctly de-
tected. Figure 3:9-b illustrates the outcome of an adaptive SE on the same ECG segment, where
these beats are correctly detected. In order to detect the low amplitude heartbeats, one can use an
SE with a smaller magnitude. However, the output of the MM Itering phase will become more
sensitive to smaller changes in the ECG and the feature signal will have active periods where
there is no heartbeat.

As the heart of AMM, the SE is adapted on a beat-to-beat basis. This adaptation changes
the locations of the ducial points as well as their amplitudes in the SE. The updated SE enables
AMM to extract the other ducial points more accurately. As a result, the outcome of the MM

Iter is less a ected by sudden changes compared to a xed SE.

3.5.1 Finding Optimized Parameters

In order to optimize performance, the e ect of magnitude and length of the SE on AMM
performance was studied. To this end, true positives (TP), false negative (FN), and false positives
(FP) values were studied. TP indicates the number of correctly detected QRS-complexes while
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Figure 3.9 — a) lllustration of MM Itering on tape 106 from the MIT/BIH arrhythmia database
using a xed SE throughout the ECG. The used SE has a magnitude equal to that of the rst peak
in this gure. A DC value of 2:7mv is added to the feature signal. b) MM ltering output using

an adaptive SE. A DC value of 3:5mv is added to the feature signal.

FN represents the number of miss-detected complexes. FP speci es the number of complexes
declared by AMM where no actual heartbeat takes place in the ECG. Using these statistics, the
detection error rate (DER) as well as sensitivity (Se), and positive prediction value (PPV) were

..........

measures were calculated over all 48 tapes of the MIT/BIH arrhythmia database.

_ _ TP
S enSlthlt)(S e)— m (312)
PositivePredictionValuétPV) = TP (3.13)
" TP+FP '
: FP+FN
Detection Error RatéDER) = (3.14)

Total No:of Beats

In gures:3.10 through 3.23DetectionAccuracis de ned as 1 DetectionErrorfor demon-
stration purposes.

Figure 3.10 shows the e ect of SE length on the overall QRS-complex detection performance
of AMM. The update phase of AMM was modi ed to reconstruct the SEs with a fraction of the
length of the extracted complexes. Di erent lengths in a range of 0:6 to 1:3 times the extracted
length of QRS-complexes, by steps of 0:1, were studied. Results show consistently high perfor-
mance in the range of 0:7 to 1:1, with the actual QRS-complex length as the optimal parameter.
However the performance drops for coe cients larger than 1:1.

Figure 3.11 illustrates how the SE magnitude a ects R-wave detection performance. In order
to nd the best magnitude, the SE was scaled from 0:05 up to 1:15 times the actual magnitude of
the QRS-complex with a step size of 0:05. The performance strictly improves from the beginning
to 0:6. After this point, the performance gradually decreases until 0:95, and then a drastic drop
in performance is observed as the magnitude of the SE gets larger than the actual complex. This
sudden drop in performance is caused by the increasing number of undetected heartbeats, which
have lower amplitudes than their predecessors. This phenomenon can be the consequence of

respiratory modulation of the ECG or a simple baseline drift.

1. Detailed description of classi er evaluation metrics can be found in Appéftdix B
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Figure 3.10 — Evolution of the detection accuracy (1-DER), sensitivity and PPV with respect to
the ratio between the length of the SE and that of the actual QRS-complex.

Figure 3.11 — Evolution of the detection accuracy (1-DER), sensitivity and PPV with respect to
the ratio between the magnitude of the SE and that of the actual QRS-complex.

Heartbeats in the MIT/BIH database are annotated with di erent labels representing normal
and abnormal beats, e.g. N represents normal beats and V is the label of premature ventricular be-
ats. In order to nd the optimal thresholds for Equatjon 3.11,PeakActivityfeature (Equation

supra-ventricular premature beats). By comparingRbakActivityfeature of these two groups,
it was observed that there is a di erence of at least 109%P@&akActivityvalue between these
two sets of beats. Therefortdy,, andthygn were selected respectively as 0:9 and 1:1. Using the
optimal length, magnitude, arReakActivitythresholds, the e ect of the learning coe cient on

ces the overall performance of AMM. Updating the learning cieat based on the extracted
PeakActivityfeature is especially important when abnormal beats with extra large amplitude take
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place in the ECG. If the learning coe cient is not updated, extra large (or small) outlier beats can
alter the SE excessively, which results in a feature signal that is less (more) sensitive to changes
in the ECG.

Figure 3.12 — Evolution of the detection accuracy (1-DER), sensitivity and PPV with respect to
the learning coe cient () in Equations 3.8 and 3.9.

Figure 3.13 — Evolution of the detection accuracy (1-DER), sensitivity and PPV with respect to
di erent stepsizes(). ne tunes the learning coe cient, as described in Equation 3.11.

3.5.2 AMM Performance Evaluation

Over the past two decades, many QRS detection approaches have been proposed. There-
fore, in order to compare AMM performance with the state-of-the-art, the MIT/BIH arrhythmia

muscle activity pollute the ECG. In this example, one can see a low-amplitude active period in
the feature signal due to the elevated T-wave right after the rst QRS-complex.
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Figure; 3.15 displays how AMM performs when switches of QRS polarity take place. This
part of the tape 200 is especially selected, not only to show how AMM performs when prema-
ture ventricular contractions are present, but also to show the bene t of adapting the learning
coe cient. As one can see, the QRS-complex in the 110-111 second period has a signi cantly
larger PeakActivityin the feature signal compared to that of the previous beat. Subsequently,
the learning coe cient is decreased through Equation 3.11, and the SE is less a ected in the
update phase of the algorithm. This leads to an active period with a duration longer than 70ms
and therefore the detection of the nal QRS-complex in this gure.

When it comes to Q- and S-points, the presence of baseline and muscle activities, e.g. Figure
:3.14, lowers the estimation accuracy, due to the fact that these waves do not necessarily form
a valley in the ECG. However, observations have shown that, even in the presence of these
perturbations, ducial point extraction is acceptable.

More detailed evaluation on tapes from the MIT/BIH database can be found in:Table 3.2.
Note that what is performed is QRS detection not R-peak extraction. Consequently, a detection

is considered valid whenever the annotated R-peak is inside the detected QRS-complex.

Figure 3.14 — lllustration of AMM performance on tape 117 from the MIT/BIH arrhythmia da-
tabase. For demonstration, a DC valuelwfiv is added to the feature signal.

Figure 3.15 — lllustration of AMM performance on tape 200 from the MIT/BIH arrhythmia da-
tabase. For demonstration, a DC valuelofiv is added to the feature signal.
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Table 3.2 — Performance of AMM on QRS-complex detection on MIT/BIH arrhythmia database.

Tape | Beats | FP | FN | QRS DER(%) | Sensitivity | PPV
100 2273 0 0 0 1 1
101 1865 1 0 0.0536 1 0.9995
102 2187 0 0 0 1 1
103 2084 0 0 0 1 1
104 2229 7 1 0.3589 0.9996 | 0.9969
105 2572 | 22 | 15 1.4386 0.9942 | 0.9915
106 2027 0 4 0.1973 0.998 1
107 2137 0 1 0.0468 0.9995 1
108 1763 3 17 1.1344 0.9904 | 0.9983
109 2532 0 1 0.0395 0.9996 1
111 2124 2 1 0.1412 0.9995 | 0.9991
112 2539 0 0 0 1 1
113 1795 0 0 0 1 1
114 1879 4 2 0.3193 0.9989 | 0.9979
115 1953 0 0 0 1 1
116 2412 0 20 0.8292 0.9917 1
117 1535 0 0 0 1 1
118 2278 2 0 0.0878 1 0.9991
119 1987 0 0 0 1 1
121 1863 0 2 0.1074 0.9989 1
122 2476 0 0 0 1 1
123 1518 0 0 0 1 1
124 1619 0 0 0 1 1
200 2601 4 1 0.1922 0.9996 | 0.9985
201 1963 0 12 0.6113 0.9939 1
202 2136 0 2 0.0936 0.9991 1
203 2980 | 18 | 12 1.0067 0.996 0.994
205 2656 1 2 0.113 0.9992 | 0.9996
207 1860 3 3 0.3226 0.9984 | 0.9984
208 2955 2 9 0.3723 0.997 0.9993
209 3005 4 0 0.1331 1 0.9987
210 2650 3 4 0.2642 0.9985 | 0.9989
212 2748 0 0 0 1 1
213 3251 0 3 0.0923 0.9991 1
214 2262 0 0 0 1 1
215 3363 0 0 0 1 1
217 2208 6 4 0.4529 0.9982 | 0.9973
219 2154 0 0 0 1 1
220 2048 0 0 0 1 1
221 2427 0 6 0.2472 0.9975 1
222 2483 4 4 0.3222 0.9984 | 0.9984
223 2605 2 0 0.0768 1 0.9992
228 2053 | 11 8 0.9255 0.9961 | 0.9946
230 2256 0 0 0 1 1
231 1571 0 2 0.1273 0.9987 1
232 1780 4 0 0.2247 1 0.9978
233 3079 5 1 0.1949 0.9997 | 0.9984
234 2753 0 0 0 1 1

Total | 109494 | 108 | 137 0.2238 0.9987 0.999
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For each tape, numbers of false positives and false negatives and total number of beats as
well as sensitivity, positive prediction value and detection error rate are reported.

Furthermore, Table 3.3 compares the performance of AMM to those of well-known QRS
detection methods. As shown in this table, AMM provides better or comparable results.

Table 3.3 — Comparison of performance with previously proposed methods on MIT/BIH ar-
rhythmia database.

] Method | No. of Beats| FP | FN [ DER (%) |
AMM (this work) 109494 108 | 137 0.224
Pan and Tompkins [73] 109809 507 | 277 0.710
Li et al. [84] 104184 65 | 112 | 0.170
Zhang and Lian.[90] 109510 204 | 213 0.38
Ravanshad et al. [97] 109428 651 | 1216 1.71
Martinez et al.:[112] 109428 153 | 220 0.34
Bahoura et al.. [87] 109809 135 | 184 0.29
Moody and Mark:[113] 109428 94 | 1861 1.79
Lee et al.[114] 109481 137 | 135 0.43
Hamilton and Tompkins [76] 109267 248 | 340 0.54
Poli et al. [95] 109963 545 | 441 0.90
Chen et al.;[115] 102654 529 | 459 0.96
Afonso et al. ;[89] 90909 406 | 374 0.86

Regarding the state-of-the-art, most methods isolate the location of QRS-complexes by me-
ans of thresholding, and then extract the R-peaks using local search [73][84][90][115]. However,
AMM not only provides the necessary means to extract the R-peaks, but also the onset, o set,
Q- and S-points can be estimated directly from the feature signal. Location and amplitude of
these ducial points can be used in beat classi cation and arrhythmia analysis [2][116][117]. In
[2], features based on RR-intervals, QRS duration and segmented morphology ( down sampled
extracted QRS-complex) were used to develop an automated heartbeat classi er. Arrhythmia
analysis is possible through the processing of RR-intervals [118] using adaptive : ltefs [119] or
time-frequency analysis [120]. Nevertheless, once accurate locations of QRS ducial points are
available, heartbeat classi cation and arrhythmia detection can be improved [2]. In this context
the performance of AMM was evaluated on the manually annotated QRS-complexes in the QT
database, with results presented in Table 3.4. The QRS-complex annotation provided in this
database consists of the locations of R- peaks as well as the onset and o set points. In order to
further assess AMM performance on Q- and S-point extraction, the ground truth for these ducial
points were respectively considered as the maximum (minimum) between the onset-peak and the
peak-o set interval for a positive (negative) beat.

Table 3.4 — AMM performance on the manually annotated beats for QRS ducial points, Physi-
onet QT database.

| Fiducial point | Sensitivity | Detection Rate| Tolerance (ms) DER(%) (mean std) |

R-peak 0.9987 0.9990 4 0:001 0:0011
QRS-Onset 0.9684 0.9791 12 0:0209 0:0266

Q-point 0.9903 0.9902 4 0:0098 0:0201

S-point 0.9966 0.9966 4 0:0036 0:04
QRS-0 set 0.9820 0.9818 12 0:0182 0:0055
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Table 3.4 reports the sensitivity and detection rate for each QRS-complex ducial point. For
each point an error tolerance was considered in order to measure the overall AMM performance
on each ducial point. Considering the sampling frequency of the records available in the QT
database, i.e. 250 Hz, respectively one and three samples were considered as tolerable error for

error rate for each duC|aI point. Furthermore AMM deImeatlon errors were computed with
respect to manual annotations provided by a cardiologist for the QT database. Table 3.5 reports
these values for AMM and compares them with the work of Martinez et al. [112] In Tables 3.4
and: 3.5, reported results are in comparison with the label provided by the cardlologlst who has
annotated all records in the QTDB.

Table 3.5 — AMM delineation performance and comparison, QT database.

Method QRSonset R waves QRS fset
mean stdms) | mean stdms) | mean stdms)

AMM 6:1 8:3 2:1 1:2 15 4:2
Martinez et al.:[112] 4:6 77 Not Reported 0:8 87

Figure 3.16 — lllustration of AMM performance on the QT database for each ducial point.

Another contribution of the proposed algorithm is its ability to be used in body-area network
platforms. While having limited resources, these platforms are expectedrttoog term mo-
nitoring of subjects and provide robust extraction of heartbeats as a rst step to more elaborated
algorithms such as arrhythmia detection and heart rate variability analysis. The computation load
of AMM consists of two elements, namely MM operation and peak detection, and SE update.
The total computation load can be expresse®@s n)+ O(l r) wheren represents the num-
ber of samples in the ECGthe length of the structuring element anthe number of detected
heartbeats. Sinde nandr nthe second term can be omitted and the order of complexity
of AMM can be written aO(n).

AMM performs well on the MIT/BIH database. However, ECGs in this database are recorded
using standard acquisition devices, and may be devoid of perturbations characteristic of portable
and continuous recording devices such as electrode movement and contact problems, continuous
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muscle activity contamination and large baseline drift. Therefore, AMM performance was eva-
luated on a dataset of ECGs that were recorded using smatrt shirts. In this database, subjects were
asked to perform a series of walking/running exercises. The levels of exercises were categorized
into low, moderate, and vigorous classes. For each subject, a six minute vigorous ECG segment
was chosen and annotated by experts in order to evaluate the performance of AMM in extreme
conditions. Figure 3.17 illustrates AMM outcome on one of these challenging segments. In

this gure, the ECG su ers from a large baseline drift that is contaminating the signal, making
QRS-complex detection a hard task.

Figure 3.17 — lllustration of AMM performance on an ECG recored by a smart shirt, while
subject is performing a vigorous running activity.

The overall performance of AMM is reported in Table:3.6, against two other methods namely,
Pan-Tompkins and xed mathematical morphology. Results show how AMM outperforms these
methods and highlights the importance of the adaptation of the structuring element. Globally,
in comparison to Pan-Tompkins and xed mathematical morphology, a sensible improvement
in performance with respectively over ten and ve percents was achieved. This performance
together with the low computation cost of AMM, makes it a suitable approach for body area
network platforms, in which power consumption plays a vital role.

Table 3.6 — Comparison of AMM performance with other methods on the wearable ECG data-
base.

\ Method | No. of Beats| FP [ FN [ Detection Raté%) | Sensitivity [ PPV |
AMM 11806 59 | 142 98.39 0.9883 0.995
Fixed-MM 11806 161 | 780 92.57 0.9362 | 0.9836
Pan-Tompkins {73] 11806 534 | 1085 88.33 0.912 0.9511

The adaptation performed on the structuring element changes the behavior of the MM Ite-
ring phase. During the initialization of the algorithm, the structuring element is adapted so that
it represents the general QRS-complex morphology of the subject. As AMM processes more
QRS-complexes, the adaptation on the structuring element makes AMM more robust against
possible noise in the ECG. However, observations on the miss detected complexes show that
AMM under-senses when beats that become too wide (longer duration compared to previous be-
ats) and at the same time lose their peaky shape. Moreover, false positives by AMM are mostly
due to impulsive baseline changes, isolated QRS-like artifacts and clipping of the signal.
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3.6 Miscellaneous Applications

3.6.1 Adaptive Mathematical Morphology to Extract Atrial Activations
from Intracardiac Electrograms

Introduction to Intracardiac Electrograms (ICEG)

ICEG is the recording of electrical potentials via electrodes directly placed within the heart.
The electrodes in contact with the myocardium sense the ionic changes underneath them and
convert them into an electrical current, which can be recorded by a bed-side monitoring device.
There fore one can use ICEG to record local activations within the atria and ventricles.

As mentioned in Chaptér 2, AF is a supra-ventricular tachycardia that can persist for a long
time. Therefore, it is important to prevent AF progression from paroxysmal AF to persistent
and permanent AF. Moreover, some patients do not respond well to cardioversion or cannot take
antiarrhythmic drugs to restore sinus rhythm. Therefore, in order to prevent AF progression or
relieve patients from ongoing AF, an invasive procedure called pulmonary vein isolation (PVI)
might be chosen as a necessary treatment. PVI is a procedure during which pulmonary veins
are electrically disconnected by creating radio-frequency lesions at left atrium/pulmonary vein
ostium. It is believed that a main cause of AF is the presence of ectopic foci at the junction bet-
ween atrial tissue and the pulmonary veins, disrupting sinus rhythm and causing AF. Therefore,
by ablating the pulmonary veins these foci are isolated and, subsequently, sinus rhythm can be
restored.

Intracardiac activation-time detection algorithms can be used in AF electrogram analysis as
a rst step in estimating AF characteristics. Characteristics such as cycle lengths (AFCLS) of
atrial activations (AAs) can help predict persistent AF ablation outcomes:[121, 122]. Moreover,
AFCLs can be used to determine sites with high frequency activities which may help identify
critical ablation targets to restore sinus rhythm [123].

However, the varying amplitudes and morphologies of AA during AF makes AA extraction
di cult. Through a time consuming task, one can always measure activation intervals manually
by using calipers and then average several measurements to determine the mean AFCL. Alter-
natively, automatic detection methods can be used to extract AAs even though most are limited
due to the use of various thresholds [124]. Spectral analysis can also help to determine AFCL by
extracting the AF dominant frequency (DF), i.e the frequency of the largest peak in the estimated
spectral density [125]. DF methods try to approximate AFCL by a single sinusoid. Therefore,
by nature, these methods are not suitable when AF electrograms present irregularities. A time
domain iterative method has been proposed[126] to extract AAs from ICEGs. The detection
threshold level is iteratively adjusted until the mean and the median of AFCL converge on a
signal segment.

The purpose of this study is to evaluate the proposed adaptive mathematical morphology
(AMM) approach introduced in this chapter, to extract AAs based on their morphological featu-
res. Similarly to QRS-complex extraction, the structuring element used in this method is adapted
after each AA extraction to have a more reliable extraction. Elements of the methods and results
in this section were originally presented as a conference paper [127].

3.6.2 Methods

Patients and Data Acquisition

Study Population. The study group for this research consists of three consecutive patients
(63 1 years) with chronic AF (sustained AF duration 18 months) who underwent catheter
ablation.
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Figure 3.18 — Block diagram of the proposed method to extract atrial activations from intra-
cardiac electrograms

Electrophysiological Study. The following catheters were introduced via the femoral veins:
1) a 3.5 mm cooled-tip catheter for mapping and ablation (Navistdrermocoof, Biosense
Webstef); and 2) a circumferential duodecapolar Lassmatheter within the LA (2-6-2 25-15
mm, Biosense Webst®). Intracardiac electrograms were continuously monitored and sampled
at 2 kHz (Axiom Sensis XP, Siemen$) for o -line analysis. Intracardiac electrograms were
Itered with a pass band of [0.05,400] Hz. Then a notch Iter at 50 Hz was applied to the signals
in order to remove the acquisition noise. Electro-anatomical mapping and 3D reconstruction of
the LA were performed with the CARTO3 system (Biosense Webstgr

Adaptive Intracardiac Mathematical Morphology (AIMM).

AIMM works in the same way as AMM, with the same three-step principle illustrated by the
block diagram in Figurg 3.18.

In AIMM, a non-overlapping sliding window with a length of 200 ms is rolled over the ICEG
at hand. In each window, the MM lter is applied on the ICEG using the current SE. Afterwards,
the Itered signal called the feature signal is scrutinized in order to extract AAs. Subsequently,
AAs are probed and topological features such as height and length are extracted from them in
order to update the SE that is used in the MM lItering phase.

AAs have di erent morphologies throughout AF. Moreover, these morphologies vary with
respect to the location of the catheters inside the atria. Therefore, AIMM is initiated using an
synthesized SE. The morphology of this synthesized SE is empirically chosen, as shown in gure
:3.19. The magnitude of the synthesized SE is considered as 70% of the di erence between the

maximum and minimum values of the rst 500 ms.

Figure 3.19 — Synthesized structuring element and the selection of its magnitude based on the
intra-cardiac electrogram at hand.

Furthermore, the duration of the synthesized SE is empirically chosen as 20 ms, representing
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the average AA duration. The synthesized SE in AIMM comprises ve points representing onset,
o0 set, peak of AA, the minimum between the onset the peak, and the minimum between the peak
and the o set.

AIMM is initiated by applying the MM Iter, which uses the synthesized SE, to the rst
window of the ICEG. As for to AMM, in the MM lItering step the top- and bottom-hat operators
are applied to the window and then averaged (Equation 3.7). Once the MM ltering phase is
carried out, the extracted feature signal is scrutinized in order to extract AAs. In this phase, rst,
non-zero segments of the feature signal are extracted. Then, segments are further processed as
follows:

1. Onsetand o set are considered respectively as the start and end of the non-zero segment.
2. The most signi cant peak is extracted from the active period as AA.

3. The minimum between the onset and AA together with the minimum between AA and
the o set point are extracted for the SE update phase.

Perturbations might cause non-zero feature signal values at locations where AAs do not occur.
Therefore, the following physiological thresholds are used to prevent false AA extraction:

8
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(3.15)
'AA:andidate AAprevious 60ms

where AAcandidgate Fepresents the time index of the peak of the AA candidate in the feature
signal, AAprevious the time index of the peak of the previous AA aAdgyration, the duration of
the AA candidate. The last condition corresponds to the fact that AA cycle length is unlikely to
be smaller than 60 milliseconds.

Once an AA is detected, the extracted topological features, i.e. time indices and amplitude
values of the onset, o set, AA peak and the two local minima are used to update the SE for
further AA extraction.

Similar to AMM, the SE update is applied using Equations: 3.8-3.9. The update on SE takes
place after each AA extraction. Therefore, if multiple AAs are extracted from a window, SE is
updated multiple times.

In order to avoid excessive changes on SE, for instance in case of large AA amplitude chan-
ges, AIMM uses a variable learning coe cient to make SE adaptation exible. After the de-
tection of an AA, itsPA is compared to that of the previous AA and the learning coe cient is

+0:05 NewPA< PreviousPA 0:7
0:05 NewPA> PreviousPA 1:3 (3.16)
0:2 otherwise

~ D000/ /AX0K/C0

3.6.3 Results

For performance evaluation, atrial activation times estimated by AIMM were compared with
the manual annotation provided by a blinded clinical expert, as a ground truth. The expert was
asked to annotate AAs through a graphical user interface created using MATLAB (Mathworks,
Natick, MA). Furthermore, AIMM was compared against an MM method with xed SE, and a
recent state-of-the-art approach called cycle length iteration (CLI) [126]. The xed MM method
was implemented based on AIMM but with no structuring element update. The CLI method, is a
block based method that extract AAs from an ICEG by iteratively changing a detection threshold
and removing the extracted AAs from the ICEG. The algorithm stops its iterations when the
mean AFCL is within ve ms of median AFCL or if there are no peaks with an amplitude higher
than 0:8 times the amplitude of current peak.
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The best performance was obtained with AIMM with a 99:1% detection rate, 99:5% spe-
ci city and 99:5% PPV. The results are summarized in Tablé 3.7. In addition, an example of
the performance of AIMM is illustrated in gure 3.20 and a more detailed evaluation of AIMM

Figure 3.20 — Performance of the proposed method on a low quality intra-cardiac electrogram.

Figure 3.21 — Performance box plot of the proposed method.

Table 3.7 — Performance comparison of the proposed method on atrial activity extraction on the
annotated database.

Method | Beats| FP | FN | Detection Rate (%) Sensitivity | PPV
AIMM 5216 | 25 | 22 99.1 99.58 99.52
MM 5216 | 116 | 310 91.83 94.39 97.82
CLI[126] | 5216 | 55 | 280 93.58 94.91 98.96

3.6.4 Remarks on AA detection from the ICEG

As for QRS-complex detection, employing a xed SE for AA detection may lead to unwanted
activity in the feature signal which results in over-sensing or under-sensing of the MM-based
method. This is due to the fact that length and magnitude changes on the SE can weaken or
strengthen high frequency activities which can lead to drastic e ects on the feature signal [90,
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105]. Hence, by adapting the SE, MM Iters can become more sensitive to AAs and less to
perturbations.

Results have shown that the best length of the SE is 20 ms. Also, AIMM achieves its best
performance when the ratio of the magnitude of the SE to that of the actual AA is taken as
0.7. Moreover, di erent learning coe cients in the update phase of the AIMM were examined
in order to apply the optimal changes on the SE with respect to the activities in the ICEG. At
the beginning, is set to 0.5 to have a bigger impact on the synthesized SE. As more AAs are
detected, the topology of the SE becomes closer to that of AAs which results in a more robust
detection of the next AAs.

Results suggest that the adaptive structuring element can e ciently estimate atrial activation
times. AIMM works on an activation-to-activation basis, avoids excessive use of arbitrary thres-
holds, and incorporates physiological constraints. Being fast and computationally not costly,
AIMM makes for viable approach for real-time/online scenarios.

3.7 Conclusion

This chapter presents an scheme, called the adaptive mathematical morphology, for QRS-
complex and ducial point detection. The proposed approach updates the structuring element
used in MM operators after the detection of each heartbeat for a better and more reliable de-
tection. The adaptation makes the proposed algorithm robust against perturbations such as ba-
seline drifts and muscle activity interference. Achieving a high detection rate of 98:39% and a
sensitivity of 0:988 against a smart shirt database, while bene ting from low computation load,
makes this approach a suitable choice where limited resources are available such as for body-area
networks.

Despite of the term "QRS detectors”, most methods focus on detecting the R-waves and not
the other ducial points in the QRS-complex such as QRS-onset, QRS-0 set, Q-point and S-
point. The proposed method detects the aforementioned ducial points alongside the R-peaks
with a low detection error rate. These ducial points provide the necessary information for more
precise arrhythmia detection and heartbeat classi cation. Against the Physionet QT database,
AMM achieved a detection rate of 99:90% for the R-peaks while estimating the location of the
QRS-onsets and QRS-0 sets respectively with detection rates of 97:91%, 98:18%.

Finally, the proposed algorithm was adapted for the detection of atrial activations from intra-
cardiac electrograms. With the same principles as the QRS-detection scheme, the proposed
algorithm obtained superior results to the state-of-the-art with a sensitivity of 0:99 and a detection
rate of 99:1%.



Multimodal Signal
Processing to Reduce
False Alarms in the
Intensive Care Unit

4.1 Introduction

High false alarm (FA) rates are a persistent concern in the Intensive Care Unit (ICU). Limi-
ted performance of ICU monitoring devices results in the desensitization of the medicahskta
longer response times, which can have severe repercussions. In addition, the noise disturbances
that are induced may lead to patient sleep deprivation [16]. Artifacts and momentary uctua-
tions in the signals are main causes of these high FA rates. In order to suppress FAs, studies
based on heart rate (HR) trend analysis have been proposed. Sitting and Factor [128] used a
multi-state Kalman Itering approach to identify trends, abrupt changes and artifacts in multiple
physiological data. Makivirta et al. [129] proposed an alternative approach based on a two-stage
recursive median lIter. The resulting proportion of true alarms increased from 12% to 49% du-
ring postoperative haemodynamic monitoring of cardiac patients. Several other methods have
been proposed to eliminate FAs by means of multimodal signal processing. Aboukhalil et al.
[130] showed that the use of arterial blood pressure (ABP) alongside ECG can lead to an overall
FA suppression of 59.7% on various alarm types, while preserving the true alarm rates, except in
case of ventricular tachycardia.

In addition to the processing of cardiovascular signals from independent sources, the auto-
mated identi cation of bad-quality signals and the development of signal quality indexes (SQIs)
can contribute to the improvement of the decision-making process to determine the validity of
an alarm[8; 131-133]. Sun et al. [131] used several features such as HR, heartbeat duration,
systolic and diastolic blood pressure values to detect anomalies in the ABP waveforms and com-
pute a signal abnormality index. Another ABP quality assessment method based on a fuzzy logic
approach was proposed in [132]. These two approaches were combined in [8] to develop an
ABP SQI, which was then employed to reduce the number of FAs in the ICU, resulting in FA
reduction rates of 74% and 53% for extreme bradycardia and extreme tachycardia, respectively.
Same authors developed a more complete processing scheme by including photoplethysmogram
(PPG) signals [134] and developing a PPG SQI [133]. This scheme was evaluated on a database
composed of di erent types of life-threatening arrhythmia alarms, resulting in FA suppression
rates of 86.4% for asystole, 100% for extreme bradycardia and 27.8% for extreme tachycardia,

1. The study presented in this chapter is the result of a joint collaboration with Sibylle Fallet (ASPG), which in
turn will be also published in another dissertation entitled 'Signal Processing Techniques for Cardiovascular Monitoring
Applications Using Conventional and Video-based Photoplethysmography', thesis director Dr. J.M. Vesin.
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while preserving true alarms. For ventricular tachycardia alarms an FA suppression of 30% was
achieved, with a true alarm suppression below 1%. The quality of ECG waveforms also plays an
important role. Indeed, as arrhythmia alarms in the ICU are mainly triggered by the ECGs, poor
quality ECG waveforms are associated with increases in FA rate. Behar:et al. [135] developed a
complete scheme based on machine learning to compute SQIs for ECG waveforms. In this study,
the authors pointed out the challenges linked to the evaluation of ECG waveform quality in case
of abnormal rhythms and proposed to train classi ers independently for the di erent types of
rhythms.

FA suppression in case of ventricular arrhythmia alarms can be especially arduous. Previ-
ous studies have emphasized the di culties in classifying ventricular tachycardia and ventricular
brillation episodes {8, 130, 136, 137]. Indeed, in these cases, accurate HR values are not su -
cient to identify the presence of an arrhythmia and additional features are required to detect mor-
phological changes in the waveforms. Moreover, there is no clear evidence yet that PPG/ABP
waveforms can be used as surrogates to characterize these arrhythmias. Salas-Boni et. al. [136]
proposed a method to reduce the number of false ventricular tachycardia alarms based on wavelet
transform of ECGs. In their work, the ECG waveform was rst decomposed in three sub-signals
using multi-level wavelet transform. Then, di erent features were extracted from the sub-signals
and machine learning was used to determine the validity of the alarms. An FA suppression of
21% on the PhysioNet MIMIC Il dataset [138] was achieved. Regarding the classi cation of
ventricular brillation episodes, a study showed that an accuracy of 96.3% could be achieved
using two features derived from ECG waveforms after the removal of noisy segments [137].

