APPENDIX A

PROOF OF THEOREM 3

The proof is close to the one of Blanchard et al. [?] and includes contributions from Carrillo et al. [?].

As a preliminary, we remind the definition of the asymmetric restricted isometry (ARIP) constants that will be used in the proof.

Definition 1 (ARIP constants [?]). Consider $A \in \mathbb{K}^{m \times n}$. The lower and upper ARIP constants of order k denoted as L_k and U_k , respectively, are defined as

$$L_k = \min_{b \ge 0} b, \text{ subject to } (1-b) \|\boldsymbol{x}\|_2^2 \le \|\boldsymbol{A}\boldsymbol{x}\|_2^2, \ \forall \boldsymbol{x} \in \Sigma_k$$
$$U_k = \min_{b \ge 0} b, \text{ subject to } (1-b) \|\boldsymbol{x}\|_2^2 \ge \|\boldsymbol{A}\boldsymbol{x}\|_2^2, \ \forall \boldsymbol{x} \in \Sigma_k$$

Recall that $||X||_{0,row} = k$ and supp(X) = J, |J| = k, J = $J_0 \cup J_1$, where $|J_0| = r$, and $|J_1| = k - r$. Let $V^i = X^i + I_0$ $\omega^i A^* (Y - AX^i)$. By replacing Y by its expression, we have that:

$$V^{i} = X^{i} + \omega^{i} A^{*} A(X_{(J)} - X) + \omega^{i} A^{*} \tilde{E}.$$
⁽¹³⁾

Define the update $X^{i+1} = V^i_{(J_0)} + \mathcal{H}_{k-r}(V^i_{(\bar{J}_0)})$. Also define $U^i = \sup(\mathcal{H}_{k-r}(V^i_{(\bar{J}_0)}))$. It can be easily checked that $|U^i| \leq U^i$ k - r, as described in [?].

Now, we can write the following inequality:

$$\|\boldsymbol{V}^{i} - \boldsymbol{X}^{i+1}\|_{F}^{2} = \|\boldsymbol{V}_{(J_{0})}^{i} - \boldsymbol{X}_{(J_{0})}^{i+1}\|_{F}^{2} + \|\boldsymbol{V}_{(\bar{J}_{0})}^{i} - \boldsymbol{X}_{(\bar{J}_{0})}^{i+1}\|_{F}^{2}, \quad (14)$$

$$\leq \|V_{(J_0)}^{i} - X_{(J_0)}\|_{F}^{2} + \|V_{(\bar{J}_0)}^{i} - X_{(J_1)}\|_{F}^{2}, \quad (15)$$

$$= \|V^{i} - X_{(J)}\|_{F}^{2}, \tag{16}$$

since $V_{(J_0)}^i = X_{(J_0)}^{i+1}$ and $X_{(\bar{J}_0)}^{i+1}$ is the best (k-r)-term approximation of $V_{(\bar{I}_{i})}^{i}$. Now, by expanding (16) using the Frobenius inner product and bounding the real part of the inner product by its magnitude, the following inequality holds:

$$\|X_{(J)} - X^{j+1}\|_F^2 \le 2|\langle V^i - X_{(J)}, X_{(J)} - X^{i+1}\rangle|,$$
(17)

where $\langle \cdot, \cdot \rangle$ denotes the Frobenius inner-product. In addition, we use (13) to write that:

$$\boldsymbol{V}^{i} - \boldsymbol{X}_{(J)} = (\boldsymbol{I} - \boldsymbol{\omega}^{i} \boldsymbol{A}^{*} \boldsymbol{A})(\boldsymbol{X}^{i} - \boldsymbol{X}_{(J)}) + \boldsymbol{\omega}^{i} \boldsymbol{A}^{*} \tilde{\boldsymbol{E}}, \qquad (18)$$

which can be injected in (17) to deduce that

$$\begin{aligned} \|X_{(J)} - X^{i+1}\|_{F}^{2} &\leq 2\omega^{i} |\langle \tilde{E}, A(X^{i+1} - X_{(J)})\rangle| \\ &+ 2|\langle (I - \omega^{i} A_{Q}^{*} A_{Q})(X^{i} - X_{(J)}), (X^{i+1} - X_{(J)})\rangle|, \end{aligned}$$
(19)

