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Abstract

The development of aerodynamic bearings applications where ambient con-
ditions cannot be controlled (e.g., for automotive fuel cell compressor) raises
the question of the effects of condensation in the humid air on performance.
A modified Reynolds equation is obtained in relation to humid air ther-
modynamic equations, accounting for the variation of compressibility and
viscosity in the gas mixture. The load capacity and stability of plain and
herringbone-grooved journal bearings is computed on a wide range of op-
erating and ambient conditions. In general, performance metrics show an
independence on humid-air effects at moderated temperature, although the
stability of the grooved journal bearing exhibits strong variations in partic-
ular conditions. In consequence, a safety margin of 25% is suggested for the
critical mass.
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Roman symbols
a Groove length
b Ridge length
C Damping coefficient
cs NGT coefficient
c Viscosity coefficient
c̃ Molar concentration
D Bearing diameter
e Eccentricity
f NGT coefficient
g NGT coefficient
H Groove depth ratio hg/h0 at ε = 0
h Clearance
h0 Nominal clearance
hg Groove clearance
hr Ridge clearance
L Bearing length
Mc Critical mass
Mr Critical mass ratio
m̃ Molar mass
P Pressure
R Radius
r Specific gas constant
T Temperature
t Time
U Bearing tangential velocity
W Load capacity
Wr Load capacity ratio
w Humidity ratio
X Coordinate in the direction of the displacement
x Coordinate in the inertial frame
y Coordinate in the inertial frame
z Axial coordinate

Greek symbols
α Groove aspect ratio
β Bulk modulus

β̂ Groove angle
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ε Eccentricity ratio
θ Circumferential coordinate
Λ Compressibility number
µ Dynamic viscosity
ρ Density
σ Squeeze number
Φ Viscosity coefficient
φ Relative humidity
Ω Bearing angular velocity
ω Excitation angular velocity

Superscripts
− Normalized
∗ Saturated

Subscripts
a Ambient condition
air Air
c Critical
cond Condensable
g Groove
non− cond Non-condensable
r Ridge, ratio
T Isothermal
vap Water vapor (gas phase)
w Water liquid phase
x x-axis
y y-axis
z z-axis
0 Static, unperturbed
1 Perturbed

Acronyms
HA Humid air
HGJB Herringbone grooved journal bearing
PJB Plain journal bearing
NGT Narrow groove theory
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1. Introduction1

The use of aerodynamic bearings expands progressively to domains where2

the ambient conditions cannot be satisfactorily conditioned, either due to eco-3

nomical or to technical reasons. In particular, gas bearing-supported pres-4

surizers of Proton-Exchange Membrane (PEM) fuel cells [1] for automotive5

applications are subject to a large range of ambient temperatures and relative6

humidities. Thus, the knowledge of the effect of ambient humidity on the7

performance of an aerodynamic bearing is necessary to ensure the viability8

of a given design.9

1.1. Nature of the issue10

Water vapor contained in humid air (HA) is subject to condensation11

if the saturation pressure is reached within the fluid film of gas-lubricated12

bearings. The resulting effects might influence the bearing behavior. Several13

works [2, 3] theoretically and experimentally investigated the influence of14

HA on the static pressure field of hard disk drive heads, showing that vapor15

condensation can occur, which reduces the pressure in the bearing, leading16

to a reduction of the head’s flying height. For the same application, Hua et17

al. [4] performed transient simulations investigating the settling time of the18

flying head and showed that HA effects affect the final state of the bearing.19

In the previously mentioned works, the simulation method to model HA20

effects consists in applying a correction on the pressure field obtained from21

the ideal-gas form of the Reynolds equation. Kirpekar et al. [5] introduced a22

modification of the Reynolds equation to obtain a more rigorous approach.23

However, the existing literature on the HA-lubricated bearings is limited24

to slider geometries with ultra-thin film lubrication, with no application to25

journal bearings.26

1.2. Goals and objectives27

The present work investigates the HA effects on the performance of plain28

journal bearings (PJB) and of herringbone-grooved journal bearings (HGJB).29

The objectives are to: (1) develop an expression of the Reynolds equation for30

HA-lubricated journal bearings, (2) evaluate the deviation of HA-lubricated31

journal bearing from ideal-gas lubrication in terms of load capacity and whirl32

stability in a large range of ambient temperatures, relative humidities and33

operating conditions and (3) devise design guidelines for robust design con-34

sidering HA effects.35
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1.3. Scope of the Paper36

