Appendix A

Proof of Theorem 3

The proof is close to the one of Blanchard et al. [1] and includes contributions from Carrillo et al. [2].

As a preliminary, we remind the definition of the asymmetric restricted isometry (ARIP) constants that will be used in the proof.

Definition 1 (ARIP constants [1]). Consider $\boldsymbol{A} \in \mathbb{K}^{m \times n}$. The lower and upper ARIP constants of order k denoted as L_{k} and U_{k}, respectively, are defined as

$$
\begin{aligned}
& L_{k}=\min _{b \geq 0} b, \text { subject to }(1-b)\|\boldsymbol{x}\|_{2}^{2} \leq\|\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}, \forall \boldsymbol{x} \in \Sigma_{k} \\
& U_{k}=\min _{b \geq 0} b, \text { subject to }(1-b)\|\boldsymbol{x}\|_{2}^{2} \geq\|\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}, \forall \boldsymbol{x} \in \Sigma_{k}
\end{aligned}
$$

Recall that $\|\boldsymbol{X}\|_{0, \text { row }}=k$ and $\operatorname{supp}(\boldsymbol{X})=J,|J|=k, J=$ $J_{0} \cup J_{1}$, where $\left|J_{0}\right|=r$, and $\left|J_{1}\right|=k-r$. Let $\boldsymbol{V}^{i}=\boldsymbol{X}^{i}+$ $\omega^{i} \boldsymbol{A}^{*}\left(\boldsymbol{Y}-\boldsymbol{A} \boldsymbol{X}^{i}\right)$. By replacing \boldsymbol{Y} by its expression, we have that:

$$
\begin{equation*}
\boldsymbol{V}^{i}=\boldsymbol{X}^{i}+\omega^{i} \boldsymbol{A}^{*} \boldsymbol{A}\left(\boldsymbol{X}_{(J)}-\boldsymbol{X}\right)+\omega^{i} \boldsymbol{A}^{*} \tilde{\boldsymbol{E}} \tag{13}
\end{equation*}
$$

Define the update $\boldsymbol{X}^{i+1}=\boldsymbol{V}_{\left(J_{0}\right)}^{i}+\mathcal{H}_{k-r}\left(\boldsymbol{V}_{\left(\bar{J}_{0}\right)}^{i}\right)$. Also define $U^{i}=\operatorname{supp}\left(\mathcal{H}_{k-r}\left(V_{\left(\bar{J}_{0}\right)}^{i}\right)\right)$. It can be easily checked that $\left|U^{i}\right| \leq$ $k-r$, as described in [3].

Now, we can write the following inequality:

$$
\begin{align*}
\left\|V^{i}-\boldsymbol{X}^{i+1}\right\|_{F}^{2} & =\left\|\boldsymbol{V}_{\left(J_{0}\right)}^{i}-\boldsymbol{X}_{\left(J_{0}\right)}^{i+1}\right\|_{F}^{2}+\left\|\boldsymbol{V}_{\left(\bar{J}_{0}\right)}^{i}-\boldsymbol{X}_{\left(\bar{J}_{0}\right)}^{i+1}\right\|_{F}^{2}, \tag{14}\\
& \leq\left\|\boldsymbol{V}_{\left(J_{0}\right)}^{i}-\boldsymbol{X}_{\left(J_{0}\right)}\right\|_{F}^{2}+\left\|\boldsymbol{V}_{\left(\bar{J}_{0}\right)}^{i}-\boldsymbol{X}_{\left(J_{1}\right)}\right\|_{F}^{2}, \tag{15}\\
& =\left\|\boldsymbol{V}^{i}-\boldsymbol{X}_{(J)}\right\|_{F}^{2}, \tag{16}
\end{align*}
$$

since $V_{\left(J_{0}\right)}^{i}=\boldsymbol{X}_{\left(J_{0}\right)}^{i+1}$ and $\boldsymbol{X}_{\left(\bar{J}_{0}\right)}^{i+1}$ is the best $(k-r)$-term approximation of $\boldsymbol{V}_{\left(J_{0}\right)}^{i}$. Following the same reasoning as [1], we can express the following inequality:

$$
\begin{align*}
& \left\|\boldsymbol{X}_{(J)}-\boldsymbol{X}^{i+1}\right\|_{F}^{2} \leq 2 \omega^{i}\left|\left\langle\tilde{\boldsymbol{E}}, \boldsymbol{A}\left(\boldsymbol{X}^{i+1}-\boldsymbol{X}_{(J)}\right)\right\rangle\right| \\
& \quad+2\left|\left\langle\left(\boldsymbol{I}-\omega^{i} \boldsymbol{A}_{Q}^{*} \boldsymbol{A}_{Q}\right)\left(\boldsymbol{X}^{i}-\boldsymbol{X}_{(J)}\right),\left(\boldsymbol{X}^{i+1}-\boldsymbol{X}_{(J)}\right)\right\rangle\right| \tag{17}
\end{align*}
$$

where $Q=J \cup J^{i} \cup J^{i+1}$ has a cardinality bounded by

$$
\begin{equation*}
|Q|=\left|J_{0} \cup J_{1} \cup U^{i} \cup U^{i+1}\right| \leq 3 k-2 r \leq c k \tag{18}
\end{equation*}
$$

where $c \in \mathbb{N}$ such that $c k \geq 3 k-2 r$. Now, using Lemma 5 of [1], we can write that

