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ABSTRACT: Linear-response time-dependent density func-
tional theory (LR-TD-DFT) has become a valuable tool in the
calculation of excited states of molecules of various sizes. However,
standard generalized-gradient approximation and hybrid exchange-
correlation (xc) functionals often fail to correctly predict charge-
transfer (CT) excitations with low orbital overlap, thus limiting the
scope of the method. The Coulomb-attenuation method (CAM)
in the form of the CAM-B3LYP functional has been shown
to reliably remedy this problem in many CT systems, making
accurate predictions possible. However, in spite of a rather con-
sistent performance across different orbital overlap regimes,
some pitfalls remain. Here, we present a fully flexible and adaptable implementation of the CAM for Γ-point calculations within
the plane-wave pseudopotential molecular dynamics package CPMD and explore how customized xc functionals can improve the
optical spectra of some notorious cases. We find that results obtained using plane waves agree well with those from all-electron
calculations employing atom-centered bases, and that it is possible to construct a new Coulomb-attenuated xc functional based
on simple considerations. We show that such a functional is able to outperform CAM-B3LYP in some cases, while retaining
similar accuracy in systems where CAM-B3LYP performs well.

1. INTRODUCTION
Be it for the vital conversion of sunlight to chemical energy in a
leaf, for photochemical reactions causing harmful DNA damage
to skin, for the blue fluorescence of scorpions, or for energy
conversion in man-made solar cells: electronically excited states
are of crucial importance to fundamental processes in Nature,
and in scientific fields ranging from biology over chemistry to
solid-state physics. The theoretical description of the excitations
which are at the base of these phenomena makes it possible to
ultimately gain an improved understanding of these key events.
A fully correlated description at the wave function level is,

unfortunately, prohibitively expensive for many, if not most
systems of relevant size. It is thanks to the considerable prog-
ress in the field of Kohn−Sham time-dependent density func-
tional theory (KS-TD-DFT)1−3 that such excited-state processes
can these days be described at a comparably moderate compu-
tational cost. The linear-response (LR) formulation of TD-DFT4

is routinely used by many a computational chemist, and the ever
increasing availability of computational resources has made it
possible to describe larger and larger systems. However, like
ground-state DFT and even more so, the choice of an appro-
priate exchange-correlation (xc) functional, or respectively xc
kernel, is crucial, and often decides between results in good
agreement with high-level reference data, and spectra which are
considerably red-shifted and exhibit an incorrect ordering of states.
The accuracy of the calculated transitions is mainly hampered

by an inaccurate long-range decay of the xc potential, which

leads to larger errors in the prediction of the excitation
energies.5 Hence, in analogy to their tendency to underestimate
HOMO−LUMO gaps, generalized-gradient approximation
(GGA)6 xc functionals typically shift excitation energies by a
considerable factor and may fail to recover the correct ordering
of states.7 Hybrid functionals,8 which include a fixed proportion
of exact exchange, may partly alleviate this problem for states in
which there is an overlap between the orbitals involved in the
transitions. However, even hybrid functionals will inevitably fail
to describe low-overlap charge-transfer (CT) and Rydberg states,
where the 1/r decay of the Coulomb operator is an important
constituent in the correct description of the interaction between
spatially distant orbitals.9 But it is the inclusion of exact exchange
that is most vital for these transitions: While an asymptotic
correction of the (GGA) xc potential alone recovers the proper
1/r dependency and improves the description of Rydberg states,
it cannot successfully capture the effects of pronounced charge
separation.7 A promising remedy to this problem has been found
in an appropriate splitting of the Coulomb operator, making it
possible to ensure a correct decay of the xc potential at long
range, while keeping the accuracy and simplicity of a standard
local formulation for the short-range components. The long-
range correction (LC) scheme5,10 and its generalization, the
Coulomb-attenuation method (CAM),11 separate the Coulomb
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operator using an error function. While the short-range compo-
nents are described using the GGA, the long-range components
are taken into account using the exact exchange operator. This
splitting captures the essentials of CT transitions and consid-
erably increases the accuracy for such states. LC- and CAM-based
xc functionals have therefore become a standard tool for the
calculation of molecular excitation energies with pronounced
CT character within TD-DFT.12 The correspondingly modified
Coulomb operator is easily implemented in a Gaussian basis.
CAM-B3LYP is not only the first functional that was con-

structed using the CAM, it also has become probably the most
prominent and abundantly used functional of this family. Peach
et al.9 have assessed its performance on a diverse test set of main-
group molecules shortly after the original paper presenting
CAM-B3LYP, and many successful applications of the functional
followed: Among the substantial improvements documented
with respect to B3LYP8,13 or PBE,14 Peach et al. have found
that CAM-B3LYP accurately describes excitations in (poly)-
acenes including naphthalene, yielding correct state ordering.
They could also show that the spectra of model dipeptides
improve substantially with respect to non-Coulomb attenuated
functionals.7 Subsequently, other studies have found that the use
of CAM-B3LYP can predict spectra of AT nucleobase dimers15

and indoles16 of varying substitution patterns with increased
accuracy. All these systems exhibit CT or Rydberg transitions
between spatially separated states, which results in the inevi-
table failure of GGA and conventional hybrid functionals.
The orbital overlap in a transition can be quantitatively char-

acterized by the parameter Λ introduced by Peach et al.;9

a small value of Λ indicating a small overlap between the involved
orbitals, a large value a substantial one. In their study covering
excitations of different character, they have found that both GGA
and conventional hybrids suffer from an inconsistent performance
over the complete range of Λ values: For overlap values Λ < 0.4
in the case of PBE and Λ < 0.3 in the case of B3LYP, the
errors in the excitation energies become substantially bigger.
For CAM-B3LYP, no such correlation was found over the whole
range 0 < Λ < 1. CAM-B3LYP was shown to fare particularly well
for CT excitations, especially in the “low overlap” regime, Λ < 0.3,
although some cases with CT character in the “intermediate Λ
regime” are accurately described, too (e.g., the retinal proton-
ated Schiff base17,18). However, in systems where there is signif-
icant overlap between the orbitals involved in the transition,
conventional hybrid functionals such as PBE019,20 often fare
better, and CAM-B3LYP tends to red-shift the excitation
energies. This is notably the case for the doubly fluorescent dye
DMABN, for which CAM-B3LYP tends to overestimate the
excitation energies of the S2 CT state with Λ = 0.72.9 Fully
long-range corrected functionals21 such as LC-BLYP5 or
LC-PBE022 were not evaluated in the study by Peach et al.,
but they have since been shown to perform well in certain sys-
tems with very low overlap that cannot be accurately described
with CAM-B3LYP.15,16,23 This is attributed to the absence of
any GGA exchange at longest range, which benefits the descrip-
tion of Rydberg states,9,21 but comes at the cost of an inferior
average performance especially for local excitations.11,16,21

