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Joint Sparsity with Partially Known Support and
Application to Ultrasound Imaging
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Abstract—We investigate the benefits of known partial support
for the recovery of joint-sparse signals and demonstrate that
it is advantageous in terms of recovery performance for both
rank-blind and rank-aware algorithms. We suggest extensions
of several joint-sparse recovery algorithms, e.g. simultaneous
normalized iterative hard thresholding, subspace greedy methods
and subspace-augmented multiple signal classification techniques.
We describe a direct application of the proposed methods
for compressive multiplexing of ultrasound (US) signals. The
technique exploits the compressive multiplexer architecture for
signal compression and relies on joint-sparsity of US signals
in the frequency domain for signal reconstruction. We validate
the proposed algorithms on numerical experiments and show
their superiority against state-of-the-art approaches in rank-
defective cases. We also demonstrate that the techniques lead to a
significant increase of the image quality on in vivo carotid images
compared to reconstruction without partially known support. The
supporting code is available on https://github.com/AdriBesson/
spl2018_joint_sparse.

Index Terms—Compressed sensing, ultrasound, greedy algo-
rithms, joint sparsity, MUSIC.

I. INTRODUCTION

COMPRESSED sensing (CS) [1], [3] aims to solve a
single measurement vector (SMV) problem where one

would like to retrieve a k-sparse vector x ∈ Σk from mea-
surements y = Ax ∈ Km, where K denotes a scalar field,
e.g. R or C, A ∈ Km×n, Σk = {x ∈ Kn | |supp(x)| ≤ k} and
supp (x) = {i ∈ {1, . . . , n} | xi , 0}.

Distributed CS extends CS to the multiple measurement
vectors (MMV) problem [4], [5] whose purpose is to recover
multiple sparse vectors X = [x1, x2, . . . , xN ] ∈ K

n×N from
measurements Y = AX ∈ Km×N [6]. Under the assumption
that the signals xi , i = 1, . . . , N , share the same support (JSM-
2 model in [6]), the MMV problem can be written as

min
X ∈Kn×N

‖X ‖0,row subject to Y = AX, (1)

where ‖X ‖0,row counts the number of non-zero rows of X .
Many techniques have been introduced to tackle the MMV
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problem. A first group exploits the multiple signal classi-
fication (MUSIC) algorithm, popular in array signal pro-
cessing. Indeed, Feng and Bresler [7] demonstrate that X
can be retrieved using a singular value decomposition of
Y in the full-rank case. Extensions of the MUSIC algo-
rithm to rank-defective cases have been proposed such as
subspace-augmented MUSIC (SA-MUSIC) [8], compressive
MUSIC (CS-MUSIC) [10] and semi-supervised MUSIC [22].
The second group of techniques extend algorithms developed
for standard CS to the MMV case. Mixed-norm algorithms ex-
ploit extensions of `1-minimization algorithms [11], [26], [27].
Several greedy algorithms have also been extended leading to
simultaneous orthogonal matching pursuit [12], [28], simulta-
neous normalized hard thresholding pursuit [14], [13], simulta-
neous compressive sampling matching pursuit [13] and simul-
taneous normalized iterative hard thresholding (SNIHT) [13].
In [17], Davies and Eldar introduce the rank-aware orthogonal
recursive matching pursuit (RA-ORMP), a greedy method
which exploits the rank information of X . Lee et al. [8]
propose the orthogonal subspace matching pursuit (OSMP),
very similar to RA-ORMP.

CS with partially known support consists in injecting a prior
knowledge of the support of the unknown signal into the CS
problem resulting in weaker conditions than standard CS. The
concept has been introduced independently by Vaswani and
Lu [23], von Borries et al. [44] and Khajehnejad et al. [45],
and extended by Jacques [24]. Carrillo et al. [16], [15] have
also suggested extensions of various greedy algorithms.

In this work, we propose to study the benefits of known
partial support on the performance of joint-sparse recovery
algorithms. In Section II, we present uniqueness conditions
for the solution of Problem (1) in case of partially known
support. We also propose extensions of several algorithms, i.e.
SNIHT, RA-ORMP, OSMP and subspace augmented MUSIC
methods which are validated on numerical experiments. In
Section III, we show an application of the proposed algorithms
to the recovery of ultrasound (US) signals from multiplexed
measurements. Concluding remarks are given in Section IV.