The Reynolds equation for compressible fluids is adapted to express the37

local density, exhibiting the bulk modulus whose expression depends on38

whether the saturation conditions are locally met or not. The expression39

of the bulk modulus is derived from the classical humid air theory and ac-40

counts for the drying effect of condensing vapor. The perturbation method41

is applied on the Reynolds equation and a finite difference scheme is used42

to solve the equations. Static and dynamic bearing properties are obtained43

by integrating the pressure fields. The concept of critical mass is used as a44

stability metric regarding the whirl instability. The deviation of HA lubrica-45

tion from the ideal-gas case is investigated for both PJB and HGJB in terms46

of load capacity and critical mass. The selected HGJB geometry maximizes47

the stability at moderated compressibility number (Λ = 1). The consid-48

ered operating conditions vary in temperature from 275 to 370 K, in relative49

humidity from 0 to 1 with different eccentricity ratios and compressibility50

numbers up to 30. Based on the generated results, a set of design guidelines51

is suggested for the design of HA-lubricated journal bearings based on the52

ideal-gas Reynolds equation.53

2. Theory54

HA lubrication implies a condensable gas mixture of water (condensable)55

and air, considered as incondensable. The main working hypotheses in the56

following development are: (1) the gas film is isothermal, (2) the thermody-57

namic equilibrium is instantaneous as suggested by Ma et Liu [6], (3) only the58

gas phase is considered. The hypothesis (1) is justified by the large contact59

area of the gas film with the rotor and bushings. These areas are heteroge-60

neous nucleation sites justifying (2) and the very small volume of condensed61

water regarding the gas phase justifies (3). The Reynolds equation adds the62

hypothesis of thin film, laminar flow, Newtonian fluid and negligible inertial63

effects. It is recalled as follows:64

∂X

(
ρh3

12µ
∂XP

)
+ ∂z

(
ρh3

12µ
∂zP

)
=
U

2
∂X(ρh) + ∂t(ρh) (1)

Since the practical problem targeted in the present work involves an at-65

mospheric pressure, both gases (air and water vapor) are considered as ideal.66

However, for an isothermal gas, the saturation partial pressure of water can67

be reached within the film as mixture pressure increases. At this point (dew68
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point), water vapor starts condensing and limits its contribution to the mix-69

ture pressure build-up on which the bearing relies to serve its purpose. At70

this point, the behavior of the mixture deviates from an ideal gas, namely:71

P = ρraT (2)

where ra is the specific gas constant of the ambient HA. In order to account72

for this deviation, Equation 2 is not used to substitute the density with the73

pressure in Reynolds equation. Instead, the following changes of variable are74

applied:75

∂P

∂X
=

(
∂P

∂ρ

)
T

· ∂ρ
∂X

,
∂P

∂z
=

(
∂P

∂ρ

)
T

· ∂ρ
∂z

(3)

Where (∂ρP )T is associated to the bulk modulus β of the lubricant gas:76

ρ

(
∂P

∂ρ

)
T

= β (4)

The following normalization is performed on Equation 1 to express it in77

cylindrical coordinates (Equation 6):78

ρ̄ = ρ/ρa µ̄ = µ/µa β̄ = β/Pa θ = X/R

z̄ = z/R h̄ = h/h0 t̄ = tω
(5)

∂θ

(
β̄h̄3

µ̄
∂θρ̄

)
+ ∂z̄

(
β̄h̄3

µ̄
∂z̄ρ̄

)
= Λ∂θ

(
ρ̄h̄
)

+ σ∂t̄
(
ρ̄h̄
)

(6)

Where Λ and σ are the compressibility and squeeze number respectively,79

defined as follows for journal bearings (Figure A.1):80

Λ =
6µaΩR

2

Pah2
0

(7)

σ = 2Λ
ω

Ω
(8)

In order to obtain the dynamic coefficients and to compute the critical
mass, the clearance is perturbed by an infinitesimal harmonic motion ε1x and
ε1y (εx/y = ex/y/h0) in the x and y directions respectively [7]:

h̄ =h̄0 − ε1x cos θeit̄ − ε1y sin θeit̄ (9)