Despite the absence of correlation between the predicted
excitation energies and their Λ-values, there exist some systems
even in the low-overlap range (Λ < 0.3) for which CAM-
B3LYP fails to deliver an accurate description. In the case of
p-nitroaniline, the excitation energies are reasonably predicted,
but solvatochromic shifts cannot be reproduced since the ground-
and excited-state dipoles are grossly over- and underestimated,

respectively.24 Whereas CAM-B3LYP predicts a correct state
ordering and reasonable energetics for the excitations in the AT
base pair,15 the HOMO is predicted to lie on the wrong base
when compared to higher-level wave function methods and
basic considerations based on the ionization potential of the
isolated bases.25 Seemingly reasonable results may therefore be
obtained based on the wrong physical reason. Similarly, the
ordering of close-lying, low-energy excitations may be inverted
in some systems; this is the case for the β-dipeptide model
system introduced by Serrano-Andreś et al.26 and subsequently
popularized in the aforementioned benchmark set by Peach
et al.9 Other studies have found the same problem to occur in
the case of 7-azaindole,16 even though the state ordering for
other substituted indoles could be correctly predicted. A wrong
ordering of states may be especially detrimental for excited-
state molecular dynamics,27 where the forces exerted on the
nuclei may substantially differ between the two swapped states,
leading to a quantitatively as well as qualitatively wrong prop-
agation of the system. For systems such as the β-dipeptide and
7-azaindole,16 the use of an LC functional may yield a qual-
itatively correct ordering of the low-lying excitations, but the
energies often remain too low. Alternatively, the range separa-
tion parameter μ in CAM-B3LYP may be tuned in order to
ameliorate the performance of the functional.28 This process
known as γ-tuning adjusts the range separation parameter to
a value that accurately reproduces ionization potentials. This
approach often permits for an accurate description of the exci-
tations of interest,16 but it constitutes a rather system-specific
remedy, lacking portability and thus predictive power in comparing
various systems. All of these notorious systems are included in
Figure 1 and have been chosen here to test the performance of
an “a-̀la-carte” combination of range-separated functionals.

In other applications, a splitting of the Coulomb operator oppo-
site to the LC and CAM scheme may be beneficial. This has
been proposed in screened hybrid functionals for solid-state
applications,29 where the exact exchange is limited to short
range and the GGA exchange to long range. Functionals such as
HSE0329 yield results superior to those obtained with the GGA
for many systems. Screened hybrids are especially beneficial
in combination with a plane wave/pseudopotential approach,
since they conveniently eliminate the divergence of the Coulomb
operator at the G = 0 component of the plane wave basis in

Figure 1. Molecules explicitly discussed in this study, all of which
contain excitations that are difficult to describe in TD-DFT when
using a GGA or hybrid functional as the xc kernel.
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sufficiently large simulation cells. Since the splitting adopted in
the LC and CAM schemes does not offer any particular advan-
tage in solid-state applications and does not eliminate this prob-
lematic divergence term, these methods have received much
less attention in plane wave codes.
In the following, we present the CAM applied to Γ-point

calculations in a plane-wave pseudopotential framework. The
implementation allows for the CAM to be combined with any
exchange functional of choice, offering maximum flexibility.
This makes the construction of customized “a-̀la-carte” Coulomb-
attenuated xc functionals possible, which can be tailored to any
system of choice, thus maximizing the performance of the
method. In order to gain maximum flexibility, all CAM param-
eters can be chosen freely. Our implementation of the CAM in
the molecular dynamics package CPMD30 targets applications
where Γ-point sampling is routinely used, and makes the
sampling of large systems possible via the fully Hamiltonian
QM/MM scheme implemented in the CPMD code. Simulations
of CT systems in the gas phase as well as in condensed matter
therefore become feasible using a plane wave/pseudopotential
approach. To facilitate the calculation of the necessary terms, a
new driver for the calculation of the xc energy has been imple-
mented in the CPMD code.
The paper is organized as follows: First, we give a short

summary of the CAM, followed by a description of the imple-
mentation. We then give a more detailed account of the test
systems used to benchmark both the implementation and a new
Coulomb-attenuated xc functional. We discuss the performance
of the CAM in plane waves with respect to the choice of
pseudopotential, and in comparison to all-electron calculations
with atom-centered basis sets. Finally, we will show how a
flexible choice of the underlying GGA exchange-functional can
improve accuracy in systems where standard functionals yield
unsatisfactory results by comparing a customized “a-̀la-carte”
CAM-xc functional constructed based on simple considerations
to the well-established CAM-B3LYP.

2. THEORY
2.1. The Coulomb-Attenuation Method (CAM). In the

CAM, the Coulomb operator Ŵ is split into two domains domi-
nated by long-range (lr) and short-range (sr) components each:

̂ = ̂ + ̂W W Wsr lr
(1)

α β μ⟨ ′| ̂ | ⟩ = − + | − ′|
| − ′|

r r
r r

r r
W

1 [ erf( )]sr

(2)

α β μ⟨ ′| ̂ | ⟩ = + | − ′|
| − ′|

r r
r r

r r
W

erf( )lr

(3)

where α, β, and μ are adjustable parameters11 and α = 0 and β = 1
in the original LC method.5,10 The first term is treated using a
GGA expression for the exchange functional and becomes smaller
for larger Coulomb distances, whereas the second term grows
with increasing |r − r′| and is treated using Fock’s expression for
the exchange energy.
The effective Coulomb operator in the exchange integrals

then becomes

∬∑ ∑ ∑ ψ ψ

α β μ ψ ψ

= * * ′ ×

+ | − ′|
| − ′|

′ ′

σ
σ σ

σ σ

E r r

r r
r r

r r r r

1
2

( ) ( )

erf( )
( ) ( ) d d

x
i j

i j

j i

HFX

(4)

Correspondingly, the GGA enhancement factor has to be
adapted to the screened Coulomb operator. The adaptation is
based on the LDA for a short-range Coulomb operator and
appropriately generalized:5

∑ ρ α β

π

= − − ×

+ −

σ
σ σ σ

σ
σ σ σ

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥
⎫
⎬
⎭

E K a

a
a b c

1
2

1
8
3

erf
1

2
2 ( )

x
GGA 4/3

(5)

where Kσ is the spin-dependent formulation of the exchange
enhancement factor, and the terms due to the correction read

