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Abstract
This thesis develops equilibrium models, and studies the effects of market frictions on risk-

sharing, derivatives pricing, and trading patterns.

In the chapter titled “Imbalance-Based Option Pricing”, I develop an equilibrium model of

fragmented options markets in which option prices and bid-ask spreads are determined by

the nonlinear risk imbalance between dealers and customers. In my model, dealers optimally

exploit their market power and charge higher spreads for deep out-of-the-money (OTM)

options, leading to an endogenous skew in both prices and spreads. In stark contrast to

theories of price pressure in option markets, I show how wealth effects can make customers’

net demand for options be negatively correlated with option prices. Under natural conditions,

the skewness risk premium is positively correlated with the variance risk premium, consistent

with the data.

In the chapter titled “The Demand for Commodity Options”, we develop a simple equilibrium

model in which commercial hedgers, i.e., producers and consumers, use commodity options

and futures to hedge price and quantity risk. We derive an explicit relationship between

expected futures returns and the hedgers’ demand for out-of-the-money options, and show

that the demand for both calls and puts are positively related to expected returns, and the

relationship is asymmetric, tilted towards puts. We test and confirm the model predictions

empirically using the commitment of traders report from CFTC.

In the chapter titled “Electronic Trading in OTC Markets vs. Centralized Exchange”, we model

a two-tiered market structure in which an investor can trade an asset on a trading platform

with a set of dealers who in turn have access to an interdealer market. The investor’s order

is informative about the asset’s payoff and dealers who were contacted by the investor use

this information in the interdealer market. Increasing the number of contacted dealers lowers

markups through competition but increases the dealers’ costs of providing the asset through

information leakage. We then compare a centralized market in which investors can trade

among themselves in a central limit order book to a market in which investors have to use the

electronic platform to trade the asset. With imperfect competition among dealers, investor

welfare is higher in the centralized market if private values are strongly dispersed or if the

mass of investors is large.

Key words: Market Structure; Market Power; Risk Imbalance; Hedging Pressure; Option

Liquidity; Risk Premia; Information Leakage
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Résumé
Cette thèse développe des modèles d’équilibre et étudie les effets des frictions de marché sur

les structures de prix et d’échange des produits dérivés.

Dans le chapitre intitulé «Valorisation d’options basée sur les déséquilibres», je développe

un modèle d’équilibre des marchés d’options fragmentées dans lequel les prix des options et

les écarts entre les cours acheteur et vendeur sont déterminés par le déséquilibre de risque

non linéaire entre les négociants et les clients. Dans mon modèle, les négociants exploitent

de manière optimale leur pouvoir de marché et facturent des spreads plus élevés pour des

options hors la monnaie (HLM), ce qui entraîne une distorsion endogène des prix et des

spreads. À l’opposé des théories de la pression sur les prix sur les marchés d’options, je montre

comment les effets de richesse peuvent faire en sorte que la demande nette d’options des

consommateurs soit corrélée négativement avec les prix des options. Dans des conditions

naturelles, la prime de risque d’asymétrie est positivement corrélée avec la prime de risque de

variance, en adéquation avec les données.

Dans le chapitre intitulé «La demande d’options sur matières premières», nous développons

un modèle d’équilibre simple dans lequel les sociétés de couverture commerciales, c’est-à-dire

les producteurs et les consommateurs, utilisent des options sur matières premières et des

contrats à terme afin de s’assurer contre les risques de prix et de quantité. Nous établissons

une relation explicite entre les rendements futurs attendus et la demande des sociétés de

couverture pour les options hors la monnaie. Nous montrons que la demande pour les options

d’achat et les options de vente est positivement liée aux rendements attendus, et la relation

est asymétrique, orientée vers les options de vente. Nous testons et confirmons les prédictions

du modèle de manière empirique en utilisant une importante base de données d’opérations

et de cours d’options sur des matières premières.

Dans le chapitre intitulé «La négociation électronique dans les marchés de gré à gré vs. les

marchés centralisés», nous modélisons une structure de marché à deux niveaux dans laquelle

un investisseur peut négocier un actif sur une plateforme de négociation avec un ensemble de

courtiers qui ont accès à un marché intercourtiers. L’ordre de l’investisseur est instructif sur

le gain de l’actif et les courtiers contactés par l’investisseur utilisent cette information sur le

marché intercourtiers. Augmenter le nombre de courtiers contactés réduit les majorations de

prix en raison de la concurrence accrue, mais augmente les coûts des courtiers pour fournir

l’actif en raison de fuites d’informations. Nous comparons ensuite un marché centralisé

dans lequel les investisseurs peuvent négocier entre eux au moyen d’un carnet d’ordres de

bourse à cours limités à un marché dans lequel les investisseurs doivent utiliser la plate-
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forme électronique pour négocier l’actif. En présence d’une concurrence imparfaite entre

les courtiers, le bien-être des investisseurs est plus important sur le marché centralisé si les

valeurs privées sont fortement dispersées ou si la masse des investisseurs est importante.

Mots clés : Structure de Marché; Pouvoir de Marché; Déséquilibre des Risques; Pression de

Couverture ; Option de Liquidité ; Primes de Risque; Fuite d’Informations
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Introduction

Options play a fundamental role in the functioning of modern financial markets. Jumps, trad-

ing costs, and stochastic volatility are among many factors that make options non-redundant

and attractive vehicles for spanning risks. Despite many options are traded on exchange, the

market structure is highly fragmented and has a pronounced two-tiered structure, whereby

dealers trade with customers in the dealer-to-customer (D2C) segment and then rebalance

their inventories with each other in the dealer-to-dealer (D2D) segment.

In light of these facts, in the first chapter I develop an equilibrium model of fragmented options

markets in which option prices and bid-ask spreads are determined by the nonlinear risk

imbalance between dealers and customers. Consequently, option prices in my model consists

of three parts: compensation for the fundamental risk, compensation for dealers’ inventory

risk which arises endogenously due to distorted risk sharing, and markups customers pay

to dealers. The latter two are specific to my model and can play a role in resolving the main

empirical puzzles in option pricing and trading patterns.

In the second chapter, we try to understand the origin of non-linear endowment risks in

commodity markets. To this end, we develop a simple, two period general equilibrium model

populated by three types of agents: commodity producers, commodity consumers, and

speculators. We assume that, in addition to price risk, producers face quantity risk: In this

case, options become necessary to hedge the endowment risk, and producers may in fact

find it optimal to take a long position in the futures contract, and expected futures returns are

positive if and only if price risk is larger than quantity risk.

Many derivatives contracts are traded in a two-tiered market structure, despite the fact that

dealers can have market power, and that state prices and risk-sharing in the economy are

distorted. In the third chapter, we build an equilibrium model to show that investors prefer

to trade in such a two-tiered market structure when they are concerned about information

leakage.
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1 Imbalance-Based Option Pricing

Yuan Zhang1

1 – EPFL and Swiss Finance Institute

I develop an equilibrium model of fragmented options markets in which option prices and bid-

ask spreads are determined by the nonlinear risk imbalance between dealers and customers.

In my model, dealers optimally exploit their market power and charge higher spreads for deep

out-of-the-money (OTM) options, leading to an endogenous skew in both prices and spreads.

In stark contrast to theories of price pressure in option markets, I show how wealth effects can

make customers’ net demand for options be negatively correlated with option prices. Under

natural conditions, the skewness risk premium is positively correlated with the variance risk

premium, consistent with the data.

1.1 Introduction

Options play a fundamental role in the functioning of modern financial markets. Jumps,

trading costs, and stochastic volatility are among many factors 1 that make options non-

redundant and attractive vehicles for spanning risks. In addition to the fundamental risk

factors, agents’ exposure on each possible future state may as well be nonlinear, resulting in

another source of option demand. 2 This extra demand has no effect on equilibrium option

prices in the absence of trading frictions.

However, despite many options are traded on exchange, the market structure is highly frag-

mented and has a pronounced two-tiered structure, whereby dealers trade with customers in

1Jumps refer to discontinuous price movements; trading costs refer to transaction fees and financing/short-
selling constraints; stochastic volatility refers to the randomness in the range of price movements.

2For instance, the advancement of new technology may on average improve the performance of the stock
market but can have adverse effects on those industries being replaced (think of the idiosyncratic income shock in
Constantinides and Duffie [1996]).
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Chapter 1. Imbalance-Based Option Pricing

the dealer-to-customer (D2C) segment and then rebalance their inventories with each other

in the dealer-to-dealer (D2D) segment. 3

In light of these facts, I develop an equilibrium model of fragmented options markets in which

option prices and bid-ask spreads are determined by the nonlinear risk imbalance between

dealers and customers. I show that dealers optimally exploit their market power and charge

higher spreads for deep out-of-the-money (OTM) options, leading to an endogenous skew

in both prices and spreads. Consequently, option prices in my model consists of three parts:

compensation for the fundamental risk, compensation for dealers’ inventory risk which arises

endogenously due to distorted risk sharing, and markups customers pay to dealers. The latter

two are specific to my model and can play a role in resolving the main empirical puzzles in

option pricing and trading patterns.

My model works as follows. There are two trading rounds: A round of D2C trade is followed

by a round of D2D trade. The D2D trade happens in a centralized exchange, while the D2C

trade is an outcome of bilateral bargaining. In the D2C round, each of the dealers is randomly

assigned a customer and the two share nonlinear endowment risk by bargaining on option

prices across all strikes. The bargaining outcome depends on the rational expectations of

both dealers and customers regarding the future equilibrium prices in the D2D trade. Because

markets in the D2D round are complete, its prices are determined by the total inventories

that the dealers accumulate from trading with customers. This trading process determines a

fixed point system for equilibrium prices in both trading rounds. I show explicitly how the

distribution of the nonlinear risk enters into the pricing kernels for all exchanges.

The Black-Scholes formula is acknowledged to be consistent with equilibrium in a frictionless

market if all agents have the same constant relative risk aversion (CRRA) preferences and the

aggregate endowment is log-normal. I show that this result still holds when dealers’ bargaining

power is zero: In fact, in this case, equilibrium in my model always coincides with that in the

frictionless model. However, this result breaks down as soon as dealers have some market

power. Thus, customers are not able to trade at the D2D option prices and, hence, efficient

risk sharing between dealers and customers is not feasible. This market power effect then

leads to a pecuniary externality: Dealers do not internalize the impact that their market power

has on the total inventories of the dealers’ population; the latter determines the total risk to be

shared in the D2D trade and hence its pricing kernel.

3I use the word “dealers" to denote option-trading specialists, designated market makers, members of a multi-
dealer platform, or any entity that has direct access to option markets; “customers" refers to anyone who uses
options but cannot access the markets directly and has to trade with dealers. For customers who trade options on
exchange, (i) large orders (e.g., block trade), complex orders (e.g., trade involving multiple strikes), and orders with
non-standard strike/maturity are often negotiated privately with dealers before execution on the exchange; (ii)
in the US, 15 options exchanges at the moment make sourcing and providing liquidity extremely difficult, and
(iii) retail orders are usually aggregated and internalized by brokers. Moreover, many options are also traded over-
the-counter, for example, Back for International Settlements (BIS) reports that the notional amount outstanding
for equity-linked options is $ 3,987 billion and for commodity options is $ 378 billion for the first-half of 2017
(Semiannual OTC derivatives statistics).

4



1.1. Introduction

My model can generate the skew in both the percentage bid-ask spreads (measured in $ terms),

and the implied volatility (IV) curve. Specifically, the spreads for out-of-the-money options

are larger than those for at-the-money options, and the implied volatilities for OTM puts are

higher than those for OTM calls (e.g., equity index options). To understand this, I consider

a customer endowed with short positions in options, trades in an almost competitive D2C

exchange. With little market power, his dealer, in response to the buying demand, optimally

quotes a D2C pricing kernel that is the sum of a mean-preserving spread and the D2D pricing

kernel. This D2C trade results in the out-of-the-money option prices to increase more than

the prices of at-the-money options, as the former loads more on the tails of the pricing kernel.

For customers endowed with long positions in options, the opposite happens (i.e., out-of-

the-money option prices decrease more than the prices of at-the-money options). Hence,

dealers’ optimal quoting strategies on the D2C exchanges generate the price wedge between

option buyers and option sellers, resulting in higher spreads for out-of-the-money options

than at-the-money options. Further, the IV smile derived from the average option prices

across D2C exchanges (‘mid’ prices) is skewed to the left and the variance risk premium 4 is

positive if customers’ net buy of options is positive and skewed to the left (i.e., buying more

OTM puts than calls).

A well-known puzzle in the literature on demand-based option pricing 5 is that in recent

years customers’ net buy of options has become negatively correlated with the variance risk

premium (Chen et al., forthcoming;Constantinides and Lian, 2015), which is in stark contrast

to the earlier observations in Gârleanu et al. [2009]. In this paper, I use the Open/Close dataset

from the largest three US options exchanges 6 to construct customers’ net option demand

for liquid exchange-traded fund (ETF) options and show that this demand is often negatively

correlated with the corresponding variance risk premium, confirming the puzzle. In addition,

I document another puzzling observation: The relation between the downside risk 7 and the

variance risk implied from options data is often positive, despite a negative relation implied

from historical underlying returns.

My model can address both puzzles. For the first puzzle, because of the wealth effect, when

dealers’ net worth drops, their effective risk aversion rises, increasing their incentive to smooth

consumption. As a result, dealers find it optimal to give price concessions to customers, in-

ducing the latter to take more risk off dealers’ balance sheets. This active hedging activity by

dealers explains the first puzzle. For the second puzzle, in my model, in addition to the funda-

mental risk factors, the option prices 8 are affected by the distribution of the nonlinear risk

4The variance risk premium is defined as the difference between the risk-neutral variance and the physical
variance.

5Bollen and Whaley [2004] find that changes in implied volatility are correlated with option order-flow imbalance.
Gârleanu et al. [2009] provide a theoretical model and empirical evidence to demonstrate the importance of
customers’ option demand in determining option prices (the level and the skew). Fournier and Jacobs [2016] show
that dealers’ inventory and wealth matter.

6Specifically, the Chicago Board of Option Exchange (CBOE), the NASDAQ Philadelphia Option Exchange
(PHLX), and the International Stock Exchange (ISE).

7Downside risk is measured as the risk-neutral skewness.
8The volume-weighted average equilibrium D2C option prices, to be more precise.
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Chapter 1. Imbalance-Based Option Pricing

between dealers and customers. Intuitively, as dealers are risk-averse, a disaster risk generates

upward price pressure on OTM puts relative to OTM calls. At the same time, customers with

short positions on OTM calls create buying pressure, resulting in downward price pressure on

OTM puts relative to OTM calls. This extra source of option premium due to dealers’ market

power can explain the second puzzle, as long as the occurrence of endowment shocks on the

upside are more frequent than that of the fundamental shock.

On the other hand, the demand pressure theory in Gârleanu et al. [2009] predicts customers’

demand pressure causes option prices to move up, not down. Nevertheless, their model

can potentially explain the second puzzle, as exogenous option demands from customers

may allow changes in option prices due to demand pressure (if the source of the market

incompleteness is chosen carefully), which is different from price changes due to a shift in

physical density. Meanwhile, to explain the first puzzle, Chen et al. (forthcoming) argue that

dealers become more risk-averse 9 when the perceived intensity of the disaster risk is high, and

hence, they cannot accommodate the option demand from customers, in turn causing option

prices to increase and option demand to decrease. However, their model cannot explain the

second puzzle as customers’ option demand is tightly linked to the fundamental risk: Indeed,

in their model, in light of a disaster risk, customers buy protection from dealers, pushing up

OTM put prices more relative to OTM call prices while simultaneously increasing the variance

risk premium.

To test the prediction of my model on the second puzzle, I use liquid ETF options. Specifically,

I show that the cross-sectional difference in the correlation between the risk-neutral variance

and the risk-neutral skewness is explained by the proxy for the shape of the customers’ net

option demand. Moreover, in the time series, the panel regression with controls for the physical

skewness shows that the risk-neutral skewness increases with the risk-neutral variance when

the customers’ demand is skewed towards the OTM call options.

1.1.1 Related Literature

My paper is related to several strands of literature.

First, the literature on equilibrium option pricing (cited above) explicitly models changes in

option prices due to supply and/or demand shocks. I contribute to the literature by modeling

a realistic two-tier market structure and showing that my model can explain several puzzles on

option pricing and trading patterns. To this end, I use the approach of Malamud and Schrimpf

[2017] and extend their model to allow for an intermediate bargaining power of the dealers.10

Second, my assumption that customers can only trade options with dealers is closely related

to the proliferating literature on intermediary-based asset pricing. Bernanke and Gertler

9To also capture the notion of constrained dealers, Constantinides and Lian [2015] specify a Value-at-Risk
constraint for risk-neutral dealers.

10In contrast to my paper, Malamud and Schrimpf [2017] have a dynamic model, but they assume that dealers
have monopoly power and use their model to study monetary policy pass-through.
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[1989] and Moore and Kiyotaki [1997] highlight the importance of intermediation frictions

in determining equilibrium prices. Subsequently, the financial frictions are micro-founded

as limits-to-arbitrage [Shleifer and Vishny, 1997, Gromb and Vayanos, 2002], collateral con-

straints [Geanakoplos, 2010], Value-at-Risk constraints [Adrian and Shin, 2010, Adrian and

Boyarchenko, 2012, Danielsson et al., 2012, Etula, 2013, Constantinides and Lian, 2015], equity

financing constraints [Brunnermeier and Sannikov, 2014, He and Krishnamurthy, 2013, He

et al., 2017], and margin constraints [Brunnermeier and Pedersen, 2009], among others. I

recognize the importance of the limited risk-bearing capacity of dealers and model risk-averse

dealers with market power. My assumption on nonlinear endowments is in the spirit of

Constantinides and Duffie [1996] and Franke et al. [1998]; that is, the nonlinear risks render

options non-redundant 11. My assumption on fragmented markets 12 is borrowed from the

literature on over-the-counter markets [e.g., Duffie et al., 2005, 2015, Atkeson et al., 2015, Mala-

mud and Schrimpf, 2017]; that is, markets are fragmented and local prices are determined

by bilateral bargaining. To the best of my knowledge, my paper is the first to incorporate

these assumptions into an equilibrium option pricing model and show that they are indeed

necessary to explain the main empirical puzzles in option pricing and trading patterns.13

Third, the literature on market microstructure identifies the following determinants of bid-ask

spreads: dealers’ inventory [Amihud and Mendelson, 1980, Ho and Stoll, 1983], asymmetric

information [Copeland and Galai, 1983, Kyle, 1985, Glosten and Milgrom, 1985, Easley and

O’Hara, 1987], and operation costs, among others. I further complement the literature by

showing options spreads across strikes are non-trivially determined by customers’ option

demand and dealers’ market power. The predictions are consistent with the empirical evi-

dence, including George and Longstaff [1993], Cho and Engle [1999], and De Fontnouvelle

et al. [2003].

Fourth, option prices imply a skewed and fat-tailed risk-neutral distribution for the underlying

returns [Buraschi and Jackwerth, 2001, Bakshi et al., 2003]. According to Bates [2003], the

literature on no-arbitrage option pricing models [e.g., Merton, 1976, Heston, 1993, Bates,

1996] does not fully capture the empirical properties of option prices. Another strand of

literature specifies unspanned risk factors in representative agent models to generate fat-tailed

risk-neutral distribution [e.g., Bollerslev et al., 2009, Drechsler and Yaron, 2011, Drechsler,

2013, Bekaert and Engstrom, 2017]. I take a different approach by showing how an implied

volatility skew emerges naturally when customers with nonlinear endowments trade with

non-competitive dealers.

Fifth, the literature on information content of options prices and trades contains documented

11Options are also non-redundant if agents have heterogeneous utilities [Bates, 2008, Baker and Routledge, 2016]
or heterogeneous beliefs [Liu et al., 2005, Buraschi and Jiltsov, 2006].

12Papers that have also assumed market fragmentation but with different trading protocols include Basak and
Cuoco [1998], Edmond and Weill [2012], and Goldstein et al. [2014]. For endogenous market fragmentation, see
Alvarez et al. [2002] and Babus and Parlatore [2017].

13While Malamud and Schrimpf [2017] also have fragmented markets and state-contingent claims traded in
their model, they do not study option pricing and do not have non-linear endowments’ imbalance.
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empirical evidence. On the information content of option prices, Bollerslev et al. [2009] show

that variance risk premium (VRP) derived from S&P 500 index options predicts equity market

returns, Trolle and Schwartz [2010] show that crude oil and natural gas returns are correlated

with the contemporaneous VRP computed from their respective option prices, Trolle and

Schwartz [2014] show that VRP and skewness risk premium are correlated with changes in the

yield curve. On the information content of option trades, Chen et al. (forthcoming) show that

customers’ net buy of put options is negatively correlated with next-period S&P 500 returns

as well as returns on other asset classes, Bollen and Whaley [2004], Cremers et al. [2015], Hu

[2014], Muravyev [2016], and Malamud et al. [2017] show that the option order-imbalance

measure is correlated with option premium and/or underlying returns, Pan and Poteshman

[2006a] show that the put-call ratio is correlated with next-period single equity returns, Roll

et al. [2010a, 2014] and Ge et al. [2015] show that the ratio between option volume and stock

volume (O/S) is correlated with future equity volatility and returns. I further contribute to the

literature by building a model and providing an explicit formula that extracts physical density

of the underlying asset from the customers’ net option demand and the option bid-ask quotes.

1.2 A Model of Fragmented Options Markets

I consider an economy with two rounds of trading and three time periods t = 0−,0+,1. At time

t = 1, the state of the world, X ∼ P (X ), is realized, and consumption takes place.

1.2.1 Market Structure

Markets are fragmented. Time 0− is the D2C exchanges trading round: At this time, each

dealer is randomly matched with a customer14 and they trade contingent claims following a

bargaining protocol described below. Time 0+ is the D2D trading round: In this round, dealers

trade with each other in a competitive, centralized inter-dealer market. In both rounds, agents

trade derivatives, contingent on the realization of X . In addition, I assume that customers

have access to the centralized market for trading the security with payoff X at time t = 1. I use

s to denote the price of this security, and I normalize its supply to 1. In addition, all agents can

trade a risk-free bond maturing at t = 1. The bond has an exogenous interest rate r and is in

zero net supply.

Formally, my assumptions imply that there is a continuum of fragmented markets: a con-

tinuum of bilateral D2C exchanges 15, indexed by a pair (i , j ) and a single D2D exchange.

Throughout this paper, the following assumption is always present:

14Such market structures are frequently used in modeling decentralized trade [e.g., Duffie et al., 2005, 2015,
Atkeson et al., 2015, Malamud and Schrimpf, 2017]. My model can be extended to allow for simultaneous trading
with multiple customers (e.g., an over-the-counter (OTC) trading hub) or for trading with multiple dealers (order
splitting). The bilateral trade assumption can be viewed as a reduced form of modeling aggregate customer orders.

15In practice, the continuum of D2C exchanges are exemplified by the large amount of order-flows from the
customers if the options are exchange-traded, or by the over-the-counter trading desks of dealers if the options are
OTC-traded.
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Assumption 1. In each exchange, markets are complete: Agents have access to a set of securities

(e.g., options with a continuum of strikes) that spans the entire range of X , and there is no

arbitrage in either trading rounds.

From the fundamental theorem of asset pricing [see, e.g., Dybvig and Ross, 2003], no arbitrage

in either exchange implies the existence of exchange-specific, positive state prices; that is,

prices of Arrow Debreu contingent claims, M D2C

(i,j) or M D2D paying one unit of consumption good

in state X and nothing in any other states. Since, by assumption, markets are complete, these

state prices are unique. The exchange-specific price of an asset paying W (X ) at t = 1 is then

given by the following:

E [M D2C

(i,j) (X )W (X )] or E [M D2D(X )W (X )] .

Given the risk-free rate r , equilibrium state prices must also satisfy the no-arbitrage condition:

E [M D2C

(i,j) (X )] = E [M D2D(X )] = e−r .

Similarly, since all agents can trade the underlying, the following no-arbitrage condition

should hold in all exchanges:

E [M D2C

(i,j) (X )X ] = E [M D2D(X )X ] = s .

1.2.2 Agents’ Preferences and Endowments

The economy is populated by a continuum of dealers (indexed by j ∈ [0,1]) and a continuum

of customers (indexed by i ∈ [0,1]).

For simplicity 16, I assume that all agents in the economy share the same utility function U

defined on an interval (X,+∞) with some X ≥−∞, satisfying the standard Inada conditions

U ′(X) =+∞, U ′(+∞) = 0. Each agent a = i , j is initially endowed with a portfolio of options,

represented by a nonlinear function Fa(X ), a = i , j ∈ [0,1]. I assume that the agents’ option

endowments net out, so that X represents the payoff of the “market portfolio". Formally, I

make the following assumption.

Assumption 2.

X =
∫1

0
F D

j (X )d j +
∫1

0
F C

i (X )di .

16This is to remove the effects of heterogeneous risk-aversion on the pricing kernel.
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1.2.3 Agents’ Outside Options

Absent the D2C trading, customers can only trade X and the risk-free bond, and their indirect

utility is given by

ν̄i ≡ max
βi

E [U (F C

i (X )+βi (X − ser ))] . (1.1)

In contrast to customers, a dealer j has access to complete markets and hence he can attain

an arbitrary consumption profile C j (X ) satisfying the budget constraint

E [M D2D(X )C j (X )] = E [M D2D(X )F D
j (X )].

Denoting G j (X ) =C j (X )−F D
j (X ), we can rewrite dealer j ’s indirect utility as

ν̄ j ≡ max
G j

{E [U (F D
j (X )+G j (X ))] : E [M D2D(X )G j (X )] = 0} . (1.2)

These indirect utilities will play an important role in the subsequent analysis because they

define agents’ outside options in the D2C trading round. Hereafter, when no confusion arises,

I will omit X for brevity and use a capital letter to denote any state-dependent function; for

example, M D2D(X ) becomes M D2D.

1.2.4 Trading Protocols

In the D2C trading round, agents i and j bargain over prices of all state-contingent claims

written on X . As an outcome of this bargaining, dealer j quotes a kernel M D2C

(i,j) that encodes

the prices of all possible state-contingent claims. The quote is binding: The dealer commits

to buy/sell contingent claims at the quoted prices in arbitrary quantities. Given such a

kernel, customer i submits his or her demand schedule G(i,j)(M D2C

(i,j) ) to dealer j . Without loss of

generality, I assume that G(i,j) satisfies E [M D2C

(i,j) G(i,j)] = 0.17

Observing the kernel M D2C

(i,j) , customer i submits the optimal demand schedule G∗
(i,j)(M D2C

(i,j) ) as

the solution of

ν(i,j)[M D2C

(i,j) ] ≡ max
G(i,j)

{E [U (F C

i +G(i,j))] : E [M D2C

(i,j) G(i,j)] = 0} . (1.3)

This in turn determines dealer j ’s indirect utility after optimally hedging the total exposure

(i.e.,the D2C inventories and the endowments) in the D2D exchange:

ν(j,i)[M D2C

(i,j) ] ≡ max
G(j,i)

{E [U (F D
j −G∗

(i,j)(M D2C

(i,j) )+G(j,i))] : E [M D2DG(j,i)] = 0} , (1.4)

17Indeed, if an agent chooses a claim C and transfers E [M D2C
(i,j) C ] to the dealer, this is equivalent to buying

G =C −E [M D2C
(i,j) C ] from the dealer, with E [M D2C

(i,j) G] = 0.
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1.2. A Model of Fragmented Options Markets

by choosing his optimal demand schedule G∗
(j,i)(M D2C

(i,j) ).

Given dealer j ’s bargaining power θ, the pair bargain and choose the pricing kernel that solves

a version of the Nash bargaining problem, that is, maximizing the weighted surplus from

trade, 18

max
M D2C

(i,j)

(1−θ) log(ν(i,j)[M D2C

(i,j) ]− ν̄i )+θ log(ν(j,i)[M D2C

(i,j) ]− ν̄ j ) , (1.5)

subject to the no-arbitrage constraints

0 = E [M D2C

(i,j) X ]−E [M D2D X ] , (1.6)

0 = E [M D2C

(i,j) ]−E [M D2D] . (1.7)

Note that when dealers’ bargaining power θ 	= 0, the participation constraints ν(i,j) ≥ ν̄i and

ν(j,i) ≥ ν̄ j never binds: Indeed, by the no-arbitrage condition, at any prices offered by the dealer,

the customer can still decide to just trade the risky asset and the risk-free bond and, hence,

reach his autarky utility. Formally,

Lemma 1. In a fragmented equilibrium, customers’ participation constraints never bind, while

dealers’ participation constraints bind only for those D2C exchanges that are competitive.

1.2.5 Equilibrium

I denote by E (P,r, {Fa}a=i , j ,U ,θ) the primitives of the economy. A fragmented equilibrium of

the economy E is a pricing kernel M D2D and a continuum of D2C pricing kernels M D2C

(i,j) , as well

as a set of trading strategies {G∗
(i,j),G∗

(j,i),β
∗
i ,Ḡ(j,i)} such that given M D2C

(i,j) and M D2D,

• G∗
(i,j) maximizes customer i ’s utility in (1.3),

• G∗
(j,i) maximizes dealer j ’s utility in (1.4) conditional on the customer’s demand schedule

G∗
(i,j)(M D2C

(i,j) ) as a function of the quoted pricing kernel M D2C

(i,j) ,

• β∗
i maximizes customer i ’s autarky utility in (1.1),

• Ḡ(j,i) maximizes dealer j ’s autarky utility in (1.2),

• M D2C

(i,j) maximizes the Nash bargaining protocol (1.5) given constraints (1.6), (1.7),

• the D2D market clears, 0 =∫[0,1]2 G∗
(j,i)di d j .

18The trading protocol is standard in the literature on OTC markets [see e.g., Duffie et al., 2005, Malamud and
Schrimpf, 2017]. Other trading protocol will deliver qualitatively similar results, for example, demand schedule
game as in Kyle [1989]. In Appendix A.1, I use the uncertainty of getting a competitive execution in a two-stage
trading game to micro-found the trading protocol.
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1.3 Equilibrium Characterization

This section characterizes the fragmented equilibrium. I first establish a benchmark equilib-

rium that features a centralized exchange for all agents to trade contingent claims. Then I

compare the fragmented equilibrium to the centralized competitive equilibrium.

1.3.1 Economy without Frictions: Centralized Exchange

Suppose there are no D2C exchanges and all dealers and customers can trade in a centralized

exchange; then there exists a unique pricing kernel M that prices all contingent claims. Under

this kernel, any agent, a = i , j , chooses a demand schedule Ga that solves

max
Ga

{E [U (Ga +Fa)] : 0 = E [MGa]} .

The Lagrangian for this problem is

E [U (Ga +Fa)]−λaE [MGa] ,

where λa is the Lagrange multiplier of the budget constraint. The first-order condition with

respect to Ga yields

U ′(G∗
a +Fa) = λa M .

For ease of representation, I denote the inverse of function U ′(·) as J (·) and solve for G∗
a .

Lemma 2. In a centralized exchange, the optimal demand schedule G∗
a for each agent a = i , j ,

satisfies

G∗
a (M) = J (λa M)−Fa ,

and the Lagrange multiplier is given by the budget constraint E [M J (λa M)] = E [MFa] .

It is then obvious that agent a’s optimal consumption plan J(λa M) depends only on the

pricing kernel M and his own Lagrange multiplier. As options are in zero-net supply, all agents’

demand schedules sum up to zero for any realized state of the world,

0 =
∫1

0
G∗

i (M)di +
∫1

0
G∗

j (M)d j .

Then according to assumption 2, I obtain the market clearing condition

X =
∫1

0
J (λi M)di +

∫1

0
J (λ j M)d j ,

after substituting in agents’ optimal demand schedules.
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Throughout the paper, I use the Black-Scholes formula as a benchmark to evaluate the effects

of nonlinear risk imbalance and dealers’ market power on option prices. To this end, I always

use the following assumption in the comparative statics analysis as well as in simulations.

Assumption 3. I assume all agents have the same CRRA utility function,

U (X ) = X 1−γ

1−γ
.

The state of the world X is log-normally distributed with density P (X ) ∼ lognormal(μ,σ2).