II. JOINT SPARSITY WITH PARTIALLY KNOWN SUPPORT

A. Notation

Given a space I ⊂ KN , PI and P⊥
I

define the projectors
onto I and its orthogonal complement I⊥. Similarly, given a
set of integers J ⊂ {1, . . . , n}, J̄ = {1, . . . , n} \ J denotes its
complement and |J | its cardinality. The Hermitian transpose of
a matrix X ∈ Kn×n is denoted by X∗. ‖X ‖F is the Frobenius
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norm of X . XJ0 ∈ K
n×|J0 | is the sub-matrix formed by the

columns of X indexed by J0. X(J0) ∈ K
n×n is the matrix

X restricted to the rows indexed by J0. Hence, all the rows
with entries indexed by J0 are unchanged while the others
are set to 0. The space spanned by the columns of X is
defined by R (X). The rank of X is designated by rank (X)
and spark (X) defines its spark i.e. the smallest number of
columns from X that are linearly dependent. We use supp (X)
as the row-support of X and Σ(n,N )

k
as the set of k-row-sparse

matrices of Kn×N . We also refer the reader to the definition
of the upper and lower asymmetric restricted isometry (ARIP)
constants of order k [13], denoted as Uk and Lk and whose
definitions are given in supplementary material of this work.
In the remainder, we are interested in recovering X ∈ Σ(n,N )

k
such that supp (X) = J = J0 ∪ J1, with J0 ⊂ {1, . . . , n} and
J1 ⊂ J̄0, from measurements Y = AX , with A ∈ Km×n. We
assume that J0 is known a priori.

B. Uniqueness of the `0-norm Minimization
In this section, we extend the uniqueness condition derived

by Vaswani and Lu [23] to the MMV problem. The objective
is to establish guarantees of uniqueness of the solutions in the
case of MMV problems with partially known support that are
weaker than the ones for standard MMV problems [4], [5].
In order to do that, we reformulate the problem with partially
known support as:

min
X ∈Kn×N

‖X(J̄0)‖0,row subject to Y = AX . (2)

The following theorem provides a guarantee for uniqueness of
the solution of (2) expressed in terms of an upper bound on
the row sparsity k.

Theorem 1. The matrix X ∈ Σ(n,N )
k

, with supp (X) = J0 ∪ J1,
J0 known, is the unique solution of (2), if Y = AX and

k <
spark (A) + |J0 |

2
. (3)

Proof. The proof follows by contradiction. Define X1, X2 ∈

Σ
(n,N )
k

such that X1 , X2 and both are solutions of (2).
Consider that the rows of X1 (resp. X2) are supported on
J0 ∪ ∆1 (resp. J0 ∪ ∆2) such that |∆1 | = |∆2 | = u ≤ k − |J0 |.
The rows of X1−X2 are supported on J0∪∆1∪∆2 and the sub-
matrix defined by the rows indexed by J0∪∆1∪∆2 belongs to
the null-space of AJ0∪∆1∪∆2 . When spark (A) > |J0 ∪∆1 ∪∆2 |,
AJ0∪∆1∪∆2 has full column rank and its null-space is trivial.
If (3) holds, then spark (A) > 2k−|J0 | ≥ k−2u ≥ |J0∪∆1∪∆2 |
and X1 = X2.

�

Theorem 1 is an extension to the MMV problem of Propo-
sition 1 of [23] and the upper bound is the same as for the
SMV problem. At this point, it would be beneficial to combine
the information on rank (Y ) and the partially known support
to relax the uniqueness condition provided for rank-aware
algorithms [4], [7], [17]. We first remind the following lemma.

Lemma 1 (Theorem 2.4 of [4]). The matrix X ∈ Σ(n,N )
k

is the
unique solution of (1), if Y = AX and

k <
spark (A) + rank (Y ) − 1

2
. (4)

We can now state the main claim of the section.

Theorem 2. The matrix X ∈ Σ(n,N )
k

, with supp (X) = J0 ∪ J1,
J0 known, is the unique solution of (2), if Y = AX and

k <
spark (A) + rank (Ya) − 1

2
, (5)

where Ya =
[
Y, AJ0

]
.