μ
π ρ

=σ
σ

σ

a
K

6

1/2

1/3
(6)

= − −σ
σ

⎛
⎝⎜

⎞
⎠⎟b

a
exp

1
4

12
(7)

= +σ σ σc a b2
1
2

2
(8)

2.2. Singularity of the Coulomb Operator Ŵ in
Reciprocal Space. At the Γ-point, the exact exchange energy
can be efficiently computed with a mixed real-space reciprocal-
space algorithm31 after introducing a resolution of identity in
G and rearranging the terms due to the complex conjugate of
the Kohn−Sham (KS) orbitals (where ⟨r|iσ⟩ = ⟨iσ|r⟩ at the
Γ-point):

∫

∫

∑ ∑ ∑= ′⟨ | ′⟩⟨ ′| ⟩ ×

⟨ ′| ̂ | ⟩⟨ | ⟩⟨ | ⟩

σ
σ σ

σ σ

≥
E j i

i j

r r r

r r r r r

d

d W

x
i j i

HFX

(9)

∫ ∫

∫ ∫

∑ ∑ ∑= ′⟨ | ′⟩⟨ ′| ⟩ ′⟨ ′| ′⟩ ×

⟨ ′| ̂ | ⟩ ⟨ | ⟩⟨ | ⟩⟨ | ⟩

σ
σ σ

σ σ

≥
j i

i j

r r r G r G

G G G r G r r r

d d

d W d

i j i

(10)

Here, i,j index KS orbitals. The matrix elements of the Coulomb
operator in reciprocal space, ⟨G′|Ŵ|G⟩ = δ − ′π

Ω G G( )
G

1 4
2 , exhibit

an integrable divergence at G = 0.32 In practice, the plane
wave/pseudopotential formalism relies on a discrete represen-
tation of points in direct and reciprocal space, and the integrals
become sums associated with discrete Fourier transforms. The
divergence term becomes problematic in this discrete form,
and the Coulomb operator has to be replaced by a suitable
generalization Φ̂:

∫ ∫

∫ ∫

∑ ∑ ∑= ′⟨ | ′⟩⟨ ′| ⟩ ′⟨ ′| ′⟩ ×

⟨ ′|Φ̂| ⟩ ⟨ | ⟩⟨ | ⟩⟨ | ⟩

σ
σ σ

σ σ

≥
E j i

i j

r r r G r G

G G G r G r r r

d d

d d

x
i j i

HFX

(11)

In the generalized matrix element ⟨G’|Φ̂|G⟩, the offending
divergence is screened by a suitable function χ:

π δ

χ δ
⟨ ′|Φ̂| ⟩ = Ω

− ′ ≠

′ =

⎧
⎨⎪
⎩⎪

G G G
G G G

G G

1 4
( ) for 0

(0) ( ) for 0

2

(12)
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where Ω denotes the supercell volume and Φ̂, like Ŵ, is
diagonal in G.
In the initial treatment proposed by Gygi and Baldereschi,32

the screening term χ is obtained numerically. An auxiliary
function which exhibits the same singularity as the problematic
term is added to and subtracted from the Coulomb operator,
and the screening is given by the difference of the discrete
representation of the auxiliary function as a sum over G and its
analytical integral over a continuous range Q. Due to their
particular choice of χ, the approach could not be applied to
Γ-point sampling due to its poor convergence with respect to
the number of k-points and simulation supercell size. In the
following, we base our treatment on the scheme subsequently
developed by Broqvist et al.33 whichin contrast to the initial
approach by Gygi and Baldereschiselects an auxiliary
function f(Q) that converges rapidly toward 1/Q2:

=
γ−

f
Q

Q( )
e Q

2

2

(13)

The G = 0 term is then given by the residual difference between
the integral and discrete sum over the auxiliary function:

∫ ∑χ
π

π= −
Ω ≠

f fQ Q G(0)
1

2
( ) d

4
( )

Q G
2

0 (14)

∑
πγ

π= −
Ωγ

γ

→

−⎡
⎣
⎢⎢

⎤
⎦
⎥⎥G

lim
1 4 e

G

G

0 2

2

(15)

where the second term (the discrete sum) is obtained numer-
ically. This results in a more rapid convergence with respect to
the size of the supercell, and the scheme can therefore be
applied in Γ-point only calculations.
Although a non-divergent analytical description for the G = 0

component is found for screened hybrids (it is simply π/Ω2μ2),
its accuracy depends on the size of the periodic supercell. If μ is
small, the potential does not decay sufficiently rapidly with
respect to the number of G-vectors and a treatment analogous
to the non-screened Coulomb operator has to be used.33

Broqvist et al. have therefore suggested to treat the short-range
exact exchange analogously to the full Coulomb operator:

π δ

χ μ δ
⟨ ′|Φ̂ | ⟩ = Ω

− − ′ ≠

̃ ′ =

μ−⎧
⎨⎪
⎩⎪

G G G
G G G

G G

1 4
[1 e ] ( ) for 0

( ) ( ) for 0

G

sr
2

/42 2

(16)

Using the same auxiliary function as for the full Coulomb
potential, the resulting G = 0 term for the short-range screened
exchange then reads:

χ μ χ χ
μ

̃ = −
⎛
⎝⎜

⎞
⎠⎟( ) (0)

1
4 2

(17)

where μ is the range separation parameter.
Based on this treatment, the singularity correction for the

CAM is easily found by using the identity erf(x) + erfc(x) = 1
and introducing the parameters α and β. We write for the long-
range components:

π α β δ

χ μ α β δ
⟨ ′|Φ̂ | ⟩ = Ω

+ − ′ ≠

̅ ′ =

μ−⎧
⎨⎪
⎩⎪

G G G
G G G

G G

1 4
[ e ] ( ) for 0

( , , ) ( ) for 0

G

lr
2

/42 2

(18)

where the G = 0 term is simply a sum of the terms due to the
full and the screened Coulomb potential, weighted by the
attenuation parameters α and β:

χ μ α β αχ βχ
μ̅ = +

⎛
⎝⎜

⎞
⎠⎟( , , ) (0)

1
4 2

(19)

3. IMPLEMENTATION
Some xc functionals make use of a linear combination of
different GGA exchange contributions, such as XLYP34 (using
72.2% B8835 and 34.7% PW9136 exchange) or the well-known
B3LYP (using 80% LDA, 72% of the B88 gradient correction
term and 20% exact exchange). Accordingly, the usage of the
CAM does not have to be intrinsically limited to a single type
of exchange functional (as it is the case for the most prominent
CAM-B3LYP and LC-PBE0, where B88 and PBEx are atten-
uated, respectively). With respect to all possible combinations,
our implementation achieves maximum flexibility in the choice
of exchange functional by writing the exchange enhancement
factor as a sum over individual contributions:

∑=σ σK c Kx

f

N

f
f

(20)

where Kσ
f denotes any GGA exchange-functional and cf are the

corresponding weights of a total of N exchange functionals:
∑f

Ncf = 1. The attenuation is then applied to Kσ
x after all N

contributions have been added up. This makes it possible to
consistently apply the CAM to any arbitrary combination of LDA
and GGA exchange functionals, creating a custom “a-̀la-carte” xc
functional.
Three terms are needed for the propagation of a KS wave

function with a GGA description:

∫∑ρ η ρ ρ ρ= − ∇
σ

σ σ σ σ σE K K r r[ ]
1
2

[ ] [ , ] ( ) dx x 4/3

(21)

∫∑ ρ= − ϵ
σ

σ r r
1
2

[ ( )] d
(22)

δ ρ
δρ

= ϵ

σ
V

[ ]x
1

(23)

δ ρ
δ ρ

= ϵ
|∇ |σ

V
[ ]x

2
(24)

where we have introduced η as the attenuation function. For
functionals that are derived for the closed-shell case or use a
different definition of the enhancement factor, e.g., E[ρ] =
∫ ρ(r)F[ρ] dr, the spin-dependent exchange enhancement
factor Kσ

x is easily obtained from F[ρ] or Kαβ
x using the spin-

scaling relations.
All derivatives can be efficiently calculated by making exten-

sive use of the chain rule and by transiently storing frequently
used terms (notably δKx/δρ, δKx/δ∇ρ) on the stack. In order
to make further performance gains, certain powers of the density
and the gradient (ρ, ρ4/3, ρ1/3, |∇ρ|, ∇ρ2) are precomputed on a
per-grid-point basis and reused in the calculation of Kσ

f and the
attenuation function, thus avoiding repetitive, unnecessary oper-
ations. The implementation makes use of procedure pointers in
order to facilitate the choice of functional. At the beginning
of every run, the procedure pointer denoting Kσ

f is set to the
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selected exchange functional, no (explicit) if-construct is
therefore necessary when looping over grid points. The new
algorithm reaches an asymptotic speedup of 20% when calcu-
lating the LDA and GGA contributions with respect to the

previous standard implementation, which obtained LDA and
GGA contributions for each functional from separate drivers
and used extensive if-constructs to select among the functionals
at every individual gridpoint.

4. TEST SET AND COMPUTATIONAL DETAILS
4.1. Description of the Test Set. Basic convergence tests

with respect to basis set and supercell size were carried out on a
single, isolated water molecule.
A test set for excitation energies was assembled comprising

the molecules mentioned before and depicted in Figure 1. The
set includes the original test systems by Peach et al.,9 aug-
mented with other systems where range-separation is known to
be of importance: p-nitroaniline, 7-azaindole, the AT nucleo-
base dimer, and the retinal protonated Schiff base.
For the sake of comparison with localized basis sets, five of

those systems were selected. The model dipeptide represents a
typical system where CAM-B3LYP can successfully be applied:
Peach et al. found that a GGA (PBE) yields an inaccurate state
ordering of the CT excitations, whereas B3LYP and CAM-
B3LYP reproduce the ordering of the reference values. However,
B3LYP is known to underestimate the energies of the n1 → π2*
and π1 → π2* CT excitations by up to 1.7 eV, which are both
reproduced by CAM-B3LYP with a reasonable accuracy of about
0.2 eV. The spectrum of p-nitroaniline has also been reported
to be reasonably predicted using CAM-B3LYP,24 and although
the charge separation in the first CT state was reported to be
overestimated, we have used p-nitroaniline as another probe
known to benefit from range-separation. Naphthalene served as
the most simple example of an acene and another notable
example of the influence of range separation: Whereas the 1B2u
and 1B3u states are inverted when using both PBE and B3LYP,
only CAM-B3LYP recovers the correct state ordering. However,
the reported excitation energies for the two lowest optically
allowed singlet transitions deviate from the reference by about
+0.21 eV for 1B3u and −0.16 eV for 1B2u, which results in a
considerable underestimation of the state separation. The sepa-
ration is reported to improve for larger acenes (anthracene,
tetracene etc.); we have therefore chosen naphthalene as the
most critical and sensitive compound to assess our implemen-
tation. An example where CAM-B3LYP (narrowly) fails to deliver
a quantitatively correct description of states is given by 7-azaindole.

Whereas a comprehensive study of various substituted indoles
found CAM-B3LYP to be in good agreement with reference
values, in the case of 7-azaindole,16 the 1La and

1Lb states have
been reported to be swapped. Analogously to naphthalene,
the states also lie much too close in energy, but are now also
incorrectly ordered. This molecule can therefore serve as a
representative of excitations with CT character and low orbital
overlap where CAM-B3LYP surprisingly fails. The final molecule
used in the selected test set is DMABN, with a Λ value of 0.72
for the S2 CT state it is a typical usage case for a non-range-
separated hybrid or even a simple GGA.9 Indeed, whereas the
errors for the 1A and 1B states are smaller than 0.2 eV in con-
jecture with B3LYP, they are about doubled when using CAM-
B3LYP. It serves as an example of an excitation with consid-
erable overlap, thus completing the range of excitations covered
here. The chosen test suite therefore includes both systems that
are well described using CAM-B3LYP, as well as some notorious
cases.
In order to assess a possible gain of accuracy by using a

customized functional rather than the established CAM-B3LYP,
three additional systems were studied. The retinal protonated
Schiff base constitutes a system where CAM-B3LYP has been
successfully used to predict both simple optical17,37 and two-
photon absorption spectra,38,39 improving over conventional
hybrids. In an investigation on the GC and AT nucleobase
dimers,15 it was found that CAM-B3LYP can predict accurate
excitation energies for the AT base pair, but the functional
localizes the HOMO and the LUMO on the wrong moieties,
respectively.25 According to the ionization potential of the
isolated base, the HOMO should be localized on adenine, but it
is predicted to lie on thymine. The AT base pair can therefore
serve as a probe for the correct orbital localization obtained
with a given functional. Similarly as in 7-azaindole, in the
β-dipeptide studied by Peach et al., PBE, B3LYP, and CAM-
B3LYP all fail to describe the ordering of the π1 → π2* and n1 →
π2* transitions, with errors being larger than 0.75 eV for
CAM-B3LYP and reaching a maximum value of about 4.5 eV
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when using PBE. The β-dipeptide therefore serves as yet
another example in which CAM-B3LYP does not work even on
a quantitative level, probably constituting the hardest test case
for new range-separated functionals. Finally, in order to verify a
possible overall gain of accuracy, the MAE of both CAM-B3LYP
and the customized functional is compared for the complete
test set by Peach et al.9