I use Q to denote the risk neutral measure with the density er MP ; and EQ to denote the

corresponding expectation. I use mP
1 = E [log X ], mQ

1 = EQ[log X ] and

mP
i ≡ E [(log X −mP

1 )i ], mQ

i ≡ EQ[(log X −mQ
1 )i ], i > 1

to denote the moments of log X under the two measures. The following lemma is well known

[see e.g., Rubinstein, 1976] and shows that, under log normality and CRRA preferences, option

prices are given by the Black-Scholes formula.

Lemma 3. Under assumption 3, a competitive equilibrium features a unique pricing kernel

M = e−r X −1/γ

E [X −1/γ]
,

and all options are priced by the Black-Scholes formula. In particular, the implied volatility

curve is flat across strikes, there is no variance risk premium as mQ
2 = mP

2 =σ2, and there is no

skewness risk premium as mQ
3 = mP

3 = 0.

1.3.2 Economy with Frictions

At the D2C trading round, the Lagrangian for customer i ’s optimization problem (1.3) is

E [U (G(i,j) +F C

i )]−λ(i,j)E [M D2C

(i,j) G(i,j)],

where λ(i,j) is the Lagrange multiplier for the budget constraint. This is the same problem as in

Lemma 2, except the pricing kernel is now exchange-specific. Therefore, customer i ’s optimal

demand schedule is G∗
(i,j) = J (λ(i,j)M D2C

(i,j) )−F C

i , a function of the pricing kernel M D2C

(i,j) . In addition,

the Lagrange multiplier is determined by the budget constraint

0 = E [M D2C

(i,j) G∗
(i,j)] . (1.8)
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After trading, customer i ’s optimal consumption plan is J(λ(i,j)M D2C

(i,j) ) =G∗
(i,j) +F C

i , which then

determines the indirect utility,

ν(i,j)[M D2C

(i,j) ] = E [U (J (λ(i,j)M
D2C

(i,j) ))]. (1.9)

At the D2D trading round, the Lagrangian for dealer j ’s optimization problem (1.4) is

E [U (G(j,i) +F D
j −G∗

(i,j)(M D2C

(i,j) ))]−λ(j,i)E [M D2DG(j,i)],

where again λ(j,i) is the Lagrange multiplier. This is similar to Lemma 2, except that dealer

j faces the D2D pricing kernel and his or her total exposure consists of two parts, the en-

dowments and the inventories from D2C trading round. The optimal demand schedule is

G∗
(j,i) = J (λ(j,i)M D2D)−F D

j +G∗
(i,j)(M D2C

(i,j) ), where λ(j,i) is determined by

0 = E [M D2DG∗
(j,i)] . (1.10)

Given the optimal consumption plan J (λ(j,i)M D2D), I can write dealer j ’s indirect utility as

ν(j,i)[M D2C

(i,j) ] = E [U (J (λ(j,i)M
D2D))] . (1.11)

Proposition 1. The fragmented equilibrium is unique and coincides with the centralized com-

petitive equilibrium if all D2C exchanges are competitive; that is, the bargaining power θ = 0.

In a competitive D2C exchange, the dealer cannot charge any markup on the D2C pricing

kernel and hence earns zero profit. Therefore, when all D2C exchanges are competitive, dealers

essentially become agency brokers, and the allocation of risk is efficient. As long as the outside

options are well defined, such equilibrium exists. From now on, the competitive equilibrium

refers to either the centralized equilibrium or the fragmented equilibrium with θ = 0.

Having established the benchmark, I now solve the generic D2C Nash bargaining problem

(1.5). Its Lagrangian is

(1−θ) log(ν(i,j)[M D2C

(i,j) ]− ν̄i )+θ log(ν(j,i)[M D2C

(i,j) ]− ν̄ j )

−μ(i,j),s(E [M D2C

(i,j) X ]− s)−μ(i,j),r

(
E [M D2C

(i,j) ]−e−r ) .

The second line consists of the no-arbitrage constraint for the risky asset (1.6) and that for

the risk-free bond (1.7), where μ(i,j),s and μ(i,j),r are the corresponding Lagrange multipliers. I

differentiate the Lagrangian function with respect to the D2C pricing kernel to get

0 = (ν(i,j) − ν̄i )−1(1−θ)
δν(i,j)[M D2C

(i,j) ]

δM D2C
(i,j)

+ (ν(j,i) − ν̄ j )−1θ
δν(j,i)[M D2C

(i,j) ]

δM D2C
(i,j)

−μ(i,j),sP X −μ(i,j),rP .
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Then for θ ∈ (0,1], I define

π(i,j) ≡
λ(i,j)

λ(j,i)

1−θ

θ

ν(j,i) − ν̄ j

ν(i,j) − ν̄i
.

The first-order condition can be rewritten as 19

0 = π(i,j)

δν(i,j)[M D2C

(i,j) ]

δM D2C
(i,j)

+ δν(j,i)[M D2C

(i,j) ]

δM D2C
(i,j)

−μ(i,j),sP X −μ(i,j),rP . (1.12)

π(i,j) is an endogenous variable measuring the competitiveness of the D2C exchange (1−π(i,j)

measures the dealer’s market power). Indeed, when θ goes to zero, π(i,j) converges to one and

the D2C exchange becomes fully competitive. On the other hand, when θ = 1, π(i,j) becomes

zero, and the D2C exchange becomes monopolistic. Formally,

Lemma 4. The endogenous variable π(i,j) lies in the unit interval [0,1] and corresponds one-to-

one to the exchange-specific bargaining parameter θ(i,j).

In the above Lemma, I have relaxed the D2C Nash bargaining problem by introducing an

exchange-specific bargaining power θ(i,j). Due to the one-to-one mapping between θ(i,j) and π(i,j),

I can treat π(i,j) as exogenous and infer the bargaining parameter θ(i,j), as well as other indirect

utilities (1.1), (1.2), (1.9), and (1.11) after computing the equilibrium.

Given the relaxed and simplified D2C problem, I next compute the functional derivatives for

the pricing kernel M D2C

(i,j) in Appendix A.3 and plug them into the relaxed first-order condition

(1.12) to get

0 = (κ(i,j) −π(i,j))(J (λ(i,j)M
D2C

(i,j) )−F C

i )+λ(i,j) J
′(λ(i,j)M

D2C

(i,j) )(κ(i,j)M
D2C

(i,j) −M D2D)−μ(i,j),s X −μ(i,j),r ,

where κ(i,j) measures the price difference between the D2C and the D2D exchange; it is denoted

as

κ(i,j) ≡
E
[

J ′(λ(i,j)M D2C

(i,j) )M D2C

(i,j) M D2D
]

E
[

J ′(λ(i,j)M D2C
(i,j) )(M D2C

(i,j) )2
] . (1.13)

Indeed, when the pricing kernel in the D2C exchange equals that in the D2D exchange, κ(i,j) = 1.

Next, to have an explicit expression of the D2C pricing kernel in terms of the D2D pricing

kernel and other endogenous parameters, I assume all the agents have log utility. Then,

substituting D2C pricing kernels into the D2D market clearing condition,

0 =
�

[0,1]2
G∗

(j,i) di d j ; (1.14)

I arrive at the following theorem.

19In appendix A.1, I show that this first-order condition endogenously arises in a two-stage D2C trading game.
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Theorem 1. Suppose all agents have U (X ) = log(X + c) 20. Suppose also that an equilibrium

exists. Then, for each pair (i , j ), the state-by-state D2C pricing kernel is given by

M D2C

(i,j) [M D2D] = 2M D2D

(
π(i,j) +

√
π2

(i,j) −4M D2Dλ(i,j) Z(i,j)

)−1

,

where I have defined Z(i,j) ≡−(F C

i +c)(κ(i,j) −π(i,j))−Xμ(i,j),s −μ(i,j),r.

The state-by-state D2D pricing kernel is characterized by a positive real root of a polynomial

equation with order 2NI×J , where NI×J is the number of different dealer-customer pairs (D2C

exchanges).

Taking π(i,j) as given, all other parameters are determined by equations (1.8) (1.13), (1.6), (1.7),

and (1.10), respectively, for each D2C exchange.

Once the relaxed system is solved , I can then determine the indirect utilities and bargaining

powers for all D2C exchanges. Due partly to the nonlinearity of the system that characterizes

the fragmented equilibrium, it is not trivial to provide a general condition such that the

equilibrium exists. However, as long as the endowment function F C

i is such that customer i ’

outside option (1.1) has an interior solution in the competitive equilibrium, then a unique

fragmented equilibrium exists for a certain range of market competitiveness π(i,j) and its local

uniqueness is given by the implicit function theorem.21

1.4 Examples

In this section, I provide numerical examples 22 and use them to show how my model can

generate empirically observed patterns in option prices and trading volume.

1.4.1 Primitives

Table 1.1 reports parameter specifications used throughout this section. The comparative

statics are derived locally by asymptotic expansion. Specifically, I consider two cases: (i) when

the D2C exchanges are ‘almost’ competitive and (ii) when the D2C exchanges are monopolistic,

and the size of the nonlinear risks is ‘small’. The local properties for both cases are qualitatively

quite similar. Furthermore, the numerical example shows that the results of local comparative

statics hold well globally.

20The parameter c is the subsistence of the agent and assures that the agents’ outside options are well-defined
and have an interior solution.

21My extensive numerical results suggest that equilibrium is in fact always unique. One can show that the
equilibrium is indeed unique, if dealers are monopolist and either the risky asset or the risk free asset is centrally
traded.

22For details of computation, see appendix A.3.
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1.4. Examples

Table 1.1 – Primitives of the numerical example.

Variables Values

Agents’ utility U (X ) = log(X +c)
Risky asset payoff Lognormal(μ,σ2)
Interest rate 1%
Supply of the risky asset 1
Supply of the risk free asset 0
Supply of nonlinear risk 0
Population of customer S measure 0.5
Population of customer B measure 0.5
Population of dealer measure 1
Endowment of customer S F C

S (0) = 0.6X +0.8FJ

Endowment of customer B F C
B (0) = 0.8X −2.0FJ

Endowment of dealer j F D
j (0) = 0.3X +0.6FJ

Market Power θi (0) = 1 for i = S,B

Risks The payoff of the risky asset follows a log-normal distribution with mean μ= 0.05 and

volatility σ= 0.4. Recall the results in Lemma 3: The Black-Scholes formula holds, and the

variance and the skewness risk premia are zero in a centralized competitive environment. 23 I

use this competitive equilibrium as the benchmark.

For ease of illustration, the nonlinear risk is specified as, 24

FJ = (er s −X
)2 , X ≤ er s.

Agents differ only in their respective loadings on this function. Clearly, this function is ev-

erywhere convex in the domain of the asset payoff X ∈ (0,∞). According to Carr and Madan

(2002) 25, a continuous twice differentiable function can be replicated by a portfolio of a risky

asset, a risk-free bond and a continuum of options. Formally,

Lemma 5. For a continuous twice differentiable function F (X ) defined on X ∈ [X,∞), the

following representation holds, 26

F (X ) = F (ξ)+F ′(ξ)(X −ξ)

+
∫ξ

X
F ′′(K )(K −X )+ dK +

∫∞

ξ
F ′′(K )(X −K )+ dK .

23This result does not hold perfectly in my numerical example, as the utility function has a subsistence parameter
c ≥ 0. Nevertheless, the implied volatility curve in the competitive benchmark is ‘almost’ flat and close to σ.

24For X < X∗, I set FJ = (er s +X∗ −2X )(er s −X∗) with 0 < X∗ < er s. This assures that the customers’ outside
options have interior solutions.

25Chapter 29 of “Volatility: New estimation techniques for pricing derivatives”. Edited by R. Jarrow. The same
result is also in Bakshi and Madan [2000].

26As a convention, I use F ′(·) to represent the first-order derivative, F ′′(·) for the second-order derivative, and
(K −X )+ for the maximum between K −X and 0.
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Chapter 1. Imbalance-Based Option Pricing

where ξ is an arbitrary constant in the domain of X , F ′(ξ) is the number of shares held in

the risky asset, F ′′(K ) is the number of options with strike K , and F (ξ)−ξF ′(ξ) is the amount

invested in the risk-free bond.

The choice of the cut-off ξ is arbitrary. In this section I set ξ equal to the future price of the risky

asset, er s. Effectively, contingent claims in all exchanges are implemented by a continuum of

out-of-the-money put and call options.

According to the lemma, FJ represents a long portfolio in options. Hence, option sellers will

hold positive FJ and vice versa. Moreover, FJ is non-symmetric around the future price, er s,

that is, more convex for the low state of X than for the high state. Hence, hedging demand

for out-of-the-money (OTM) put options is higher than the demand for OTM call options.

Formally, the skewness of FJ is defined as follows.

Definition 1. From the dealers’ perspective, any convex nonlinear risk FJ is said to be skewed to

the left if

E

[
M [FJ ]

((
log

X

s
−mQ

1

)3

−3mQ
2 log

X

s

)]
< 0.

with the linear operator M [·] defined in 4, and mQ

i such that i = 1,2 the risk-neutral moments

for log returns.

This definition is closely linked to the third centered risk-neutral moments of log returns (see

Proposition 3 below). In fact, it measures the first-order effect of the nonlinear risk FJ on the

risk-neutral skewness. Intuitively, we may think that the risk-neutral skewness increases with

customers’ buying pressure on OTM call options (i.e., F ′′
J (X ) > 0 for X ≥ er s). This is mostly the

case if the physical distribution P is log-normal. However, when log X follows a left-skewed

distribution, customers’ buying pressure on OTM call options for certain range of strikes may

push down the risk-neutral skewness.

When P is log-normal, this definition covers broadly four trading activities. Specifically, when

FJ is convex and skewed to the left, the dealers have the incentive to sell OTM put options;

when FJ is convex and skewed to the right, the dealers have the incentive to sell OTM call

options. It is also possible that FJ is concave and skewed to the left 27; then the dealers have the

incentive to buy OTM put options. Similarly, for FJ concave and skewed to the right, dealers

have the incentive to buy OTM call options.

Agents There are two classes of customers, labeled B (buyers) and S (sellers), each class

accounting for half of the customer population. I specify the endowments to ensure that

customer S is the option seller and customer B is the option buyer. Specifically, customer S

holds 0.8 units of FJ and 0.6 units of the risky asset, while customer B holds −2.0 units of FJ

27Here, the ‘left’ refers to the region that the second-order derivative of FJ is non-zero.
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1.4. Examples

Figure 1.1 – Implied volatility for D2C exchanges.

Moneyness is defined as the log K
er s . This example uses parameters in Table 1.1 and does not include

any shocks.

and 0.8 units of the risky asset. The difference in the holdings of the risky asset assures that

both customers have a comparable size of wealth in the benchmark equilibrium. Formally, I

denote customer’s endowment without shocks as F C

i (0) with i = B ,S.

Dealers are homogeneous. According to assumption 2 (i.e., the aggregate nonlinear risks are

zero), dealers’ total nonlinear endowments are given by X −∑i=S,B F C

i . Each dealer therefore

starts with endowment F D
j (0) = 0.3X +0.6FJ . This endowment in effect makes dealers option

sellers. In addition, FJ measures the nonlinear risk imbalance between dealers and customers.

To show the effects of nonlinear risks and market power, all dealers are initially monopolists in

their respective D2C exchanges. Given the parametrization, I then solve the model numerically.

Figure 1.1 shows the implied volatility 28 computed using four different pricing kernels, namely,

the two D2C pricing kernels, the ‘mid’ pricing kernel and the centralized benchmark pricing

kernel. The ‘mid’ pricing kernel is defined below.

Definition 2. The ‘mid’ pricing kernel is the wealth-weighted average pricing kernel among all

D2C exchanges, M̄ D2C =�[0,1]2 λ−1
(i,j) M D2C

(i,j) di d j /
�

[0,1]2 λ−1
(i,j) di d j .

In my model, customers’ demand for options is proportional to their wealth, λ−1
(i,j) . Empirically,

we can think of the ‘mid’ pricing kernel as the volume-weighted average transaction (or

quoted) price.

Clearly, the implied volatility (hereafter, IV) for customer B is the highest among all the four IVs.

Meanwhile, the IV for customer S is the lowest. Hence, I refer to the price paid by customer B

28To generate a more pronounced implied volatility skew, I would need to assume that the endowment risks
satisfy one of the following conditions: (i) customers on average buying out-of-the-money put options, and selling
out-of-the-money call options; (ii) the endowment risks are reasonably large, and tilt towards down-side risks (in
the numerical example, the endowment risk is flat in the sense that customers buy the same amount of options
across strikes for put options); (iii) the dealer to customer pricing kernel has a corner solution; (iv) either the risky
asset or the risk free asset is centrally traded, but not both.
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Chapter 1. Imbalance-Based Option Pricing

as the ask, while the price paid by customer S as the bid. Note that the IV for the ‘mid’ is above

the benchmark IV. Not surprisingly, as the net option demand from customers is positive (i.e.,

more buy orders than sell orders), dealers raise the ‘mid’ price to charge a high markup for

customer B.

Another interesting aspect to note is that the IV for the bid price is below the benchmark IV,

suggesting a negative variance risk premium. This contradicts the findings in Carr and Wu

[2009], who report that the variance risk premium for SPX options measured from bid prices

is also positive. One possible explanation is that the physical distribution is not log-normal

in reality, or agents have different risk aversion. Both channels are shut down here in the

example.

To measure the overall effects of nonlinear risk imbalance on option prices, I consider two op-

tion premia, namely, the variance risk premium and the skewness risk premium. In particular,

the variance (skewness) risk premium is defined as the difference between the risk-neutral

variance (skewness) and the physical variance (skewness) of the risky asset return (i.e., of

log(X /s)):

RPi ≡ mQ

i −mP
i , i = 2,3.

I compute both premia using the ‘mid’ pricing kernel. Intuitively, the ‘mid’ pricing kernel

measures the total compensation (markup plus the risk premium) customers pay to dealers

for bearing the endogenous nonlinear risk.

Proposition 2 (Variance Risk Premium). Suppose the nonlinear risk imbalance FJ is convex

(concave) in the domain of the random payoff X , then the variance risk premium computed

from the ‘mid’ pricing kernel, M̄ D2C, is larger (smaller) than the premium computed from the

benchmark pricing kernel M (0).

Intuitively, by Lemma 5, the variance risk premium can be replicated by long positions in a

portfolio of puts and calls. In the example, the ‘mid’ IV is uniformly above the benchmark

IV, suggesting a positive markup charged by dealers in response to customers’ net buying

pressure. Hence, the variance risk premium becomes positive.

Regarding the skewness risk premium, first note that the IV for the ‘mid’ price is skewed to

the left, suggesting a negative risk-neutral skewness. Meanwhile, the physical skewness is

0 for log-normal distribution. Hence, the skewness risk premium is negative. This is the

result of customers’ excessive demand on OTM put options rather than call options. If the

physical distribution is log-normally distributed, the skewness of the nonlinear risk imbalance

FJ determines the direction of the skewness risk premium. However, more generally, unlike

the variance risk premium, the skewness risk premium depends on both the shape of FJ and

the physical distribution.

Proposition 3 (Skewness Risk Premium). Suppose that P is log-normally distributed, then the
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skewness risk premium

• is positive if the nonlinear risk imbalance FJ is convex and right-skewed;

• is negative if the nonlinear risk imbalance FJ is convex and left-skewed.

Intuitively, if FJ is a long skewness exposure (i.e., short OTM call options), then to hedge

their short skew risk the customers need to buy a portfolio of options that resembles FJ . This

demand allows dealers to charge a premium on the skew, leading to a negative skewness risk

premium.

1.4.2 Macro Shocks

I consider three ‘macro’ shocks, the imbalance shock (εIMB), the market power shock (εMP), and

the wealth shock (εW). They are called macro shocks precisely because of their effects on a sub

population of agents rather than atom-less individual. For each of the shocks, I consider three

levels, labeled Small, Medium and Large.

Imbalance Shock This shock captures the distribution of nonlinear risks between customers

and dealers. It is a shock on the size of the nonlinear risk among dealers. For simplicity, the

shock affects dealers’ endowments uniformly,

F D
j (εIMB) = F D

j (0)+εIMBFJ , εIMB ∈ {0,−0.2,−0.4} .

Here, the imbalance shock reduces the dealers’ long position in the nonlinear risk FJ , making

them sell fewer options. Specifically, for a small shock, dealers and customer S hold the same

amount of long positions in FJ (sellers); for a medium shock, dealers do not hold any FJ

(neutral), and for a large shock, dealers hold negative positions in FJ (buyers). Consistent

with Assumption 2, customers are assumed to hold an off-setting position in FJ . The off-

setting shock affects customers uniformly (see Table 1.1), so that their respective endowments

become

F C

i (εIMB) = F C

i (0)−εIMBFJ , i = B ,S.

Notably, both customers receive additional long option positions after the shock. Therefore,

customer B wants to buy fewer options, while customer S wants to sell more options.

Market Power Shock The market power shock is uniformly distributed among the D2C

exchanges,

θi (εMP) = θi (0)+εMP , εMP ∈ {0,−0.5,−1} .
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Chapter 1. Imbalance-Based Option Pricing

When the shock is 0, dealers have full market power and can charge the highest markups in

D2C exchanges. When the shock is −1, all D2C exchanges become competitive, and the option

prices and trading patterns coincide with the competitive benchmark.

Wealth Shock The wealth shock also affects all dealers uniformly,

F D
j (εW) = F D

j (0)+εW X , εW ∈ {0.0,−0.2,−0.4} .

Recall the total supply of the risky asset is normalized to one; a unit increase in the dealers’

wealth thus implies a unit reduction in the customers’ wealth. The wealth shock also affects

customers’ endowment uniformly,

F C

i (εW) = F C

i (0)−εW X , i = B ,S.

As the risky asset is centrally traded, the number of shares held does not affect directly the

option trading. However, indirectly, due to wealth effect, for dealers, a negative wealth shock

effectively reduces their risk aversion and, hence, their risk bearing capacity.

1.4.3 Option Premia

Now we look at the correlation between customers’ option demand and option risk premia.

Figure 1.2, column one, shows that with a reduction in the size of the nonlinear risk imbalance

FJ , customers on average buy fewer options from dealers. Consequently, the ‘mid’ option

prices become cheaper (see Figure 1.3, column one). Meanwhile, the shock also reduces the

inventory in the D2D exchange, hence alleviating the distortion on the D2D prices.

Proposition 4 (Imbalance Shock). Customers’ net buy of options is positively (negatively)

correlated with the variance risk premium measured from the ‘mid’ (D2D) pricing kernel if

dealers experience an imbalance shock.

This result relates directly to the findings in Gârleanu et al. [2009]. The authors show both

theoretically and empirically that customers’ net buy of options is positively correlated with

the variance risk premium, primarily due to the premium paid to dealers for bearing the

non-hedgeable risks (e.g., jumps). Here, the economic reasoning is different: Dealers are able

to hedge perfectly; however, due to the market fragmentation, each dealer charges a markup

to customers, resulting in endogenous inventories to be shared in the D2D exchange. When

the risk imbalance is reduced, customers buy fewer options from dealers and, consequently,

the prices they pay become cheaper. On the other hand, due to the reduction in the aggregate

inventory in the D2D exchange, the D2D prices become less distorted and hence increase

towards the centralized benchmark. Empirically, we can think of the imbalance shock as

demand shocks.

Next, Figure 1.2, column two, shows that, after the reduction of dealers’ market power, cus-
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Figure 1.2 – Effects of ‘macro’ shocks on option demand.

tomers buy more options. At the same time, the variance risk premium becomes smaller (see

Figure 1.3, column one). This result is in stark contrast to the imbalance shock.

Proposition 5 (Market Power Shock). Customers’ net buy of options is negatively (positively)

correlated with the variance risk premium measured from the ‘mid’ (D2D) pricing kernel if

dealers experience a market power shock.

The intuition is as follows. When D2C exchanges become more competitive, customers are

able to trade at more favorable prices, resulting in better risk sharing. This in turn helps to

reduce the size of the inventories in the D2D exchange. Hence, the price distortions on both

the D2D exchange and the D2C exchanges are reduced.

Figure 1.2, column three, shows that customers buy more options from dealers after the

decrease in dealers’ wealth. Meanwhile, the option prices on average become cheaper for

customers to trade (see Figure 1.3, column one). This is consistent with the intuition that

dealers become more risk-averse after the negative wealth shock. Hence, they provide price

concessions to customers to off-load inventories.
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Chapter 1. Imbalance-Based Option Pricing

Figure 1.3 – Effects of ‘macro’ shocks on option risk premium.

Proposition 6 (Wealth Shock). Customers’ net buy of options is negatively (negatively) corre-

lated with the variance risk premium measured from the ‘mid’ (D2D) pricing kernel if dealers a

experience wealth shock.

Interestingly enough, contrary to the conventional wisdom, the impact of a wealth shock or

market power shock is very different from that of an imbalance shock (see Proposition 4).

Indeed, while an imbalance shock mostly leads to a positive correlation between customers’

price pressure and option prices, this is not the case for the wealth shock. Specifically, the

wealth shock always induces a negative correlation between customers’ total net buy of options

and the variance (skewness) risk premium at the ‘mid’ price, consistent with the findings in

Chen et al. (forthcoming). The underlying mechanism is based on the dealers’ effective risk

aversion: When dealers’ net worth drops, their risk aversion rises, increasing their incentive to

smooth consumption. In this case, dealers find it optimal to give large price concessions to

customers, forcing the latter to take more risk off dealers’ balance sheets.

Furthermore, there is also a fundamental difference between the wealth shock and the market

power shock: Although customers can trade more at more favorable prices under both shocks,

the prices on the D2D exchange change differently. A market power shock allows for better

risk-sharing; hence, the inventory reduction is an efficient outcome on the D2D exchange.

On the other hand, the wealth shock reduces dealers’ risk bearing capacity, forcing them to

provide price concessions to customers and also increasing the price they require to bear risks

in the D2D exchange.

Notably, Figure 1.3 also shows that, for all the macro shocks, the variance risk premium is

always negatively correlated with the skewness risk premium. The next proposition shows

that in fact the two risk premia are closely linked through the nonlinear risk imbalance FJ .

Proposition 7. When any of the three macro shocks hits and P is log-normally distributed, the

correlation between the variance risk premium and the skewness risk premium

• is negative if dealers’ aggregate nonlinear risk FJ is left-skewed;
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• is positive if dealers’ aggregate nonlinear risk FJ is right-skewed.

Note that FJ can be either concave or convex.

Four possible trading activities are covered in Proposition 7, customers buy (sell) OTM put

(call) options, and buy (sell) OTM call (put) options. However, regardless of whether dealers

hold long or short options, the sign of the correlation between the two option risk premia is

always determined by whether the trading activities are concentrated on the OTM calls or

puts.

Since the physical distribution is fixed, the negative correlation between the skewness and

the variance risk premia immediately implies that the correlation between the risk-neutral

skewness and the risk-neutral variance is also negative. This prediction is consistent with

the empirical evidence in Constantinides and Lian [2015]. In particular, the authors find

that in SPX options markets, customers usually long OTM puts and sell OTM calls, causing a

decrease in the risk-neutral skewness (i.e., implied volatility skews to the left). Meanwhile, the

number of puts being bought exceeds the number of calls being sold, resulting in an increase

in risk-neutral variance. Both price effects arise in my model due to dealers’ market power

and nonlinear risk imbalance.

1.4.4 Cost of Trading

To begin with, I define the effective spreads as follows.

Definition 3. The cost of trading is defined as the effective percentage bid-ask spreads,∣∣E [(M D2C
(i,j) − M̄ D2C)O(K )

]∣∣
E
[
M̄ D2CO(K )

] .

Note that O(K ) denotes call/put option payoff with strike price K .

Figure 1.4 and 1.5 show that the effective spreads are higher for OTM options than for at-

the-money (ATM) and in-the-money (ITM) options for both calls and puts. This pattern is

consistent with the findings in George and Longstaff [1993] and Cho and Engle [1999]. In

my model, as the spreads for each strike are normalized by their respective ‘mid’ prices, the

spreads for OTM options become large. In addition, when the nonlinear risk is ‘small’, dealers’

optimal quoting strategy tends to have a larger impact on the tails of the pricing kernel. This

effect results in higher spreads for OTM options than ATM options.

Figure 1.2, column two, shows that both customers’ option demand decreases with dealers’

market power. Consequently, the aggregate trading volume in the D2C segment decreases.

Meanwhile, Figure 1.4 and 1.5, column two, show that the effective spreads for both customers

increase. Intuitively, the market power allows dealers to charge a higher markup on the D2C
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Figure 1.4 – Effects of ‘macro’ shocks on effective percentage bid-ask spreads for call options.

exchanges, and customers respond by trading fewer options. This market power effect limits

the risk sharing between dealers and customers.

Figure 1.2, column three, shows that when increasing dealers’ wealth, customer S sells more

options while customer B buys fewer options. Interestingly, the aggregate trading volume

in the D2C segment decreases. Meanwhile, Figure 1.4 and 1.5, column three, show that the

effective spreads increase with dealers’ wealth for both customers. However, the spreads for

option sellers increase more than the spreads for option buyers. This is not surprising because

dealers are also option sellers, hence pushing ‘mid’ prices further away from bid prices.

I now summarize the results formally in the next proposition.

Proposition 8. The aggregate trading volume in the D2C segment decreases with dealers’ market

power or wealth, while the effective spreads

• increase with the dealers’ market power;

• increase with the dealers’ wealth for customers trading in the same direction of the dealers,

and can increase or decrease for customers trading in the opposite direction of the dealers.

However, the average of the effective spreads across all D2C exchanges increases with dealers’

market power or wealth.

The results of Proposition 8 are consistent with the existing empirical evidence. For example,

De Fontnouvelle et al. [2003] find that options bid-ask spreads decreased after the introduction
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Figure 1.5 – Effects of ‘macro’ shocks on effective percentage bid-ask spreads for put options.

of multi-listed options, likely due to improved competition. Similarly, in a recent study,

Christoffersen et al. show that in recent years (2004 to 2012), the market-wide option bid-

ask spreads decreased while the trading volume increased, consistent with the reduction of

dealers’ market power.

1.5 Empirics

In this section, for 34 liquid ETF options, I show empirically that the customers’ net buy of

options is sometimes negatively correlated with the variance risk premium. This result con-

firms the result for SPX options documented in Chen et al. (forthcoming) and Constantinides

and Lian [2015] but is in contrast to the evidence in the literature on demand based option

pricing [Gârleanu et al., 2009, Bollen and Whaley, 2004, Fournier and Jacobs, 2016]. My model

provides a rational explanation for such result based on the dealers’ wealth effect.

Second, I show empirically that for the same sample of options the correlation between the

risk-neutral variance and the risk-neutral skewness is often positive despite the negative

correlation between the realized variance and realized skewness. This result is puzzling, as in

an equilibrium model in which only the fundamental risk is priced, such a result will not arise.

For example, models with disaster risks predict that the risk-neutral variance increases with

the intensity of the disaster risk, while the risk-neutral skewness decreases. This prediction

emerges because the marginal investor requires extra compensation for bearing the disaster

risk. This intensity shock also raises the physical variance and decreases the physical skewness.

Hence, the correlation of the two physical moments and the correlation of the two risk-neutral

moments should go hand in hand.
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Third, I use the result in Proposition 7 to build a measure for the shape of customers’ net option

demand and show that this measure can explain the cross-section variation in correlations

between the risk-neutral variance and skewness. In addition, this measure can also explain a

small amount of the time series variation in my ETF panel.

1.5.1 Data Description

I use four database in my empirical study: Open/Close (CBOE, ISE and NASDAQ PHLX), OPRA,

OptionMetrics, commodity options TAQ. The OPRA and the commodity options TAQ data are

provided by Nanex.

The Open/Close data allow me to construct order-flow imbalance measures and have been

used in several empirical studies, including Pan and Poteshman [2006a], Gârleanu et al.

[2009], Chen et al. (forthcoming) and Fournier and Jacobs [2016]. For each option contract

(ticker, put or call, strike, maturity), the data report separately the trading volume for several

trader types 29: Market-Maker, Firm (proprietary firms and broker/dealers), Customer (small,

medium, large), Professional Customer (small, medium, large). Furthermore, the trading

volume is separated into four types: Open Buy, Close Buy, Open Sell and Close Sell. In

particular, Open Buy means the trader has bought the contract to open a new long option

position, while Close Buy means the trader has bought the contract to close an existing short

position.