Proof. Consider Ya =
[
Y, AJ0

]
. We define the augmented

signal matrix Xa =
[
X, IJ0

]
, where I ∈ Rn×n is the identity

matrix, such that Ya = AXa. Define the following augmented
MMV problem:

min
X ∈Rn×(N+|J0 |)

‖X ‖0,row subject to Ya = AX . (6)

By applying Lemma 1, Xa is the unique solution of (6)
if the inequality (4) holds. Now, we show that if (6) has
a unique solution, then (2) has a unique solution. Define
X1, X2 ∈ Σ

(n,N )
k

such that X1 , X2 and both are solutions
of (2). The augmented matrices X1

a and X2
a are both solutions

of (6) which is impossible since Xa is unique. �

Theorem 2 can be interpreted in terms of subspace augmen-
tation discussed in Proposition 5.4 of [8]. Indeed, the partially
known support J0 is used to augment the signal subspace
R (Y ) with basis vectors of R(AJ0 ). Thus, it is advantageous
when some of the basis vectors of R(AJ0 ) are orthogonal to
R (Y ). Now that we have established uniqueness conditions,
we propose extensions of existing joint sparse algorithms to
partially known support.

C. Greedy Methods with Partially Known Support

1) RA-ORMP and OSMP: RA-ORMP and OSMP are very
similar as explained in [8] and the argument detailed below
may be applied to both algorithms. For conciseness, we focus
on RA-ORMP in the remainder. The partially known support
can be exploited in the initialization step of the RA-ORMP
algorithm [17]. The idea is to consider J0 as the initial support
in the algorithm and perform the following initialization:

R0 = P⊥
R(AJ0 )

Y (7)

Φ′ = P⊥
R(AJ0 )

A, Φ̃
′

n = Φ
′
n/‖Φ

′
n‖2, ∀n < J0, (8)

where R0 is the residual and the notations Φ′ and Φ̃′n, which
account for the projected measurement matrix, are used to
be consistent with [17]. RA-ORMP initalized with the above
steps is denoted as RA-ORMP-PKS. The remaining steps of
RA-RORMP-PKS are the same as RA-ORMP (Algorithm 3
of [17]) and aim to recover the unknown support J1. Regarding
the recovery, RA-ORMP-PKS is guaranteed to recover X from
Y in the noiseless case provided that rank (Ya) = k [17].

2) SNIHT: SNIHT proposes an extension of the iterative
hard thresholding (IHT) algorithm [18] to the MMV prob-
lem [13]. Based on the extension of IHT to partially known
support [15], we suggest SNIHT-PKS in which steps 7 − 9 of
SNIHT (Algorithm 1 in [13]) are replaced by the following:

X i = H
J0
k−|J0 |

(X i−1 + ω(A∗Ri−1)), (9)
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where Ri−1 are the residuals at iteration i − 1, ω ∈ R and
the non-linear operator H J

k
(·) is defined for an index set J ⊂

{1, . . . , n} as

H J
k (X) = X(J) +Hk(X(J̄)), (10)

where Hk (X) is the hard-thresholding operator which selects
the k rows of X with largest `2-norm. We state the main
result of this section, which provides an upper bound on
the discrepancy between the output of SNIHT-PKS and the
optimal row-sparse approximation of the solution.

Theorem 3 (Simultaneous Sparse Approximation with Par-
tially Known Support). Consider that Y = AX(J0∪J1)+ Ẽ. If A
satisfies the following ARIP conditions: 2Uck + 2Lck + Lk < 1
where c ∈ N is such that ck ≥ 3k − 2|J0 |, then the error of
SNIHT-PKS at iteration i is bounded by:

‖X i − X(J)‖F ≤ α
i ‖X(J)‖F +

β

1 − α
‖Ẽ‖F, (11)

where α = 2Uck+Lck

1−Lk
, β = 2

√
1−Udk

1−Lk
and d ∈ N is such that

dk ≥ 2k − |J0 |.

The proof is given in the supplementary material of the
proposed work. It can be seen that the results are closed to
the one obtained by Carillo et al. [15] for the SMV case, in
which the matrix A has to meet the RIP property of order 3k−
2|J0 |. In addition, the ARIP conditions provided by Theorem 3
are weaker than the ones of SNIHT, which can be translated
into fewer measurements necessary to fulfill (11). However,
compared to the bound established in Theorem 1, SNIHT-PKS
requires A to be ck-RIP which is stronger than spark (A) >
2k − |J0 |.

D. MUSIC-based Methods with Partially Known Support

MUSIC-based algorithms exploit additional information
provided by the signal subspace to help the recovery of
X [7]. In the case of partially known support, we rely on
the augmented measurement matrix Ya rather than Y and we
use the following criterion to identify supp (X): ∀ j ∈ J̄0,
j ∈ J1 if and only if Q∗aA j = 0 and rank (Ya) = k, where
Qa ∈ R

m×(m−k) is an orthonormal basis of R (Ya)
⊥.