=1− ε0x cos θ − ε0y sin θ − ε1x cos θeit̄ − ε1y sin θeit̄ (10)
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where ε0x and ε0y are the static equilibrium eccentricity ratios. The other81

perturbed terms involved in Equation 7 are:82

ρ̄ = ρ̄0 + ε1xρ̄1xe
it̄ + ε1yρ̄1ye

it̄ (11)

β̄ = β̄0 + ε1x

(
∂β̄

∂ρ̄

)
0

ρ̄1xe
it̄ + ε1y

(
∂β̄

∂ρ̄

)
0

ρ̄1ye
it̄ (12)

1

µ̄
=

1

µ̄0

+ ε1x

(
−1

µ̄2

∂µ̄

∂ρ̄

)
0

ρ̄1xe
it̄ + ε1y

(
−1

µ̄2

∂µ̄

∂ρ̄

)
0

ρ̄1ye
it̄ (13)

Only terms of order 0 and 1 with respect to ε1x and ε1y are retained83

and grouped in Equations 14 and 15 respectively. The same procedure is84

reiterated in the y direction without being repeated here.85

∂θ

[
β̄0h̄

3
0

µ̄0

∂θρ̄0

]
+ ∂z̄

[
β̄0h̄

3
0

µ̄0

∂z̄ρ̄0

]
− Λ∂θ

(
ρ̄0h̄0

)
= 0 (14)

∂θ

[(
∂β̄

∂ρ̄

)
0

ρ̄1x
h̄3

0

µ̄0

∂θρ̄0 + β̄0

(
−1

µ̄2

∂µ̄

∂ρ̄

)
0

ρ̄1xh̄
3
0∂θρ̄0+

β̄3h̄2
0

µ̄0

cos θ∂θρ̄0 +
β̄0h̄

3
0

µ̄0

∂θρ̄1x

]
+∂z̄

[(
∂β̄

∂ρ̄

)
0

ρ̄1x
h̄3

0

µ̄0

∂θρ̄0 + β̄0

(
−1

µ̄2

∂µ̄

∂ρ̄

)
0

ρ̄1xh̄
3
0∂θρ̄0+

β̄3h̄2
0

µ̄0

cos θ∂θρ̄0 +
β̄0h̄

3
0

µ̄0

∂θρ̄1x

]
−Λ∂θ

(
ρ̄0 cos θ + ρ̄1xh̄0

)
− iσ

(
ρ̄0 cos θ + ρ̄1xh̄0)

)
= 0

(15)

A central finite difference scheme is employed to discretize the equations with86

the boundary conditions of periodicity for θ = 0 and θ = 2π and ambient87

density at z̄ = ±L/D. The procedure consists in solving successively both88

unperturbed and perturbed equations to obtain the corresponding pressure89

fields, integrating them over the bearing domain to get the load capacity and90

complex impedances leading to the computation of the critical mass [8].91

The same method can be applied to the HGJB using the Narrow Groove92

Theory (NGT) to obtain a modified Reynolds equation [9]. This procedure93

predicts the overall pressure generated by an infinite number of groove-ridge94
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pairs over the bearing domain, smoothing the local pressure variation over a95

ridge-groove pair. Only the resulting differential equation is displayed here:96

∂θ
[
β̄ (f1∂θρ̄+ f2∂z̄ρ̄)

]
+ ∂z̄

[
β̄ (f2∂θρ̄+ f3∂z̄ρ̄)

]
+cs

(
sin β̂∂θ(f4ρ̄)− cos β̂∂z̄(f4ρ̄)

)
−Λ∂θ(f5ρ̄)− σ∂t̄(f5ρ̄) = 0

(16)

where the geometry is presented in Figure A.2 and functions fi are sum-97

marized in the Appendix. A first-order perturbation is applied to this equa-98

tion following Equations 9 to 13 and zeroth- and first-order equations are99

segregated to be solved successively.100

The problem of HA lubrication consists in the expression of (∂ρ̄P̄ )T . As101

long as the saturation partial pressure of water vapor is not locally reached,102

the mixture is assumed to be an ideal gas. Thus, the term (∂ρ̄P̄ )T , encapsu-103

lated in the bulk modulus, is equal to unity:104

(∂ρ̄P̄ )T =
ρa
Pa

(∂ρP )T =
ρaraT

Pa
= 1 (17)