$$
\begin{align*}
& \left|\left\langle\left(\boldsymbol{I}-\omega^{i} \boldsymbol{A}_{Q}^{*} \boldsymbol{A}_{Q}\right)\left(\boldsymbol{X}^{i}-\boldsymbol{X}_{(J)}\right),\left(\boldsymbol{X}^{i+1}-\boldsymbol{X}_{(J)}\right)\right\rangle\right| \\
& \quad \leq \varphi(c k)\left\|\boldsymbol{X}^{i}-\boldsymbol{X}_{(J)}\right\|_{F}\left\|\boldsymbol{X}^{i+1}-\boldsymbol{X}_{(J)}\right\|_{F} \tag{19}
\end{align*}
$$

where $\varphi(c k)=\frac{U_{c k}+L_{c k}}{1-L_{k}}$.
In addition, we can bound the first term of (17) as:

$$
\begin{equation*}
\left|\left\langle\tilde{\boldsymbol{E}}, \boldsymbol{A}\left(\boldsymbol{X}^{i+1}-\boldsymbol{X}_{(J)}\right)\right\rangle\right| \leq \sqrt{1+U_{d k}}\|\tilde{\boldsymbol{E}}\|_{F}\left\|\boldsymbol{X}^{i+1}-\boldsymbol{X}_{(J)}\right\|_{F} \tag{20}
\end{equation*}
$$

since $\operatorname{supp}\left(\boldsymbol{X}^{i+1}-\boldsymbol{X}_{(J)}\right)=J \cup U^{i+1}$ has its cardinality bounded by $2 k-r \leq d k$, with $d \in \mathbb{N}$.

With (17), (19), (20) and Lemma 2 of [1], we can write

$$
\begin{equation*}
\left\|\boldsymbol{X}_{(J)}-\boldsymbol{X}^{i+1}\right\|_{F} \leq \alpha^{i}\left\|\boldsymbol{X}_{(J)}\right\|_{F}+\frac{\beta}{1-\alpha}\|\tilde{\boldsymbol{E}}\|_{F} \tag{21}
\end{equation*}
$$

where $\alpha=2 \varphi(c k)<1$ and $\beta=2 \frac{\sqrt{1+U_{d k}}}{1+L_{k}}$ since $\omega^{i} \leq \frac{1}{1+L_{k}}$.

Appendix B
 Empirical Validation of Theorem 2

We propose an empirical validation of Theorem 2 using MUSIC and MUSIC-PKS algorithms.

The signal matrix $X \in \mathbb{R}^{n \times N}$ is designed with $n=64$, $N=128, \operatorname{supp}(\boldsymbol{X})=J_{0} \cup J_{1}$, such that $\left|J_{0}\right|=\left|J_{1}\right|=8$ and J_{0} is known a priori.

We consider a Gaussian random measurement matrix $\boldsymbol{A} \in$ $\mathbb{R}^{m \times n}$, with $\boldsymbol{A}_{i, j} \sim \mathcal{N}(0,1)$, such that $\left\|\boldsymbol{A}_{i}\right\|_{2}=1$ and $\operatorname{rank}(\boldsymbol{A})=m \Leftrightarrow \operatorname{spark}(\boldsymbol{A})=m+1$. The measurements are computed as $\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{X}$.

In a first experiment, we force $\operatorname{rank}\left(\boldsymbol{X}_{\left(J_{0}\right)}\right)=1$ and $\operatorname{rank}\left(\boldsymbol{X}_{\left(J_{1}\right)}\right)=\left|J_{1}\right|$ such that $\operatorname{rank}(\boldsymbol{Y})=\left|J_{1}\right|+1$ when $m>k$. We are in a rank-defective case in which MUSIC procedure fails. However, when $m>k$, $\operatorname{rank}\left(\left[\boldsymbol{Y}, \boldsymbol{A}_{J_{0}}\right]\right)=k$ and we are in the ideal case where $\mathcal{R}\left(\boldsymbol{A}_{J_{0}}\right)$ augments the signal subspace $\mathcal{R}(\boldsymbol{Y})$ such that MUSIC-PKS succeeds.

In a second experiment, we force $\operatorname{rank}\left(\boldsymbol{X}_{\left(J_{0}\right)}\right)=\left|J_{0}\right|$ and $\operatorname{rank}\left(\boldsymbol{X}_{\left(J_{1}\right)}\right)=1$ in such a way that we are in the worst case scenario for MUSIC-PKS since $\mathcal{R}\left(\boldsymbol{A}_{J_{0}}\right) \subset \mathcal{R}(\boldsymbol{Y})$. In this case, MUSIC-PKS does not perform better than MUSIC.

Fig 4 displays the average recovery probability, computed as the rate of successful support recovery over 1000 random trials of the algorithms.

Fig. 4. Recovery probability of MUSIC and MUSIC-PKS when $\operatorname{rank}\left(\boldsymbol{X}_{\left(J_{0}\right)}\right)=\left|J_{0}\right|\left(\right.$ Exp. 1) and when $\operatorname{rank}\left(\boldsymbol{X}_{\left(J_{0}\right)}\right)=1$ (Exp. 2).

For the first experiment, we observe that MUSIC-PKS recovers the support of the signal for $m \geq k+1=17$ which exactly corresponds to the case where the augmented matrix has full rank, as stated in Theorem 2. Concerning the second experiment, both MUSIC and MUSIC-PKS fail as expected.

REFERENCES

[1] J. D. Blanchard, M. Cermak, D. Hanle, and Y. Jing, "Greedy algorithms for joint sparse recovery," IEEE Trans. Signal Process., vol. 62, no. 7, pp. 1694-1704, 2014.
[2] R. E. Carrillo, L. F. Polania, and K. E. Barner, "Iterative hard thresholding for compressed sensing with partially known support," in 2011 IEEE Int. Conf. Acoust. Speech Signal Process., 2011, pp. 4028-4031.
[3] ——, "Iterative algorithms for compressed sensing with partially known support," in 2010 IEEE Int. Conf. Acoust. Speech Signal Process., 2010, pp. 3654-3657.