4.2. Computational Setup. Calculations using Gaussian
basis sets were either carried out using DALTON 201640

(p-nitroaniline, the retinal protonated Schiff base and naphthalene)
or the Gaussian09 suite of programs41 (the remaining molecules)
using Dunning’s correlation-consistent basis sets.42 All calculations
employing a Slater basis set43 were carried out using ADF.44−46

The structures for the dipeptides, DMABN, and naphthalene
were taken from the database published by Peach et al. The
structure of the retinal protonated Schiff base is an arbitrarily
chosen snapshot extracted from molecular dynamics simu-
lations at 300 K, whereas the structure of p-nitroaniline was
optimized using the aug-cc-pVTZ basis and the B3LYP xc
functional. Structural optimizations for the remaining molecules
were performed using the Gaussian suite of programs, following
the published protocols of existing benchmarks for the AT base
pair15 and 7-azaindole.16 Excitation energies, where not quoted
from the literature, were calculated using the Tamm−Dancoff
approximation to TD-DFT47 and the cc-pVDZ, aug-cc-pVDZ,
and d-aug-cc-pVDZ basis sets, respectively.
The new xc driver was implemented in a development version

of CPMD30 (successor of version 4.1). The KS orbitals were
expanded in plane waves contained in an orthorhombic supercell
of varying dimensions and using either Martins−Troullier
(MT)48 or Goedecker−Teter−Hutter (GTH)49 pseudization
of the atomic core orbitals (the respective values for the energy
cutoff are given in the results section; the supercell size for every
system is available in the Supporting Information). Following
standard practice for hybrid functionals, BLYP pseudopotentials
were used for CAM-B3LYP calculations, and OLYP pseudo-
potentials were used for calculations with CAM-O3LYP. The
density was expanded with a 4 times greater cutoff value than
the one adopted for the orbitals. The Poisson equations for the
isolated systems were solved using the algorithm of Martyna
and Tuckerman.50 All calculations made use of an atomic wave
function initialization using distributed Lanczos,51 the new
distributed linear algebra algorithm by Bekas and Curioni52 and
the “new” exact exchange driver by Weber et al.;31 the cutoff in
the calculation of the Fock exchange energy was not changed
with respect to the standard values for orbitals and density.

5. RESULTS AND DISCUSSION
5.1. Convergence of Eigenvalues. 5.1.1. HOMO−LUMO

Gaps in a Plane Wave/Pseudopotential Basis. When imple-
menting the singularity correction for (screened) hybrid func-
tionals, Broqvist et al.33 have also assessed the convergence of
the KS HOMO−LUMO gaps with respect to both the energy
cutoff and the size of the supercell. In the following, we shall
present a similar assessment on an isolated water molecule.
Considering that the LUMO is very diffuse in this specific case,
the HOMO−LUMO gap appears to be a sensitive measure of
convergence.
When assessing the convergence with respect to the size of

the simulation supercell, two scenarios have to be distin-
guished: In a periodic setup, the gap for an isolated system can
only be reproduced when the molecule at the center of the cell
is sufficiently far apart from its periodic images. When the

Poisson equations of the replicas are decoupled (and the
requirements of the used Poisson solver appropriately met50),
the gap will converge with respect to the lowest G-vector com-
ponents, which corresponds to increasingly longer-range com-
ponents in real space as the supercell size increases. This may
be especially important if the LUMO is very diffuse (we note
that an unbound continuous state will only be appropriately
described if the length of the simulation cell l = ∞). Hence, a
change in cutoff value enhances the accuracy of the description
by adding more rapidly oscillating, short-range components;
the maximum “diffuseness” allowed is essentially governed by
the choice of l for the simulation cell.
Table 1 shows the gap obtained using the CAM-B3LYP xc

functional for an isolated system contained in varying sizes of

the simulation supercell using hard GTH pseudopotentials.
Values for a fully periodic system are also given. The corre-
sponding values for softer MT pseudopotentials are tabulated
in the Supporting Information.
The gaps show convergence at 150 Ry for all systems. For a

small cubic simulation supercell (l = 10 Å), choosing a lower
cutoff value of 100 Ry introduces a substantial error of 0.23 eV.
A notable error is still present at 100 Ry even for the two larger
simulation cells, but it becomes less relevant for practical
purposes, since the maximal deviation of <0.1 eV lies below the
typical accuracy of the functional itself. Whereas the values in
the smallest of the supercells still have an error of about 0.1 eV
at a cutoff of 120 Ry, the corresponding values have converged
in the 20 and 30 Å supercells, with errors being lower than
0.05 eV, and full convergence is reached at 150 Ry for all of the
three supercells considered.
The convergence behavior is analogous to that observed for

GGA or standard hybrid functionals once the simulation cell is
of sufficient size: Changes in the gap are still substantial when
increasing the length l of the cubic simulation cell from 10 to
20 Å, with changes in the converged gap of 0.2 eV. The change
in gap is within the usual numerical tolerance (<0.05 eV) for a
further extension to 30 Å, emphasizing again the importance of
an appropriately large cell for the correct description of the
system’s LUMO.
The results for the fully periodic system (where the Poisson

equations are not decoupled) show the same trend, with the only
relevant difference with respect to the isolated system occurring in
the 10 Å box. Still, these differences are lower than those observed
when enlarging the supercell. Given the trends observed for the
isolated system, this is most likely attributed to spurious inter-
actions between periodic images at this intermolecular distance.
The influence of these interactions on the gap supports the

Table 1. HOMO−LUMO Gap of a Water Molecule
Calculated Using CAM-B3LYP and GTH Pseudopotentials
at Increasing Energy Cutoffs and Varying Cubic Simulation
Cell Lengths l Using Periodic or Isolated System Boundary
Conditions for Solving the Poisson Equation