Only when the saturation pressure is met, condensing water will stop105

building up pressure, leading to (∂ρ̄P̄ )T < 1, thus, departing from the ideal-106

gas behavior.107

The ideal-gas equation for the gas mixture is:108

P = ρrT (18)

The value of (∂ρP )T is simply:109

(∂ρP )T = rT + ρT∂ρr (19)

where r is the mixture specific gas constant110

r =
rair + wrvap

1 + w
(20)

and w is the humidity ratio defined as the ratio of mass water vapor per unit111

mass of dry air:112

w =
Mvap

Mair

(21)
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The value of w of the gas phase is defined locally depending on whether the113

saturation conditions are met or not:114

w = min(wa, w
∗(Ta, P )) (22)

w∗ is the saturation humidity ratio, which is a function of the ambient tem-115

perature and local pressure as follows:116

w∗ =
m̃vap

m̃air

P ∗vap(Ta)

P − P ∗vap(Ta)
(23)

where P ∗vap is the saturation pressure of water that depends on the tempera-117

ture only, computed using a fluid database [10]. Since Equation 6 deals with118

density rather than pressure, it is convenient to have an expression of w∗ as119

a function of density. For that purpose Equation 18 is inserted in Equation120

23 and w∗ is isolated:121

w∗ =
−c2 +

√
c2

2 − 4c1c3

2c1

(24)

with122

c1 = (ρrvapT − P ∗vap) (25)

c2 = rairρT − P ∗vap(1 + m̃vap/m̃air) (26)

c3 = P ∗vapm̃vap/m̃air (27)

If saturation is reached and the water content in the gas phase decreases,123

the mixture viscosity evolves accordingly. It is expressed from [11] as follows:124

µ =
(1− c̃vap)− µair

1− c̃vap + c̃vapΦav

+
c̃vapµvap

c̃vap + (1− c̃vap)Φva

(28)

where125

Φav =

√
2

4

(
1 +

m̃air

m̃vap

)−0.5
(

1 +

(
µair
µvap

)0.5(
m̃vap

m̃air

)0.25
)2

(29)

Φva =

√
2

4

(
1 +

m̃vap

m̃air

)−0.5
(

1 +

(
µvap
µair

)0.5(
m̃air

m̃vap

)0.25
)2

(30)
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c̃vap is the molar concentration of water vapor in the gas phase, related to126

the humidity ratio as follows:127

c̃vap =
1

1 + m̃vap

wm̃air

(31)

The deviation from the ideal-gas law and the change of viscosity provide the128

necessary tools for the modeling of HA-lubricated journal bearings.129

3. Numerical computations and results130

Journal bearings lubricated with condensable humid air are compared to131

equivalent non-condensable (ideal gas) cases using two performance metrics,132

namely the load capacity ratio Wr and the critical mass ratio Mr, defined as133

follows:134

Wr =
Wcond

Wnon−cond
(32)

Mr =
Mc,cond

Mc,non−cond
(33)

(34)

Both the investigated geometries have a L/D ratio of 1. Moreover, the135

HGJB geometry is based on the design obtained in [12] maximizing the min-136

imal critical mass for the range Λ ∈ [0, 1] (Equation 39) when the grooved137

member rotates:138

α = 0.6 (35)

β̂ = 145.8◦ (36)

H = 2.25 (37)

Unless specified differently, the simulations presented below are performed139

at an ambient temperature of 308 K, which is assumed to represent a pes-140

simistic temperature for humid environments. A first simulation of the PJB141

running at Λ = 30, and εx = 0.5 allows to understand the consequences of142

humid air lubrication. Figure A.3 presents the pressure relative to the ambi-143

ent at the mid-span of the considered bearing and the relative deviation of144
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the pressure compared to the non-condensable case with an ambient relative145

humidity of 0.8. The relative humidity φ is defined as follows:146

φ =
Pvap
P ∗vap

(38)