The OPRA data run from January 2010 through December 2015. This allows me to observe

trades and quotes for index, equity and ETF options traded in all the US options exchanges. I

use the trades and the corresponding quotes data from this database to construct the bid-ask

spreads measure as well as the order-flow imbalance measure using the Lee and Ready (1991)

algorithm.

The OptionMetrics data provide option Greeks and prices for index and ETF options.

To test my model, I select a sample 30 of actively traded index and ETF options, as well as

commodity options. These are options based on macro risks and, hence, are subject less to

the concern regarding asymmetric information.31

29NASDAQ PHLX directly reports the buy and sell volume for market-makers. For ISE and CBOE, the market-
maker’s position can be deduced from the difference between volume of the other traders and the volume of the
exchange.

30For a full list of option tickers, see Appendix A.4. The selection criterion is based on the ranking of daily average
trading volume for ETF options on ISE.

31I expect that these market power effects are stronger for over-the-counter order-flows [see, for example, Harald
et al., 2017]. Using my model to understand pricing and trading of OTC derivatives is an interesting direction for
future research.
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1.5.2 Variable Definitions

Moneyness Bins In practice, multiple options across strikes and maturities are listed for

one underlying asset. To compare prices and trading activities over time, I group options into

bins according to their moneyness and maturities. Assuming zero interest rates, I use the

Black-Scholes delta to proxy option moneyness of a European call,

Δ(C ,K ,T ) = Φ

[
log(K /S)+0.5σ2T

σ
�

T

]
,

in which Φ(·) is the standard Normal cumulative distribution function, σ is the realized

volatility of the underlying asset over the most recent 60 trading days, K is the strike price, T is

the time-to-maturity, and S is the underlying price. For a European put, I take the 1+Δ(P,K ,T )

as its moneyness. Hence, OTM put options have the same moneyness as OTM call options.

I then group options into five moneyness bins (Table 1.2) as in Bollen and Whaley [2004].

Formally, I denote the moneyness bin as B = OTM,DOTM,ATM,ITM,DITM.

Table 1.2 – Moneyness Bins Definitions

Bins Range

Deep in-the-money (DITM) [0.875,1.000]
In-the-money (ITM) [0.625,0.875]
At-the-money (ATM) [0.375,0.625]
Out-of-the-money (OTM) [0.125,0.375]
Deep out-of-the-money (DOTM) [0.000,0.125]

Variance Risk Premium The variance risk premium is defined as the ratio between the

risk-neutral variance and the physical variance. I proxy the physical variance by the realized

variance computed from a 30-day rolling-window. For the risk-neutral variance, I use the

model-free formula in Bakshi et al. [2003]. 32

VRPt = VarianceQt −VariancePt ,t+30 .

Skewness Risk Premium Similarly, the skewness risk premium is the ratio between the risk-

neutral skewness and the physical skewness. The physical skewness is estimated based on the

formulas in Neuberger [2012]. The risk-neutral skewness is again from the formula in Bakshi

et al. [2003]. Then, the skewness risk premium is

SRPt = SkewQ
t −SkewP

t ,t+30 .

32For the details of the formula, refer to the appendix.
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Order-Flow Imbalance Use the Open/Close data (CBOE, ISE and NASDAQ), I compute the

customers’ aggregate net buy of options as 33

IMBt (B, i ) = ∑
K∈B

OBt (i ,K ,T )+CBt (i ,K ,T )−OSt (i ,K ,T )−CSt (i ,K ,T ) , i =C ,P ,

in which OB (OS) stands for open buy (sell) orders, and CB (CS) stands for close buy (sell)

orders. I also construct the order-flow imbalance measure based on options TAQ data.

IMBt (B, i ) = ∑
τ∈[t−h,t )

∑
K∈B

OFBUY(τ, i ,K ,T )−OFSELL(τ, i ,K ,T ) .

The sign of the order-flow OF is determined using the Lee and Ready (1991) algorithm. Specifi-

cally, the order is defined as an aggressive buy if it is executed above the ‘mid’ quote and vice

versa.

Demand Pressure After calculating the order-flow imbalance, I can define the demand

pressure measure. The first demand pressure is on the level of the option prices,

IMBLEVEL

t = ∑
B

∑
i=C ,P

IMBt (B, i ) .

If the measure is positive, customers on average buy options from dealers. The next measure

is the demand pressure on the skewness of the option prices,

IMBSKEW

t = IMBt (OTM,C )− IMBt (OTM,P ) .

Intuitively, customers’ net buy of OTM call options or net sell of OTM put options drives up

the skew. 34

Shape of Imbalance Shock To capture the shape of the imbalance shock, I use the following

measure,

IMBSHAPE

t =
∣∣∑

B=OTM,ATM IMBt (B,C )
∣∣− ∣∣∑B=OTM,ATM IMBt (B,P )

∣∣∣∣∑
B=OTM,ATM IMBt (B,C )

∣∣+ ∣∣∑B=OTM,ATM IMBt (B,P )
∣∣ .

Motivated by the model, the larger the shape measure, the more positive the correlation

between the risk-neutral variance and the risk-neutral skewness.

33Filters employed: i) remove expired options; ii) remove day of trade/expiration pairs not found in OptionMetrics
database; iii) remove day of trade and option strike not found in OptionMetrics database; iv) remove options on
the expiration day.

34To be more precise, if the physical density is highly left-skewed, the call buying pressure needs to be reasonably
high in order to move the skew to the right.
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1.5.3 Demand Pressure?

The first test is to show that, customers’ net option demand may drive down option prices

instead of driving them up. Formally, I run the following regression for each ETF in my sample,

VRPt = β0 +β1IMBLEVEL

t +εt .

Table 1.3 shows that for XLI, SPY, EWJ and XOP, the correlation between the customers’ option

net demand and the VRP is negative. Hence, for certain ETF options, the demand pressure

theory is inconsistent with the empirically observed patterns.

In addition to the test on the variance risk premium, I run another test,

VarianceQt = β0 +β1IMBLEVEL

t +γ1VariancePt ,t+30 +εt .

Table 1.4 shows that, indeed, after controlling for the physical variance, the daily variation in

the risk-neutral variance is often negatively associated with the contemporaneous customers’

option demand.

For the demand pressure on the skewness risk premium, I run the following regression and

control for the realized skewness,

SkewQ
t = β0 +β1IMBSKEW

t +γ1SkewP
t ,t+30 +εt .

Table 1.5 shows that, compared to the risk-neutral variance, risk-neutral skewness is much

harder to explain. Indeed, even after including the controls, the adjusted R2 is not very large.

Importantly, we note that if the demand pressure theory holds, then the coefficient β1 should

be significantly positive. Clearly, for some of the options (two out of seven), this is not the case.

In light of the demand pressure puzzle, Chen et al. (forthcoming) propose that the dealers’

limited risk bearing capacity may be the cause of the negative correlation. In particular,

they consider an environment with negative jump risks in the asset returns. Dealers’ risk

aversion rises with the intensity of the disaster risk, inducing them to offer less risk-sharing to

customers at higher prices. However, in their model, the correlation between the risk-neutral

variance and the skewness is closely linked to the disaster risk. Precisely, when the intensity

of the disaster rises, the physical variance increases and the physical skewness decreases. In

turn, dealers require higher risk premium for bearing risks; therefore, the risk-neutral variance

increases and the risk-neutral skewness decreases. This suggests that the correlation in the

physical variance and skewness should go hand in hand with the correlation in the risk-neutral

variance and skewness.
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1.5.4 Correlation Puzzle

Table 1.6 shows that, the correlation between the realized skewness and the realized variance

is negative and statistically significant for most of the ETF options except for the long-term

bond (TLT), the commodity ETFs (UNG: natural gas; GDX: gold miner; USO: crude oil), and

the US dollar (UUP). This is broadly consistent with the fact that equity ETFs are subject to

negative jumps that occur simultaneously with high volatility.

In contrast, the correlation between the risk-neutral skewness and the risk-neutral variance

paints a rather different picture: The correlation is mostly positive and statistically significant

(19 out of 34), suggesting that the state with a high level of option prices is associated with

expensive OTM call options. Hence, together with the negative correlation between the

realized variance and skewness, the data suggest the short-term variation in the correlation

between the variance and skewness premia cannot be purely driven by fundamentals.

My model provides an explanation for this puzzle. The main intuition is that customers’

nonlinear risk endowments may not be linearly aligned with the physical states of the world.

Specifically, some customers may want to buy OTM put options due to receiving nonlinear

shocks that resemble short OTM put positions, without any actual changes in the intensity

of disaster risk. Hence, empirically, we can look at the particular shape of customers’ option

demand. For example, if customers demand pressure (in absolute terms) is concentrated

on OTM calls rather than OTM puts, then we are likely to observe a positive correlation

between the variance and skewness risk premia. In addition, if the physical distribution has

not moved, then the correlation between the risk-neutral variance and skewness will also be

positive. Having said that, does the shape of the customers’ option demand actually affect the

correlation between the risk-neutral variance and the skewness?

Based on the empirical measure for the shape of customers’ net demand, IMBSHAPE

t , I proceed

as follows. First, for each ETF option, I divide the time series into quintiles based on the value

of the shape measure. In particular, the fifth quintile corresponds to the largest excessive call

trading activities by customers. Within each quintile, I compute the following correlations: 35

the correlation between the risk-neutral variance and skewness,

Corr
[

VarianceQt ,SkewQ
t

]
;

the correlation between the realized variance and skewness,

Corr
[
VariancePt ,t+30,SkewP

t ,t+30

]
;

the correlation between the two risk premia,

Corr[SRPt ,VRPt ] .

35The correlation is computed based on daily observations.
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According to the prediction of my model, the correlation between the risk-neutral variance

and skewness should increase with the shape parameter. My model does not restrict the

correlation between the realized variance and skewness; the correlation between the variance

risk premium and the skewness risk premium decreases in the shape measure.

Table 1.7 shows that for certain ETF options the results seem to align with my model’s pre-

diction. In particular, for equity sector ETFs (XLV, XLU, IYR, XLF), for index ETFs (SPY), for

international equity ETFs (ASHR, EWJ, EFA, EWZ, FXI), for commodity ETFs (UNG, OIH, GDX,

GLD, USO, XOP), and for currency options (FXE, UUP), there appears to be an uptrend while

increasing the shape measure.

Table 1.8 shows no particular relationship between the shape measure and the correlation

between the realized variance and skewness.

Table 1.9 shows that, except for index ETF options, most of other ETF options do not have a

strong correlation between the variance risk premium and the skewness risk premium. This

is likely because various shocks may work in the opposite direction, or the correlation varies

dramatically over time, leading to insignificant whole sample correlation. The index options

also may differ from other option categories in terms of the underlying risk dynamics. I leave

this question for future research.

Cross-Section Admittedly, a correlation measure requires a large volume of data. To circum-

vent this problem, I explore the cross-sectional properties of my data. Specifically, I compute

the correlation for the risk-neutral variance and risk-neutral skewness for each of the ETF op-

tions in my sample. Then I test whether the shape measure of customers’ option demand can

capture the variation across ETF options. Specifically, I run the following univariate regression,

Corro

[
VarianceQt ,SkewQ

t

]
= β0 +β1IMBSHAPE

o +εo , o = 34 ETF options.

Consistent with the prediction of my model, β1 is positive (= 0.12) and has a t statistic of

1.99. The adjusted R2 for this regression is 0.13. This result suggests that the cross-sectional

difference in the correlation between the two risk-neutral moments can be partially captured

by the difference in the trading activities across those ETF options markets.

Time Series Next, I run the following time series regression,

SkewQ
t = β0 +β1VarianceQt +β2VarianceQt × IMBSHAPE

t +γ1SkewP
t ,t+30 +εt .

In particular, I expect β2 to be positive and significant, as the joint correlation between the

risk-neutral variance and skewness depends on β1 +β2 × IMBSHAPE

t . When customers’ demand

is concentrated at the OTM call options, the model predicts that the correlation between the

risk-neutral variance and skewness will increase.
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Table 1.10 shows that β2 seems to be positive for most of the ETF options. However, only 6 out

of 34 ETF options have statistically significant β2. In addition, most of these significant results

come from the commodity-linked ETF options. It is thus definitely worth exploring further

the commodity options.

The insignificant results for other options may be due to the following fact: Certain customers

may trade competitively and, hence, their order-flows do not create price pressure. Another

measure for the shape of the customers’ net demand is the ratio between the bid-ask spreads

for OTM call options vs. put options, as the model predicts that the large trading cost for

certain options is likely associated with a large imbalance in risk distribution and dealers’

market power. Hence, the bid-ask spreads measured using intra-day data, separately for buy

and sell orders, are valuable sources for explaining the patterns. I leave this for future research.

After the individual time series regression, I run the following panel regression with time and

ETF fixed effects to estimate the coefficient β2.

SkewQ
o,t = βi +β1VarianceQo,t +β2VarianceQo,t × IMBSHAPE

o,t +γ1SkewP
o,(t ,t+30) +γt +εo,t .

Table 1.11 summarizes the panel regression results. β2 is positive and significant. Hence, the

model seems to explain a fraction of the within ETF variations for the correlation between the

two risk-neutral moments.

1.6 Conclusion

The real world option markets have a pronounced two-tier structure, whereby dealers trade

with customers in the D2C market segment, and then use the D2D market to rebalance their

inventories. For the first time in the literature, I develop a model of option markets that

accounts for this two-tier structure. In my model, an endogenous structure of option implied

volatilities and bid-ask spreads arises because of dealers’ market power. This active role of

dealers and their price shading behavior allows me to generate patterns of trade that are

very different from other existing micro-structure models of option markets, including the

demand-based option pricing theory of Gârleanu et al. [2009]. In particular, my model can

explain a wide range of stylized facts about demand imbalance in option markets and its link

to skewness and variance risk premia.

Given my model’s ability to generate realistic option price behavior, it would be interesting

to see whether the model can be used to extract physical probabilities from option prices,

extending the ideas of Ross [2015]. Furthermore, while my model is static, it can easily

be extended to dynamic settings, in which case I can study the joint endogenous nonlinear

dynamics of imbalance and its impact on risk premia and the dynamics of the implied volatility

surface. I leave these important questions for future research.
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1.6. Conclusion

Table 1.3 – Regression of the variance risk premium on customers’ total option demand.

Data is from January 2010 to April 2016. The bold numbers are significant at 5%. Daily frequency. I
report the t-statistic for regressors based on White heteroskedasticity robust standard errors.

IMBLEVEL

t adj. R2 Obs
Ticker

XRT 0.67 -0.00 1553
SMH 0.65 -0.00 611
XBI 2.85 0.01 552
XLY -1.07 0.00 1530
IBB 1.89 0.00 1249
XLV -0.10 -0.00 1520
XLI -2.80 0.00 1537
XLU -0.81 -0.00 1550
XLE 2.22 0.00 1560
IYR -1.57 0.00 1558
XLF -1.64 0.00 1558

DIA 0.27 -0.00 1561
IWM -0.66 -0.00 1561
SPY -3.04 0.00 1561
QQQ -1.71 0.00 1254

ASHR -0.69 -0.00 197
RSX 2.29 0.00 585
EWJ -2.40 0.00 1298
DXJ 0.08 -0.00 672
EFA 0.11 -0.00 1561
EWZ -1.24 -0.00 1560
FXI -0.45 -0.00 1560
EEM 1.68 0.00 1561

HYG -1.54 0.00 1270
TLT 0.10 -0.00 1560

UNG 0.01 -0.00 1558
OIH 1.61 0.00 1523
SLV 2.36 0.00 1560
GDX 0.35 -0.00 1560
GLD -0.07 -0.00 1561
USO -1.57 0.00 1561
XOP -2.03 0.00 1502

FXE 0.76 -0.00 1556
UUP 0.35 -0.00 1285
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Table 1.4 – Regression of risk-neutral variance on the demand pressure (level).

Control for the physical variance. The data is from January 2010 to April 2016. The bold numbers are sig-
nificant at 5%. Daily frequency. I report the t-statistic for regressors based on White heteroskedasticity
robust standard errors.

IMBLEVEL

t VariancePt ,t+30 adj. R2 Obs
Ticker

XRT -1.44 11.20 0.368 1553
SMH -0.47 7.06 0.122 611
XBI 2.50 14.25 0.310 552
XLY -3.52 11.55 0.336 1530
IBB -0.63 13.42 0.214 1249
XLV -0.66 11.33 0.226 1520
XLI -1.90 11.63 0.375 1537
XLU 0.02 12.11 0.191 1550
XLE -3.13 18.81 0.440 1560
IYR -4.08 14.79 0.415 1558
XLF -1.65 13.75 0.379 1558

DIA 0.01 12.29 0.303 1561
IWM -2.27 13.50 0.421 1561
SPY -2.58 12.09 0.330 1561
QQQ -0.77 10.80 0.311 1254

ASHR -2.13 -1.42 0.010 197
RSX -0.99 7.48 0.340 585
EWJ -2.76 5.25 0.020 1298
DXJ 0.34 8.05 0.198 672
EFA 0.26 12.25 0.386 1561
EWZ -0.40 23.89 0.453 1560
FXI -0.37 17.40 0.385 1560
EEM -1.97 16.68 0.423 1561

HYG -1.28 9.90 0.267 1270
TLT -1.83 13.41 0.365 1560

UNG -0.70 12.83 0.201 1558
OIH -1.64 21.50 0.493 1523
SLV -2.52 15.44 0.351 1560
GDX -2.47 21.19 0.376 1560
GLD -1.63 15.36 0.301 1561
USO -3.83 23.56 0.558 1561
XOP -1.03 27.91 0.512 1502

FXE -0.57 21.75 0.407 1556
UUP -1.21 19.03 0.346 1285
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Table 1.5 – Regression of risk-neutral skewness on the demand pressure (skew).

Control for the realized skewness. The bold numbers are significant at 5%. Daily frequency. I report the
t-statistic for regressors based on White heteroskedasticity robust standard errors.

IMBSKEW

t SkewP
t ,t+30 adj. R2 Obs

Ticker

XRT 1.46 -0.17 0.000 1553
SMH 1.89 3.30 0.016 611
XBI -0.06 2.84 0.027 552
XLY 0.71 1.73 0.001 1530
IBB 1.05 2.33 0.007 1249
XLV -1.22 0.58 -0.000 1520
XLI 1.91 0.57 0.001 1537
XLU -1.29 4.15 0.011 1550
XLE 1.08 -0.04 -0.001 1560
IYR -0.07 -1.37 -0.000 1558
XLF 1.76 1.66 0.003 1558

DIA 0.76 0.21 -0.001 1561
IWM 0.94 1.04 -0.000 1561
SPY -5.84 2.12 0.020 1561
QQQ 0.53 5.01 0.015 1254

ASHR -0.11 -2.75 0.006 197
RSX 0.33 1.56 -0.001 585
EWJ -0.22 -0.47 -0.001 1298
DXJ 0.09 0.89 -0.002 672
EFA -0.05 1.60 0.001 1561
EWZ 2.08 3.19 0.010 1560
FXI -2.28 2.81 0.009 1560
EEM 0.72 1.04 -0.000 1561

HYG 0.55 0.14 -0.001 1270
TLT 2.80 1.02 0.005 1560

UNG -1.30 6.76 0.017 1558
OIH 3.10 1.35 0.006 1523
SLV 1.47 9.39 0.017 1560
GDX 2.48 4.50 0.012 1560
GLD -1.29 6.00 0.019 1561
USO -0.80 5.30 0.016 1561
XOP 3.35 3.09 0.012 1502

FXE 1.44 6.25 0.022 1556
UUP 1.21 0.88 0.001 1285
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Table 1.6 – Correlation for the skewness and variance risk premia, the realized variance and
skewness, the risk-neutral variance and skewness.

RP stands for the correlation of the risk premium. P stands for the correlation of the realized moments.
Q stands for the correlation of the risk-neutral moments. The bold numbers are significant at 5%. Daily
frequency.

Corr (RP) Corr (P) Corr (Q)
Ticker

XRT 0.17 -0.61 -0.23
SMH -0.07 -0.31 0.13
XBI 0.06 -0.43 0.48
XLY 0.26 -0.58 0.06
IBB 0.11 -0.57 0.17
XLV 0.09 -0.59 0.09
XLI 0.07 -0.58 0.11
XLU -0.11 -0.49 -0.01
XLE 0.20 -0.57 0.06
IYR 0.06 -0.44 0.10
XLF 0.16 -0.44 0.07

DIA 0.45 -0.63 0.13
IWM 0.39 -0.56 0.14
SPY 0.54 -0.53 0.18
QQQ 0.23 -0.58 -0.05

ASHR -0.11 -0.08 0.67
RSX -0.02 -0.24 0.17
EWJ -0.09 -0.28 0.14
DXJ 0.24 -0.42 -0.06
EFA 0.03 -0.55 0.12
EWZ 0.05 -0.18 0.37
FXI -0.06 -0.49 -0.43
EEM 0.07 -0.53 0.02

HYG 0.20 -0.60 -0.16
TLT -0.06 0.36 0.38

UNG -0.01 0.37 0.36
OIH 0.08 -0.50 0.23
SLV 0.01 -0.19 0.04
GDX -0.01 -0.01 0.37
GLD -0.03 -0.23 0.09
USO -0.11 -0.03 0.33
XOP 0.06 -0.40 0.29

FXE -0.05 -0.35 -0.46
UUP -0.05 0.24 0.21
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Table 1.7 – Correlation between the risk-neutral variance and risk-neutral skewness.

The quantile is based on the shape measure, IMBSHAPE

t . The bold numbers are significant at 5%. Daily
frequency.

Quantile 0.2 0.4 0.6 0.8 1.0
Ticker

XRT -0.05 -0.13 -0.17 -0.22 -0.12
SMH 0.14 -0.09 0.06 0.07 -0.02
XBI 0.39 0.42 0.43 0.38 0.22
XLY 0.16 -0.09 -0.05 0.02 0.05
IBB -0.01 0.15 0.06 0.10 -0.09
XLV 0.03 0.07 0.19 0.14 0.14
XLI 0.12 -0.01 0.05 0.08 0.05
XLU -0.01 0.07 0.01 0.13 0.03
XLE -0.01 0.15 -0.00 -0.02 0.09
IYR 0.02 0.06 0.08 0.04 0.14
XLF 0.09 0.19 0.19 0.19 0.18

DIA 0.15 0.06 0.13 0.11 0.08
IWM 0.09 0.14 0.14 0.11 0.11
SPY 0.20 0.09 0.11 0.15 0.19
QQQ -0.07 -0.04 -0.05 0.08 0.07

ASHR 0.55 0.51 0.46 0.35 0.61
RSX 0.21 0.27 0.09 0.13 0.27
EWJ 0.27 0.29 0.30 0.36 0.28
DXJ -0.09 -0.04 0.02 0.04 -0.12
EFA 0.07 0.08 0.16 -0.02 0.13
EWZ 0.31 0.27 0.32 0.37 0.33
FXI -0.36 -0.42 -0.26 -0.32 -0.32
EEM 0.08 0.14 0.02 -0.02 -0.02

HYG -0.18 -0.10 -0.21 -0.09 -0.06
TLT 0.25 0.29 0.29 0.32 0.25

UNG 0.34 0.38 0.44 0.46 0.50
OIH 0.11 0.15 0.24 0.13 0.22
SLV 0.17 0.06 0.11 0.08 -0.01
GDX 0.22 0.25 0.36 0.29 0.35
GLD 0.07 0.07 0.05 0.08 0.13
USO 0.26 0.31 0.32 0.34 0.22
XOP 0.04 0.16 0.23 0.21 0.26

FXE -0.25 -0.38 -0.19 -0.39 -0.27
UUP 0.05 0.02 0.17 0.22 0.17
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Table 1.8 – Correlation between the realized variance and realized skewness.

The quantile is based on the shape measure, IMBSHAPE

t . The bold numbers are significant at 5%. Daily
frequency.

Quantile 0.2 0.4 0.6 0.8 1.0
Ticker

XRT -0.26 -0.23 -0.21 -0.18 -0.24
SMH 0.08 0.35 0.39 0.29 0.15
XBI -0.01 0.17 0.11 0.12 -0.09
XLY -0.18 -0.11 -0.14 -0.13 -0.23
IBB -0.20 -0.01 0.06 -0.02 -0.22
XLV -0.26 -0.18 -0.12 -0.19 -0.20
XLI -0.11 -0.23 -0.21 -0.35 -0.21
XLU -0.40 -0.43 -0.45 -0.45 -0.44
XLE 0.09 -0.03 -0.02 -0.17 -0.01
IYR 0.41 0.39 0.39 0.30 0.23
XLF 0.02 -0.16 -0.20 -0.18 -0.16

DIA -0.17 -0.29 -0.27 -0.33 -0.37
IWM -0.02 0.06 -0.15 -0.13 -0.05
SPY -0.19 -0.25 -0.19 -0.11 -0.19
QQQ -0.01 -0.04 0.03 -0.13 -0.04

ASHR 0.34 0.28 0.45 0.55 0.49
RSX -0.01 -0.16 -0.13 -0.04 -0.20
EWJ -0.30 -0.27 -0.33 -0.36 -0.28
DXJ 0.11 0.22 0.22 0.16 0.24
EFA -0.07 -0.05 -0.07 0.08 -0.10
EWZ -0.04 -0.14 -0.14 -0.22 -0.10
FXI -0.18 -0.24 -0.24 -0.24 -0.34
EEM -0.09 -0.19 -0.17 -0.27 -0.31

HYG -0.29 -0.18 -0.15 -0.23 -0.16
TLT 0.24 0.13 0.16 0.24 0.33

UNG 0.44 0.38 0.41 0.42 0.42
OIH 0.06 -0.08 -0.26 -0.15 -0.04
SLV -0.60 -0.58 -0.55 -0.55 -0.55
GDX -0.10 -0.02 -0.08 -0.07 -0.07
GLD -0.32 -0.34 -0.40 -0.40 -0.47
USO 0.24 0.24 0.23 0.26 0.29
XOP -0.06 0.16 0.13 0.14 0.09

FXE -0.10 -0.16 -0.28 -0.22 -0.11
UUP 0.22 0.45 0.34 0.31 0.34
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Table 1.9 – Correlation between the variance and skewness risk premia.

The quantile is based on the shape measure, IMBSHAPE

t . The bold numbers are significant at 5%. Daily
frequency.

Quantile 0.2 0.4 0.6 0.8 1.0
Ticker

XRT 0.27 -0.01 0.12 0.03 0.09
SMH 0.18 0.11 0.00 0.06 -0.11
XBI 0.18 0.06 0.24 -0.08 0.03
XLY 0.34 0.14 0.14 0.24 0.28
IBB 0.15 0.09 0.07 0.28 -0.02
XLV 0.02 0.02 0.06 0.10 0.03
XLI 0.04 0.03 0.10 0.09 0.16
XLU 0.04 -0.03 -0.02 -0.08 -0.21
XLE 0.19 0.06 0.05 0.12 0.02
IYR 0.11 0.07 0.13 -0.02 0.09
XLF 0.02 0.10 0.08 0.10 0.11

DIA 0.46 0.47 0.34 0.43 0.30
IWM 0.19 0.44 0.35 0.52 0.28
SPY 0.59 0.42 0.42 0.52 0.63
QQQ 0.33 0.28 0.56 0.44 0.48

ASHR -0.09 -0.32 -0.18 -0.60 0.22
RSX 0.02 -0.06 0.05 0.02 -0.02
EWJ -0.03 -0.05 0.05 -0.10 0.00
DXJ 0.26 0.11 0.06 -0.13 0.00
EFA 0.35 0.19 -0.16 0.19 0.24
EWZ 0.11 0.15 0.09 0.04 0.06
FXI 0.11 0.10 0.08 -0.10 0.08
EEM 0.09 0.20 0.05 0.11 0.03

HYG 0.01 0.27 0.08 0.22 0.00
TLT 0.03 -0.06 -0.02 -0.05 -0.08

UNG -0.03 -0.07 0.02 -0.05 -0.04
OIH 0.11 0.07 -0.01 0.02 -0.04
SLV 0.04 -0.04 -0.01 0.10 -0.07
GDX 0.01 -0.04 -0.05 0.07 -0.02
GLD 0.00 -0.02 0.06 -0.00 -0.04
USO 0.15 -0.07 -0.09 -0.02 -0.01
XOP 0.10 -0.06 0.12 -0.00 -0.07

FXE -0.10 -0.04 0.01 0.04 0.07
UUP 0.07 -0.05 -0.04 -0.13 0.06
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Table 1.10 – Regression of the risk-neutral skewness on the risk-neutral variance and the
interaction between the risk-neutral variance and the shape measure.

Data is from January 2010 to April 2016. The bold numbers are significant at 5%. Daily frequency. I
report the t-statistic for regressors based on White heteroskedasticity robust standard errors.

VarianceQt VarianceQt × IMBSHAPE

t adj. R2 Obs
Ticker

XRT -4.28 1.66 0.018 1548
SMH 0.65 0.52 0.006 515
XBI 9.59 -1.56 0.145 540
XLY 0.15 -0.78 0.000 1514
IBB 1.02 -1.31 0.006 1203
XLV 3.80 1.03 0.012 1511
XLI 2.19 0.53 0.002 1531
XLU 1.73 0.16 0.011 1554
XLE 1.67 1.67 0.002 1571
IYR 3.14 0.54 0.004 1566
XLF 5.37 2.25 0.034 1569

DIA 4.46 0.48 0.010 1572
IWM 5.02 0.98 0.013 1572
SPY 6.44 -0.26 0.020 1572
QQQ 0.06 1.48 0.016 1265

ASHR 7.62 -1.83 0.237 205
RSX 3.81 -0.74 0.026 588
EWJ 10.26 1.81 0.087 1259
DXJ -1.41 1.06 0.003 661
EFA 2.94 -0.05 0.007 1571
EWZ 12.05 1.32 0.094 1571
FXI -15.61 0.38 0.109 1571
EEM 1.57 0.63 0.001 1572

HYG -5.21 -0.44 0.015 1245
TLT 11.52 0.69 0.079 1570

UNG 16.51 2.42 0.203 1569
OIH 6.81 3.15 0.037 1527
SLV 3.04 1.18 0.021 1571
GDX 9.18 2.78 0.092 1571
GLD 2.60 1.64 0.026 1572
USO 10.05 1.19 0.092 1572
XOP 7.42 3.03 0.047 1507

FXE -8.21 0.08 0.106 1561
UUP 1.70 2.20 0.019 1282
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Table 1.11 – Panel regression with day and ETF fixed effects.

Daily frequency from January 2010 to April 2016. The total number of observation is 46,148.

Variables T-stat

VarianceQo,t 7.6

VarianceQo,t × IMBSHAPE

o,t 3.9
SkewP

o,(t ,t+30) 4.3

R2 = 0.04 and within R2 = 0.0088
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We develop a simple equilibrium model in which commercial hedgers, i.e., producers and

consumers, use commodity options and futures to hedge price and quantity risk. We derive

an explicit relationship between expected futures returns and the hedgers’ demand for out-of-

the-money options, and show that the demand for both calls and puts are positively related to

expected returns, and the relationship is asymmetric, tilted towards puts. We test and confirm

the model predictions empirically using the commitment of traders report from CFTC.

2.1 Introduction

In the original normal backwardation theory of Keynes and Hicks, producers take a short

position in the futures market to hedge their exposure to price risk. Speculators require a

positive risk premium for taking the other side of this trade, leading to positive expected futures

returns. While this theory generates clear predictions about the linear hedging instruments,

it is silent about the effects of hedging with non-linear instruments such as commodity

options. The goal of this paper seeks to fill this gap and derive theoretical predictions about

the interaction of risk premia and hedging demand in the options market.