The purpose of this chapter was to develop algorithms to lower the incidence of false alarms
(FASs) in the ICU using information from independent sources, namely ECG, ABP and PPG.
This approach relies on robust adaptive signal processing techniques in order to extract accurate
HR values from the di erent waveforms. Based on the quality of available signals, heart rate
was either estimated from pulsatile waveforms using an adaptive frequency tracking algorithm
or computed from ECGs using the adaptive mathematical morphology introduced in Chapter 3.
Furthermore, a supplementary measure was developed based on the spectral purity index (SPI)
of the ECGs to determine whether a ventricular tachycardia or utter/ brillation arrhythmia has
taken place. Finally, alarm veracity was determined based on a set of decision rules on HR
and spectral purity values. The proposed method was evaluated on the PhysioNet/CinC Chal-
lenge 2015 database: [9], which is composed of 1250 life-threatening alarm recordings, each
categorized as a bradycardia, tachycardia, asystole, ventricular tachycardia or ventricular ut-
ter/ brillation arrhythmia. Figure 4.:1 shows the main steps of the proposed framework to identify
false alarms in the ICU.

Figure 4.1 — The general framework to determine the validity of an alarm.

Elements of the methods and results in this chapter were originally presented as a conference
paper[139], then published as a journal paper [7].
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4.2 Method

4.2.1 Data

The PhysioNet/CinC Challenge 2015 multimodal database consists of 1250 life-threatening
alarm recordings, each categorized as bradycardia, tachycardia, asystole, ventricular tachycardia
or ventricular utter/ brillation arrhythmia. Each record contains two ECG leads and at least
one pulsatile waveform (PPG and/or ABP). The nature of each alarm was manually labeled by a
team of experts according to the de nitions of the ve arrhythmia alarm types reported in Table
4'L. The database was divided into two subsets: a “real-time” subset, for which the data was
available only before the alarm was triggered and a “retrospective” subset, in which each record
contains an additional 30 seconds of data following the time of the alarm.

Table 4.1 — De nition of the ve alarm types [9].

Alarm type De nition
Asystole No QRS for at least four seconds.
Extreme Bradycardia Heart rate lower than 40 bpm for ve

consecutive beats.

Extreme Tachycardia Heart rate higher than 140 bpm for 17
consecutive beats.

Ventricular Tachycardia Five or more ventricular beats with heart
rate higher than 100 bpm.

Ventricular Flutter/Fibrillation  Fibrillatory, utter, or oscillatory waveform
for at least four seconds.

For each type of alarm described in Table: 4.1, a true and a false arrhythmia alarm are de-
monstrated next. In these gures, one can see example avaiIabIe waveforms in a window with
a false asystole alarm. In Figure 4.3 one can see the asystole alarm would be true had the ECG
leads were only used for alarm veracity analysis.

Figures 4.4 and 4.5 illustrate a true and a false extreme bradycardia alarm, respectively. The
previous argument is true for Figure 4.5 as well, where there are missing ECG leads in the
recording.

Examples of true and a false extreme tachycardia are reported in Figures 4.6 :and 4.7, re-
spectively. In the latter, the ECG channels present oscillatory behavior. If the oscnlatory peaks
were to be selected as heartbeats the arrhythm|a would be considered as a true alarm
representing a false alarm. One may blame the low quaI|ty of some S|gnals in thIS example
causmg the false arrhythmla alarm

tricular utter/ brillation, the pulsatile waveforms may not be suitable for alarm veracity, as there
is virtually no uctuation in the ABP signal.
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Figure 4.2 — Example of a true asystole alarm (tape al42s).

Figure 4.3 — Example of a false asystole alarm (tape al34s).
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Figure 4.4 — Example of a true bradycardia alarm (tape b455I).

Figure 4.5 — Example of a false bradycardia alarm (tape b332s).



48 Multimodal Signal Processing taReducdralse Alarms in the IntensiveCare Unit

Figure 4.6 — Example of a true tachycardia alarm (tape t174s).

Figure 4.7 — Example of a false tachycardia alarm (tape t409I).
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Figure 4.8 — Example of a true ventricular tachycardia alarm (tape v648s).

Figure 4.9 — Example of a false ventricular tachycardia alarm (tape v169l).
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Figure 4.10 — Example of a true ventricular utter/ brillation alarm (tape f544s).

Figure 4.11 — Example of a false ventricular utter/ brillation alarm (tape f121l).
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4.2.2 Processing of ECG

HR Estimation.

Observations of the available ECG channels in the training set indicated that they present va-
rious perturbations such as clipping of the QRS complexes, large baseline drift and high muscle
activity noise. Therefore, a robust heartbeat detection algorithm was needed in order to have a
reliable FA suppression. To this end the AMM (see Chapter 3) was used to extract the QRS-
complexes. As mentioned before, in MM Itering settings, operators nonlinearly transform the
signal of interest using an SE, designed to extract useful information regarding shape and size.
In AMM however the SE is continuously updated based on the QRS-complex morphological
features, which makes AMM exible and robust against perturbations. Another attractive pro-
perty of the AMM algorithm that it avoids excessive use of arbitrary thresholds, while relying
on more physiological constraints. These two properties of AMM, together with the evaluation
performed on the MIT/BIH arrhythmia database and especially the wearable technology ECG
database, made it appealing for this challenge. Moreover, AMM entails a low computational

of AMM on two low quality signals from the training dataset.

Figure 4.12 — AMM performance on an ECG channels (record a5271) from the training set.

Figure 4.13 — AMM performance on ECG channels (record t320s) from the training set.
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how AMM manages to robustly extract the QRS-complexes. However, the quality of many ECGs
in the recordings available in the challenge were of such low quality that made the determination
of false arrhythmia alarms virtually impossible, solely by means of ECG HR analysis. Therefore,
to improve the overall performance of false alarm detection, one needs to analyze the pulsatile
waveforms alongside ECGs as well. Furthermore, in some arrhythmia such as ventricular utter
or ventricular brillation HR analysis is simply not enough as one needs to scrutinize more the

Spectral Purity Index (SPI).

De ning the characteristics of ventricular arrhythmia is challenging from a signal proces-
sing point of view. More speci cally, in case of ventricular tachycardia, the de nition includes
both a constraint on the rhythm (HR higher than 100 bpm) and morphological changes in QRS
complexes (ve or more ventricular beats). Although many methods have been proposed to esti-
mate the HR, methods to identify a succession of ventricular beats are scarce. Observations have
shown that ECGs become closer to a sinusoid during ventricular tachycardia/ utter/ brillation
episodes, due to a widening of the QRS complexes. Such kind of behavior can be quanti ed with
a measure called the spectral purity index (SPI). This measure, which was originally developed
in the context of the analysis of electroencephalogram signals (140, 141], ranges between zero
and one and indicates how well the signal of interest can be described by a single frequency. It
is de ned as the running squared second-order spectral moment divided by the product of the
running total power and fourth-order spectral moment:

T3(n)
SPIn) = —2-"—; 4.1
O @
with T, the nth-order spectral moment, de ned by:
Z
Th=  1'S(e")dw; 4.2)

whereS,(eV) represents the power spectrum. In this study, the spectral moimgmisre esti-
mated in time domain, as proposed.in.[141]. The following di erence equations can be used to
estimate the rst and second derivatives:

XD(n)=x(n) x(n 1) (4.3)

xXP(n)=x(n+1) 2x(n)+x(n 1): (4.4)

.2 X
nog Ky (4.5)
n=0

with i = 0,2,4 andN the length of the signal. In addition, the SPI can be measured recursively
using a sliding window. The expression for t8éI(n) is then written as:
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[s)
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(4.6)

with L the length of the sliding window. In this study, the SPI of the available ECG channels
was measured for ventricular tachycardia and ventricular utter/ brillation alarms. Higher SPIs
are expected for true arrhythmias. In order for the SPI to be more representative of the general
changes in the signals, ECG waveforms were rst smoothed by down-sampling to 35 Hz and by
applying a 5-sample moving average lter. A 2-second sliding windbwi7Q) was used for SPI

alarm.

Figure 4.14 — Example of SPI for a true ventricular tachycardia (record v194s). (a) and (b) show
the two ECG waveforms. (c) and (d) represent the corresponding SPIs. In both cases, it can be
observed that the SPI signi cantly increases when the arrhythmia takes place.

4.2.3 Processing of PPG and ABP Waveforms

Quality Assessment.

In order to assess the quality of the PPG and ABP signals, respectiveppt&Qland
the jSQI algorithms were used, which were provided for the PhysioNet/CinC 2015 challenge
[9]. Based on the detected heartbeats, these algorithms compute the features needed to estimate
the signal quality. Heartbeats were detected using the algorithm described by Arberet et al.



54 Multimodal Signal Processing taReducdralse Alarms in the IntensiveCare Unit

[142]. The resulting signal quality indexes (SQIs), that ranged between zero and one, determined
whether PPG/ABP waveforms should be analyzed.

HR Estimation.f_z'g

In order to suppress FAs and preserve true alarms, it is necessary to have an accurate HR
extraction. However, a precise HR estimation has proven to be di cult when signal quality
is low. Moreover, abnormal heart rhythms are expected to be present in the waveforms. In
this study, the pulsatile nature of PPG and ABP waveforms was exploited by using an adaptive
frequency tracking algorithm, which consists of an adaptive band-pass lter, to estimate HR. The
basic algorithm, described by Liao [143], is an oscillator-based mean-square-error band-pass
Iter (OSC-MSE). In this algorithm, the central frequency of the lter is constantly updated to
track the instantaneous frequency of the signal. The underlying adaptive mechanism involves a
cost function that is derived from the oscillator equation. This OSC-MSE algorithm was extended
to multi-signal (OSC-MSE-W) [144], in order to track the common frequency component present
in multiple input signals. More speci cally, input signals are ltered by an adaptive band-pass
Iter in order to calculate individual frequency estimates. Then, a global frequency estimate is
computed by weighting the individual estimates. Importantly, it should be mentioned that the
phase di erence between the input signals does not a ect the frequency tracking. In addition,
the OSC-MSE-W was further expanded to work in the complex domain (OSC-MSEc-W) [145],
as it was empirically observed that using the complex-domain approach improved the frequency
tracking on some signals. This algorithm has been used to compute accurate HR values from
PPG signals acquired on running subjects [146].

Here, an 8th-order Butterworth low-pass lter with a cutfsequency of 5 Hz was rst app-
lied to the PPG signals. Then, the baseline of PPG and ABP signals was removed by subtracting
the mean of the upper and lower signal envelopes estimated using maximum/minimum detection
on a sliding window. Finally, when the SQIs of the PPG/ABP signal reached a certain threshold,
the OSC-MSE-W/OSC-MSEc-W algorithms were used to compute the instantaneous HR of the
available signals. In order to increase the robustness of HR estimation, smoothed versions of
the input signals, obtained with a moving average of lerigthere also fed to the algorithm.
It is especially important to attenuate the dicrotic notch and to ensure the tracking of the main

is necessary to use also the smoothed signal as an input to the adaptive frequency tracking al-
gorithms for a precise HR estimation. In this example, the ABP signal has a lower frequency
component, which is the frequency corresponding to instantaneous HR, and a higher frequency
component, due to the presence of the dicrotic notch. It can be seen that, when the smoothed
ABP signal is also provided to the OSC-MSE-W algorithm, the common frequency between the
inputs is the frequency of interest and the HR can be accurately estimated, which is not the case
when only the ABP signal is used. In order to further optimize HR estimation, the parameters
required for adaptive frequency tracking, were empirically selected for each type of arrhythmia.
These parameters are summarized in Table 4.2, wheirdicates the re-sampling frequency of

the waveforms, is related to the bandwidth of the adaptive band-pass Iter arxda forget-

ting factor. Figure 4.16 shows an example of HR estimation using the OSC-MSE-W algorithm,
during a true extreme tachycardia episode. As illustrated, despite the moderate quality of the
waveforms, the oscillation of interest is correctly isolated by the adaptive band-pass Iter and
instantaneous HR can be estimated. It should be noted that, for asystole alarms, a swesler

used in order to detect decreases in HR faster. It was noticed that the complex version of the al-
gorithm (OCS-MSEc-W) was more suitable for arrhythmia associated with low HR, i.e. asystole
and bradycardia.

2. For an introduction to instantaneous frequency and the adaptive frequency tracking algorithms presented here, see
Appendix A
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Figure 4.15 — Example to illustrate the interest of using multiple inputs for adaptive frequency
tracking. (a) Original ABP signal (solid line) and smoothed ABP signal (dashed line). (b) ABP

signal Itered with the adaptive band-pass tter using only the original ABP signal as input (solid

line) or both original and smoothed ABP signals (dashed line).

Table 4.2 — Algorithms and selected parameters for HR estimation using PPG and/or ABP wa-
veforms.

Arrhythmia Algorithm fre lppc laBP

(Hz) (samples) (samples)
Asystole OSC-MSEc-W 15 3 3 08 0.8
Extreme Bradycardia OSC-MSEc-W 15 3,511 7 0.87 0.87
Extreme Tachycardia OSC-MSE-W 35 5 7 0.89 0.9
Ventricular Tachycardia OSC-MSE-W 35 5 7 0.89 0.9

4.2.4 Arrhythmia Alarm Processing

De nition of the ve alarm types (see Table 4.1) allowed for the development of processing
schemes speci ¢ to each arrhythmia, which are described throughout the upcoming subsections.
In each scheme, thresholds were empirically selected in order to maximize the corresponding
TNR while keeping TPR as close as possible to 100% in the training dataset.
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Figure 4.16 — Example of HR estimation using the adaptive band-pass lter. (a) PPG waveform.
(b) Instantaneous HR.

Asystole Processing.

Figure:4.17 illustrates the processing scheme for asystole. For this arrhythmia, available
ECGs and high quality pulsatile waveforms were processed separately and alarm veracity was
determined by means of voting. More speci cally, the alarm was suppressed if at least one
processed waveforms suppressed the alarm. For the retrospective setting, a few seconds of data
after the alarm were also taken into account for the calculation of the HR features, i.e. the mean
HR and the decrease of HR for the pulsatile waveforms and the maximum RR-interval for ECG
waveforms. Linear discriminant analysis (LDA) was used to compute the alarm result derived
from the pulsatile waveforms. In order to have consistency with the performance metric that
was used in this study (see Section 4.2.5), the false negative cost was set as ve time larger than
that of false positive in the LDA. The classi er was trained on the training dataset. Regarding
the processing of the ECG signals, a threshold of 3.5 seconds was put on the maximum RR-
interval value during the last 20 seconds before alarm was trigger&dséeonds after in case

retrospective data were available) to compute the ECG alarm results.

Extreme Bradycardia Processing.

Two di erent processing schemes are possible in case of extreme bradycardia alarm, depen-

had an acceptable quality (SQI higher than 0.'5), alarm validity was determined based on a thres-
hold of 54 bpm on the mean and median HR values extracted from the pulsatile waveforms

during the last ve seconds before the alarm was triggered. On the other hand, when the SQIs of
PPG and ABP waveforms were both below 0.5, the ECG waveforms were analyzed. A threshold

of 40 bpm was used on the minimum HR derived from ve consecutive beats to discriminate
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Figure 4.17 — Asystole alarm processing.

between true and false alarms. A period of 16 seconds before the alarm was considered and, if
available, 5 seconds after the alarm were also taken into account.

Figure 4.18 — Extreme bradycardia alarm processing.

Extreme Tachycardia Processing.

In case of extreme tachycardia alarm, only the pulsatile waveforms were processed, as shown
in Figure:4.19. The decision about alarm veracity was made from the mean and maximum
HR values during the last four seconds preceding the alarm. More precisely, the alarm was
suppressed if the maximum HR was below 115 bpm while the mean HR was below 100 bpm.

For this arrhythmia, ECG waveforms were not analyzed.

Figure 4.19 — Extreme tachycardia alarm processing.

Ventricular Flutter/Fibrillation Processing.

ding window (2-second overlap), was used to suppress false ventricular utter/ brillation alarms.
More precisely, the alarm was suppressed if this SPI feature was smaller that 0.63 during the 15
seconds preceding the alarm. Pulsatile waveforms were not processed for this arrhythmia.
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Figure 4.20 — Ventricular utter/ brillation alarm processing.

Ventricular Tachycardia Processing.

The processing of ventricular tachycardia alarms was the most challenging one {Figure 4.21).
On one hand, pulsatile waveforms were used to compute HR and suppress the alarm if the HR
ranged between 60 and 90 bpm. On the other hand, the ECG SPI was employed to detected mor-
phological changes during ventricular contractions. It should be noted that pulsatile waveforms
and ECGs were processed independently, and that both could lead to the suppression of the
alarm. The rst feature was the maximum of the average SPI on a 3-second sliding window (2-
second overlap) during the 20 seconds preceding the alarm. The maximum di erence between
every other value of these SPI averages were used to compute a second feature re ecting SPI
increase. Three di erent conditions led to alarm suppression based on the SPI features described
above. Either the maximum SPI increase had to be below 0.012, or the maximum SPI average
was below 0.25, or both the maximum SPI average and the maximum SPI increase were below

0.36 and 0.2, respectively.

Figure 4.21 — Ventricular tachycardia alarm processing.

4.2.5 Evaluation Metrics

A training set of 750 records was provided for this challenge. Then, the performance of the
developed scheme was evaluated on a hidden test set of 500 records (extended to 750 records
for the second phase). It is important to eliminate false alarms while preserving true alarms,
since the life of the patient is threatened if true alarms are suppressed. To enforce this, a speci c
score function was selected for this challenge [9]. This score is a function of the number of true
positives (TP), false positives (FP), false negatives (FN) and true negatives (TN), computed by
the following equation:

100 (TP+TN)
(TP+TN+FP+5 FN)
As shown in Equation 4.7, FN alarms are penalized ve times more than FP alarms. In addition

to this score, true positive rates (TPRs) and true negative rates (TNRs) were reported for the
di erent alarm types.

Score= 4.7)
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4.3 Results

After feature extraction and training on the available training set, the presented scheme was
rst evaluated on a test set of 500 records, and was ranked as the second best method with an
overall score of 73. For the second phase of this challenge, the main focus was on the optimi-
zation of the parameters that were used by the di erent algorithms in the presented scheme. At
the same time, di erent voting strategies were studied in order to nd the best way to aggregate
the results provided by each processing component. It is worth mentioning that, for this phase,
an additional dataset of 250 records was added to the evaluation dataset. For the real-time test
dataset, the proposed framework achieved a TPR of 94%, a TNR of 77%, and an overall score of
76.11. Regarding the retrospective subset, a TPR of 99% and a TNR of 80% were achieved, with
an overall score of 85.04 [139]. This scheme was ranked fth in the real-time event and rstin
the retrospective event of the second phase of this challenge [9]. A follow-up phase was also con-
sidered for this challenge. After applying minor changes to the decision-making process of the
asystole and extreme tachycardia alarms, an improvement of one percent in TPR was achieved
for the real time event, resulting in a real-time score of 77.07. More details on the performance
of the proposed scheme on the training and the test datasets can be found in Tables 4.3 and 4.4,
respectively.

Table 4.3 — Results obtained on the hidden-test dataset.

Phase | Phase Il Follow-up
Arrhythmia TPR TNR Score] TPR TNR Scorel TPR TNR Score
(%) (%) (%) (%) (%) (%)
Asystole 92 78 76.42| 83 88 81.44| 94 85 84.28
Extreme brady. 96 66  73.53| 100 71  82.47| 100 71 8247
Extreme tachy. 96 60 80.00f 97 60 86.18| 97 80 86.99
Ventricular utter/b. | 83 88 79.55| 89 94  87.10| 89 94  87.10
Ventricular tachy. 93 65 67.38] 94 72 7275 94 72 7275
Real-time 93 65 68.15| 94 77 76.11| 95 76 77.07
Retrospective 95 77 77.82| 99 80 85.04| 99 80 85.04

Table 4.4 — Results for the training set.

Arrhythmia TP FP FN TN| TPR TNR| Score
(%) (%) (%) (%) (%) (%)
Asystole 18 12 0 70| 100 85 | 87.70
Extreme bradycardia 51 18 1 30| 98 63 | 77.49
Extreme tachycardia 94 3 0 4 | 100 55 | 97.10
Ventricular utter/ brillation | 10 16 0 74 | 100 83 | 84.48
Ventricular tachycardia 22 19 4 55| 85 75 | 67.45
Average 39 13 1 47 | 98 78 | 82.31
Gross 37 14 2 47 | 95 76 | 77.88

4.4 Discussion

In this challenge, the highest score in both real-time and retrospective events was achieved
by a meta-algorithm, which uses a voting system on the 13 best performing entries: Table 4.5
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compares the results achieved by the proposed scheme with the meta-algorithm developed by the
challenge organizers. More details about the top scoring entries from the other participants can
be found in[9]. Regardless of the nal scores, the main goal was to achieve the highest TPR
since the applicability of the developed method in the ICU would be most acceptable with a TPR
of 100%. This was re ected in the nal results, as the proposed approach reached the highest
TPR for both real-time and retrospective events [9].

Table 4.5 — Comparison between the proposed scheme and the voting algorithm.

Real-time subset | Retrospective subset
TPR TNR Score] TPR TNR Score
Voting algorithm 9] | 94% 90% 84.26| 94% 94% 87.03
The proposed scheme95% 76% 77.07) 99% 80% 85.04

Of course, quality assessment of the signals plays an important role in FA suppression in the
ICU. Indeed, in the presented scheme, the use of the PPG/ABP SQI was necessary to obtain sa-
tisfying results. Table 4:6 shows the percentage of records that were analyzed based on the SQI
threshold set in the proposed scheme. It should be noted that for extreme tachycardia alarms,
only 51% of the records had quality acceptable enough to be analyzed. Therefore, excluding
49% of signals undoubtedly a ects the nal TPR and TNR that can be achieved for this ar-
rhythmia, as shown by the low TNR on the training set reported in Table 4.4. The use of an
ECG quality assessment method was also investigated in this study. As mentioned in Section
4.2.2, the ECGs in the database usually present various perturbations. Therefore, during the
training phase of this study, an ECG quality assessment classi er was developed, in order to
categorize the ECGs into low, moderate, and high quality classes. To this end, all ECGs in the
dataset were manually labeled by an operator and various features were extracted from them.
Initially, third and fourth moments, i.e. skewness [147,.148] and kurtosis [147, 149], as well as
ECG baseline and QRS-complex powers were extracted from recordings, as proposed in [135].
Then ECGs were processed by AMM and several QRS-complex driven features were extracted
from the output of the AMM. More speci cally, features such as maximum, minimum, average
duration of QRS-complexes and RR-intervals were extracted from the signals. Subsequently, a
support vector machine based ECG signal quality assessment classi er was trained and validated
(10-fold cross-validation). The classi cation accuracy of the trained classi er was 81:6% against
the training set. However, when this ECG quality assessment was incorporated into AMM, a
performance decrease was observed in the training set. For this reason, the use of ECG quality
assessment was discontinued for this challenge. This was especially interesting as there were
quite a few recordings in the training dataset where one ECG lead had acceptable quality while

with unequal ECG lead qualities.

Table 4.6 — Percentage of processed waveforms for each type of alarm in the training set.

Arrhythmia ABP PPG PPGorABP ECG % of processed recards
Asystole 35% 45% 80% 100% 100%

Extreme bradycardia 40% 64% 80% 20% 100%
Extreme tachycardia 29% 26% 51% 0% 51%

Ventricular utter/ brillation 0% 0% 0% 100% 100%
Ventricular tachycardia 45% 52% 78% 100% 100%

Based on the results presented above, it seems that adaptive frequency tracking is an appro-
priate technique to obtain instantaneous HR from the pulsatile waveforms. This method does not
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Figure 4.22 — Example of a recording (t114s) in the training set with a good quality ECG lead as
well as a bad quality lead.

provide any information about heart rate variability, but results suggest that precise HR avera-
ges and trends are most of the time su cient to determine the validity of the alarm. Moreover,
adaptive frequency tracking enabled us to process moderate quality waveforms, and as a result
increased the numbers of potential FA candidates for suppression. Furthermore, information
from ABP and PPG can be easily combined using this technique.

The elimination of false ventricular tachycardia alarms on the basis of solely processing the
PPG/ABP waveforms is very di cult. Observations showed that ventricular tachycardia episo-
des sometimes induce amplitude decreases in the pulsatile signals. However, as illustrated in
Figure;4.23, this e ect was not consistent over records. In this gure, the PPG waveforms, as
well as the ECG waveforms are displayed for two records corresponding to true ventricular ta-
chycardia episodes. It can be noted that the pulse amplitudes decrease during the ventricular
beats for the rst record, from second 295 to 298, but the same behavior can not be observed
for the second record. For this reason, PPG/ABP amplitude changes were excluded from the
scheme. This phenomenon has also been reported in the literature [150]. In this work the pulse
amplitude, among other features, was used to detect ventricular premature beats. The authors no-
ted that di erent pulse patterns are possible in the PPG signal when a premature ventricular beat
occurs, depending on blood pumping e ciency. Finally, as a compromise, it was decided to rely
on pulsatile waveforms for HR estimation and on ECGs for the detection of the morphological
changes. As far as the state-of-the-art, it is the rst time SPI is used to characterize the morpho-
logical changes related to ventricular arrhythmia. This measure undoubtedly has a potential to
be used for ventricular tachycardia and ventricular utter/ brillation arrhythmias, as con rmed
by the good results achieved with a very limited number of features. Moreover, the computation
of this index can be performed on-line in the time domain, at a very low cost.

The decision-making process of the presented scheme is very straightforward, as it mainly
uses simple thresholds on a few features to eliminate FAs. In order to nd the optimal way to ag-
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Figure 4.23 — Two examples of PPG signal behavior during true ventricular tachycardia episodes.
(a) Record v628s. A decrease in pulse amplitude can be observed in the PPG signal during the
arrhythmia; (b) Record v159I. No decrease in PPG pulse amplitude.

gregate the results provided by di erent components of the proposed scheme, both learner fusion
and learner selection methods were stu'ﬁ}ie@s illustrated by the arrhythmia alarm processing
schemes (gures 4.17:- 4.21), for asystole and ventricular tachycardia alarms, a fusion-based
method lead to the best results. For extreme bradycardia, the alarm veri cation procedure is cho-
sen based on the threshold of 0:5 on the PPG/ABP SQI, which represents the learner selection that
was incorporated for this arrhythmia. For extreme tachycardia and ventricular utter/ brillation,
results showed that the use of pulsatile waveforms alone and ECG waveforms alone, respectively,
were more e ective.

It should also be noted that, compared to the exact alarm de nitions (see: Table 4.1), most HR
thresholds in the proposed method were set to have a certain degree of tolerance, which was
necessary to avoid the suppression of true alarm. Using a decision-making process based on so-
phisticated machine learning algorithms is debatable within the context of this challenge. Indeed,
machine learning-based approaches have already proven their e ciency, as shown by the results
from the other participants in the challenge [9]. However, limited number of features allowed to
keep the presented scheme more simple while rendering a physiological interpretation possible.
The similarities between the performance achieved on training and test datasets con rm the rele-
vance of the empirically chosen parameters (see Tables 4:3 and 4.4), and suggest that over tting
was avoided despite the limited number of available records for some types of arrhythmia. It
is worth mentioning that, during the development of the presented method for the processing of
ventricular tachycardia, it was studied to see weather it was possible to replace the thresholds on
SPI derived features (see Figure 4.21) by an LDA classi er. However, despite the better results

obtained on the training set, lower performance were achieved in the test dataset, as shown in

3. Detailed description on classi er combination can be found in Appe:rit!ix B
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Table4,7.

Table 4.7 — Linear discriminant analysis for ventricular tachycardia alarms.

Training dataset Test dataset
TPR (%) TNR (%) Score TPR (%) TNR (%) Score
With LDA 90 77 72.83 81 74 64.83
No LDA 85 75 67.45 94 72 72.75

4.5 Conclusion

This study con rms that the use of cardiovascular signals from independent sources is of great
interest to reduce the number of FAs in the ICU. This chapter presents an innovative approach,
based on the capture of speci ¢ signal behavior that occur during arrhythmia episodes, in addition
to the traditional HR measures derived from the ECGs and pulsatile waveforms. The e ciency
of the presented approach was demonstrated on the PhysioNet/CinC Challenge 2015 dataset, for
which TNRs of 76/80% were achieved, with corresponding TPRs of 95/99% for the real-time
and retrospective subsets, respectively.






Short-Term Event
Extraction in Biomedical
Signals

This chapter presents a fast non-linear Itering method called Relative-Energy (Rel-En), for
robust short-term event extraction from biomedical signals. Rel-En extracts short- and long-
term energies in a signal and provides a coe cient vector with which the signal is multiplied,
heightening events of interest. The proposed algorithm is implemented using two lIters and its
parameters can be selected easily and intuitively. This algorithm is thoroughly assessed on ben-
chmark datasets in three di erent biomedical applications namely, ECG QRS-complex detection,
EEG K-complex detection, and imaging photoplethysmography (iPPG) peak detection. Rel-En
successfully identi ed the events in these settings. Compared to the state-of-the-art, better or
comparable results were obtained on QRS-complex and K-complex detection. For iPPG peak
detection, the proposed method was used as a preprocessing step to a xed threshold algorithm
that lead to a signi cant improvement in overall results. Furthermore, the Rel-En algorithm can
be used in other biomedical signal processing applications in which short-term event extraction
is needed. Elements of the methods and results in this chapter were originally presented as a
conference paper [151], then published as a journal paper [102].

5.1 Introduction

Biomedical signal processing is the study of the measurements recorded by physiological
instruments. Analysis of these measurements provides physicians with important physiological
information that may help them to uncover underlying dynamics of human health. It also allows
them to determine patient health state and to choose the right treatment.

Physiological signals comprise di erent waveforms, the extraction of which often being the
rst step in their investigation. Over the last decades, several spike/waveform extraction methods
have been proposed in the literature. Generally, the signal is preprocessed by means of high-,
low-, or band-pass ltering, followed by a comparison against detection logics and thresholds,
to determine the veracity of the peaks_[152]. A simple approach is to apply a threshold on
the raw or the absolute value of a signal to extract impulsive events, as proposed for neural
recordings:[153—155]. A common way to set this simple threshold is to base it on an estimate of
the standard deviation of the noise [153, 154]. The Plosion index (PI) is another method used to
detect impulse-like events in signals [101]. This index is de ned as,

PI(n) = (5.1)

x(n)j
( X(=(mp + my + 1)

j=nm 4

65
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where x(n) denotes thath sample of the input signal Parametersm andm, describe the
interval on which the average is applidell. has been used in speech processing to detect closure
burst transitions of stops and a ricates [101]. This index has also been used to extract R-waves
from ECGs[156]. The slope characteristics of the input signal have proven to be a good feature
for short-term event extraction. The idea is to scrutinize the rst derivative of the input signal in
order to detect abrupt changes in the amplitude, which represent the onset of action potentials
or impulsive waveforms [73, 76, 157—159]. The nonlinear energy operator [160], also known
as Teager energy, has also been used to detect impulses. This operator captures high frequency
local activities using an input sample and its immediate neighbors. After applying this operator,
the output is compared against a threshold and impulses are extracted [153, 161]. The afore-
mentioned methods are easy to implement and perform well in normal settings in which the
input signal is not contaminated by perturbations. More elaborated yet robust methods such as
template matching and wavelet transforms have been proposed to deal with noise-contaminated
signals. Template matching methods scan the signal in order to nd instances that are similar to
a pre-de ned set of templates. Usually the matching operation is carried out by studying a simi-
larity measure such as the Euclidean distance between an instance and the prede ned templates
[41,:157,.162; 163], or by calculating their cross-correlation {164, 165]. Template matching
algorithms generally perform better compared to the aforementioned "thresholding’ methods.
Moreover, they can identify di erent morphologies and extract several types of waveform from
the signal. However, these methods require a priori knowledge of the morphology of the wa-
veform(s) of interest. Since these morphologies can be application- or even subject-dependent,
they need to be studied and might even require expert input in order to be extracted. The wavelet
transform is another interesting approach for waveform extraction [84]. &yng good fre-

guency resolution at low frequencies and high time resolution at high frequencies, wavelet-based
methods are vastly popular in automatic waveform detection [84, 154, 166]. Furthermore, these
methods can be implemented as Iter banks, leading to low computation cost [152, 153]. In this
approach, generally, the stationary wavelet transform is calculated across several dyadic scales
and the optimum scale is chosen. Then, element-wise product between the optimum scale and its
two previous scales is calculated and smoothed. Finally, the product is compared to a threshold
for spike extraction. As a drawback to wavelet approaches, it is worth noting that even at small
scales, wavelet functions are oscillations but short-term events, such as spikes, do not necessa-
rily have an oscillatory behavior. Apart from the aforementioned methods, over the years, other
diverse detection techniques such as lter-banks [89], adaptive lters [167, 168], mathematical
morphology lters {6,.:90], matched lters [167, 169], genetic algorithms:[95], hidden Markov
models;[94], arti cial neural networks [167, 1.70], and fuzzy-logic detection {171, 172] have been
proposed in the literature. However, several problems remains partially unsolved in the automa-
tic extraction of waveforms. Most methods, especially simple ones that can be adapted in many
biomedical signal processing settings, focus on the sample at hand and its close vicinity while
discarding the important “long-term' information in the signal. Therefore, any source of noise
can result in values higher than the chosen threshold and subsequently lead to false detection. On
the other hand, more elaborated methods become task-speci c, rendering them either ine ective
for a wide scope of applications, in need of expert input, or even dependent on long training and
optimization times.