In the rank-defective case where rank (Ya) < k, we first
identify k − rank (Y ) components of supp (X) using a greedy
algorithm initialized with the partially known support. The
remaining rank (Y ) components either come from the sig-
nal subspace (SA-MUSIC [8]) or are identified based on a
generalized MUSIC criterion (CS-MUSIC [10]). We use the
partially known support to initialize the greedy algorithm since
the success of subspace augmented methods relies on the
successful partial support recovery of the greedy algorithm
and it is known that forward selection approaches perform far
better when smaller subsets have to be recovered [8].

E. Validation on Numerical Experiments

We explore the empirical performance of SA-MUSIC-PKS,
RA-ORMP-PKS and SNIHT-PKS in a noiseless situation and
under additive Gaussian noise with a signal-to-noise ratio of
30 dB. We consider a Gaussian random measurement matrix

A ∈ Rm×n, with Ai j ∼ N
(
0, 1/
√

m
)

and n is fixed to 128.
The signal matrix X ∈ Rn×N is built as a random matrix, with
N = k = 30. 1000 random trials of the algorithms are run for
each experiment and the recovery probability is computed as
the rate of successful support recovery.

The impact of the partially known support is first analyzed
by comparing the recovery probability of SA-MUSIC-PKS for
a fixed rank (s = 10), for a number of measurements ranging
between 30 and 90, when 0 %, 25 %, 50 % and 75 % of the
support is known a priori. Then, we compare the methods with
their counterpart without known support on two experiments:
fixed rank (s = 10) for a number of measurements ranging
between 30 and 90 and fixed number of measurements (m =
51) for a rank varying between 1 and 30. For both experiments,
75 % of the support is assumed to be known.
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Fig. 1. (a) and (d) Recovery probability of SA-MUSIC-PKS for varying
number of measurements and size of the known support. (b)-(c)-(e)-(f) Recov-
ery probability of SA-MUSIC-PKS, RA-ORMP-PKS and SNIHT-PKS against
SA-MUSIC, RA-ORMP and SNIHT for varying number of measurements ((b)
and (e)) and varying ranks ((c) and (f)) in a noiseless ((b) and (c)) and in a
noisy scenario ((e) and (f)).

On Fig. 1(a) and Fig. 1(d), we can see that SA-MUSIC-PKS
is more accurate when larger part of the support is known
for both the noiseless and the noisy cases, as expected. On
Fig. 1(b), we observe that the methods with partially known
support achieve significantly better reconstruction than their
counterpart without known support in a noiseless scenario
which validates the main results of Section II. On Fig. 1(e),
we see that the conclusions drawn for the noiseless scenario
extend to the noisy scenario for SA-MUSIC and SNIHT.
Regarding RA-ORMP, we observe that the results in the
noisy scenario are significantly worse than in the noiseless
scenario. Indeed, Y is now full rank which perturbates the
correlation step in the subspace pursuit (widely studied in the
SMV problem [25]). In this case, RA-ORMP-PKS is only
slightly better than RA-ORMP since the algorithm fails to
recover the unknown part of the support. Figs. 1(c) and 1(f)
show the benefits of partially known support in terms of
the minimal value of s for perfect support recovery. As for
Fig. 1(b) and 1(e), we notice that the partially known support
significantly helps the recovery of the different algorithms
except for RA-ORMP in the noisy case. Experiments dedicated
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to the empirical validation of Theorem 2 are described in the
supplementary material.

III. MULTIPLEXING OF ULTRASOUND SIGNALS

A. Proposed Approach
High-quality 3D US imaging necessitates a US probe of

thousands of transducer elements. Connecting such a probe
to the back-end system would require as many cables as the
number of elements which is either unfeasible or prohibitively
expensive. To address this issue, sparse array techniques have
been investigated [30]. Many layouts have been designed, e.g.
random sparse arrays [31], [32], Vernier arrays [33] and row-
column addressed arrays [36], [34], [35]. Alternatively, micro-
beamforming methods, where part of the imaging process is
achieved in the head of the probe [39], and time multiplexing
techniques have been investigated for both dense and sparse
arrays [39], [41], [40]. While proposing a drastic reduction on
the number of elements, such methods come with a degraded
image quality [30].