The pressure is not only affected in the zone where it exceeds the dew147

point, exhibiting a reduction exceeding 0.8% , but also outside this zone,148

although the deviation is even more modest. The pressure field is globally149

affected because of the elliptical characteristic of the Reynolds equation, the150

value at one given point affecting the entire fluid film domain. This kind of151

observation is impossible with HA effects considered a posteriori, on top of152

the computed pressure field with non-condensable gas lubrication, as usually153

seen in the literature [2, 3, 4].154

Figure A.4 presents the isolines of the load capacity ratio Wr for the155

PJB at εx = 0.5 as a function of the ambient relative humidity φa and156

the compressibility number Λ. Load capacity drops when the saturation is157

reached inside the bearing, and the condensation onset is reached at lower158

values of φa as Λ increases, until it converges toward a limit value. This159

is due to the well-known limiting solution for PJB with Λ → ∞, at which160

a limit pressure field is reached. With a maximum relative deviation of161

approximately 1.5% at this ambient temperature, the loss of load capacity162

remains low at all values of compressibility number, even at high ambient163

relative humidity. Deviation of this order of magnitude can be considered as164

negligible from a practical point of view.165

Figure A.5 depicts the evolution of Mr with φa and Λ. Once saturation166

is reached within the gas film, the condensation effects have a small yet neg-167

ative influence on Mr. Such a modest evolution of the critical mass remains168

without consequences on the practical design and performance of a PJB.169

Figures A.6 and A.7 present the same approach with the HGJB for Wr170

and Mr respectively, at εx = 0.05. The load capacity is negatively affected by171

the condensation, with a maximum deviation of less than 1%. Regarding the172

stability in the saturated domain, Mr is above unity on the left side of the line173

Λ ≈ 9 and below unity on its right side. The largest low- and high-deviation174

values are reached at the line itself, with a very abrupt change of trend.175

The underlying phenomenon is the point of very high stability observed for176

HGJB for particular values of Λ. Under the condition of saturated humid177

air lubrication, the position of this stability peak is shifted to slightly lower178

values of Λ (Figure A.8), explaining the abrupt variation of Mr in this zone,179
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whose amplitude rises with the ambient relative humidity (the 25%-deviation180

lines diverge along the φa axis). However, Mr gets close to 1 as soon as the181

operating conditions deviate from this particular zone.182

From a design perspective, the minimum value of the critical mass be-183

tween the targeted value of compressibility number Λ∗ and 0 bears a par-184

ticular importance, since it indicates the stability threshold of a bearing185

accelerating from rest to nominal speed. A new metric is defined to compare186

the minimal value of the critical mass in this range:187

Mr,min =

min
Λ∈[0,Λ∗]

Mc,cond

min
Λ∈[0,Λ∗]

Mc,non−cond
(39)

Figure A.9 depicts the evolution of Mr and Mr,min with Λ∗ for the saturated188

ambient condition (φa = 1). The improvement of critical mass observed189

for the condensable lubrication on the left-hand side of the turn-over point190

at Λ∗ ≈ 9 is translated into a moderately improved value of the minimum191

critical mass (≈ 3%). Past this point, Mr,min coincides with the line of Mr,192

resulting in a depreciation of the minimum critical mass reaching 25%, which193

is not negligible from a design perspective.194

The effects of the eccentricity ratio on the considered bearings are pre-195

sented in Figure A.10, at Λ = 10 and φa = 0.9. The evolution of Wr shows196

no clear trend for the HGJB and diminishes for the PJB as soon as the197

saturation point is reached, yet in an insignificant order of magnitude. The198

value of Mr for the HGJB increases slightly because of the further shift in the199

critical mass curve. The Mr of the PJB shows a local minimum at εx ≈ 0.17,200

however at levels without practical implications. Both metrics for HGJB are201

affected by humid-air effects already at a concentric position because of the202

inherent pressure build-up due to the grooved pattern, while saturation is203

reached only above εx ≈ 0.1 for the PJB.204

Figure A.11 presents the evolution of the minimum value of Mr,min for205

Λ∗ = 50 with the eccentricity ratio, in saturated ambient conditions. This206

metric shows a minimum at concentric position and relaxes as the eccentricity207

ratio increases.208

The effects of the ambient temperature are presented in Figure A.12 for209

both PB and HGJB at φa = 0.9. The concentration of water in the gas210

mixture increases with temperature at equal value of relative humidity, thus211

enhancing the effects of humid-air lubrication at high ambient temperature.212
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All metrics are affected in significant proportions at temperatures approach-213