In this chapter, a simple, easy to compute algorithm for short-term event detection in bio-
medical signals is proposed. This algorithm uses the relative information between short- and
long-term energies in the signal, which can be robustly speci ed, to compute a coe cient vec-
tor. The coe cient vector is then multiplied with the original signal, heightening impulse-like
complexes while suppressing unwanted information from the signal. The proposed algorithm is
evaluated on three biomedical signal processing applications in order to have a comprehensive
evaluation of its performance.
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5.2 Method

Careful analysis of waveforms in di erent biomedical settings lead to the understanding that
even in cases where the biomedical signal is severely contaminated by perturbations, there is a
signi cant di erence in terms of signal power in the baseline and in the waveform of interest.
Therefore, by analyzing the relative short- and long-term energies in the signal, given the short-
and long-term window lengths are properly chosen, one can extract the peaks from the baseline.

5.2.1 Relative-Energy (Rel-En) Algorithm

Using two sliding windows, centered at sample n of the input signal coe cient signal
c(:), de ned as the ratio between short- and long-term signal energies, is obtained through,

nﬁ,vi

0k
c(n)= — L (5.2)
N LOREOG

Where parameters,i, andly;, represent the half-lengths of the short and long sliding win-
dows, respectively. Parametggandw denote respectively the exponent and window function
of interest. It is worth noting that absolute valuesaire considered in Equation 5.2, in order to
allow oddp values. Finally, the output signal is calculated using,

Xre(n) = x(n)c(n) (5.3)

Therefore, element-wise multiplication of the coe cient vector by the original signal results
in an output xgg, in which impulsive waveforms with duration close to that of the short window
are ampli ed, while other signal components are dimmed. This element-wise multiplication
not only enhances these impulsive waveforms but also preserves their polarity. As a rule of
thumb, the short-term window should be long enough to contain the desired waveform. At the
same time, the long-term window duration should be selected to re ect long-term behavior of
the signal. However, it should not be so long that the short-term window variations are made
insigni cant in Equation 5.2.

The successive steps of the proposed algorithm are illustrated in Figure 5.1, where Rel-En is
applied to a synthesized signal comprised of a series of impulses added to a sinusoid (Figure 5.1-
a). The sinusoid oscillates with a frequency of 25 Hz at a 500 Hz sampling frequency. Impulses
are generated randomly as half-periods of the sinusoid multiplied by an integer (Figure 5.1-b). In
this example a short- and long-term durations of respectively 10 and 100 samples were selected
for the windows. Furthermore, an exponentpof 2, and a Hamming windowing function was
used to calculate the long-term energy. For demonstration purposes a normalized evolution of
the input signal and short- and long-term energies are illustrated in Figure 5.1-c. using these
parameters, the Rel-En algorithm successfully detects the impulses and almost fully discards the
baseline sinusoidal activity (Figure 5.1-d).

5.3 Examples of Applications of Rel-En

Having de ned the Rel-En algorithm, we examined its performance in di erent biomedical
signal processing applications. Rel-En performance was evaluated in QRS-complex detection
from the ECG, K-complex detection from the EEG, and pulse extraction from iPPG. Throughout
the remainder of this section, these applications are described in details and evaluated.
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Figure 5.1 — lllustration of di erent steps of the Rel-En algorithm on a synthetic signal composed
of animpulse series added to a sinusoid. a) The input signal, i.e. the sirub@dmpulse series.

b) The impulse series. ¢) Normalized Short- and long-term energy, respectively the numerator
and denominator in Equation .2, evolution. d) The output of Relxka,

5.3.1 Rel-En for QRS-complex detection in ECG

Due to their peaky morphological characteristics, QRS-complexes are primarily used for au-
tomatic heartbeat detection. A review of classical QRS-complex detection approaches can be
found in Chapter:3 and [103, 152] . Several studies have been performed on ECG QRS-complex
detection, varying in terms of performance and complexity. Of course, in a conventional setting,
complexity is not a major issue due to the ever-increasing computation power available. Howe-
ver, with the rise of wearable technologies and body area networks, there has been a new trend,
with studies aiming at o ering good performance while requiring lower computation complexity.
The simplicity of Rel-En made QRS-complex detection an appealing application.

Materials

The Physionet MIT/BIH arrhythmia database was used in order to evaluate the performance
of Rel-En [48]. This publicly available database has been used to evaluate several automatic

database was performed on the rst lead, which is either a modi ed lead Il (46 records) or lead
V5 (two records). Results were checked with the reference annotation le provided for this
database.
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Parameters and Detection Logic

In order to evaluate the Rel-En algorithm on the MIT/BIH arrhythmia database, rst the
ECG was band-pass Itered in the range of 40 Hz. The ltered ECG was then passed through
the Rel-En algorithm with short and long sliding window durations of respectively 140ms and
950ms, and a value gf = 2 was selected for the exponent. The Hamming windowing was used
in this application to avoid spurious peaks and to have a smooth long-term energy variation. In
order to apply the detection logiggre Was normalized using min-max normalization, i.e.,

x(n)  min(x)

2= T30 min®

(5.4)

Where x(n) denotes theith sample ofx. Finally, the mean of the normalized signal was
removed. For QRS-complex detection, a very simple detection logic was considered. First, local
extrema with a minimum time distance of 250ms were extracted from the mean-removed nor-
malizedxgg, and the QRS-complex locations were considered as those of the maxima with an
Rel-En algorithm on a low quality segment of tape 105 of the MIT/BIT arrhythmia database.
Among the 48 tapes of this database, tape 105 is one of the most challenging records for auto-
matic QRS-complex detection due to the presence of perturbations such as baseline wandering
and muscular activities. Although band-pass Itering improves the behavior of the signal, the de-
tection of QRS-complexes is still challenging. However, after calculating the coe cient signal
using Rel-En and multiplying it with the band passed Itered ECG, one can clearly observe the
QRS-complexes in the output.

Figure 5.2 — lllustration of di erent steps of the Rel-En algorithm on tape 105 of the Physionet
MIT/BIH arrhythmia database. a) Original ECG. b) Band-pass Itered [40]Hz ECG, and

the evolution of short- and long-term energies in the ECG. c) The extracted coe cient signal,
(Equation 5.2). d) The output of Rel-Exze (Equation 5.3).
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Results and Remarks on QRS-complex Detection

The extracted QRS-complexes by Rel-En were compared with those in the annotation les.
Table: 5.1 compares Rel-En performance with that of the state-of-the-art approaches. As shown
in this table Rel-En yielded the lowest humber of false negatives, while providing better or
comparable results with the state-of-the-art. More speci cally, tape-by-tape results are reported
in Table 5.2. In this tables, the detectlon error rate (DER) as WeII as sensmwty (Se) and positive

As the main parameters of Rel-Emas well as short- and long-term wmdow durations must
be appropriately chosen. Since typical QRS-complexes have a duration around150éns
[107], di erent short-term window durations in the range of 8®00ms were examined. Si-
multaneously, the long-term window was studied in the range of (B5%econds. Short- and
long-term windows of respectively 140ms and 950ms provided to the best performance. In the
general discussion section, we demonstrate that a wide range of parameter values actually lead to
very similar performance, suggesting that parameter selection is not critical. Since the long-term
window was not relatively much longer than the short-term window, Hamming windowing was
used to smooth the long-term energy variations. Of course, having longer durations for the long-
term window leads to a smoother variation in the energy signal, but observations have shown
that in most cases, low amplitude QRS-complexes, such as some ventricular beats, were miss de-
tected. The exponent parameter was also studied in the integer rang&pfvith p = 2 leading
to the best results. A larggrhas the tendency to improve the extraction of the complexes while
higher levels of perturbation are present. However, like the long-term window duration, larger
values lead to miss detection of low amplitude QRS-complexes.

Table 5.1 — Rel-En QRS-complex extraction performance comparison with the state-of-the-art.

\ Method | No. ofBeats| FP | FN | DER % |
Relative-Energy 110070 134 | 103 0.21
AMM (Y azdani. and Vesin) [6] 109494 108 | 137 | 0.224
Panand Tompkins: [73] 109809 507 | 277 | 0.710
Lietal. [84] 104184 65 | 112 | 0.170
Zhang and.ian [90] 109510 204 | 213 0.38
Rawanshad et al; [97] 109428 651 | 1216 | 1.71
Martinez etal. [112] 109428 153 | 220 0.34
Bahoura etll. [87] 109809 135 | 184 0.29
Moody andMark [113] 109428 94 | 1861 | 1.79
Lee etal. [114] 109481 137 | 135 0.43
Hamilton andTompkins {76] 109267 248 | 340 0.54
Poli etal. [95] 109963 545 | 441 0.90
Chen efal. [115] 102654 529 | 459 0.96
Afonso etal. [89] 90909 406 | 374 0.86

Results reported in Tablés 5.1 and:5.2, suggest that the proposed method can e ciently ex-
tract R-waves from the ECG. In order to nd out how the proposed method performs when per-
turbations are present the ECG, Rel-En was evaluated against white and synthetic EMG noise,
created by tting an autoregressive model on EMG recordings from the Physionet/CinC2014
challenge database. The purpose of this challenge was the robust extraction of heartbeats by me-
ans of multi-modal signal processing. In this challenge, ABP, PPG, EMG and even EEG signals
were available alongside ECG channels. More information about this challenge and database can
be found in[173].

Using clean segments of ECGs in the MIT/BIH arrhythmia database, di erent levels of noise,
from an input signal-to-noise ratio (SNR) of 100 to -20, were incrementally added to the ECG.
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Table 5.2 — Detail performance of Rel-En on QRS-complex detection on MIT/BIH arrhythmia
database.

| Tape No.| No. of Beats| FP | FN | DER % | Sensitivity | PPV |

100 2272 0 0 0 1 1
101 1869 2 2 0.11 0.9989 | 0.9989
102 2186 0 0 0 1 1
103 2083 0 0 0 1 1
104 2228 28 0 0 1 0.9874
105 2602 15 | 12 0.1 0.9954 | 0.9942
106 2027 1 0 0 1 0.9995
107 2137 0 0 0 1 1
108 1771 20 1 0.056 0.9994 | 0.9887
109 2531 0 0 0 1 1
111 2124 2 1 0.047 0.9995 | 0.9991
112 2538 0 0 0 1 1
113 1794 0 0 0 1 1
114 1880 1 0 0 1 0.9995
115 1958 0 1 0.051 0.9995 1
116 2411 1 7 0.33 0.9971 | 0.9996
117 1534 1 0 0 1 0.9993
118 2278 1 0 0 1 0.9996
119 1987 0 0 0 1 1
121 1862 0 0 0 1 1
122 2477 0 2 0.081 0.9992 1
123 1518 0 0 0 1 1
124 1618 1 0 0 1 0.9994
200 2600 4 2 0.023 0.9992 | 0.9985
201 1963 0 6 0.31 0.9969 1
202 2137 2 3 0.14 0.9986 | 0.9991
203 3006 7 18 0.83 0.9934 | 0.9977
205 2656 0 5 0.19 0.9981 1
207 2334 7 1 0.043 0.9996 0.997
208 2962 1 11 0.41 0.9963 | 0.9997
209 3011 2 0 0 1 0.9993
210 2650 6 10 0.38 0.9962 | 0.9977
212 2748 1 0 0 1 0.9996
213 3250 0 1 0.031 0.9997 1
214 2266 2 4 0.18 0.9982 | 0.9991
215 3362 0 1 0.03 0.9997 1
217 2209 0 1 0.045 0.9995 1
219 2154 0 0 0 1 1
220 2047 0 0 0 1 1
221 2427 0 3 0.12 0.9988 1
222 2482 2 0 0 1 0.9992
223 2604 0 0 0 1 1
228 2077 18 6 0.12 0.9971 | 0.9913
230 2257 0 0 0 1 1
231 1570 0 0 0 1 1
232 1780 9 0 0 1 0.9957
233 3080 0 4 0.13 0.9987 1
234 2753 0 1 0.036 0.9996 1

[ Total | 110070 [ 134]103] 0.21 | 0.9991 [ 0.9988]
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Then, R-wave extraction performance was tested against Pan-Tompkins algorithm and Rel-En
algorithm. Results showed robust extraction of R-waves up to an input SNR of 0 or below, both
compares it with that of Pan-Tompkins. In this example, an EMG noise was added to the rst
lead of tape 100 from the MIT/BIH arrhythmia database making an input SNR of -0.12. Since
the number of extracted R-waves are di erent in the top three sub- gures, the calculated RR-
intervals were uniformly sampled in time in order to have a more sensible comparison. As seen
in this gure, the RR-interval extraction is signi cantly improved when Rel-EN is applied to the
ECG. With similar results obtained when white noise was added to the ECG, this simply de ned
algorithm is rendered useful in robust R-wave detection.

Figure 5.3 — Performance of Pan-Tompkins and Rel-En algorithms against an ECG with added
synthesized EMG noise. a) Original ECG together with reference QRS-complexes and the noisy
ECG. b) Output of the Rel-En algorithm on the noisy ECG, alongside the extracted R-waves.
¢) The noisy ECG and the detected QRS-complexes extracted by the Pan-Tompkins algorithm.
d) Reference and extracted RR-intervals time series form Rel-En and Pan-Tompkins algorithm.
These RR-intervals are uniformly sampled in time, for demonstration. Tape 100 of the MIT/BIH
arrhythmia database.

As illustrated in Figuré'5:3, one can "enhance" ECGs by multiplying the coe cient signal
and the original ECG. As QRS-complexes have relatively higher energy in comparison with P-,
T-waves and the noise in the signal, the coe cient signal values are close to one where QRS-
complexes take place in the ECG while smaller elsewhere. Figure 5.4 illustrates an example of
ECG enhancement on a noisy segment of the rst lead of tape 104 from the MIT/BIH arrhythmia
database. It would be also interesting to see the frequency domain characteristics of this en-
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hancement. Figure 5.5 illustrates the power spectral density estimate (PSD) calculated for the
ECG, noisy ECG and the Rel-En output depicted in Figure 5.3. It is clear that the PSD of the
noisy ECG, is completely di erent from that of the original ECG. On the other hand the PSD
of the enhanced ECG is quite similar to that of the original ECG, retaining the main frequency

components of the original signal.

Figure 5.4 — lllustration of ECG enhancement using Rel-En. On top the original noisy ECG is
depicted together with the coe cient signal calculated by Rel-En. The bottom gure shows the
enhanced ECG calculated by element-wise multiplication of the coe cient vector by the original
ECG. The ECG segment is taken from tape 100 of the MIT/BIH arrhythmia database.

Figure 5.5 — Power spectral density of the Original ECG, noisy ECG and the enhanced ECG
by means of Rel-En Itering. Tape 100 of the MIT/BIH arrhythmia database. The PSDs are
normalized for demonstration.
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5.3.2 Rel-En for K-complex Detection in EEG

A K-complex is characterized as a negative-positive peak in the EEG. Automatic detection
of these complexes is of high importance for sleep-stage detection as they are thought to occur
mostly in the second stage of Non-REM sleep in which subject is in light sleep. K-complex
detection was speci cally selected for Rel-En evaluation since in most cases these complexes
are mixed with waveforms of similar amplitude in the EEG. Therefore, automatic extraction of
K-complexes is an arduous task, which requires a large number of detection thresholds. In fact,
to the best of knowledge, the state-of-the-art extract K-complexes by training classi ers in order
to best discriminate between these complexes and others in the EEG [89, 170, 174]. Bremer
et al. proposed a lter and thresholding system to detect K-complexes across di erent sleep
stages in the EEG [174]. Bankman et al. extracted a set of features such as the maximum and
minimum amplitude, duration of a complex, distance between the negative and positive peaks of
the complex, and trained an arti cial neural network in order to detect K-complexes in the EEG
[L70]. Devuyst et al. extracted a set of similar features and used fuzzy thresholds in order to
compute a K-complex likelihood to nd out the veracity of a K-complex [171].

Materials

For evaluation and comparison purposes, we used a public K-complex database, acquired
in the sleep laboratory of a Belgian hospital using a digital 32-channel polygraph (BrainnetTM
system of MEDATEC, Brussels, Belgium) [171]. This database comprises 10 whole-night po-
Iysomnographj'r recordings from healthy subjects. Each recording consists of two Electrooculo-
graphy (EOG) channels, three Electroencephalogram (EEG) channels (CZ-Al or C3-Al, FP1-Al
and O1-Al) and one submental Electromyography (EMG) channel, sampled at 200Hz. In this
database, a 30-min EEG segment is selected from each whole-night recording for K-complex
scoring. These 30-min excerpts were independently submitted to two experts for annotation.
Out of the two experts, one provided annotations for only ve excerpts. Here, the CZ-A1/C3-Al
EEG channel for K-complex extraction and Rel-En performance evaluation on channels annota-
ted by both experts is used.

Parameters and Detection Logic

For each excerpt, the CZ-A1/C3-Al channel was rst high-pass Itered with a cérte-

guency of 3 Hz. The Itered EEG was then used as input to the Rel-En algorithm with a short-
and long-term window durations of respectively 0:75 and 5 seconds. The exponent paameter
was set to 5. The output of the Rel-En algorithm was further processed as follows:

Small values of the coe cient signal ( 0:005) were set to zero.

Non-zero segments, de ned as at least two consecutive non-zero values, were extracted

from the coe cient signal, as K-complex candidates.

Candidates were scrutinized and were selected as a viable K-complex if the following

conditions were met,

Kmin < 20V

kmax I(min >75V

0:58 < (tigpay  tiwin) < 0:756

Kmax> 0:5 MaxAmttand right
“Kmax> 40  MaxAmMsior right

whereKmin, Kmax tmin, @Ndtmax respectively denote the minimum amplitude, maximum ampli-
tude, and time of their occurrence in a K-complex candidstexAm g+ andMaxAmpgn, are

8
gkmax > 40V

Vallchomplex (55)

1. For more information on polysomnography recordings see CHapter 7.
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maximum amplitudes within a 5-second search window respectively preceding and following the
K-complex candidate. For K-complex detection a subset of intuitive and interpretable thresholds
was used, which previously proposed by other studies such as minimum duration [175], minimal
K-complex amplitude:[174, 176], minimum negative-to-positive peak:[174], and checking for
high amplitude neighbor peaks [177].

Results

For performance comparison the assessment algorithm provided with the public K-complex
detection databa8ewas used. This algorithm calculates the TP, FP, FN, and TN values by
comparing the time and the duration of K-complexes detected by Rel-En with those of expert
annotations. Excerpts that were not annotated by both experts were used to nd thresholds in
Equation: 5.5, while the remaining excerpts were used for testing. Table 5.3 shows detailed
results on the performance of Rel-En and compares it with the automatic annotation method
proposed by Devuyst et al. [171]. For evaluation and comparison, the performance of Rel-En
and the automatic method proposed in [171] were assessed with respect to annotations from the
rst, second experts, and also a merged annotation (implemented by the assessment algorithm)
where a K-complex is considered as a true positive if it is in accordance with any of the expert
annotations. As seen in Table 5.3, Rel-En outperforms the state-of-the-art, providing higher
sensitivity, positive prediction value and at the same time lower detection error rate.

Table 5.3 — Performance of Rel-En on automatic K-complex extraction and its comparison with
the state-of-the-art.

Results byRel-En
Labeled | NotLabeled| Labeled | NotLabeled Labeled Not Labeled
Expertl Expertl Expert2 Expert2 Expertl or Expert 2 Expertl or Expert 2
Detected | ) 43 46 138 149 35
Rel-En
NotDetected 47 8749 17 8799 80 8736
Rel-En
Sensitivity PPV DER % Sensitivity PPV DER % Sensitivity | PPV DER %
0.6779 0.7663 1.24 0.7302 0.25 1.75 0.6505 | 0.8098| 1.29
Results byDevuyst et al. [171]
Labeled | Not Labeled| Labeled | Not Labeled Labeled Not Labeled
Expert1| Expertl Expert 2 Expert2 Expert 1or Expert 2 Expertl or Expert 2
Detected 129 46 38 137 135 40
Not Detected 79 8746 25 8800 94 8731
Sensitivity PPV DER % Sensitivity PPV DER % Sensitivity PPV~ DER %
0.6202 0.7371 1.41 0.6032 0.2171 1.83 0.5895 0.7714 1.36
Bold elds denote the better performing algorithm.

Remarks on K-complex detection

In terms of Rel-En parameters, the short-term window duration of 750ms was chosen by
studying the duration distribution of annotated complexes in the training excerpts, while the
long-term duration and the exponent were empirically chosen. The application of Rel-En to
K-complex extraction was especially chosen to show the importance of the exponent parameter
p. Since K-complexes can be interspersed with other waveforms of similar amplitude small
feature. As can be seen,pf= 2 is considered, the Rel- En algorlthm becomes more sensitive
to EEG activities which do not necessarily represent K-complexes. As the exponent parameter
gets larger, Rel-En becomes more selective, discarding lower amplitude peaks. Of course, some
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Figure 5.6 — lllustration of performance of Rel-En on excerpt 6 from the K-complex database.
a) The original EEG and annotated K-complexes (annotator 1). b) high-passed Itered EEG and
XRE with pP= 2. C) XRE with pP= 4, d) XRE with pP= 5.

p values lead to better performance but as shown in the general discussion section, the perfor-
mance does not change drastically around the optpnadlue. The fact that K-complexes can
occur in between waveforms with similar amplitudes in the EEG could be the main reason why
the detection of K-complexes is a di cult task. More speci cally, comparison of the annotations

on excerpts that have been provided by both experts, as reported in Table 5.4, demonstrates there
is a signi cant disagreement between the annotations. When it comes to automatic detection,
the state-of-the-art focuses on extracting numerous features in order to suppress false positive
predictions. For instance, the method proposed by Devuyst et al. [171] was trained on a set
of 13 features. The same number of features was used. in [166] for the training of an arti cial
neural network. In both methods a series of interpretable features, descriptive of the shape and
amplitude of the K-complexes, such as features used in Equation 5.5, as well as use non intui-
tive features such ag,q1, andtmigz Which represent the time the EEG signal crosses thé 0
respectively after the negative peak, and before the positive peak.

Table 5.4 — Annotation agreement between the two annotators on excerpts annotated by both
annotators.

Annotators | taPeled| Not Labeled
Expertl | Expert2
Labeled
Expert 2 42 21
Not Labeled
Expert 2 166 8770




5.3 Examples oApplications of Rel-En 77

5.3.3 Rel-En for Pulse Extraction from IPPG

Imaging photoplethysmography (iPPG) is a non-contact method to measure the heart rate
from skin color changes, using simple color video cameras. By analyzing video channels, i.e.
RGB channels, Verkruysse et al. showed that blood ow variability can be observed in all video
channels [178]. iPPG is stilla new eld of research in which the main challenge is to estimate the
heart rate:[179]. A review of iPPG heart rate estimation techniques can be found:in [180]. In this
section, a simple xed threshold approach is presented, which is applied directly on a smoothed
iPPG, and the Rel-En ltered iPPG, for performance comparison.

Materials

The database is composed of 23 4-minute recordings, from 12 healthy subjects. For each
record, a one-lead ECG and video sequence of the upper body region were recorded simulta-
neously. In order to induce HR variations, the subjects were asked to perform an isometric
hand-grip exercise (one subject did not participate) or to modulate their respiration according
to a given protocol. They were also asked to move as least as possible. All subjects gave their
informed consent. The sequences were recorded in the presence of arti cial light using an RGB
camera and sampled at 20 frames per second with a resolution of 1.3 megapixels. The raw RGB
traces were obtained by averaging the pixels within a manually determined and xed rectangular
region of interest (ROI) on the forehead, as shown in Figure 5.7. These raw iPPG signals were

Figure 5.7 — Region of interest used to extract iPPG waveforms.

then band-pass Itered between 0.6-4 Hz using an 8th-order Butterworth Iter. After visual in-
spection of the iPPG waveforms derived from the video-sequences, it was noted that the quality
of the green iPPG waveform was generally higher compared to the blue and red iPPG waveforms,
which was in agreement with [178], as illustrated in Figure 5.8. For this reason, the green iPPG
waveform was used for evaluation and iPPG waveforms from red and blue channels were discar-
ded. QRS-complexes were extracted from the ECG, using the method presented here, and then
visually veri ed to be used as the ground truth. Four recordings, two from the hand-grip exercise
and two from respiration modulation, were used for training and Rel-En parameter tuning. The
remaining recordings were used for evaluation.

Parameters and Detection Logic

The green iPPG channel was rst normalized using the min-max normalization method des-
cribed in Equation’5:4. After removing the mean value, the normalized iPPG was then passed
through the Rel-En algorithm with a short sliding window duration of 100ms while the longer
sliding window had a 600ms duration. An exponent of 10 was selectegal farHamming win-
dowing function was used in order to smooth the long-term energy variation. Optimal values of
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Figure 5.8 — Extracted iPPG channels alongside the captured ECG from a recording. As illustra-
ted, the green iPPG provides the highest quality in comparison with the red and blue iPPG.

the exponent, the short-term and long-term window durations were selected by performing a grid
search on the training recordings. Short-term and long-term windows were studied in a range of
respectively 100-800ms and 400-4000ms with a step size of 50ms, while the power was studied
in the integer range of 220. Finally, iPPG peaks were extracted from the output of Rel-En using
simple thresholds, de ned as local extrema with a minimum distance of 250ms from previous
peaks, and a minimum amplitude of zero.

Results

The results obtained by Rel-En were compared to a xed threshold method. The xed method
uses the same detection logic as Rel-En, however after min-max normalization and the removing
of the mean value, the signal was further smoothed using a moving average algorithm with a
window length of ve samples, in order to avoid spurious peak detection. The extracted peaks
from the smoothed normalized green iPPG as well as the output of RekEnvere compared
to those extracted from the ECG. An extracted iPPG peak was considered as a correct detection if
it took place up to 200ms after the reference beat, in order to compensate for the ECG-iPPG peak
transit time. Table 5:5 reports the detailed results obtained for each method. Performance is me-
asured for the isometric handgrip exercise, respiration modulation, and both settings at the same
time. Rel-En consistently provided better performance compared to the smoothed signal appro-
ach. More speci cally, Rel-En provides signi cantly less false positive detections compared to
the xed threshold method.

Remarks on IPPG Peak Detection

Unlike ECG QRS-complex and EEG K-complex extraction, the peaks in an iPPG signal are
not as impulsive either in terms of duration or in terms of amplitude. In other words, the iPPG
has more oscillatory behavior as opposed to the impulsive behavior of complexes in the ECG
and EEG. For this reason, iPPG peak detection was selected to assess the performance of Rel-En
in case waveforms represent oscillatory behavior. Our observations on iPPG waveforms showed
that the detection of spurious peaks, due to the presence of moderate amplitude oscillations, is a
major issue in this biomedical application. Although moving average smoothing can help remove
spurious peaks to some extent, one cannot use a large number of neighboring samples as moving
average can suppress useful information in the iPPG. The exponent parameter in Rel-En makes
it possible to heighten peaks that are more prominent even if other peaks are present in the signal
at hand, as illustrated in Figure 5.9. In this gure, the moving average does not provide a robust
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Table 5.5 — Performance of Rel-En on iPPG peak detection and comparison with classic a thres-

hold method.
| Method | Beats| FP | FN | DER% | Sensitivity (Se)| PPV |
Rel-En 3515 | 22 | 24 1.31 99.31 99.37
Fixed Threshold| 3515 | 48 | 23 2.02 99.34 98.63
Rel-En 3145 | 61 | 95 4.96 96.62 98.00
Fixed Threshold| 3145 | 83 | 137 | 7.00 95.53 97.24
Rel-En 6660 | 83 | 119 | 3.03 98.19 98.73
Fixed Threshold| 6660 | 131 | 160 | 4.37 97.55 97.98

Bold elds denote the better performing algorithm.

performance, which leads to signal over-sensing and miss estimation of the heart rate, such as
the detection of spurious peaks between seconds 560-561 and 563-564 Figure 5.9-b). However,
Rel-En successfully suppresses these spurious peaks and leads to a correct estimation of heart

rate (Figuré 5.9-c).

Figure 5.9 — lllustration of performance of Rel-En a recoding from the iPPG database. a) Original
ECG and the extracted iPPG waveform. b) Moving averaged iPPG and the extracted peaks. c)
Xre and the extracted peaks.
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5.4 General Discussion

The proposed method in this chapter uses short- and long-term energies in the signal to detect
peaks. Rel-En has some similarities to the plosion index, described in Section 5.1. However,
there are major di erences between the two methods that makes Rel-En more attractive. First,
unlike PI, the short-term window duration in Rel-En allows for the extraction of peaks in general
and not only impulse-like events, such in iPPG application. Moreover, di erent windowing
functions such as Hamming or rectangular windows can be used to tailor the algorithm for a
more robust output. Finally, the exponent parameter plays an important role in the outcome of
Rel-En, determining the sensitivity of the algorithm to peaks. What sets Rel-En apart from other
methods is the element-wise multiplication of the coe cient signal with the signal at hand. While
preserving the polarity of events, this element-wise multiplication enables Rel-En to suppress
spurious peaks and leads to a robust peak extraction. Moreover, the element-wise multiplication
in Rel-En makes it a simple tool to highlight peaks and suppress perturbations, used as a pre-
processing step for more elaborate methods. The coe cient signal is simply calculated using
two lters, which makes Rel-En straightforward and computationally uncostly.

Rel-En parameter selection is also robust. The short- and long-term windows can be selected
based on the physiological constraints of the complex or waveform of interest. Our observations
have demonstrated that the short-term window should encompass the event of interest. The long-
term window duration should re ect the local baseline behavior. However, it should not be so
long that the short-term window variations are discarded, or the selected signal segment becomes
non-stationary. Of course, short- and long-term window durations in uence performance mea-

performance is almost constant for a wide range of parameter values.

