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Multi-Armed Bandit in Action: Optimizing
Performance in Dynamic Hybrid Networks

Sébastien Henri™', Christina Vlachou

Abstract—Today’s home networks are often composed of
several technologies such as Wi-Fi or power-line communica-
tion (PLC). Yet, current network protocols rarely fully harness
this diversity and use each technology for a specific, pre-
defined role, for example, wired media as a backbone and
the wireless medium for mobility. Moreover, a single path is
generally employed to transmit data; this path is established
in advance and remains in use as long as it is valid, although
multiple possible paths offer more robustness against varying
environments. We introduce HyMAB, an algorithm that explores
different multipaths and finds the best one in a mesh hybrid
network, while keeping congestion under control. We employ the
multi-armed-bandit framework and prove that HyMAB achieves
optimal throughput under a static scenario. HyMAB design also
accounts for real-network intricacies and dynamic conditions; it
adapts to varying environments and switches multipaths when
needed. We implement HyMAB on a PLC/Wi-Fi test bed. This
is, to the best of our knowledge, the first implementation on
a real test bed of multi-armed-bandit strategies in the context
of routing. Our experimental results confirm the optimality of
HyMAB and its ability to adapt to dynamic network conditions,
as well as the gains provided by employing multi-armed-bandit
strategies.

Index Terms— Multi-armed bandit, dynamic networks, hybrid
networks, wireless, power-line communications (PLC).

I. INTRODUCTION

VER the last few years, home networking has been

facing several challenges due to the increasing number
of mobile devices and the disruptive appearance of the Internet
of Things (IoT) in everyday life. As a result, efforts have
been made to improve coverage, throughput, and robustness in
home networks. We focus our attention in particular on mesh
networking and hybrid networks. First, mesh networking is
gaining momentum, as it can effectively improve performance,
and many commercial solutions are proposed. Mesh network-
ing comes at the cost of an increased complexity compared
to the infrastructure mode, because several paths can now be
employed with potentially several hops. Second, it is possible
to exploit the different technologies available, wired (e.g.,
PLC or Ethernet) and wireless (e.g., WiFi), which are referred
to as hybrid networks. As a result of this trend, interoperation
between different technologies is being standardized by IEEE
1905 [1], which takes place in layer 2.5, between IP and MAC
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layers. Hybrid networks do not only increase throughput;
by exploiting the different characteristics of the underlying
technologies, they can also provide substantial gains in terms
of robustness against spatial and temporal variability.

In this paper, we consider specifically mesh networks with
WiFi and PLC,' because they are very appealing solutions for
home networks: They do not need any additional infrastructure
to set up a network, and they provide medium diversity that
enables better performance [2]-[4]. WiFi is now used in
virtually all home networks. PLC is becoming increasingly
popular in home networking, as it provides simple and high
data-rate connectivity. By PLC, we refer to its most popular
version, standardized by IEEE 1901 [5]. WiFi and PLC do
not interfere with each other, but they both self-interfere,?
a challenge that must be taken into account when designing
reliable networking architectures.

Despite the prevalence of hybrid networks and the stan-
dardization attempts, these networks often operate far below
their optimal performance in terms of throughput and latency,
for the following three reasons: (i) Currently, the different
technologies are often used for a dedicated and pre-determined
roles, such as backbone or mobile scenarios. (i7) Current
networks usually employ only one active path between two
nodes and rarely take advantage of the benefits that mul-
tipath routing (i.e., using several paths simultaneously) can
provide in certain scenarios, even for small-scale networks [2].
(7i7) Whether they use single-path or multipath routing, cur-
rent networks suffer from the static pre-establishment of the
multipath, i.e., the set of paths (one or more) used simultane-
ously for a given flow, that remains active as long as it is valid.
They cannot react to dynamic conditions that would require
switching multipaths.

Finding the best multipath and controlling the congestion
along the different paths, by sending traffic at the appropriate
rate, is far from trivial because of the following challenges:

Challenge 1: Multiple possible multipaths with unknown
optimal rates;
Challenge 2: Dynamic network conditions, with unknown
environments in terms of topology, capacity and interference;
Challenge 3: Self-interfering technologies and different inter-
ference graphs when employing multiple media.

To confront all the aforementioned challenges, we employ
a multi-armed-bandit (MAB) strategy. In the MAB problem,
a player can choose one of IV actions (in the original problem,

'Our solution would still work with any combination of mesh media.
2IEEE 1901 employs a CSMA/CA scheme similar to that of 802.11; both
are subject to interference.
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the player chooses one of N slot machines to play). At each
round, each action, also called an arm, has a reward associated
with it (the amount of money the player receives each time
a slot machine is played). The player’s goal is to maxi-
mize this reward that is a priori unknown. The strategies
employed address the tradeoff between exploration (playing
each machine to improve the estimates of the reward distri-
butions) and exploitation (maximizing the long-term reward
given the current estimates). The MAB problem has been
widely studied, and strategies ensuring the convergence to
the optimal arm have been proposed, whether the rewards are
stationary [6], [7] or not [8], [9]. When applied to multipaths,
MAB strategies accommodate 1. However, to the best of our
knowledge, no existing strategy has actually been implemented
in the context of routing. Achieving maximal throughput in
a mesh network requires solving two problems: (i) finding
the optimal rate on a multipath, i.e., the rate that yields
maximal throughput at the destination, and (i¢) finding the
best multipath, i.e., the multipath for which the rate is maximal
among all multipaths. In hybrid shared-medium networks,
computing the best multipath is extremely challenging [10].
Most protocols used in current networks are based on heuris-
tics and are not guaranteed to be optimal.

The document is structured as follows: In Section II,
we address the above-mentioned problem (i) and present a
measurement-based method for computing the optimal rate
on a multipath. This method accommodates self-interfering
technologies and diverse interference graphs, thus addressing
I above. It gives precise results when the rate is averaged
over several measurements. On the one hand, to address
problem (ii) above, we need to explore several multipaths
and estimate their optimal rate with sufficient precision. This
requires sending traffic several times on each of these multi-
paths, including the sub-optimal ones, which means that traffic
is sent at a sub-optimal rate. On the other hand, exploiting
only the estimated best multipath in order to send traffic at
optimal rate carries the risk of imprecise rate estimations
due to insufficient explorations, which can lead to mistakes
in identifying the actual best multipath. MAB is the ideal
framework for finding the best tradeoff between these two
conflicting goals, and we use it to develop HyMAB, a new
algorithm for finding the optimal rate in a mesh hybrid net-
work. In Section III, we prove that HyMAB is optimal under
static conditions. In Section IV, we show how HyMAB can
also naturally adapt to dynamic conditions, thus confronting I,
which poses the tradeoff between optimality and adaptability.
To validate the practicability of our solution, we implement
it on a real testbed. We present an extensive performance
evaluation over a network of 22 PLC/WiFi nodes in Section V,
showing the practical usability and performance gains of
HyMAB. We discuss related work in Section VI and conclude
in Section VII.

As a preliminary example, Figure 1 presents testbed exper-
iments illustrating two typical use cases for HyMAB in
dynamic conditions: capacity degradation (top, with a mul-
tipath of two paths) and a user moving from a room to
another (bottom, with a single path). In the top figure,
the reported experiments show that when employed with
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Fig. 1. HyMAB in action under dynamic conditions due to capacity

drops (top, with a multipath of two paths) or mobility (bottom, with a single
path). Results from two different flows in our hybrid WiFi/PLC testbed.
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Fig. 2. Illustration of a multigraph, with two flows. Dotted lines
represent WiFi, plain lines PLC. Sources send traffic on the different
paths P; at respective rates x; (Ap, = {I3,15,l7}, Ap, = {la,ls,18},
and Ap3 = {ll}).

the Transmission Control Protocol (TCP), HyMAB performs
better than MPTCP (MultiPath TCP [11], the most popular
multipath solution today). In the bottom figure, HyMAB
outperforms TCP protocols that were configured on the best
multipath at the beginning of the experiment. Indeed, HyMAB
can adapt to dynamic conditions by switching to the multipath
that is the best in the new conditions.

II. OPTIMAL RATE OF A MULTIPATH

We describe our network model. It is applicable to every
self-interfering technology and does not require knowing the
specificities of the underlying physical layer. We then present
a method for computing the optimal rate on a given multipath.

A. Network Model

We consider a home network with K different self-
interfering technologies that do not interfere with each
other (e.g., PLC, WiFi, LTE). The network is modelled by a
multigraph G(V, E), with V the set of nodes and £ the set of
links. £ is partitioned into K sets &, k € {1,..., K}, the sets
of links available with each technology. A link is present
whenever its two endpoints can communicate with each other
with a non-zero rate on the corresponding technology. Figure 2
shows an example of a multigraph with K = 2 technolo-
gies, e.g., PLC and WiFi (here, & = Epc = {l3,17,ls} and
E = Ewiri = {ll,lg,l4,l5,l6}). For a link [ € &, ¢ is the
capacity of [, i.e., the maximum rate achievable on [. ¢; is
a random variable with fixed mean ¢; (in the following, =
denotes the mean value of random variable z). For a link
l € &, I; C & is the interference domain of [, defined
as the set that contains [ as well as all links that cannot
transmit simultaneously with [ because otherwise it would
create a collision at one of the links. For example, in Figure 2,
Il4 = {Zl, lg, 14, l5, Zﬁ} and Il7 = {Z77 lg}

If a node transmits data to another node, we call the source-
destination pair a flow. HyMAB maximizes the rate of the flow.
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For this reason, the flow is assumed to be saturated, i
the source always has packets to send (we discuss the case
of non-saturated flows in Section III-E). A path is a self-
avoiding path of the multigraph G that connects two nodes.
The source of the flow can simultaneously use M paths
Py, ..., Py the set P = (Py, ..., Py) is called a multipath.
When M = 1, the multipath is a single path. The set of links
belonging to a path P; is denoted by Ap,, with Ap, C &; for a
multipath P = (Py, ..., Py), we write Ap = Uf\il Ap,, and
Lp = |Ap| for the total number of links in the multipath.
For example, in Figure 2, a possible multipath with M = 2
paths from source 1 to destination 1 consists of P, with
AP1 = {13,l5,l7} and P, with AP2 = {Z4,l6,lg}.