To this end, we develop a simple, two period general equilibrium model populated by three

types of agents: commodity producers, commodity consumers, and speculators. We assume

that, in addition to price risk, producers face quantity risk: In this case, producers may in fact

find it optimal to take a long position in the futures contract,1 and expected futures returns

are positive if and only if price risk is higher than quantity risk. We assume that, in addition to

the futures contract, the agents have access to a full menu of out of the money (OTM) put and

1See, for example, Rolfo [1980].
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call options rendering the market complete. The simple, complete market setup allows us to

derive an explicit formula for the agents’ option demand. We find that

(1) the hedgers’ (producers plus consumers) demand for both OTM puts and OTM calls

always has the same sign, and this demand is positively related to expected futures

returns

(2) there is an asymmetry in the demand for OTM puts versus that for OTM calls: the

demand for puts is significantly higher in absolute value even if expected returns are

(moderately) positive

(3) the sensitivity of the log of the absolute size of the option demand to log option strike is

positively related to expected returns

(4) the net hedgers’ option demand in terms of OTM calls minus OTM puts is negatively

related to expected futures returns

The intuition behind these findings is as follows. Since markets are complete and all agents

have the same risk aversion, they linearly share the total revenue of producers and consumers.

This total revenue is either a globally convex or a globally concave function of the spot price,

and commercial hedgers (producers and consumers) jointly sell a fraction of these revenues

to speculators. When these revenues are convex, it involves selling OTM puts and calls; when

they are concave, it involves buying OTM options. Still, agents naturally worry more about the

downside risk, hence the results of item (2). The result of item (3) is a direct implication of

item (1) and (2): As puts dominate calls, the net option demand is driven by short OTM puts.

To test our model predictions empirically, we need to construct a measure of the net (signed)

commercial hedgers’ demand for options. We cannot directly use CFTC commitments of

traders (COT) reports because these data report options demand that is aggregated across

strikes and option types (for example, one cannot distinguish between a short position in

the put and long position in the call). Hence, we cannot directly test the implications (1)-(3).

However, CFTC data provides us a measure of OTM calls minus OTM puts, we then use this

measure to test the prediction (4). We find strong support for the prediction on energy and

precious metal sector.

The rest of this paper is organized as follows. Section 2.2 reviews relevant literature. Section 2.3

derives the equilibrium model. Section 2.4 contains empirical results. Section 2.5 concludes.

2.2 Literature Review

Our paper belongs to the literature that tries to understand the effects of hedging pressure in

commodity markets. Starting with Keynes [1923] and Hicks [1939], many papers have argued

that hedgers’ supply of futures contracts (hedging pressure) drives down the futures price
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relative to the expected value of the later spot price, and this way it generates a downward

bias (normal backwardation) in the futures price. See, for example, Stein [1961], Cootner

[1960], Cootner [1967], and Stoll [1979]. Subsequent papers have argued that the sign of the

hedging pressure can be ambiguous, for example, due to complementarities in consumer

preferences (see, Hirshleifer [1990]) or due to quantity risk (see, for example, Rolfo [1980],

Newberry and Stiglitz [1981], Newbery [1983], Anderson and Danthine [1983], Hirshleifer

[1988a], and Hirshleifer [1988b].2 The empirical evidence on the link between the commodity

futures hedging pressure and futures returns is mixed. For example, Chang [1985] finds that

futures prices for grains on average rise when hedgers are short, and fall when hedgers are long.

Consistent with the Keynes-Higgs normal backwardation theory, Kang et al. [2017] find that

hedgers are indeed on average net short in most commodity futures markets, while Moskowitz

et al. [2012] and Cheng and Xiong [2014] provide evidence that hedger’s price pressure is an

important driver of the shape of the futures curve. However, Kang et al. [2017] find that hedgers

follow short-term contrarian strategies and short-term fluctuations in hedging pressure are

largely driven by the liquidity demands of speculators.3 Taking a longer-term moving average

of the hedging pressure eliminates these short term fluctuations and recovers the validity of

Keynes’ normal backwardation theory. All these papers consider exclusively futures hedging

pressure. To the best our knowledge, our paper is the first one to study the effects of the

hedging pressure in the commodity options market.4

In our model, hedging with options is optimal for producers and consumers because of the

interaction between quantity and price risk. This links our paper to Brown and Toft [2002]

and Gay et al. [2002, 2003] who show in a partial equilibrium setting that producers should

use convex (concave) hedging strategies if price and quantity risks are negatively (positively)

correlated.5 By contrast, we show that in general equilibrium, when both commodity spot

prices and option prices are determined by market clearing, the link between the hedging

strategy and the quantity-price risk correlation is much more subtle.6 The same interaction

between quantity and price risk implies that the shape of the implied volatility smile in our

model can be tilted both ways, depending on which risk dominates. In addition, we show

that the shape of this smile is closely related to expected futures returns: when OTM puts

(OTM calls) are expensive, expected futures returns are positive. These model predictions

are consistent with the findings of Ellwanger [2015]. Furthermore, our model is also able to

generate a negative commodity variance risk premium (that is, the difference between the risk

2In an influential paper, Litzenberger and Rabinowitz [1995], argued that backwardation can be attributed to
the option value of commodity production.

3Such effects are partially consistent with the theory of Hong and Yogo [2012] who show that open interest
growth rate is informative about futures returns due to under-reaction to news.

4The only exception is Woodard and Sproul [2016] who study the effects of hedging pressure in the options
market createded by the Federal Crop Insurance Program. See also Gârleanu et al. [2009] who find evidence for the
effects of hedging pressure using demand shocks for options of different strikes, as well as Hitzemann et al. [2016]
who studies how hedging pressure impacts option returns in the presence of margin constraints.

5See also Lapan et al. [1991].
6Using a sample of US oil and gas producers, Mnasri et al. [2013] find evidence that the correlation between

price and quantity risks is indeed important for hedging demand, but the relationship predicted by Brown and
Toft [2002] does not hold in general.
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neutral variance and the variance under the physical measure), consistent with the findings of

Doran and Ronn [2008] and Trolle and Schwartz [2010].

Our paper also belongs to the literature on the informational content of options volume for

expected returns. See, for example, Easley et al. [1998], Pan and Poteshman [2006b], Johnson

and So [2012], and Roll et al. [2010b]. While we cannot exclude the effects of asymmetric

information, our model implies that, for commodities, the net demand for calls and puts may

contain information about future returns even when information is symmetric.

Our paper is also closely related to Moskowitz et al. [2012] show that the profitability of time

series momentum strategies arises because speculators profit from time series momentum

at the expense of hedgers, in agreement with Keynes [1923] theory. Importantly, consistent

with Moskowitz et al. [2012], we find that the hedging demand in the option markets follows a

one-year cycle, similar to that found in Moskowitz et al. [2012] for the futures market.

2.3 A Model for Commodity Options

There are two time periods, t = 0,1, and two perishable goods, a consumption good and an

investment good. The consumption good also serves as the numeraire and the prices of the

investment good are quoted in the units of the consumption good. There are three types of

agents in the model: producers, consumers, and speculators. All agents have the same CRRA

utility function up (c) = uc (c) = uI (c) = (1−γ)−1c1−γ with relative risk aversion γ. Consumption

takes place at period-1. For simplicity, we assume the exogenous interest rate is 0.

Commodity Market We model the spot commodity market in period-1 as follows: (i) Both

producers and consumers observe the spot price P for the commodity; (ii) Producers investing

κ at period-0, face a productivity shock εq and price uncertainty7 P = εp qδ−1 with some

δ ∈ (0,1). Their production function is q = κε1/δ
q . Thus, producers’ revenue is given by P q =

εp qδ = εpεqκ
δ. (iii) The consumers have a technology to transform Q units of the investment

good into δ−1Qδεp units of consumption good, where εp is their productivity shock. Their

problem is to maximize the total revenue −PQ +δ−1Qδεp , which gives the demand curve

P = εpQδ−1.

Hence, their total revenue is (δ−1 −1)PQ = (δ−1 −1)εpεqκ
δ.

We summarize the result from the commodity market in the following lemma.

Lemma 1. The producers’ total revenue in the commodity market is

P q = εpεqκ
δ,

7This is the demand curve of the consumers.
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while the consumers’ total revenue is

(δ−1 −1)PQ = (δ−1 −1)εpεqκ
δ.

Commodity Options Market We assume that there is a continuum of commodity options

with strike price in the support of the spot commodity price P . The option market opens at

period-0, and as options complete the market, there is a unique pricing kernel M .

Producers In addition to the revenue from the commodity market, the producers receive

period-1 consumption good wp . At period-0, the producers observe the equilibrium pricing

kernel M in the options market and maximize

max
Xp

E [up (wp −κ+εpεqκ
δ+Xp )] s.t. E [M Xp ] = 0.

Consumers In addition to the revenue from the commodity market, the consumers receive

period-1 consumption good wc . Like producers, consumers take positions in the options

market to smooth out consumption across shocks. Given producers’ investment κ and pricing

kernel M for the options market, the consumers’ problem is

max
Xc

E [uc (wc + (δ−1 −1)εpεqκ
δ+Xc )] s.t. E [M Xc ] = 0.

Intermediaries Finally, speculators take the other side in the options market and maximize

max
XI

E [uI (wI +XI )] s.t. E [M XI ] = 0.

In equilibrium, market clearing implies XI =−Xp −Xc .

Standard results for CRRA preferences imply that the agents will proportionally split the

aggregate endowment in period-1, wp +wc +wI −κ∗+εpεqδ
−1κδ∗, where κ∗ is the equilibrium

production rate. The following is true

Lemma 2. Conditional on the production rate κ∗, the optimal demand for state contingent

claims are given by

Xp = λp (wI +wp +wc −κ∗ +εpεqδ
−1κδ

∗)− (wp −κ∗ +εpεqκ
δ
∗)

Xc = λc (wI +wp +wc −κ∗ +εpεqδ
−1κδ

∗)− (wc + (δ−1 −1)εpεqκ
δ
∗),

whereas the constants λp and λc are consumption shares of producers and consumers, respec-

tively. The pricing kernel is

M =λM (wI +wp +wc −κ∗+εpεqδ
−1κδ

∗)−γ ,λM = E [(wI +wp +wc −κ∗+εpεqδ
−1κδ

∗)−γ]−1.
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The equilibrium futures price is

F = E [MP ] = λM E
[
εpε

(δ−1)/δ
q κδ−1

∗ (wI +wp +wc −κ∗ +εpεqδ
−1κδ

∗)−γ
]

.

Since E [M ] = 1, we have

F−E [P ] = Cov(M ,P ) = λM Cov
(
εpε

(δ−1)/δ
q κδ−1

∗ , (wI +wp +wc −κ∗ +εpεqδ
−1κδ

∗)−γ
)

. (2.1)

Thus, we arrive at the following result.

Proposition 1. The following is true:

(1) If quantity shocks are small (i.e., εq has a small variance), we have

F < E [P ].

Thus, futures prices are expected to appreciate.

(2) If price shocks are small (i.e., εp has a small variance),

F > E [P ].

Thus, futures price are expected to depreciate.

The intuition is as follows: When price shock dominates, producers want to short futures

contract, creating a downward pressure in the futures market. Hence, we have the claim of

item (1). On the other hand, when quantity shock dominates, producers want to long futures

contract, creating an upward pressure in the futures market.

The scenario of item (1) is commonly viewed as the situation when futures prices are in normal

backwardation: Assuming that the spot futures price follows a martingale, E [P ] coincides

with the time zero spot price, P0, in which case (1) implies that P0 > F. Similarly, under the

same martingale condition, item (2) implies that futures prices are in contango: P0 < F. Note

however that this link strongly relies on the assumption that spot prices follow a martingale.

However, within our model, spot prices are almost never martingales because production

decisions themselves depend on the equilibrium risk premium.

2.3.1 Futures Return and Options Demand

Our next goal is to understand the link between futures prices and the demand for options. To

this end, we will assume that both εp , εq are powers of a common stochastic shock Z : εp = Zα

and εq = Zβ for some positive random variable Z . This specification allows us to uniquely

map the realizations for the shock Z to spot prices P = εpε
(δ−1)/δ
q κδ−1∗ = κδ−1∗ Zα+β(δ−1)/δ.
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Here, α and β have an intuitive interpretation: They measure the sensitivity of logεp and

logεq to the common shock log Z . Define

ψ ≡ α+β

α+β(δ−1)/δ
. (2.2)

The following result is a direct consequence of (2.1).8

Corollary 2. Expected futures return, E [P ]/F −1, is positive if and only if ψ> 0.

The result of Corollary 2 is very intuitive: In agreement with Proposition 1, futures prices are

expected to appreciate if and only if price shocks dominate quantity shocks. In particular, this

is the case when |α| > |β|. By Lemma 2, we have

Xp (P ) = (δ−1λp −1)(Pκ1−δ
∗ )ψκδ

∗ + constc ,

Xc (P ) = (δ−1λc − (δ−1 −1))(Pκ1−δ
∗ )ψκδ

∗ + constp .
(2.3)

Market completeness implies that producers can replicate the desired state-contingent con-

tract (2.3) using options. We will assume that agents only trade simple, European calls and

puts with maturity t = 1. Given the time zero spot price, we refer call (put) options with strikes

above (below) F out-of-the-money (OTM). Put-Call parity implies that in the money (ITM)

options are redundant if the agents can trade the underlying futures contract as well as OTM

options. Thus, the optimal trading strategy is not uniquely defined. Everywhere in the sequel,

we will make the following assumption:

Assumption 4. Agents only trade futures as well as OTM options.9

Given an arbitrary twice continuously differentiable claim W (x), integration by parts implies

that the following is true:10

W (x) =W (F )+W ′(F )(x −F )+
∫F

−∞
W ′′(K )(K −x)+dK +

∫∞

F
W ′′(K )(x −K )+dK ,

and we arrive at the following result.

Lemma 3. Suppose that P takes values in (Pmin,Pmax). Then, producers’ optimal demand for

8 Corollary 2 can be shown by directly substituting P into (2.1):

Cov[M ,P ] =λM Cov[(wI +wp +wc −κ∗ +δ−1(Pκ1−δ∗ )ψκδ∗)−γ,P ]

This is negative, as long as ψ> 0. Hence, the futures market is in backwardation.
9The open interest and volume in OTM options is several times higher than that in ITM options for all com-

modities in our sample.
10See, for exampple, Carr and Madan [2001] and Demeterfi and Zou [1999].
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options of strike K is given by

∂2X ∗
p (K )

∂K 2 dK = ψ(ψ−1)(δ−1λp −1)κ(1−δ)ψ+δ
∗ K ψ−2dK ,

∂2X ∗
c (K )

∂K 2 dK = ψ(ψ−1)(δ−1λc − (δ−1 −1))κ(1−δ)ψ+δ
∗ K ψ−2dK ,

(2.4)

while, the joint demand of commercial hedgers (consumers plus producers) for OTM puts

(respectively, OTM calls) is given by

DPut = δ−1(λc +λp −1)ψκ
ψ(1−δ)+δ
∗ (Fψ−1 −Pψ−1

min )

DC all = δ−1(λc +λp −1)ψκ
ψ(1−δ)+δ
∗ (Pψ−1

max −Fψ−1) .
(2.5)

The consumers hold the most of the variable (risky) part of the endowment, hence, their

option demand aligns perfectly with the hedgers’ option demand. Meanwhile, the producers

may trade differently comparing to the hedgers. In particular, if the producers’ wealth wp is

large, then in equilibrium, they absorb a fraction of option orders from the consumers, leaving

the rest being absorbed by the speculators.

Empirically, we do not observe the separate order-flows for producers and consumers. In-

stead, the information available is on the aggregate order-flows for the commercial hedgers

(producers plus consumers). Hence, in the sequel, we focus on the hedgers’ option demand.

Combining Lemma 3 with Corollary 2, we arrive at the following important result.

Proposition 3. The following is true:

• when ψ < 0, both DPut , DC all (insurance, i.e., puts, seller) are positively related to ex-

pected futures returns (contango)

• when 0 <ψ < 1, both DPut , DC all (insurance buyer) are positively related to expected

futures returns (backwardation)

• when 1 <ψ < 2, both DPut , DC all (insurance seller) are negatively related to expected

futures returns (backwardation)

• when ψ > 2, both DPut , DC all (covered call seller) are negatively related to expected

futures returns (backwardation)

The intuition is as follows: First, ψ reflects the relative importance of price shock and quantity

shock, when ψ> 0, the price shock dominates the quantity shock, and the futures market is in

backwardation. Second, ψ also reflects the relationship between the aggregate endowment

and commodity price P . In particular, when 0 <ψ< 1, the aggregate endowment is a concave

function of the commodity price (more so when the price realization is low), meaning that a

drop in the price reduces disproportionately more aggregate consumption, hence hedgers
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buy options from speculators to hedge this risk, especially puts; when 1 <ψ< 2, the aggregate

endowment becomes a convex function of the commodity price, i.e., a drop in the price

reduces disproportionately less aggregate consumption, hence hedgers supply put options to

speculators, i.e., think of an insurance seller; in the extreme case when ψ> 2, an increase in

the commodity price increases disproportionately more aggregate consumption, hedgers sell

call options to speculators, i.e., think of a covered call selling strategy.

We can derive one more corollary from Proposition 3. We will see in the next section, that

CFTC aggregates hedgers’ options demand across puts and calls, and they assign a negative

weight (the options’ Black-Scholes delta) to long positions in put options. Hence, we need

predictions on the relation between expected futures return, and hedgers’ option demand in

terms of DC all −DPut .

Corollary 4. The following result is true:

• when ψ< 0, DC all −DPut (puts seller dominates) are negatively related to expected futures

returns (contango)

• when 0 <ψ< 1, DC all −DPut (puts buyer dominates) are negatively related to expected

futures returns (backwardation)

• when 1 <ψ< 2, DC all −DPut (puts seller dominates) are positively related to expected

futures returns (backwardation)

• when ψ> 2, both DC all −DPut (covered call seller dominates) are negatively related to

expected futures returns (backwardation)

In fact, we argue that the first two cases correspond usually to commodity markets in practice.

For example, for Crude Oil markets, we can find periods of contango (the price boom before

the financial crisis due to positive demand shock), as well as periods of normal backwardation

(commodity index funds earn positive returns for decades). In addition, the trading volume

in OTM puts is almost always larger than that in OTM calls, suggesting the last item rarely

happens. The third item is also rare for energy and metal market, as when the market is

in backwardation, hedgers buy options instead of selling. Hence, in the empirical section,

we mainly seek to test the first two items of Corollary 4. Before proceed to empirical tests,

we want to know whether this result is robust when the production rate κ∗ is endogenously

determined.

2.3.2 Endogenous Production Rate

In this section, we determine the production rate κ in equilibrium, and examine the robustness

of our results, Proposition 3. To do so, we assume that producers are small (continuum of

measure 1), hence their individual production rate does not alter the aggregate production
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rate. Then from Lemma 2, we know the optimal demand of the contingent claims for the

producer is

Xp (κ;κ∗) =λp (κ)(wI +wp +wc −κ∗ +εpεqδ
−1κδ

∗)− (wp −κ+εpεqκ
δ),

given his own production rate κ and the equilibrium production rate κ∗. Specifically, the

producer’s decision κ only affects the consumption share he receives in equilibrium through

λp (κ) by increasing his individual wealth wp −κ+εpεqκ
δ. The aggregate endowment instead

is unaffected by κ. From the budget constraint E [M Xp ] = 0, we get that

λp (κ) = E [M(wp −κ+εpεqκ
δ)]/E [M(wI +wp +wc −κ∗ +εpεqδ

−1κδ
∗)].

Hence, the producer maximizes his indirect utility function

max
κ

(1−γ)−1λp (κ)1−γE
[

(wI +wp +wc −κ∗ +εpεqδ
−1κδ

∗)1−γ
]

.

As κ only shows up in the consumption shares λp (κ), we get the first-order condition for κ∗ as

κ1−δ
∗ = δE [M(κ∗)εpεq ]. (2.6)

This is a fixed point problem to determine κ∗. As we do not have an explicit formula for κ∗,

this makes the comparative statics cumbersome. To have a cleaner prediction, we perturb

the price shock α from a benchmark where the futures price does not exhibit contango nor

normal backwardation, and the option demand is zero.

Benchmark: no aggregate endowment risk Suppose that α+β= 0, and without loss of gen-

erality, we assume that α> 0. In this case, the price risk εp and the quantity risk εq are perfectly

negatively correlated, meaning a negative price shock is associated with a positive quantity

shock with the same size. Hence, the aggregate endowment in the economy becomes risk-less,

although the commodity price is still risky. Note that, the producers have no incentives to

hedge the risks in commodity price, as the quantity risk is a nature hedge for price risk. In this

particular example, the pricing kernel M becomes a constant

M = 1,

for any realization of the common shock Z . Hence, from equation (2.6), we have that

κ∗ = δ1/(1−δ).

The consumption share of the producer is

λp = wp −κ∗ +κδ∗
wI +wc +wp −κ∗ +δ−1κδ∗

,
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and that of the consumer is

λc =
wc + (δ−1 −1)κδ∗

wI +wc +wp −κ∗ +δ−1κδ∗
.

For the speculators, we know that their share is 1−λp −λc . The futures price is

F = E [MP ] = E [P ].

Hence, we know that the expected futures return is

E [P ]/F −1 = 0.

The equilibrium future spot commodity price P is

P =κδ−1
∗ Zα/δ.

Interestingly, the commodity price is risky, but no agents would hedge it.

Perturbation on α We assume that the price risk changes by a small quantity εα(1)

αε =α+εα(1).

The optimal production rate now becomes κε = κ∗ +εκ(1). The following is true.

Lemma 4. The optimal production rate is

κε = κ∗ +ε
δ

1−δ
κδ
∗E [log Z ]α(1). (2.7)

Hence, as long as the price risk increases, i.e., α(1) > 0, we have that the producer increases the

production rate. Next, we use Lemma 3 to get

Proposition 5. The optimal option demand per strike for producer is

Dp,ε(K ) = ε
δ−λp

α
κδ
∗K −2α(1)dK , (2.8)

and that for the consumer is

Dc,ε(K ) = ε
1−δ−λc

α
κδ
∗K −2α(1)dK . (2.9)

Corollary 6. Hence, we know that hedgers’ aggregate option demand per strike is

Dε(K ) = ε
1−λp −λc

α
κδ
∗K −2α(1)dk. (2.10)
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Meanwhile, the option demand for OTM puts is

DPut
ε = ε

1−λp −λc

α
κδ
∗(P−1

min −F−1)α(1), (2.11)

and the demand for OTM calls is

DC all
ε = ε

1−λp −λc

α
κδ
∗(F−1 −P−1

max)α(1). (2.12)

Lemma 5. The first-order expansion of the pricing kernel is

M (1) = γκδ∗
−δκ+δw +κδ∗

(E [log Z ]− log Z )α(1). (2.13)

We define w ≡ wI +wp +wc . Thus the difference between the futures price and futures spot price

is

Fε−E [Pε] =−ε γκδ∗
−δκ∗ +δw +κδ∗

Cov[log Z ,P ]α(1). (2.14)

Note that P = κδ−1∗ Zα/δ.

Hence, we learn that when α> 0, a ‘small’ positive shock to the price risk (ψ> 0) immediately

induce hedgers to buy put options from the speculators, and the expected futures return is

positive (normal backwardation). This implies a positive correlation between expected futures

return and aggregate option demand, consistent with Proposition 3. On the other hand, a

positive wealth shock to the speculators capital wI , assuming α(1) > 0, increases the expected

return for the futures contract, and increases the demand for options for both calls and puts.

Hence, we confirm that our previous results still hold for endogenous production rate κ∗,

when the aggregate endowment risk is ‘small’. In the next section, we test these theoretical

predictions empirically.

2.4 Empirical Results

In this section, we test the model’s predictions on the relationship between the hedgers’ option

demand and the expected futures return.

Empirically, hedgers’ option demand is hard to measure for the following reasons: (i) most of

the commercial hedgers are small and hence they hedge their production risk via dealer banks

(over-the-counter trading); (ii) for large hedgers, they might trade options for reasons other

than hedging the risk of their business; (iii) options trading on exchange (such as Chicago

Mercantile Exchange) is anonymous.

We use the CFTC commitment of traders report to build our proxy for hedgers’ option de-
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mand. This data can partially resolve the issues being mentioned. However, it has its own

shortcomings, which we will discuss now.

CFTC Hedgers’ Option Demand The CFTC disaggregated commitment of traders’ report

provides information on open interest for US exchange-traded futures and options. The data is

generated each Tuesday. The advantages of this data are: (i) the report classifies open interest

by traders’ types: Commercials, Swap Dealers, Money Managers, Other Reportable; (ii) the

data dates back to June, 2006 for the disaggregated version, and to even earlier dates for the

old reporting format; (iii) the report distinguishes long and short positions for each traders’

category.

However, the disadvantages are: (i) the report does not separate options into puts and calls,

nor strikes and maturities; (ii) the report only comes out once a week on Tuesday; (iii) although

the disaggregated format corrects some problems in traders’ classification, there are still some

traders being assigned to the wrong group. Specifically, the puts and calls are transformed

into the equivalent futures open interest by multiplying the corresponding Black-Scholes

delta. Hence, when we see a report with open interest on the long side, it does not tell whether

the group of traders is holding calls, or is selling puts. To circumvent this issue, as we have

already mentioned in the previous section, we compute the net option positions for the group

of traders, which is approximately calls minus puts. The last problem is hard to address, as

we cannot see the identities of traders within each group besides the group name. However,

we know at least that for energy and metal, Commercials include mainly producers and

consumers of the commodity; Swap Dealers might represent the aggregate positions of small

hedgers, or part of speculators’ positions; Money Managers usually represent speculators;

Other Reportable (e.g., pension funds, sovereign funds, high-frequency traders) contains

everyone else.

We compute the option demand measure as follows: For each group of traders, we compute

its option open interest of the long-side and the short-side, by removing the futures positions.

OOILong
t = OILong , f utur es+opti ons

t −OILong , f utur es
t .

Then we take the difference between the long side and the short side to get the net option

position

NOOIt = OOILong
t −OOIShor t

t .

However, to measure the hedgers’ option demand related to shocks, we compute the innova-

tions in the net option positions

DC all−Put
t−k,t = NOOIt −k−1

k∑
τ=1

NOOIt−τ,
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for k = 12,24,36,50 weeks. We compute this measure for Commercials, Swap Dealers, Money

Managers, and Other Reportable separately. We expect that Commercials category captures

the option demand of hedgers as defined in our model, while Swap Dealers might capture

partially hedgers and partially speculators’ option demand. For the other two categories, we

sum up their positions, and call them Financials, which is a proxy for the speculators’ option

demand.

According to Corollary 4, we expect the Commercials’ option demand being negatively corre-

lated with the realized futures return, while the Financials’ option demand being positively

correlated with the realized futures return. Formally, we run the following test

Rt ,t+h = β0 +β1DC all−Put
t−k,t +β2Rt−h,t +β3Rt−k,t + sl opet +εt ,t+1 , (2.15)

with h = 1,2,4,12 weeks.

We are mainly interested in the sign of β1. We also control for the following variables to

isolate the information content of our measure: (i) lagged returns, as commodity futures

returns exhibit positive auto-covariance (see, e.g., Moskowitz et al. [2012]); (ii) lagged returns

corresponding to the option demand measure, as option demand and underlying futures

returns are correlated contemporaneously; (iii) slope of the futures term structure, i.e., the log

difference between the front month futures contract and the next period futures contract.

Tables below confirm our main predictions: the hedgers’ net option demand negatively

predicts future returns for energy and metal. In particular, Table 2.1 shows that for energy

sector, the Commercials’ net option demand indeed negatively forecast front month futures

return. Interestingly, in Table 2.2, we see that for metal sector, the Commercials’ net option

demand has the right sign, but does not show much statistical significance. Hence, we need to

understand whether this is due to measurement error, or due to our model’s lack of explanation.

We proceed by looking at the Swap Dealers’ option demand, which might capture partially

the hedgers’ demand. If a significant fraction of gold hedgers use swap dealers to facilitate

hedging, we should expect that the Swap Dealers’ option demand negatively predicts futures

return. Table 2.3 confirms our conjecture. In addition, if we cannot accurately measure the

hedgers’ option demand, we may look directly at the speculators’ option demand. Table 2.4

shows that indeed, the Financials’ option demand positively predicts the futures return.

2.5 Conclusions

We develop an extension of Keynes-Higgs normal backwardation theory that incorporates

hedging using commodity options. Our model predicts that hedgers’ net demand for op-

tions is negatively related to expected futures returns. We use CFTC data on commodity

options to construct net demand measures for energy and metal sector and confirm the model

predictions empirically.
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Table 2.1 – CFTC Commercials’ (Energy) Option Demand v.s. Expected Futures Return.

The numbers shown are the t-statistics, and the data ranges from 2006.06-2018.04. The regressions
errors are corrected according to Newey-West with lags equal to the forecasting horizon.

Horizon (#Weeks) 1 2 4 12
Lag (#Weeks)

Crude Oil (CL) 12 -2.26 -3.54 -4.78 -1.79
24 -2.36 -3.08 -3.42 -1.57
36 -2.32 -2.84 -3.03 -1.34
50 -2.22 -2.62 -2.65 -1.20

Natural Gas (NG) 12 -1.81 -1.60 -1.91 -1.51
24 -1.91 -1.60 -1.92 -2.27
36 -2.03 -1.78 -1.95 -1.95
50 -1.85 -1.56 -1.65 -1.83

Gasoil (RB) 12 -2.63 -1.63 -0.97 -2.03
24 -2.91 -2.10 -1.48 -2.80
36 -3.09 -2.25 -1.54 -1.97
50 -2.99 -2.27 -1.53 -2.32

Heating Oil (HO) 12 -2.34 -2.35 -1.62 -1.44
24 -2.36 -2.26 -1.51 -1.49
36 -2.49 -2.42 -1.66 -1.64
50 -2.63 -2.63 -1.86 -1.66

Table 2.2 – CFTC Commercials’ (Metal) Option Demand v.s. Expected Futures Return.

The numbers shown are the t-statistics, and the data ranges from 2006.06-2018.04. The regressions
errors are corrected according to Newey-West with lags equal to the forecasting horizon.

Horizon (#Weeks) 1 2 4 12
Lag (#Weeks)

Gold (GC) 12 -1.25 0.27 -1.47 -0.27
24 -0.99 0.12 -1.80 -0.96
36 -0.92 -0.02 -1.74 -0.31
50 -0.93 -0.15 -1.84 -0.47

Silver (SI) 12 0.78 0.52 -0.78 -0.41
24 -0.09 -0.42 -1.80 -1.06
36 -0.56 -0.93 -2.18 -1.29
50 -0.80 -1.14 -2.31 -1.55
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Table 2.3 – CFTC Swap Dealers’ (Metal) Option Demand v.s. Expected Futures Return.

The numbers shown are the t-statistics, and the data ranges from 2006.06-2018.04. The regressions
errors are corrected according to Newey-West with lags equal to the forecasting horizon.

Horizon (#Weeks) 1 2 4 12
Lag (#Weeks)

Gold (GC) 12 -2.25 -1.96 -1.98 -1.62
24 -1.79 -1.55 -1.96 -1.36
36 -1.64 -1.45 -1.78 -1.22
50 -1.49 -1.35 -1.79 -1.16

Silver (SI) 12 -1.52 -1.36 -1.40 0.27
24 -1.42 -1.49 -1.39 0.36
36 -1.43 -1.55 -1.37 0.37
50 -1.43 -1.55 -1.32 0.14

Table 2.4 – CFTC Financials’ (Metal) Option Demand v.s. Expected Futures Return.

The numbers shown are the t-statistics, and the data ranges from 2006.06-2018.04. The regressions
errors are corrected according to Newey-West with lags equal to the forecasting horizon.

Horizon (#Weeks) 1 2 4 12
Lag (#Weeks)

Gold (GC) 12 2.50 1.65 2.43 1.58
24 1.97 1.36 2.40 1.84
36 1.80 1.31 2.15 1.47
50 1.69 1.26 2.24 1.56

Silver (SI) 12 1.00 1.22 1.52 -0.27
24 1.28 1.65 1.83 0.04
36 1.46 1.85 1.92 0.19
50 1.53 1.90 1.91 0.34
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We model a two-tiered market structure in which an investor can trade an asset on a trading

platform with a set of dealers who in turn have access to an interdealer market. The investor’s

order is informative about the asset’s payoff and dealers who were contacted by the investor

use this information in the interdealer market. Increasing the number of contacted dealers

lowers markups through competition but increases the dealers’ costs of providing the asset

through information leakage. We then compare a centralized market in which investors can

trade among themselves in a central limit order book to a market in which investors have to

use the electronic platform to trade the asset. With imperfect competition among dealers,

investor welfare is higher in the centralized market if private values are strongly dispersed or if

the mass of investors is large.

