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Abstract—In this work we present uni-directional GaN-on-Si
MOSHEMTSs with state-of-the-art reverse-blocking performance.
We integrated tri-anode Schottky barrier diodes (SBs) with
slanted tri-gate field plates (FPs) as the drain ettrode, and
achieved a high reverse-blocking voltagevigs) of -759 + 37 V at
0.1 pA/mm with grounded substrate. The hybrid Schottky dain
did not degrade the ON-state performance when compad with
conventional ohmic drain, and the turn-ON voltage Yon) was as
small as 0.64 + 0.02 V. These results show the paiahof GaN-
on-Si transistors as high-performance uni-directioal power
switches, and open enormous opportunities for futue highly
integrated GaN power devices.

Keywords—GaN; HEMTSs; SBDs; reverse blocking; slanted tr
gate; tri-anode.

. INTRODUCTION

Lateral GaN-on-Si HEMTs are very promising for powe
applications, yet their bi-directional conductianniot ideal in
many topologies of power converters. To achievétigitage
reverse-blocking (RB) capability, a power diodeadded in
series with the HEMT, which complicates the ciraddsign,
increases the ON-resistand®() and parasitic elements, and
degrades the efficiency of power conversion. HEM7ith
integrated RB capability (RB-HEMTs) would therefobe
highly desirable to address these issues, howavehe few
reports on RB-HEMTSs in the literature [1]-[6], tloevices
exhibited a relatively large/on, a significant increase in
forward voltage AVe), a smallVgs as well as a large reverse
leakage currentlg), limited by the SBDs integrated in their
drain electrodes.

Recently we have proposed to reduce Yag and Ir in
GaN SBDs using a tri-anode structure [8], [9], aneksented its
capabilities for GaN RB transistors [10]. In addlitj we
demonstrated a slanted tri-gate structure to imgroke
breakdown voltage of lateral GaN devices [11], [TPhese
results paved the path for high-performance GaNHEBATS
from both theoretical and experiment aspects. iswork we
extend these concepts to demonstrate high-perfaen&aN
MOSHEMTs on Si with state-of-the-art reverse-blogki
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Fig. 1. (a) Schematic of the MOSHEMTs with the ®antrigate Schottk
drain. Cross-sectional schematics of the (b) pldfRay (c) slanted trgate
(sTG), (d) tri-gate (TG) and (e) tri-anode (TA) i@ts.

performance, using a novel tri-anode Schottky diategrated
with slanted tri-gate FPs. The devices presentadtaVgs of -
759 + 37 V at 0.1LA/mm and a smallg of 65 £ 11 nA/mm at -
700 V, measured with grounded substrate. Vhewas 0.64 +
0.02 V and theAVe was as small as 0.7 V, with little
degradation inRon compared to devices with conventional
ohmic contacts.

. DEVICE FABRICATION

The devices with the tri-anode Schottky drain &GH)
were fabricated on an AlGaN/GaN-on-silicon waferd daheir
schematics are shown in Fig. 1(a)-(e). The falidogprocess
started with e-beam lithography to define the naresywhich
were then etched by inductively coupled plasma \ittiepth
of ~180 nm. The widthwj) and spacingg] for the nanowires in
the tri-gate and tri-anode region were both 300 while thew
in the slanted tri-gate region increased continlyofiem 300
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Fig. 2. (a) Output characteristics of devices lith slanted trgate SCH dra
(tri-SCH), in which the inset shows thein the tri-SCH aVg = 0 V, and (k
their turn-on characteristics. (c) Dependence ey and the ideality fact
(n) onVe.

nm to 600 nm towards the gate. The devices welatézbfrom
each other by mesa etching with a depth of ~350folowed
by deposition and annealing of ohmic metals as csour
electrodes. A stack of 10 nm Si@nd 10 nm AlO; was
deposited by atomic layer deposition as the gattedric, and
then selectively removed in the tri-anode regidnaly the tri-
anode and the gate were formed using Ni/Au, whiels {ater
used as the mask to remove the oxide in accessiakegions.
The gate-to-source lengthds), gate lengthl(s) and gate-to-
drain length (ep) were 1.5um, 2.5 um and 12.5um,
respectively. The lengths for the planar FERg), slanted tri-
gate (ste), and tri-gatel(rc) regions were 1.8m, 0.7um and
0.5um, respectively.
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Fig. 3. (@) Comparison ¢f in devices with ohmic (OHM), planar Schottky (p-
SCH) and tri-anode Schottky (tri-SCH) drains. Deferce of thég onVp (b)
andVs (c) in the tri-SCH. (d) Dependence of faén tri-SCH on temperature.

which was 6Qum. Twelve devices of each type were randomly
chosen for the investigation, which defined theowerbars
presented in the results.