We define the busy time p; of a link [ as the fraction
of time during which no transmission can be initiated on [,
because either (i) a transmission is already occurring on
a link in its interference domain Z;, or (ii) the channel is
idle, but the node cannot transmit because, according to
the distribution coordination function (DCF) and CSMA/CA
protocols run by WiFi [12] and PLC [5], it needs to wait
for the expiration of an inter-frame space, or because it is
in backoff stage. When a node sends traffic at rate x; on a
single link [ with no other link transmitting, we assume that
when the link is not saturated (x; < ¢;), then it will obtain a
busy time proportional to z;:

Ty

= —. (D
a

The validity of this assumption is discussed in Section II-C.

When the link is saturated, then p; = 1. Figure 2 illustrates
the busy time with interfering links.

B. Computing the Optimal Rate

We present how the optimal rate on a given multipath can be
computed. The results of this section are valid when a single
flow is present; the extension to multi-flow is described in
Section III-D.

The source S of the flow sends data at rate x; on each
path P, for i € {1,...,M}; we denote by xp the vector
[zili<i<m. If z; = 0, path P; is not used. For each link
l € Ap, the total busy time (accounting for interference)
follows, if links are not saturated, from (1), and is given by

M 1 M
D= w Y, =) wmang (@)
i=1

el i=1  UE;NAp,

where the parameter ap, | = > 7, A, 1 /cr is a metric that
quantifies the impact of path P; on the busy time for link [:
If ap,; is large, then a rate vector T with a small rate z;
for P; and x; = 0 for j # ¢ yields a high busy time 1t 4,
which means that P; has a strong impact on the busy time for [
(e.g., if P; has a link with low capacity that interferes with [).
A rate xp sent on a multipath P is admissible if for all [ € Ap,
M,zp < 1 (the busy times of all links do not exceed 100%).

Writing ap; € RM for the vector [ap, ]ieq1,... 1y, Equa-
tion (2) can be recast as ji 4, = a%l - xp with T denoting
transposition. ap; is called the multipath-impact vector of
P on [; it depends only on the network topology and on

/'[/l,:tp -

TABLE 1

NOTATION
Ek; € set of links of technology k; Uszl Ek
¢, Iy, g capacity, interference domain, busy-time of link {
P = (Pi,...,Py) | multipath with M paths P1,..., Py
Ap;Ap links that constitute path P; Ui\i1 Ap,
ap Zl'esz /ey
ap,; € RM multipath-impact vector [ap, 1licq1,..., M}
Ap € REPXM matrix [a} Jicap
xp €RM vector of rates sent on multipath P
Xp € RMxM matrix [mp ]16{1 MY}
S set of available multlpaths (S| =

the paths, and not on the rate vector xp. For example,
the multipath-impact vectors of the multipath P = (P, P»)
from 51 to D in Figure 2 are a7T,7l4 = [1/015 1/c, + 1/016}
and o, = [1/ci, 1/ei5]. We denote by Ap € RE?*M the
matrix [ap’l]le,\,, and by p,, . € REP the vector (1 zp Jicap-
Table I summarizes the main notations of this paper.

If the multipath-impact vectors avp ; are known for all links
| € Ap, itis easy to find an optimal rate 3}": It is a maximum
rate (in the sense of the 1-norm) that is admlss1ble. Because
Ap - Tp = py s w;’ft is a solution of the following system:

max 17 -z
T

subject to Ap-x < 1 and = > 0. 3)

where > and =< denote component-wise inequalities.

But directly computing the multipath-impact vectors ap ;
would require knowing the link capacity ¢; and the inter-
ference domain Z; of all links [ € Ap, which is chal-
lenging or impractical [13], especially in hybrid networks
with diverse interference graphs and dynamic conditions.
Instead, to account for interference per collision domain,
the nodes can measure the busy time (4 ., when the
source sends traffic on P at rate xp: For WiFi, this is
achieved by using information exposed by WiFi drivers;
for PLC, by using specific fields in the IEEE 1901 frame
headers (more details are provided in Section II-C).
In Section V-A, we describe how the source of P gathers the
busy-time measurements i 4, for all{ € Ap. Once the source
knows the busy-time measurements, it is easy to get ap ;.
As an example, consider first the case M = 1: There is one
path P on which the source sends traffic at rate zp. If xp
is such that the links [ € P are not saturated, ap; can be
computed from (2) by ap; = 11,4,/ p. This result can easily
be extended when there are M > 2 paths in the multlpath P.
We choose M linearly independent rate vectors wp for ¢ €
{1,..., M}, and for each rate vector wg,) at which traffic is
sent on multlg)ath P and each link I € Ap, the corresponding
busy time Mz is measured. If X p» denotes the M x M matrix

of the rate vectors X p = [wg,) lieq1,...,ny and p; denotes the

vector of the busy-time measurements p; = [Nl(z)]ie{l,...,lw}»
we have Xp - ap; = p;. By construction, the scg)’s are
linearly independent, hence X p is a M x M full-rank matrix,
and we get ap; = X;l - for all links [ € Ap, ie., we
get the matrix Ap. We then solve the linear system (3)

using standard techniques, which gives the optimal rate w%’[



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING
(a) (b) () (@ (e) ®
1 1 — 1 —_ 1 — 1 1 e
Z08 ’ 0.8 ’ 0.8 0.8 0.8 0.8
£06 0.6 0.6 0.6 0.6 0.6
.04 i 0.4 . 0.4 0.4 0.4 0.4
n . ’ .
202/ =} 0.2l - [z} 0.2 [z} 0.2 2} 0.2 0.2
gl Y 0t A Y 0 A 0 0
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 0 20 40
Sending rate x; (Mb/s)
Fig. 3. Busy time p; versus rate x; sent on link . The experiments are repeated 50 times for each rate x;; each point represents the average busy time g,

with the bars representing standard deviations. (a) WiFi, no batch. (b) PLC, no batch. (¢) WiFi, B = 100. (d) PLC, B = 200. (e) WiFi, 3 links. (f) PLC,

3 links.

achievable on the multipath P without having to measure the
link capacities or the interference domains.

C. Linearity of the Relation Busy Time vs. Rate

The key assumption made in the previous subsection for
computing the optimal rate is the linear relationship (1).
To evaluate its validity, we carry out the following exper-
iment on our testbed (described further in Section V-A):
A node sends traffic on a link [, in a first stage with no
other link contending, at various rates x; bytes per sec-
ond (i.e., it sends one packet of S bytes every S/x; sec-
ond), and it measures the busy times. For WiFi, ath9k
drivers expose directly the measured busy-times that can
be accessed using netlink sockets [14]. For PLC, the node
sniffs all packets using faifa [15], and uses the duration
field of every PLC packet to compute the busy time. The
experiment is repeated 50 times for each rate z;, for both
WiFi (Figure 3a) and PLC (Figure 3b). The link capacity ¢,
indicated by the black vertical line, is the maximum rate
received by the destination. The dotted red line indicates the
linear relationship (1), clearly not valid in this experiment.

The invalidity of the linear relationship (1) comes from
the introduction, for increasing throughput, of frame aggre-
gation in recent standards (e.g., IEEE 802.11n/ac for WiFi,
IEEE 1901 for PLC). At low rates, frame aggregation is barely
used, because the interval between two consecutive packets is
too large for the network interface to wait for packets to aggre-
gate. In contrast, it is fully used when sending saturated traffic.
Having two different operating regimes invalidates the linear
relationship (1). To make it valid, we force frame aggregation
even at low rates by sending batches of packets. We repeat the
experiment with the node now sending traffic by batches of
B packets: For a rate z;, the node sends B packets of .S bytes
every B - S/x; second. In Figures 3¢ (WiFi) and 3d (PLC),
we see that the linear relationship (1) is now valid for both
technologies. We repeat this experiment on several links with
similar results. A difference between PLC and WiFi is that
PLC requires longer batches; we use B=100 for WiFi and
B =200 for PLC. Compared to Figures 3a and 3b, we see an
increase of the standard deviation, in particular for WiFi: In
order to be precise enough, the results need to be averaged on
several measurements.

The relation busy time vs. rate is also linear when more
than one node transmits, which justifies (2). We repeat the
same experiment and send traffic at various rates on link /; two
other nodes of Z; now contend and transmit traffic at constant
rate. The transmitting nodes send traffic in batches of B =100

packets for WiFi, B=200 for PLC. In Figures 3e (WiFi)
and 3f (PLC), we show the busy times p;. The black vertical
line now indicates the maximum achievable rate under the
contention of the two other nodes. Busy times p; are also
linear in rates x; when other nodes transmit.

Sending packets in batches might increase the jitter for the
application. However, this is true only when traffic is sent
at a rate much lower than the link capacity: When sending
at half of the capacity on an average link, batches do not
significantly increase jitter, as evaluated by using iperf; even
when sending at 10% of the capacity, the jitter increases from
4 ms to only 6 ms. Moreover, sending in batches is needed only
during probing phases, and not during exploitation phases (see
next section).

These results confirm that the method described in
Section II-B can be used to compute the optimal rate of a path.
But busy-time measurements are noisy, especially because
packets need to be sent by batches during the probing phases.
Therefore, they need to be repeated several times and averaged
out. This means that one measurement is not enough, and this
challenge motivates the use of a MAB strategy.

