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APPENDIX A
PROOF OF THEOREM 3

The proof is close to the one of Blanchard et al. [1] and
includes contributions from Carrillo et al. [2].

As a preliminary, we remind the definition of the asymmet-
ric restricted isometry (ARIP) constants that will be used in
the proof.

Definition 1 (ARIP constants [1]). Consider A ∈ Km×n. The
lower and upper ARIP constants of order k denoted as Lk and
Uk , respectively, are defined as

Lk = min
b≥0

b, subject to (1 − b) ‖x‖22 ≤ ‖Ax‖
2
2, ∀x ∈ Σk

Uk = min
b≥0

b, subject to (1 − b) ‖x‖22 ≥ ‖Ax‖
2
2, ∀x ∈ Σk

Recall that ‖X ‖0,row = k and supp (X) = J, |J | = k, J =
J0 ∪ J1, where |J0 | = r , and |J1 | = k − r . Let V i = X i +

ωiA∗(Y − AX i). By replacing Y by its expression, we have
that:

V i = X i + ωiA∗A(X(J) − X) + ωiA∗Ẽ . (13)

Define the update X i+1 = V i
(J0)
+ Hk−r (V

i
(J̄0)
). Also define

Ui = supp(Hk−r (V
i
(J̄0)
)). It can be easily checked that |Ui | ≤

k − r , as described in [3].
Now, we can write the following inequality:

‖V i − X i+1‖2F = ‖V
i
(J0)
− X i+1

(J0)
‖2F + ‖V

i
(J̄0)
− X i+1

(J̄0)
‖2F, (14)

≤ ‖V i
(J0)
− X(J0)‖

2
F + ‖V

i
(J̄0)
− X(J1)‖

2
F, (15)

= ‖V i − X(J)‖
2
F, (16)

since V i
(J0)
= X i+1

(J0)
and X i+1

(J̄0)
is the best (k-r)-term approxi-

mation of V i
(J̄0)

. Following the same reasoning as [1], we can
express the following inequality:

‖X(J) − X i+1‖2F ≤ 2ωi |〈Ẽ, A(X i+1 − X(J))〉|

+ 2|〈(I − ωiA∗QAQ)(X
i − X(J)), (X

i+1 − X(J))〉|, (17)

where Q = J ∪ Ji ∪ Ji+1 has a cardinality bounded by

|Q | = |J0 ∪ J1 ∪Ui ∪Ui+1 | ≤ 3k − 2r ≤ ck, (18)

where c ∈ N such that ck ≥ 3k − 2r . Now, using Lemma 5
of [1], we can write that

|〈(I − ωiA∗QAQ)(X
i − X(J)), (X

i+1 − X(J))〉|

≤ ϕ(ck)‖X i − X(J)‖F ‖X
i+1 − X(J)‖F (19)

where ϕ(ck) = Uck+Lck

1−Lk
.

In addition, we can bound the first term of (17) as:

|〈Ẽ, A(X i+1 − X(J))〉| ≤
√

1 +Udk ‖Ẽ‖F ‖X
i+1 − X(J)‖F, (20)

since supp(X i+1−X(J)) = J∪Ui+1 has its cardinality bounded
by 2k − r ≤ dk, with d ∈ N.

With (17), (19), (20) and Lemma 2 of [1], we can write

‖X(J) − X i+1‖F ≤ α
i ‖X(J)‖F +

β

1 − α
‖Ẽ‖F, (21)

where α = 2ϕ(ck) < 1 and β = 2
√

1+Udk

1+Lk
since ωi ≤ 1

1+Lk
.

APPENDIX B
EMPIRICAL VALIDATION OF THEOREM 2

We propose an empirical validation of Theorem 2 using
MUSIC and MUSIC-PKS algorithms.

The signal matrix X ∈ Rn×N is designed with n = 64,
N = 128, supp (X) = J0 ∪ J1, such that |J0 | = |J1 | = 8 and J0
is known a priori.

We consider a Gaussian random measurement matrix A ∈
Rm×n, with Ai, j ∼ N (0, 1), such that ‖Ai ‖2 = 1 and
rank (A) = m ⇔ spark (A) = m + 1. The measurements are
computed as Y = AX .

In a first experiment, we force rank
(
X(J0)

)
= 1 and

rank
(
X(J1)

)
= |J1 | such that rank (Y ) = |J1 | + 1 when m > k.

We are in a rank-defective case in which MUSIC procedure
fails. However, when m > k, rank

( [
Y, AJ0

] )
= k and we are

in the ideal case where R
(
AJ0

)
augments the signal subspace

R (Y ) such that MUSIC-PKS succeeds.
In a second experiment, we force rank

(
X(J0)

)
= |J0 | and

rank
(
X(J1)

)
= 1 in such a way that we are in the worst case

scenario for MUSIC-PKS since R
(
AJ0

)
⊂ R (Y ). In this case,

MUSIC-PKS does not perform better than MUSIC.
Fig 4 displays the average recovery probability, computed

as the rate of successful support recovery over 1000 random
trials of the algorithms.
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Fig. 4. Recovery probability of MUSIC and MUSIC-PKS when
rank(X(J0)

) = |J0 | (Exp. 1) and when rank(X(J0)
) = 1 (Exp. 2).

For the first experiment, we observe that MUSIC-PKS
recovers the support of the signal for m ≥ k + 1 = 17 which
exactly corresponds to the case where the augmented matrix
has full rank, as stated in Theorem 2. Concerning the second
experiment, both MUSIC and MUSIC-PKS fail as expected.
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