ing 100 ◦C. The strong enhancement of Mr for the HGJB is due to the fact214

that the stability peak is shifted to lower values of Λ as the temperature215

increases with constant φa. For both bearings, the load capacity is reduced216

by 2% at a temperature of 330 K. On the same Figure the minimum value of217

Mr,min for Λ∗ = 50 and in saturated ambient conditions is shown in order to218

represent the worst case scenario. The temperature has a significant influ-219

ence, since this indicator approaches 0 near 100 ◦C. The humid air effects are220

still significant on this indicator at lower temperatures, since the 10%-losses221

threshold is located at 290 K.222

The influence of liquid water droplets formed in the bearing clearance223

due to condensation can be questioned, since the formation of a liquid phase224

in the lubrication film can threaten the viability of the bearing. However,225

because of its significant difference of density at near-normal conditions (three226

orders of magnitude), the liquid phase, which was neglected in the previous227

computations, might occupy an insignificant volume in the mixture. In order228

to analyze this, the void fraction, defined as the volume of gas phase over229

the total two-phase volume, is used:230

δ =
vgas

vliquid + vgas
(40)

Figure A.13 shows the ”1-void fraction” of the mixture for different ambient231

temperature and φa = 1 in the situation where all the water from the sat-232

urated solution condenses, which is an overestimation of reality. Under this233

assumption, the void fraction gets the following expression:234

δ =
1

1 + waρair/ρw
(41)

The minimum value barely reaches 99% for T just below 100 ◦C, which is235

suggested to be sufficiently small to discard any risk linked to the formation236

of a local liquid film in the bearing clearance.237

4. Conclusions238

A modified form of the Reynolds equation suited for humid-air lubrica-239

tion was developed and applied to grooved and plain journal bearings on240

a wide range of operating conditions (compressibility number, eccentricity241
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ratio, ambient temperature and relative humidity). Cases accounting for va-242

por condensation in the lubrication film were compared to non-condensable243

cases (ideal gas) in terms of load capacity and stability (critical mass). The244

investigations lead to the following observations:245

• Humid air (HA) lubrication affects the pressure distribution in a lubri-246

cation gas film even at locations where the pressure does not exceed247

the dew pressure248

• Consequences of HA lubrication are in general more significant at high249

compressibility numbers Λ, ambient humidity ratios and eccentricity250

ratios. High levels of ambient temperature increase the sensitivity of251

load capacity and stability to humid-air effects, as the mass concentra-252

tion of water in air increases253

• Herringbone-grooved journal bearings (HGJB) are more sensitive to254

HA effects than plain journal bearings (PJB), notably because of their255

inherent pressure build-up even at concentric position, whereas PJBs256

require a higher eccentricity to develop HA effects.257

• Vapor condensation negatively affects the load capacity of journal bear-258

ings, however without practical significance at temperature levels met259

in atmospheric conditions (Ta < 310 K). The critical mass of PJBs is260

affected in negligible proportions, while HGJBs can experience a signifi-261

cantly reduced critical mass at particular compressibility numbers, with262

a reported reduction up to 25% in realistic atmospheric temperatures.263

In consequence, an equivalent margin is suggested on the critical mass264

to ensure a safe operation of HGJBs designed from the non-condensable265

Reynolds equation.266

• In realistic situations, the presence of liquid droplets in the bearing267

clearance is unlikely to be a threat to the integrity of the system due268

to the very small void fraction calculated in worst-case scenarii.269
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Appendix A. Turbulent NGT308

The terms composing equation 16 are developed here.309

h̄r =
hr
h0

=
hr

hr(ε = 0)
(A.1)

h̄g =
hg
h0

(A.2)

H =
hg(ε = 0)

h0

(A.3)

g1 =h̄3
gh̄

3
r (A.4)

g2 =(h̄3
g − h̄3

r)
2α(1− α) (A.5)

g3 =(1− α)h̄3
g + αh̄3

r (A.6)

cs =− 6µΩR2

pah2
0

α(1− α)(H − 1) sin β̂ (A.7)

f1 =
g1 + g2 sin2 β̂

g3

(A.8)

f2 =
g2 sin β̂ cos β̂

g3

(A.9)

f3 =
g1 + g2 cos2 β̂

g3

(A.10)

f4 =
h̄3
g − h̄3

r

g3

(A.11)

f5 =αh̄g + (1− α)h̄r (A.12)
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