III. HYMAB UNDER STATIC CONDITIONS

In this section, we discuss static conditions. We describe
why MAB strategies are adapted for finding the best multipath
and how they can be made practical. We present HyMAB for
a single flow and show analytically that it achieves optimal
throughput. We then extend HyMAB to efficiently accommo-
date several concurrent flows, and discuss the case of non-
saturated flows.

A. Towards a Practical MAB Strategy

Finding the best multipath P* is a difficult problem; in fact,
it has been shown that in a network with interference, such
as for WiFi and PLC, it is NP-hard [10]. For this reason, all
existing routing protocols rely on heuristics, and they do not
guarantee the optimality of their result. It would be possible,
using the approach of Section II-B, to compute the optimal
rate of several multipaths, and to keep the best multipath as
the one enjoying the maximum rate. However, as we have seen
in Section II-C, the busy times (hence, the computation of the
optimal rate) require several measurements to be precise (i.e.,
one measurement is not sufficient). Consequently, there is a
conflict between exploring several multipaths to estimate with
sufficient precision the optimal rate of each of them, and
exploiting the multipath found to be the best so far: The former
yields a sub-optimal throughput, whereas the latter involves the
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risk of choosing a sub-optimal multipath if the rate estimations
are imprecise due to insufficient explorations.

MAB strategies have the potential to address this
exploration-exploitation tradeoff. In fact, routing was iden-
tified early on as a potential application for MAB [8].
Here, we employ multipath routing, i.e., several paths can
be employed simultaneously. Combinatorial MABs [16], [17]
typically study the problem of routing. Gai et al. [16] find
the shortest path in a graph with varying link capacities.
However, with interfering links, finding the path with highest
throughput is NP-hard [10], and it cannot be achieved by
finding the shortest path in a graph; it is even more complex
when considering multipath routing. Chen et al. [17] introduce
a model where several arms (the paths) are played simultane-
ously and grouped in so-called super-arms (the multipaths).
Howeyver, their solution assumes that the rewards of each arm
are independent of the super-arm that is played. This is not
the case here, because links of different paths might interfere
with each other.

Instead, in this work, we consider that heuristic-based
routing protocols are not perfect (they do not necessarily return
the best multipath), but that they are “not too bad”, in the sense
that the best multipath, although unknown, is among the N
multipaths that the protocol finds to be the NV best, with NV
fixed in advance. In our experimental results of Section V,
we show that N can be set to a small value, e.g., N = 5.
Our goal is thus to find the best multipath in a given set
S of N multipaths, which can be solved with more classic
MAB approaches: The source of the flow is the player,
and the multipaths are the arms; the reward that the player
receives when playing an arm is the optimal rate at which
the source of the flow can send traffic on the corresponding
multipath. However, to the best of our knowledge, existing
MAB strategies have never been actually implemented on a
real testbed, for the following reasons.

In existing MAB strategies [7]-[9], the player gets a reward
each time an arm is played. In these strategies, at each trial,
the only choice that the player makes is the arm to play,
i.e., either to explore an arm in order to learn its associated
reward, or to exploit the arm that the player estimates to
be the best. In contrast, in our problem, the reward of an
arm (i.e., the optimal rate that can be sent on the multipath)
is obtained by carrying out a probing phase that consists in
sending traffic in batches at M different rate vectors () for
i €{1,..., M} such that no link is saturated, and in measur-
ing busy times over the links, as described in Section II-B.
In practice, a probing phase is costly, in the sense that it
prevents from sending at the optimal rate: To ensure that no
link is saturated and because the rate vectors () must form
a linearly independent family, the =(*) are all smaller than the
optimal rate. Therefore, the source must not only choose the
arm to play, i.e., the multipath to use, but it must also decide
to either probe the arm (send traffic at a sub-optimal rate,
which enables to measure the busy times and to compute the
optimal rate), or exploit the estimated best arm (send traffic at
the optimal rate).

The e-greedy strategy [18] introduces a clear distinc-
tion between exploring an arm or exploiting the best arm:

The source chooses to explore with a fixed probability € and
chooses the arm it explores uniformly at random among all
arms. In our case, we can similarly choose to explore with
probability € and probe one arm randomly chosen. However,
the value of ¢ is difficult to determine in practice: A large ¢
makes the algorithm converge far from the optimum, whereas
a small ¢ makes it too long to converge, because of the noisy
measurements. In the ¢,-greedy strategy [6], this issue is
solved by introducing an exploration probability €(¢) that is
a decreasing function of the time ¢, equal to

(t) = min <1, Z—Z) )

where d is a lower bound on the difference between the
expected reward of the arms, and ¢ a positive real number. If
exploration is chosen, the arm to explore is chosen uniformly
at random. But d needs to be known a priori, which is not
the case in practice. Furthermore, even if we could know d,
the performance of the algorithm rapidly deteriorates if c is
not appropriately tuned [6]. Finally, the ¢,-greedy strategy is
not efficient if two arms yield very similar rewards (small d),
because most of the initial time (small ) is spent exploring
all arms uniformly at random and because exploration is
a costly process. In the context of multipath routing, this
is likely to happen, because the multipaths might share a
common bottleneck link, and hence have optimal rates that
are close to each other (see Section V-B). The limitations
of e-greedy and e,-greedy are illustrated through simulations
in Section III-C.

Other strategies have been introduced to deal with this
inefficiency, in particular Upper Confidence Bound (UCB) [7].
In UCB strategies, the player chooses the arm to play, based on
the statistical information it has so far, and favors the estimated
best arm while ensuring that the statistical information gath-
ered for all arms is sufficiently precise. In UCB strategies (like
in the vast majority of existing MAB strategies), the reward of
an arm is known by the player each time this arm is played.
These strategies cannot be used for our problem, where obtain-
ing the reward requires probing the arm, which, as explained
above, is a costly procedure. For the aforementioned reasons,
we introduce a new algorithm, HyMAB, in Section III-B. It
uses UCB strategies as a subroutine.

HyMAB is proven optimal under static conditions in
Section ITI-B. Nevertheless (see Sections IV and V), HyMAB
is efficient under dynamic conditions. This adaptability stems
from the nature of the MAB framework: Exploration and prob-
ing are useful not only to find the best multipath and optimal
rates, but also to continuously adapt to dynamic conditions.
There is a tradeoff between optimality and adaptability: Under
static conditions (Section III), the probing probability needs
to go to zero to ensure optimality; under dynamic condi-
tions (Section IV), the probing probability needs to stay away
from zero to adapt continuously to dynamic environments.
This tradeoff is studied in Section IV-A. Many works study
MAB when the rewards vary dynamically [8], [9], but as with
UCB strategies, they are valid only when the player knows
the reward each time the arm is played, i.e., when no probing
is required to get the rewards. D-MAB [19] is one of the few
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algorithms that could apply in our problem, but the empirical
solution that it offers, evaluated by simulations, assumes that
changes in the rewards of the arms happen simultaneously for
all arms, which is usually not the case in our scenario.

Finally, the MAB strategies described above are defined
for a single player (in our setting, a single flow), whereas
in practice, several flows with different sources are present.
Some papers have studied the problem of multiple players with
dependent [20] or independent [21], [22] arms, but most of
them assume that arms are shared by the players (i.e., they play
the same arms). In our setting, arms for different players are
not shared because the flows, and thus the multipaths, are nec-
essarily distinct; but they might be correlated (the multipaths
of the distinct flows share links or have links interfering with
one another). Wilhelmi et al. [23] study the case where the
arms are different and dependent, but their solution requires
one arm per possible sending rate, which explodes the size of
the search space for arms (the sending rates are continuous).
Our extension to several flows (Section III-D) reduces the
problem with F' different flows to F' independent problems
with a single flow and N arms.

B. Optimal Strategy With a Single Flow

Algorithm 1 defines HyMAB, the strategy for finding the
best multipath and achieving optimal throughput. It is divided
in two stages: in Stage 1, it decides the multipath, in Stage 2,
it decides the sending rate. In Stage 1, HyMAB chooses
an arm (i.e., a multipath) according to the UCBI strategy,
introduced by Auer et al. [6]. We adopt this strategy because it
is easy to implement and because, when the reward is obtained
each time an arm is played, it is shown to be optimal (in the
sense that the regret, defined as the difference between the
rate achieved and the rate that could have been achieved by
always playing the best arm, is asymptotically optimal). But
as we have seen in Section III-A, a probing phase is required
to obtain the reward of an arm, therefore UCB strategies
alone lead to sub-optimal results. For this reason, in Stage 2,
HyMAB chooses between probing the arm chosen at Stage 1
or exploiting the best arm found so far. UCB1 assumes that
the rewards are in [0, 1]; for this reason, the rate vectors xp
are scaled so that for all P and ¢, ||xp(¢)|; < 1. Similarly to
the €,-greedy strategy, the probing probability is a decreasing
function of time; to achieve optimality, it must tend to zero and
ensure that each arm is explored an infinite number of times
almost surely. However, as opposed to the ¢, -greedy strategy
that requires knowing a bound d on the reward difference,
we do not want the exploration probability to depend on a
quantity that is a priori unknown, and we set the exploration
probability to be ep(t) = 1/n)(t—1), with a parameter A that
controls the rate of convergence. We study the effects of A in
Section III-C. As opposed to the €, -greedy strategy, where the
parameter ¢ needs to be finely tuned and has a strong impact
on the performance, we show in particular that HyMAB is
robust against the choice of A, in the sense that it does not
impact drastically the performance.

