APPENDIX A
PROOF OF THEOREM 3

The proof is close to the one of Blanchard et al. [1] and
includes contributions from Carrillo et al. [2].

As a preliminary, we remind the definition of the asymmet-
ric restricted isometry (ARIP) constants that will be used in
the proof.

Definition 1 (ARIP constants [1]). Consider A € K"*". The
lower and upper ARIP constants of order k denoted as Ly and
Uy, respectively, are defined as

Ly = min b, subject to (1 —b)|lx|3 < ||Ax|3, Vx €

U = rgnnb subject to (1 —b) ||x||2 ||Ax||2, Vx € Xy
Recall that || X|lorow = k and supp(X) = J, |J| =k, J =
Jo U Ji, where |Jo| = r, and |Ji| = k —r. Let Vi = X' +
w'A*(Y — AX?). By replacing Y by its expression, we have
that:
Vi=X'+0' A AX )

-X)+W'A’E. (13)

Define the update X*! = (J) + Hy r(V’ )- Also define

Ui = supp(?—(k_,(V(ijo))). It can be easily checked that |U?| <
k — r, as described in [3].
Now, we can write the following inequality:

IVE= X" E = IV, = XGMIE + 11V, (,0) - X(\E (4

< Vi~ Xl + 11V, = Xyl (15)

= IV' = Xllz» (16)

since V() = ng“) and X(’;l) is the best (k-r)-term approxi-
mation of V’ Following the same reasoning as [1], we can

express the %oflowing inequality:

Xy — X < 20" (B, AX™ = X))

+ 2l - W' AHAQ)X' - X)), (X = X)), (A7)
where Q = J U J U J**! has a cardinality bounded by
0l =l U UU VU™ | <3k -2r <ck,  (18)

where ¢ € N such that ck > 3k — 2r .
of [1], we can write that

Now, using Lemma 5

(U - 0 AQAQ) (X" = X)) (X = X))

< o(chIX" = XpllFIX™H = Xpllr (19)

Uck+Lck

where ¢(ck) = B et
In addition, we can bound the first term of (17) as:

VI+ UallElFIX™ = X llF, (20)

since supp(X‘*! - X(;)) = JUU™! has its cardinality bounded
by 2k — r < dk, with d € N.
With (17), (19), (20) and Lemma 2 of [1], we can write

KE, A(X™" = X)) <

i ; B s
X0 - X7 Ir < & IX)llF + IEllF, (1)
l—-«

where a = 2¢(ck) < 1 and B =2 ‘i:g‘“ since w' < l+1Lk'

APPENDIX B
EMPIRICAL VALIDATION OF THEOREM 2

We propose an empirical validation of Theorem 2 using
MUSIC and MUSIC-PKS algorithms.

The signal matrix X € R™V is designed with n =
N =128, supp (X) = Jy U Jy, such that |Jy| =
is known a priori.

We consider a Gaussian random measurement matrix A €
R™"  with A;; ~ N(0,1), such that ||[A;]p = 1 and
rank (A) = m & spark(A) = m + 1. The measurements are
computed as ¥ = AX.

In a first experiment, we force rank (X(;,)) = 1 and
rank (X(s,)) = |/i] such that rank (Y) = [J;| + 1 when m > k.
We are in a rank-defective case in which MUSIC procedure
fails. However, when m > k, rank ([Y, A 10]) = k and we are
in the ideal case where R (A,) augments the signal subspace
R (Y) such that MUSIC-PKS succeeds.

In a second experiment, we force rank (X)) = |Jo| and
rank (X(s,)) = 1 in such a way that we are in the worst case
scenario for MUSIC-PKS since R (4,) € R (Y). In this case,
MUSIC-PKS does not perform better than MUSIC.

Fig 4 displays the average recovery probability, computed
as the rate of successful support recovery over 1000 random
trials of the algorithms.
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Fig. 4. Recovery probability of MUSIC and MUSIC-PKS when
rank(X(JO)) = |Jo| (Exp. 1) and when rank(X(JU)) =1 (Exp. 2).

For the first experiment, we observe that MUSIC-PKS
recovers the support of the signal for m > k + 1 = 17 which
exactly corresponds to the case where the augmented matrix
has full rank, as stated in Theorem 2. Concerning the second
experiment, both MUSIC and MUSIC-PKS fail as expected.
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