In this section, we describe a direct application of the
proposed algorithms for compressive multiplexing of US sig-
nals. More precisely, we propose to exploit the compressive
multiplexer (CMUX) [19] architecture to reduce both the
number of coaxial cables and the number of analog-to-digital
converters (ADC) in the back-end system. We consider a US
probe made of N transducer elements which receive signals as
backscattered echoes from a previously insonified medium, at
a rate Ω during a time T . The set of those signals is denoted
as element raw-data and stored as M ∈ Rn×N , where n = TΩ.
In the proposed architecture, described in Figure 2, we equip
the head of the probe with Nc CMUX, each of which working
at Ω and compressing Nt signals, with N = NtNc . Thus, one
may require only Nc � N coaxial cables connecting the probe
to the back-end system and only Nc � N ADCs. Formally,
the measurements have the following form: Y = A (M) + E,
where A : Rn×Nt → Rn×Nc is the linear operator associated
with the CMUX architecture [19] and E ∈ Rn×Nc is the noise.

1
...

Nt

Nt + 1

2Nt

...

...
N − Nt + 1

N

...

Transducer elements

CMUX 1
rate Ω

CMUX 2
rate Ω

CMUX Nc

rate Ω

[
y1, y2, . . . , yNc

]
= Y

Fig. 2. Ultrasound compressive multiplexer architecture.

US signals are known to have a relatively sparse spec-
trum [20], [21] due to the bandpass properties of transducer
elements and the high sampling frequency required for delay
resolution in delay-and-sum (DAS) beamforming [29]. In ad-
dition, we usually have a partial knowledge of such a spectrum

which is measured by probe manufacturers. Thus, we are in
a scenario where joint sparse algorithms with partially known
support can be leveraged. Puts formally, we introduce the 1D
discrete Fourier transform F ∈ Cn×n and the associated Fourier
coefficients M̂ = FM such that supp(M̂) = J0 ∪ J1, where J0
is the known part of the spectrum, |supp(M̂)| � n, and we
solve the following joint-sparse regularization problem:

min
M̂∈Cn×N

‖M̂ ‖0,row subject to Y = A(F∗M̂) + E . (12)

B. In Vivo Ultrasound Signals
US signals from in vivo carotids have been acquired using

a Verasonics Vantage 256™ equipped with the ATL-L7-4
probe (128 el., 5.2 MHz center freq., 60 % bandwidth). The
CMUX architecture is simulated off-line using Python and
works at 62.5 MHz, with a multiplexing ratio 1/8. On the
reconstruction side, we use SNIHT-PKS with 500 iterations.
The reasons for the choice of SNIHT-PKS are the high rank-
deficiency which motivates the use of rank-blind algorithms;
the robustness to noise of SNIHT-PKS (Theorem 3); and the
high dimensionality of the data which prevents us from using
pseudo-inverses or EVD, necessary for RA-ORMP and SA-
MUSIC. We assume that J0 contains the indices of the frequen-
cies lying between 2.9 MHz and 6 MHz which corresponds
to 85 % of the signal energy. DAS beamforming is applied
on the recovered US signals followed by envelope detection,
normalization and log-compression. The reference B-mode
image is displayed in Fig. 3(a). The images corresponding
to the reconstructions with SNIHT-PKS and SNIHT are given
in Fig. 3(b) and Fig. 3(c).
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Fig. 3. Log-compressed B-mode images (40 dB) of an in-vivo carotid. (a)-
Reference. (b)-SNIHT-PKS (PSNR = 45 dB). (c)-SNIHT (PSNR = 28 dB).

Both visual assessment and values of the peak-signal-to-
noise-ratio (PSNR), computed on the B-mode image and
reported in the caption of Fig. 3, show the superior quality
of the reconstruction with SNIHT-PKS compared to SNIHT.

IV. CONCLUSION

We investigate the recovery of jointly sparse vectors when
partial support is known. We quantify the benefits of the
known support in terms of a higher upper bound on the
row-sparsity than standard MMV problems. We also suggest
adaptations of greedy algorithms as well as MUSIC-based
methods to incorporate the additional information. We apply
the proposed algorithms to the recovery of ultrasound signals
from compressed measurements, where the objective is to
multiplex signals in order to reduce the number of coaxial
cables and ADCs. By exploiting the prior knowledge on
the frequency support of the signals, we demonstrate that
the proposed algorithms significantly outperform the standard
MMV ones.
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