[ll.  RESULTS AND DISCUSSION

Figure 2(a) shows the output characteristics oftth8CH,
presenting its excellent performance as a uni-tioeal
switch. Under forwardVp, the differential Ron and the
maximumlp were 13.2 + 1.10-mm and 450 + 17 mA/mm,
respectively. Under reverse biases, lihevas 34 £ 12 nA/mm
atVp = -15 V andVg = 0 V. TheVon was as small as 0.64 +
0.02 V (Fig. 2(b)) atp = 1 mA/mm, due to the direct contact
of the metal to the 2DEG at the sidewalls of the@avére

The working principle of the tri-SCH can be simply [14],[15]. The ideality factorr) was 1.45 + 0.03, indicating

summarized as follows. The hybrid tri-anode SBDsspihe
voltage drop at the Schottky junction and hencesfithelr at a
small level [8],[9], despite the large reverse biaa the other
hand, the slanted tri-gate effectively spreadsetieetric field
[11] and, together with the planar FP region [18proves the
Vre, Which is similar to conventional slant FPs butaimore
controllable manner. More detailed analysis of thtisicture
can be found in Ref. [12].

the high quality of the Schottky contact despite #iching.
Figure 2(c) plots th&on andn at differentVg, revealing very
little dependence oYic.

The Ir in OHM, p-SCH and tri-SCH are compared in Fig.
3(a), all measured &z = 0 V. While the bi-directional nature
of the OHM resulted in large reverse currents, mese
blocking capability was achieved in p-SCH by repigcthe
ohmic drain with a planar Schottky drain. Howe\etargelg

MOSHEMTSs with the same dimensions but conventionalvas observed, similarly to other reports in therdture,

ohmic (OHM) and planar Schottky drain (p-SCH) eledes
were also fabricated on the same chip as refereAdetevices
shared the same dimensions as the tri-SCH excepthéo
different drain electrodes. The ohmic drain wasmied by
alloying Ti/Al/Ti/Ni/Au, which was the same as tlsurce
electrode. The planar Schottky drain was the sasnéhe tri-
anode Schottky drain, however without the patterieadures.
All current values in this work, such &s and drain current
(Io), were normalized by the width of the device faintp

leading to a smalNgrg (defined at 0.LA/mm) of -0.9 V. This
reveals the unsuitability of the planar Schottkyaidr for
practical and efficient power applications. THe was
dramatically reduced by over two orders of magratir tri-
SCH. This is because the voltage drop at the Sghpthction
(VscH) was pinned at a smaller value in the tri-anode,
compared with the planar Schottky structure. VAsn was
fixed and did not increase with the reverse bibs,l¢ was
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V=1V Ve=1V Table 1. Comparison of the +SCH with revers-blocking Gal
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&
>
s
‘

E ?
0,0°| 1E o5 Substrate Vi Ir Von AVe
1T : s e @Amm) | () | (V)

—e % . 759+ 37V 0.065 + 0.011
. This| g | at 0.1pA/mm at-700 V 06451 7

work (grounded sub.) (grounded sub. 0.02

Ry (©hmiihm)
L 3
(X 14
hp
<*
“?E
D,max

=

o
T
!

(@ ) (d) ) -321V at 1 mA/mm

OHM tri-SCH OHM ri-SCH : (floating sub.) >10at-75V
j i [ S -200 V at 1 mA/mm | (floating sub.) 0.55 1.25
(grounded sub.)