Theorem 1: With ep(t) = 1/n)(t—1), HYMAB converges
to achieving optimal throughput for any A > 0.
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Algorithm 1 HyMAB: Strategy for Optimal Throughput
Input: trial duration D, set of multipaths S with |S| = N.
Initialize: for all P € S, np(0) =0, Tp(0) = 0.
For each trial t:
Forall P € S, np(t) =np(t —1), Tp(t) =Tp(t —1).
Stage 1 Choose one arm (i.e., one multipath) P, € S
according to UCBI strategy:

o if there are non-explored arms, choose one among

them,
o otherwise (¢t > N, np > 0), choose the arm
maximizing
e 2In(t—1)
Vp(t) = ”xP,nP(t*l)Hl + np(t—1) )

o Set T'p, (t) — Tp, (t) + 1.
Stage 2 Choose one of the following:
© with probability ep, (), probe the arm P, by following
the procedure described in Section II-B, i.e.,
e set np,(t) — np,(t) + 1, and
e choose M rate vectors (7, i € {1,..., M}, that
are admissible and linearly independent, and
e send traffic at rates x(® during D/M seconds,
in turn for ¢ € {1,..., M}, and
e compute the reward @p, ,,,, () and the current rate
estimation Tp, ., (1)-
o or with probability 1 — ep, (t), exploit the current best
arm P} maximizing ||Zp ., (¢—1)||,» i-e., send traffic
at rates ip:’npf* (t—1) on P; during D seconds.

Proof: The proof is given in Appendix. [ |

In a real implementation, the trial duration D depends on

the number M of paths in a multipath: For the probing phase

to be precise, D /M needs to be one order of magnitude higher

than the round-trip time on the paths. In practice, M is small,
as discussed in Section V-A.

C. Evaluation via Simulations in a Static Network

Here we study by simulation the convergence time of
HyMAB in a static network. The purpose of the simulation
is merely to capture the performance of the different MAB
algorithms; for this reason, we only choose the rewards (i.e.,
the optimal rates) and ignore the underlying network and
multipaths. Before running the algorithms, we pick the true
optimal rates Hx%’tHl for the multipaths P € S uniformly at

random in [0.5,1]. The rates are assumed to be at least 0.5
because the multipaths returned by the routing algorithm are
assumed to be good enough, as mentioned in Section III-A.
When exploring, we assume that the received rate is equal to
1/4 of the current estimation for the multipath, close to what
we observe in our testbed experiments presented in Section V.
An estimation Zp, ., (1) is computed by adding to the true

a random gaussian noise of mean 0 and standard

opt
value pr

deviation 0.2 a:(l)fl , close to what we observe in our testbed
. 1 .
experiments. We study the number of trials needed for the
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Fig. 4. Number of trials needed to reach 85% (left) and 95% (right) of the
optimal rate (log scale).

averaged sending rate to reach 85% (Figure 4, left) and 95%
, computed by

averaging over 10000 runs with different random seeds. We
first evaluate the choices made at Stage 1 and Stage 2, and
then compare HyMAB with other MAB algorithms.

Using an optimal strategy such as UCBI1 at Stage 1 is not
required to converge to the optimal throughput. Convergence
can be shown for any strategy such that each arm is chosen
at Stage 1 an infinite number of times almost surely, e.g.,
by choosing uniformly at random an arm among the others.
However, using UCB1 strategy makes the convergence faster.
We compare HyMAB (with UCB1 at Stage 1) with a modified
HyMAB with uniform random selection at Stage 1 (denoted
by rand). Figure 4 shows that choosing UCBI1 strategy in
Stage 1 decreases the convergence time of HyMAB by about
50% over rand (note the logarithmic scale for the y-axis). By
using UCB1, HyMAB spends less time exploring the arms
that are less good, making the overall exploration probability
decrease faster than when choosing the arms uniformly at
random. In practice, the faster convergence of HyMAB is very
important in dynamic networks where the optimal multipath
changes due to varying conditions (see also Section IV-A).

Figure 4 also shows the effects of the parameter )\ in
the exploration probability ep(t) at Stage 2: When \ is
increased, less time is wasted exploring, and HyMAB and
rand converge faster. However, this is true only up to a
certain value: If \ is increased too much, it takes a longer
time to correctly estimate the optimal rate because of the
noisy measurements of the busy times, and the convergence
deteriorates. Nevertheless, Figure 4 (left) shows that HyMAB
is robust against the choice of A, as it does not impact
drastically the performance: In the first 1000 trials, the total
amount of data sent varies between 0.896 and 0.906 of the
best possible amount when A is varied between 1 and 3, i.e.,
the maximal difference in the amount of data sent is about 1%.
The maximal amount of data sent is found for A\ = 2, a value
that we use in the remaining of the paper.

Finally, we compare HyMAB with two other algorithms,
e-greedy [18] and ¢,-greedy [6], described in Section III-A.
For ¢,-greedy, we assume the reward difference d to be
known, and we try several values of ¢ and present the results
for the best one. Note that rand is equivalent to a modified
version of €,-greedy where the exploration probability (4) is
replaced with ep(t) defined in Theorem 1. Figure 4 shows
that HyMAB outperforms e-greedy by an order of magnitude
for any e: With a high ¢, the cost of exploration is too high,

. . . t
(Figure 4, right) of the optimal rate H.’I:%’ ’

and with a low ¢, it takes a long time to converge, because
of noisy measurements. HyMAB also outperforms ¢, -greedy
by more than an order of magnitude: When two arms have
very close optimal values, ¢,-greedy spends most of its time
exploring, thus sending at a sub-optimal rate.

D. Extension to Several Flows

HyMAB is optimal when a single flow is present, but it
should also handle several contending flows. The goal is to
converge to a fair rate-allocation, in a distributed and scalable
way: The only information that the source of a flow needs
in our implementation is the feedback from the destination of
this flow (and not from sources or destinations of other flows).

Let F be the set of flows, i.e., of source-destination pairs.
Each flow f € F employs its own set of multipaths, denoted
by Sy. For each link [, the number of interfering flows F
is the number of flows that can be overheard by this link,
which means that it can be computed by each node for all its
outgoing links [ with only local measurements. Formally,

Fi=#{feFst.3Pe S l' e Ap withl € Z;}. (6)
Instead of (3), each source of a flow f solves the system:

max 17 -z
T

subject to Ap-x = 1/F; and x >~ 0, @)

where 1/F is the vector whose entries are 1/F; for each
link [. The constraint means that on the links where several
flows contend, each flow gets an equal time-proportion of the
resources.

When several flows are present, computing Ap is more
complex, because the busy times are now generated by all
flows: ju =37 0‘7T9,,7f,z -xp, , where Py y is the multipath
currently used by flow f. To compute Ap, i.e., to com-
pute ap; for each link | € Ap, we assume that during
an exploration trial for a flow f, € F, the rates of all
other flows f # fo are constant (i.e., all other flows are
in an exploitation phase). This assumption is discussed in
Section IV-B. Before an exploration of multipath Py € Sy,
the source of fy does not send traffic during a short time-
slot (silent slot); each link | € Ap, measures the busy time
during this time slot ul(?}o =2 rer\ o a%ﬁl -ap; ,, where
77; f is the current estimated best multipath for flow f. Then,
the source of fy performs a regular exploration by sending
traffic at M different rate vectors that form a full-rank matrix
X p,, as described in Section II-B; each link measures the
busy-time vector p,;. If the media are not saturated during
the exploration trial, p; — /‘I(,O}U = a7T>0,l - xp, because for all
[ # fo, Py = P/, and Ap can be computed by solving
ap; = X;; (- Mz(,O;Ol): When we subtract the busy
time /‘I(,O}U due to all other flows, which we assume to remain
constant along the exploration trial, the linear relationship (1)
ensures that we get the busy time that f; would generate in
the absence of transmission from other flows. In Section IV-B,
we discuss how we guarantee that the media stay unsaturated
during an exploration trial in the presence of multiple flows.
Problem (7) is equivalent to (3); this means that each source
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can apply HyMAB and converge to the rate allocation that
maximizes (7). With this method, each source runs HyMAB
independently from the other sources: it computes the rate
allocation maximizing its own throughput, while ensuring that
the media are shared fairly.

E. Discussion on Non-Saturated Flows

HyMAB maximizes throughput and is therefore designed
for saturated flows. A flow that requires low throughput
does not need to use HyMAB. External flows are naturally
supported by HyMAB, because their traffic is included in the
busy-time measurements. Nevertheless, non-saturated flows
are supported by HyMAB. During an exploration phase,
HyMAB requires traffic to be sent at a rate that is not too
small in order for the optimal rate to be estimated precisely
enough; if the flow does not have enough data packets to send,
HyMAB sends dummy packets to reach half of the estimated
optimal-rate. During an exploitation phase, the source can send
traffic at a rate below the optimal rate without any impact on
HyMAB. When there are multiple flows, if a HyMAB flow
is not saturated, some resources remain unused. It would be
possible to apply a progressive filling algorithm to converge to
a max-min fair allocation. Because low-throughput flows do
not need to use HyMAB, a detailed study for such an algorithm
is out of the scope of this paper. With external low-throughput
flows, HyMAB converges to an optimal and fair utilization of
the remaining resources, without affecting the external flows.

IV. HYMAB UNDER DYNAMIC CONDITIONS

In Section III, HyMAB is shown to be optimal under
static conditions. In reality, network conditions change: Link
capacities are not constant, flows come and go, nodes move.
We discuss how to make HyMAB operational under these
practical constraints. For short-term variability, HYMAB can
be used with TCP (see Figure 1) that naturally deals with
such variations; in Section V-D, we discuss the interaction of
HyMAB with TCP. However, we also want HyMAB to be able
to adapt to longer term dynamics that would require to switch
multipath, such as major capacity-changes (because of mobil-
ity or channel-condition changes) or traffic changes (flows
coming or leaving).