3.1 Introduction

Trading in over-the-counter (OTC) markets is traditionally done over the phone, i.e. an investor

who wants to trade an asset has to call a dealer and negotiate the price bilaterally. A recent

trend in OTC markets is the growing electronification. Instead of calling dealer by dealer

separately, an investor can use electronic trading platforms to send a request-for-quote (RFQ)

to many dealers at once to obtain quotes at which the dealers are willing to trade. Some

estimates suggest that in 2015, more than 40% of OTC-traded credit default swaps and more

than 60% of OTC-traded interest rate swaps were traded electronically.1

Electronic trading platforms can potentially increase the connectedness between market

1See for instance Stafford [2016] for a brief overview of recent developments in OTC markets.
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participants and thereby make OTC markets more exchange-like. However, there remains a

fundamental difference between centralized exchanges and electronic trading platforms in

OTC markets. Whereas exchanges can be viewed as all-to-all platforms, electronic trading

platforms in OTC markets are one-to-many platforms. On exchanges, each market participant

can trade through a central limit order book with all other market participants. On electronic

trading platforms, the RFQ trading protocol prescribes that only one investor can initiate

a trade at a time and choose one dealer to trade with. Therefore, electronic trading still

incorporates many of the features of traditional bilateral trading in OTC markets.

The contribution of this paper is twofold. First, we model the trading process on trading

platforms via an RFQ protocol. In our model, an investor who has some information about the

asset’s payoff can choose a quantity to trade on the platform. In equilibrium, this quantity is

informative about the asset’s payoff. Our model therefore provides a theoretical foundation of

information leakage on electronic trading platforms that is examined in empirical studies such

as Hendershott and Madhavan [2015] or Hagströmer and Menkveld [2016]. Increasing the

number of dealers who are contacted by an RFQ has three competing effects on trading costs:

If an RFQ is sent to more dealers, (i) competition among dealers lowers the expected markup

the investor has to pay, (ii) the investor is more likely to receive a quote in the first place, since

each dealer’s response is uncertain and (iii) information leakage about the asset’s fundamental

value increases the dealer’s cost of providing the asset, which results in worse prices for the

investor. If dealers respond very frequently to each RFQ, the cost of information leakage

dominates the benefits of more competition and contacting only few dealers maximizes the

investor’s payoff. Only if the dealers’ RFQ response rate is sufficiently low, an RFQ has to be

sent to a certain minimum number of dealers in order for an equilibrium to exist in the first

place. In an off-equilibrium analysis, we deal with the price impact an investor faces on the

platform. The presence of adverse selection makes the permanent price impact on the trading

platform larger than the permanent price impact in the interdealer market. This result is

consistent with the findings of Collin-Dufresne et al. [2017].

Second, we determine conditions under which investors are better off trading on a centralized

exchange among themselves and when they are better off in the two-tiered market structure

with an electronic trading platform and an interdealer market. In our model, all investors

are equally informed about the asset’s fundamental value and benefits from trade in the

centralized market only arise due to private values of obtaining the asset (e.g. hedging benefits).

Since dealers are less informed about the asset’s value, investors can also benefit from their

information about the asset in the OTC market structure. The dealers are willing to trade with

the more informed investor, because they expect to be able to partially offset the trade at a

favorable price in the interdealer market. If private values of obtaining the asset are small,

investors are better off in the OTC market structure where they can benefit from information

asymmetries between them and the dealers. On the other hand, if the total mass of investors

is large, information about the asset’s fundamental value quickly leaks into the interdealer

market. In this case, the price investors have to pay on the platform is approximately the

sum of the fundamental value and a markup. Then, investors are better off in the centralized
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exchange where they can avoid the dealers’ markups and uncertainty about transactions. Only

if competition among dealers is very high, investors will prefer to trade in the OTC markets. In

this case, markups are very low, a trade is very likely and dealers efficiently intermediate trades

between their customers. Additionally, investors can benefit from their information advantage

over dealers in the OTC market. These results extend previous research on the comparison

between OTC markets and exchanges in terms of investor welfare [Babus and Parlatore, 2017,

Glode and Opp, 2017]. In this strand of literature, our study is the first one to specifically look

at electronic trading platforms.

The paper proceeds as follows. Section 3.2 relates our paper to previous research. In Section

3.3, we explain the basic setup that is studied in Section 3.4. In Section 3.5, we slightly modify

this setup to accommodate a continuum of investors and compare the two-tiered market

structure to a centralized market. Concluding remarks are presented in Section 3.6. All proofs

are in Appendix A.

3.2 Related Literature

Collin-Dufresne et al. [2017] empirically study the two-tiered index CDS market in the US.

In the market for the most liquid index CDSs, the Dodd-Frank Act required trading via swap

execution facilities (SEFs). As a result, investors trade with dealers almost exclusively via

RFQs on electronic trading platforms. Dealers, on the other hand, trade among themselves

via a continuous limit order book.2 This market structure very closely corresponds to the

setup we assume in our paper. The results of Collin-Dufresne et al. [2017] suggest that the

permanent price impact in the D2C segment, i.e. when the investor trades on the platform, is

higher than the permanent price impact in the interdealer market. These results justify our

assumption that investors have some information about the asset that dealers do not have and

are consistent with our result that there is information leakage from the trading platform to the

dealers. Hendershott and Madhavan [2015] empirically study what kind of bonds are traded

over the phone and which bonds are traded on an electronic trading platform. Controlling

for endogenous venue selection, they examine the trading costs on these two trading venues.

Hagströmer and Menkveld [2016] estimate information flows between dealers and provide

further empirical evidence for information leakage on trading platforms in OTC markets.

Bjønnes et al. [2008] and Bjønnes et al. [2016] argue that dealers in the foreign exchange

market learn from their clients’ order flow and exploit this information in the interdealer

market.

Babus and Parlatore [2017] and Glode and Opp [2017] theoretically study investor welfare in

OTC markets and centralized markets. Our model is different from those studies, since we

specifically assume an RFQ trading protocol in the OTC market. Moreover, the information

structure in our model differs from that in Babus and Parlatore [2017], since we have a common

2Block trades are exempt from the requirement to be traded on SEFs. However, most trades in the interdealer
market are executed in the continuous limit order book, which also allows for mid-market matching and workup.
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value of the asset for both investors and dealers. Compared to Glode and Opp [2017] we

allow the investor to trade continuous quantities of the asset in the OTC market. Malamud

and Rostek [2017] show that decentralized exchange markets may be more efficient than

centralized ones. Lester et al. [2017] show in a search-theoretic model that competition in

fragmented markets may decrease welfare.

In modeling the information leakage on trading platforms, our paper relates to a large strand

of literature that models how information is shared between economic agents. Notable papers

in this strand of literature include Duffie and Manso [2007], Duffie et al. [2009], Andrei and

Cujean [2017] and Babus and Kondor [2016]. Traditionally, OTC markets are modeled as pure

search markets as for instance in Duffie et al. [2005], Weill [2007], Lagos and Rocheteau [2009],

Gârleanu [2009], Lagos et al. [2011], Feldhütter [2005], Pagnotta and Philippon [2011] or Lester

et al. [2015]. Zhu [2012] and Duffie et al. [2017] explicitly model dealer markets. Our paper

differs from all of those those papers since we consider an electronic trading platform.

Our assumption that dealers’ responses on trading platforms are uncertain has been used by

Jovanovic and Menkveld [2015] and Yueshen [2017] to model the behavior of market makers

in central limit order books to derive similar random-pricing strategies.3

We also draw on the techniques of noisy rational-expectations models of Grossman and Stiglitz

[1980], Hellwig [1980] and Diamond and Verrecchia [1981]. These models assume that agents

behave competitively. Kyle [1989] showed that those models can be extended to allow for

strategic traders that take their price impact into account. However, few closed-form solutions

are available in this case. Since the competitive case is generally viewed as a reasonable

approximation to the strategic case in large markets [Vives, 2010], we will model a competitive

dealer market.

As Pagano and Röell [1996] argue, auction markets are in many ways more transparent than

bilateral dealer markets. Naik et al. [1999] show that increased post-trade transparency has an

ambiguous effect on dealers risk-sharing ability in two-tiered markets. Other papers who study

the effects of transparency include De Frutos and Manzano [2002] and Yin [2005]. In this paper,

however, we do not consider any specific disclosure policies that are enforced by regulators.

In our model, information is disseminated through the different trading mechanisms.

3.3 Model

There are two periods and two types of agents. In the first period, an investor can contact a

number of dealers via an RFQ trading protocol on an electronic trading platform to buy or sell

a quantity of an asset. In the second period, dealers trade with each other in a central limit

order book. After period 2, the dividend is paid. This is illustrated in Figure 3.1.

3Random-pricing strategies in turn have their origin in the consumer search literature. See for instance Varian
[1980], Burdett and Judd [1983], Stahl [1989] and Janssen et al. [2005, 2011].
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Figure 3.1 – Timeline

RFQ on platform interdealer market

period 1 period 2

dividend payment

The asset pays an uncertain dividend D = θ+ε after the second period, where θ and ε are

both independent and normally distributed random variables with zero mean and variances

σ2
ε > 0 and σ2

θ
> 0, respectively. The informed investor knows the realization of θ already in the

beginning of period 1. The investor also receives a private benefit δ∼N (0,σ2
δ

), with σ2
δ
≥ 0

for holding one unit of the asset. This private benefit is realized in the beginning of period 1

and is independent from all other random variables. Only the investor can observe δ.

There are N , N � N ≥ 2 dealers. On the trading platform, the investor can specify the quantity

x of the asset he wants to trade. The investor also selects M dealers, with N � M ≤ N from

which he wants to obtain prices at which they are willing to offer quantity x of the asset. The

dealers respond independently with probability q ∈ (0,1] to the RFQ. That dealers do not

necessarily respond may reflect the cost of paying attention. We will throughout this paper

assume that the number of contacted dealers M is exogenously given, i.e. the trading protocol

specifies that the investor has to contact exactly M dealers. This is a slight simplification of

RFQ protocols in real-world markets where investors can often freely choose a number of

dealers to contact.

The dealers are ex ante identical and hold zero initial inventory in the beginning of period 1.

In period 2, the aggregate supply of the asset in the interdealer market is noisy. We denote

the aggregate supply of the asset in the interdealer market by W . This aggregate supply is

normally distributed: W ∼ N (0,σ2
W ) and σ2

W > 0. A noisy aggregate supply is necessary in

order to prevent uninformed dealers from observing the information of informed dealers. One

can interpret noise in the aggregate supply as demand from noise traders or inventory shocks

to dealers’ portfolios, even though there is a slight difference between inventory shocks and

noisy aggregate supply. Both dealers and the investor have mean-variance preferences. There

is no discounting and each agent’s utility is linear in the payments made when trading the

asset. Let ωk denote dealer k’s final inventory in the end of period 2 and let Zk denote the sum

of all payments made or received by dealer k from trading the asset. Then dealer k’s utility in

the end of period 2 with final inventory ωk is given by

Ud (ωk , Z ) =ωk ·E(D|Ik )− γd

2
·ω2

k ·V(D|Ik )−Zk , (3.1)

where γd > 0 is the dealers’ risk-aversion parameter. The expectation and the variance in

equation (3.1) are taken with respect to each dealer k’s specific information set Ik , which will
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be determined later. Equation (3.1) says that dealers care linearly about the mean of their

expected dividend payment in the end of period 1 and sum they have to pay in both period 1

and 2. They also have to pay an inventory cost which is increasing in the expected variance of

the dividend payment. This inventory cost depends on the risk-aversion parameter γd > 0.

It is clear that equation (3.1) can be derived from a first-order condition of an exponential

utility function. We specifically do not assume exponential utility because an exponential

utility function and the functional form specified in equation (3.1) have different implications

for the equilibrium on the platform. On the platform, a dealer has to take into account the

possibility of being undercut by another dealer when giving quotes to the investor. The model

becomes more tractable, if the dealers’ utility is linear in the payments made when trading.

We will assume that the dealers follow symmetric strategies on the platform and symmetric

and linear strategies in the interdealer market.

Similar to the dealers, the investor has mean-variance preferences. The investor, however, also

receives the private benefit δ per unit of the asset held. If the investor buys a quantity x1 ∈R

on the platform at price p1, the investor’s utility is given by

UI (x1, p1) = x1 · (θ+δ)− γI

2
· x2

1 ·σ2
ε−p1x1, (3.2)

where γd > 0 is the investor’s risk-aversion parameter. Comparing (3.1) and (3.2), note that

the investor’s expectation of the dividend payment and its variance is given by θ and σε,

respectively. On the other hand, dealers potentially learn about the dividend from the other

agents and thus have a less trivial information set Ik for each dealer k. Also, dealers trade

with each other, which results in a more complex final inventory ωk and more complex total

payments Zk for each dealer k.

When dealing with the case of one investor in Section 3.4, we need to make a technical

assumption in order to keep the model tractable. In Section 3.4, we will assume the presence

of an “outside agent”. If the investor contacts M < N , M > 0 dealers on the platform, these

M dealers will learn from the investors about the the realization of θ. Thus, there will be

informed and uninformed dealers in the interdealer market. In the interdealer market, the

uninformed dealers may then make inferences about the dividend level from the observed

market price. It will turn out that this price is affected by both the dealers’ inventories and

the informed dealers’ expectation of the dividend payment. In order to keep this inference

problem tractable, we make the dealers’ inventory independent of the expected dividend level.

To this end, we assume that a dealer who traded on the platform with the investor offsets this

trade with the outside agent, who does not participate in the interdealer market. The outside

agent does not behave strategically. The price at which the dealer offsets his trade with the

investor is such that the dealer is indifferent between trading with the outside agent and going

directly to the interdealer market. This way, we keep the dealers’ inventories independent of

the dividend level and still keep the key economic trade-offs that the dealers and the investor
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face in our model. This setup is summarized in Figure 3.2. After the trader has offset his trade

with the outside agent, all dealers start to trade in the interdealer market. A version of our

model without the outside agent will be studied in Section 3.5.

Figure 3.2 – The outside agent

interdealer marketdealer

outside agent

outside option

offset trade

reference price

3.4 Equilibrium with one investor

The equilibrium is determined by backward induction. The first step is to establish the

equilibrium in the interdealer market. We will assume and later verify that the investor reveals

a noisy signal about the dividend level θ to the dealers he contacts. After an equilibrium in the

interdealer market has been established, dealers on the platform can anticipate their expected

final payoff conditional on the quantity they trade on the platform. This payoff will ultimately

be a key determinant of the expected price for the asset on the platform which is derived by

standard auction-theoretic arguments. Using the derived quoting strategies of the dealers and

assuming that the quantity the investor wants to trade is linear in θ+δ, an equilibrium on the

trading platform can be constructed.

3.4.1 The equilibrium in the interdealer market

The equilibrium in the interdealer market considered in this paper is a rational expectations

equilibrium in linear demand schedules as first studied by Grossman and Stiglitz [1980].

This means that dealers behave competitively. Even though not completely realistic, this

assumption can be viewed as a rather good approximation in the case of large interdealer

markets.

Let xk denote the quantity of the asset that dealer k buys in the interdealer market. Since we

assume that a dealer who trades on the platform offsets his trade with a outside agent, the

final inventory ωk of dealer k is equal to the traded quantity in the interdealer market: ωk = qk

for all k ∈ {1, ..., N }.

Since M ≤ N dealers have been contacted on the platform, there will be M informed dealers,

who observe θ+δ from the investor’s demand. The other N −M dealers are uninformed and
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will use the market price to make inferences about the dividend level. In the following, we will

represent all dealers by the set {1, ..., N } and say that dealer k is informed if k ≤ M . Conversely,

we say that dealer k is uninformed if k > M .

Let p2 denote the price for the asset in the interdealer market. Differentiating the dealer’s

utility (3.1) with respect to qk and using ∂Zk
∂qk

= p2 gives the first-order condition

E(D|Ik )−γdωkV(D|Ik )−p2 = 0. (3.3)

Since ωk = qk , the second order condition is −γdV(D|Ik ) < 0. The second order condition

always holds, since γd > 0 and V(D|Ik ) ≥ σ2
ε. If dealer k receives the signal sd := θ+δ, one

obtains by standard Bayesian updating that

ξ := E(D|sd ) = σ2
θ

sd

σ2
θ
+σ2

δ

. (3.4)

Similarly, one obtains

τξ := 1

σ2
ξ

:= 1

V(D|sd )
= 1

σ2
θ
σ2
δ

σ2
θ
+σ2

δ

+σ2
ε

, (3.5)

where we defined τξ and σ2
ξ

as the precision and the variance of the dividend payment based

on the informed dealers’ information that includes the signal sd .

The first order condition (3.3) now implies the following demand schedule:

qk = τξ(ξ−p2)

γd
for k ≤ M . (3.6)

If dealer k is uninformed, his demand is assumed to be of the form

qk = E(D|p2)−p2

γdV(D|p2)
for k > M . (3.7)

Equation (3.7) takes into account that uninformed dealers can only learn about the conditional

distribution of D by observing the market price p2. We will use the standard approach to
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conjecture a price that is linear in ξ and the aggregate supply of the asset W :

p2 = aξ+bW, (3.8)

with a,b ∈R. Then, uninformed dealers can use the normal projection theorem to calculate

E(D|p2) and V(D|p2).

In equilibrium, also the market clearing condition

N∑
k=1

qk =W (3.9)

has to be satisfied. Using (3.6) and (3.7) in (3.9) determines the market clearing price. Matching

of coefficients in the obtained expression for the market clearing price with the coefficients

in the conjectured expression (3.8) then gives the rational expectations equilibrium price

function. This price function in turn determines the uninformed dealers’ equilibrium demand

schedules.

The following Proposition confirms the existence of an equilibrium in the interdealer market

and states the corresponding expressions for equilibrium price.

Proposition 1. There is always a rational expectations equilibrium such that the market clear-

ing price is given by (3.8). Define

ρ : = σ2
θ

σ2
θ
+σ2

δ

, (3.10)

τu : = 1

V ar (D|p2)
= 1

σ2
θ
+σ2

ε −ψρσ2
θ

, (3.11)

ψ : = a2ρσ2
θ

a2ρσ2
θ
+b2σ2

W

= ρ

ρ+ γ2
dσ

2
W

M 2τ2
ξ
σ2
θ

(3.12)

Then a and b are given by

a = Mτξ+ (N −M)ψτu

Mτξ+ (N −M)τu
(3.13)
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and

b =− γd

Mτξ
a, (3.14)

One has a > 0 if M > 0. One also has a ≤ 1 with strict inequality if M < N .

The fact that a < 1 for M < N means tha the price in the interdealer market is inefficient in the

sense that the price does not fully reflect the informed dealers’ information. In the absence

of private benefits for the investor (σ2
δ
= 0), dealers are only willing to trade with the investor

because of this informational inefficiency in the interdealer market.

3.4.2 The equilibrium on the trading platform

The equilibrium on the trading platform is derived as follows. We will assume that dealers

who are contacted by the investor can observe sd = θ+δ and therefore form a conditional

expectation of θ given by ξ as defined in (3.4). We will then use Proposition 1 and the optimal

demand schedules (3.6) to determine the lowest price at which a dealer is willing to sell (or the

highest price at which he is willing to buy) a given quantity of the asset. The dealers then infer

from the investor’s utility function the maximum markup they can charge. In equilibrium,

dealers will charge a random markup on the platform. The expectation of this price can be

used to determine the investor’s equilibrium strategy that reveals sd .

Assume an investor submitted an RFQ to M dealers on the platform to buy x units of the asset

(if x < 0, the investor wants to sell). If a dealer is contacted on the platform, but does not

trade the asset, he will observe sd and will therefore be informed in the interdealer market,

expecting a dividend level of ξ. Let Vd ,1 : R2 →R denote the function that maps the expectation

ξ and dealer k’s traded quantity to dealer k’s expected utility that he will get after period 2. The

dealer will anticipate that the price p2 is a linear function of ξ and W as stated in Proposition

1. Now, the optimal demand schedule (3.6) and the dealers utility function (3.1) imply the

following payoff from not trading (i.e. from trading quantity 0):

Vk,1(θ,0) := Ek

[
qk (D −p2)− γd

2
σ2
ξq2

k

]
= ξ2(1−a)2 +b2σ2

W

2γdσ
2
ξ

.

We now consider the case in which dealer k sells quantity x to the investor4 and goes directly

to the interdealer market, while other dealers think that dealer k already offset his trade with

the outside agent. Now, dealer k has the initial inventory −x in the beginning of period 2.

However, only dealer k knows that.

4If x < 0 the dealer is buying from the investor.
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The following result states the expected price in the interdealer market for dealer k and dealer

k’s optimal demand.

Lemma 1. Assume dealer k traded quantity x 	= 0 with the investor on the platform and directly

goes to the interdealer market. Let the other dealers believe, dealer k offset his trade before going

to the interdealer market. Then, according to dealer k’s information, the price in the interdealer

market is given by

p2 = aξ−bx +bW

and his optimal demand schedule is given by

qk = ξ−p2

γdσ
2
ξ

+x,

where a and b are defined as in Proposition 1.

Using Lemma 1, one can calculate dealer k’s expected utility if he goes directly to the inter-

dealer market holding a quantity −x 	= 0 and having expectation about the dividend payment

ξ.

Vk,1(ξ, x) := Ek

[
D(qk −x)−p2qk −

γd

2
σ2
ξ(qk −x)2

]
= ξ2(1−a)2 +2(1−a)bξx +b2σ2

W +b2x2

2γdσ
2
ξ

− (aξ−bx)x.

Comparing Vk,1(ξ, x) and Vk,1(ξ,0) one can observe that the dealer expects a different re-

turn from holding a final inventory due to a different expected price. The second term in

Vk,1(ξ, x) represents the additional payment a dealer has to make to offset his inventory x in

the interdealer market. We define

pc (x) := Vk,1(ξ,0)−Vk,1(ξ, x)

x
k ≤ M (3.15)

as the break-even price for any contacted dealer k. A dealer who charges pc (x) per quantity

of the asset and sells x units to the investor, does not change his final utility. The payment

from the investor exactly matches the difference in utility due to different inventory holdings.
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Analogously, we define

pv (x) := θ+δ− γI

2
xσ2

ε =
ξ(σ2

θ
+σ2

δ
)

σ2
θ

− γI

2
xσ2

ε (3.16)

as the price at which the investor is indifferent between trading and not trading the asset. As

one can immediately verify, equation (3.2) implies UI (x, pv (x)) = 0. One can interpret pc (x) as

the cost for each contacted dealer of supplying x units of the asset. Analogously, pv (x) is the

investor’s value of acquiring x units of the asset. The investor can only trade a certain quantity

x > 0 with a dealer if pv (x) ≥ pc (x). Analogously, it has to hold that pc (x) ≥ pv (x) if x < 0.

In the following, we assume that dealers follow symmetric strategies when giving a quote to

the investor. This approach is standard, since dealers are ex-ante identical. In the appendix

we show that standard search-theoretic arguments imply that the price a dealer quotes on the

platform for a certain quantity x has to be a continuous random variable if pv (x) 	= pc (x). Let

Fx : R→ [0,1] denote the distribution of the price a dealer quotes on the platform conditional

on the quantity x that the investor wants to trade. If x > 0 and pv (x) > pc (x), then pv (x) will

turn out to be the supremum of the support of Fx . That quoting a higher price than pv (x)

cannot be optimal follows from UI (x, p) < 0 for p > pv (x) and x > 0. The investor would not be

willing to buy the asset at such a price since doing so would make him worse off. Analogously,

pv (x) is the infimum of the support of the distribution of quoted prices if x < 0. The investor

would not be willing to sell the asset at a lower price.

Dealers are only willing to quote random prices if the expected profit they make is the same

for any price in the support of Fx . If pv (x) is in the support of Fx , this indifference condition

means that

x(p −pc (x))
M−1∑
j=0

(
M −1

j

)
(1−q)M−1− j q j (1−Fx (p)) j = (1−q)M−1(pv (x)−pc (x))x (3.17)

has to hold for all p ∈ supp(Fx ). The left-hand side of equation (3.17) describes the expected

profit a dealer makes by quoting any p ∈ supp(Fx ). The payment x(p −pc (x)) in excess of

the indifference level xpc (x) is weighted by the probability that the dealer has the best quote

among all dealers that respond to the RFQ. Since the response of a dealer is uncertain and

occurs with probability q < 1, one has to consider the cases in which j = 0, ..., M −1 other

dealers respond. The right hand side describes the expected profit for a dealer that quotes

pv (x). Since Fx is continuous, this dealer will only sell the asset if no other dealer responds to

the RFQ. This happens with probability (1−q)M−1. In this case, the dealer’s utility will increase

by x(pv (x)−pc (x)) > 0.
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The following result gives the closed-form expression for the distribution function Fx that

solves (3.17) for any x with x(pv (x)−pc (x)) > 0. The last inequality is a necessary condition

for the existence of strictly positive benefits of trade between dealers on the platform and the

investor. In the statement of Lemma 2, we will leave implicit that pc and pv depend on x. In

Section 3.5, we will study a version of the model in which the dealers’ cost pc does not depend

on x. Since Lemma 2 holds irrespective of what variables pv and pv depend on, we will state it

without reference to any of those variables.

Lemma 2. Let pc be the dealers’ cost of providing a certain quantity x ∈R\ {0} of the asset and

let pv denote the investor’s value of acquiring x units of the asset. Let the investor submit an

RFQ to M ≥ 2 dealers on the platform to trade quantity x with x(pv −pc ) > 0. Let q < 1. Assume

that dealers who get contacted know θ.

If a dealer responds to an RFQ, he will charge a random price that is distributed according to

the distribution function Fx . This function is defined by

Fx (p) := 1

q
− 1−q

q

(
pv −pc

p −pc

)1/(M−1)

. (3.18)

If x > 0, the support of Fx is given by [px , pv ], where px is determined by Fx (px ) = 0 and satisfies

px > pc .

If x < 0, the support of Fx is given by [pv , px ], where px is again determined by Fx (px ) = 0 and

satisfies px < pc .

In this case, the expected price the investor has to pay for the asset conditional on at least one

response to the RFQ is given by

P (x) := E(p1 | x,at least one response) =
∫

supp(Fx )
pdGx (p) = pc +κ(pv −pc ), (3.19)

where the distribution Gx : R→ [0,1] is defined by

Gx (p) := 1− (1−qFx (p))M

1− (1−q)M

and

κ := M q(1−q)M−1

1− (1−q)M
∈ [0,1) (3.20)

If q = 1, Bertrand competition implies that dealers have to set a price that equal to their cost pc .

Thus, the above expression for P (x) holds for all q ∈ (0,1].
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Equation (3.19) states that the expected price the investor receives on the platform is equal

to the dealers cost pc plus a fraction of the total gains from trade pv −pc . The fraction of this

surplus that the investor has to pay is equal to κ, defined as in (3.20). Thus, κ can be viewed as

the endogenously determined bargaining power of the dealers. By taking derivatives, it can

be shown that κ is decreasing in M and q , which is consistent with economic intuition. As

M becomes larger, competition among the dealers for the business of the investor increases.

This competition is also higher, if the presence of other dealers on the platform becomes more

likely.

Note that the results in Lemma 2 required the assumptions that x(pv − pc ) > 0 and that

contacted dealers observe θ+δ. In the remaining part of this section we will derive an optimal

strategy of the investor that allows both assumptions to hold in equilibrium. We will restrict

the possible strategies of the investor to strategies that are linear in the sum θ+δ. This means

that the quantity the investor wants to trade is a (positive) multiple of θ+δ. It is obvious that

dealers then can infer θ+δ from the quantity the investor wants to trade. However, it is a

nontrivial result that the investor finds it indeed optimal to reveal θ+δ and the associated

information about θ through his choice of the quantity x. The reason why such an equilibrium

is possible, even as the private value δ becomes negligible, lies in the fact that the parameter a

as defined in 1 is generally less than one. If the investor reveals a given value of θ+δ to the

dealers, the dealers expect a dividend payment equal to ξ as defined in (3.4). The price for

the asset in the interdealer market will be ξa < ξ in expectation. This price in the interdealer

market determines the cost for dealers of providing the asset, which according to Lemma 2

determines the expected price the investor receives on the platform. If a < 1, the quotes the

investor gets on the platform are less sensitive to θ than the investor’s utility. This makes an

equilibrium possible in which the investor partially reveals his information θ to the dealers.

We now conjecture that the investor’s demand for the asset on the platform is given by

x =α(θ+δ), (3.21)

for some α ∈R. In the appendix we show that the expected price P (x) from Proposition 2 is

linear in x and ξ:

P (x) =β1ξ+β2x, (3.22)

with β1,β2 ∈ R. From the investor’s conjectured strategy (3.21), the contacted dealers infer
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θ+δ= x
α . Using (3.2), (3.22) and (3.4), the investor’s problem therefore becomes

max
x∈R

[
(θ+δ)x −x2 γI

2
σ2
ε−x

(
β1

σ2
θ

σ2
θ
+σ2

δ

x

α
+β2x

)]
. (3.23)

Note that (3.23) considers the investor’s expected payoff conditional on at least one response

to the RFQ. Since the probability of this event is exogenous and always gives a zero payoff, it

can be neglected. The first-order condition for (3.23) implies the investor’s optimal demand

schedule

x = (θ+δ)
α(σ2

θ
+σ2

δ
)

2αβ2(σ2
θ
+σ2

δ
)+αγIσ

2
ε(σ2

θ
+σ2

δ
)+2β1σ

2
θ

. (3.24)

Therefore, the investor’s optimal demand is indeed linear in θ+δ. Matching the coefficient in

(3.24) with the conjectured strategy (3.21) gives

α= σ2
θ
+σ2

δ
−2β1σ

2
θ

(2β2 +γIσ
2
ε)(σ2

θ
+σ2

δ
)

. (3.25)

The following proposition summarizes these results and states formal conditions under which

the equilibrium exists.

Proposition 2. The expected price on the platform P (x) from Lemma 2 is linear in ξ and x, as

stated in (3.22). Let M ≥ 2. If

κ< 1

2
, (3.26)

with κ as in (3.20), there is a threshold a > 0, such that the equilibrium on the platform described

below exists if and only if a < a. The last condition holds as N →∞ and σ2
W →∞ or as σδ →∞.

The inequality in (3.26) will always hold for all M ≥ 2,σ2
θ

,σ2
δ
> 0 if q → 1. If (3.26) does not hold,

the equilibrium does not exist.

The equilibrium is characterized as follows. The investor submits a demand x as determined in

equations (3.21) and (3.25). The dealers quote independently with probability q according to

the distribution function Fx in (3.18).

One furthermore has 0 <β1 < 1
2
σ2
θ
+σ2

δ

σ2
θ

, β2 >−γI

2 σ2
ε and α> 0 in each such equilibrium.

With the RFQ trading protocol, an equilibrium with linear strategies described in Proposition
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2 is possible even though a linear equilibrium in double auctions and two strategic traders

would not exist due to correlated values as Du and Zhu [2017] show. With the RFQ trading

protocol, only the investor has the option to avoid price impact by reducing his demand. The

dealers have to take the traded quantity as given and can merely charge a markup in addition

to their cost of providing the asset.

We will illustrate the results derived so far with an example.

3.4.3 A brief example

For illustrative purposes we fix the exogenous parameters as follows: N = 100, M = 10, σε = 1,

σW = N , σθ = 1, γd = 1, γI = 1, q = 0.3. To illustrate the economic mechanism of our model,

we first consider the case in which θ+δ= 1, which corresponds to a realization one standard

deviation above the mean. Afterwards we consider the case when θ+δ=−1. It is sufficient to

only consider the sum of the common value and the investor’s private, since both the investor’s

demand and the dealars’ inferences depend only on this sum.