Δϵi [eV], isolated system Δϵi [eV], periodic system

Ecut [Ry] 10 Å 20 Å 30 Å 10 Å 20 Å 30 Å

70 10.080 10.361 10.399 10.105 10.362 10.399
80 10.073 10.420 10.447 10.100 10.420 10.448
100 10.150 10.490 10.510 10.177 10.491 10.509
120 10.259 10.531 10.548 10.284 10.532 10.548
150 10.345 10.560 10.577 10.367 10.561 10.577
180 10.383 10.574 10.591 10.404 10.575 10.591
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view that the requests on the Tuckerman−Martyna Poisson
solver are not yet met either, since the simulation cell must
span at least twice the spatial extent of the charge density. The
strong changes in gaps when increasing the cutoff within the
small simulation cell is hence due to an insufficient cell size for
both the isolated and periodic system, resulting in an incorrect
description of the electron density.
The same considerations hold for the gaps obtained with the

softer MT pseudopotentials (cf. the Supporting Information),
albeit convergence is achieved at lower cutoff values. The maxi-
mum deviation in the converged gaps with respect to GTH pseu-
dization is very small, ΔΔϵ = 0.02 eV, illustrating that the influ-
ence of the pseudization of the cusp on the gaps is negligibly low.
These results confirm that the use of the CAM in a plane

wave/pseudopotential formalism does not introduce any conver-
gence issues or additional restrictions, given that the size of the
simulation supercell is chosen sufficiently large in order to
accommodate the whole spectrum of G-vectors that are required
to span the range of the μ-dependent switching function.
5.1.2. Comparison with Atom-Centered Basis Sets. Plane

waves inherently contain diffuse components even at a low cutoff
energy, and the character of the diffuse functions is restricted
only by the size of the supercell; convergence is reached
with respect to high-frequency components needed to describe
the region around the pseudized core. In turn, the number of
short-range components and the description of the orbitals
around the nuclei can be systematically improved by using pseu-
dopotentials of increasing hardness (which requires a simulta-
neous increase in the cutoff value). The complete basis set limit
can therefore be systematically reached (once completeness
holds with respect to the adopted pseudopotential).
The situation presents itself substantially different in atom-

centered basis sets. In a Gaussian basis, the orbitals around the
nuclei are well described, but for an accurate description of
most molecular properties, the compact basis usually has to be
enhanced by augmentation with long-range functions. When
the KS orbitals are expanded in Gaussians, a single set of diffuse
functions is often sufficient for routine applications. (A more
realistic description of the cusp and a correct decay of the basis
at long range can be obtained by resorting to a Slater-type basis.)
A comparison between plane wave and atom-centered basis

set calculations can therefore reveal the influence of the longest-
range components (described well within plane waves) and the
explicit description of the orbitals around the nuclear cusp
(reproduced well using Gaussian functions). In the following,
we will compare the HOMO−LUMO gaps of the preceding
section with the corresponding results obtained from various
Gaussian basis sets of increasing accuracy. Additional tests were
performed using a Slater-type basis in order to obtain a system-
atic analysis with respect to the cusp condition. The results are
shown in Table 2.
When increasing the size of the basis from double to hextuple

zeta, changes in the gap are considerable for the non-augmented
basis sets, spanning a range of a total of 0.9 eV. Once a single
diffuse function is included, the gaps become much more uniform,
with a difference between aug-cc-pVDZ and aug-cc-pVTZ of only
25 meV. When increasing zeta to ζ = 6, the gap fluctuates
within a negligible range of 3 meV. Adding more diffuse func-
tions never changes the gap by more than 5 meV. The aug-cc-
pVDZ basis can therefore be considered sufficiently accurate
when calculating HOMO−LUMO gaps with CAM-B3LYP.
The trend is very similar for a Slater-type basis, where we

have only included single-zeta values for comparison. As for the

Gaussian basis set, the omission of diffuse functions leads to an
insufficient description of the gap. However, as soon as a single
set of diffuse functions is included, the gap again converges
rapidly. The change from augmented double to triple zeta is
only about 8 meV. Even an augmented single-zeta basis seems
to yield a surprisingly accurate gap, with the difference being
only 0.08 eV with respect to the augmented triple-zeta basis.
While the difference between the converged gaps in plane

waves and the corresponding values in a Gaussian basis is about
0.1 eV, it is only 0.03 eV when compared to a Slater-type basis
(augmented triple-ζ vs GTH/180 Ry/30 Å cell). Even though
the orbitals are pseudized around the core, the plane wave/
pseudopotential approach yields results which are virtually
indistinguishable from all-electron calculations with an atom-
centered basis. The slightly larger deviation with respect to the
Gaussian basis may be attributed to differences in the long-
range decay and the description of the cusp, but they still lie
well within what is usually deemed chemical accuracy.

5.2. Excitation Energies. The most frequent use of
Coulomb-attenuated functionals is the description of excited
states (which is influenced by the accuracy of the KS eigenvalues
examined in the previous section through the linear response
equations). We therefore conclude the assessment of our imple-
mentation of the CAM in plane waves by comparing the results
to excited-state energies obtained using Gaussian bases. In line with
the trends observed in the preceding section, only the cc-pVDZ
basis was considered, which was augmented with a different
number of diffuse functions. The results are depicted in Table 3.
The excitation energies were computed for the set of mole-

cules introduced above, which apart from DMABN all contain
transitions with CT or Rydberg character. Since the plane
wave/pseudopotential implementation of LR-TD-DFT in the
CPMD code is limited to the Tamm−Dancoff approximation
(TDA), the electronic spectra in a Gaussian basis were obtained
within the same approximation for the sake of comparison.
While it has been found that high-overlap singlet transitions can
be substantially affected by the use of the TDA, it has also been
reported that the results obtained from the TDA compare more
favorably to high-level reference values than those obtained
from full TD-DFT.53 This effect can be understood in terms of
the triplet stability measure, the corresponding values for a subset
of the molecules considered here have been reported and dis-
cussed in ref 53.
For the dipeptide, DMABN and 7-azaindole, the results of

the singly augmented Gaussian basis sets already exhibit a

Table 2. HOMO−LUMO Gap of a Water Molecule
Calculated Using Atom-Centered Basis Sets Augmented with
a Varying Number of Diffuse Functions

no. of augmentation functions

0 1 2 3

Gaussian Basis
cc-pVDZ 9.832 10.679 10.667 10.666
cc-pVTZ 10.387 10.702 10.696 10.695
cc-pVQZ 10.576 10.705 10.670 10.700
cc-pV5Z 10.691 10.705 10.700 10.700
cc-pV6Z 10.714 10.704 10.700 10.700

Slater Basis
SZ 17.300 10.711
DZ 12.318 10.631
TZ 11.310 10.639
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negligible difference to those obtained with the plane wave/
pseudopotential approach. Neither the character nor the energetics
of the transitions do change when using a doubly augmented
Gaussian basis. Both Gaussians and plane waves yield the same
ordering of states and differences in the excitation energies
are smaller than 0.05 eV; i.e., they lie within a range that we
have previously considered as converged. The small devia-
tions may be attributed to both the pseudization of the orbitals
in plane waves, as well as the limited spatial extent of a localized
atom-centered basis, along with its predefined decay properties.
The situation is different in naphthalene and p-nitroaniline.