A. Capacity Changes

In Section III, we assumed static conditions; to ensure
optimality, the probing probability of a multipath P, ep(t),
must go to zero. However, these probing phases also enable
HyMAB to adapt to dynamic conditions. For practical reasons,
in order to continuously estimate the optimal rate and to
adapt it to new conditions, we replace ep(t) in Theorem 1
by ep(t) = max(emin, 1/n3(t — 1)), so that ep(t) never goes
below a threshold ey;,. This differs from the e-strategy
described in Section III-A because the probing probability is
higher at the beginning, which enables a fast convergence even
with a small €p;,. In addition, because measurements carried
long ago are not valid if the conditions have changed, we com-
pute the average rate vector p over the last 10 measurements,
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Fig. 5. Left: rate per trial for HyMAB and Rexp3 (simulations). Right: Map
of our hybrid WiFi/PLC testbed (65x40 m).

instead of averaging over all measurements. Finally, similarly
as the D-MAB algorithm [19], we reset the indicators np and
xp of an arm P if three consecutive large variations of xp are
observed (if ||xp(t)||, differs from the current average ||Zp ||,
by more than 40% three times consecutively). As opposed to
the D-MAB algorithm that resets the indicators of all arms,
only the indicators of P are reset, because a capacity change
for P does not yield that all other multipaths are impacted: For
example, if the capacity of a single link is modified, multipaths
that do not use this link are not affected.

With the threshold e, HYMAB converges to a proportion
1 — €min of the optimal rate: There is a tradeoff between
converging closer to the optimal rate, or exploring more often.
For more flexibility, it is possible to dynamically change the
threshold en,;,: When the capacities are stable, we use a low
value, and increase it when the capacities change. Specifically,
whenever the total rate of an estimation ||xp ()|, differs
from the current average |Zpl|[; by more than 40%, €mpin
is set to a maximum value of 0.15. If ||xp(t) —Tp||; is
within 20% of ||Zp||;, €min is divided by 2 (with a minimum
value of 0.05). This strategy is called variable €. It is
robust because when a false positive occurs, it increases only
temporarily the probing probability, which therefore degrades
the throughput only very slightly. Note that the values chosen
for the variable €y, (minimum and maximum, thresholds
for deciding when to change) depend on the conditions of
the network (e.g., precision of the busy-time measurements,
variability of the link capacities) and need to be set depending
on the goals of the source (e.g., react faster or converge closer
to the optimal).

We evaluate the variable ey, strategy by comparing it
through simulations with Rexp3 [9], a MAB strategy defined
for dynamically changing rewards; Rexp3 works by defining
a batch size Ap and by resetting the weights it gives to
each arm every Arp trials. As explained in Section III-A,
and similarly as with UCB1, Rexp3 works only when the
player knows the reward each time the arm is played, which
is not the case here. We can, however, evaluate a strategy
where UCBI is replaced in Stage 1 of Algorithm 1 by the
Rexp3 strategy, with a fixed probing-probability ep (Stage 2 of
Algorithm 1). We use the same simulation scenario as in
Section III-C, except that at time ¢t = 25000, the rate of
two arms randomly chosen among the N = 5 arms are
drawn again uniformly at random in [0,1] (i.e., the rates of
these two arms change). Figure 5 (right) shows the through-
put experienced at each trial (averaged over 10000 ran-
dom instances) for HyMAB with the variable ey, strategy
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Fig. 6. Effect of enin with dynamic conditions (testbed experiments).

and A = 2, and for Algorithm 1 with Rexp3 (denoted
by Rexp3) with different fixed probing-probabilities ep. We
try several batch sizes Ap between 5 and 1000 and always
show the results for the best A7. HyMAB with variable €y,
re-converges faster than Rexp3 for all probing probabilities.

We also evaluate the different strategies in HyMAB (dif-
ferent fixed ey and variable eni,) with testbed experiments.
To compare the different values of €y, under a controlled
environment, we repeat the same experiment with M = 2. We
send UDP traffic between Nodes 19 and 22 (see Figure 5, right
for a map of our testbed) and we force link-capacity changes
by reducing the transmit power of WiFi at ¢ = 250 s. Such
long-term capacity changes happen unpredictably in practice,
both for PLC (when appliances are switched on and off [4])
and WiFi (due to varying signals [24]). The experiment is
repeated five times for each value of en;,, and we present
averaged results. In Figure 6, we show the received through-
put for different fixed values of epip: 0.02, 0.05, and 0.1.
Here the best multipath uses WiFi-WiFi and PLC-WiFi paths,
hence the power reduction causes throughput to drop sud-
denly; HyMAB adapts by using another multipath, with
WiFi-PLC and PLC-PLC paths, which can be observed by the
throughput re-increase. When the conditions are stable, a small
value of ey, (0.02, blue line) achieves a better throughput
than a large value (0.1, red line). However, when the capacities
change, it takes longer when €, is small to reset the indicators
of the arms and to converge again. Therefore, the smaller €pi,
is, the larger the convergence time is. The throughput obtained
with a variable €, as described above, is shown by the purple
line in Figure 6. Before the capacities change, it converges
to the same throughput as the fixed value epi, = 0.05 (the
minimum value of the variable en;,). When the capacities
change, it adapts faster than all fixed-value strategies do.

Figure 6 also shows the benefits of using the UCBI1 strategy
in HyMAB instead of a uniform random selection (rand):
the received throughput is depicted when both strategies use
émin = 0.05. Using UCBI significantly improves the conver-
gence rate of HyMAB, because less time is wasted probing the
least-good arms. Similarly to what was shown in Section III-C,
this confirms the gains provided by employing a MAB strategy
such as UCBI, rather than a simpler scheme such as uniform
random selection.

The time needed to converge to the new multipath is of the
order of a few tens of seconds. Because HyMAB does not
target short-term variability but focuses instead on the adapt-
ability to long term variations, this convergence time remains
practical. Moreover, the performance after the capacities

change and before HyMAB switches to the new best multipath
is the performance on the multipath that was used before
the conditions have changed, i.e., this is the performance
that would have been observed without HyMAB (see also
Figure 1, where we observe that between the moment when
the capacities change and the moment when HyMAB switches
multipath, the performance of HyMAB is similar to that of
TCP and MPTCP without HyMAB).

B. Traffic Changes

HyMAB must also handle flows that come and go. The
strategy for several flows (Section III-D) is optimal for static
conditions. Even though the sources do not know the total
number of flows in the network, the nodes know the number
of flows at each link (local information), which makes it
possible to react very rapidly to flow arrivals/departures:
Once per trial, nodes along a multipath P € & notify the
source of flow f of the maximal number of interfering flows
Fp = max;ep Fj, with F; given by (6), along with a flow
hash, a hash value of all the other flows that the nodes
on P overhear. If F’p is increased, the flows, which had a
share 1/F2¢ of the time-resources, now have only 1/F3™:
The source immediately reacts by scaling down the current
sending rate vector Tp by a factor ng /FpE™. For example,
if there was a unique flow and if a second flow appears,
the rate vector is divided by 2. When the new flow shares
a bottleneck link with the other flows, this scaling yields that
the new rate vector is the vector maximizing (7). Otherwise,
this scaling is overly conservative, but it ensures that the
medium is unsaturated during the probing phases (no flow uses
more resources than its share); the source can then employ
the strategy described in Section III-D and converge to the
vector maximizing (7). This strategy also requires that two
flows never probe at the same time, which is likely but not
certain, as the probing probability ep(t) is low at steady-state
but non-zero. In practice, when a flow f; probes a multipath
‘P11, control messages are sent on each path of P;: Nodes in
the interference domain of Ap, can overhear these control
messages, and thus know that f; is probing. If another flow
f2 wants to probe a multipath P, nodes belonging to Ps
send a message to the source of fo if they know that f; is
probing (i.e., if they overheard control messages), and the
source of f5 delays the probing phase. If no such message
is sent, it means that no other interfering flow is probing.’
This guarantees that the strategy with several flows converges
to the optimal value.

If Fp is decreased, the source can determine, based on
the flow hash, if the situation reverses to conditions seen
earlier (same active flows); in which case, it restores the rate
vectors it had computed. Otherwise, it initializes HyMAB
again to find the optimal rates in this unknown configuration.
This enables HyYMAB to react very fast and to support effi-
ciently short flows that disappear briefly after having appeared.
We present experiments with multiple flows in Section V-C.

3 An architecture such as or similar to software-defined networks would help
here, as a centralized controller would decide which flow probes when.
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TABLE 11
RATIO [|23¢" ||1 /]| " |1 FOR 50 RANDOM FLOWS
N 1 2 4 5
max ratio 1.62 | 1.50 | 1.50 | 1.02
mean ratio | 1.08 | 1.03 | 1.02 | 1.00

V. EXPERIMENTAL EVALUATION

We first describe our experimental framework. We present
the results of the implementation of HyMAB, first with a
single UDP flow, then with several UDP flows. We then
compare HyMAB and TCP combined to MPTCP.

A. Experimental Framework and Implementation Details

We implement HyMAB with Click* [25] on a 22-node
testbed located on one floor of an office building (see Figure 5,
right). We use K = 2 technologies, WiFi and PLC. All the
nodes have a WiFi interface (Atheros AR9280), and all but
mobile nodes have a HomePlug AV PLC interface (QCA 7420)
connected to the electrical network of our building. The nodes
are APUI1D boards with an OpenWrt distribution patched for
MPTCP [26] and ath9k wireless drivers. Our implementation
is meant to run as a Linux module in kernel-space, but
due to some incompatibility between ath9k and Click, our
results are obtained in user-space. Handling all packets in
user-space incurs significantly more processing delay, and the
performance and convergence speed could be improved further
if run in kernel-space.