In Figure 3.3, θ+δ has the high realization. In Panel (a) we plot the price pv (x) that the

investor is willing to pay for x units of the asset. If the absolute value of x is small, this price

is approximately equal to θ+δ, since the cost of bearing risk is small. The price pv (x) is

linearly decreasing in x because of the quadratic cost of bearing risk. We also plot the dealer’s

cost pc (x) of providing x units of the asset, if they believe the dividend payment is normally

distributed with mean ξ and precision σ2
ξ
, as defined in (3.4) and (3.5). One can see that this

cost is slightly increasing in x, which represents the difficulty of offsetting the trade in the

interdealer market or with the outside agent, respectively. The average price the investor can

expect conditional on at least one response to the RFQ, P (x), is between the other two curves.

In Panel (b) of Figure 3.3 we keep the investor’s reservation price pv (x), but now look at

the average price dealers quote when they the expected dividend level ξ from the investors

demand x one can see that this price increases faster in x than the cost pc (x) in Panel (a). We

also plot the profit the investor investor gets for demanding a certain quantity x. This profit

is the solution to problem (3.23) weighted by the probability of at least one response to the

RFQ. We see that the optimum is approximately at x = 0.69. This also turns out to be the value

of α. Thus, Panel (b) illustrates, that the investor has indeed no incentive to deviate from the

equilibrium strategy determined in the last section.

In Figure 3.4, we consider the low realization of θ+δ. Comparing panel (a) to Panel (a) in

Figure 3.3, we observe that all curves have been shifted downwards by a constant. The curve

of pv (x) has been shifted downwards more than the curve of pc (x). This has two reasons. First,

the dealers expectation ξ is a weighted average between θ+δ and zero, as (3.4) shows. Second,

the dealers do not find it as costly to hold a bad asset as the investor does. The dealers expect

to be able to resell the asset again at a favourable price, since there are many uninformed

dealers in the interdealer market. Panel (b) of Figure 3.4 shows a similar picture as Panel (b) of
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Figure 3.3 – High realization of θ+δ

(a) Expected and reservation prices if ξ is held fixed.

pv

pc

(b) Dealers infer ξ from the investor’s demand.

pv

Figure 3.4 – Low realization of θ+δ

(a) Expected and reservation prices if ξ is held fixed.

pv

pc

(b) Dealers infer ξ from the investor’s demand.

pv

Figure 3.3. In Figure 3.4, however, the investor sells the asset at a negative expected price. The

investor finds it profitable to do so, since pv (x) indicates that he would be willing to sell the

asset at an even lower price due to the negative expected dividend. The equilibrium strategies

have not changed in Figure 3.3 and Figure 3.4. Therefore, the optimal demand in Figure 3.4

is the negative of the optimal demand in Figure 3.3, since the respective realizations of θ+δ

have the same absolute value in both cases.

3.4.4 Competition vs. information leakage

In this section we take a closer look at the equilibrium described in Proposition 2. Specifically,

we take a look how the investor’s profits from trading on the platform are affected by varying

the number of dealers who are contacted on the trading platform.

We define πI as the investor’s ex-ante expected payoff in the equilibrium described in Proposi-

tion 2. By the investor’s utility function (3.2), his equilibrium strategy (3.25) and (3.22), one

has

πI = E

[
(1− (1−q)M )(θ+δ)2 1

2
α

]
. (3.27)
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Equation (3.27) takes into account that the investor does not receive any quote with probability

(1−q)M and that dealers infer ξ from the investor’s demand.

Our first goal is to study the role of M , the number of recipients of each RFQ. Increasing M

has three major effects that determine the investor’s profit:

• As is evident from (3.27) a higher M increases the probability of a trade 1− (1− q)M ,

whenever q < 1. Holding everything else equal, this increases expected profits.

• A higher M increases the fraction of informed dealers in the interdealer market. One can

verify that a as defined in (3.13) is strictly increasing in M for M < N . This makes prices

in the interdealer market more informative and it therefore becomes more difficult to

offset any inventory that was acquired on the platform.

• A higher M decreases κ, as mentioned in the discussion after Lemma 2. Therefore, the

bargaining power of the investor increases, which has a positive effect on his profit.

Considering these three bullet points, the investor’s profit should be maximal for M = 2, if

q = 1. If q = 1, one has κ= 0 and 1−(1−q)M = 1, i.e. the investor’s bargaining power is maximal

and a trade happens with probability 1. Then the first and third bullet point above become

irrelevant and increasing M is only associated with the cost of information leakage, discussed

in the second bullet point. The following proposition formally confirms that the conclusion of

the above heuristic reasoning is indeed true. Since we focus on the cost of information leakage

we assume for better algebraic tractability that there are no private benefits, i.e. σδ = 0.

Proposition 3. Let 2 ≤ M and q = 1 and σδ = 0. The equilibrium described in Proposition 2

exists if and only if a is below a certain threshold a, with a < 1
2 . In this equilibrium, one has

β1,β2,α> 0.

Furthermore, the equilibrium exists for any other choice of the number M ′ of dealers to contact

with 2 ≤ M ′ < M. If M = 2, the payoff for the investor is higher than in any other possible

equilibrium with M > 2.

When q < 1, the investor has incentive to contact more dealers, i.e. M ≥ 2. Because when q 	= 1,

the first and third effects turn out to be relevant: increasing M will improve the probability

of trading , as well as the bargaining power of the investor. But at the same time, the cost of

information leakage is also increased (second bullet point).

The following proposition states that M sometimes has to be larger than a certain threshold in

order for an equilibrium to exist in the first place. If q is relatively small, the bargaining power

κ of dealers may be so high that investors do not want to incur any price impact they have on

the trading platform. Increasing M lowers this bargaining power. Under the condition that

prices in the interdealer market remain sufficiently uninformative, an equilibrium exists for a

sufficiently large M . On the other hand, there is a clear upper bound on the possible number
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of dealers that are contacted on the platform for which an equilibrium exists. In particular, if

more than half of the dealers are contacted and there is strong asymmetric information about

the asset’s payoff (σδ = 0), an equilibrium cannot exist, because information leakage on the

platform is too strong.

Proposition 4. Let σ2
δ
= 0. If M > 1

2 N , there is no equilibrium on the trading platform as

described in Proposition 2.

If q <
1+
√

1− 2(a(2)2−5a(2)+2)
a(2)2−5a(2)+4

2 , there is no such equilibrium with M = 2. If furthermore a < ā, for an

ā ∈ (0, 1
2 ), then there is such an equilibrium with M ≥ 3.

3.4.5 Price impact

In this section we want to relate our theoretical results to the empirical findings of Collin-

Dufresne et al. [2017]. In particular, we want to study the price impact that an investor faces

on the trading platfrom and the price impact that dealers face in the interdealer market. The

total price impact a trader faces can be decomposed as

price impact = permanent impact+ transitory impact.

Collin-Dufresne et al. [2017] find that price impact in the D2C segment is higher than in the

D2D segment. This difference is largely due to a differene in the permanent price impact.

We now want to derive the price impact and find analogues in our model that correspond to

a permanent component and a transitory component. As commonly argued in theoretical

studies [Sannikov and Skrzypacz, 2016, Kyle et al., 2017], the study of price impact is an off-

equilibrium analysis. We will therefore assume an equilibrium as described in Proposition 2

and examine how the price a trader faces changes if the demanded quantity changes.

Equation (3.19) in Lemma 2 directly provides an expression of the expected price an investor

receives on the platform. If the investor changes his demanded quantity x, then pv and pc

in (3.19) and consequently the expected price for this quantity will change. Since the model

presented in this paper is static, we have to find a decomposition of this price impact that

would correspond to a decomposition into a permanent and a transitory component in a

dynamic model. In empirical studies in Market Microstructure, it is generally assumed that the

transitory component reflects a markup of the dealers, whereas the permanent component

reflects the cost of the dealers of providing the asset due to future price changes. In our

following analysis, we adopt this interpretation. We say that the price impact is permanent, if
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it was caused by a change in the dealers’ cost of providing the asset.5 Therefore, we define

PI := ∂

∂x
pc (x) (3.28)

as the permanent price impact of the investor, because (3.28) reflects the change in the price

that is due to an increase in the dealers’ cost of trading the asset.

In the following, we will consider pc as defined in (3.15). Due to adverse selection, we also need

to take into account that the dealers form their expectation ξ about the dividend payment

based on (3.4) and (3.21). The following proposition contains some statements about the price

impact on the platform and in the interdealer market.

Proposition 5. The (permanent) price impact an informed dealer faces in the interdealer

market is given by −b, where b is defined as in Proposition 1. Without adverse selection (dealers

do not update their belief ξ), one has

PI <−b,

i.e. the permanent impact on the trading platform is smaller then the permanent impact the

dealers face in the interdealer market. In the presence of adverse selection and ρ = σ2
θ

σ2
θ
+σ2

δ

> 1/4,

one has

PI >−b.

The dealers’ permanent price impact −b derived in Proposition 5 is due to a change in the

uninformed dealers’ belief about the dividend payment and a permanent change in the

aggregate inventory held by other dealers in the interdealer market. Proposition 5 shows

that the permanent price impact on the trading platform higher than the permanent impact

in the interdealer market if and only if investors know more about the asset than dealers

do. If there is no adverse selection and dealers do not update their belief about the asset’s

payoff, the dealers’ cost of providing the asset changes by a lower rate than the price in the

interdealer market would when trading the same quantity. This result is due to the dealers’

optimal portfolio choice in period 2. A dealer could always offset the investor’s demand in

the interdealer market with price impact −b. If the investor however changed his demanded

quantity, the dealer would, due to risk sharing considerations, in general not offset the total

amount of this quantity in the interdealer market. Due to optimality of the dealer’s portfolio

choice, the dealer must be able to provide the quantity at a lower price than the one he would

pay for this quantity in the interdealer market.

In the presence of adverse selection, however, the permanent price impact on the trading

5This assumes that changes in the dealers’ cost have no transitory component. Transitory changes in the dealers’
cost may arise due to inventory holding costs or order processing costs. In our model, dealers can immediately
offset their inventory and the interdealer market is competitive. Order processing is costless. Therefore, such
transitory components of dealers’ costs are not present in our model.
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platform is higher than the permanent price impact the dealers face in the interdealer market.

This makes our model (which assumes information asymmetries) consistent with the findings

of Collin-Dufresne et al. [2017] that the permanent price impact is higher on the trading

platform than in the interdealer market.

3.5 Centralized trading vs. electronic trading via RFQs

This section develops the market-design implications of our model. Our final goal is to

characterize situations in which investors are better off trading in a centralized market and

when an OTC market can improve their utility. In order to do this, we extend our previous

model from to the case in which there is a is a continuum of investors of measure μ6 who all

know the realization of θ in the beginning of period 1. The investors’ utility function is still

give by (3.2). The risk-aversion parameter γI is the same for all investors. The investors receive

a private benefit δi , where as before δi ∼N (0,σ2
δ

). The private benefits for different investors

are essentially pairwise independent for different investors. This assumptions lets us apply

the exact law of large numbers of Sun [2006]. The model assumptions about the dealers are as

in Section 3.3, except that we do not assume the presence of an outside agent in this section.

Before we establish an equilibrium in the OTC market, we quickly describe how the investors

would trade in a centralized market.

3.5.1 The centralized-market benchmark

Investors trade through double auctions in the centralized market. In these double auctions,

each investor specifies a demand schedule, i.e. conditional on each price p ∈R the investor

specifies a quantity he wants to trade. The equilibrium price in the centralized market will

be the market-clearing price. The market clearing price will be the unique price for which

the investors’ aggregate demand is equal to the aggregate supply of the asset (zero). The

specification of the investor’s utility function (3.2) gives the following maximization problem

for each investor for each p ∈R:

max
xi∈R

[
xi (θ+δi −p)− γIσ

2
ε

2
x2

i

]
,

where xi denotes the quantity the investor demands given the price p on the exchange.

The sufficient first-order condition for the above optimization problem gives

xi = θ+δi −p

γIσ
2
ε

,

6Formally, let (Ω,F ) denote the measurable space of investors. Then there is a bijective measurable map
Φ : Ω→ [0,μ] and the measure of any set of investors F ∈F is equal to the Lebesgue measure of the set Φ(F ).
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To determine the market-clearing price, we substitute each investor’s demand schedule xi

into the market clearing condition,
∫

xi di = 0.7 We get

0 = μ
θ

γIσ
2
ε

−μ
p

γIσ
2
ε

⇔ p = θ ,

where we have used the fact that
∫
δi di = 0 almost surely by the exact law of large numbers.

Using each investor’s optimal demand schedule, the utility function (3.2) and the fact that the

market clearing price is given by θ, we can define each investor’s ex-ante payoff:

πc
i := E

(
1

2

(θ+δi −p)2

γIσ
2
ε

)
= 1

2

σ2
δ

γIσ
2
ε

. (3.29)

Equation (3.29) states that the centralized market realizes all the gains from trade that arise due

to dispersed private values. When all investors have the same valuation of the asset (σ2
δ
= 0),

no trade happens and the investor’s profits become zero. Each investor’s profit decreases if the

cost of bearing risk increases.

3.5.2 Electronic trading with a continuum of investors

The model with a continuum of investors is very similar to the model with one investor.

It will turn out that a continuum of investors allows us to derive an equilibrium without

the assumption of an outside agent. We will let the mass of investors have a measure μ ∈
(0,∞). In period 1, all investors submit RFQs to M dealers. Afterwards, dealers trade in the

interdealer market. All investors contact the same M dealers at the same time. The dealers

then independently respond with a probability q to each RFQ. As before, we will determine

the equilibrium in this model by backward induction.

Since there is no outside agent anymore in this section, uninformed dealers in the interdealer

market take into account that the aggregate supply of the asset is correlated with the investors’

information about the dividend level θ. We will conjecture that each investor demands a

quantity xi on the trading platform, where

xi =α1θ+α2δi , (3.30)

for some α1,α2 ∈R. As in Section 3.4, it will turn out that an investor always trades the asset

if he receives a quote on the trading platform. Since each dealer responds independently

with probability q to each RFQ, the an investor is able to trade the asset with probability

P(tr ade) = 1− (1−q)M . By the exact law of large numbers and (3.30), the investors’ aggregate

7The notation di means that we integrate with respect to the measure on set of investors defined in Footnote 6.
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demand traded on the platform given by

X ag g :=
∫

P(tr ade)(α1θ+α2δi )di = (1−(1−q)M )
∫

(α1θ+α2δi )di = (1−(1−q)M )μα1θ, (3.31)

where the last equality holds almost surely. By symmetry, each dealer gets an equal fraction of

this aggregate demand. We define Xk :=− X ag g

M as the inventory of each dealer k ≤ M who gets

contacted on the trading platform. From the dealers’ utility function (3.1), one obtains the

optimal demand schedule qk for each dealer k ≤ M :

qk = θ−p2

γdσ
2
ε

+XK . (3.32)

Notice that Xk is a multiple of θ, this will simplify the inference problem that the uninformed

dealers face in the interdealer market. Analogously to Section 3.4, we conjecture that the

market-clearing price in the interdealer market is given by

p2 = aθ+bW, (3.33)

where W is the noise in the aggregate supply of the asset. The uninformed dealers use the

normal projection theorem obtain the distribution of the dividend payment conditional on

the market-clearing price p2. The dealers’ utility function (3.1) now gives the optimal demand

qk = E(D|p2)−p2

V(D|p2)
(3.34)

for the uniformed dealers who do not get contacted on the trading platform. Analogously

to Proposition 1, we now state the equilibrium in the interdealer market, conditional on the

investors’ trading strategy (3.30).

Proposition 6. For any given α1, there is a rational expectations equilibrium such that the

market clearing price is given by (3.33). Define
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ϕ : = (1− (1−q)M )μ, (3.35)

τu : = 1

V ar (D|p2)
= 1

σ2
θ
+σ2

ε −ψσ2
θ

, (3.36)

ψ : = a2σ2
θ

a2σ2
θ
+b2σ2

W

= σ2
θ

σ2
θ
+
(

γd

Mτε+γdϕα1

)2
σ2

W

(3.37)

Then a and b are given by

a = Mτε+γdα1ϕ+ (N −M)ψτu

Mτε+ (N −M)τu
(3.38)

and

b =− γd

Mτε+γdϕα1
a, (3.39)

One has a > 0. One also has a ≤ 1 with a strict inequality if M < N .

Lemma 2 gives the dealers optimal quoting strategy for any aggregate quantity Xk that dealer

k trades with the investors and any demand xi they face from an individual investor i . There is

only a slight difference between the case in Section 3.4 and the setup considered here. Whereas

the aggregate demand a dealer faced was equal to the demand by the single investor in Section

3.4, the quantities xi and Xk are different here. Using Lemma 2 and taking account of this

difference gives the expected price P (xi ), investor i gets for his demand xi conditional on at

least one response to the RFQ:

P (xi ) = pc (Xk )+ (pv (xi )−pc (Xk )
M q(1−q)M−1

1− (1−q)M
. (3.40)

We already determined in (3.30) which form each investor’s demand xi takes. We also know

the quantity Xk given these individual demand schedules. We now determine the values of

pv (xi ) and pc (Xk ), so that we can use (3.40) to determine the expected price that each investor

faces for his demand.
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We define this dealer’s value function that maps his inventory after period 1 Xk to expected

utility as

Vk,1(θ, Xk ) := Ek

[
D(qk −Xk )−p2qk −

γd

2
σ2
ε(qk −Xk )2

]
, (3.41)

where we used the dealer’s utility function (3.1).

Having obtained the dealer’s utility Vk,1(θ, Xk ) when holding Xk units of the asset, we define

the dealer’s break even price pc (X ) such the payment compensates for the marginal cost of

holding an additional marginal unit of the asset. The resulting expression is stated in the

following Lemma.

Lemma 3. Conditional on the equilibrium inventory of dealer k ≤ M, the dealer’s equilibrium

break-even price for for the asset is given by

pc (Xk ) :=− ∂

∂Xk
Vk,1(ξ, X ) = aθ−b

(1−a)θ

γdσ
2
ε

+b
ϕ

M
α1θ, (3.42)

where a,b,ϕ are defined as in Proposition 6.

Given that a dealer inferred the realization of θ from the investors’ demand, a dealer can infer

the private value δi of investor i from this investor’s individual demand and (3.30). Given the

investor’s demand for xi units of the asset, a dealer can infer the maximum price the investor

is willing to pay for these xi units by using (3.2):

pv (xi ) := θ+δi − γI

2
xσ2

ε. (3.43)

Using (3.31), (3.42) and (3.42), one can rewrite (3.40) as

P (xi ) =β1θ+β2xi , (3.44)

for some β1,β2 ∈R stated in the appendix. We now determine the optimal amount xi that an

investor wants to demand given that the expected price he faces on the platform is given by
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(3.44). The maximization problem of investor i is given by

max
x∈R

[
(θ+δi )xi −x2 γI

2
σ2
ε−xi

(
β1θ+β2xi

)]
. (3.45)

The expression in (3.45) considers the investor’s expected payoff conditional on at least one

response to the RFQ, since the investor’s payoff is maximized when his payoff conditional on

at least one response is maximized. The first-order condition to the problem in (3.45) gives

the investor’s optimal demand schedule

x = θ
1−β1

2β2 +γIσ
2
ε

+δ
1

2β2 +γIσ
2
ε

. (3.46)

One can immediately determine α1 and α2 from (3.30) by looking at (3.46):

α1 = 1−β1

2β2 +γIσ
2
ε

, (3.47)

α2 = 1

2β2 +γIσ
2
ε

. (3.48)

We are now ready to establish the existence of an equilibrium.

Proposition 7. The expected price on the platform P (xi ) that an investor gets on the platform

for his demand xi is given by (3.44) for some β1,β2 ∈R. Let M ≥ 2. There is an equilibrium on

the platform described below if and only if M < N and

κ= M q(1−q)M−1

1− (1−q)M
< 1

2
.

The equilibrium is characterized as follows. The investor submits a demand xi as determined in

equations (3.30) with α1,α2 ∈R, with 0 <α1 < 1 and α1 ≤α2. The dealers quote independently

with probability q according to the distribution function F in (3.18) with pc (Xk ) and pv (xi )

given by (3.42) and (3.43).

3.5.3 Market design

In this section we will use the results derived in Section 3.5.1 and Section 3.5.2 and study

when investors prefer the centralized market and when they prefer the OTC market with an
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electronic trading platform. Proposition 7 states that there cannot be an equilibrium on the

electronic trading platform if κ≥ 1
2 or N = M . In this case, there is only an equilibrium in the

centralized market. Therefore, we restrict our further discussion to the case in which κ< 1
2

and M < N . The following claim follows from (3.29) and Proposition 7.

Proposition 8. Let 0 < κ < 1
2 and 2 ≤ M < N . As σ2

δ
→ 0, investors prefer to trade in on the

trading platform in the OTC market. As σ2
δ
→∞, investors prefer to trade in the centralized

market.

If σ2
δ
→ 0, equation (3.29) implies that investors’ gains from trading in the centralized market

go to zero. However, due to information asymmetries between dealers and investors, investors

can still benefit from trading in the OTC market.

Suppose on the other hand, that σ2
δ
> 0 and the mass of investors μ becomes very large. Then

holding everything else constant, the investors’ demand will be very sensitive to variations in

θ. In this case, an equilibrium is only possible if α1, the coefficient in the investors’ demand

on θ is very small and investors will mainly trade based on their private value of holding the

asset. If markups in the interdealer market are positive, investors will therefore prefer to trade

in the centralized market instead. The following proposition proofs this statement formally.

Proposition 9. Let 0 <κ< 1
2 , 2 ≤ M < N and σ2

δ
> 0. As μ→∞, investors prefer to trade in the

centralized market.

The proof of Proposition 9 shows that α1 → 0 as μ→ 0. According to (3.47), this is equivalent

to β1 → 1, holding everything else equal and noting that by (C.27), β2 is unaffected by μ. Thus,

(3.44) implies that the expected price an investor receives on the platform when μ→∞ is

approximately the sum of the common value θ of the dividend payment and a markup. In this

case, the investors’ gains from trade are derived mostly from their private values.

So far, we assumed that κ> 0, which lead to positive expected markups for the dealers when

quoting on the trading platform. In the following we consider the case in which q → 1, which

leads to κ→ 0. If κ→ 0, these markups become negligible and dealers efficiently intermediate

trades between their customers as if these customers were trading in a centralized market.

Furthermore, the probability of not receiving a quote goes to zero as q → 1. Thus, all the gains

from trade that could be realized in the centralized market would also be realized in the OTC

market. However, investors can still benefit from information asymmetries between them and

the dealers in the OTC market. As q → 1 investors therefore prefer to trade in the OTC market.

This claim is formally proved in the next proposition.

Proposition 10. Let 2 ≤ M < N . As q → 1, investors prefer to trade on the trading platform.

3.6 Discussion and concluding remarks

Electronic trading platforms play a central role in today’s OTC markets. The implications of our

model are consistent with recent empirical research that studies OTC markets with electronic
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trading platforms. One important feature of our model is information leakage which is studied

in Hendershott and Madhavan [2015] and Hagströmer and Menkveld [2016]. We also showed

that information asymmetries between dealers and investors are a sufficient and necessary

condition to generate the price impact patterns observed in Collin-Dufresne et al. [2017].

Therefore, the first part of this paper can be viewed as a theoretical foundation of several

empirical findings in recent research. The model can also be used to evaluate the impact of

recent financial regulation on investors’ trading profits. The Dodd-Frank Act mandates that

the most liquid index CDS in the US are trades on electronic platforms. An RFQ furthermore

should be sent to at least three dealers.8 We show that increasing the number of contacted

dealers may decrease investor’s profits if the cost of information-leakage is high. On the other

hand, the number of contacted dealers has to be sufficiently high in order for an equilibrium

to exist, if competition among dealers on the platform (in terms of response rates) is low.

In the second part of the paper, we considered a hypothetical scenario in which there is

either a centralized exchange or an OTC market and studied the respective implications on

investor welfare. Some of our results are consistent with the recent theoretical literature in the

area of market design. That investor welfare is generally higher on exchanges if the investors

associate strong private values with holding the asset, can be viewed as an analogue to the

result of Babus and Parlatore [2017] that there is only a centralized-market equilibrium if the

investors’ values of holding the asset are sufficiently independent. We also emphasize the

role of information asymmetries that becomes important in OTC markets. In this respect

our paper is related to Glode and Opp [2017]. However, the specific trading protocol on

electronic trading platforms features some aspects that are not present in other models of OTC

markets. As the RFQ response rate q of dealers becomes high, our model shows that electronic

trading platforms indeed become similar to exchanges, in the sense that dealers efficiently

intermediate the demand from their customers. This result justifies the common opinion that

electronic trading platforms represent a natural compromise between exchanges and OTC

markets.9

To conclude, we want to make some general remarks on our model assumptions. As every the-

oretical model, also the one presented in this paper is build on some simplifying assumptions

trading-off analytical tractability against appropriate representation of the real world. The fact

that all investors are equally informed about the asset’s payoff is certainly not completely real-

istic, but should capture the general information asymmetry between investors and dealers

that in many markets seem to exist. To justify the way we model trading in the interdealer

market, we want to refer to the event that made both the academic world and international

regulatory authorities focus so much on OTC markets in the first place: the recent financial

crisis. Arguably, demand for certain credit derivatives originated from informed hedge funds

who wanted to bet against a credit bubble in the US credit market. Some investment banks

may have learned about the value of certain securities from this informed demand and may

have tried to use this knowledge against other less informed investment banks or other clients

8See Collin-Dufresne et al. [2017] for an overview of the regulatory changes in the US CDS market.
9See Stafford [2016].
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(which may be represented by noise traders in our model).

This example also suggests to interpret the welfare results derived from our model with a slight

grain of salt. In this paper, we exclusively focused on investor welfare. While this approach

may be viewed as standard in market design, it does not take into account financial stability

considerations that may be important when determining the optimal level of transparency in

the market. If losses to dealers or noise traders are large, the financial system may very well

be affected in ways that cannot be captured in the model presented here. While the trade-off

between the efficient allocation of assets and financial stability is a common theme in banking,

examining the trade-off between investor welfare and financial stability in OTC markets may

be a theme for future research.
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A Appendix to Chapter 1

A.1 Micro-Found the Trading Protocol

In this section, I micro-found the trading protocol by incorporating the fact that in practice,

customers have uncertainty regarding the degree of competition in the market. Specifically, I

split the D2C trading round into two sub periods. In the first sub-period, customer can decide

whether to direct the order to a dealer (monopolistic pricing), or start a flash auction with

uncertainty on the number of participants. If customer decides to have a flash auction, then

with probability 1−θ, the auction is competitive, and customer’s order is able to trade at the

centralized inter-dealer pricing kernel M D2D. However, with probability θ, there is only one

response and customer has to trade at the monopolistic pricing kernel M̂ D2C

(i,j) . Hence, ex-ante,

customer’s utility from a flash auction is given by,

(1−θ)ν(i,j)[M D2D]+θν(i,j)[M̂ D2C

(i,j) ] .

Now, in sub-period one, the dealer then quotes a pricing kernel, M D2D

(i,j) , such that customer

breaks even between a directed order and a flash auction. I assume that in case of break-even,

customer trades with the dealer using directed orders. The dealer’s quoting problem is again

a monopolistic pricing rule, and he maximizes his indirect utility, subject to the customer’s

participation constraint

ν(i,j)[M D2C

(i,j) ] ≥ (1−θ)ν(i,j)[M D2D]+θν(i , j )[M̂ D2C

(i,j) ] ,

as well as the two no-arbitrage constraints. Interestingly, the first-order condition of this maxi-

mization problem coincides with the optimal condition in the relaxed problem (1.12), with

π(i,j) being endogenized as the Lagrange multiplier of the customer’s participation constraint.

A.2 Expansion

I use log-utility agents as an example. For other utility functions, the steps are similar.
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Definition 4. The linear operator on a nonlinear risk function F is defined as

M [F ] ≡ M (0)
(

M (0)F −E [M (0)F ]− (M (0) −E [M (0)]
) Cov[M (0), M (0)F ]

Var[M (0)]

)
= M (0)εF .

Lemma 6. The linear operator M [·] satisfies: (i) M [F ] = 0 if F is linear in X ; (ii) E [M [F ]X ] =
E [M [F ]] = 0.

For ease of notation, I omit the exchange subscript (i , j ) and the superscript D2C and D2D.

Instead, I refer the D2D exchange pricing kernel to be N , and any D2C exchange pricing kernel

to be M (There are many D2C exchanges, however they share the same ‘kind’ of pricing kernel

formula.).

The following lemma help me to further reduce the number of endogenous parameters. It

reads the Lagrange multipliers for the two no-arbitrage conditions, (1.6) and (1.7), are linearly

related.

Lemma 7. The Lagrange multiplier for the no-arbitrage conditions satisfy

μ(i,j),r =−er sμ(i,j),s .

Assumption 5. I assume the subsistence parameter c is chosen such that the customer’s out-side

option has an interior solution in the fragmented equilibrium with competitive D2C exchanges.

I make the following change of variables: w =λ−1 for all D2C pair (i , j ). Then the F.O.C. of the

bargaining problem (1.12) becomes,

0 = −M−1πw +M−2N w − (F +c)(κ−π)−μ(X − ser ) .

For each D2C exchange, the endogenous parameters satisfy (1.8), (1.13), (1.7):

w = E [M(F +c)] ,

κ= E [M−1N ] ,

e−r = E [M ] .

Next, for the D2D exchange, the global endogenous parameters satisfy

s = E [N X ] ,

s =
�

[0,1]2
κw di d j +wD −2ce−r .

Monopolistic Dealers

Proposition 9. When F (0) =αX and π(0) = 0, the fragmented equilibrium with monopolistic

dealers coincides with the centralized, competitive equilibrium.
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Lemma 8. The future price of the risk security is

er s(0) = 1

E [(X +2c)−1]
−2c .

Hence, when dealers are option sellers, the shape of the mid-pricing kernel is determined by

the option buyers nonlinear endowments, implying a positive variance risk premium.

Proposition 10. When the nonlinear risk F (1) is small, there exist a unique equilibrium. The

D2D pricing kernel is N = M (0) +εF N (1), in which 1

N (1) = 1

s(0) +2ce−r +w (0)
D

M
[
−F (1)

J

]
.

The pricing kernel for each of the D2C exchanges is M (1) = M (0) +εF M (1), in which

M (1) = − 1

2w (0)
M
[
F (1)]+ 1

2
N (1) .

Corollary 2. The first-order effect of nonlinear exposures and market power on the risk premium

of the underlying asset is zero. The effect would be non-zero if either the risk-free asset or the

risky asset is not available to all customers.

Lemma 9. For each of the customers, the equilibrium demand on the risky security based on

the outside option is,

b(1) = 1

er s(0) +2c

Cov
[
M (0),F (1)M (0)

]
Var
[
M (0)

] = μ(1) .

Competitive Dealers For simplicity, assume the dealers have the same market powerπ(1) > 0,

in an ‘almost’ competitive D2C exchange, I have π= 1−εππ
(1).

Proposition 11. When the market power shock is small, there exists a unique equilibrium. The

D2C pricing kernel is N = M (0) +επN (1), in which

N (1) = 1

s(0) +2ce−r
M [−FJ ]π(1) .

The pricing kernel for each of the D2C exchange is M = M (0) +επM (1), in which

M (1) = − 1

w (0)
M [F ]π(1) +N (1) .

Lemma 10. Suppose the nonlinear risk F is a convex, and continuous twice differentiable

1I define F (1)
J ≡−�[0,1]2 F (1) di d j .
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function defined on [Xmin, Xmax], and satisfies

lim
X→Xmin

(
−F + (X +2c)F ′ + Cov[M (0), M (0)F ]

Var[M (0)]

)
< 0,

lim
X→Xmax

(
−F + (X +2c)F ′ + Cov[M (0), M (0)F ]

Var[M (0)]

)
> 0,

then the following results hold

• the linear operator M [F ] has only one critical point X ∗ ∈ [Xmin, Xmax];

• the equation M [F ] = 0 has two roots X1, X2 ∈ [Xmin, Xmax]; 2

• the linear operator M [F ] is positive for X < X1 or X > X2, and is negative for X ∈ [X1, X2];

• M [F ] is decreasing for X ∈ [Xmin, X ∗], and increasing in X ∈ [X ∗, Xmax];

Proof. The critical point of linear operator M [F ] can be determined by

−(X +2c)−2F + (X +2c)−1F ′ + (X +2c)−2 Cov[M (0), M (0)F ]

Var[M (0)]
= 0.