In naphthalene, the S1 state dominated by a HOMO−1→
LUMO transition is only predicted using plane waves or the
singly augmented atom-centered Gaussian basis. However, the
energetics of the S2 state (mainly HOMO→LUMO) is consis-
tent between the singly and doubly augmented Gaussian basis.
The excitation energies agree well between our plane wave
implementation and aug-cc-pVDZ.
The basis-set dependency issue becomes more involved in

the case of p-nitroaniline. Whereas the S2 π → π* transition is
predicted in all cases, the S3 n → π* state at 4.68 eV only
appears when one single diffuse function is used. Once a further
set of diffuse functions is included, the S3 n → π* transition
disappears again. It can therefore be concluded that in the case
of p-nitroaniline, the description of the S3 state using CAM-
B3LYP is particularly sensitive with respect to the choice of basis.
Since the S3 transition disappears once the basis is enlarged, this
indicates that the (quantitatively correct) prediction using aug-
cc-pVDZ is a mere artifact, and that CAM-B3LYP is not properly

able to describe the excitations in the limit of a complete basis.
This view is further supported by the results obtained in plane
waves, where the S3 state is absent: The ordering of the states
obtained at a cutoff of 120 Ry coincides with the one obtained
using a doubly augmented Gaussian basis. It has to be noted
that the S1 state has an oscillator strength f = 0, and that it is not
predicted when using plane waves.
Overall, the results obtained using a plane wave pseudopo-

tential approach are in excellent agreement with the ones obtained
with all-electron calculations in a Gaussian basis set. If any of
the orbitals included in the transitions of interest is highly diffuse,
plane waves fare better than a singly augmented Gaussian basis.
There is no indication that the presence (or absence) of pseu-
dization has any (relevant) influence on the spectra, with the
remaining differences between the doubly augmented Gaussian
basis and the plane waves being vanishingly small. Although the
excitation energies usually do not change considerably when
approaching the diffuse limit, the character and number of
states may, which can be important for applications such as
excited-state dynamics. The observations made in p-nitroaniline
further stress the importance of a sufficiently large basis, since
seemingly correct predictions may be an artifact due to an
incomplete basis. Only the use of a very diffuse Gaussian basis
set or plane waves reveal that CAM-B3LYP does not properly
predict one of the transitions. Given that most standard appli-
cations of Coulomb-attenuated functionals use only a single set
of augmentation functions, plane waves hence offer the advan-
tage of converging much more rapidly toward the basis set
limit, thanks to their inherently diffuse character. This is further

Table 3. Excitation Energies of the First Two to Four Excited Singlet States Obtained for Various Systems and Basis Sets Using
LR-TD-DFT and the CAM-B3LYP xc Functional within the Tamm−Dancoff Approximationa

CAM-B3LYP CAM-O3LYP

state cc-pVDZ aug-cc-pVDZ d-aug-cc-pVDZ MT/80 Ry MT/80 Ry ref

Naphthalene54

S1 − 4.66 − 4.65 4.63 4.46
S2 4.73 4.86 4.86 4.79 4.88 4.88

DMABN55

S1 4.91 4.76 4.76 4.77 4.68 4.25
S2 5.29 4.98 4.96 4.95 4.81 4.56

7-azaindole56

S1 5.19 1La 5.06 1La 5.05 1La 5.03 1La 5.05 1Lb 4.22 1Lb

S2 5.24 1Lb 5.08 1Lb 5.08 1Lb 5.07 1Lb 5.09 1La 4.49 1La

S3 5.36 5.32 5.32 5.33 5.35 5.27

Dipeptide26

S1 5.67 5.67 5.67 5.72 5.71 5.62
S2 5.92 5.89 5.88 5.93 5.91 5.79
S3 7.09 6.24 6.24 6.20 6.16 7.18
S4 7.33 6.55 6.51 6.44 6.38 8.07

p-nitroaniline57

S1 4.02 4.00 4.00 4.19 4.12
S2 4.57 4.53 4.53 4.54 4.59 4.66
S3 4.57 4.69 4.68
S4 4.79 4.87 4.87 4.87 4.92 4.75

aValues for a customized CAM-O3LYP functional are indicated, too. Literature reference values from high-level wavefunction calculations are given
where available. In p-nitroaniline, the first forbidden transition is not predicted in a plane-wave basis when using CAM-B3LYP; its oscillator strength
is f = 0 in the other calculations. The character of the transition is indicated whenever it is not consistent within different methods. Reference values
for naphthalene, DMABN and the dipeptide correspond to those adopted by Peach et al.9.
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illustrated by the haphazard description of the S1 state in
naphthalene, which is easily recovered in plane waves.
5.3. Performance of New Customized “à-la-Carte”

Coulomb-Attenuated Functionals. Our generalized imple-
mentation of the CAM renders adjustments to the established
xc functionals straightforward, for instance by using different
range-separation parameters α, β, or by changing μ (commonly
referred to as γ-tuning). The flexible form of Kσ

x also opens the
distinct possibility of assembling new long-range corrected func-
tionals based on simple physicochemical considerations.
CAM-B3LYP has become a valuable tool in the calculation of

excited states, as illustrated by the substantial improvements of
the excitation energies with respect to a simple GGA published
in the aforementioned studies. Still, the values in Table 3 reveal
that not all transitions may be accurately captured quantitatively
or qualitatively. The basis-set sensitivity of the excitations in
p-nitroaniline is more of a practical issue, since reliable values
may still be recovered in an accurately large basis, although at a
substantial computational cost. However, the wrong ordering
of states in 7-azaindole is one example that can only be over-
come by resorting to generally less widely applicable xc func-
tionals such as LC-BLYP, with a similar situation occurring in
the β-dipeptide. The orbital localization problems in the AT
base pair represent a further challenge. Such problems are often
attributed to stem from an imbalance between short- and long-
range exchange. The usual remedy to this weakness is the use of
LC-BLYP, which fares worse for the systems for which CAM-
B3LYP excels, but offers a more reasonable description of com-
pounds where the ordering of CT or Rydberg-states proves to
be inaccurate. In the following, we have attempted to construct
a functional that is sufficiently accurate for both systems where
CAM-B3LYP is of satisfactory accuracy, as well as for the few
CT systems where the functional has its known weaknesses.
A modified version of CAM-B3LYP with 80% exact exchange

at long range was reported to yield eigenvalue differences closer
to LC-BLYP, but performed worse for other properties where
the “standard” CAM-B3LYP yields accurate results.11 LC-BLYP
includes no exact exchange at shortest range, whereas CAM-
B3LYP still includes 19%, a value close to the 20% used in
standard B3LYP. A suitable compromise between LC-BLYP
and CAM-B3LYP could therefore lie in attenuating an existing
hybrid functional with more GGA exchange at short range, and
less at long range. Following the CAM-B3LYP approach, the
short-range contribution of the exact exchange should lie close
to the value used in the conventional hybrid to ensure proper
balance at short range.
Handy’s OPTX58 functional in conjecture with Lee−Yang−