To compute the set of multipaths S, we build on an existing
single-path routing protocol for hybrid networks [27] and mod-
ify it to return multipaths of M or fewer paths. This multipath-
routing protocol is described in our previous work [2]. It
computes an estimate of the total capacity of multipaths and
returns a set S of N multipaths, in decreasing order of the
estimated multipath capacities. The multipath-routing protocol
requires a complete view of the network: Each node estimates
the capacity of its outgoing links by sending unicast frames at
low rates and by using link-quality information present in the
packet headers [4]. It broadcasts a list of its neighbors with
the link capacities, and uses this information to compute the
interference domains. Because HyMAB employs the N best
paths of the routing protocol, this method is robust against
estimation errors in the link capacities or interference domains.
Once the multipath set S is chosen, HyMAB does not require
the knowledge of the link capacities or of the interference
domains, because it uses only the busy-time measurements to
compute the optimal rates of the multipaths. When a capacity
change is detected (see Section IV-A), S is computed again.

In our testbed, we observe that the number of paths in the
best multipath P* is equal to at most the number of non-
interfering technologies. We have proven this proposition for
certain classes of networks [28]. Because we use K = 2
technologies, we limit in our experiments the number of paths
per multipath to M = 2. We set the number of multipaths in
S to N = 5: This value is small enough to remain practical,
and it is large enough to offer enough multipath diversity so
that it is very likely that P* € S, as can be observed in
the following experiment: We randomly choose 50 flows (i.e.,

4The source code is available at c4science.ch/diffusion/6591/hymab.git.
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Fig. 7.  The main components of HyMAB at layer 2.5. Plain-line arrows
represent the data flow, dashed-line arrows represent the acknowledgements,
and double arrows represent actions on the component. The source determines
the multipath set S (Multipath Routing). S is used by Algo. 1 that sets the Rate
Shaper to the desired vector rate. Using the header of our HyMAB protocol,
intermediate nodes check whether they are the destination (Check Dst) and,
if needed, forward packets to the next hop (Fwd). Finally, the destination
reorders the packets based on a sequence number included in the HyMAB
header. Upon reception of a control message sent at each probing phase,
the destination sends acknowledgements on the paths (ACK), updated by each
intermediate node with the busy-time measurements (Busy-time Measures).

source-destination pairs). For each flow, we compute a large
number of multipaths to ensure that with very high probability,
the best multipath is among them (here, we compute the best
20 multipaths). For each of these 20 multipaths, the optimal
rate is found by a brute-force approach: The source sends
traffic on all paths of the multipath at all possible rates (with
a granularity of 1 Mb/s), and keeps the best experienced
throughput. For different values of NV, we compute the ratio
between the maximal rate among the 20 multipaths ||z
and the maximal rate among the N best multipaths [|z%'[|;.
The maximum and mean of this ratio among the 50 flows are
reported in Table II for different values of V.

In the current version, all nodes run HyMAB. It would
be possible to modify HyMAB so that the destination does
not need to run HyMAB without impacting the performance:
Indeed, because computations are done by the source of the
flow and measurements of the busy-time by the source of
the links, the last-edge routers can replace the destination in
particular for sending the acknowledgements, described later
in this section. In a real implementation, this means that for
downlink traffic, user nodes can enjoy the benefits of HyMAB
without having to run it. Uplink traffic is much less likely
to require high throughput, hence to need HyMAB. Still,
HyMAB can be used between the last-edge router and the
gateway to avoid that the client has to run it.

HyMAB works at layer 2.5, between the IP and MAC
layers. Figure 7 summarizes the main components of HyMAB.
When launched, the program creates a virtual tun/tap interface
that, with a local IP address, is transparently used by the
applications. HyMAB uses source routing, i.e., the path is fully
determined at the source and it is set in a layer-2.5 header
that is used by the intermediate nodes to forward the packets
to the next hop. The path is represented as a list of short
hashes (2 bytes) of the MAC addresses of the interfaces along
the path. The layer-2.5 header is 17 bytes long: 12 bytes are
reserved for the path, limited to 6 hops; 4 bytes are reserved
for a sequence number, used to reorder at destination the
packets coming from different paths, before delivering them
to higher layers; the final byte is reserved to indicate in which
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Left: Single experiment for Flow 17-6. The throughput experienced is shown along with the rate sent on the different paths and the total rate sent.

Throughput drops correspond to probing phases, more frequent for small ¢ (¢ < 50 s, when optimal rates are unknown). After 50 s, exploitation of the best
found multipath dominates. Right: Comparison of HyMAB with optimal brute-force rate, UDP traffic, for 50 flows.

phase (probing or exploitation) the packet is sent. Time is
split in slots of D = 400 ms. At each slot ¢, the source
chooses a multipath PP and either to probe P (with probability
ep(t)), or to exploit the best multipath found so far, depending
on the outcome of Stage 2 in Algorithm 1.

If the source chooses to exploit at time ¢, it shapes the
traffic to send at the current best rate Tp; ; on the estimated
best multipath P; during the entire slot. During an exploitation
phase, the source does not send traffic in batches; the batches
are needed only during probing phases. In practice, delays
tend to increase rapidly when the busy time approaches 1:
We replace the constraint Ap-x <1 in (3) by a slightly
more conservative constraint Ap-x < (1 —4) -1, with a
small constraint margin 0 < § < 1. Increasing § decreases the
delays, but also decreases the throughput.

If instead the source chooses to probe multipath P at time ¢,
it follows the procedure described in Section II-B. For the
probing phases, the source uses rate vectors wg) such that all
vector components of w%) are equal to zero, except the ¢-th
component, equal to 0.75 - 2, where z}’ is the current
best rate for P, when used alone (i.e., single-path). z}’ is
computed for free when computing the optimal rate for the
multipath with the busy-time measurements, as described in
Section II-B. This choice of rate vectors wg) is justified by an
empirical observation that we made during our experiments:
The estimation of the optimal rate is more precise and more
robust against measurement imprecisions due to noise when
the matrix X p in Section II-B) is diagonal, i.e., when the M
measurements are carried out on a single path. This choice
also ensures that traffic is sent at a sufficient rate even during
a probing period (close to be the best single-path rate on each
path). The factor 0.75, used only when probing, ensures that
no link is close to saturation, which is required in practice
to compute the optimal rate on P. If a rate vector is non-
admissible (e.g., because of dynamic conditions), i.e., if a
ul(l) is measured close to 1, the source removes the mea-
surement and repeats the trial with the rate vector divided
by 2. At the beginning of a probing phase, the source
waits for a short time 7 (of the order of the delay from
source to destination) so that all packets sent during the
previous trial reach destination. Control messages are then
sent on all paths of P. These control messages enable all
nodes along the paths to initialize and measure the busy
times ul(l) for all links [ € Ap, as described in Section II-C.
After the silent slot (described in Section III-D), the source
starts by sending traffic at rate wg ) during D/M, in batches

of 100 packets for WiFi, 200 for PLC. The destination then
sends an acknowledgement back on all the paths of the
multipath P. Nodes along the paths update this acknowledge-
ment with the measured busy times: When it reaches the
source of the flow, the acknowledgement contains all busy-
time measurements ul(l). When M > 2, the procedure is

repeated with all rate vectors wg). At the end of the trial,
the source knows all measurements ul(l) and can compute
all ap, as described in Section II-B. Finally, to compute
an estimation of the optimal rate, the source reduces Ap
by removing all vectors ap,; such that ap; < ap s for
another link !/, and solves (3) with the reduced Ap. In our
experiments, the number of rows in the reduced Ap is always
less than 5, and the computation of the optimal rate, including
that of the multipath-impact vectors, is done in less than 2 ms.

B. Testbed Results With a Single Flow

To evaluate the performance of HyMAB, we first compute
the optimal rate by the brute-force approach described in
Section V-A. This approach is not practical, as it requires
sending traffic at a large number (quadratic in the number of
paths) of non-optimal rates and yields long convergence times.
We compare the optimal rate obtained by this brute-force
approach to the rate achieved by HyMAB. Hereafter, we use a
small constraint margin § = 0.05 (value that reduces the delays
significantly while decreasing only slightly the throughput)
and A = 2. In Section V-B, where we study the convergence
of HyMAB to the optimal value, we use a fixed €, = 0.02;
in the following sections, we use a variable €y,, as described
in Section IV-A.

Flow A-B denotes a flow between Node A and Node B. We
first show an example of how HyMAB works for Flow 17-6.
The (imperfect) routing protocol returns N 5 multi-
paths Pq,...,Ps, ordered by decreasing estimated-capacity.
The rates obtained by brute-force approach (P;: 23 Mb/s,
Po: 30 Mb/s, P3: 29.5 Mb/s, P4: 20 Mb/s, and Ps: 15 Mb/s)
indicate that the best path for the routing protocol, P, is not
the actual best multipath (this is the case for 44% of our
50 experiments presented below), which shows that exploring
several multipaths is indeed useful. Figure 8 (left) shows the
experiment for Flow 17-6 with HyMAB. P consists of two
paths, denoted by P, and P». P3 uses P, and another path,
denoted by Ps. P1, P4, and Ps use other paths that are used
only during probing phases. The probing probability ep(t)
rapidly decreases, and at the end, the source spends most of
its time exploiting the best multipath. HyMAB converges to
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Fig. 9. Left: Experiment with two flows. HyMAB fairly shares the resources and reacts very fast, in particular with conditions learned earlier (¢ = 1500 s).
Right: Comparison of MPTCP with HyMAB and TCP combined for 20 random flows. HyMAB achieves performance very close to MPTCP after convergence.

the true best multipath P; because P2 and P3 are very close,
it takes some time to converge: Until ¢ ~ 650 s, the estimated
best arm P/ is Ps. Nevertheless, it sends traffic at a rate very
close to the best one (30 Mb/s) throughout the experiment.