As the pricing kernel M (0) > 0, I multiply both sides by (X +2c)2 to get

−F + (X +2c)F ′ + Cov[M (0), M (0)F ]

Var[M (0)]
= 0.

The left-hand side is monotonic as its first-order derivative is

−F ′ + (X +2c)F ′′ +F ′ = (X +2c)F ′′ .

Hence, F ′′ determines whether the equation is increasing or decreasing. For convex F , the

left-hand side is monotonically increasing. Hence, for the system to have a solution X ∈
[Xmin, Xmax], I need

lim
X→Xmin

−F + (X +2c)F ′ + Cov[M (0), M (0)F ]

Var[M (0)]
< 0,

as well as

lim
X→Xmax

−F + (X +2c)F ′ + Cov[M (0), M (0)F ]

Var[M (0)]
> 0.

Therefore, M [F ] first increases then decreases. As E [M [F ]] = 0, there are two solutions

X1, X2 ∈ [Xmin, Xmax] to the following equation

M [F ] = 0.

2Without loss of generality, I assume X1 < X2.
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In practice, customers can buy OTM puts and sell OTM calls, which is covered by this lemma.

The net effects depend on the particular choice of the physical density, as well as the shape

of the two functions. For example, if the dealers long OTM puts and short OTM calls, then in

equilibrium, customers buy OTM puts and sell OTM calls; this demand creates downward

pressure on the skewness of the risk-neutral density (measured by the ‘mid’ price), while the

risk-neutral variance depends on the relative selling pressure between the calls and the puts.

Lemma 11. For small nonlinear risk, the equilibrium price for the risky security is

s = s(0) +ε2s(2) ,

in which

s(2) = −er Cov

[
M (0), (M (0))−2

(�
(M (1))2w (0) di d j + (N (1))2w (0)

D

)]
.

A.3 Proofs

Proof of Proposition 1. Suppose the claim holds, then M D2C

(i,j) = M D2D for all D2C exchanges.

Then from the inter-dealer market clearing condition I get,

X =
∫1

0
J (λ(i,j)M

D2D)di d j +
∫1

0
J (λ(j,i)M

D2D)di d j ,

where the two Lagrange multipliers are given by their corresponding budget constraints,

0 = E [M D2D J (λ(i,j)M
D2D)]−E [M D2DF C

i ],

0 = E [M D2D J (λ(j,i)M
D2D)]−E [M D2DF D

j ]+E [M D2DG∗
(i,j)].

Note that as the pricing kernels are the same across exchanges, the last term in the dealer j ’s

budget constraint becomes customer i ’s budget constraint, which is zero.

Next, I need to verify that indeed M d2d solves the Nash bargaining problem (1.5). This is indeed

the case.

Hence, I conclude that the fragmented equilibrium is equivalent to the all-to-all competitive

equilibrium. Furthermore, this equilibrium allocation is unique. To see this, Suppose now

that there is another solution that also solves the Nash bargaining F.O.C., then multiply M D2D

on both sides, and take expectation to obtain,

E
[

J ′(λ(i,j)M
D2C

(i,j) )M D2C

(i,j) M D2D
]2 = E

[
J ′(λ(i,j)M

D2C

(i,j) )(M D2D)2]E
[

J ′(λ(i,j)M
D2C

(i,j) )(M D2C

(i,j) )2] ,

where I have used Lemma 7. Hence, by Cauchy-Schwartz inequality, the equality holds only
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when M D2C

(i,j) ∝ M D2D (i.e., M D2C

(i,j) = M D2D).

Proof of Theorem 1. Then the inter-dealer market clearing condition is

X =
∫

[0,1]2
(λ(i,j)M

D2C

(i,j) )−1 di d j + (M D2D)−1
∫

[0,1]2
(λ(j,i))

−1 di d j −2c .

Suppose there are only two types of customers, then

X = ∑
i=1,2

αi (λ(i,j)M
D2C

(i,j) )−1 + (λD M D2D)−1 −2c ,

where αi is the population of type i customer, and

λ−1
D ≡ ∑

i=1,2
αiλ

−1
(j,i) .

0 = A2(M D2D)4 +2AB(M D2D)3 +D(M D2D)2 +E M D2D +F .

A = (X +2c)2 ,

B = − (X +2c)

(
α1π(1,j)

λ(1,j)

+ α2π(2,j)

λ(2,j)

+ 2

λD

)
+ Z(1,j)α

2
1

λ(1,j)

+ Z(2,j)α
2
2

λ(2,j)

,

C = α1π(1,j)α2π(2,j)

2λ(1,j)λ(2,j)

+ α1π(1,j)

λDλ(1,j)

+ α2π(2,j)

λDλ(2,j)

+ 1

λ2
D

,

D = B 2 +2AC − 4Z(1,j) Z(2,j)α
2
1α

2
2

λ(1,j)λ(2,j)

,

E = 2BC + Z(1,j)α
2
1α

2
2π

2
(2,j)

λ(1,j)λ
2
(2,j)

+ Z(2,j)α
2
1α

2
2π

2
(1,j)

λ2
(1,j)λ(2,j)

,

F =C 2 − α2
1α

2
2π

2
(1,j)π

2
(2,j)

4λ2
(1,j)λ

2
(2,j)

.

Proof of Proposition 2. From Lemma 10, there exists a point K ∗, such that
∫K ∗

0 M [F ]dX = 0.

Suppose the two roots are given by K1 < K ∗ < K2, then a call option with strike K ∈ (K ∗,K2)
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has price increment

E [M [F ](X −K )+] =
∫Kmax

K
M [F ](X −K )dX,

=
∫K2

K
M [F ](X −K )dX+

∫Kmax

K2

M [F ](X −K )dX,

=
∫K2

K
M [F ](X −K2)dX+ (K2 −K )

∫Kmax

K
M [F ]dX+E [M [F ](X −K2)+] .

All the three terms are positive in the last expression. The argument is similar for any K ∈
(K1,K ∗). This proofs that option prices are all positive. As the variance risk premium is the

positively weighted-sum of all available option prices [Bakshi et al., 2003], this immediately

suggests a positive variance risk premium.

m(1)
2 = er E

[
M[F ]

(
log X −m(0)

1

)2]> 0.

Proof of Proposition 3. The first-order effect of a ‘small’ nonlinear shock FJ on the skewness

risk premium derived from the average D2C pricing kernel is proportional to

E

[
M [FJ ]

((
log

X

s(0)
−mQ

1

)3

−3mQ
2 log

X

s(0)

)]
.

Then take the functional derivative with respect to FJ to obtain

PM

[(
log

X

s(0)
−mQ

1

)3

−3mQ
2 log

X

s(0)

]
.

As P is positive, only the second term matters at determining the sign of the first-order effect

on the skewness risk premium. The derivative of the second term with respect to X yields a

cubic equation for log X
s(0) . Hence, the second term of the functional derivative has at most

three critical points (i.e., M shape) and at least one critical point. Furthermore, when X → 0,

the functional derivative converges to −∞. Therefore, demand on options that are far out-of-

the-money pushes down the skewness risk premium.

Next, as the linear operator M [·] has mean of zero, suggesting that at least one critical point

has to be above zero. Hence, options’ demand nearby this point may push up the skewness

risk premium.

Now, assume P is log-normally distributed, then direct computation shows that the second

term satisfies the following properties: (i) when X →∞, the functional derivative converges to

a negative constant; (ii) for σ smaller than a threshold σ̄, demand on OTM call options with

strikes slightly above the future price, er s(0), pushes up the skewness risk premium; (iii) for the
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same threshold, the last time the functional derivative crosses x-axis at X̂ � er s(0), hence call

option demand at that resion has negligible effects on the skewness risk premium.

Proof of Proposition 4. See proofs for Proposition 5 and 6.

Proof of Proposition 5. For an almost competitive D2C exchange, s.t. επ, the customer’s option

demand is

−F ′′ +επ

(
−M (1)w (0)

(M (0))2

)′′
= −F ′′ +επ

(
F ′′π(1) + w (0)

s(0) +2ce−r
F ′′

J π
(1)
)

.

Aggregate over all customers to get,

F ′′
J +επ

(
− w (0)

D

s(0) +2ce−r
F ′′

J π
(1)

)
.

For convex FJ , customers overall buy more options when dealers’ wealth is reduced. Mean-

while, the mid pricing kernel is,

M (0) +επ

(
1

s(0) +2ce−r

w (0)
D

s(0) +2ce−r −w (0)
D

M [FJ ]π(1)

)
.

Hence, for convex FJ , reducing dealers’ wealth reduces the average price for customers to buy

options.

Proof of Proposition 6. According to the Carr-Madan formula, customer’s option demand is

the second-order derivative of the demand function G ,

G ′′ = εF

(
− w (0)

(M (0))2
M (1) −F

)′′
.

Plug-in the formula for M (1) to get,

εF

(
−1

2
F ′′ + 1

2

w (0)

s(0) +2ce−r +w (0)
D

(
F (1)

J

)′′)
.

Then aggregate among all customers to get customers’ net buy of options,

εF

(
s(0) +2ce−r

s(0) +2ce−r +w (0)
D

(
F (1)

J

)′′)
.

The first term in the product is decreasing in w (0)
D , hence customers buy more options when
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dealers’ wealth decreases, for a convex F (1)
J . Meanwhile, the mid pricing kernel is

M (0) +εF

(�
[0,1]2 w (0)M (1) di d j

s(0) +2ce−r −w (0)
D

)
.

Plug-in the definitions to get

M (0) +εF

(
w (0)

D

(s(0) +2ce−r )2 − (w (0)
D )2

M
[

F (1)
J

])
.

Similarly, for a convex F (1)
J , customers pay less to buy options from dealers, if w (0)

D is reduced.

Proof of Proposition 7. It follows directly from Proposition 2 and 3.

Proof of Proposition 8. When the D2C exchanges are ‘almost’ competitive, the effective per-

centage bid-ask spreads are given by

επ
|E [(M (1) − M̄ (1))O(K )]|

E [M (0)O(K )]
+O (ε2

π) .

Plug-in the definitions to get the difference in the pricing kernel,(
− 1

w (0)
M [F ]+ 1

s(0) +2ce−r −w (0)
D

M [−FJ ]

)
π(1)

When the nonlinear risk is ‘small’ and dealers are monopolists, the spreads are given by

εF
|E [(M (1) − M̄ (1))O(K )]|

E [M (0)O(K )]
+O (ε2

F ) .

Plug-in the definitions to get the difference in the pricing kernel,

1

2

(
− 1

w (0)
M
[
F (1)]+ 1

s(0) +2ce−r −w (0)
D

M
[
−F (1)

J

])
.
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Proof of Proposition 9. The endogenous parameters are solved explicitly, 3

w (0) =αs(0) +ce−r ,

κ(0) = 1,

μ(0) = 0,

s(0) = E [M (0)X ] ,

w (0)
D =αD s(0) +ce−r .

Proof of Corollary 2. First-order expand on the first-order condition (1.12) of the bargaining

problem to get

0 = 1

(M (0))3

(
M (0)M (0)w (1) +M (0)N (1)w (0) −2M (1)M (0)w (0))

− 1

(M (0))2

(
M (0)π(0)w (1) +M (0)π(1)w (0) −M (1)π(0)w (0))

−F (0)κ(1) +F (0)π(1) −F (1)κ(0) +F (1)π(0) −Xμ(1) −κ(1)c +erμ(0)s(1) +erμ(1)s(0) +π(1)c .

Given that κ(0) = 1, μ(0) = 0 and M (0) = M (0), I simplify the equation to get,

0 = 1

(M (0))2

(
M (0)w (1) −2M (1)w (0) +N (1)w (0))

− 1

(M (0))2

(
M (0)π(0)w (1) +M (0)π(1)w (0) −M (1)π(0)w (0))

−F (0)κ(1) +F (0)π(1) +F (1)π(0) −F (1) −Xμ(1) −κ(1)c +erμ(1)s(0) +π(1)c .

Then suppose the D2D exchange is monopolistic, then π(0) =π(1) = 0.

0 = 1

(M (0))2

(
M (0)w (1) −2M (1)w (0) +N (1)w (0))

−F (0)κ(1) −F (1) −Xμ(1) −κ(1)c +erμ(1)s(0) .

Rearrange and solve for M (1) to get,

M (1) = 1

2w (0)

(
(M (0))2(−F (0)κ(1) −F (1) −Xμ(1) −κ(1)c +erμ(1)s(0))+M (0)w (1) +N (1)w (0)) .

The customer budget constraint implies

w (1) = E [F (0)M (1) +F (1)M (0) +M (1)c] .

3I define αD ≡ 1−�[0,1]2 αdi d j .
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From the no-arbitrage conditions, we know that E [M (1)] = 0 and E [M (1)X ] = s(1). Hence

w (1) = αs(1) +E [F (1)M (0)] .

The definition for the endogenous parameter κ implies

κ(1) = −E

[
1

M (0)

(
M (1) −N (1))] .

Hence κ(1) = 0, then I get

M (1) = 1

2w (0)

(
(M (0))2(−F (1) −Xμ(1) +erμ(1)s(0))+M (0)w (1) +N (1)w (0)) .

From the fact that E [M (1)] = E [N (1)] = 0, I get

μ(1) = E [M (0)w (1) − (M (0))2F (1)]

E [(M (0))2(X −er s(0))]
.

Under the D2D market clearing condition

0 =
(
M (0)w (1)

D −N (1)w (0)
D

)
+
�

[0,1]2

(
M (0)w (1) −M (1)w (0)) di d j .

Take expectation to get

w (1)
D = −

�
[0,1]2

w (1) di d j .

Multiply by X and take expectation on the D2D market clearing condition to get

s(1) = 0.

Then solve for the D2D pricing kernel,

N (1) = ((1+αD ) s(0) +3ce−r )−1

×
�

[0,1]2
(M (0))2(F (1) +μ(1)(X −er s(0)))−M (0)w (1) di d j .

The D2C pricing kernel is,

M (1) = 1

2w (0)

(
(M (0))2(−F (1) −μ(1)(X −er s(0)))+M (0)w (1) +N (1)w (0)) .
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The endogenous parameters are given by

w (1) = E
[
F (1)M (0)] ,

κ(1) = 0,

μ(1) = 1

er s(0) +2c

Cov
[
M (0), M (0)F (1)

]
Var
[
M (0)

] ,

s(1) = 0.

w (1)
D =−

�
[0,1]2

w (1) di d j .

Proof of Proposition 11. From the bargaining first-order condition

0 = − 1

(M (0))2

(
M (0)π(1)w (0) +M (1)w (0) −N (1)w (0))

−Fκ(1) +Fπ(1) −Xμ(1) −κ(1)c +erμ(1)s(0) +π(1)c

We get κ(1) = 0 from its definition. Next we solve for the D2C exchange pricing kernel,

M (1) = 1

w (0)

(
(M (0))2 ((F +c)π(1) −Xμ(1) +erμ(1)s(0))+w (0) (−M (0)π(1) +N (1)))

From the customer’s budget constraint, I get

w (1) = E [F M (1)] .

From the no-arbitrage condition, I get

μ(1) = π(1) E [(M (0))2(F +c)]−E [M (0)]w (0)

E [(M (0))2X ]−E [(M (0))2]er s(0)
.

From the D2D market-clearing condition

N (1) = (s(0) +2ce−r )−1

×
(
−
�

[0,1]2
(M (0))2 ((F +c)π(1) −μ(1)(X −er s(0))

)−w (0)M (0)π(1) di d j

)
.
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The endogenous parameters are given by

w (1) = E [F M (1)] ,

κ(1) = 0,

μ(1) = π(1)

er s(0) +2c

Cov[M (0), M (0)(F +c)]

Var[M (0)]
,

s(1) = 0.

w (1)
D =−

�
[0,1]2

w (1) di d j .

Proof of Lemma 11. The first-part comes directly from the first-order expansion. The second-

part comes from the second-order expansion for the D2D market clearing condition, For the

customer’s consumption,

(
2(M (0))2w (2) −2M (0)M (1)w (1) −2M (0)M (2)w (0) +2(M (1))2w (0)) .

For the dealer’s consumption,(
2(M (0))2w (2)

D −2M (0)N (1)w (1)
D −2M (0)N (2)w (0)

D +2(N (1))2w (0)
D

)
.

Lemma 12. The functional derivatives for the indirect utilities are

δν(i,j)[M D2C

(i,j) ]

δM D2C

(i,j)

= −Pλ(i,j)(J (λ(i,j)M
D2C

(i,j) )−F C

i ),

δν(j,i)[M D2C

(i,j) ]

δM D2C

(i,j)

= Pλ(j,i)κ(i,j)(J (λ(i,j)M
D2C

(i,j) )−F C

i )

+Pλ(j,i)λ(i,j) J
′(λ(i,j)M

D2C

(i,j) )(κ(i,j)M
D2C

(i,j) −M D2D).

where κ(i,j) is defined in (1.13).

Proof. Direct calculation yields the results.

Lemma 13. Dealer j ’s profit from D2C trading is −E [M D2DG∗
(i,j)(M D2C

(i,j) )], and it is decreasing in

the inverse market power π(i,j).

Proof. From the Nash bargaining first-order condition, I get

G∗
(i,j) = −λ(i,j) J ′(λ(i,j)M D2C

(i,j) )(κ(i,j)M D2C

(i,j) −M D2D)

κ(i,j) −π(i,j)

.
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Taking expectations and plug-in the definition to get

−E [M D2DG∗
(i,j)] = λ(i,j)

E [M D2C

(i,j) M D2D J ′(λ(i,j)M D2C

(i,j) )]2 −E [(M D2D)2 J ′(λ(i,j)M D2C

(i,j) )]E [(M D2C

(i,j) )2 J ′(λ(i,j)M D2C

(i,j) )]

(κ(i,j) −π(i,j))E [M D2C
(i,j) J ′(λ(i,j)M D2C

(i,j) )]
> 0

The inequality comes from Holder inequality. Also, dealer will agree to trade only when this

term is positive, hence, I need that κ(i,j) >π(i,j).

A.4 Miscellaneous

The ETF sample is selected based on the average daily volume during 2015 on ISE exchange.

• Equity Sector: XRT, SMH, XBI, XLY, IBB, XLV, XLI, XLU, XLE, IYR, XLF;

• Equity Index: DIA, IWM, SPY, QQQ;

• Equity International: ASHR, RSX, EWJ, DXJ, EFA, EWZ, FXI, EEM;

• Fixed-income: HYG, TLT;

• Commodity: UNG, OIH, SLV, GDX, GLD, USO, XOP;

• Currency: FXE, UUP;

Risk-Neutral Moments According to the Bakshi et al. [2003], the risk-neutral variance is

given by

VarianceQt (T ) = er (T−t )Vt (T )−μt (T )2

T − t

The risk-neutral skewness is given by

SkewQ
t (T ) = er (T−t )Wt (T )−3μt (T )er (T−t )Vt (T )+2μt (T )3(

er (T−t )Vt (T )−μt (T )2
)3/2

.

The time t prices of the time T quadratic, cubic and quartic payoffs are given as the weighted

sum of OTM calls and puts,

Vt (T ) =
∫∞

St

2
(
1− log K

St

)
K 2 Ot (C ,K ,T )dK +

∫St

0

2
(
1+ log St

K

)
K 2 Ot (P,K ,T )dK ,

Wt (T ) =
∫∞

St

6log K
St

−3
(
log K

St

)2
K 2 Ot (C ,K ,T )dK −

∫St

0

6log St
K +3

(
log St

K

)2
K 2 Ot (P,K ,T )dK ,

Xt (T ) =
∫∞

St

12
(
log K

St

)2 −4
(
log K

St

)3
K 2 Ot (C ,K ,T )dK +

∫St

0

12
(
log St

K

)2 +4
(
log St

K

)3
K 2 Ot (P,K ,T )dK .
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A.4. Miscellaneous

and

μt (T ) ≈ er (T−t ) −1− er (T−t )

2
Vt (T )− er (T−t )

6
Wt (T )− er (T−t )

24
Xt (T ) .
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B Appendix to Chapter 2

This appendix contains all proofs for Chapter 2.

Proof of Proposition 1. Suppose that the variance of εq goes to zero, then we have that the co-

variance between pricing kernel and the spot price P being solely determined by the variation

in εp . In this case, we know that the pricing kernel is a decreasing function in εp , while the

price is an increasing function. Hence, we conclude that the covariance is negative.

Suppose that the variance of εp goes to zero, then we have that the covariance between pricing

kernel and the spot price P being solely determined by the variation in εq . In this case, we

have that both the pricing kernel and the spot price being a decreasing function of the quantity

shock εq . Hence, the covariance is positive.

Proof of Lemma 4. The first-order expansion for equation (2.6) gives

(
E [M (1)]κ∗ −δκ(1) +κ(1))e−δ log(κ∗) = E [M (1)δ+α(1)δ log(Z )].

Note that E [M (1)] = 0.

Proof of Proposition 5. Assume that

Xp,ε = Xp,ε+εX (1)
p .

Expand the optimal consumption demand of the producer to the first-order, we get

X (1)
p (P ) =−δ−λp

α
κδ
∗ logPα(1) +constp .

For the consumer, similarly, we can find his optimal consumption demand as

X (1)
c (P ) = δ−1+λc

α
κδ
∗ logPα(1) +constc .
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Then, we take the second-order derivative with respect to P to get the claim.

Proof of Corollary 6. The aggregate put option demand from the hedgers is

∫Fε

Pmin+εP (1)
min

Dε(P )dP = ε
1−λp −λc

α
κδ
∗
(
P−1

min −F−1)α(1).

The aggregate call option demand from the hedgers is

∫Pmax+εP (1)
max

Fε

Dε(P )dP = ε
1−λp −λc

α
κδ
∗
(
F−1 −P−1

max

)
α(1).

Note that we don’t need to compute the first-order terms for Fε and Pε, as they would show up

only in the second order terms after the integration.

Proof of Lemma 5. The first-order perturbation for the pricing kernel is

M (1) =λ−1
M λ(1)

M − α(1)γκeδ log(κ) log(Z )−δγκκ(1) +δγκ(1)eδ log(κ)

−δκ2 +δκw +κeδ log(κ)

Then we compute the λ(1)
M ,

λ(1)
M =λM

α(1)γκeδ log(κ)E [log(Z )]−δγκκ(1) +δγκ(1)eδ log(κ)

−δκ2 +δκw +κeδ log(κ)

Then, plug the result in the pricing kernel, we get the claim.

108



C Appendix to Chapter 3

This appendix contains all proofs for Chapter 3.

Proof of Proposition 1. By the conjecture (3.8), the market clearing price p2 is jointly normally

distributed with θ. By the definition of ξ in (3.4), one has

Cov(D, p2) = Cov

(
θ+ε, a

σ2
θ

σ2
θ
+σ2

δ

(θ+δ)

)
= aρσ2

θ. (C.1)

Furthermore, one has

V(ξ) =V

(
σ2
θ

σ2
θ
+σ2

δ

(θ+δ)

)
= ρσ2

θ. (C.2)

Now (C.1), (C.2) and the normal projection theorem give

E(D|p2) = aρσ2
θ

a2ρσ2
θ
+b2σ2

W

p2 = ψ

a
(aξ+bW ), (C.3)

V(D|p2) = 1

τu
=σ2

θ+σ2
ε−

a2ρ2σ4
θ

a2ρσ2
θ
+b2σ2

W

=σ2
θ+σ2

ε−ψρσ2
θ. (C.4)

Plugging (C.3) and (C.4) into (3.7), using the result with (3.6) in the market-clearing condition
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(3.9):

Mτξ(ξ−p2)

γd
+ (N −M)τu(ψξ+ ψb

a W −p2)

γd
=W

solving for p2 and matching coefficients with (3.8) yields

Mτξ+ (N −M)ψτu = [Mτξ+ (N −M)τu]a (C.5)

(N −M)τu
ψb

a
−γd = [Mτξ+ (N −M)τu]b. (C.6)

Substituting ψ = a2ρσ2
θ

a2ρσ2
θ
+b2σ2

W
into equations (C.5) and (C.6) and solve for a and b gives the

expressions in (3.13) and (3.14).

It is immediately clear from (3.13) that a > 0 if M > 0, since both numerator and denominator

are always positive in this case. Since ψ> 0 it follows also that a ≤ 1, with an equality only if

N = M .

Proof of Lemma 1. The dealer’s optimal demand schedule follows directly from the first-order

condition (3.3) by substituting ωk = qk −x. The demand schedules of other informed dealers

do not change, since they do not make inferences from the price in the interdealer market.

The dealers who have not been contacted by the investor perform inferences as described

in Proposition 1. One can now conjecture p2 = aξ+b(W −x). Thus using dealer k’s demand

schedule and demand schedules (3.6) and (3.7) for the other dealers in the market clearing

condition and following the exact procedure described in the proof of Proposition 1 determines

a and b as in 1.

Proof of Lemma 2. Let Fx denote the dealers’ optimal quoting strategy. This means dealers

quote a price p0 that is a random variable with the distribution function Fx .

Let x > 0. Then x(pv −pc ) > 0 implies pv > pc . If the dealers’ optimal strategy were such that

there is a p∗ ∈ (pv , pc ) such that dealers quote a price p ≤ p∗ with a probability of 1, then

a dealer could profitably deviate from this strategy by quoting pv . This would contradict

optimality. On the other hand, quoting a prices greater than pv with any positive probability

cannot be optimal, since the investor would not buy the asset at that price. Thus, one obtains

supsupp(Fx ) = pv .

Now we show that Fx must be continuous, i.e. there cannot be any atoms in the distribution

of p0. Clearly, quoting a price less than or equal to pc with any positive probability cannot be

optimal, since a dealer would not make any positive profit by doing so, whereas he would make
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a positive expected profit by quoting pv . Now, suppose there is a price p ′ with pv ≥ p ′ > pc

that is quoted with probability ρ > 0 by all dealers.

Then a single dealer could again profitably deviate from this strategy which contradicts opti-

mality. The profitable deviation is constructed as follows. Since the number of prices charged

with positive probability must be countable, one can find for each δ > 0 an εδ, such that

δ≥ εδ > 0 and the price p ′ −εδ is charged with probability zero by all dealers. The deviating

dealer can now charge price p ′ −εδ with probability ρ and charge price p ′ with probability

zero. Using the fact that limδ→0 Fx (p ′ −εδ) = Fx (p ′)−ρ, one can express the difference Δ in

profits between the original strategy and the proposed deviation as follows. A dealer quoting

p ′ only makes a positive profit if no other dealer on the platform quotes a lower price. If no

other dealer quotes a lower price, there might be j = 0,1, ..., M −1 dealers who quote p ′ as well.

In the latter case, each of the j +1 is equally likely to be chosen by the investor for trading

the asset. The calculation below considers the cases in which j dealers quote price p on the

platform separately.

Δ = (1−qFx (p ′ −εδ)−qρ)M−1(p ′ −εδ−pc )x

−(1−qFx (p ′))M−1(p −c)x

+
M−1∑
j=1

(
M −1

j

)
(1−qFx (p ′ −εδ)−qρ)M−1− j (qρ) j (p ′ −εδ−pc )x

−
M−1∑
j=1

(
M −1

j

)
(1−qFx (p ′))M−1− j (qρ) j (p ′ −pc )

x

j +1
.

The first two lines in the above expression compare expected profits from quoting p ′ −εδ and

expected profits from quoting p ′ in the event that all other dealers quote a price above p ′.
Since limδ→0 Fx (p ′ −εδ) = Fx (p ′)−ρ, the difference in these two lines goes to zero as δ goes to

zero. The last two lines compare the respective profits in the cases in which j > 0 other dealers

quote p ′. Since M ≥ 2, the deviating dealer can get a jump in expected trading volume in this

case, since he can avoid ties with other dealers. Therefore one obtains

Δ→
M−1∑
j=1

(
M −1

j

)
(p ′ −pc )

j x

j +1
(1−qFx (p ′))M−1− j (qρ) j > 0 as δ→ 0.

Thus, the proposed deviation is profitable for a small δ. In equilibrium, Fx cannot have any

atoms.

If x < 0, one verifies analogously to the case of x > 0, that infsupp(Fx ) = pv must hold for any

optimal strategy. That the distribution cannot have any atoms follows analogously as well.
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The dealers are only willing to randomize over prices if they earn the same profit in expectation

with each price in the support of Fx . This profit must be equal to the profit in which the dealer

quotes pv (x). This gives the indifference condition expressed in (3.17).

Using the binomial formula (x + y)n =∑n
k=0

(n
k

)
xn−k yk , (3.17) simplifies to

(p −pc )x(1−qFx (p))M−1 = (1−q)M−1(pv (x)−pc )x,

which can be solved for Fx . The solution is given by (3.18).

Using (3.18) and solving Fx (px ) = 0 for px gives

px = pc + (pv −pc )(1−q)M−1.

Since x(pv −pc ) > 0, one obtains px > pc for x > 0 and px < pc for x < 0.

The event that at least one dealer is on the platform happens with probability 1− (1−q)M ,

since all dealers respond independently with probability q . The unconditional probability

that no dealer quotes above p ∈ supp(Fx ) can be expressed by (1−qFs(p))M . Therefore, the

conditional distribution Gx has to satisfy G(p)(1− (1−q)M ) = 1− (1−qFx (p))M . Performing a

change of variables p = pc + (pv−pc )(1−q)M−1

(1−(1−(1−q)M )u)(M−1)/M , one can calculate

∫
supp(Fx )

pdGx (p) =
∫1

0

[
pc + (pv −pc )(1−q)M−1

(1− (1− (1−q)M )u)(M−1)/M

]
du = pc + (pv −pc )(1−q)M−1

1− (1−q)M
M q.

The claim that 0 ≤ κ< 1, can be shown as follows. That 0 ≤ κ is immediately clear from the

definition (3.20). The other inequality can be seen as follows.

• κ as a function of q is strictly decreasing in q for all q ∈ (0,1], since

∂κ

∂q
= −M(1−q)M−2

[
(1−q)M +M q −1

]
(1− (1−q)M )2

< 0

for q ∈ (0,1].

• By L’Hospital’s rule, one has

lim
q→0

κ= limq→0(M(1−q)M−1 −M(M −1)q(1−q)M−2)

limq→0 M(1−q)M
= M

M
= 1.

The last two bullet points imply κ< 1 for all q ∈ (0,1].

This proves all statements in the lemma.
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Proof of Proposition 2. Claim 1: The expected price on the platform is linear in ξ and x. Define

β1 :=
[

1− M q(1−q)M−1

1− (1−q)M

][
a − (1−a)b

γdσ
2
ξ

]
+ M q(1−q)M−1

1− (1−q)M

(
1+ σ2

δ

σ2
θ

)
(C.7)

and

β2 :=
[

1− M q(1−q)M−1

1− (1−q)M

][
−b − b2

2γdσ
2
ξ

]
+ M q(1−q)M−1

1− (1−q)M

(
−γIσ

2
ε

2

)
. (C.8)

Using the definitions of pc (x) and pv (x), it follows by direct computation that P (x) as defined

in Lemma 2 is given by (3.22).

Claim 2: Let M(1−q)M−1

1−(1−q)M < 1
2 . An equilibrium exists if and only if a < a for some a ∈R.

To verify the existence of the described equilibrium, there are several things to check. The

strategy (3.25) is well-defined if

2β2 +γIσ
2
ε 	= 0. (C.9)

Furthermore, the investor’s second-order condition from the maximization problem (3.23)

requires

−γIσ
2
ε−
(

2
σ2
θ

σ2
θ
+σ2

δ

β1

α
+2β2

)
< 0. (C.10)

In order to apply Lemma 2 we also need to verify that

x(pv (x)−pc (x)) > 0 (C.11)

for holds for any x 	= 0 demanded by the investor in the proposed equilibrium.