where $Q = J \cup J^i \cup J^{i+1}$ has a cardinality bounded by

$$|Q| = |J_0 \cup J_1 \cup U^i \cup U^{i+1}| \le 3k - 2r \le ck,$$
(20)

where $c \in \mathbb{N}$ such that $ck \ge 3k - 2r$. Now, using Lemma 5 of [?], we can state that if $\omega^i \le \frac{1}{1-L_k}$, the following inequality holds

$$\begin{aligned} |\langle (I - \omega^{i} A_{Q}^{*} A_{Q}) (X^{i} - X_{(J)}), (X^{i+1} - X_{(J)}) \rangle| \\ &\leq \varphi(ck) \|X^{i} - X_{(J)}\|_{F} \|X^{i+1} - X_{(J)}\|_{F} \end{aligned}$$
(21)

where $\varphi(ck) = \frac{U_{ck} + L_{ck}}{1 - L_k}$. In addition, we can bound the first term of (19) as:

$$|\langle \tilde{E}, A(X^{i+1} - X_{(J)}) \rangle| \le \sqrt{1 + U_{dk}} \|\tilde{E}\|_F \|X^{i+1} - X_{(J)}\|_F, \quad (22)$$

since supp $(X^{i+1} - X_{(J)}) = J \cup U^{i+1}$ has its cardinality bounded by $2k - r \leq dk$, with $d \in \mathbb{N}$.

With (19), (21), (22) and Lemma 2 of [?], we can write

$$\|X_{(J)} - X^{i+1}\|_F \le \alpha^i \|X_{(J)}\|_F + \frac{\beta}{1-\alpha} \|\tilde{E}\|_F, \qquad (23)$$

where $\alpha = 2\varphi(ck) < 1$ and $\beta = 2\frac{\sqrt{1+U_{dk}}}{1-L_k}$ since $\omega^i \le \frac{1}{1-L_k}$ (because of (21)).

APPENDIX B

EMPIRICAL VALIDATION OF THEOREM 2

We propose an empirical validation of Theorem 2 using MUSIC and MUSIC-PKS algorithms.

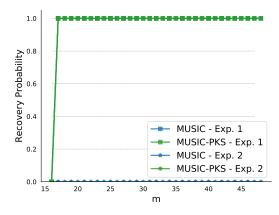
The signal matrix $X \in \mathbb{R}^{n \times N}$ is designed with n = 64, N = 128, supp $(X) = J_0 \cup J_1$, such that $|J_0| = |J_1| = 8$ and J_0 is known *a priori*.

We consider a Gaussian i.i.d. measurement matrix $A \in$ $\mathbb{R}^{m \times n}$, with $A_{ii} \sim \mathcal{N}(0, 1)$ such that rank (A) = m and $\operatorname{spark}(A) = m+1$ with probability 1 [?], [?]. The measurements are computed as Y = AX.

In a first experiment, we force rank $(X_{(J_0)}) = 1$ and rank $(X_{(J_1)}) = |J_1|$ such that rank $(Y) = |J_1| + 1$ when m > k. We are in a rank-defective case in which MUSIC procedure fails. However, when m > k, rank $([Y, A_{J_0}]) = k$ and we are in the ideal case where $\mathcal{R}(A_{J_0})$ augments the signal subspace $\mathcal{R}(Y)$ such that MUSIC-PKS succeeds.

In a second experiment, we force rank $(X_{(J_0)}) = |J_0|$ and rank $(X_{(J_1)}) = 1$ in such a way that we are in the worst case scenario for MUSIC-PKS since $\mathcal{R}(A_{J_0}) \subset \mathcal{R}(Y)$. In this case, MUSIC-PKS does not perform better than MUSIC.

Fig 4 displays the average recovery probability, computed as the rate of successful support recovery over 1000 random trials of the algorithms.



Recovery probability of MUSIC and MUSIC-PKS when Fig. 4. $\operatorname{rank}(X_{(J_0)}) = |J_0|$ (Exp. 1) and when $\operatorname{rank}(X_{(J_0)}) = 1$ (Exp. 2).

For the first experiment, we observe that MUSIC-PKS recovers the support of the signal for $m \ge k + 1 = 17$ which exactly corresponds to the case where the augmented matrix has full rank, as stated in Theorem 2. Concerning the second experiment, both MUSIC and MUSIC-PKS fail as expected.