APPENDIX A
PROOF OF THEOREM 3
The proof is close to the one of Blanchard et al. [?] and
includes contributions from Carrillo et al. [?].
As a preliminary, we remind the definition of the asymmet-
ric restricted isometry (ARIP) constants that will be used in
the proof.

Definition 1 (ARIP constants [?]). Consider A € K"™*". The
lower and upper ARIP constants of order k denoted as Ly and
Uy, respectively, are defined as

L, = rglig b, subject to (1 —b) ||x||§ < ||Ax||§, Vx € %y
>

Ui = minb, subject to (1-b)|lx|3 > [|Ax]13, Vx € =
>

Recall that || X|lorow = k and supp(X) = J, |J| =k, J =
Jo U Ji, where |Jy| = r, and |J;| = k —r. Let VI = X' +
w'A*(Y — AX"). By replacing Y by its expression, we have
that: _ _ _ .

Vis X'+ A*A(X ) - X) + W' A'E. (13)

Define the update X*! = (Jo) + H_ r(V‘ )- Also define
Ui = supp(?—[k_r(V(ij))). It can be easily checked that |U?| <
k — r, as described in [?].

Now, we can write the following inequality:

1
V=X = 1V, = XG 1 + 1 (,)—X”)HF, (14)

<V = Xupllf + 11V = Xapliz. (15)
=V =Xz (16)
since V/, | = X(’J“) and X(‘;‘) is the best (k-r)-term approxi-
mation of V‘ . Now, by expanding (16) using the Frobenius

inner product and bounding the real part of the inner product

by its magnitude, the following inequality holds:
X0y = X7 7 < 2VF = X0y, Xy = XD a7

where (-, -) denotes the Frobenius inner-product. In addition,
we use (13) to write that:

Vi-Xy) = -0'A"A)X' - Xy) +0'AE, (18)
which can be injected in (17) to deduce that
X0 — X < 20 (B, AX™ = X ()|
+2(I - W' AGAQ)X' = X)), (X = X)), (19)
where Q = J U J' U Ji*! has a cardinality bounded by
10| = o UJi VU VU™ <3k —2r < ck,  (20)

where ¢ € N such that ck > 3k — 2r . Now, using Lemma 5
of [?], we can state that if v’ < the following inequality
holds

—lL’

(I - ' AGAQ)X" = X)), (X = X))
< (k)X = XpllF X = XpllF
where ¢(ck) = —Uclk_zi"k.
In addition, we can bound the first term of (19) as:

KE, AX™! = X)) < V1 + UalElFII X = Xpllr, (22)

21

since supp(X*! - X(;)) = JUU™! has its cardinality bounded
by 2k —r < dk, with d € N.
With (19), (21), (22) and Lemma 2 of [?], we can write

Xy = X Ir < I XllF +

(23)

where & = 2¢(ck) < 1 and g = 2174k VHU‘“ since w' < ﬁ (be-
cause of (21)).

APPENDIX B
EMPIRICAL VALIDATION OF THEOREM 2

We propose an empirical validation of Theorem 2 using
MUSIC and MUSIC-PKS algorithms.

The signal matrix X € R™V is designed with n = 64,
N =128, supp (X) = Jo U Jy, such that |Jy| = |J;| = 8 and Jy
is known a priori.

We consider a Gaussian i.i.d. measurement matrix A €
R™" with A;; ~ N(0,1) such that rank(A) = m and
spark (A) = m+1 with probability 1 [?], [?]. The measurements
are computed as ¥ = AX.

In a first experiment, we force rank (X(;)) = 1 and
rank (X(y,)) = |/1] such that rank (Y) = |J;| + 1 when m > k.
We are in a rank-defective case in which MUSIC procedure
fails. However, when m > k, rank ([Y, A ]0]) = k and we are
in the ideal case where R (A,) augments the signal subspace
R (Y) such that MUSIC-PKS succeeds.

In a second experiment, we force rank (X(z,)) = [Jo| and
rank (X J])) =1 in such a way that we are in the worst case
scenario for MUSIC-PKS since R (4,,) ¢ R (Y). In this case,
MUSIC-PKS does not perform better than MUSIC.

Fig 4 displays the average recovery probability, computed
as the rate of successful support recovery over 1000 random
trials of the algorithms.
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Fig. 4. Recovery probability of MUSIC and MUSIC-PKS when
rank(X(JO)) = |Jo| (Exp. 1) and when rank(X(JO)) =1 (Exp. 2).

For the first experiment, we observe that MUSIC-PKS
recovers the support of the signal for m > k + 1 = 17 which
exactly corresponds to the case where the augmented matrix
has full rank, as stated in Theorem 2. Concerning the second
experiment, both MUSIC and MUSIC-PKS fail as expected.
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