The windowing function provides the smoothing of long-term variation in the signal, and can
be especially important if the di erence between the short- and long-term windows is relatively
small. The exponent parameter determines the sensitivity of the algorithm. Larger exponent
values should be selected in a low signal to noise ratio situation, in order for the algorithm to
become more selective. However, the exponent cannot be too large if the desired waveform varies
widely in terms of duration and amplitude. Figure 5.11 illustrates the e egi on the overall
Rel-En performance. The exponemthas a larger, although limited, in uence on sensitivity
than on positive predictive value. The detection error rate does not drastically change around
the optimal parameter. Finally, it should be mentioned that although this chapter demonstrates
the potential of Rel-En in various settings, there is no theoretical guarantee that Rel-En performs
well in all biomedical applications. Obviously, Rel-En is not suited for the detection of short-
term events that are not characterized by a local change in amplitude but rather, for instance,
by a change in instantaneous frequency. Problems may also arise in situations where short-time
events are too close in time.
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Figure 5.10 — E ect of short- and long-term window lengths on Rel-En performance. a) Evolu-
tion of sensitivity. b) Evolution of positive predictive value. c) Evolution of detection error rate
(for demonstration purposes, 1- detection error rate has been plotted). In all sub gures, the de-
picted red point represents the coordinates with lowest detection error rate (short- and long-term
window durations of respectively 140 and 950 ms, with a xed exponeptof2.
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Figure 5.11 — E ect of the exponent parameferon Rel-En performance for K-complex de-
tection. Evolution of detection error rate (for demonstration purposes, 1- detection error rate has
been plotted; values on the left axis), as well as sensitivity and positive predictive value (values
on the right axis). Short- and long-term window durations of respectively 750 ms and 5 seconds
were selected. lllustrated results in comparison with annotations of expert 1.
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5.5 Miscellaneous Applications

5.5.1 Extraction and Analysis of Short-Time Excursions in RR-interval
Time Series

RR-interval time series often present impulses corresponding to short-duration increases or
decreases in the heart rate, most probably due to bursts in autonomic activity. The time-domain
heart rate variability index pNN50, de ned as the ratio of consecutive normal-to-normal intervals
that di er by more than 50 ms [181], is obviously linked to these spikes. As linear Itering is not
appropriate for the extraction of these spikes, Rel-En was used for this task. This section demon-
strates the potential of this approach to assess ca eine-induced changes in the autonomic tone.
Elements of the methods and results in this section were originally presented as a conference
paper[182].

Introduction

Even after correcting for possible ectopic beats [183], observation of RR-interval time series
often reveals the presence of downward and upward impulses corresponding to short-term incre-
ases and decreases in the heart rate. Downward and upward impulses are predominantly present
when the subject is respectively in a supine or standing position. In Figure 5.12 an RR-interval

time series (regularly resampled at 4 Hz) from a healthy subject lying for the rst 360 seconds
and then standing up is displayed.

Figure 5.12 — RR-interval time series from a healthy subject. Change from supine to standing at
second 360. Two impulses are highlighted by the red ellipses.

In this gure, the impulses as well as their inversion in polarity are clearly visible (two of
them highlighted by the red ellipses). This phenomenon can be observed in several studies pu-

used in a classical reference [184], in which this phenomenon is present. Yet, those impulses
have rarely been the main focus of previous studies. Actually, several HRV parameters proposed
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in the relevant literature are more or less directly connected to these impulses. The most classical
one [65] is the pNNXx, i.e. the mean number of times per hour that successive normal-to-normal
heartbeats di er by more than x ms, the most common value bemn@@. Also, the SD1 para-

meter corresponding to the minor axis of the ellipse tted to the Poincaré plot of an RR-interval
time series measures the short-term variability of the latter [185]. An extension of this approach,
the complex correlation measure (CCM) aims at quantifying the point-to-point variation of the
RR-intervals rather than the global short-term variability [186].

Figure 5.13 — RR-interval time series of 256 consecutive heartbeats in a normal subject at supine
rest. Taken from [184], Figure 5-a, with permission.

However, direct extraction of these impulses is a di cult problem due to their limited time
extent and asymmetry, and due to respiratory sinus arrhythmia (RSA). In [187], an encoding
of RR-intervals using a bank of optimized linear lters was proposed, with short lters cor-
responding to fast regulation mechanisms. These Iters being bandpass ones, only short-term
oscillations can be retrieved. The same problem arises with the nonlinear approach described
in [188], which proposes a sparse joint decomposition on a pair of wavelet bases with high and
low Q-factors. Again, only short- and long-term oscillations can be separated. Extraction of
asymmetric impulses is not possible using these methods.

This section, presents an application to Rel-En, in which a small database is analyzed and it
is illustrated how the extracted impulse signals can be used to assess drug-induced changes in
autonomic activity.

5.5.2 Principle

The principle of using Rel-En is quite simple. Since an impulse is characterized by a local
surge in signal energy, the idea is to measure the ratio between a short-term variance estimate
and a long-term variance estimate on a sample-by-sample basis. The larger this ratio is, the more
impulsive the local signal is. Rel-En does not conserve amplitudes, i.e. the extracted impulses
are known only up to a multiplicative coe cient. While not relevant in a detection context,
this raises issues if impulse extraction is sought for. An empirical solution consists in scaling the
resulting impulse signal so that, when subtracted from the original signal, the resulting signal has
minimum skewness, i.e., the asymmetry induced by the impulses is minimized. Also, extraction
is improved by applying the Rel-En scheme in additional iterations (by experience two iterations
is usually enough) to the successive impulse signals, in order to remove spurious impulses. Of
course skewness minimization should still be performed using the original signal.

Figure;5.14 presents an example on a 2000-sample signal generated as follows: a sinusoid

with normalized frequency 0.05 was created, and for ve half-periods the amplitude was multi-
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plied by a factor of two or three. This signal presents some similarity with an RR-interval time
series, as the sinusoid corresponds to an RSA at a breathing frequency of 0.2 Hz for a standard
sampling frequency of 4 Hz, and the impulses are similar to those in Figure 5.12. The lengths

bottom, displays the original signal, the true impulse signal (original signal minus sinusoid), the
rst estimated impulse signal, and the estimated impulse signal after two iterations. The error-to-
signal variance ratio between the true impulse signal and the estimated one is 0.027. The relative
amplitude errors for the smaller impulses are about 0.001, but they amount to 0.09 for the two
largest impulses.

Figure 5.14 — (a) Original signal. (b) True impulse signal. (c) Estimated impulse signal, rst
iteration. (d) Estimated impulse signal, second iteration.

5.5.3 Adaptation to RR-Interval Time Series

The Rel-En extraction scheme can of course be applied on the raw RR-intervals. In order to
make time and frequency interpretations possible, this analysis was performed on cubic-spline
regularly-resampled RR-interval signals using the standard 4 Hz sampling frequency. Compo-
nents present in most RR-interval time series, and that would obviously impair the performance
of the Rel-En algorithm, are the positive mean value and ultra-low frequency (ILEL Hz)
activity. These components were canceled by removing the mean RR-intervals value, and high
pass Itering (an 8-order Butterworth) the mean-removed RR-interval time series. Figure 5.15 il-
lustrates the impulse extraction process on a recording from a healthy subject in supine position.
The top graph displays the raw regularly-resampled RR-intervals. The middle graph displays the
RR-interval time series after mean/ULF subtraction. The bottom graph displays the extracted
impulse signal, two Rel-En iterations, short and long window lengths of respectively 7 and 61
samples. The impulses are obviously mainly negative ones, which is, as mentioned in Section
5.5.1, a common feature for RR-intervals in the supine position.
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Figure 5.15 — (a) Original RR-intervals. (b) RR-intervals after subtraction of mean/ULF. (c)
Estimated impulse signal, two iterations.

5.5.4 Materials

Data were recorded from 15 healthy subjects. The protocol followed the Declaration of
Helsinki and was approved by the Ethical Committee of Lausanne University. All participants
provided oral and written informed consent prior to participation. Air ow was monitored breath-
by-breath (Medgraphics, CPX, St. Paul, MN, USA) at the mouth (Pitot tube). 3-lead ECG was
monitored using an analogue ampli er. The ECG and air ow were acquired simultaneously at
1000 Hz, using an analogue-to-digital converter (PowerLab 16/30, ADInstruments, Bella Vista,
Australia) and recorded with commercially available software (LabChart v.7.2 ADInstruments,
Bella Vista, Australia). The participants were asked to abstain from ca eine, heavy exercise and
alcohol for 12h. The subjects underwent recording rst in control condition and then under the
in uence of ca eine (6 mg/kg) administrated by pills. Each recording session consisted of 10
minutes spontaneous breathing (SB), 10 minutes breathing at 9 breaths-per-minute (brpm) and
10 minutes breathing at 12 brpm in a randomized order. To ensure correct cadence of breathing,
the subjects were instructed to follow continuously a metronome at 9 and 12 brpm. Baseline
recordings were performed in all three breathing modes before the subjects ingested the ca eine.
Ca eine recordings started 45 minutes after the ingestion. RR-intervals were extracted from the
ECG and regularly resampled at 4 Hz after compensation of ectopic beats.

5.5.5 Results and Remarks

The impulse signals were extracted from all RR-interval time series, with two Rel-En itera-
tions and short and long windows of 7 and 61 samples. The asymmetry in the impulse signals
were characterized by their mean. For comparison purposes, the power in the LF band (0.04 —
0.15 Hz), its version normalized by the total power nLF, and the ratiblEFetween the power
in the LF band and that in the HF band (0.15 — 0.4 Hz), were computed. As ca eine elicits a
sympathetic reaction, one should expect a decrease in the mean of impulse signals (i.e. more
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negative impulses), and an increase in LF, nLF, and LF/HF, from baseline to ca eine conditions.

In Table: 5.6, the numbers of subjects out of 15 for whom the impulse mean decreased, and the
LF, nLF, LF/HF increased, are listed for the three respiration modes. One can observe that the
impulse mean decreases in most subjects, especially in the spontaneous breathing mode, while
increases in the LF-related values are far less predominant. The somewhat paradoxical LF/HF
decrease in 14 subjects for the respiration rate of 9 brpm may be explained by the fact that this
rate corresponds to a frequency of 0.15 Hz, i.e. the upper and lower bound respectively for the
LF and HF bands. The RSA at the same frequency has a major (and in this case negative) impact
on the LF/HF ratio.

Table 5.6 — Number of subjects out of 15 with a change from baseline to condition coherent with
ca eine-induced sympathetic activation.

Respiration SB 9bpm 12 bpm

Imp. mean 14 12 11
LF 9 8 7
nLF 7 8 4
LF/HF 9 1 7

Table: 5.7 displays the asymptotievalues for the two-sample Kolmogorov-Smirnov test
[189], that con rm the signi cant (marginally at 12 brpm) changes in impulse mean induced by
ca eine.

Table 5.7 — Asymptotip-values for the two-sample Kolmogorov-Smirnov test [189] between
baseline and ca eine condition.

Respiration SB  9bpm 12 bpm
Imp. mean 0.001 0.017 0.31

LF 0.89 0.99 0.89
nLF 0.89 0.59 0.89
LF/HF 0.89 0.052 0.99

The main idea of this section is draw the attention of the HRV community on the impulses that
can be often observed in RR-Interval time series. The nonlinear nature Rel-En makes approx-
imate impulse extraction possible. There is interest in elucidating the origin of these impulses,
but this requires obviously microneurographic recordings of sympathetic and vagal activities. It
is worth noting that in most RR-interval signals in this study, the average time interval between
large negative (due to supine position) impulses was between 40 and 50 seconds.

In terms of applications, extraction of the impulse signal presents interesting aspects that
have been illustrated in this section. Speci cally, although these impulses represent but a small
fraction of the total HRV power, they seem to be representative of the sympatho-vagal balance,
and have the advantage to be insensitive to RSA uctuations and independent of the LF and
HF bands. Here, only a very simple parameter, namely impulse signal mean value was used,
but more elaborate measures can obviously be employed, for instance by processing positive
and negative impulses separately. A salient point in these experiments is the poor sensitivity
of frequency-based HRV parameters to ca eine-based sympathetic activation, especially at a
respiration rate of 9 brpm. These parameters are widely used in bio-psychological works, in
stress assessment for instance [190]. However, a factor that is often overlooked is respiration. Of
course in most subjects the average respiration (and thus RSA) frequency is above 0.15 Hz, but it
may intermittently cross this boundary. Also, especially in supine position, subjects such athletes
may have a respiration frequency below 0.15 Hz. Impulse extraction, that is not in uenced
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by respiration, does not present this problem. Subtracting the extracted impulse signal from
the original RR-interval time series may also be useful prior to bandpass Itering of the latter.
Indeed, the impulses may contaminate the Iter output due to their wideband nature.:Figure 5.16
illustrates this point. The upper plot is an RR-intervals regularly resampled at 4 Hz, acquired
from a normal subject in supine position with an imposed respiration frequency of 0.225 Hz. A
zero-phase bandpass Iter centered on this frequency was used to extract the RSA, both on the
raw RR-intervals and after impulse signal subtraction. The bottom plot shows the instantaneous
frequency (IF) estimates of the two RSAs obtained through the Hilbert transform (HT). The
thin and thick lines are the RSA IF estimates respectively without and with impulse subtraction.
As is well known, the HT-based instantaneous frequency estimation gives sensible results for
narrowband signals only. Visibly, the IF estimate for the original RR-interval time series contains
aberrant values, especially around times 25 and 180 seconds for this reason. The IF estimate after
impulse subtraction is more coherent.

Figure 5.16 — (a) Original RR-intervals. (b) RSA instantaneous frequency estimate using the
original RR-intervals (in blue) together with RSA instantaneous frequency estimate after impulse
subtraction (in red).

Impulses are often present in RR-interval time series, and correspond to short-term accelera-
tions and decelerations of the heart rate. This section demonstrates that features drawn from the
extracted impulse signals are of interest to assess sympathetic activation.

5.6 Conclusion

This chapter presents a simple non-linear Itering method that uses the short- and long-
term energies in the signal to heighten peaks and suppress perturbations. The proposed non-
linear ltering technique is evaluated in three di erent biomedical settings namely, ECG QRS-
complex detection, EEG K-complex detection, and iPPG peak detection. While providing better
or comparable results to the state-of-the-art, the proposed algorithm is easy to compute and
implementable by two digital Iters, making it a suitable option for biomedical signal processing
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applications. As a miscellaneous application to Rel-En, the extraction of impulses in RR-interval
time series was demonstrated.






Towards Instantaneous
Assessment of ECG Signall

Quality

Numerous ECG recordings have been performed all over the world for over a century. Repre-
senting the electrophysiogical activity of the heart at body surface, ECG has become an essential
part of health monitors and its use has well exceeded clinical settings. Low quality ECG due to
power-line interference, body movement and muscle activity has always been a concern in cli-
nical and non-clinical studies, and has previously been dealt with by manual or semi-supervised
exclusion of ECG recordings or segments. There is however a lack of automatic ECG quality
assessment. This chapter presents a novel instantaneous ECG quality assessment technique to
facilitate this task. This measure is based on relative energy (Rel-En) presented in Chapter 5.
Using Rel-En, QRS-complexes are identi ed and removed from the ECG. QRS-less ECG is then
band-pass lItered and added back to the extracted QRS-complexes. Finally, a sliding window
correlation coe cient between the new and the original ECG is calculated to measure the in-
stantaneous signal quality index. The method is evaluated against di erent types of noise, i.e.
baseline wander, electrode motion artifact, and EMG noise. Furthermore, performance evalu-
ation is performed on the Physionet/CinC 2011 mobile ECG quality assessment database, the
MIT/BIH arrhythmia database, and the MIT-BIH noise stress database. Results show a clear
discrimination between noisy and non-noisy ECG segments. Furthermore, this quality index can
be implemented in real-time/online scenarios, which makes this index suitable for portable and
e-health scenarios.

Methods and results obtained from these analysis are submitted for publication in the journal
of biomedical signal processing and control.

6.1 Introduction

As discussed in Chapter 2, the ECG represents the electrical activity propagated through the
heart and provides valuable information on the di erent heart chamber states such as time, dura-
tion and the dynamics of chamber depolarization/repolarization. Being cheap and non-invasive,
electrocardiographs have seen an ever-growing use from their inception, making ECG the gold
standard to assess cardiovascular health-[191]. ECG has been thoroughly studied over the past
decades from fundamental QRS-complex extraction:[152], heart rate estimation [7] and studies
on heart rate variability. [25] to more elaborated studies such as heart rhythm classi cation and
arrhythmia detection [7, 192] (see Chapter 2 for examples such as bradycardia, tachycardia, atrial
and ventricular utter/ brillation, etc.), as well as heartbeat classi cation [2, 3] (such as normal,
premature atrial or ventricular beat detection, fusion beats and etc.), cardiac disease and abnor-
mality detection detection (such as ST elevation and depression, bundle blocks) [193, 194]. In

91
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most cases, these studies require good to high quality ECG recordings in order to provide reliable
results. However, the task of ECG quality assessment has proven to be challenging due to the
unpredictable nature of ECG-related perturbations. In most clinical research works, low quality
ECG recordings or segments are manually selected and removed from the study.

Low quality of ECG and related biomedical signals have also been causing severe problems
in intensive care units (ICU) [195, 196] as well as coronary care units (CCU) [197]. As discussed
in Chapter 4, high rates of false alarms have been an ongoing concern in these settings due to the
limited performance of bedside monitors, causing patient sleep deprivation and more importantly
medical sta desensitization [16].

Compared to the ever growing use of the ECG, the subject of ECG quality assessment has not
been su ciently addressed. An e ort was made to address this issue in the 2011 Physionet/CinC
challenge. The goal was to determine the quality of short-term (10 seconds) 12-lead ECG recor-
dings in a binary fashion (good quality vs poor quality) [198]. With 49 teams participating in this
challenge, ECG quality assessment was generally carried out based on missing lead and at-line
information {10-13], high-frequency activity [12,-14, 15], and impulsive noise detection [11, 13]
as well as assessment of the heartbeat detection performance_[15, 199]. Other perturbation me-
asurement techniques have also been proposed that take into consideration factors such as root
mean square (RMS) power in the iso-electric region.[200], spectral energy distribution, high or-
der moments such as skewness [147; 148] and kurtosis. [147, 149]. Inter-lead and inter-algorithm
beat detection agreements have also been e ective in noisy ECG detection [196, 199]. More
recently, wavelet entropy extracted from di erent RR-intervals bandwidths was used alongside
heart rate to determine ECG signal quality [201].

Automatic ECG management with quality metrics has shown to improve ECG annotation
quality, leading to lower expert review time and cost [197]. Still, by studying the state-of-the-art,
one can see that quality assessment measures work in a block-based fashion, while an instanta-
neous measure would be of practical interest. This chapter propose such a quality assessment
measure that uses a simple non-linear Itering algorithm, i.e. Rel-En. Using Rel-En, a denoised
ECG is created and used to calculate the ECG signal quality. This method can be implemented
in real-time/online scenarios, and easily using two lters.

6.2 Method

The principle of signal quality assessment presented in this paper consists in extracting a
cleaned-up version of the ECG and comparing it through cross-correlation to the original ECG.
The lower the similarity is, the lower the ECG quality should be. In order to extract the cleaned-
up ECG, the Rel-En (see Chapter 5) is used. QRS-complexes are rst removed from the ECG and
a new signal is created by bandpass ltering the Rel-En output and adding it back the extracted
QRS-complexes. The correlation coe cient between the original ECG and the new signal is then
calculated using a sliding window to measure the ECG signal quality.

6.2.1 QRS-complex Cancellation

Using Rel-En with a short and long window durations of respectively 100 and 450ms, a
Hamming window foiw, and an exponent gf = 2, the coe cient vectorcis rst binarized into
c’to extract impulses using Equation 6.1. Then, the QRS-comptgxasd the residual EC6
are calculated through Equations:6:2 - 6.3.

8
21 c(n)>= 0:6
-SO c(n)< 0:6

q(n) = cAn)x(n) (6.2)

cn) = (6.1)
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r(n)=x(n) q(n) (6.3)

Observations on ECG recordings have shown tlsggelwin, W, andp values together with
the threshold applied og, can e ciently remove QRS-complex activity from the ECG. Figure
6.7 illustrates the di erent steps for the QRS-cancellation. In this gure, a segment of modi ed
lead-1l ECG of tape 105 from the MIT/BIH arrhythmia database was chosen, Figure 6.1-a. This
segment was especially chosen to show the performance of the QRS canceling technique even
in low-quality ECG. Figure 6:1-b, represents the band-passed ECG alongside the short- and
long-term energy evolutions, and the extracted coe cient signal. F|gure 6.1-c and Figure 6.1-d
respectively show the extracted QRS-complexes and the residual, i.e. QRS-less ECG.

Figure 6.1 — lllustration of the di erent steps of QRS-complex cancellation using Rel-En. a)
Lead Il ECG of tape 105 from the MIT/BIH arrhythmia database. b) Band-passed ECG together
with the calculated coe cient signal (i.ec), short- and long-term energy evolution. c) Original
ECG and the extracted QRS-complexes (Equation 6.2). d) Original ECG and the QRS-less ECG,
i.e.r, (Equation 6.3).
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6.2.2 Measuring the ECG Quality

Creation of the Denoised ECG

After the separation of the QRS-complexes from the ECG, the residual sign#en band
passed ltered in a band [5, 15] Hz, to create the residual ventricular actRiffhis pass-band
is chosen in order to conserve the typical ventricular frequency components. The denoised ECG
is then created by adding the extracted QRS-complexes to the residual ventricular activity.

d(n) = q(n)+ rn) (6.4)

Calculating the Instantaneous Signal Quality Index (ISQI)

Once the denoised signal is obtained, the instantaneous signal quality index (ISQI) is measu-
red as the correlation coe cient between the original ECG dndalculated in a sliding window
of length N, i.e.:

1 i**%l(xj o
N 1 N X di
2

d;

)i =(1;:n) (6.5)

xd(n) =

where , and  denote the mean and the standard deviation of the original ECG for the
i"" window, and 4 and 4 are the mean and the standard deviation of the denoised ECG for
the i™ window. In this study an empirical duration of three seconds was chosen to Belect
Observations have shown that computingn a three-second sliding window with an overlap of
2.5 seconds, provides and adequate time resolution. i8she correlation coe cient between
the or|g|nal ECG and thé the ISQI ranges between [ 1]. Figure 6. 2 illustrates the successwe
example. Figure 6:2-a and 6.2-b, respectively show the extracted QRS complexes and the QRS-
less ECG. The band- passed QRS-less ECG is depicted in Figure 6.2-c.:Figure 6.2-d shows the
two S|gnals on WhICh the slldlng correlatlon coe C|ent is calculated. Finally, the mstantaneous
instantaneous quality gradually drops as more noise is manlfest in the ECG, and the quallty index
rises again as the noise level decreases.

6.3 Evaluation Data

6.3.1 The MIT/BIH Noise-Stress Test Database

In this database, three noise recordings namely baseline wander (BW), EMG artifact (MA),
and electrode motion artifact (EM), which are typical in ambulatory ECGs [202], were assem-
bled. These noise recordings were collected by placing the electrodes at speci c limb positions,
where the ECG was not visible, using active volunteers and with standard ECG recorders, le-
ads, and electrodes. Each noise recording has an overall duration of half an hour, assembled
by selecting segments that predominantly contain the noise of interest, i.e. BW, MA, or EM.
This database comprises 12 half-hour, two-lead ECG recordings that were created by taking two

and adding calibrated amounts of noise (from an SNR of -6dB up to 24dB with steps of 6dB)
For all the recorded ECGs in this database, the calibrated noise was added from the fth minute
of each recording, two-minute noisy segments alternating with two-minute clean ECG segments.
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Figure 6.2 — Calculation of the instantaneous signal quality index. a) Extracted QRS-complexes
(Equation 6.2). b) QRS-less ECG (Equation: 6.3). c) Band-passed QRS-less ECG. d) Original
ECG alongside the denoised ECG (Equation 6.4). e) Original ECG and the calculated ISQI
(Equation 6.5). The amplitude of the original ECG has been altered for demonstration purpose.

6.3.2 The MIT/BIH Arrhythmia Database

The Physionet MIT/BIH arrhythmia database was also used in this study to further evaluate
the performance of the proposed ISQI. The MIT/BIH arrhythmia database consists of 48 half-
hour two-lead, modi ed lead Il (MLII), lead V1, lead V2, and lead V5, ECG recordings with a
sampling rate of 360 Hz and an 11-bit resolution within the range of 10.mV [48].

Using the noise recordings from the MIT/BIH noise-stress database, we manually selected
32 ve-minute clean ECG segments and added calibrated amounts of each noise type (as for the
MIT/BIH noise-stress database). Tablé:6.1 reports the record numbers together with the leads
and the extracted intervals that were used in this paper for further performance evaluation.
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Table 6.1 — Recordings, leads and segments from the MIT/BIH arrhythmia database, used to
evaluate the proposed method.

TapeName Lead Name| Start Time (sec)| End Time (sec)
100 MLII 1 300
100 V5 397 697
101 MLII 327 626
101 MLII 858 1157
103 MLII 1 300
103 MLII 1332 1631
103 V2 1 300
112 V1 1174 1474
114 MLII 1450 1749
115 MLII 97 396
115 MLII 621 920
115 MLII 1300 1600
122 MLII 75 375
123 MLII 108 408
123 MLII 1439 1739
123 V5 107 407
123 V5 529 828
201 MLII 50 350
201 V1 1 300
202 V1 1 300
202 V1 1341 1640
207 MLII 1117 1417
220 MLII 1 300
220 MLII 1445 1744
220 V1 1 300
220 V1 450 750
220 V1 1456 1755
222 V1 811 1110
222 V1 1503 1802
230 MLII 273 573
231 V1 1409 1709
234 MLII 434 734

6.3.3 The Physionet/CinC 2011 Challenge Database

The aim of the 2011 Physionet/CinC challenge was to develop e cient algorithms, running
in near real-time/online scenarios on a portable device such as a cellphone to provide feedback,
regarding the quality of the captured ECG, to a person or expert in the process of acquiring a diag-
nostically acceptable ECG recording [198]. The challenge data consist of standard 12-lead ECG
recordings (leads |, II, Il, aVR, aVL,aVF, V1, V2, V3, V4, V5, and V6). The leads were recorded
simultaneously for a duration of 10 seconds, sampled at 500 Hz with a 16-bit resolution. Each
ECG was analyzed independently and blindly by at least three and up to 18 annotators with dif-
ferent levels of expertise and assigned di erent grades, namely grade A as excellent, B as good,
C as adequate, D as poor, and F as unacceptable signal quality. Finally, the annotated grades
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were then averaged and each ECG was deemed acceptable, intermediate or unacceptable. Three
datasets were used in this challenge. Dataset-a, with 1000 ECGs and reference annotations (that
challengers used for training their algorithms). Dataset-b with 500 ECGs but without annotations
(used for evaluation of the submitted methods, and available publicly for visual inspection). And
nally Dataset-c with 500 ECGs, hidden from the public and used only for evaluation. For the
analysis in this chapter, solely Dataset-a was used to evaluate the proposed method, as it was the
only dataset with annotations publicly available.

6.4 Results

6.4.1 The MIT/BIH Noise-Stress Test Database

The e ectiveness of the measure was evaluated for di erent noise levels. To this end the
MIT/BIH noise-stress database was used, in which calibrated amounts of noise were added to
clean signals. As the positions of the noisy segments are provided in this database (see subsection
6.3.1), the instantaneous quality indexes calculated by the proposed method for the noisy, clean,
and overall (cleart noisy) segments were studied. Moreover, for each of the 24 series (12 two-
lead recordings), the results for each noise level, i.e. from -6dB to 24dB with steps of 6dB were
calculated. Table 6.2 reports the quality index averages for the aforementioned segments, and for
each noise level. As reported in this table, there is a clear di erence between the average quality
index values calculated for noise levels in the range of -6dB to 12dB. However, as the SNR rises
to 18 and 24dB this di erence becomes smaller. Of course, in the later case, the noise added to
the ECG is so small that it barely a ects signal quality, and therefore, the signal quality values
for the 'Clean+Noisy’, 'Clean’, and 'Noisy' are close to one another (almost identical in case of
24dB).

Table 6.2 — Average quality indexes obtained using the proposed method, on the MIT/BIH noise-
stress database.

/\ A

N0|>s<eX X ng)?qs(;t Clean+ Noisy Clean Noisy

-6 dB 0.8 0.14 0.91 0.04| 0.66 0.1
0dB 0.81 0.13 0.91 0.04| 0.68 0.1
6dB 0.83 0.11 0.91 0.04| 0.73 0.08
12dB 0.87 0.08 0.91 0.04 | 0.81 0.07
18 dB 0.89 0.05 0.91 0.04| 0.87 0.0%
24 dB 0.91 0.04 0.91 0.04| 0.91 0.04

Reported results in mearstandard deviation.
Clean vs Noisy segmentsp < 0:0001.yp < 0:01.zp < 0:05.

Figure 6.3 illustrates the calculated I1SQI, for di erent levels of noise (from -6dB to 24 dB),
on lead MLII of tape 118 from the MIT/BIH noise-stress database. In this gure, the noise is
added to the clean ECG from second 540. As one can see, the calculated ISQI improves as the
noise level decreases.

6.4.2 The MIT/BIH Arrhythmia Database

Results on the MIT/BIH noise-stress test show the e ectiveness of the proposed method.
The proposed method was further tested on more ECG recordings from the MIT/BIH arrhythmia
database for two main reasons. First, although di erent levels of noise were applied to the ECGs
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Figure 6.3 — Calculated ISQI on tape 118 (lead MLII) of the MIT/BIH Noise-Stress database.
a) ECG with added calibrated noise with an SNR of -6dB. b) ECG with added calibrated noise
with an SNR of 0dB. c) ECG with added calibrated noise with an SNR of 6dB. d) ECG with
added calibrated noise with an SNR of 12dB. e) ECG with added calibrated noise with an SNR
of 18dB. f) ECG with added calibrated noise with an SNR of 24dB. The calibrated noise is added
to the ECG from second 540.

in the MIT/BIH noise-stress test, the added noise in this database comprises all noise classes, i.e.
BW, EM and MA, and the e ectiveness of the algorithm versus each noise class was not studied.
Second, even though the noise-stress database contains 12 two-lead ECGs, only two clean ECG
recordings were used to assemble the database. Therefore, ECG segments from the MIT/BIH
arrhythmia database were manually examined and a set of 32 ve-minute ECG excerpts with
good or highly acceptable quality was selected. Then, for each noise class, new ECGs with
di erent levels of SNRs, from -12dB to 24dB (steps of 6dB), were created. In order to add noise

to these ECGs, the noise recordings from the noise-stress database was used. In this way, not
only the proposed method could be evaluated on a larger set of ECGs, but also di erent noise
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classes could be studied separately. The results showed a behavior similar to that of the noise-
stress database, with -12dB SNR yielding the lowest quality index and an ever increasing ISQI
with respect to the increasing SNRs were observed. Detail results on the MIT/BIH arrhythmia
database is reported in Tablé 6.3.

Table 6.3 — Average quality indexes obtained using the proposed method, on the MIT/BIH ar-
rhythmia database.