Parr correlation59 has on several occasions been shown to be
superior to Becke’s 1988 exchange functional,60−63 and hybrids
including OPTX such as O3LYP58 include a lower percentage
of exact exchange than the famous B3LYP while retaining com-
parable accuracy. We therefore assumed a Coulomb-attenuated
version of O3LYP with 80% exact exchange at long range (as in
the CAM-B3LYP declination in ref 11) and only 11% at short
range (as in the O3LYP-hybrid) to offer the same benefits as
LC-BLYP or CAM-B3LYP with 80% exact exchange at long
range, but with an improved description of the short-range
region due to the inclusion of the more accurate OPTX.
The performance of the CAM-O3LYP functional on the test

set used in the previous chapter, including the problematic
7-azaindole, is summarized in Table 3. In the dipeptide, much like
the retinal protonated Schiff base, CAM-O3LYP yields virtually
indistinguishable results from CAM-B3LYP, with a maximum

deviation in S4 of 0.06 eV. The S1 and S2 states are therefore
accurately described, whereas the deviations for S3 and S4 remain
too large for practical applications in both of the functionals.
We should note that the good agreement between CAM-B3LYP
and reference values reported by Peach et al. were based on
values obtained in a basis without diffuse functions and without
the TDA; the higher energies of the CT states we report for the
cc-pVDZ basis are in line with their results. With CAM-O3LYP,
the state ordering in 7-azaindole is now correctly reproduced,
although the absolute errors are still considerable, with the
energetic difference between the 1La and

1Lb states being too
low. (This is also observed for CAM-B3LYP and may be
attributed to the use of the TDA, since in general, the energy
difference between the two states becomes larger if the TDA is
not employed.) In p-nitroaniline, the spectrum substantially
improves with the use of CAM-O3LYP, due to an improved
description of the S3 state, which is now predicted even when
approaching the basis set limit. For systems in which a classical
hybrid functional is preferable to CAM-B3LYP, such as DMABN,
the error due to CAM-O3LYP is comparable to the one of CAM-
B3LYP, even slightly smaller in the case of the S2 state.
Table 4 shows the excitation energies for a structure of

the retinal protonated Schiff base from a molecular dynamics

snapshot calculated with both CAM-B3LYP and CAM-O3LYP.
Since CAM-B3LYP has been shown to yield very accurate exci-
tation energies in this system, this can serve as an additional
benchmark for the accuracy of our new functional. Indeed,
CAM-O3LYP yields virtually indistinguishable excitation energies.
The remaining “problematic cases”, the AT base pair and the

β-dipeptide are presented in Table 5, where excitation energies
obtained from CAM-O3LYP and CAM-B3LYP are compared
to reference values.
For one of the two notorious cases, CAM-O3LYP outper-

forms CAM-B3LYP on a qualitative level: The spectrum of
the AT base pair is qualitatively correctly reproduced, with the
HOMO lying on adenine rather than thymine, in contrast to
CAM-B3LYP results. Overall, both functionals capture the
energetics of all but the S1 state accurately, but CAM-O3LYP
gives a correct theoretical description of the orbital localization.
In the β-dipeptide there is no improvement with respect to
CAM-B3LYP, but the qualitative and quantitative behaviors are
again very similar.
Overall, CAM-O3LYP shows identical or superior perform-

ance to CAM-B3LYP for all of the excitations; it appears to be
more versatile in the description of systems that require a larger
percentage of exact exchange at long range, where it is able to
remedy some of the pitfalls encountered with CAM-B3LYP.
These are systems where LC-BLYP has typically been used
so far. While the mean absolute error (MAE) over all the

Table 4. Comparison of Excitation Energies between
CAM-B3LYP and CAM-O3LYP for a Structure of the Retinal
Protonated Schiff Base Obtained from a Molecular
Dynamics Snapshota

state CAM-B3LYP CAM-O3LYP

S1 2.66 2.63
S2 4.13 4.25
S3 4.97 4.95
S4 5.12 5.08

aCAM-B3LYP is known to give good agreement with respect to high-
level wavefunction methods for this molecule.17,38
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molecules considered here is about MAE = 0.65 eV for CAM-
B3LYP, it improves for CAM-O3LYP, where MAE = 0.55 eV.
This demonstrates that based on simple considerations, a new

Coulomb-attenuated functional can be constructed. CAM-O3LYP
predicts qualitatively correct state ordering where CAM-B3LYP
fails, and in these systems yields excitation energies similar to
the latter. With CAM-O3LYP, it is therefore possible to cover a
larger range of systems than with CAM-B3LYP with slightly
improved accuracy. This is further reflected by the MAE of both
functionals, which is about 0.1 eV lower for the CAM-O3LYP
presented here. For other delicate systems and specific problems,
our implementation offers the possibility of adapting existing xc
functionals at hand, or to assemble entirely new Coulomb-
attenuated functionals.

6. CONCLUSIONS
We have presented a new, efficient and fully flexible implemen-
tation of Coulomb-attenuated functionals in the plane wave/
pseudopotential code CPMD which allows for a customized
composition of exchange-correlation functionals. On the base
of a comprehensive test suite, we could demonstrate that the
results obtained within the plane wave/pseudopotential frame-
work do not significantly deviate with respect to results obtained
in all-electron calculations with Gaussian bases. The results
indicate that the complete basis set limit is more easily reached
in plane waves, and that the pseudization of the nuclear cusp is
of no relevant influence on HOMO−LUMO gaps or excitation
energies. We have also shown that based on the same consid-
erations that led to the construction of CAM-B3LYP, a new xc
functional CAM-O3LYP can be constructed, which shows
improved performance over CAM-B3LYP in systems where the
latter fails, and yields comparable accuracy for systems where
CAM-B3LYP typically fares well. This demonstrates that the
flexibility of “a-̀la-carte” combinations of xc functionals can help
in obtaining excitations of higher accuracy over a larger range of
systems.
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