If (C.9), (C.10) and (C.11) hold, one can use Lemma 2 to see that there exist optimal strategies

for the dealers that yield P (x) as the expected price on the platform conditional on at least one
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response. As demonstrated in the text, the stated strategy for the investor (3.25) indeed solves

the first order condition (3.24), given that dealers rationally infer θ+δ from the investor’s

demand. Thus, both dealers and the investor behave optimally given the strategies of the

others and an equilibrium is established.

The strategy of the proof of this claim is as follows. We will assume that the average price is

given by the expression in Lemma 2. We then show that the investor’s strategy is well-defined

so that the first-order and second-order conditions of the maximization problem (3.23) are

satisfied. We that verify that in this case

In order to prove our claim, we first note that (C.11) is satisfied in this case, so that dealers

indeed find it optimal to quote as described in Lemma 2.

For the following proof, it is worth noting that Lemma 2 states that

0 ≤κ< 1 (C.12)

for all q ∈ (0,1] and M ≥ 2.

„⇒”: Proof that equilibrium exists under the stated conditions.

Let now κ< 1
2 .

We rewrite (C.7) and (C.8) as using b =−γdσ
2
ξ

M a:

β1 = (1−κ)

(
a + (1−a)a

M

)
+κ

σ2
θ
+σ2

δ

σ2
θ

> 0, (C.13)

β2 = (1−κ)

(
γdσ

2
ξ

M
a −

a2γdσ
2
ξ

2M 2

)
−κ

(
γIσ

2
ε

2

)
>−γIσ

2
ε

2
, (C.14)

where the inequalities follow from (C.12) and 1 ≤ a > 0.

Define

Ψ := σ2
θ
+σ2

δ

σ2
θ

1
2 −κ

1−κ
> 0

and define a as the smaller solution to the quadratic equation
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a + (1−a)a

M
=Ψ,

if there is a real solution to the equation. Set a = 1 otherwise. Then it follows from (C.13) that

β1 < 1

2

σ2
θ
+σ2

δ

σ2
θ

,

if a < a.

Thus, all that remains to show is that there is an equilibrium if the last inequality involving

β1 holds. As described above it is sufficient to check that (C.9), (C.10) and (C.11) hold. It is

immediatly clear from (C.14) that (C.9) always holds for any set of parameters.

Regarding (C.10), note that using (3.25), (C.14) and the assumption on β1 imply α> 0. Using

(C.13), one therefore obtains

−γIσ
2
ε−
(

2
σ2
θ

σ2
θ
+σ2

δ

β1

α
+2β2

)
< 2

σ2
θ

σ2
θ
+σ2

δ

β1

α
+2β2 < 0.

Thus, the investor’s second-order condition holds if β1 < 1
2
σ2
θ
+σ2

δ

σ2
θ

.

Lastly, we check that (C.11) holds which justifies the use of Lemma 2 for determining the

expected price on the platform. Note that by optimality of the investor’s choice of x and α> 0,

it follows that the investor makes a positive profit if x 	= 0 This can be seen, since the investor

could always make a zero profit by not trading, but instead chooses a different x. By the

convexity of the maximization problem (3.23), the optimal quantity is uniquely determined

and therefore must give a positive profit. This implies

x(pv (x)−pc (x)) ≥ x(pv (x)−pc (x))(1−κ) = x(pv (x)−P (x)) > 0.

Therefore (C.11) indeed holds and Lemma 2 can be used to determine the dealer’s quoting

strategies on the platform.

Since (C.9), (C.10) and (C.11) indeed hold, the equilibrium exists.

„⇐”: Proof that equilibrium does not exist if a ≥ a.

The definition of a and β1 imply that β1 ≥ 1
2
σ2
θ
+σ2

δ

σ2
θ

if a ≥ a. If the last inequality is an equlity, it

follows that α= 0. This means, the investor does not trade and the quoting strategies of the

dealers are not defined. Let the inequality be strict. Note that by (C.13), κ ∈ [0,1] and a ∈ [0,1],

one has β1 ≤ a + (1−a) = 1. This in turn implies
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1

1−2β1
σ2
θ

σ2
θ
+σ2

δ

>−1.

One now obtains

−γIσ
2
ε−
(

2
σ2
θ

σ2
θ
+σ2

δ

β1

α
+2β2

)

= −γIσ
2
ε+2β2 −2

2β2 +γIσ
2
ε

1−2β1

σ2
θ

σ2
θ
+σ2

δ

β1

> −γIσ
2
ε+2β2 +2(2β2 +γIσ

2
ε)

σ2
θ

σ2
θ
+σ2

δ

β1

> −γIσ
2
ε+2β2 + (2β2 +γIσ

2
ε) = 0.

Therefore, the second-order condition for the investor’s maximization problem (3.23) is not

satisfied. Thus, the investor’s strategy is clearly not optimal and the described equilibrium

does not exist.

Claim 3: The equilibrium does not exist if κ≥ 1
2

In this case, a ≥ 0 and (C.13) imply β1 ≥ 1
2
σ2
θ
+σ2

δ

σ2
θ

. The prove that the equilibrium doe not exist

is identical to the proof in Claim 2.

Claim 4: a → 0 as N →∞ and σW →∞.

By equation (3.13), one can see that

lim
σW →∞ lim

N→∞
a = lim

σW →∞ lim
N→∞

Mτξ
N−M +ψτu

Mτξ
N−M +τu

= lim
σW →∞ψ

= 0.

Claim 5: An equilibrium exist if κ< 1
2 and σδ →∞. As σδ →∞, one has Ψ→∞. This means

a + (1−a)a
2M <Ψ for all a ∈R and in particular for all a ∈ (0,1] As shown in the proof of Claim 2,

this implies β1 < 1
2
σ2
θ
+σ2

δ

σ2
θ

and the equilibrium exists.

Proof of Proposition 3. We divided this proof into several steps. The first step is an auxiliary
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result that will be used later in the proof.

Step 1: ∂a
∂M ≥ 1

M a(1−a).

Since σδ = 0, we get σξ =σε and ρ =σ2
θ

. We now rewrite a as defined in (3.13) as

a = 1− γ2
dσ

4
εσ

2
W (N −M)

M 2Nσ2
θ
+γ2

d Mσ2
εσ

2
θ
σ2

W +γ2
d Nσ4

εσ
2
W

(C.15)

Using the expression in (C.15), one obtains by direct calculation and simplifying terms that

∂a

∂M
− 1

M
a(1−a) = γ2

d Mσ4
εσ

2
W

(
γ2

dσ
2
εσ

2
W

(
σ2
ε+σ2

θ

)+N 2σ2
θ

)
(
M 2Nσ2

θ
+γ2

d Mσ2
εσ

2
θ
σ2

W +γ2
d Nσ4

εσ
2
W

)2
≥ 0.

This proves the first step

Step 2: The equilibrium exists if and only if a is below a certain threshold.

This result follows directly from Proposition 2 by noting that κ as defined (C.12) is equal to

zero if q = 1. Furthermore, since q = 1, one has Ψ = 1
2 , where Ψ is defined in the proof of

Proposition 1. Defining a as in the proof of Proposition 1, one gets that a is the smaller real

solution to

a + (1−a)a

M
= 1

2
,

which is always greater than zero and less than 1
2 .

Step 3: There is an equilibrium for all M ′ < M.

In the proof of Proposition 2 it was established that the described equilibrium exists if and

only if β1 < 1
2
σ2
θ
+σ2

δ

σ2
θ

. If an equilibrium exists when M dealers get contacted, it consequently

must be the case that β1 < 1
2 . If furthermore, β1 < 1

2 for all M ′ < M , the result follows. The last

claim will be shown next. If q = 1, one has
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∂β1

∂M
= (1−2a) ∂a

∂M

M
+ ∂a

∂M
− (1−a)a

M 2

= M +1−2a

M

∂a

∂M
− (1−a)a

M 2

≥ M +1−2a

M

1

M
a(1−a)− (1−a)a

M 2

> (3(1−a)+a2)
(1−a)a

M 2

> 0.

The third line follows from Step 1. Therefore, one has 0 ≤ β1 < 1
2
σ2
θ
+σ2

δ

σ2
θ

for all M ′ < M . Note

that event though M represents an integer in the model, β1 can be interpreted as a function in

C 1(R).

Step 4: The investor’s payoff is highest if M ′ = 2 compared to all other M ′′ ≤ M.

Since we know that a nonzero-trade equilibrium exists for all M ′ < M , we can calculate the

investor’s equilibrium payoff as defined by (3.27).

Using the expressions for β1 and β2 stated in Step 2 and using the definition of α from (3.25),

one gets

πI =
σ2
θ

M
(
2a2 −2a(M +1)+M

)
2σ2

ε

(
2aγd M +γI M 2 −a2γd

) .

In equilibrium, one has πI > 0. Since a < a, the numerator in the above expression for πI is

positive. Therefore, the denominator must be positive as well. Interpreting πI as a function

in C 1(R), one can show that πI is strictly decreasing in M by showing that ln(πI ) is strictly

decreasing in M . It then follows that the lowest possible M ′, i.e. M ′ = 2 is profit maximizing

among all possible values less than M .

∂

∂M
lnπI =

M
(
4a ∂a

∂M −2(M +1) ∂a
∂M −2a +1

)
+ (2a2 −2(M +1)a +M

)
M
(
2a2 −2(M +1)a +M

)
−2γd M ∂a

∂M −2γd a ∂a
∂M +2γd a +2γI M

2γd M a −γd a2 +γI M 2
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Collecting terms gives

∂

∂M
lnπI = 1

M
+ 1

2a2 −2(M +1)a +M
− 2a

2a2 −2(M +1)a +M

− 2γI M

2γd M a −γd a2 +γI M 2 − 2γd a

2γd M a −γd a2 +γI M 2 +

+ ( 4a

2a2 −2(M +1)a +M
− 2(M +1)

2a2 −2(M +1)a +M
2γd a

2γd M a −γd a2 +γI M 2 − 2γd M

2γd M a −γd a2 +γI M 2

) ∂a

∂M

Since a < a one has a2 −a(M +1)+M/2 > 0. One can now see that the term in front of ∂a
∂M is

negative. Therefore, one can obtain an upper bound for the ∂a
∂M lnπI by plugging in the result

from Step 1 for ∂a
∂M . Simplifying gives

∂

∂M
≤ −2a

(−2a2(γd −γI M)+M a(γd −γI (M +2))+γd a3 +γI M 2
)(

2a2 −2(M +1)a +M
)(

2γd M a −γd a2 +γI M 2
) .

The denominator is positive due to a < a. Simplifying the numerator gives

−2γI a
(
2M a2 − (M +2)M a +M 2)−2γd a

(
a3 −2a2 +M a

)< 0.

Therefore one has ∂
∂M lnπI < 0 and the claim follows.

Step 5: M = 2 is profit-maximizing among all possible values.

Assume there would be an M ′ > 2 such that M = M ′ gives a higher profit than M = 2 in

equilibrium. By Step 3, it must be the case that a < a for M = M ′. Now it follows by Step 3 that

having M = 2 gives a higher profit for the investor than having M = M ′. Thus, contacting only

2 dealers is indeed profit-maximizing.

Proof of Proposition 4. It is shown in proposition 3 that equilibrium exists when a < ā < 1
2 . We

now replace a as defined in equation (3.13):
M 2Nσ2

θ
+γ2

dσ
2
εσ

2
θ
σ2

W M+γ2
dσ

4
εσ

2
W M

M 2Nσ2
θ
+γ2

dσ
2
εσ

2
θ
σ2

W M+γ2
dσ

4
εσ

2
W N

< 1
2 . Equivalently,

M < 1

2

M 2Nσ2
θ
+γ2

dσ
2
εσ

2
θ
σ2

W M +γ2
dσ

4
εσ

2
W N

M Nσ2
θ
+γ2

dσ
2
εσ

2
θ
σ2

W +γ2
dσ

4
εσ

2
W

< 1

2
N .

Therefore, if M > 1
2 N , one has a ≥ ā, which implies that the equilibrium does not exist from

proposition 3.
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Figure C.1 – a(M) and ā(M , q)

(a) a(M) and ā(M , q = 1) (b) a(M) and ā(M , q = 0.9,0.5,0.2)

In the following, we show that the equilibrium existence condition a < ā is equivalent to

M ∈ (M̄1, M̄2), where M̄1 and M̄2 are roots to the equation a(M) = ā(M).

First, a(M) is an increasing function of M and lim
M→N

a(M) = 1. In terms of ā(M , q), one can

calculate the two derivatives

∂ā

∂M
= 1−

2M + κ(1−κ)+ M∂κ
∂M

(1−κ)2√
4M 2 +1+4M(1−2Ψ)

,

where ∂κ
∂M = κ

[
1

M + ln(1−q)
1−(1−q)M

]
< 0, so ∂ā

∂M > 0.

And

∂ā

∂q
=−

M
(1−κ)2

∂κ
∂q√

4M 2 +1+4M [ κ
1−κ − σ2

δ

σ2
θ

]

,

where ∂κ
∂q = M(1−q)M−2(1−M q−(1−q)M )

(1−(1−q)M )2 < 0, so ∂ā
∂q > 0. Thus, ā is an increasing function of both M

and q .

Moreover, comparing the the value of a(M) and ā(M , q) at the limits, one gets

lim
M→N

a(M) = 1 > 1

2
> lim

M→N
ā(M , q),

lim
M→2

a(M) < lim
M→2,q→1

ā(M , q),

lim
M→2

a(M) > 0 > lim
M→2,q→0

ā(M , q).

So there are maximum two roots to the equation a(M) = ā(M , q) for M ∈ [2, N ]. As has been

shown and demonstrated by figure (C.1) that there exists at least one root when q = 1, since
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ā(M , q) decreases when q decreases, the larger root M̄2 also decreases. Note that ∂2 ā(M ,q)
∂q2 < 0,

implies that the concavity of ā(M , q) becomes larger , so the smaller root M̄1 increases when

q decreases. More specifically,

(1) When q = 1, M̄1 < 0 and M̄2 > 2.

(2) When q ∈ (
1+
√

1− 2(a(2)2−5a(2)+2)
a(2)2−5a(2)+4

2 ,1], M̄1 < 2 and M̄2 > 2.

(3) When q =
1+
√

1− 2(a(2)2−5a(2)+2)
a(2)2−5a(2)+4

2 , M̄1 = 2 and M̄2 > 2.

(4) When q ∈ (q ,
1+
√

1− 2(a(2)2−5a(2)+2)
a(2)2−5a(2)+4

2 ), M̄1 > 2 and M̄2 > M̄1 > 2.

(5) When q = q , M̄1 = N , where q is the solution to the equation N q(1−q)N−1

1−(1−q)N = 1
2 .

(6) When q ∈ [0, q), there is no solution to a(M) = ā(M) and a(M) > ā(M).

The existence of equilibrium is summarized in figure (C.2).

0

No equilib-

rium

q
2 ≤ M̄1 ≤ M ≤ M̄1

1+
√

1− 2(a(2)2−5a(2)+2)
a(2)2−5a(2)+4

2

2 ≤ M ≤ M̄2

1 q

Figure C.2 – The existence of equilibrium

The above results show that when q <
1+
√

1− 2(a(2)2−5a(2)+2)
a(2)2−5a(2)+4

2 , the equilibrium exists when M̄1 <
M < M̄2. But M̄1 ≥ 2, so there is no equilibrium when M = 2. Moreover, the minimum

value of M such that the equilibrium exist is 3. Overall, we can conclude that when q <
1+
√

1− 2(a(2)2−5a(2)+2)
a(2)2−5a(2)+4

2 , there exists an equilibrium with M ≥ 3.

Proof of Proposition 5. Using the optimal demand schedule (3.6) for M −1 informed dealers

and demand schedule (3.7) for the uninformed dealers, where the the conditional beliefs of

uninformed dealers are formed as described in the proof of Proposition 1, the market clearing

condition

qk +
∑

l≤M ,l 	=k
ql +

N∑
l M+1

=W
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can be rearranged as

p2 = b

(
W − (M −1)ξ

γdσ
2
ξ

−qk

)
.

therefore, one has ∂
∂qk

p2 =−b, whenever dealer k is informed.

If dealers do not update their belief about ξ when the investor changes his demanded quantity

x, taking the derivative of (3.15) w.r.t. x gives the following permanent price impact

∂

∂x
pc =− b2

2γdσ
2
ξ

−b <−b.

Using (3.15) and taking into account that the dealers form their expectation ξ about the

dividend payment based on (3.4) and (3.21), one obtains

∂

∂x
pc = aρ

α
−b − 2(1−a)b ρ

α +b2

2γdσ
2
ξ

= ρβ̃1

α
+ β̃2

≥ ρβ̃1

α̃
+ β̃2,

where α̃, β̃1 and β̃2 denote the value of α, β1 and β2 when q = 1, respectively. The inequality

holds since α= α̃− κ
1−κ

1
2β̃2+γIσ

2
ε

. Replacing α̃ by (3.25), one has

∂

∂x
pc ≥ ρβ̃1

1−2ρβ̃1
(2β̃2 +γIσ

2
ε)+ β̃2

> ρβ̃1

1−2ρβ̃1
2β̃2 + β̃2

= β̃2

1−2ρβ̃1

=
−b − b2

2γdσ
2
ξ

1−2ρ

[
a − (1−a)b

γdσ
2
ξ

]

= −b
(
1− a

2M

)
1−2ρa

(
1− 1−a

M

)
> −b.

The last inequality holds since 1− a
2M > 1−2ρa

(
1− 1−a

M

)
, that is equivalent to a > 0 > 1−M +

1
4ρ .
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Proof of Proposition 6. By the conjecture (3.33), the market clearing price p2 is jointly normally

distributed with θ. One has

Cov(D, p2) = Cov(θ+ε, aθ) = aσ2
θ. (C.16)

Now (C.16), (3.37) and the normal projection theorem give

E(D|p2) = aσ2
θ

a2σ2
θ
+b2σ2

W

p2 = ψ

a
(aθ+bW ), (C.17)

V(D|p2) = 1

τu
=σ2

θ+σ2
ε−

a2σ4
θ

a2σ2
θ
+b2σ2

W

=σ2
θ+σ2

ε−ψσ2
θ. (C.18)

Plugging (C.17) and (C.18) into (3.34), using the result with (3.32) in the market-clearing

condition (3.9):

Mτε(θ−p2)

γd
+M Xk +

(N −M)τu(ψθ+ ψb
a W −p2)

γd
=W

solving for p2 and matching coefficients with (3.33) yields

Mτε+ (N −M)ψτu +γdϕα1 = [Mτξ+ (N −M)τu]a (C.19)

(N −M)τu
ψb

a
−γd = [Mτξ+ (N −M)τu]b. (C.20)

Solving for a and b gives the expressions in (3.38) and (3.39).

It is immediately clear from (3.38) that a > 0, both numerator and denominator are always

positive. Since ψ> 0 it follows also that a ≤ 1 with a strict inequality only if N = M .

Proof of Lemma 3. To show the second equality in (3.42), we note that the equilibrium price

in the interdealer market depends on the aggregate inventory by market clearing. If market

clearing holds, then

M∑
l=1

ql +
N∑

k=M+1
ql +W,

where the demand schedules are defined as in (3.32) and (3.34). Using these definitions, the

123



Appendix C. Appendix to Chapter 3

normal projection theorem to determine the conditional expectations gives and solving the

previous equation for p2 gives

p2 =
W −∑M

l=1 Xl − θM
γdσ

2
ε

aσ2
θ

(N−M)

γd
(
a2σ2

θ
+b2σ2

W

)(− a2σ4
θ

a2σ2
θ
+b2σ2

W
+σ2

ε+σ2
θ

) − N−M

γd

(
− a2σ4

θ

a2σ2
θ
+b2σ2

W
+σ2

ε+σ2
θ

) − M
γdσ

2
ε

.

Using the definition of a and b in Proposition 6, some algebra yields that the denominator on

the right-hand side of the previous equation is equal to 1
b . Therefore, it follows that

∂

∂Xk
p2 =−b. (C.21)

Using E(p2) = aθ, one can now calculate

∂

∂Xk
Ek

[
D(qk −Xk )−p2qk −

γd

2
σ2
ε(qk −Xk )2

]
= aθ−b

(1−a)θ

γdσ
2
ε

+bXk .

Since in equilibrium, one has Xk = ϕ
M α1θ, the result follows.

Proof of Proposition 7. Step 1: expressions of β1 and β2

Substituting equation pc (xi ) and pv (x) into the price P (x) formula gives

β1 = κ

(
1− α1

α2

)
+ (1−κ)

[
a + b(1−a)

γdσ
2
ε

− bϕα1

M

]
(C.22)

β2 = κ

(
1

α2
− γIσ

2
ε

2

)
. (C.23)

Step 2: Solving α1, α2, β1 and β2

Combing the equations (3.47), (3.48), (C.22) and (C.23) and solving α1, α2, β1 and β2 leads to
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the following:

α1 =
1−a − b(1−a)

γdσ
2
ε

1− bϕ
M

1−2κ
(1−κ)γIσ

2
ε

1−2κ

(1−κ)γIσ
2
ε

, (C.24)

α2 = 1−2κ

(1−κ)γIσ
2
ε

, (C.25)

β1 =
a + b(1−a)

γdσ
2
ε
− bϕ

M
1−2κ

(1−κ)γIσ
2
ε

1− bϕ
M

1−2κ
(1−κ)γIσ

2
ε

, (C.26)

β2 = κ

2(1−2κ)
γIσ

2
ε . (C.27)

Note that when κ< 1
2 , one gets α2 > 0 and β2 > 0.

Step 3: Show the existence of α1 ∈ (0,α2] and a ∈ (0,1]

We first show that α1 is a decreasing function of a. Secondly, show that a is an increasing

function of α1, then prove that the two curves insect at {α1 ×a : (0,α2]× (0,1]}. Replacing b by

equation (3.39) into formula (C.24) and derive the expression of α1 as a function of a:

α1 = 1

2γdϕ

[
−Mτε−γdϕα2

( a

M
+a −1

)
+
√

[Mτε+γdϕα2

( a

M
+a −1

)
]2 +4γdϕα2Mτε(1−a)

( a

M
+1
)]

(C.28)

Once a ≤ 1, one could derive that α1 > 0 and further α1 is monotonically decreasing on a.

Since

∂α1

∂a
=

α2
2 ( 1

M +1)
[

Mτε+γdϕα2( a
M +a −1)−

√
[Mτε+γdϕα2

( a
M +a −1

)
]2 +4γdϕα2Mτε(1−a)

( a
M +1

)]
√

[Mτε+γdϕα2
( a

M +a −1
)
]2 +4γdϕα2Mτε(1−a)

( a
M +1

)
+ α2Mτε(−2a

M + 1
M −1)√

[Mτε+γdϕα2
( a

M +a −1
)
]2 +4γdϕα2Mτε(1−a)

( a
M +1

)
< 0.

Moreover, one has

lim
a→0

α1 = 1

2γdϕ

[
−Mτε+γdϕα2 +

√
(Mτε−γdϕα2)2 +4γdϕα2Mτε

]
=α2,

lim
a→1

α1 = 1

2γdϕ

[
−Mτε−γdϕα2 +

√
(Mτε+γdϕα2)2

]
= 0.

Since α1 is monotonically decreasing on a, one gets α1 ∈ [0,α2).

In terms of a, one can rewrite a as a function of α1 by substituting ψ and τu by equations
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(3.37) and (3.36), and rearranging:

a = (Mτε+γdϕα1)2(Nτε+γdϕα1)+γ2
dσ

2
W (τθ+τε)(Mτε+γdϕα1)

(Mτε+γdϕα1)2Nτε+γ2
dσ

2
W τε(Mτε+Nτθ)

Next, one can compute the derivatives of a in terms of α1 as

∂a

∂α1
= (Mτε+γdϕα1)4Nτε+2γ2

dσ
2
W τε(Mτε+γdϕα1)2(Mτε+Nτθ)+γ4

dσ
4
W τε(τθ+τε)(Mτε+Nτθ)[

(Mτε+γdϕα1)2Nτε+γ2
dσ

2
W τε(Mτε+Nτθ)

]2
+ γ2

dσ
2
W (N −M)τ2

ε(Mτε+γdϕα1)(Mτε+2Nτθ−γdϕα1)[
(Mτε+γdϕα1)2Nτε+γ2

dσ
2
W τε(Mτε+Nτθ)

]2
> 0.

Moreover, the values at the two bounds:

lim
α1→0

a = M 2Nτ3
ε +Mγ2

dσ
2
W τε(τθ+τε)

M 2Nτ3
ε +γ2

dσ
2
W τε(Mτε+Nτθ)

< 1,

lim
α1→+∞a = +∞,

where the inequality above inequality follows from M < N . So, one gets that a is a monotoni-

cally increasing function of α1 and a ∈ (
M 2Nτ3

ε+Mγ2
dσ

2
W τε(τθ+τε)

M 2Nτ3
ε+γ2

dσ
2
W τε(Mτε+Nτθ)

,+∞)

Since α1(a) is monotonically decreasing on a and α1 ∈ [0,α2), a(α1) is monotonically in-

creasing on α1 and a ∈ (
M 2Nτ3

ε+Mγ2
dσ

2
W τε(τθ+τε)

M 2Nτ3
ε+γ2

dσ
2
W τε(Mτε+Nτθ)

,+∞), by the fixed point theorem, there exists

one unique solution (α∗
1 , a∗) to the problem

{
a(α1) = a

α1(a) =α1

as demonstrated in figure(C.3).
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Figure C.3 – The curves of α1(a) and a(α1)

Step 4: prove that 0 <α∗
1 ≤α2 and 0 < a∗ < 1

First, it’s obvious that α∗
1 > 0, we only need to prove that α∗

1 ≤α2. Suppose that α∗
1 >α2, then

a(α∗
1 ) > a(α2), since a is an increasing function of α1. Note that when α1 =α2, we have β1 = 1

by equation(3.47), which implies that a + b(1−a)
γdσ

2
ε
= 1. Further, we get that either a = 1, or a 	= 1

and b = γdσ
2
ε . But neither of the solution is consistent with the properties of α1 and a function.

On one hand, if a = 1, then a(α∗
1 ) > a(α2) = 1, which is contrary to a∗ ≤ 1. On the other hand,

if b = γdσ
2
ε , then a < 0 by the equation (3.39), which is also contrary to a > 0. So α∗

1 ≤α2.

Next, we prove that a∗ < 1. Assuming a∗ ≥ 1, then we should have α1(a∗) ≤α1(1) = 0, which is

contrary to α∗
1 > 0. So a∗ < 1. As in the equilibrium, 0 <α1 <α2, one could get that 0 <β1 < 1

since α1 = (1−β1)α2.

Last, we verify that the second order condition of the maximization problem (3.45) is satisfied

when κ< 1
2 :

−(2β2 +γIσ
2
ε) =−

( κ

1−2κ
γIσ

2
ε +γIσ

2
ε

)
=− 1−κ

1−2κ
γIσ

2
ε < 0

The fact that Lemma 2 is applicable in order to derive the dealers’ quoting strategies is proved

as in the proof of Proposition 2.

Step 5: Show the equilibrium does not exist when κ≥ 1
2

First, when κ= 1
2 , one has α1 = 0, α2 = 0 and β2 =+∞ from equation (C.24), (C.25) and (C.23).

That is, the investor does not trade, and the price is not defined since P (xi ) =∞. Thus, the

equilibrium does not exist.

Second, when κ > 1
2 , one has β2 < 0, and the second order condition of the optimization
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problem (3.45):

−(2β2 +γIσ
2
ε) =−

( κ

1−2κ
γIσ

2
ε +γIσ

2
ε

)
=− 1−κ

1−2κ
γIσ

2
ε > 0.

This means that the investor’s maximization problem does not have a solution and the equi-

librium does not exist.

Proof of Proposition 8. Claim 1: investors prefer to trade on the platform as σ2
δ
→ 0.

Equation (3.29) implies that each investor’s ex-ante profits go to zero in the centralized market

if σδ → 0. Proposition 7 states that an equilibrium exists if κ < 1
2 . All that is left to show is

that expected profits for each investor remain strictly positive as σ2
δ
→ 0. This can be seen

as follows. From the definition of the investors’ utility (3.2), the dealers expected quotes

conditional on a response on the platform (3.44) and the investors’ equilibrium strategy (3.30)

one obtains the following expression for the expected profit πi of an investor trying to trade

on the platform:

πi = (1− (1−q)M )E

[
(α1θ+α2δi )

(
θ+δ−β1θ− (α1θ+α2δi )

(
γIσ

2
ε

2
+β2

))]
. (C.29)

As σ2
δ
→ 0, one obtains from (C.29) that

πi → (1− (1−q)M )α1σ
2
θ

[
(1−β1)−α1

(
γiσ

2
ε

2
+β2

)]

= (1− (1−q)M )α1σ
2
θ

[
(1−β1)−α1

1

2α2

]

= (1− (1−q)M )α1σ
2
θ

[
(1−β1)− 1−β1

2

]
> 0,

where the second line follows from the expressions for β1 and α2 in (C.24) and (C.27). The

third line follows from the expressions for α1,α2 in (3.47) and (3.48). The inequality follows

from α1 > 0 and (C.26), which implies β1 < 1, since b < 0 and a < 1 by the proof of Proposition

7. This proves the first claim.

Claim 2: investors prefer to trade in the centralized market as σ2
δ
→∞.
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Computing the expectation in (C.29) gives

πi = (1−(1−q)M )

⎧⎪⎪⎪⎨
⎪⎪⎪⎩α1σ

2
θ

[
(1−β1)−α1

(
γiσ

2
ε

2
+β2

)]
︸ ︷︷ ︸

A

+α2σ
2
δ

[
1−α2

(
γiσ

2
ε

2
+β2

)]
︸ ︷︷ ︸

B

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (C.30)

In the(C.30), A is not affected by σ2
δ

. Using the expressions for β1 and α2 in (C.24) and (C.27),

one gets

B = 1−2κ

1−κ

σ2
δ

2γIσ
2
ε

= 1−2κ

1−κ
πc

i , (C.31)

where πc
i is the expected profit of the investor in the centralized market as defined in (3.29). It

trivially follows that πc
i →∞ as σ2

δ
→∞. Therefore, it follows that

lim
σ2
δ
→∞

πi

πc
i

= lim
σ2
δ
→∞

(1− (1−q)M )
A+ 1−2κ

1−κ πc
i

πc
i

= (1− (1−q)M )
1−2κ

1−κ
< 1,

because of our assumption κ> 0. Therefore, investors will have a higher expected payoff in

the centralized market as σ2
δ
→∞.

Proof of Proposition 9. We will show that the term denoted by A in (C.30) goes to zero as

μ→∞. Then it follows from (C.31) and κ> 0 that πi <πc
i as μ→∞, with πi <πc

i defined as in

(C.29) and (3.29).

In order to show A → 0 as mu →∞, it is sufficient to show that α1 → 0 as mu →∞, since β2 is

by (C.27) unaffected by μ and β1 is by (C.26) between zero and one.

We show In order to show A → 0 as mu →∞ as follows. Define the function a(·) as in the proof

of Proposition 7. It has been shown in the proof of Proposition 7 that α1 > 0 for any μ> 0 must

hold in equilibrium. For any fixed α1 > 0, one has a(α1) →∞ for μ→∞. The equilibrium

condition a(α1) = a < 1 can only hold if α1 → 0 for μ→∞ (since a(·) is monotone increasing

with limα1a(α1) ∈ (0,1)). This proves the claim.

Proof of Proposition 10. Using (C.30), (C.31) and (3.29), one gets
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lim
q→1

(πi −πc
i ) = lim

q→1
A,

where A is defined as in (C.30). We proceed as in the proof of Proposition 8:

lim
q→1

A = lim
q→1

α1σ
2
θ

[
(1−β1)−α1

(
γiσ

2
ε

2
+β2

)]

= lim
q→1

α1σ
2
θ

[
(1−β1)−α1

1

2α2

]

= lim
q→1

α1σ
2
θ

[
(1−β1)− 1−β1

2

]
> 0,

where the second line follows from the expressions for β1 and α2 in (C.24) and (C.27). The

third line follows from the expressions for α1,α2 in (3.47) and (3.48). The inequality follows

from α1 > 0 and (C.26), which implies β1 < 1 as q → 1, since b < 0 and a < 1 by the proof of

Proposition 7.
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