P -

PF’PF'J\‘O'Se BW MA EM BW+EM | BW+MA | EM+MA | BW+EM+MA
SNR' PPp

1248 073 025] 066 03 ] 067 026] 0.68 026] 060 027] 0.67 027| 067 027
6dB 083 017]0.76 022|074 021|076 019|081 017| 0.74 02 | 076 02
0dB 09 009|087 012|085 012|086 0.11] 0.89 0.1 | 0.85 0.11| 086 0.1
6dB 0.94 0.04] 093 005|092 0.05] 092 005|093 005| 092 0.05] 0.92 0.05
12dB 095 0.02] 0.95 0.02| 0.95 0.02]| 095 0.02] 0.95 0.02| 0.95 0.02| 0.95 0.02
18 dB 096 001|096 001|096 001|096 001|096 001| 0.96 0.01]| 0.96 0.01
24 dB 097 001|097 001|097 001|097 001|097 001|097 0.01]| 0.97 001
CleanECGs | 0.97 001|097 0.01] 097 001|097 001|097 001] 097 0.01| 097 001

Additionally, the correlation between the proposed ISQI and the instantaneous signal to noise
ratio (ISNR) was studied. The ISNR was calculated using a 3-second sliding window, with an
overlap of 2.5 seconds, and then the correlation coe cient between the median ltered ISQI
and ISNR series was measured. Median ltering was performed on a 10-second sliding window
to provide smooth ISQI and ISNR changes, as illustrated by Figure 6.4. ‘Table 6.4 reports the
correlation coe cient between the ISQI and ISNR with respect to di erent noise types and noise
levels®,

Table 6.4 — Correlation coe cient between ISQI and ISNR for di erent noise classes, and di e-
rent SNR levels.

P -

P P p Noise BW MA EM BW+EM | BW+MA | EM+MA | BW+EM+MA
SNR' PP p

12dB 087 01 065 03] 06 03L]08L 015|085 0.11] 065 0.26] 083 0.3
6dB 093 002] 0.85 007|077 0.13] 091 006| 093 0.02| 0.9 004 | 092 002
0dB 09 001|086 002| 08 0.06 | 0.88 0.04| 0.91 001] 0.88 0.02| 0.9 0.01
6dB 0.85 0.03] 0.79 0.04| 0.76 0.04| 0.82 0.03| 0.86 0.03| 0.82 0.04| 0.83 0.02
12dB 0.79 0.03] 0.62 0.05| 0.67 0.05| 0.69 0.11| 0.77 0.03| 0.75 0.03| 0.72 0.02
18dB 0.61 0.06] 0.34 0.08| 0.48 0.06| 046 0.21| 0.48 0.07| 0.57 0.05| 0.45 0.07
24dB 036 0.15] 0.15 0.05| 0.31 0.07|0.23 0.18| 0.1 0.6 | 0.39 0.08| 0.21 0.09

6.4.3 The Physionet/CinC 2011 Challenge Database

This database was used to compare the presented scheme to existing SQI approaches. A
short-term ECG quality assessment challenge was recently held in 2011 (Physionet/CinC 2011
challenge). To this end, for each lead of the 12-lead ECG recording in the database, four basic
features were extracted. The rst three features were the mean, standard deviation, and the
di erence between the maximum and the minimum of the calculated ISQI. The last feature and
the only feature that was not derived from the 1SQI, was a binary feature which checked for
at-line or ECG-saturation information. Using a sliding window, this feature was calculated by
checking for constant ECG values for a duration of at least 250ms. This feature is true for ECG
saturation or at-line, in which cases all ECG values are constant.

The 48 extracted features were used to train a 10-fold cross-validated linear K-NN classi er,
(K=11). For dataset-a, an overall accuracy of 94:12% was obtained with a noise classi cation

1. More detailed results are reported in Appendix C
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Figure 6.4 — Correlation between ISQIl and ISNR. a) Clean ECG (Tape 10BMWRArrhythmia
database, baseline removed) and the added noise (from the MIT/BIH Noise Stress database). b)
Noisy ECG, i.e. clean ECG added noise. c) Calculated ISQI using together with the median
Itered 1SQI (sliding window with a duration of 10 seconds). d) Calculated ISNR using together
with the median ltered ISNR (sliding window with a duration of 10 seconds).

sensitivity of 0.94 and a speci city of 0.93 and an F-score of §.8Table: 6.5 compares the
proposed method performance with the state-of-the-art on dataset-a. As the labels were not
publicly available, it was not possible to assess the performance of the presented algorithm on
the test set. This is because performance on the test set could only be performed through the
Physionet/CinC 2011 challenge portal that requires the algorithm to be implemented in Java,

2. Detailed description of classi er evaluation metrics can be found in Appéftdix B
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Table 6.5 — Performance comparison with the stat-of-the-art on the Physionet/CinC 2011 chal-
lenge database.

] Method | Sensitivity | Speci city | Accuracy %|
ISQI 0.94 0.93 93.6
Xia et al. [10] 0.88 0.97 95.1
Di Marco et al. [11] — — 92.72
Joh. and Gal. [12] 0.76 0.97 92.4
Hayn et al. [13] — — 93.3
Tat et al. [14] — — 92.0
Jekova et al.: [15] 0.98 0.80 94.2
Cliord et al. [199] 0.99y ly 99.0y

y Results based on their annotations, di erent from
the publicly available annotations.

which was di erent from the programming language used to develop this method (Matlab).

6.5 Discussion

When it comes to the state-of-the-art, most methods extract features from the ECG and per-
form machine learning for ECG quality assessment[10-15, 199]. This is due to the ever changing
characteristics of noises contaminating the ECG, making feature-based quality assessment task
di cult. Electrode movement, baseline wander, muscle activity and impulsive noise each ma-
nifest themselves di erently in the ECG. Therefore, in practice, machine learning approaches
extract several features to best describe each noise type and assess ECG quality. However, the
drawback with these approaches is that they are block-based, i.e. they are for instance trained
on 10-seconds segments of ECG. Moreover, they mostly provide binary classi cation into either
noisy or clean segments and therefore fail to quantify how noisy the ECG segment is. To the best
of knowledge, the proposed method is the rst approach to assess ECG signal quality directly
from the recording. At the same time, the ISQI can be measured for all ECGs regardless of their
durations. Results reported in Tablé:6.2 con rm that the ISQI has lower values with higher SNR
and higher values with lower SNR. Furthermore, Tablé 6.4 shows that the variation of ISQI is
in accordance with the variation of ISNR providing an instantaneous measure of how noisy the
time with di erent noise types. This method is also easy to implement and is computationally
uncostly, making it possible to run in near real-time or online fashion. It should be mentioned
that, although the presented signal quality assessment method is proposed as an instantaneous
measure, there is a small delay in the output. This delay is equal to the half duration of the large
window on which the correlation coe cient between the original ECG and the denoised ECG is
calculated, i.e. 1.5 seconds.

Results provided in Table 6.2 suggest that the ISQI e ciently separates the clean and noisy
ECG segments. Of course, as expected, the signi cance in the di erence decreases as the SNR
improves and at high SNRs there is no signi cant di erence between the noisy and non-noisy
ECG segments.

The same trend can also be observed in the correlation coe cient between the 1ISQI and the
ISNR, reported in Table 6.4. As it can be seen, with higher levels of SNR and regardless of
the noise type, the correlation coe cient between the ISQI and the ISNR decreases (except for
12dB). Given that we start from an ECG that is not totally clean, this behavior is expected:
as the noise in the original "clean ECG" a ects the calculate ISQI more and more as the SNR
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Figure 6.5 — lllustration of the evolution of ISQI against various noise types. a) Clean ECG
(Tape 103 MIT/BIH Arrhythmia database, baseline removed) and the measured ISQI. B) ECG
baseline wander (BW) and the measured ISQI. c) ECHectrode Motion Artifact (MA) and
the measured 1SQI. d) EC& EMG artifact (EM) and the measured 1SQI. e) EGQII noise

types, and the measured ISQI.
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improves. At both extremities, i.e12 and 24 dB added noise, the measured ISQI becomes at,
leading to a lower correlation coe cient between the ISQI and the ISNR. This at ISQI is due
to the very low amplitude of noise at 24 dB and conversely to the dominating noise amplitude
at 12 dB. Looking more closely at Table 6.4, one can see that the electrode motion artifact
noise has the highest impact in lowering the correlation coe cient between the 1SQI and the
ISNR. This is also expected as, for this type of noise, artifacts look similar to QRS complexes
and therefore, are much harder to deal with.

Although the 1SQI values could in theory be in the range of [l],,observations have shown
that the values of 1SQI rarely become negative. In fact, negative ISQI values were obtained
only when the original ECG was contaminated using a synthetic white Gaussian noise. On noise
sources used throughout this paper, even with high levels of perturbation in the ECG, the ISQI ge-
nerally ranged between [0:4}. Furthermore, observations have shown the ECG has acceptable
quality for ISQI values higher than 0:6, moderate quality for values greater than 0:7, high quality
for values larger than 0:8. If there is a need for waveform amplitude and duration analysis, such
as P-wave or QRS-complex analysis, ECG segments with 1ISQI values larger than 0:9 are opti-
mal. It should also be mentioned that the ISQI provides a measure of overall ECG signal quality.
Therefore, it is possible that the same 1SQI value be provided for two ECGs contaminated with
di erent types of perturbations. For instance, consider the same 1SQI is measured for an ECG
contaminated with baseline drift and another contaminated by electrode motion artifacts. The
baseline-drift contaminated ECG is easier to deal with as high-pass Itering can signi cantly
attenuate this noise, while the ECG contaminated with electrode motion artifact might not be
usable. Of course, one can create an ISQI for each noise type, but in practice all perturbation are
present to some extent and therefore, a general ISQI provides a more interpret able information.

6.6 Conclusion

This chapter presents a novel technique to measure ECG signal quality index in an instanta-
neous fashion. Based on a non-linear ltering technique, the QRS-complexes are rst removed.
Subsequently, the ECG residue is Itered and added to the extracted QRS -complexes. Finally,
the instantaneous signal quality index is calculated as the correlatianerddetween the ori-
ginal ECG and that of the previous step on a sliding window. The method was tested on well
known databases and against di erent ECG perturbations. Results showed the proposed quality
measure e ectively re ects ECG quality. The proposed method is simple to calculate, enabling
an implementation in near real-time/online scenarios.






Analysis of U-shaped
Patterns in RR-intervals
from PSG Recordings

7.1 Introduction

In recent years, sleep assessment has gained momentum in clinical practice. Sleep studies
record human physiological parameters and through analysis, provide insightful information on
possible disorders. A comprehensive sleep analysis is made possible using polysomnography
(PSG), which consists in simultaneously recording several bio-physiological signals during sleep.
These recordings usually comprise di erent body function parameters such as the electrical acti-
vity of the brain, i.e. electroencephalography (EEG), by placing electrodes along the scalp and
measuring ionic current of the neurons_[203]. Eye movement can also be recorded through
electrooculography (EOG) by placing electrodes above and below each eye. Moreover, muscle
activity and heart rhythm are obtained, respectively via EMG and ECG recordings.

Sleep assessment has proven useful in practice, with studies showing that sleep deprivation
can lead to negative physiological e ects such as myocardial hypertrophy [204], cognitive im-
pairment[205—207] and hypertension [208,209]. Studies have demonstrated the e cacy of PSG
analysis in other disorders such as sleep apnea[210-213], insomnia_[214-216], fatigue [217—
220], and pulmonary function disorder [221, 222].

Mainly, one can divide sleep into two main stages namely, rapid eye movement (REM) and
non-rapid eye movement (NREM). These stages present di erent characteristics. During NREM
sleep, also called dreamless sleep, a decrease in heart rate and body temperature is observed
[223]. NREM is sub-categorized into four phases [224]:

Stage loccurs at the beginning of sleep and is considered as a shallow sleep stage, during

which subjects drift in and out of sleep, and experience hypnic jerks (involuntary muscle

contraction):[225]. On the EEG, alpha waves disappear and are replaced by theta waves.

Stage 2is the phase during which eye movements stop and K-complexes and sleep spind-

les appear on the EEG. During this phase the subject is still in shallow sleep.

Stage 3is considered as deep sleep. In stage 3 of NREM sleep delta waves appear in

the EEG. This phase is known to associate with parasomnias such as sleep walking, bed-

wetting and night terrors [226, 227].

Stage 4is the continuation of stage 3 phase and is associated with dominant EEG delta

wave activity::

REM sleep, on the other hand, is associated with eye movement and fast and desynchronized

brain waves:[229]. The oscillation between the NREM and REM phases of sleep are referred to
as sleep cycles, which have a frequency of four to six cycles during a good night sleep [230, 231].

1. Sometimes Stage 3 and 4 of NREM sleep is considered as one [228].

105
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Sometimes, during sleep subjects can momentarily (3-14 seconds) wake up. These stages are
known as brief awakening or micro-arousal stages. The evolution of sleep stages through time
can be studied using a hypnogram, an example of which is illustrated in Figure 7.1.

Figure 7.1 —a) EEG waveforms that de ne awake and non-rapid eye movement (non- REM) sleep
stages. b) An idealized hypnogram summarizing the distribution of the sleep stages through a
typical night. Black bars refer to REM sleep during which the EEG pattern returns to that seen

in wakefulness. Figure taken from [224], with permission.

Although numerous studies have been performed in the context of sleep analysis, research on
di erent aspects of this important eld is still much active. This is especially true for ECG-based
sleep analysis, which have received less attention in comparison with EEG-based techniques.
In this context, this chapter is dedicated to the investigation of a phenomenon that takes place
during sleep, namely U-shaped patterns in the RR-interval time series. The state-of-the-art has
not addressed this phenomenon to a meaningful degree. Very recently, Solinski:et al. [232]
have reported the existence of these U-shaped patterns and have shown they have a signi cant
in uence on the power in the very low frequency band of HRV (i.e. [0.01-0.04] Hz). Mendez et
al. [233] observed a quickening of heart rate during EEG A-phases, recurrent events during sleep
that last between 2-60 seconds (average duration of 7 seconds) [234—236], and showed there is a
signi cant di erence in HRV indexes between a group of healthy subjects and patieetingu
from nocturnal front lobe epilepsy.

This chapter provides a de nition to these patterns and studies their statistical characteristics
during sleep using data from two protocols. Furthermore, the correlation between U-patterns
and movement events is studied by analyzing available channels from PSG recordings. The
following sections are organized as follows. Section 7.2 provides the description of the database
used for U-pattern analysis. U-patterns are de ned in Section 7.3. The technique used to extract
these patterns is described in Section 7.4, and evaluated in 7.5. Statistical analysis performed on
U-patterns are presented in Section 7.6. Section 7.8 provides a general discussion and nally,

7.2 Research Material

U-pattern analysis is performed throughout this chapter on a database created to evaluate
the e ect of stress and fatigue on healthy subjects. The study was directed by Prof. G. Millet
and Dr. N. Bourdillon from the Institute of Sciences and Sport of the Lausanne Uni‘éférsity

2. Institut des Sciences du Sport de I'Université de Lausanne
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(ISSUL). In more detail, data analysis was carried out for two separate experiments, designed
to assess the e ect of fatigue induced respectively by physical activity and sleep deprivation.
Eligible subjects participating in this study, had to be healthy, young and living in the Lausanne
region in Switzerland. Furthermore, subjects had to be in good psychiatric condition and have no
sleep disorders. A total of 15 subjects participated in each experiment (no intersection between
subjects participating in these studies).

It is worth mentioning that throughout night-long PSG recordings, sometimes ECGs pre-
sent poor quality due to the recording protocol and movement events during sleep. Therefore,
the availability of a robust QRS-complex detector was of high importance to obtain reliable
RR-intervals. Furthermore, for a comprehensive statistical analysis of U-patterns, one needs to
extract these patterns accurately. To this end, the Rel-En algorithm (see Chapter 5) was used
to extract QRS-complexes and subsequently the RR-intervals, as well as the U-patterns taking
place within the RR-intervals during sleep.

7.2.1 Data

The data gathered during this study comprise questionnaires, laboratory and non-laboratory
bio-recordings, which are described next.

Non-PSG Recordings

Every morning, after waking up, subjects lled either three (q) or V@) (questionnaires.
These questionnaires were designed to measure subjective fatigue and sleep quatljgorfihe
prised "Fatigue 8-item" [237], "Groningen Sleep Quality Scale" [238], and "Karolinska Level of
Drowsiness".[239] questionnaires. In addition to the itemg, ifor Q, subjects lled the "Levels
of Fatigue 14-item".[240] and "Pro le of Mood States" questionnaires [241].

In addition to the questionnaires, subjects recorded their RR-intervals every morning using
a polar belt and recorder watch (V800, Polar, Kempele, Finland). These recordings comprised
either 3-minute supine followed by 3-minute standing (hrv), or 6-minute supine followed by
6-minute standing (HRV). Certain nights during the experiments, subjects wore portable moni-
toring bracelets on their non-dominant wrist (Shimmer GSFR+, Dublin, Ireland) for night-long
PPG recordings. Finally, psycho-motor vigilance tests (PVT) were carried out to measure subject
response to visual stimuli.

PSG Recordings

PSG recordings were carried out for a comprehensive sleep analysis. These recordings com-
prised di erent physiological data, recorded by EMBLA devices (Embletta MPR, Ontario, Ca-
nada: EMBLA ST+Proxy, Ontario, Canada), details of which are provided next. Figufe 7.2
illustrates a subject equipped with the PSG recording device.

EEG. For the purpose of brain activity analysis, and more speci cally sleep evaluation,

a 6-electrode EEG was considered for this study. Electrodes were placed at the conven-
tional locations (F3-F4, frontal lobes; C3-C4, central lobes; O1-02, occipital lobes) to
follow the international standards.

EOG. A 2-electrode EOG (M1, M2) was recorded by placing one above the right and
another below the left eye, in order to recorded eye movements.

EMG. Using three electrodes (ChinL, ChinR, ChinC) mentalis and submentalis mo-
vements were captured. These electrodes are classically used for sleep analysis, as during
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deep sleep stages, jaw muscles are known to relax.

ECG. A 2-lead ECG was also recorded to study cardiac activity during sleep. One lead
was placed ve centimeters above the right nipple while the other one was placed at the
same distance below the left nipple.

Respiration. Using an impedance belt, thoracic respiration was recorded for the asses-
sment of respiration and possible sleep apnea analysis.

Figure 7.2 — Image of a subject equipped with the PSG.

Post-PSG Recordings

The day following PSG recordings, subjects underwent a 10-minute continuous blood pres-
sure recording (BPV) as well as a saliva withdrawal (SAL) for follow up analysis.

In the context of this dissertation, only the PSG, and night time recorded RR-intervals were
used for U-pattern extraction and analysis. The two following sections describe respectively the
over-training and the sleep deprivation setting in details.

7.2.2 Phase A: Over-training
Population.

The over-training study comprised 15 subjects (8 males and 7 females), the anthropometric
parameters of which are as follows:

Table 7.1 — Anthropometric parameters of the over-training study.

| Characteristic | mean stdN=15)[ Range |
Age (years) 25:.0 54 19 26
Height (cm) 1754 88 158 188
Weight (kg) 64:2 115 49 90
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Protocol.

Data recording in this study was carried out over a period of 51 days, in three immediate sta-
ges. First, the "baseline” phase with a duration of two weeks during which the subjects followed
their normal lifestyle, performing normal sportive activities. Second, the "over-training" phase
for a period of three weeks during which they had to perform extra sportive activity in order to
induce fatigue. Third, the "recovery" phase with a duration of three weeks. In this phase the
subjects went back to their normal training routines, similarly to the baseline stage. :Figure 7.3
illustrates the details on the recorded signals during the over-training study.

Figure 7.3 — Detailed information on data acquisition during the over-training study.

As there was no PSG recording for the over-training experiment, the night-long RR-intervals
extracted from the PPG device were used for U-pattern analysis.

7.2.3 Phase B: Sleep Deprivation

Population.

The sleep deprivation study also comprised 15 subjects (7 males and 8 females), the anthro-
pometric parameters of which are as follows:

Table 7.2 — Anthropometric parameters of the sleep deprivation study.

| Characteristic | mean stdN=15)[ Range |

Age (years) 22:1 1.7 18 25
Height (cm) 172:7 8:8 160 196
Weight (kg) 65:9 11:6 52 92

Protocol.

This experiment was carried out over a span of 17 days, in three immediate stages. Similarly
to the over-training experiment, there was rst a "baseline" phase lasting for seven days, during
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which the subjects slept normally with no constraints. Following the baseline, subjects went
through a "sleep deprivation" phase with a duration of three days, during which they could only
sleep three hours at night. Finally, a 7-day "recovery" phase took place, during which subjects
slept normally, as they would in the baseline phase. Figure 7.4 illustrates the details of recorded
signals during the sleep deprivation study.

Figure 7.4 — Detailed information on data acquisition during the sleep deprivation study.

7.3 U-shape Patterns

After the extraction of the RR-interval time series from night-long ECG recordings one can
observe a phenomenon, which in this dissertation is referred to as U-patterns. U-patterns are re-
current within RR-intervals and do not seem to take place periodically or quasi-periodically. This
dissertation de nes these patterns as U-shape decrease-increase in the RR-interval time series,
with a duration of 20 to 40 seconds with a minimum decrease of 15% in the local RR-interval
mean value. Figure 7.5 illustrates an example of U-pattern extracted from a PSG recording. In
this gure, a U-pattern with a duration of 27 seconds and a decrease in mean RR-intervals of
31%, from a mean 1004 ms down to a mean of 693 ms, is illustrated.

Figure 7.5 — lllustration of a U-shaped pattern taking place during sleep. a) The ECG excerpt
containing the U-pattern alongside the detected R-waves. b) The U-pattern in the RR-interval
time series.
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7.4 U-Pattern Extraction

7.4.1 Preprocessing

In order to extract U-patterns, ECG recordings were rst processed to detect R-waves and
subsequently extract the RR-interval time series. The QRS-complexes were detected using the

extracted RR-interval time series was then resampled at 1 Hz, and further smoothed by applying
a moving median Iter with a duration of 15 seconds in order to remove small excursions in the
time series. For the remainder of this chapter "RR-intervals" refers to the median Itered version
of this time series, unless stated otherwise. Figure 7.6 illustrates an example of RR-intervals used
for U-pattern extraction. One can clearly see the U-pattern in the middle of this gure.

Figure 7.6 — The preprocessed RR-intervals, used for U-pattern extraction, taken from an ECG
excerpt of a baseline sleep deprivation PSG recording.

7.4.2 Extraction Method

For U-pattern extraction, the RR-interval time series was used as the input to the Rel-En
algorithm with the following empirically chosen parameters: short-term window duration of 50
seconds, long-term window duration of 2000 seconds, an exponent of 10 and a Hamming window
smoothing function. In order for the U-patterns to manifest as a surge in the local energy, the
inverse RR-intervals were used as the input to the Rel-En algorithm. Figure 7.7 illustrates the
di erent steps of the Rel-En algorithm on the inversed RR-intervals. Figure 7.8 also displays the
Rel-En output, which is further scrutinized for U-pattern extraction.

A hysteresis comparator is then applied to the output of the Rel-En algorithm. A hystere-
sis comparator is a suitable choice as it is insensitive to small RR-intervals uctuations around
the detection threshold. This comparator uses two thresholds for event detedtamrtion. A
central threshold which determines the actual event detection threshold, and a second threshold
which creates upper and lower con dence intervals around central threshold and makes the ex-
traction less sensitive to noise. Figure:7.9 shows an example in which the output of a hysteresis
comparator is compared with a normal threshold. As seen in this gure, the hysteresis compa-
rator results in a smooth transition between the onset and o set of an event, whereas the normal
threshold is more sensitive to small local changes. For U-pattern extraction, the lower threshold
was set to the value of the central threshold.
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Figure 7.7 — lllustration of the di erent steps of the Rel-En algorithm on an inversed RR-
intervals. a) Input signal. b) Short-term energy evolution c) Long-term energy evolution d)
Coe cient vector calculated by Rel-En.

Figure 7.8 — Output of the Rel-En algorithm on the inversed RR-interval time series. a) The input
signal alongside the calculated coe cient vector. b) Rel-En output, generated by element-wise
multiplication of the coe cient vector by the inversed RR-interval time series.
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In order to delineate the U-patterns, a sliding windswith a length of 400 seconds was
used to calculate the moving median of the Rel-En output. The central and upper thresholds
were calculated through,

T heentral(n) = Median@(n))+ 0:02 maxs(n)) (7.2)

Thyppe(n) = Median@(n))+ 0:05 maxs(n)) (7.2)

wheren represents the" sample of the RR-intervals time series.

In order to enhance U-pattern detection, the hysteresis comparator output was further proces-
sed by merging events within an interval of ve seconds. Event splitting was generally due to
artifacts in the ECG, causing lead saturation and false positive QRS-complex detection. Finally,
the extracted events were analyzed in terms of duration and depth to obtain U-patterns. First, the
candidates were checked to have a duration of 15 to 45 seconds (a 5-second detection margin was
added to the de nition of U-patterns, to make the detection more robust). Second, the decrease
in RR-intervals amplitude was calculated as the di erence between the average RR-interval va-
lue outside each candidate (average RR-intervals value for 60 seconds preceding and following
each candidate event) and the minimum RR-interval value during the candidate U-pattern. If an
RR-interval amplitude decrease larger than 15% was observed, the candidate event was selected
as a U-pattern.

Figure 7.9 — The di erence between a normal thresholding technique and a hysteresis compara-
tor. In comparison, the hysteresis comparator results in a smoother output.

Figures 7.10 and 7.11 illustrate the di erent steps in the extraction of a single U-pattern, on

from the output of the Rel-En operator. In this gure, the output of the hysteresis comparator is
illustrated alongside the lower and upper hysteresis thresholds. Figure 7.11 shows the nal step

night-long RR-interval time series.
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Figure 7.10 — Selection of a U-pattern candidate from the output of Rel-En algorithm, using a
hysteresis comparator.

Figure 7.11 — Extraction of U-patterns from the output of the Rel-En algorithm. The preceding
and following RR-interval averages (black lines), as well as their average (red line) are depicted.
In this example an amplitude decrease of 34% is observed.
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Figure 7.12 — Automatic U-pattern detection for a night-long recording.

7.5 U-pattern Extraction Performance Evaluation

7.5.1 Supervised U-pattern Extraction

Three full-night PSG recordings were manually assessed and U-patterns were annotated by
an operator, based on the de nition in Section 7.3. The recordings were taken from the baseline
phase. The operator performed the annotation using the RR-intervals alongside the original
ECG. For each U-pattern, the locations and amplitudes of the onset, minimum and the o set
were recorded, and this information was used to create a U-pattern dataset. Furthermore, the
local quality of the ECG was observed and if perturbations saturated the signal, those segments
were discarded for annotation.

In order to evaluate extraction performance, for each of the three annotated night recordings,
U-patterns were extracted using the proposed technique and were compared to those in the an-
notation les. Table 7.3 reports the U-pattern extraction performance, in terms of sensitivity,
positive prediction value and detection error rate, over speci ¢ and all annotated recordings.

Recording 1 2 3 Overall
Number of TP 21 20 15 56
Number of FP 10 22 24 56
Number of FN 2 3 3 8

Sensitivity (%) | 91.30 | 86.96 | 83.33| 87.5
PPV (%) 67.74| 47.62| 38.46| 50
DER (%) 36.36| 55.56 | 64.29| 50

Table 7.3 — Performance of the detection algorithm on the annotated U-patterns.

Although a sensitivity of 0.87 was obtained the detection error rate was too high at 0.5. By
analyzing the results obtained by automatic U-pattern detection, the following conclusions were
drawn:
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1. The number of annotated U-patterns was too small for a reliable performance evaluation.

2. Observations on the FP samples revealed that the operator was too strict when annotating
U-patterns, leading to high detection error rates. This was especially true for the second
and third recordings. Therefore, a second operator was asked to annotate the third re-
cording, with the same annotation instructions. By comparing the annotations provided
by the two operators, a large disagreement was observed. Using the second operator's
annotation the FP samples for the third tape dropped from 24 to 5.

Therefore, in order to have a fair performance evaluation, the extraction method was analyzed
against synthetic U-patterns, described next.

7.5.2 Synthetic U-pattern Detection

Synthetic U-patterns were generated using PSG recordings from the baseline phase of the
sleep deprivation database. From the extracted RR-intervals, segments with low to moderate
levels of noise and without U-patterns were assembled, in order to re ect RR-interval uctuations
during sleep. Figure 7.13 illustrates an example of synthesized baseline RR-interval time series.

Figure 7.13 — Baseline RR-interval time series generated for synthetic U-pattern detection. The
generated U-patterns were then added to this signal and subsequently the detection performance
was evaluated.

On 8-hour baseline RR-interval segments, series of U-patterns (between 10 to 50) were added
to nalize the synthetic recordings. The duration of U-patterns varied between 20 and 40 seconds
with a decrease in the local RR-intervals value of 15 to 40%. Furthermore, a minimum distance
of 150 seconds separated the generated U-patterns, in order to avoid their overlapping. In more
detail, the synthetic U-patterns were added to the baseline RR-intervals U sing the following
piecewise model:

1. In order to re ect the initial decline in the RR-intervals, a decreasing second-order poly-
nomial with a duration of seven to nine seconds.

2. A constant segment with small variation, representing the minima of the U-pattern.

3. An increasing linear segment to complete the U-pattern varying between three to ve
seconds.

It is noteworthy that several tting models were studied to represent U-patterns, such as
guadratic and mixture of decreasing and increasing exponentials. However, it was visually con-
rmed that the aforementioned piecewise function modeling scheme yielded the best synthetic
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U-patterns. Figure 7.14 illustrates a generated U-pattern alongside a real one; Figure 7.15 illus-

trates U-pattern detection along an 8-hour synthetic recording.

Figure 7.14 — Comparison of the U-patterns. a) A real U-pattern in RR-intervals from an excerpt
in the database. b) A synthetic U-pattern generated for unsupervised performance evaluation.

Figure 7.15 — Detection of U-patterns in an 8-hour synthetic recording. The baseline RR-interval

successfully.
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Synthetic U-pattern detection performance was evaluated on 1000, 8-hour recordings. Synt-
hetic recordings were generated for ve full-night baseline RR-intervals, assembled on low- to
mid-level noise RR-Excerpts from the sleep deprivation study. Table 7.4 reports the results obtai-
ned. As can be seen in this table, the accuracy is far superior to that of the annotated tapes with
no FP samples. A relatively low number of FN samples can be observed for each assembled
RR-intervals. This was the result of a U-pattern added to a local RR-interval maximum, yiel-
ding an RR-intervals amplitude decrease of less than 15%. Furthermore, the root mean square
error (RMSE) with regard to the extracted U-pattern depth and duration is reported. These result
suggest the U-patterns were e ciently extracted by the proposed technique.

Subject 1 2 3 4 5 Overall
TP 22216 21808 | 23215| 22841 | 22111 | 112191
FP 0 0 0 0 0 0
FN 273 242 274 254 257 1300
Sensitvity (%) 98.79 | 989 | 98.83 | 98.9 | 98.85| 98.85
PPV (%) 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
DER (%) 1.21 1.1 1.17 1.1 1.15 1.07
Duration RMSE (s) | 3.42 | 3.43 | 3.38 | 3.37 | 347 3.41
Depth RMSE (ms) | 26.93 | 26.98 | 26.77 | 27.09 | 26.88 | 26.93

Table 7.4 — Performance evaluation on synthetic U-pattern detection.

7.6 The Incidence of U-Patterns in Sleep Deprivation and Over-
training

After U-pattern extraction, statistical characteristics of these patterns were analyzed for the
sleep deprivation and over-training studies. Alongside the incidence of these patterns, their depth,
duration and integral estimate were calculated. Finally, the signi cance in di erence for each
sub-phase, i.e. baseline, over-training (or sleep deprivation), and recovery, was studied. Secti-
ons;7.6.1 < 7.6;2 report these statistics, respectively for the over-training and sleep deprivation

experiments.

