We proposed the world’s first flexible ultrathin-body single-photon avalanche diode (SPAD) as photon counting device providing a suitable solution to advanced implantable bio-compatible chronic medical monitoring, diagnostics and other applications. In this paper, we investigate the Geiger-mode performance of this flexible ultrathin-body SPAD comprehensively and we extend this work to the first flexible SPAD image sensor with in-pixel and off-pixel electronics integrated in CMOS. Experimental results show that dark count rate (DCR) by band-to-band tunneling can be reduced by optimizing multiplication doping. DCR by trap-assisted avalanche, which is believed to be originated from the trench etching process, could be further reduced, resulting in a DCR density of tens to hundreds of Hertz per micrometer square at cryogenic temperature. The influence of the trench etching process onto DCR is also proved by comparison with planar ultrathin-body SPAD structures without trench. Photon detection probability (PDP) can be achieved by wider depletion and drift regions and by carefully optimizing body thickness. PDP in frontside- (FSI) and backside-illumination (BSI) are comparable, thus making this technology suitable for both modes of illumination. Afterpulsing and crosstalk are negligible at 2µs dead time, while it has been proved, for the first time, that a CMOS SPAD pixel of this kind could work in a cryogenic environment. By appropriate choice of substrate, this technology is amenable to implantation for biocompatible photon-counting applications and wherever bended imaging sensors are essential.