[2] SiC -110 V at 10 mA/mnp > 1000 at -20 V

-685 V at hard
breakdowr
[4] | Al20s | -49 V at 1 mA/mm >100at-25V 17 =22

* . ~0.4at-20V
,J: V=1V I 5] Si - (floating sub.) 191
(C) ‘ I, = 150 mA/mm 1 (e) 7] si -650 V at ~0.15

3.0

[AV.=071V o

S
tri-SCH

[3] Si ~6at-100V* | 0.4
*s®
* ¢y

& O
*$°

Ve (V)

T

N
(&)
_L_ HEMT +SBD
—
L
x|

20

—
o
=

15p 15

L a
OHM tri-SCH mA/mm

Fig. 4. Comparison of the tri-SCH and OHM in @), (b) maximumip [6] Si -900 V at IpA/mm”® 0.25pA\fbmm
(Iomay @and (c) forward voltage/f). Examples of biirectional power switch at-700
using a conventional scheme including two HEMTs &mal SBDs (d) and 2 Substrate connection not reported
more advanced scheme using only two revblseking transistors . b- Simulation resulf
demonstrated in this work (tri-SCH) (e). .

m , , : , : , : , SCH were about the same as those of the OHM (F&.ahd

] (b)). The forward voltageVg) for the tri-SCH and the OHM
1 was 2.77 £ 0.17 V and 2.07 £ 0.17 V, respectiveltracted
atlp = 150 mA/mm, rendering a smal\/r of 0.7 V (Fig. 4(c))
which was very close to thén of the tri-anode SBD. This is
very important to improve the efficiency while rethg the
size and complexity of power converters. For instarthe
number of components in a bi-directional power slwitan be
reduced from four to two using the tri-SCH (Figd¥éand (e)),
and the resistive loss from the SBDs can be elitathas the
AVE is so close to th¥on and theRon of the tri-SCH is about
the same as that of the OHM.
Figure 5 shows the breakdown characteristics oftthe
SCH under both forward and reverse drain voltagedse
- - d breakdown voltage in this work was defined at akdge
-720 V10 -830 V 1 current of 0.1pA/mm with the Si substrate grounded. The
oy a0 w0 o reverse breakdown voltagérg) varied from -720 V to -830 V
V_ (V) underVs = 0 V, along with a consistently sma&# of 65 +11
D nA/mm at -700 V. The forward breakdown voltaye)(varied
Fig. 5. Room-temperature breakdown characterisfithe tri-SCH, measure from 790 V to 880 V (the inset of Fig. 5), which svaeasured
with groun_ded substrate. Thg for measuring th¥rg andVg was 0 V and1C under aVg of -10 V.
V. respectively. The tri-SCH was compared with other reverse-blogkin

constant even at high reverse biases (Fig. 3(by),veas not GaN transistors_ in the literature in Tab. 1. TheStH
affected by the/s for a large range of voltages from -10 V to Presented the highe¥ke, the lowestir and the smallestVr,
6 V (Fig. 3(c)). Another improvement with the triade despite the grounded substrate and the much stdef@ition

Schottky drain was the better uniformity of the The ©Of Ve in this work, along with a smalfon comparable to the

variation of thelr is about three orders of magnitude for the p-State-of-the-art results.

SCH, while less than 50 nA/mm for the tri-SCH. A®w&n in

0.38

<1 nA/mm at 300 V

100n N ]

The forward and reverse performance of the tri-S@He

: . further benchmarked against state-of-the-art disctateral
Fig. 3(d), thelr of the tri-SCH was small and belowi®&/mm GaN-on-Si power (MC?S)HEMTS and SBDs in Fig. 6
N ) ) . . 6,

ﬁ.t (re]ven 150 °C, rev?_ahng the potential of thiscttre for respectively. For calculation of the figure-of-nieffOM) in

Igh-temperature applications. _ . this work, averag®on (13.2 + 1.1Q-mm), Vrs (-759 + 37 V

In addition to its excellent reverse blocking capgh the 5 o1 wA/mm) and Ve (820 + 42 V at 0.1uA/mm) were

tri-anode Schottky drain did not degrade the ONesta 54opted, along with a total transfer length of 3, ascounting

characteristics of the transistors. TRen and lp of the tri-  for both source and drain contacts. The tri-SCHs@méed high
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