7.6.1 Over-training

As illustrated in Figure 7:3, over the 51-day setup of the over-training study, several night-
long RR-interval time series (automatically extracted from the PPG recording device) were obtai-
ned from the participating subjects. Respectively ve, seven and four per-subject RR-intervals
were obtained for the baseline, over-training, and recovery phases. As there were no PSG recor-
dings for the over-training study, the over-night RR-interval time series, provided by the portable
monitoring device, were directly used for U-pattern extraction. Table 7.5 reports the subject-
by- subject number of U-patterns extracted for each phase More details on U- -pattern frequency,

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Baseline 26.75| 25.75| 24.75| 15.0| 315 | 12.8| 25.0 | 23.0| 28.0| 34.2 | 23.25| 35.5| 21.0 | 17.25| 23.33
Over-training | 25.67| 22.0 | 20.5 | 16.0| 28.6 | 22.0| 21.33| 19.0| 41.4| 29.33| 26.0 | 35.4| 27.75| 145 | 19.0

Recovery 240 | 290 | 238 | 17.5| 31.75| 23.5| 26.0 | 20.0| 33.5| 31.75| 28.75| 27.0| 15.0 | 13.5 | 30.0

Table 7.5 — Subject-by-subject number of extracted U-patterns for each phase of the over-training
study. Non-integer values reported in this table represent the average number of U-patterns
during each phase, as there were multiple full-night RR-intervals recordings available.
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Table 7.6 summarizes the inter-subject U-pattern statistics (mesth) obtained from each
phase. Furthermore for each statistical attribute, Table 7.7 studies whether there was a signi cant
inter-subject di erence between di erent phases of the over-training study.

Results reported in this table show no signi cant di erence between the di erent phases
of the over-training experiment, for all the of statistical attributes under study (apart from the
average U-pattern integral, in baselinerecovery comparison). This suggests that there is no
meaningful relation between over-training and U-patterns.

Baseline Over-training Recovery
Attrib ute (mean std) (mean std) (mean std)
No. of U-patterns 245 64 246 7.2 25.0 6.2
U-pattern Frequency (mHz) 1.2 05 1.2 03 1.2 0.2
U-pattern Duration (s) 232 23 23.0 16 234 20
U-pattern Depth (ms) 508.1 132.8 | 525.0 121.7 | 529.3 132.3
U-pattern Integral (ms.s) 1869.6 2893.8| 3164.3 876.5| 2734.5 1273.8

Table 7.6 — Inter-subject U-pattern statistical characteristics, reported for each phase of the over-
training study.

. Baseline! Over-training | Over-training ! Recovery | Baseline! Recovery
Attrib ute
p-value p-value p-value

U-pattern Frequency 0.81 0.76 0.65
Mean U-depth 0.71 0.92 0.66
Variance U-depth 0.84 0.99 0.84
Mean U-duration 0.71 0.53 0.84
Variance U-duration 0.50 0.96 0.51
Mean U-integral 0.64 0.75 0.46
Variance U-integral 0.99 0.75 0.74

Table 7.7 — Two sampletestp-values for each over-training phase. Bold elds represent
values<0:5.

7.6.2 Sleep Deprivation

For the sleep deprivation study, the PSG signals (recorded on the last day of each phase, see
Figure 7.4) were used for U-pattern extraction and statistical analysis. Similarly to the previous
study, Table 7 8 reports the subject-by- subject number of U- patterns extracted for each phase

Contrary to the over-training study, the hypothesis tests on sleep deprivation show signi cant
di erences across di erent phases. Witlitvalues<0:5, the frequency of U-patterns alongside
their depth and integral seem to vary meaningfully when subjects go through di erent sleeping
regimens.

Subject 1 2 3 4 5 6 7 8 9 |10|11|12| 13| 14| 15
Baseline 3142|3938 20|36|48|35|17|23|21|36|49| 33|43
Sleepdeprivation | 17 | 40 | 52 | 26 | 18 | 25|32 | 43|24 | 31| 20| 25| 59| 25| 22
Sleeprecovery |28 | 18| 35|35( 24|23 |20|46| 22|40 |22| 12| 56| 36| 44

Table 7.8 — Subject-by-subject number of detected U-patterns for di erent sleep deprivation pha-
ses.
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Baseline SleepDeprivation Recovery
Attrib ute (mean std) (mean std) (mean std)
No. of U-patterns 34.1 10.0 30.6 125 30.7 122
U-pattern Frequency (mHz) 1.4 04 1.1 05 1.3 04
U-pattern Duration (s) 29.0 3.2 284 2.4 28.0 2.4
U-pattern Depth (ms) 2925 99.7 268.9 45.1 284.1 60.3
U-pattern Integral (ms.s) | 4116.4 1178.5| 3700.8 478.0 3911.8 759.6

Table 7.9 — Inter-subject U-pattern statistical characteristics, reported for each phase of the sleep
deprivation study.

Attrib ute Baseline! SleepDeprivation | SleepDeprivation! Recovery| Baseline! Recovery
p-value p-value p-value

U-pattern frequency 0.14 0.27 0.65
Mean U-depth 0.19 0.44 0.32
Variance U-depth 0.32 0.91 0.32
Mean U-duration 0.54 0.66 0.33
Variance U-duration 0.63 0.63 0.9
Mean U-integral 0.13 0.53 0.25
Variance U-integral 0.32 0.67 0.32

Table 7.10 — Two sampletestp-values for each phase of the sleep deprivation study. Bold elds
represenp-values< 0:5.

7.7 Correlation between U-patterns and Movement Events

Alongside the incidence of U-patterns, one can study the cause and correlation between these
patterns and other physiological phenomena. For instance, Dorantes-Mendez et al. [242] perfor-
med a time-varying analysis on A-phases extracted from the EEG, and observed a decrease in
local RR-interval time series. A-phases are recurrent short-term EEG events, which are categori-
zed into so-called A1, A2, and A3 classes. The Al-phase is characterized by the EEG activity in
the range of [0.5-4] Hz and are often associated with K-complexes. The A2-phase contains Al
frequency activity as well as fast rhythms in the range of [8-30] Hz. However, slow frequencies
are dominant (50-80% of the activity). Finally, the A3-phase comprises predominantly faster
activities [8-30] Hz. In[242] a decrease in local RR-intervals was observed in all A-phases, with
A3 presenting the clearest change.

Our observations on ECG signals during U-patterns led to the hypothesis that U-patterns may
be due to subject movement during sleep. Although the ECGs presented high enough quality for
RR-interval extraction, moderate to high levels of EMG noise (sometimes even lead saturation)
often contaminated the signal (this phenomenon can be seen in Figure 7.5-a). Therefore, the cor-
relation between U-patterns and movement events was studied to determine whether this hypot-
hesis was true or not. To this end, high-amplitude and -frequency segments from PSG recordings
were extracted as movement events. Observations on the available channels showed that the
motor cortex EEG channels (C3-C4) along side the three EMG channels represented head mo-
vements to a higher degree. Regarding the bio-signals acquired from the body, the respiration
signal (thorax channel) best represented these events. The aggregate set of movement events
extracted from these channels was used to assess U-pattern/movement event cdirdlaton
following section presents the scheme used to extract movement events from the aforementioned
PSG channels.

3. The aggregate set of movement events across all available channels was also considered for U-pattern/movement
event correlation analysis. Results are available in Appehdix D.2.
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7.7.1 Detection of Movement Events

U-pattern/movement event correlation analysis was carried out by signal peak activity ex-
traction using the Rel-En algorithm. First, short- and long-window durations of 20 and 2000
seconds, with an exponent of 2 as well as a Hamming window were used to enhance peak acti-
vities. Subsequently, using a hysteresis comparator, peak events were extracted. The hysteresis
comparator was calculated on a sliding window with a duration of 400 seconds, with a central
threshold of the root mean square of the values inside the window. The upper threshold was

the di erent steps in movement event extraction on a night-long recording.

Figure 7.16 — lllustration of a single peak activity detection using Rel-En on the thorax channel,
together with the central and upper thresholds and the output of the hysteresis comparator. Data
taken from the rst subject, baseline phase.

Figure 7.17 — lllustration of night-long peak activity detection using Rel-En on the thorax chan-
nel, together with the central and upper thresholds of the hysteresis comparator.
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Figure 7.18 — lllustration of night-long movement event extraction from the thorax channel.

7.7.2 U-Pattern/Movement Agreement Rate

Following the extraction of movement events, the correlation between U-patterns and these
events was studied. This task was carried out by comparing movement onset/o set times with
those of the U-patterns. More speci cally, a U-pattern was considered correlated with a mo-
vement event when there was an intersection between their respective time intervals, with a to-
lerance of ve seconds. The agreement rate was then calculated as the percentage of U-patterns
correlated with movement.

Table 7.11 reports the U-pattern/movement agreement rate for each sleep deprivation phase.
In this table, for each subject, U-patterns were compared with movement events from the C3, C4,
thorax and 3-EMG channels. Here (and henceforth), the 3-EMG eld represents the aggregation
on the three available EMG leads, i.e. ChinC, ChinL and ChinR. In other words, a 3-EMG
movement event represents the extraction of a movement event from at least one of the three
available EMG channefs

Baseline | SleepDeprivation Recovery

Attrib ute | (mean std) (mean std) (mean std)
3-EMG 26.8 14.2 26.3 13.6 28.2 13.3
Thorax 39.9 16.0 38.4 15.1 43.0 84
C3 24.7 13.3 189 124 249 12.6
Cc4 249 129 222 140 23.7 105

Table 7.11 — Inter-subject U-pattern/movement event agreement rate (%) with respect to 3-EMG,
thorax, C3 and C4 channels.

As reported in Table 7.11, movement events extracted from the thorax channel generally had

the highest agreement rate with U-patterns. Furthermore, this was the case across all phases of
the sleep deprivation study. Figyre 7.19, illustrates this agreement, extracted for subject no. 1,

during the baseline phase of the sleep deprivation study.

4. Subject-by-subject details (for all available channels) of these agreements can be found in A}i_f)_éndix D.2.
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Figure 7.19 — U-pattern/thorax movement event agreement for a night-long PSG recording from
the sleep deprivation study, baseline phase.

7.7.3 Uncorrelated U-patterns

Results on U-pattern/movement agreement rates show that some U-patterns may not be cor-

.....

isolated U-patterns, i.e. patterns that are uncorrelated to movement events, for each sleep de-
privation phase. No clear upward or downward trend with regard to the number of uncorrelated
U-patterns or study phase was found. Nevertheless, the average number of these uncorrelated
patterns increased from baseline to sleep deprivation. During the recovery phase, the number of
uncorrelated U-patterns decreases almost to that of the baseline phase, suggesting that subjects
were e ectively recovering during this phase.

7.7.4 Causality

Having extracted the correlated U-patterns/movement events, the causality between these
two phenomena was studied. To this end, for correlated events, the onset time di erences were
calculated. Time delays of correlated events, for each sleep deprivation phase, are reported in
by U-patterns. Similarly, by studying U-pattern/movement o sets, the opposite results were
obtained, i.e. U-patterns always terminated after their respective movement.event

5. Here, only analysis on uncorrelated U-patterns are performed with respect to 3-EMG, throax, C3 and C4 channels.
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SleepDeprivation Study Baseline SleepDeprivation SleepRecovery
SubjectNo. No. | Percentage No. | Percentage No. [ Percentage
Subject1 2 6.45 3 17.65 5 17.86
Subject2 6 14.29 13 325 3 16.67
Subject3 12 30.77 29 55.77 19 54.29
Subject4 12 31.58 1 3.85 2 5.71
Subject5 5 25.0 2 11.11 5 20.83
Subject6 1 2.78 5 20.0 2 8.7
Subject7 21 39.62 17 53.13 5 25.0
Subject8 9 25.71 24 55.81 8 17.39
Subject9 8 47.06 6 25.0 5 22.73
Subject 10 2 8.7 7 22.58 12 30.0
Subject11 1 4.76 2 10.0 3 13.64
Subject 12 6 16.67 4 16.0 1 8.33
Subject 13 12 24.49 32 54.24 28 50.0
Subject 14 6 18.18 12 48.08 14 38.89
Subject 15 24 55.81 5 22.73 23 52.27

\ mean _std [8.47 6.88] 23.46 15.67] 10.8 10.22] 29.89 18.53] 9.0 8.41] 2549 16.23]

Table 7.12 — Uncorrelated U-patterns in the sleep deprivation study, with respect to movement
events extracted from 3-EMG, thorax, C3 and C4 channels. For each subject, the number and the
percentage of uncorrelated U-patterns are reported.

Table 7.13 — Inter-subject averages of U-pattern/Movement onset delays (seconds), with respect

Baseline | SleepDeprivation Recovery

OnsetDelays(s) | (mean std) (mean std) (mean std)
3-EMG 89 15 149 3.3 8.0 22
Thorax 81 1.6 13.2 31 76 1.7
C3 11.0 2.9 146 2.8 11.4 5.0

Cc4 94 3.2 159 3.2 10.5 4.3

to 3-EMG, thorax, C3 and C4 channels.

Baseline SleepDeprivation Recovery

O set Delays(s) | (mean std) (mean std) (mean std)
3-EMG 159 4.7 85 20 147 31
Thorax 13.1 2.3 79 18 129 22
C3 13.8 5.3 10.7 3.3 142 35

C4 144 43 99 138 142 35

Table 7.14 — Inter-subject averages of U-pattern/Movement o set delays (seconds), with respect
to 3-EMG, thorax, C3 and C4 channels.

Figure; 7.20 displays an example of correlated U-pattern/thorax movement event (same data
as in Figure 7.19). One can observe that the U-pattern initiates the movement and disappears

after the movement event is terminated. As U-patterns represent an increase in heart rate, one
could explain this chain of events as follows:

1. Atransient phase, during which the subject goes from deep to shallow sleep or a micro-
arousal stage.

2. A movement phase, for instance change in posture from one side to another.

3. A second transient phase, during which the subject goes from shallow sleep or a micro-
arousal stage back to deep sleep.
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Figure 7.20 — Causality between U-patterns/movement events. The U-pattern is initiated rst,
then movement event takes place, after which the U-pattern is terminated.

7.8 Discussion

As a phenomenon taking place during sleep, U-patterns may reveal information about its qua-
lity. However, in order to draw reliable and interpretable results, the extraction of these U-shaped
patterns must be addressed rst. U-patterns vary in amplitude and duration, and in comparison
with other complexes (such as QRS ones), one deals with much larger temporal and amplitude
variances. Therefore, linear Itering and conventional thresholding techniques may not be able
to robustly detect these patterns. This remains true for other physiological phenomena. As an
example one can discuss EEG K-complex detection. As mentioned in Chapter 5, neither linear
Itering techniques nor simple temporal thresholds are able to robustly detect these complexes.
Instead, the state-of-the-art use several, sometimes unintuitive, descriptors (features) to identify
them. Even then, the detection can only be carried out by training classi cation models, which
in turn is arduous to perform as large amount of annotated data is required to obtain a reliable
model. The Rel-En algorithm, however, provides a robust detection technigue for these patterns.
When combined with a simple hysteresis comparator, this algorithm is able to robustly extract
U-patterns. It uses a small number of parameters and avoids using unintuitive thresholds for
U-pattern extraction.

It is noteworthy that the presented extraction technique does not use the RR-interval time
series but rather its inverse. The Rel-En algorithm uses absolute signal values to compute the
coe cient vector, which is then multiplied by the input signal in order to enhance events of
interest and suppress unwanted activities. For U-patterns, which present high temporal and am-
plitude variances, however, one needs to remove low-frequency activities, i.e. the RR-interval
baseline, in order to represent them well. In any case, baseline removal a ects the morphology of
the U-patterns and subsequently, they will not be as prominent in the resulting signal. Moreover,
our observations showed that by performing baseline removal, the U-pattern extraction by using
a hysteresis comparator would not result in a robust onset and o set extraction. Due to these
hurdles, the inverse RR-interval time series was used to extract U-patterns.
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In this chapter, a new aspect of PSG data analysis has been explored. It is worth mentioning
that, although the behavior of these patterns has been cited in the literature [232, 233], to the
best of our knowledge, this is the rst study dedicated to analyze the di erent characteristics of
U-patterns. An interesting aspect studied here, was the correlation between U-patterns and mo-
vement during sleep. By extracting movement events, we observed a low to moderate correlation
between these patterns and movement. It should be mentioned that in this study, due to lack of
relevant data, only head and thorax movement events were analyzed. In order to perform a more
comprehensive movement analysis, one needs to take into consideration limb movements, i.e.
hands and feet movement, as well. This is primarily due to the fact that these events might not be
captured by head and trunk sensors, and therefore result in a lower overall U-pattern/movement
agreement. Results show U-pattern onsets take place before movement events, while their o set
occur well after the corresponding movement event is terminated. This suggests, for correla-
ted events, that the U-patterns are indeed the cause of movement. Analysis on uncorrelated
U-patterns showed that these patterns occur sometimes without resulting in a movement event.
Indeed, a quickening of heart rate was observed when U-patterns took place, but visual analysis
of the available channels showed no trace of movement with respect to available channels. Itis
possible that these uncorrelated patterns correspond to limb movements or another phenomenon
such as A-phases (as suggested.in[233]), or other underlying physiological dynamics, which fall
outside of the context of this thesis.

The statistical characteristics of these patterns have also been reported for di erent condi-
tions, i.e. baseline, sleep deprivation, over-training, and recovery. Statistics suggest that these
patterns are not a ected by over-training. During sleep deprivation however, several U-pattern
characteristics, such as frequency, depth, and duration, change signi cantly. Therefore, U-pattern
analysis can be performed to identify subjects who are experiencing sleep disorders. As descri-
bed in the introduction, sleep quality assessment can be carried out through EEG-based sleep
stage analysis. However, EEG analysis requires subjects to wear uncomfortable EEG caps con-
nected to a recording device through several wires, causing frustration and discomfort during
sleep. Analysis of U-patterns however, is only dependent of inter-beat intervals, which can be
acquired by portable PPG recording devices and from more convenient locations such as arms
and ngers. More to the point, sleep deprivation is known to contribute to disease develop-
ment. The biological changes induced by chronic sleep deprivation have been associated with
cardiovascular and metabolic diseases, and shortened lifespan [243]. By analyzing U-patterns as
another important parameter derived from portable monitoring devices, one can identify subjects
who are prone, or even experiencing, sleep disorders and subsequently, prevent the development
of such diseases.

Observations on the U-patterns occurring in night-long recordings revealed that, sometimes,
these patterns form clusters throughout the RR-interval time series, which motivated us to apply
fractal analysis to these patterns. Tools from chaos theory have been successfully used in the
eld of biomedical signal processing. In the literature the fractal nature of several organs such
as the brain, the heart, the lungs, and urinary collecting tubes of the kidney have been reported
[244-247]. Moreover, fractal analysis has been proven useful in analyzing cardiac health [248]
and cardiovascular pathophysiology prognosis .[249; 250]. In this study, fractal analysis was
performed for all phases of sleep deprivation and over-training experiments. Results on the
extracted U-patterns, however, showed that these patterns do not present fractal behavior in the
RR-interval time series.

7.9 Conclusion

This chapter studies a U-shape acceleration/deceleration phenomenon that is discernible in
the RR-intervals of night-long PSG recordings. An extraction technique based on the Rel-En
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algorithm in Chapter'5 is proposed for these patterns. Statistical analysis on the characteristics
of these patterns, namely their depth, duration, and the number of their incidence, is performed
on two sets of experiments, designed to analyze the e ect of fatigue induced by over-training
and sleep deprivation. Furthermore, the correlation between U-patterns and movement events
during sleep is studied, suggesting a moderate correlation, and that these patterns initiate before
and terminate after movement events.






Conclusion

Biomedical signal processing is a fascinating eld of research. Being able to use mathematics
and algorithms to analyze physiological measurements, which in turn can help to uncover the
hidden dynamics of human health, has given a unique avor to this eld. This is especially true
with the new worldwide e ort for prediction and early diagnosis of health problems through e-
health devices. Within the context of this thesis new techniques have been proposed to deal with
real-life recording and signal processing settings, an issue that has become more highlighted with
the rise of portable health monitoring.

The main focus of this dissertation was to develop fundamental yet necessary techniques
that can perform at the same level as those proposed for clinical settings, but in portable health
monitoring scenarios. The challenge in this task lies in perturbations that are constantly present
in these conditions, making it cumbersome to perform reliable signal processing, while o ering
low complexity techniques.

The majority of biomedical data recorded today is that of the electrical activities of the he-
art. Representing depolarization and repolarization of heart muscles, ECGs uncover much about
the cardiac health and therefore, its continuous monitoring can help identifying people who are
prone or who are at early stages of cardiac problems. Chapter 2 of this dissertation is dedicated
to introduce human cardiac physiology. Throughout this chapter, a general description of human
heart anatomy and its electrical conduction system is provided. The autonomous nervous system
and its subbranches, the sympathetic and parasympathetic nervous systems, are described and
their e ect on cardiac cycle regulation is demonstrated. The normal cardiac cycle is described
with details on how each part of the electrical conduction system contributes to this cycle. Va-
rious common cardiac arrhythmias, studied throughout this manuscript, are also described with
details on their cause and how they manifest in the ECG.

Due to its undeniable importance, there has been an especial focus on the ECG signal pro-
cessing throughout this dissertation. Within the context of this manuscript, two low-complexity
methods are proposed to robustly detect QRS complexes in the ECG. One that performs QRS-
ducial point extraction and delineation alongside the detection of QRS complexes, using time
and morphological attributes of heartbeats. The other scrutinizes ECGs for local surges of energy
and extracts QRS complexes by analyzing the ratio between the relative short- and long-term sig-
nal powers. Both methods were assessed against standard ECG databases with results suggesting
better or comparable performance in comparison with the state-of-the-art.

Another important issue addressed in this dissertation is the question of signal quality. No-
wadays, most portable monitoring devices can record several bio-signals such as PPG alongside
the ECG. While both bio-signals can be used to determine important measures such as the heart
rate, one cannot rely on the results, if various values are obtained from di erent sources. Ha-
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ving a measure of signal quality however, can help alleviate this issue by determining which
(or whether a) source can be used to derive reliable measures. In Chapter 4 of this disserta-
tion it is shown that multi-modal signal processing can signi cantly improve the performance of
bedside monitoring devices in the ICU. Through processing bio-signals such as ECGs, arterial
blood pressure values and PPG signals, a framework was proposed to detect extreme cardiac
arrhythmias namely, asystole, tachycardia, bradycardia, ventricular tachycardia, and ventricular
utter/ brillation. Although a signi cant improvement in false arrhythmia detection was achie-

ved in Chapter 4, the processing of certain arrhythmias required a moderate to good quality of
the available signals. For instance, in case of tachycardia, only 51% of available signals were
processed as the unprocessed portion did not have acceptable qualities.

However, when it comes to ECG signal quality assessment, the state-of-the-art has not fully
addressed this issue. In fact, for the aforementioned example, all ECG signals were discarded
as visual inspection showed that several ECGs did not present acceptable quality. As some
recordings did o er good quality ECGs, one could improve the overall arrhythmia detection
performance by analyzing the ECG channels, given that a measure of ECG signal quality was
available. To this end, in Chaptér 6 a continuous ECG signal quality assessment technique was
proposed. In this technique, the ECG is cleaned and compared back to the original in order to
obtain ECG signal quality index. The method was tested against various types of noise, and was
able to provide a reliable measure of quality against a speci ¢ (or a combination of) noise types.

On the other hand, one must not forget the new horizons that are made possible with the
advent of portable monitoring devices. Nowadays e-health monitoring devices can record physi-
ological data over long spans of time. This opens new possibilities such sleep study and quality
assessment, which today are only possible through polysomnography recordings. In fact, Chap-
ter:7 de nes and analyzes a U-shaped phenomenon that take place in the RR-intervals during
sleep. In this chapter, statistical characteristics of these patterns alongside their correlation with
movement event during sleep are studied. Furthermore, it is shown that in conditions such as
over-training and sleep deprivation the inter-subject number of these patterns can signi cantly
change. In the end, what makes these new technologies appealing, is their potential to uncover
hidden dynamics of human health. Dynamics that are not possible to unravel through conventio-
nal short-term analysis, but over a span of days and hopefully someday months and years.

In the remainder of this chapter, the summary of achievements and perspectives of this dis-
sertation is provided.

8.1 Summary of achievements

Adaptive mathematical morphology for ECG heartbeat detection
and delineation

Chapter 3 proposes a novel technique for QRS-complex detection and delineation, called
adaptive mathematical morphology (AMM). This approach is based on mathematical morpho-
logy lters that manipulate the input signal with a morphological template called the structuring
element. Although, mathematical morphology has been used in the literature to detect QRS-
complexes, using a xed structuring element brings detection disadvantages as the shape, size
and length of these complexes vary over time. The proposed technique uses an adaptive struc-
turing element, which is updated after the detection of a heartbeat, using morphological features
of the extracted beat. By performing this update, not only one can achieve a robust detection of
QRS-complexes, but can extract QRS ducial points namely, QRS-onset, QRS-0 set, Q-wave,
and S-waves. The algorithm was tested on the Physionet MIT-BIH arrhythmia database as well
as a portable ECG database, for which QRS-complex detection performances were better or com-
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parable to that of the state-of-the-art. Furthermore, to evaluate the QRS ducial point delineation
performance, the Physionet QTDB was used as the manual delineation annotations (provided
by cardiologists) were available. In this chapter the reliability of the proposed method is illus-
trated by demonstrating the algorithm performance on several bad quality scenarios for which
QRS-complex detection is not easy. Furthermore, it was observed that for signals with high
perturbations, the ducial point extraction will su er in terms of accuracy.

On adi erent but related topic, AMM was adapted for atrial activity detection in intra-cardiac
electrograms. Using the same adaptation principle as that of QRS-complex detection, AMM was
able to outperform the state-of-the-art and e ciently detect atrial activations. Having a robust
detection on these activations can help to predict the ablation outcome of patients su ering from
persistent atrial brillation.

Multimodal bio-signal processing and arrhythmia detection

Chaptet'4 presents a novel technique for the reduction of false arrhythmia alarms in intensive
care units. This multi-modal signal processing techniques analyze ECG, PPG, and blood pressure
signals in parallel to determine the veracity of life-threatening arrhythmia alarms. A total of
ve arrhythmia classes were considered namely, asystole, tachycardia, bradycardia, ventricular
tachycardia, and ventricular utter/ brillation. Using a series of techniques, each arrhythmia
alarm was processed slightly di erently for veracity analysis.

Heartbeat detection was performed using the adaptive mathematical morphology technique
presented in Chaptét 3. For pulsatile waveforms, heart rate was determined using adaptive fre-
guency tracking on original and smoothed versions of available PPG and blood pressure signals.
Another novelty in this scheme was the use of spectral purity index. This simple yet e ective
index measures how well a signal of interest can be represented with a single sinusoid. This is es-
pecially interesting for ventricular arrhythmias, during which the cardiac cycle looses its normal
characteristics and present oscillatory behavior.

The proposed scheme was able to e ciently reduce the number of false arrhythmia alarms,
outperforming other methods participating in the Physionet/CinC 2015 challenge. Moreover,
although machine learning approaches were utilized in the scheme, for arrhythmia analysis, most
thresholds were set based on physiological constraints and arrhythmia de nitions. This allows
for the method to be less biased to the training data and therefore, avoids over- tting.

Short-term event extraction in biomedical signals

A major contribution of this dissertation was the development of a novel method to extract
short-term events from bio-signals, called the relative energy algorithm. As described in Chapter
5, this non-linear technique uses a few intuitive parameters for event extraction: a short-window
parameter representing roughly the duration of the sought event, a long-window parameter, re-
presenting the signal baseline, i.e. event adjacent information, and an exponent that determi-
nes noise sensitivity of the algorithm. Furthermore, relative energy can use smoothing window
functions such as the Hamming one to avoid spurious event extraction. Using these parameters,
in a sliding window, a coe cient vector is created by computing the ratio between short- and
long-term signal energies. The coe cient vector is then multiplied by the original ECG, heigh-
tening the events of interest. Relative energy is simple to compute and computationally uncostly.
While o ering these advantages, one can easily and intuitively de ne its parameters, which as
shown in Chapter:5, do not drastically a ect the overall event extraction performance around
optimal values.

Relative energy was evaluated on three di erent biomedical signal processing settings. First,
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it was used for QRS-complex detection in the ECG, for which it outperformed AMM and most
state-of-the-art techniques. Then, K-complex detection in the EEG was studied. While the state-
of-the-art were based on machine learning techniques, the proposed method exceeded their de-
tection performance. Finally, relative energy was used to extract heartbeats from imaging PPG
recordings. IPPG is an up and coming topic in biomedical signal processing with state-of-the-art
dedicated to derive robust blood volume variation signals from normal or infrared cameras. In
this application relative energy was used to enhance the peakiness of IPPG waveforms, which
in turn led to better heartbeat detection accuracy. The proposed method was e ciently able to
detect heartbeats, outperforming conventional methods.

ECG signal quality assessment

Relative energy is not limited to event extraction schemes. As shown in Chapter 6, this algo-
rithm was used to develop a continuous measure of ECG signal quality. Determining the quality
of ECGs can be especially challenging as di erent perturbations a ect the ECG di erently. On
the other hand noise is not easy to de ne, making it harder to measure. In order to have a me-
asure of signal quality, the input ECG is rst passed through relative energy for QRS-complex
extraction. After the detection and removal of these complexes, the residue signal is bandpass
Itered so that the output re ect typical ventricular information. Subsequently, the removed com-
plexes are added back to the Itered signal to create a cleaner version of the ECG. Finally, ECG
signal quality is obtained by calculating the correlation coe cient between the original ECG and
the clean signal.

Although, this measure is easy to compute, results suggest it can e ciently determine ECG
quality. The proposed index was tested against isolated and combined noise types. More speci-
cally, baseline wander, electrode motion artifact, muscle activity, and their possible combinati-
ons. The presented quality measure e ectively managed to estimate the quality, separating low-,
mid-, and high-levels of noise. The scheme was evaluated against the MITDB noise-stress data-
base, clean 5-min MITDB arrhythmia database recordings with added calibrated noise, as well
as the Physionet/CinC 2011 database. With a clear advantage of o ering continuous measure of
signal quality, the proposed method managed to outperform the state-of-the-art participating in
the Physionet/CinC 2011 challenge.

To the best of our knowledge, the proposed index is the rst technique to o er continuous
non-binary measure of ECG signal quality. Furthermore, unlike the participating Physionet/CinC
2011 techniques, no machine learning was performed to determine the signal quality, bringing
forth clear advantages such as duration, and data independence.

U-patterns during sleep studies

Another interesting application of relative energy was the detection of U-shaped patterns
from the RR-intervals during sleep. This phenomenon has not been addressed in the state-of-
the-art to a meaningful degree. As pointed out in Chédpter 7, some studies in the literature have
indirectly observed this phenomenon, but none has been dedicated to analyzing them. These
U-shape patterns in the RR-intervals manifest as a decrease followed by an increase in the RR-
interval time series that last from 20 to 40 seconds and with a minimum drop of 15% in the local
RR-intervals mean value.

By analyzing data from a study with the purpose of understanding the e ect of physical and
mental stress on humans, U-patterns were extracted from night-long polysomnography recor-
dings as well as portable monitoring devices, which were able to provide robust RR-intervals.
U-patterns were extracted using the relative energy algorithm and their statistical characteris-
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tics such as duration and depth mean and standard deviation were reported. Furthermore, the
frequency of these patterns were analyzed. Results suggest that there is a signi cant di erence
between the number of these patterns alongside their duration and depth when comparing base-
line conditions to sleep deprivation (and in recovery).

On the other hand, observations on ECG channels showed that most of these U-patterns
maybe due to movement during sleep, as moderate to high levels of EMG noise were visible. To
this end, the possible correlation between movement events (also extracted using relative energy)
and U-patterns was investigated. Results show there is a moderate correlation between U-patterns
and movement during sleep. Moreover, by analyzing correlated U-pattern/movement events,
it was revealed that U-patterns initiate movement events, and are terminated after movement
phases.