We now compare HyMAB to the optimal brute-force rate
on 50 randomly selected source-destination pairs. Figure 8
(right) shows the rate received as a proportion of the optimal
rate obtained by brute-force, averaged over all 50 runs. The
box plot shows the median (red bar), the 25" and 75!
percentiles (box), and the standard deviation (whiskers). With
0 = 0.05 and €y, = 0.02, we expect to converge on
average to 93% of the optimal throughput (black line). Indeed,
it converges very close to this value; this shows that, in a home
hybrid mesh network, HyMAB succeeds in finding the optimal
multipath and the optimal rate at which traffic is sent on this
multipath.

C. Testbed Results With Several Flows

We describe an experiment with two contending flows; all
use HyYMAB. We first run Flow 9-8; after 500 s, we run
Flow 7-13 that interferes with Flow 9-8; after 1 000 s, we shut
down Flow 9-8, and finally run it again after 1500 s. In
Figure 9 (left), we show the rates sent and received for the
two flows. The flow sources react extremely rapidly (a few
hundreds of milliseconds): Following the strategy described
in Section IV-B, Node 9 divides the sending rate by 2 as
soon as it detects Flow 7-13. When the flows contend,
Nodes 9 and 7 continue to explore, and they converge to the
solution of (7), with fairly shared resources. When Flow 9-8
is shut down, Node 7 initializes HyMAB again for Flow 7-13
in isolation and converges to the optimal solution. When
Flow 9-8 is run again, Nodes 9 and 7 immediately switch back
to the rates last computed when the two flows were present.
They continue to explore to adapt to dynamic conditions. This
experiment shows that HyMAB efficiently handles contending
flows, with a very fast reaction and a fair sharing of the
resources.

D. Interaction of HyMAB With TCP

Here, we study the interaction of HyMAB with TCP. In any
exploratory multipath protocol, such as HyMAB, the probing
phases cause throughput drops, either because a sub-optimal
multipath is explored, or because probing requires sending
traffic at a sub-optimal rate. These drops are interpreted by
TCP as a congestion signal. Consequently TCP decreases the
congestion window, hence the sending rate. After a probing
phase, it takes some time (up to a few seconds) for the current
versions of TCP to converge back to the rate supported by

an exploitation phase. In HyMAB, we alleviate this problem
by buffering packets at the source during probing phases,
which smoothes the effects of probing. When the source of
a TCP flow is in the home network, (i.e., when we control it),
it would be easy to completely solve the issue by imple-
menting a specific version of TCP that, transparent for the
destination, would use different congestion windows during
probing and exploitation phases. Implementing this modified
version of TCP is left for future work, and the results here are
obtained with a classic version of TCP; they are only a lower
bound of the performance that can be reached. We compare
MPTCP to HyMAB and simple TCP combined. MPTCP uses
the best multipath (that can consist in one or two paths),
i.e., the multipath found optimal by HyMAB. This choice
favors MPTCP: In reality, MPTCP typically uses the multipath
returned by a multipath-routing protocol that, as we have seen
in Section V-B, is not necessarily the optimal one.

Figure 9 (right) shows the rate achieved by HyMAB, as a
proportion of the rate achieved by MPTCP, averaged over
20 randomly selected isolated flows. On average, HyYMAB and
MPTCP are very close. The continuous exploration, which
enables HyMAB to adapt much better to dynamic conditions,
causes a slight variability increase. But overall, its cost is
small compared to its advantages, among which is the better
adaptability to dynamic conditions (see Figure 1) but also the
absence of multi-homing requirements (see also Section VI).
In addition, because of some incompatibility between ath9k
and Click, the current version of HyMAB is implemented in
user-space, which induces high processing delays: The RTT
with HyMAB is about 10 times higher than with MPTCP
(for a single-hop flow, it is about 30 ms with HyMAB, and
about 3.5 ms with MPTCP). An implementation in kernel-
space could improve significantly the performance of HyYMAB
with TCP by reducing the end-to-end delays, to which TCP
is extremely sensitive [29].

VI. RELATED WORK

Routing and MAB: MAB has been widely studied in
many contexts after the seminal works by Thompson [30],
Lai and Robbins [31], and Auer et al. [6]. Routing was identi-
fied early on as a potential application for MAB [8]. However,
only a few papers specifically investigate this application; they
address the problem of finding the shortest path [32] or the
path with minimal delay [33], [34], and not the problem
of maximizing throughput, or that of multipath routing.
In addition, they are not validated experimentally on a test-
bed. Quite a few MAB strategies are proposed [6], most of
them when the rewards of the arms are stochastic. In this
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work, we consider the case where exploration is costly. More
importantly, we implement this strategy on a testbed, showing
its practical usability.

Multipath Routing: Multipath routing has been widely
studied, mostly in three contexts: mobile ad-hoc net-
works (MANETSs), wireless sensor networks (WSNs) and
traffic engineering. In MANETs and WSNs [35], multipath-
routing protocols have been shown to have several advantages,
such as reduced delays and overhead, and better reliability and
throughput [36]. But these works apply mostly on networks
using only one technology. Tam et al. [37] present an algorithm
valid in a multi-channel environment, but its implementation is
challenging. Multipath routing has also been studied for traffic
engineering [38], essentially to balance the load, which can
yield lower delays and higher throughput. These techniques
are valid for technologies that do not self-interfere, which is
typically not the case when using shared-medium technolo-
gies such as WiFi or PLC. EMPoWER [2] is a multipath
congestion-control and routing system for hybrid networks
with shared-medium technologies. It optimizes throughput and
controls the congestion on a single multipath. Independently
of the context, all these protocols use heuristics to build
the paths, and none of them, to the best of our knowledge,
guarantees the optimality of the result. In HYMAB, we explore
N different multipaths to find the best one, by using the MAB
framework. We also consider the case of hybrid networks, with
shared-medium technologies.

Layer 4 vs. Layer 2.5 Approaches: The most popular
multipath-routing approach is MPTCP [11]. However, this
solution targets end-to-end paths, not home networks, because
it operates at layer 4. It requires end-hosts to be multihomed
(i.e., have several network interfaces directly exposing differ-
ent IP sub-stacks). This may be a significant limitation in
practice: MPTCP, or any other layer-4 approach, limits the
possibility of using several paths in a home network without
multihoming. In addition, MPTCP can be inefficient in hybrid
networks, especially with self-interfering technologies [39]. It
requires knowing the paths in advance, thus it cannot adapt to
dynamic conditions that would require switching multipath.
In contrast, solutions working at layer 2.5 are transparent to
other protocols and do not require any modification of the
underlying MAC layers. Moreover, layer 2.5 solutions can
react faster to channel or topology changes, compared with
layer 4, again in a transparent-to-higher-layers fashion. IEEE
1905.1 standardizes hybrid networks at layer 2.5. For these
reasons, HyYMAB operates at layer 2.5. It is confined to home
networks and transparent to other Internet hosts.

VII. CONCLUSION AND DISCUSSION

Employing multipath in mesh hybrid networks is gain-
ing momentum, especially with MPTCP, as a way to opti-
mize performance under unreliable environments. We have
proposed HyMAB that finds the best multipath in hybrid
networks with self-interfering technologies. HyMAB exploits
the MAB framework to successfully address the tradeoff
between exploitation and exploration, in contrast to current
protocols that typically keep the same multipath as long as it
is valid. It also finds the optimal rate at which traffic is sent on
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each path without having to measure link capacities or inter-
ference domains. It works efficiently when several flows are
present. It was implemented on a testbed of WiFi and PLC
nodes, thus showing in practice its optimality and adaptability
to dynamic conditions. To the best of our knowledge, this is
the first implementation of a MAB strategy in the context of
routing and congestion control.

The MAB foundations presented in this paper could be
employed for other communication technologies and contexts,
such as IoT or vehicular networks. The specifics of HyMAB
design are technology independent. To tackle dynamic condi-
tions and network intricacies, we have proposed guidelines on
how to adjust our design.

APPENDIX

Proof of Theorem 1: We need to prove that each arm is
probed an infinite number of times almost surely, which has
two consequences. First, the strong law of large numbers then
yields that the estimation of the optimal rate converges to the
true value, and thus that HyMAB finds the best multipath.
Second, this means that the probing probability ep(¢) given in
Theorem 1 goes to zero and thus that HyMAB ends up exploit-
ing the best multipath almost surely. Therefore, this shows that
HyMAB converges to achieving optimal throughput. In the
following, we show that probing each arm an infinite number
of times is equivalent to having each arm chosen an infinite
number of times at Stage 1, and that this is true almost surely.

For any arm P, let T’p(t) be the number of times P is
chosen at Stage 1 of the algorithm during the first ¢ trials,
and np(t) be the number of times the arm is probed, i.e., it is
chosen at Stage 1 and probing is chosen at Stage 2. First, np(t)
is unbounded almost surely if and only if T (¢) is unbounded
almost surely: If np(t) is unbounded, Tp(t) is obviously
unbounded because Tp(t) > np(t). If Tp(t) is unbounded,
a probing phase will happen eventually almost surely because
the probing probability is always strictly positive, which means
that np(t) is unbounded almost surely. Let us now assume
that there is an arm Py for which Tp,(¢) is bounded with
non-zero probability. It means that with non-zero probability,
Py is not chosen anymore after some time, which means
that with non-zero probability, at each time ¢ for ¢ large
enough, there is an arm P() for which T’p(;(t) is unbounded
almost surely and such that Vi) (t) > Vp, (t). Using (5), this
means that [Zp(¢)np ., t-1)ll1 = [[@py.np, t—1)ll1 is greater
than 2Int —1(1/\/np,(t — 1) — 1/\/np@)(t — 1)). But
the first term is finite (for each estimation xp(t),
lep(®)|l, € [0,1]), whereas the second term is positive and
goes to infinity (because np(;(t) goes to infinity). This
is a contradiction, consequently, for any arm P, Tp(t) is
unbounded almost surely, and hence, np(t) is unbounded
almost surely, which completes the proof. |

REFERENCES

[1] IEEE 1905.1-2013: Convergent Digital Home Network for Heteroge-
neous Technologies, IEEE, Piscataway, NJ, USA, 2013.