8.2 Perspectives

Heartbeat classi cation and arrhythmia detection

There have been studies in the literature that suggest that, once reliable delineation of the
QRS-complex is available, the task of heartbeat classi cation and subsequently arrhythmia de-
tection can be e ciently carried out [2=5]. The adaptive mathematical morphology techni-
que presented in this thesis (see Chapter 3) provides an e cient framework to delineate QRS-
complexes. As suggested by the work of De Chazal et al., RR-intervals and morphological
features can be used to train an e cient heartbeat classi cation madel:[2, 3]. In turn, by per-
forming sequential analysis on consecutive heartbeats, on can simply identify heart rhythm and
sequential arrhythmias.

Application of the relative energy algorithm to other bio-signals

Throughout this dissertation, prowess of the relative energy algorithm has been demonstra-
ted. Indeed, this algorithm o ers low computation cost and is easy to implement in portable
monitoring devices. ECG QRS-complex detection, EEG K-complex detection, IPPG heartbeat
detection, U-pattern and RR-accelerations are some of the applications of this algorithm. When
it comes to event extraction, relative energy can potentially be implemented as long as the event
of interest can be described by a local surge of energy in the signal.

Ventricular activity cancellation in the ECG

In Chaptet'6, the rst step to compute ECG quality index is by removing QRS-complexes
from the ECG. A task which is carried out by the relative energy algorithm. Although, the
empirically chosen parameters lead to a good QRS-complex cancellation, they do not necessarily
represent the best parameters for all heartbeat types. Especially in case of premature ventricular
beats that have uncommon morphology. Therefore, a possible perspective would be to perform
a systematic analysis to nd the optimal heartbeat canceling parameters for speci ¢ heartbeat
types. Moreover, it would be interesting to nd out how di erent the value of these parameters
would be. Would they be only slightly di erent from other types of heartbeats or is the di erence
signi cant? The optimum parameters can be obtained by performing a grid search on short- and
long-window durations, exponent, and the threshold used to cancel QRS-complexes.
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Further studies on U-patterns

The study of U-pattern performed through this dissertation can be complemented in several
ways. First, as polysomnography recordings provide EEG channels, one can extract di erent
brain waves, i.e. alpha, beta, theta, etc., and study the possible correlation between U-patterns
and these waves. Another interesting direction would be to explore the correlation between these
patterns and sleep stages. For instance K-complexes and sleep spindles can be used to detect non
rapid eye movement stages of sleep. Could there be a possible correlation between U-patterns,
micro arousals and sleep stages? On a di erent but related application, one can complement
the study of U-patterns and their correlation with movement events by obtaining more sensory
information from trunk and limbs. In Chaptér 7, movement events were obtained by extracting
high-frequency activities from the available data. In this case, no information on limb movements
was available for analysis.
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Adaptive Frequency
Tracking

This appendix provides and introduction to adaptive frequency tracking algorithms used in

multi-signal extensions.

A.1 The Concept of Instantaneous Frequency

Frequency is de ned as the number of oscillations observed per unit of time. However, many
processes are non-stationary, i.e. processes with time-varying mean, correlation function, and
higher-order moments [141], and subsequently their spectral characteristics vary over time. The
concept of instantaneous frequency is useful for these processes, as it re ects the frequency at a
given time. In order to de ne the instantaneous frequency, an introduction to the concept of the
analytic signal is needed. The analytic sigrgl) is a complex signal de ned as:

Xa(t) = X(t) + ixn(t) (A1)

with x,(t), the Hilbert transform ok(t). The Hilbert transform is a linear operator, which can
be expressed as the convolution of the input sigland the impulse response of a quadrature
Iter. The quadrature lter can be seen as an all pass lter providing a phase shiff2of
radians for positive frequency components a@dadians for negative frequency components.
Therefore, its frequency response is:

i; <!l< 0
0; !'=0 (A.2)
jj 0<!<

HEe" )=
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Moreover, its corresponding impulse response is:

h(t) = % (A.3)

1. The content of this appendix is taken from the work of Sibylle Fallet (ASPG), with permission, entitled as 'Signal
Processing Techniques for Cardiovascular Monitoring Applications Using Conventional and Video-based Photoplet-
hysmography’, thesis director Dr. J.M. Vesin.
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The Hilbert transform is the response of the quadrature lter to a real input sifnal

Zl
w®=x® hy=1 X (A4)

When dealing with discrete-time systems, the impulse response of equation A.3 becomes:

8
22, foroddn
hin] 0. for evenn (A.5)

In practice, the Hilbert Iter can be approximated with a nite impulse response (FIR) lter.
A more detailed explanation of the Hilbert transform and design of Hilbert Transformers can be
found in [256].

In order to introduce the notions of instantaneous amplitude and frequency, the analytic signal
can be expressed in polar coordinates as follows:

Xa(t) = A()el ©) (A.6)

with A(t) = jxa(t)j, the instantaneous amplitude aftd) = arg(xa(t)), the instantaneous phase.
The instantaneous angular frequency is de ned as the time derivative of the unwrapped phase:

_d@)
It) = ot

Although the instantaneous frequency can be obtained by di erentiating the instantaneous
phase, this approach requires the oscillation to be narrow-band to lead to meaningful results.
This method is therefore not well suited for biomedical signals, which are often characterized by
more than one frequency component.

(A7)

A.2 Adaptive Frequency Tracking

Throughout this appendix, the term adaptive frequency tracking will refer to methods based
on adaptive band-pass (BP) Iters designed to track time-varying oscillations contained in the
input signal.

FIR adaptive line enhancers have been previously used in adaptive frequency tracking [257—
259]. Although good performances were achieved, observed convergence rates were rather slow.
On the other hand, adaptive in nite impulse response (IIR) BP lters have a faster convergence
rate. Dierent schemes based on adaptive IIR Iters have been proposed to perform adaptive
frequency tracking, with two main types of adaptive mechanisms: non-gradient updating and
mean square error (MSE) [260-264]. A new type of coe cient updating mechanism based on the
discrete oscillator model was proposed by Liao [143]. This coe cient updating mechanism has
the advantage of having a low computational complexity and being independent of the structure

gorithms. These algorithms, derived from the algorithms proposed by Liao [143], have been
extended by former PhD researcﬁ%:?{mf the applied signal processing group from the Swiss
federal institute of technology (EPFL).[144, 265—-267]. The multi-signal versions of these al-
gorithms take several oscillatory input signals and track their common instantaneous frequency

2. Y. Prudat, J.-M. Vesin (Dir.)Adaptive frequency tracking and application to biomedical sign&BD Thesis
EPFL, 1? 4447 (2009).

3. J. Van Zaen, J.-M. Vesin (Dir.E cient Schemes for Adaptive Frequency Tracking and their Relevance for EEG
and ECG.PhD Thesis EPFL,5476 (2012).
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Figure A.1 — General con guration of the adaptive band-pass Iter proposed in [143].

component. In the biomedical signal processing, it is quite frequent to obtain redundant infor-
mation across the sensors. Therefore, as illustrated in Chapter 4, these tools have revealed to
be very useful. Moreover, the signal combination often results in a more robust estimation than
when a single input is provided.

A.2.1 OSC-MSE Algorithm

The discrete oscillator-based adaptive BP lter was proposed by Lijao [143]. An input signal
of the following form is considered:

x[n] = s[n] + b[n] (A.8)

with s[n], a sinusoid of the forns[n] = Agsin(! on+ () andb[n], an additive independent and
identically distributed noise. The transfer function of the time-varying BP Iter is expressed as
follows:

1 27

2 1 [n@+)zt+ z2
with [n], controlling the central frequency of the BP Iter and (O < 1), a factor related

to the lter bandwidth. The adaptive mechanism used to update the central frequency of the
BP lter of equationt A.9 at each time step requires the minimization of an MSE term, which is
derived from the real discrete oscillator equation described as:

H(z;n) = 1 (A.9)

s[n]=2cos(lg)s[n 1] sn 2]=2 gs[n 1] s[h 2] (A.10)
with o = cos(! o). As illustrated in Figure A1, the Iter outpu[n], is used in the adaptive
mechanismy[n] is de ned by the following di erence equation:

ylnl= @+ )[nlyln 1] y[h 2]+ 12 (xIn] x[n 2] (A.11)

The following cost function can be derived from equafion A.10:

J(n)IEn(y[n] 2[n +1Jy[n 1]+y[n 2])20 (A.12)

The optimal value of the adaptive parameteran be found by setting to zero the derivative of
this cost function, with respect tn + 1]. This leads to the following expression fgn + 1]:

Efyin  1](y[n] +yIn 2])g
2Ef(y[n  1])*g
which can be recursively estimated in practice using an exponentially weighted time-average:

_ Qln]
2P[n]

[n + l] = (A13)

[n +1]

(A.14)
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with

Qnl= Qn 1]+(1 )y[n 1)(y[n]+y[n 2]
Pln]= P[n 1]+ )yln 1))? (A.15)

where the convergence rate can be adjusted with a forgetting fagtimally, the instantaneous
frequencyl[n + 1] is de ned as:

IIn + 1] = arccos([n+ 1]) (A.16)

Figure A.2 shows the amplitude and phase responses of the BP Iter described by the transfer
function of equation’A.9, for di erent values of theparameter and for = cos(0:5). A value
of closer to one entails a narrower lter.

Figure A.2 — Amplitude and phase responses of the BP Iter used in the OSC-MSE algorithm
(see equation A;9), for di erent values of

Multi-signal Extension (OSC-MSE-W)

The OSC-MSE adaptive frequency tracking scheme has been extended to the multivariate
case, in order to track the common frequency component presthtriput signals:[144, 265].
In this multi-signal extension, referred to as OSC-MSE-W, the same BP lIter is used on each
signal to compute individual updates and frequency estimates, similarly to the univariate case.
Then, the update of the center frequency of the Iter is computed as a weighted average of the
individual update estimates. The computation of the weiglitss based on the minimization of
the variance of the linear combination of the individual instantaneous frequency estimates. The
recursive estimates of the variances of the input siggatnd output signalg, (m=1,...,M) are
rst computed using the following equations

Synln] = Symln 1+ (1 i(ymln] 2[Mlymln 1+yuln 2)7
Sxnln] = Sxmln 1+ (1 )j XmlN]j? (A.17)
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with , a forgetting factor. The computation of the weights is given by

_SynfN]=Syml]

Win[n] = (A.18)
T salnl=s,in]
Finally, the global instantaneous frequency estimate is de ned as
U
! global[n] = Wm[n] m[n] (A-lg)
m=1

with  [n] (m=1,...,M), the individual frequency estimates. The scheme in Figure A.3 shows the
con guration of the multi-signal adaptive frequency tracker.

vill [ Adaptive

xa[n] >l Mechanism
%oln] III3IF§ yaAn] [ Adaptive
o[N] ——> > .
Aticer Mechanism

ym[n] : Adaptive
7 Mechanism

Xm[n] ——>

Figure A.3 — Con guration of the multi-signal adaptive frequency tracker (OSC-MSE-W).

A.2.2 0OSC-MSEc Algorithm

This algorithm, previously described in [145, 265], was derived from the discrete oscillator
based adaptive notch Iter proposed by Liao [143]. In this case, the input signals is de ned as:

X[n] = c[n] + v[n] (A.20)

with c[n] = Agel' o" a cisoid, withAy and!  its complex amplitude and frequency, avid], an
additive centered complex noise. The transfer function of the time-varying single pole BP Iter
used in this algorithm is expressed as follows:

G(z;n) = 1 1 (A.21)

elnl 21
with !(n), the normalized instantaneous frequency estimate ag@ < 1), afactor related
to the bandwidth of the Iter. The adaptive mechanism used to update the central frequency of
the BP lter described in equation A.21 requires at each time step the minimization of a cost

function, which is derived from the complex oscillator equation:
c[n]=¢€'ocn 1] (A.22)

By considering an input signal consisting of a complex sinusoid corrupted by a complex interfe-

y[n]= [nly[n 1]+ [n] (A.23)
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with [n], the error term and[n] = e/l"l . A minimization of the MSE leads to the following
expression for[n]:

_ Elyinly(n 1)]
which in practice can be recursively estimated as:
‘= QM QU+ )yinyin 1] (A25)

~ PNl Pl 1]+ )iyln 1]

where the convergence rate can be adjusted with a forgetting fa¢for < 1). Finally, the
instantaneous frequency estimit® is de ned as:

Al
IIn] =arg ﬂ (A.26)
j [n]j
Figure A.4 shows the amplitude and phase response of the BP Iter of the OSC-MSEc algorithm,
for di erent values of . It should be mentioned that, in practice, most of the signals are real-
valued. In that case, the analytic representation of the signal, computed with the discrete Hilbert
transform, is provided as input to the OSC-MSEc algorithm.

Figure A.4 — Amplitude and phase response of the BP Iter of the OSC-MSEc algorithm, for
di erent values of .

Multi-signal Extension (OSC-MSEc-W)

Similarly to the OSC-MSE algorithm, the OSC-MSEc algorithm has been extended to the
multivariate case in order to track the common frequency component presihtriput sig-
nals [144; 265]. In this multi-signal extension, referred to as OSC-MSEc-W, the same BP lter
is applied to each signal to compute individual updates and frequency estimates, similarly to
the univariate case. Then, the update of the Iter central frequency is computed as a weighted
average of the individual update estimates. The computation of the w#ighis based on the
minimization of the variance of the linear combination of the individual instantaneous frequency
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estimates. The recursive estimates of the variances of inputs signalsd output signalgm

(m=1,...,M) are rst computed using through:

Synln] = Syaln 1]+ (@ )iymnli®
Sl = Sxmln 1+ (1 )j mlnli®
The weights are computed as:

nSxm[n]zsym[n]
i i'f1 Sxi[n]:Syi[n]

Wy[n] =

Finally, the global instantaneous frequency estimate is de ned as:

b
IIn] = Whln]! m[n]

m=1

(A.27)

(A.28)

(A.29)






Classi er Evaluation and
Ensemble of Classi ers

B.1 Evaluation of Classi ers

Machine learning is the study of models that can learn from input instances (known as trai-
ning data), and subsequently make prediction on unseen instances (known as testing or prediction
data). Having built a prediction model, commonly referred to as classi er, one can evaluate its
performance by comparing classi er predictions with the actual testing data. In a two-class
(known as binary) problem, the training data is divided into positive and negative classes. The
positive class usually represents the instances for which the model is being created. For instance,
in an HIV test, instances representing the HIV class are considered as members of the positive
class whereas all other instances are considered as members of the negative class. Based on the
predictions made by the classi er, instances can belong to one of the following categories:

True Positive (TP): Instances that belong to the positive class and classi ed as such.

False Positive (FP)known as the type | error, represent instances that belong to the po-
sitive class but classi ed as a member of the negative class.

True Negative (TN): Instances that belong to the negative class and classi ed as such.

False Negative (FN)known as the type Il error, represent instances that belong to the
negative class but classi ed as a member of the positive class.

A confusion matrix (also known as the contingency table) is usually used to visualize of the
performance of a speci c classi er, as illustrated in Table B.1.

Table B.1 — Confusion matrix of hypothetical model trained for a binary classi cation problem.

Actual Class

+ -

False Positive
Type | Error

+ | True Positive

Predicted Class False Negative .
- True negative
Type Il Error
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By closely studying the TP, FP, TN, and FN, one can evaluate the performance of a trained
model. Over the years, several conventional metrics have been used in the literature, the most
common ones are reviewed next.

Sensitivity (Se), also known as recall and the true positive rate (TPR), represents the
number of instances that were classi ed as positive, which were indeed members of the
positive class. In other words, this measure can be interpreted as the probability of a

test to be positive given that the sample belong to the positive class. Se can therefore be
calculated as,

TP
TP+FN
Speci city (SPC), also known as the true negative rate (TNR), is the proportion of in-

stances that belong to the negative class and are classi ed as such. SPC calculates the
same measure as Se, but for the negative class. SPC is calculated through,

Sensitivity (S ek (B.1)

TN
TN+ FP

Positive Prediction Value (PPV), also known as precision, studies how reliable the clas-
si eris, in case the prediction is positive for an input sample. PPV is obtained as,

Speci city (SPQO = (B.2)

.. - TP
Positive Prediction ValueRPV) = TPiEP

Negative Prediction Value (NPV)studies how reliable the classi er is, in case the pre-
diction is negative for an input sample. NPV is obtained as follows:

(B.3)

TN
N ive Prediction Val PV)= ————— B.4
egative Prediction Value\PV) TN+ EN (B.4)
Accuracy (ACC) is the fraction of test samples that are correctly predicted. ACC is me-
asured as,
TP+ TN
Accuracy ACC) = (B.5)

TP+FP+TN+FN

Detection Error Rate (DER) represents the fraction of test samples that are incorrectly
predicted. DER is de ned as,

FP+FN
TP+FP+TN+FN

ACC and DER are simple statistics that report the overall performance of the trained clas-
si er. Although these measures are intuitive and easy to calculate, they cannot provide reliable
evaluation of the trained model in case the training data is unbalanced, i.e. one class has sig-
ni cantly more samples compared to the other. Let us assume a hypothetical machine learning
scenario for which 95% of the dataset is comprised of the positive class (5% negative). If the trai-
ned model classi es all input instances as members of the positive class, the nal accuracy of the
model is 0.95 (DER is 0.05). Therefore, one needs to study Se and PPV alongside ACC in order
to perform a good performance evaluation. Alternatively, one can use the F-score (also known as
F-measure), which evaluates the classi er by studying Se and PPV. F-score is calculated through,

Detection Error RatefER)=1 ACC=

(B.6)

PPV Se

F =@+ 2)ma

(B.7)
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where is the parameter that determines the relative weights of Se and PPV. It is common to
compute the F-score with = 1, which represents the balanced F-score. This harmonic mean
between Se and PPV is known as the F1-score,

__ PPV Se
- “PPV+Se

Over the years, several other metrics such as the Phi and Matthews correlation coe cients
have been proposed in the literature in order to take other important factors such as the true
negative rate into consideration. Further information on these metrics can be found.in [268,
269]. In the context of this dissertation, only two-class machine learning techniques are studied,
methods described in this appendix covers binary classi cation evaluation. More information on
multi-class performance evaluation can be found in 269, 270].

F1 (B.8)

B.2 Classi er Combination: Selection and Fusion

Over the pas decades, the idea of training multiple classi ers and combining them to obtain
the desired output has gained momentum. Multi expert (classi er) techniques can be categorized
into two sub-branches, namely selection and fusion. Consider a hypothetical problem in which
some classi ers outperform others at speci ¢ tasks, but their overall performance does not. For
instance, imagine a classi cation problem in which the goal is to identify cats and dogs, and that
we have created two classi er€; andC,, from the training set. Assume th@i outperforms
C, but does not perform well for small-sized cats and dogs. On the other Barmkrfectly
separates small cats and dogs but does poorly otherwise. In this cas€wisarsed for small-
sized inputs whileC; is used otherwise, the overall prediction performance improves. In this
way the classi cation task is broken into two subspaces, wligrperforms better in one while
C; in the other. This combination technique is referred to as classi cation selection. Figure B.1
illustrates an example fusion technique with four classi ers.

Figure B.1 — An example classi er selection technique illustrated in a two attribute subspace. All
four classi ers Cy; Cy; Cs; andC,) work in coherence, each acting as the expert in its respective
subspace.
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Another technique to combine classi ers is through classi er fusion. In this scheciassi-
ers with low bias and high variance are created separately on the training set and their respective

work used to create typical fusion of classi ers.

Figure B.2 — Typical framework of classi er fusion. In order to obtain the nal predictiBp)(
for an input instance, the predicted labe{ (P,; :::;P,) for each trained classi er<);; Cy; :::;Cp)
taken into account.

Various voting techniques can be used in classi er fusion, details of which are described as
follows.

Majority Voting is the simplest yet most common voting scheme. As suggested by its
name, the prediction label in this scheme is selected as the label that has been predicted
by majority of the trained classi ers, i.e statistical mode of the prediction labels.

Weighted Majority Voting works similarly to majority voting, however the predictions
made by classi ers are weighted, with some classi ers (the better performing and more
complex ones) having greater in uence in label prediction.

Optimistic Voting. In this scheme the nal prediction label is considered as positive, if
at least one of the trained classi ers prediction is as such.

Pessimistic Voting, also known as unanimous voting, is an scheme in which the nal
prediction label is considered as positive, if the trained classi ers unanimously predict as
such.
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B.3 The Wisdom of Crowds

The wisdom of crowds. [271, 272] is a theory suggesting that given the right conditions,
large groups of average people are smarter than a few elite experts. There are four necessary
conditions for a crowd to be considered as wise. First, the rule of independence, which states
people's opinion should not be in uenced by others. Second, the rule of decentralization, stating
people should be able to draw their opinion based on their expertise. Third, the diversity of
opinion, meaning people should have some information on the problem. Finally, the aggregation
rule, which is a scheme to combine the crowd's opinion to obtain a nal decision.

Implementation of the wisdom of crowds in machine learning is somewhat di cult, even
though the aggregation and independence rules are naturally implemented when combining clas-
si ers. Decentralization is also not hard to implement. This rule states that members of an
ensemble of classi ers should perform prediction based on di erent specialties (expertise). Alt-
hough meta algorithms such as bagging, boosting, rotation forest, and etc. can have numerous
base classi ers, in their implementation all base classi ers are essentially the same and are only
exposed to di erent training data [269]. Nevertheless, in machine learning, decentralization can
be carried out by training predictors of di erent natures, for instance a support vector machine,

a decision tree, along side a multi-layer perceptron neural network. Furthermore, if accurate
enough classi ers are created, one does not need numerous models to reach reliable predictions.
The di culty in the implementation of wisdom of crowd lies in the diversity of opinion. When
creating classi ers, several attributes (features) are extracted from the training data. for the di-
versity rule to carry out, classi ers need to be trained on di erent features which in practice does
not make sense as they can improve the performance of other train classi ers. Moreover, often
features can be unintuitive to extract and therefore, are de ned by the expert in the eld of the
study.

The implementation of wisdom of crowds, however, is notimpossible. As pointed out Section
4.4, during the false alarm detection Physionet/CinC challenge, the organizers took the top per-
forming algorithms and created a meta-algorithm, which obtained an accuracy higher than that
of any individual algorithm. The diversity of opinion rule was perfectly met as di erent chal-
lengers used di erent features to train their classi ers. This can be considered as an example
implementation of wisdom of crowds, as all four rules were applied.






Further Results on
Instantaneous Signal
Quality Index

This appendix reports more detailed results on the correlation between the calculated instan-
taneous signal quality index and the instantaneous signal-to-noise ratio reported in Chapter 6,
Table6.4.

Figure C.1 — The correlation coe cient between instantaneous signal quality index and instanta-
neous signal-to-noise ratio. Tested against baseline wander.
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Figure C.2 — The correlation coe cient between instantaneous signal quality index and instanta-
neous signal-to-noise ratio. Tested against EMG noise.

Figure C.3 — The correlation coe cient between instantaneous signal quality index and instanta-
neous signal-to-noise ratio. Tested against electrode motion artifact.
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Figure C.4 — The correlation coe cient between instantaneous signal quality index and instanta-
neous signal-to-noise ratio. Tested against baseline wanelectrode motion artifact.

Figure C.5 — The correlation coe cient between instantaneous signal quality index and instanta-
neous signal-to-noise ratio. Tested against baseline wenB®G noise.
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Figure C.6 — The correlation coe cient between instantaneous signal quality index and instanta-
neous signal-to-noise ratio. Tested against EMG neistectrode motion artifact.

Figure C.7 — The correlation coe cient between instantaneous signal quality index and instan-
taneous signal-to-noise ratio. Tested against baseline wanB®G noise+ electrode motion
artifact.



Further Results on
U-patterns

D.1 Statistical Characteristics of U-patters

D.1.1 The Over-training Study

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Baseline 1.27|121| 1.27| 1.16| 1.34| 0.69| 097 | 1.07| 1.62| 1.21| 1.05| 2.97| 0.8 | 1.15| 0.81

Over-training | 1.42| 1.04| 1.29| 1.0 | 1.14] 101| 097|087 | 189| 1.1 | 1.2 | 1.89| 1.06| 1.22| 0.93

Recovery 1.31]146|135|097|1.25| 09 |1.08|0.88| 1.49| 1.24|1.25|1.08| 0.74| 1.15| 1.43

Table D.1 — Frequency (in mHz) of the detected U-patterns for each subject and for di erent
over-training phases. The frequency was computed as the ratio of the number of U-patterns by
the total duration of the RR-intervals.

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Baseline 228 20.1|21.7|21.7| 222| 225|206 | 23.7| 27.8| 24.8 | 26.7| 258 | 24.7| 22.4| 21.0

Over-training | 24.9 | 20.6 | 21.7 | 21.0 | 22.4| 22.8 | 22.5| 24.3| 24.7| 23.3| 23.9| 26.3| 22.6 | 225| 21.3

Recovery 229|210 21.7|21.8|229|225| 214|254 | 25.0| 23.6| 23.4| 27.0| 27.4| 20.9 | 24.0

Table D.2 — Mean duration (in s) of the detected U-patterns for each subject and for di erent
over-training phases.

Subject 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15

Baseline 619 | 723 | 619 | 515| 587 | 411 | 604 | 471 | 333 | 351 | 459 | 266 | 525 | 683 | 456

Over-training | 534 | 645 | 727 | 462 | 629 | 364 | 540 | 513 | 392 | 408 | 565 | 308 | 566 | 696 | 526

Recorery 645 | 625 | 723 | 412 | 591 | 377 | 537 | 529 | 417 | 389 | 567 | 346 | 516 | 799 | 467

Table D.3 — Mean depth (in ms) of the detected U-patterns for each subject and for di erent
over-training phases.

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Baseline 2166 | 1668 | 3064 | 4126 | 7885 | 1644 | 1351 | 2202 | 3441 | 2257 | 2791 | 2336 | 2321 | 5170 | 1392

Over-training | 3686 | 2138 | 4019 | 3704 | 2405 | 1944 | 3059 | 2672 | 4190 | 2497 | 3129 | 3143 | 2543 | 5214 | 3122

Recovery 2899 | 2830 | 3155| 2730 | 516 | 1090 | 1251 | 3002 | 3941 | 2303 | 1890 | 2707 | 2984 | 5619 | 4100

Table D.4 — Mean integral (in ms.s) of the detected U-patterns for each subject and for di erent
over-training phases.
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D.1.2 The Sleep Deprivation Study

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Baseline 12 |{179]146|1.42|084| 16 | 20 | 1.53| 0.63| 1.12| 0.78 | 1.56 | 1.98 | 1.23 | 1.82

Sleep deprvation | 0.63 | 1.49| 1.94 | 0.97 | 0.67| 0.93| 1.19| 1.6 | 0.9 | 1.16| 0.79| 0.93| 2.2 | 0.93| 0.82

Sleeprecovery | 1.04| 1.66| 1.37 | 1.31| 1.01| 1.03| 0.75| 1.76 | 0.88 | 1.49| 0.82 | 1.22| 2.09 | 1.54 | 1.86

Table D.5 — Frequency (in mHz) of the detected U-patterns for each subject and for di erent
sleep deprivation phases. The frequency was computed as the ratio of the number of U-patterns
by the total duration of the RR-intervals.

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Baseline 30.0| 27.7| 26.8| 29.3| 34.9| 26.6 | 27.6 | 25.0| 33.7| 34.1| 31.9| 27.6 | 26.9 | 27.6 | 25.9

Sleep deprivation | 28.9 | 26.6 | 26.5| 29.8| 32.4| 26.9| 25.6 | 25.3| 30.7| 30.3 | 32.5| 28.3| 25.5| 28.5| 28.2

Sleep recovery | 30.7 | 26.5| 26.3 | 28.9| 27.1| 27.9| 27.6 | 25.7| 30.5| 30.1 | 31.6 | 254 | 24.1| 31.6| 26.3

Table D.6 — Mean duration (in s) of the detected U-patterns for each subject and for di erent
sleep deprivation phases.

Subject 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15

Baseline 284 | 279 | 279 | 266 | 273 | 273 | 257 | 616 | 188 | 220 | 203 | 330 | 255 | 306 | 358

Sleepdeprivation | 245 | 274 | 266 | 242 | 283 | 252 | 230 | 380 | 231 | 234 | 226 | 330 | 233 | 284 | 324

Sleeprecovery | 208 | 289 | 258 | 246 | 240 | 266 | 281 | 443 | 225 | 306 | 246 | 268 | 287 | 326 | 373

Table D.7 — Mean depth (in ms) of the detected U-patterns for each subject and for di erent sleep
deprivation phases.

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Baseline 8963 | 8024 | 7807 | 8124 | 9698 | 7451 | 7178 | 16034 | 6362 | 7693 | 6605 | 9569 | 7087 | 8634 | 9784

Sleepdeprivation | 7536 | 7644 | 7335 | 7457 | 9407 | 6884 | 6072 | 9990 | 7214 | 7162 | 7637 | 9577 | 6124 | 8547 | 9591

Sleeprecovery | 6598 | 7955 | 6981 | 7248 | 6586 | 7714 | 7849 | 11825| 7175 | 9567 | 8033 | 7169 | 7227 | 10937 | 10306

Table D.8 — Mean integral (in ms.s) of the detected U-patterns for each subject and for the
di erent sleep deprivation phases.
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D.2 Agreement Rate

Subject | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | mean std

3-EMG | 35.7| 31.1| 21.4| 39.3| 346|340| 254 | 75 | 3.2 | 242| 283| 61.7| 11.9| 21.2| 226 | 26.8 14.2

ChinC | 28.6 | 30.8| 17.2| 40.0| 30.8| 33.3| 25.0| 6.7 | 3.2 | 21.8| 28.6 | 46.5| 10.7 | 19.6 | 22.2 | 24.3 11.8

ChinL | 30.6 | 35.4| 13.2| 25.9| 22.6 | 50.0 | 145| 8.1 | N/A | 28.6| 26.2| 47.8 | 24.6 | 12.8 | 19.1 | 24.0 13.7

ChinR | 46.5| 30.6| 26.2| 21.6| 85 | 36.2| 13.1| 189| 3.3 | 19.5| 31.8| 58.3 | 22.9| 12.8| 17.4| 245 145

Thorax | 57.1| 47.2| 40.4 | N/A | 48.0| 59.1| 35.4| 58.1| 20.9| 35.7| 39.6 | 58.3 | 33.3| 32.8| 33.3| 39.9 16.0

F3 359|244)| 50 | 59| 238|529| 120|385 13.3| 17.6| 31.6| 429| 82 | 175| 9.1 | 226 14.8

F4 27.0|19.6| 143 | 43 | 236|31.9| 13.2| 23.1| 12.1| 28.1| 24.4| 45.7| N/A | 13.0| 14.0| 19.6 114

C3 349|200 73 | 11.4| 18.2| 489| 316| 179| 17.8| 30.0| 25.7| 51.1| 6.1 | 26.2| 23.4| 24.7 13.2

C4 41.7|271| 273|159 10.0| 40.4| 19.6 | 40.0| 158 | 41.0| 21.2| 386 | 3.8 | 8.9 | 22.0| 249 129

o1 225| 226|186 31.4| 308|556 | 42.2| 45.2| 18.8| 30.2| 20.4| 61.9| 9.5 | 23.4| 37.3| 314 146

02 40.0| 259 | 234 30.2| 30.8| 2.6 | 37.5| 455 16.7| 32.1| 29.1| 55.8| 8.4 | 185 27.6 | 28.3 13.7

El 415| 250| 59 | 109|148 27.1| 59 | 10.3| 34 | 194| 30.2| 476| 11.1| 21.7| 12.2| 19.1 13.1

E2 25.0| 28.6| 9.3 | 10.2| N/A | 27.1| 11.1| 109 | 4.2 | 30.6 | 31.3| 41.5| 3.9 | 12.2| 125| 17.2 123

Table D.9 — Agreement rates (in %) between U-patterns and the extracted movement events du-
ring the baseline phase. Bold elds represent maximum agreement rate across available channels.
N/A elds denote channels that were discarded due to problems.