[2] S. Henri, C. Vlachou, J. Herzen, and P. Thiran, “EMPoWER hybrid
networks: Exploiting multiple paths over wireless and ElectRical medi-
ums,” in Proc. ACM CoNEXT, 2016, pp. 51-65.

[3] P. Tinnakornsrisuphap, P. Purkayastha, and B. Mohanty, “Coverage and
capacity analysis of hybrid home networks,” in Proc. IEEE ICNC,
Feb. 2014, pp. 117-123.




[4]

[5]
[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]
(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

C. Vlachou, S. Henri, and P. Thiran, “Electri-Fi your data: Measuring
and combining power-line communications with WiFi,” in Proc. ACM
IMC, 2015, pp. 325-338.

IEEE 1901-2010: Broadband Over Power Line Networks,
Piscataway, NJ, USA, 2010.

P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of
the multiarmed bandit problem,” Mach. Learn., vol. 47, nos. 2-3,
pp. 235-256, 2002.

S. Bubeck and N. Cesa-Bianchi. (2012). “Regret analysis of stochastic
and nonstochastic multi-armed bandit problems.” [Online]. Available:
https://arxiv.org/abs/1204.5721

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “Gambling in
a rigged casino: The adversarial multi-armed bandit problem,” in Proc.
IEEE FOCS, Oct. 1995, pp. 322-331.

0. Besbes, Y. Gur, and A. Zeevi, “Stochastic multi-armed-bandit prob-
lem with non-stationary rewards,” in Proc. NIPS, 2014, pp. 199-207.
K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, “Impact of inter-
ference on multi-hop wireless network performance,” Wireless Netw.,
vol. 11, no. 4, pp. 471-487, 2005.

A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, TCP Extensions
for Multipath Operation With Multiple Addresses, document RFC 6824,
IETF, Fremont, CA, USA, 2013.

IEEE 802.11n-2009: Enhancements for Higher Throughput, 1EEE,
Piscataway, NJ, USA, 2009.

P. H. Pathak and R. Dutta, “A survey of network design problems and
joint design approaches in wireless mesh networks,” IEEE Commun.
Surveys Tuts., vol. 13, no. 3, pp. 396-428, 3rd Quart., 2011.
Understanding and Programming With Netlink Sockets. Accessed:
Jul. 2018. [Online]. Available: https://people.redhat.com/nhorman/
papers/netlink.pdf

The Faifa Open Source Project. Accessed: Jul. 2018. [Online]. Available:
https://www.openhub.net/p/faifa

Y. Gai, B. Krishnamachari, and R. Jain, “Combinatorial network
optimization with unknown variables: multi-armed bandits with linear
rewards and individual observations,” IEEE/ACM Trans. Netw., vol. 20,
no. 5, pp. 1466-1478, Oct. 2012.

W. Chen, Y. Wang, and Y. Yuan, “Combinatorial multi-armed bandit:
General framework and applications,” in Proc. ICML, 2013, pp. 1-9.
R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

L. DaCosta, A. Fialho, M. Schoenauer, and M. Sebag, “Adaptive
operator selection with dynamic multi-armed bandits,” in Proc. ACM
GECCO, 2008, pp. 913-920.

Y. Gai, B. Krishnamachari, and R. Jain, “Learning multiuser channel
allocations in cognitive radio networks: A combinatorial multi-armed
bandit formulation,” in Proc. IEEE DySPAN, Apr. 2010, pp. 1-9.

K. Liu and Q. Zhao, “Distributed learning in multi-armed bandit
with multiple players,” IEEE Trans. Signal Process., vol. 58, no. 11,
pp. 5667-5681, Nov. 2010.

D. Kalathil, N. Nayyar, and R. Jain, “Decentralized learning for mul-
tiplayer multiarmed bandits,” IEEE Trans. Inf. Theory, vol. 60, no. 4,
pp. 2331-2345, Apr. 2014.

F. Wilhelmi et al. (2017). “Collaborative spatial reuse in wire-
less networks via selfish multi-armed bandits.” [Online]. Available:
https://arxiv.org/abs/1710.11403

G. Gaertner and V. Cahill, “Understanding link quality in 802.11 mobile
ad hoc networks,” IEEE Internet Comput., vol. 8, no. 1, pp. 55-60,
Jan./Feb. 2004.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek,
“The click modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3,
pp- 263-297, 2000.

MultiPath TCP—Linux Kernel Implementation. Accessed: Jul. 2018.
[Online]. Available: https://multipath-tcp.org/pmwiki.php/Users/
OpenWRT

Y. Yang, J. Wang, and R. Kravets, Interference-Aware Load Balancing
for Multihop Wireless Networks, document UIUCDCS-R-2005-2526,
Univ. Illinois Urbana-Champaign, Champaign, IL, USA, 2005.

S. Henri and P. Thiran, “Optimal number of paths with multipath routing
in hybrid networks,” in Proc. IEEE WoWMoM, 2018.

J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP through-
put: A simple model and its empirical validation,” ACM SIGCOMM
Comput. Commun. Rev., vol. 28, no. 4, pp. 303-314, Oct. 1998.

'W. Thompson, “On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples,” Biometrika, vol. 25,
nos. 3—4, pp. 285-294, 1933.

IEEE,

(31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

IEEE/ACM TRANSACTIONS ON NETWORKING

T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Adv. Appl. Math., vol. 6, no. 1, pp. 4-22, 1985.

B. Awerbuch and R. D. Kleinberg, “Adaptive routing with end-to-end
feedback: Distributed learning and geometric approaches,” in Proc. ACM
STOC, 2004, pp. 45-53.

J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing
networks: A reinforcement learning approach,” in Proc. Adv. Neural Inf.
Process. Syst., 1994, pp. 671-678.

B. Awerbuch and R. Kleinberg, “Online linear optimization and adaptive
routing,” J. Comput. Syst. Sci., vol. 74, no. 1, pp. 97-114, 2008.

J. N. Al-Karaki and A. E. Kamal, “Routing techniques in wireless sensor
networks: A survey,” IEEE Wireless Commun., vol. 11, no. 6, pp. 6-28,
Dec. 2004.

M. Tarique, K. E. Tepe, S. Adibi, and S. Erfani, “Survey of multipath
routing protocols for mobile ad hoc networks,” J. Netw. Comput. Appl.,
vol. 32, no. 6, pp. 1125-1143, 2009.

W.-H. Tam and Y.-C. Tseng, “Joint multi-channel link layer and multi-
path routing design for wireless mesh networks,” in Proc. IEEE INFO-
COM, May 2007, pp. 2081-2089.

A Survey of Multipath Routing for Traffic Engineering. Accessed:
Jul. 2018. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.97.9976&rep=rep 1 &type=pdf

S. C. Nguyen, X. Zhang, T. M. T. Nguyen, and G. Pujolle, “Evaluation
of throughput optimization and load sharing of multipath TCP in
heterogeneous networks,” in Proc. IEEE WOCN, May 2011, pp. 1-5.

Sébastien Henri received the M.Sc. degree in
engineering from the Ecole polytechnique, France,
in 2011, and the M.Sc. degree in engineering from
Télecom ParisTech, France, in 2013. He is currently
pursuing the Ph.D. degree with EPFL, Switzerland.
His Ph.D. research focuses on the evaluation and
analysis of throughput, latency, and security with
hybrid networks. Before starting his Ph.D. research,
he worked with Qualcomm for one year and with
Technicolor for one year. His research interests
include the performance evaluation and modeling of

wireless and mobile networks, and the security of power-line communications
and hybrid networks.

Christina Vlachou received the Diploma degree
in electrical and computer engineering from the
National Technical University of Athens in 2011 and
the Ph.D. degree from EPFL in 2016. Her Ph.D. dis-
sertation was on measuring, modeling, and enhanc-
ing power-line communications (PLC) performance.
During her Ph.D. studies, she was an intern at
Marvell and Qualcomm involved in wireless and
PLC. She is currently a Researcher with Hewlett
Packard Labs, Palo Alto, CA, USA, involved in
next-generation wireless technologies. Her interests

include wireless and mobile communications, multi-user performance, and
design of hybrid networks. She was a recipient of the Best Paper Runner-Up
Award for her work on PLC at the IEEE International Conference on Network
Protocols 2014 Conference and the Papakyriakopoulos Award for excellence
in Mathematics from the National Technical University of Athens in 2007.

Patrick Thiran (S’89-M’96-SM’12-F’ 14) received
the Electrical Engineering degree from the Uni-
versité Catholique de Louvain, Louvain-la-Neuve,
Belgium, in 1989, the M.S. degree in electrical
engineering from the University of California at
Berkeley, USA, in 1990, and the Ph.D. degree from
EPFL in 1996. From 2000 to 2001, he was with
Sprint Advanced Technology Labs, Burlingame, CA,
USA. He is currently a Full Professor with EPFL. He
became an Adjunct Professor in 1998, an Assistant
Professor in 2002, an Associate Professor in 2006,

and a Full Professor in 2011. His research interests include networks,
performance analysis, stochastic models, the analysis and design of wireless
and PLC networks, and data-driven network science. He was a recipient of
the 1996 EPFL Ph.D. Award and the 2008 Crédit Suisse Teaching Award. He
served as an Associate Editor for the IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEMS from 1997 to 1999 and for the IEEE/ACM TRANSACTIONS
ON NETWORKING from 2006 to 2010. He is currently serving on the Editorial
Board of the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS.