Subject | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | mean std

3-EMG | 43.3| 11.1| 16.7| 388 | 16.0| 325| 149 | 14.7| 24.4| 33.9| 40.0| 526 | 6.1 | 184 | 30.6| 26.3 13.6

ChinC | 26.9| 8.7 | 149 17.9| 17.9| 242| 11.8| 16.1| 54 | 32.7| 17.9| 439 | 75 | 184 | 29.4| 19.6 10.4

ChinL | 45.8 | 15.9| 14.9| 429| 19.0| 31.7| 11.9| 12.3| 36.4| 39.5| 34.8| 529 | 3.3 | 6.3 | 19.4| 25.8 15.6

ChinR | 414|116 121 | 41.3| 36.7| 30.3| 6.5 | 52 | 19.4| 30.2| 348|500 9.7 | 82 | 25.6 | 24.2 1438

Thorax | 34.5| 53.2| 26.2| 58.1| 58.3| 61.3| 24.1| 33.3| 33.3| 34.7| 545| 19.2| 31.2| 154 | 38.2| 38.4 15.0

F3 143] 9.3 | 54 | 10.7| 25.9| 41.0| 24.1| 10.3| 23.3| 16.7| 13.0| 62.5| N/A | 10.5| 16.7 | 189 15.6

F4 148| 93 | 89 | 156| 8.7 | 23.7| 9.8 | 10.3| 23.8| 21.1| 30.4| 424 | 3.0 | 9.7 | 17.2| 16.6 10.3

C3 21.7|116| 105| 26.5| 15.4| 45.0| 18.2| 155| 10.3| 9.8 | 26.9| 444 | 11 | 10.0| 16.1| 189 124

C4 250|119| 9.1 | 37.1| 185| 40.0| 8.7 | 13.8| 28.8| 29.7| 39.1| 459 | 44 | 3.0 | 185| 22.2 14.0

o1 30.8| 17.4| 10.3 | 47.4| 29.6 | 42.4| 25.0| 24.6 | 27.8| 32.6 | 429| 51.4| 6.1 | 9.1 | 353 | 28.8 13.9

02 33.3|19.0| 194 | 50.0| 19.0| 48.7| 19.2| 22.8| 32.6 | 46.0| 50.0| 45.0| 19.7 | 13.2| 48.3| 324 14.2

El 120| 93 | 58 | 23.3| 316| 36.4| 16.7| 10.2| 225| 229| 21.7|459| 7.1 | 65 | 185| 19.4 1138

E2 16.7| 11.1| 9.4 | 27.3| 125| 41.2| 149| 10.2| 21.2| 32.6| 435| 294 | 9.2 | 6.3 | 22.0| 20.5 119

Table D.10 — Agreement rates (in %) between U-patterns and the extracted movement events du-
ring sleep-deprivation. Bold elds represent maximum agreement rate across available channels.
N/A elds denote channels that were discarded due to problems.

Subject | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | mean std

3-EMG | 38.1| 50.0| 16.4| 38.2| 18.8| 50.0| 30.0| 37.7| 7.5 | 12.2| 343 | 33.3| 15.6| 20.5| 20.8| 28.2 13.3

ChinC | 23.8| 46.2 | 15.3| 27.8| 20.4| 29.0| 23.1| 26.0| 12.5| 13.7| 19.2| 30.0 | 17.2| 19.6 | 23.5| 23.2 8.4

ChinL | 44.7 | 36.8| 20.0 | 34.0| 14.0| 53.6 | 25.0| 245| 6.1 | 14.0| 39.4| 25.0| 3.1 | 15.0| 22.9| 25.2 14.2

ChinR | 39.5| 47.4| 13.0| 46.9| 16.7 | 33.3| 26.7| 50.0| 189| 14.0| 28.0| 385 | 3.2 | 9.8 | 19.6 | 27.0 14.9

Thorax | 57.1| 47.6| 31.1 | 44.2| 40.5| 55.2| 46.7| 59.6 | 31.9| 42.9| 37.5| 45.0| 36.5| 35.4 | 34.0| 43.0 9.0

F3 316| 48 | 15.0| 22.2| 125| 27.6| 37.0| 21.2| 10.7| 23.3| 154 | 235| 75 | 114| 245| 19.2 9.1

F4 343| 43 |119| 7.7 | 143|214 | 16.0| 11.3| 11.5| 31.9| 14.8| 176 | N/A | 20.0| 3.8 | 147 9.6

C3 36.8| 9.1 | 125| 34.1| 14.0| 46.7| 25.0| 39.2| 129 | 18.8| 40.6| 22.2| 7.6 | 22.0| 32.7 | 249 12.6

C4 325|200 143| 298| 17.1| 32.1| 20.7| 16.0| 17.2| 22.2| 25.0| 235| 3.0 | 36.2| 46.2 | 23.7 10.5

o1 34.1| 35.0| 16.3| 41.7| 20.5| 50.0| 29.6 | 35.8| 40.6 | 28.8| 50.0| 35.0| 8.8 | 29.2| 32.7| 325 113

02 341|435| 17.0| 33.3| 24.4|50.0| 29.0| 29.4| 32.3| 31.9| 43.6| 33.3| 24.1| 37.8| 27.5| 32.7 85

El 22.2|143)|186| 195| 11.9| 22.6| 27.3| 180 | 3.7 | 19.3| 39.3| 22.2| 3.3 | 16.7| 18.2| 185 8.7

E2 33.3| 318|119 16.3| 16.3| 345| 10.3| 23.1| 25.0| 26.5| 31.0| 28.6 | 5.0 | 28.6| 20.7| 229 9.1

Table D.11 — Agreement rates (in %) between U-patterns and the extracted movement events
during recovery. Bold elds represent maximum agreement rate across available channels. N/A
elds denote channels that were discarded due to problems.
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D.3 Uncorrelated Events
D.3.1 Uncorrelated U-patterns

SleepDeprivation Study Baseline SleepDeprivation SleepRecovery
SubjectNo. No. | Percentage No. | Percentage No. | Percentage
Subject1 1 3.2 3 17.6 7 25.0
Subject2 5 11.9 12 30.0 3 16.7
Subject3 14 35.9 29 55.8 17 48.6
Subject4 10 26.3 2 7.7 2 5.7
Subject5 1 5.0 1 5.6 4 16.7
Subject6 2 5.1 1 4.0 0 0
Subject7 10 20.8 14 43.8 3 15.0
Subject8 5 14.3 24 55.8 7 15.2
Subject9 3 17.6 1 4.2 1 45
Subject10 1 4.3 4 12.9 7 17.5
Subject11 0 0 0 0 0 0
Subject12 2 5.6 3 12.0 1 8.3
Subject13 7 14.3 28 475 23 41.1
Subject14 3 9.1 9 36.0 5 13.9
Subject15 16 37.2 4 18.2 13 29.5
\ mean std [5.2 5.19]13.42 11.68] 847 9.37]22.37 18.45[6.13 6.69] 17.18 13.89]

Table D.12 — Uncorrelated U-patterns in the sleep deprivation study, w.r.t all available PSG chan-
nels. For each subject, the number and the percentage of uncorrelated U-patterns are reported.

D.3.2 Uncorrelated Movement Events

Subject | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 15 | mean std

3-EMG | 59.2| 50.0| 67.4| 45.0 | 40.0 | 39.3| 444 |83.3| 933 | 727|658 | 27.5| 588 | 63.3| 455| 57.0 17.8

ChinC | 52.0| 53.5| 66.7| 375 | 429 | 414| 44.4|87.1| 933 | 73.3| 66.7| 25.9| 53.8 | 67.6| 47.8| 56.9 18.7

ChinL | 57.1| 26.1| 66.7| 53.3 | 61.1 | 27.3 | 50.0| 40.0 | 100.0| 61.3 | 65.6 | 31.3| 69.9 | 54.5| 30.8| 53.0 19.9

ChinR | 39.4| 31.8| 57.9| 54.2 | 87.1 | 32.0| 77.6 | 22.2| 929 | 69.2| 62.2| 30.0| 64.2 | 545| 27.3| 535 225

Thorax | 31.4| 30.6 | 43.9| 100.0| 29.4 | 21.2 | 425| 24.2| 743 | 55.9| 58.7| 30.0 | 43.6 | 59.6 | 23.8 | 44.6 21.9

F3 36.4|21.4|333| 81.3 | 68.8 | 30.8| 25.0| 21.1| 76,5 | 64.7| 58.6 | 25.0| 70.6 | 50.0 | 20.0| 45.6 225

F4 37.5| 30.8| 33.3| 81.8 | 73,5 | 34.8| 41.7| 30.8| 80.0 | 50.0| 66.7 | 32.3| 100.0| 68.4 | 50.0| 54.1 22.5

C3 4441 25.0| 40.0| 545 | 79.3 | 25.8| 33.3| 36.4| 77.8 | 43.8| 62.5| 28.1| 87.2 | 45.0| 26.7| 47.3 20.7

C4 25.0| 31.6| 29.4| 46.2 0 38.2|421|238| 77.8 |50.0| 73.8| 32.0| 91.2 | 75.0| 38.9| 45.0 247

o1 52.6| 47.8| 33.3| 448 | 42,9 | 33.3|35.7| 269| 775 | 60.6| 75.0| 18.8| 84.8 | 56.0| 29.6 | 48.0 19.7

02 385|46.2| 42.1| 484 | 429 0 276 | 31.0| 815 | 64.7| 68.0| 22.6 | 87.5 | 67.7| 48.4| 47.8 23.2

El 37.0| 33.3| 80.0| 615 | 63.6 | 43.5| 50.0| 50.0| 92.3 | 65.0| 62.9| 23.1| 83.3 | 56.5| 50.0| 56.8 19.0

E2 40.0| 33.3| 50.0| 68.8 | 100.0| 40.9 | 50.0| 70.6 | 87.5 | 54.2| 64.3 | 22.7| 50.0 | 61.5| 73.3| 57.8 20.5

Table D.13 — Subject-by-subject percentage of uncorrelated peaks, with respect to the total num-
ber of peaks, baseline phase.

Subject | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | mean std

3-EMG | 50.0| 50.0 | 69.6 | 54.8 | 63.6 | 53.6 | 68.2 | 72.2| 63.0| 56.8 | 33.3| 39.4| 63.6 | 65.0| 57.7| 57.4 11.0

ChinC | 56.3| 60.0| 72.9| 65.0| 66.7 | 50.0 | 76.0 | 66.7 | 87.5| 55.3 | 61.5| 47.1| 61.5 | 65.0| 54.5| 63.1 10.4

ChinL | 38.9| 36.4| 60.0| 47.1| 42.9| 55.2 | 66.7| 68.2| 55.6 | 41.4| 27.3 | 33.3| 50.0 | 77.8| 62.5| 50.9 14.4

ChinR | 50.0| 37.5| 46.2| 51.3 | 52.2 | 44.4| 82.4| 84.2| 53.8| 48.0| 27.3| 34.6 | 33.3 | 85.7| 64.3| 53.0 18.6

Thorax | 54.5| 24.2| 36.0| 21.7| 30.0 | 24.0| 62.9| 11.8| 60.0| 51.4| 41.9| 16.7| 429 | 71.4| 48.0| 39.8 18.2

F3 73.3| 429 | 57.1| 40.0| 56.3 | 46.7 | 62.9| 72.7| 72.0| 455 | 50.0 | 25.9 | 100.0| 76.5| 77.1| 59.9 18.9

F4 7141 50.0| 44.4|545| 71.4|59.1|69.2| 72.7| 643 | 46.7| 30.0| 36.4| 80.0 | 66.7 | 58.3| 58.3 14.5

C3 545| 375|455| 47.1| 66.7 | 455| 60.0| 64.0| 789 | 73.3| 46.2 | 40.7| 97.3 | 625| 64.3| 589 16.2

C4 61.1| 28.6| 37.5| 40.9| 64.3| 41.7| 77.8| 66.7| 65.1| 353 | 25.0| 41.4| 88.6 | 88.9| 50.0 | 54.2 20.7

o1 52.9| 46.7| 50.0 | 40.0| 52,9 | 36.4| 52.2| 51.7| 67.4| 46.2| 40.0| 37.9| 63.6 | 72.7| 52.0| 50.8 10.6

02 46.7| 20.0 | 455| 38.7| 429 | 42.4| 66.7 | 53.6 | 57.6| 45.2 | 31.6 | 45,5| 35.0 | 72.2| 33.3| 45.1 135

El 72.7|429| 0 | 36.4|143|40.0|58.8| 73.9| 64.0| 33.3| 375|414 | 688 | 75.0| 50.0| 47.3 22.1

E2 76.0| 50.0| 16.7 | 43.8| 66.7 | 39.1 | 68.2| 73.9| 56.3| 50.0 | 23.1 | 47.4| 50.0 | 77.8| 67.9| 53.8 18.5

Table D.14 — Subject-by-subject percentage of uncorrelated peaks, with respect to the total num-
ber of peaks, sleep deprivation phase.
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Subject | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | mean std
3-EMG | 46.7 | 38.1| 69.0| 48.8| 72.7 | 34.8| 52.6 | 51.7 | 85.7 | 60.0| 52.0| 60.0 | 44.4| 47.1| 28.6 | 52.8 14.9
ChinC | 58.3| 40.0| 72.7| 55.9| 72.2| 50.0 | 50.0 | 60.8 | 71.4| 61.1| 444 | 57.1| 42.1| 52.6 | 36.8| 55.0 115
ChinL | 37.0| 12.5| 385| 42.9| 76.0| 25.0| 53.3| 35.0 | 84.6 | 33.3| 45.8| 66.7 | 81.8| 40.0 | 26.7 | 46.6 21.6
ChinR | 40.0| 10.0| 64.7| 37.8| 72.0| 30.8| 55.6 | 26.3 | 68.2| 33.3| 30.0| 58.3| 77.8| 55.6 | 18.2| 45.2 20.8
Thorax | 25.9| 23.1| 41.7| 29.6 | 46.4 | 27.3| 41.7 | 16.2 | 63.4| 41.5| 545| 47.1| 23.3| 41.4| 26.1| 36.6 13.3
F3 455 | 75.0| 455| 50.0| 76.2 | 429 | 44.4| 35.3| 66.7| 23.1| 50.0 | 55.6 | 80.0| 64.3| 29.4 | 52.3 17.2
F4 40.0| 83.3| 615| 57.1| 75.0| 455 | 55.6 | 53.8| 57.1| 31.8| 55.6 | 62.5| N/A | 58.3 | 81.8| 58.5 14.5
C3 41.7| 66.7 | 50.0| 37.5| 76.0| 33.3| 60.0| 20.0 | 69.2| 47.1| 43.5| 60.0| 66.7 | 57.7 | 40.0 | 51.3 15.6
C4 48.0| 33.3| 57.1| 46.2| 66.7 | 35.7 | 60.0 | 33.3| 58.3| 33.3| 46.2 | 55.6 | 83.3| 41.4| 22.6 | 48.1 15.8
o1 50.0| 22.2 | 63.6 | 39.4| 70.0 | 23.5| 46.7| 26.9 | 45.8 | 52.8| 38.5| 53.3 | 16.7 | 46.2 | 23.8 | 41.3 15.9
02 48.1| 33.3| 66.7| 44.8] 66.7| 31.8| 55.0 | 25.0 | 50.0 | 31.8| 50.0| 56.3| 12.5| 34.6 | 33.3| 42.7 15.4
El 50.0 | 50.0| 52.9| 429 | 78.3| 53.3| 25.0| 30.8 | 83.3| 64.5| 35.3| 60.0| 66.7 | 46.2| 52.4| 52.8 16.2
E2 40.0| 36.4| 61.5| 53.3| 73.1| 41.2| 82.6 | 36.8| 55.6| 60.9| 43.8] 60.0| 57.1| 33.3| 53.8| 52.6 14.2

Table D.15 — Subject-by-subject percentage of uncorrelated peaks, with respect to the total num-
ber of peaks, sleep recovery phase.

D.4 Causality

D.4.1 U-Pattern/Movement Onset Delays

Subject | 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 14 15 | mean std

3-EMG | 65| 99 | 115|100| 88 | 88| 79 | 83 | 90 | 107, 85|65|104| 89 | 75| 89 15

ChinC | 9.2 | 11.8| 75| 10.7| 89 | 95| 105| 73 | 9.0 | 125|8.1| 6.8 | 12.7| 11.5| 8.8 9.7 1.9

ChinL 91 |104| 99| 91| 91 |92| 59| 97 | NNA|113|85|6.1| 94 | 38 | 80 85 20

ChinR | 7.7 | 9.7 | 123|10.7| 68 | 92| 3.6 | 86 | 9.0 | 134| 86| 6.6 | 11.2| 3.8 | 85 8.6 2.7

Thorax | 79 | 91 | 103| N/A | 69 |64 | 86 | 74 | 79| 93 | 68| 65| 108| 59 | 9.8 81 16

F3 10.1| 89 | 10.0| 11.0| 98 | 7.7| 9.2 | 10.1| 158| 13.7| 84 | 56| 11.4| 4.7 | 95 9.7 28

F4 144|116 | 148| 9.0 | 7.8 | 87| 10.4| 10.1| 135| 13.6| 89| 6.4 | N/A | 6.7 | 13.1| 106 29

C3 10.0| 11.1| 13.0| 13.0| 11.4| 90| 105| 10.7| 143 | 139| 6.2 | 7.0 | 148 | 6.3 | 13.7| 11.0 29

C4 6.5 |129|128|153| 70 | 9.0| 80 | 85 | 11.8| 115| 75| 57| 50 | 6.8 | 12.7| 9.4 3.2

o1 9.9 | 105| 12.6| 11.9| 10.3| 6.0 9.7 | 83 | 11.8| 105| 85| 82| 6.6 | 89 | 121| 9.7 20

02 89 |116|136| 9.2 |106|80| 98 | 88 | 11.9|108| 7.7/ 65| 19.1| 88 | 7.9 | 102 3.1

El 121|101 80 | 68 | 40 | 95| 11.3| 6.3 | 21.0| 119|85|6.7| 73 | 3.3 | 9.0 9.1 4.2

E2 124} 9.1 | 10.3| 16.0| N/A | 89| 55 | 46 |120| 11.0| 86| 52| 125| 7.8 | 94 95 32

Table D.16 — Subject-by-subject averages of U-pattern/Movement onset delays (seconds), base-
line phase.

Subject | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | mean std

3-EMG | 15.3| 12.0| 11.1| 14.7| 23.3| 116 | 15.2| 13.3| 19.0| 16.3| 17.4| 13.1| 12.3| 16.4| 12.2| 149 33

ChinC | 18.9| 11.8| 20.3| 15.3| 23.1| 12.2| 13.3| 14.3| 19.0| 18.3| 17.7| 17.8| 13.2| 155| 13.4| 16.3 3.3

ChinL | 15.1|146| 17.9| 17.9| 24.0| 12.8| 179| 13.0| N/A | 181| 195| 16.1| 11.3| 17.4| 13.1| 16.3 3.3

ChinR | 17.7| 12.4| 9.2 | 19.0| 27.5| 12.6| 19.6| 13.1| 140 | 14.1| 17.4| 14.2| 129| 17.0| 129| 156 4.4

Thorax | 11.7 | 13.2| 10.4 | N/A | 18.2| 11.0| 12.9| 10.2| 16.0 | 19.9| 15.6 | 12.4| 10.5| 12.2| 10.8| 13.2 3.1

F3 179| 145| 12.0| 17.7| 19.1| 116 | 148 | 11.5| 143 | 142| 19.2| 18.3| 156 | 17.9| 11.5| 153 2.9

F4 15.0] 11.9| 9.0 | 17.0| 20.0| 14.0| 13.3| 13.6| 19.8| 13.3| 15.8| 16.7| N/A | 21.0| 6.6 | 148 4.1

C3 13.7| 12.8| 12.3| 18.2| 17.6| 12.9| 11.3| 124 | 16.4| 152| 17.0| 16.2| 15.2| 19.1| 94 | 146 2.8

C4 179\ 12.8| 12.7| 153| 21.5| 125| 17.1| 12.1| 145| 17.2| 16.8| 19.2| 20.7| 16.0| 11.5| 159 3.2

o1 159 153| 14.1| 151 | 21.3| 129 | 12.7| 13.3| 16.4 | 155| 148 | 16.3| 17.4| 17.3| 9.7 | 152 2.6

02 17.3] 15.6| 13.0| 18.1| 20.3| 19.0| 13.0| 12.3| 16.1| 158 | 176 | 17.2| 6.9 | 17.2| 12.1| 154 34

El 17.4|123| 13.7| 19.2| 21.3| 126 | 19.3| 13.5| 10.0| 16.7| 18.1| 17.1| 15.0| 17.2| 12.7| 157 3.2

E2 9.7 | 13.1| 148 | 15.6 | N/A | 12.8| 135| 17.8| 21.0| 17.6| 17.1| 18.2| 185| 16.2| 9.0 | 154 3.4

Table D.17 — Subject-by-subject averages of U-pattern/Movement onset delays (seconds), sleep
deprivation phase.
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Subject | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | mean std

3-EMG | 108| 74 | 11.0| 78 | 38 | 53| 47 | 6.7 | 79| 91 |102| 86 | 90 | 86 | 9.7 | 80 22

ChinC | 11.1| 60 | 105| 76 | 56 | 81| 40 | 7.7 | 85 | 10.7| 94 | 9.2 | 94 | 89 | 106| 85 20

ChinL 94| 73 |175| 96 | 35 |52| 46 | 7.0 | 10.8| 86 | 10.3| 86 | 8.0 | 13.0| 10.0| 89 35

ChinR | 11.3| 82 | 16.4| 94 | 61 | 71| 43 | 7.0 | 123| 7.2 | 13.8| 87 | 153| 16.8| 9.2 | 10.2 3.9

Thorax | 80 | 84 | 124| 89 | 75 |6.7| 72 | 76 | 6.2 | 65 | 65 | 5.0 | 83 | 6.5 | 88 76 1.7

F3 143| 85| 227| 77| 97 | 60| 65 | 75| 104 | 57 | 137| 86 | NJA | 155| 9.1 | 104 4.7

F4 12.3| 90 | 180| 80 | 65 |9.2| 65 | 73 |118| 6.0 | 99 | 85| 75 | 6.7 | 94 9.1 31

C3 17.2| 11.4| 20.8| 10.2| 6.0 | 89| 54 | 11.0| 3.0 | 10.5| 9.9 | 10.3| 20.0| 11.7| 14.8| 11.4 5.0

C4 90 | 13.2| 16.6| 109| 6.2 | 84| 6.8 | 93 | 99 | 104 | 12.3| 10.2| 6.0 | 220| 6.8 | 105 4.3

o1 148|100} 19.2| 9.2 | 93 | 79| 80 | 81 | 10.0| 11.3| 99 | 94 | 6.0 | 11.0| 96 | 10.2 3.2

02 121| 78 | 16.7| 83 | 100| 78| 73 | 8.0 | 10.3| 85 | 11.7| 9.1 | 84 | 144| 10.0| 10.0 2.7

El 14.7| 98 | 17.7| 59 | 110, 80| 73 | 75 | 96 | 85| 104 | 89 | 6.4 | 13.5| 10.8| 10.0 3.2

E2 87| 82|204| 57| 57 |63]104| 75 |114|117| 88 | 80| 9.0 | 95| 9.2 94 35

Table D.18 — Subject-by-subject averages of U-pattern/movement onset delays (seconds), reco-
very phase.

D.4.2 U-Pattern/Movement O set Delays

Subject | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | mean std

3-EMG | 129| 11.8| 12.2| 145| 293 | 155| 17.6| 12.7| 154 | 14.6| 19.3| 13.1| 22.0| 123 | 16.0| 159 4.7

ChinC | 16.1| 13.8| 13.4| 18.0| 23.2| 13.9| 185| 12.8| 18.5| 11.8| 22.0| 13.6 | 18.8| 15.0| 18.8| 165 3.4

ChinL | 156 16.7| 11.9| 17.0| 28,5| 16.8| 19.0| 12.3| 15.6| 16.4| 20.4 | 14.0| 27.0| 9.5 | 13.2| 169 5.2

ChinR | 12,9 15.8| 10.7| 15.2| 20.3| 159| 18.7| 83 | 16.5| 17.6| 16.3 | 14.4| 155| 105| 14.2| 149 3.2

Thorax | 12.1| 9.6 | 10.1| 149| 145| 9.9 | 13.2| 11.5| 156 | 14.0| 16.7| 13.2| 11.8| 16.2| 13.6| 13.1 2.3

F3 13.3] 13.3| 6.7 | 19.3| 18.7| 11.8| 12.9| 11.0| 141 | 17.3| 15.0| 15.2| N/A | 10.3| 17.0| 14.0 3.5

F4 13.8| 13.3| 10.6| 20.4| 235| 10.7| 13.3| 11.2| 11.7 | 18.4| 18.0| 13.9| 22.5| 25.3| 16.4| 16.2 4.9

C3 80 | 116| 82 | 19.7| 208 | 11.2| 129| 104 | 243 | 11.8| 204 | 118 | 180| 93 | 9.2 | 138 53

C4 17.3| 9.4 | 106| 15.6| 22.8| 13.0| 123 | 94 | 138 | 14.1| 16.7| 13.2| 23.3| 15.0| 10.2| 144 43

o1 99 | 85| 88 |153| 185|139 14.7| 11.4| 159| 135| 15.7| 13.4| 11.5| 21.0| 17.4| 140 3.6

02 145 155| 9.3 | 17.9| 155 11.8| 159 | 11.3| 16.7 | 14.8| 18.2| 13.3| 16.3| 13.8| 16.3 | 14.7 2.5

E1l 13.7| 13.3| 11.3| 18.6| 20.0| 14.7| 154 | 10.7 | 17.3 | 15.1| 20.4| 14.2| 244 | 9.0 | 17.0| 157 4.1

E2 19.2] 16.2| 11.0| 22.8| 28.0| 154 | 151 | 11.0| 149 | 115| 21.7| 148| 185| 21.0| 17.2| 17.2 4.8

Table D.19 — Subject-by-subject averages of U-pattern/movement o set delays (seconds), base-
line phase.

Subject | 1 2 3 4 5 6 7 8 9 10| 11| 12 13 14 15 | mean std

3-EMG | 133| 71 | 81| 85|57 |53 | 78| 81|93 |72|85| 83| 98 |108|100| 85 20

ChinC | 11.8| 74 | 152| 95| 75 | 54 | 7.7 | 76 | 11.0| 71| 6.0 92 | 99 | 114 | 10.8| 9.2 26

ChinL | 139| 87 | 65 | 109| 83 | 57 | 96 | 76 | 45 |8.0|88|100| 90| 9.2 |109| 88 23

ChinR | 116 81 | 97 | 94 | 94 | 6.2 | 100| 94 | 81 | 93|91 80 |105| 93 | 11.0| 9.3 13

Thorax | 10.8| 9.7 | 89 | 63 | 53 | 42 | 75| 72 | 86 | 6.2|7.7| 81 | 84 | 105| 84 79 18

F3 123} 6.0 | 63 | 10.2| 66 | 66 | 82 | 99 | 57 | 83| 73| 123|11.3| 98 | 128 | 89 25

F4 13.1| 80 | 94 | 133| 78 | 7.2 | 103| 6.8 | 6.7 | 80| 83| 9.7 | NA | 13.7| 85 93 24

C3 149| 95| 68 | 87 | 7.7 | 57 | 83 | 105| 143|9.3| 9.2 | 12.3| 16.2| 15.8| 10.7| 10.7 3.3

C4 11.8| 80 | 9.7 | 119| 85 | 72 | 75| 93 | 11.8|9.7|9.1| 9.3 | 105| 13.8| 10.6| 9.9 1.8

o1 137|116 89 | 89| 42 | 95 | 50| 89 | 88 |9.1|89| 9.1 | 64 | 141 109| 9.2 27

02 139|105| 7.2 | 10.1| 44 | 104 | 59 | 81 | 105|85| 78| 87 | 91 | 141 9.7 9.3 26

El 135| 9.7 | 75| 86 | 62 | 47 | 88 | 63 | 50 |9.2| 78| 73 | 15| 119|105 79 3.0

E2 122| 76 | 11.0|10.7|101| 27 | 53 | 71 | 34 |73|88| 78 | 47 | 84 | 11.8| 7.9 3.0

Table D.20 — Subject-by-subject averages of U-pattern/movement o set delays (seconds), sleep
deprivation phase.
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Subject | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | mean std

3-EMG | 135| 14.1| 149| 144 | 15.7| 185| 11.8| 11.2| 19.0| 17.5| 158 | 9.9 | 106 | 199 | 13.2| 147 3.1

ChinC | 16.5| 13.8| 9.2 | 14.7| 12.7| 17.1| 15.0| 12.1| 140 | 17.9| 234 | 88 | 125| 20.0| 14.7| 148 3.8

ChinL | 16.0| 16.0| 18.8| 14.8| 15.2| 185| 12.0| 16.4| 205| 16.8| 17.4| 10.8| 155| 16.3 | 13.4| 159 25

ChinR | 15.3| 16.0| 155| 15.0| 14.1| 18.8| 13.8| 11.7| 19.9| 16.0| 16.7 | 11.0| 17.0| 17.8| 12.3| 154 25

Thorax | 13.5| 13.9| 12.1| 13.8| 10.5| 15.0| 11.8| 11.9| 14.7| 142 | 17.6 | 84 | 11.7| 10.4| 13.7| 129 2.2

F3 16.4| 24.0| 16.2| 17.2| 16.8| 17.0| 139 | 13.8| 19.0| 16.7| 23.3| 83 | 9.2 | 17.6| 12.0| 16.1 4.3

F4 18.7| 24.0| 17.2| 18.7| 15.0| 19.0| 95 | 18.8| 16.3| 17.3| 18.0| 87 | N/A | 16.1| 11.0| 16.3 4.1

C3 16.4| 17.0| 18.4| 15.7| 15.2| 154 | 13.3| 12.2| 11.3| 16.9| 19.4| 7.0 | 10.6| 149 | 9.8 | 142 35

C4 17.2| 193] 16.0| 14.1| 15.2| 148 | 153 | 13.3| 15.2| 154 | 186| 88 | 6.5 | 125| 10.6| 142 3.5

o1 16.6| 129| 17.0| 15.1| 17.6 | 15.1| 17.8| 13.7| 19.0| 15.1| 17.6| 11.4| 17.6 | 15.7| 12.6 | 15.7 2.2

02 148 | 13.8| 18.6| 15.1| 155 | 124 | 154 | 13.7| 143 | 13.1| 20.1| 12.1| 12.8| 18.1| 12.4| 148 2.4

El 17.0| 14.0| 17.3| 19.4| 16.6| 21.1| 13.7| 15.7| 11.0| 145 20.7| 13.3| 13.0| 16.4| 158 | 16.0 2.9

E2 18.3| 154| 11.6| 16.4| 13.6| 19.8| 180 | 146 | 21.9| 189| 19.7| 12.7| 17.3| 18.6 | 13.8| 16.7 3.0

Table D.21 — Subject-by-subject averages of U-pattern/movement o set delays (seconds), reco-
very phase.
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