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Abstract
The mathematical modeling of the heart involves several challenges, which are intrinsically
related to the complexity of its function. A satisfactory cardiac model must be able to
describe a wide range of different processes, such as the evolution of the transmembrane
potential in the myocardium, the deformation caused by the muscles contraction, and the
dynamics of the blood inside the heart chambers. In this work, we focus on the coupling
of the electrophysiology, the active and the passive mechanics, and the fluid dynamics
of the blood in the left ventricle (LV) of the human heart. The models describing the
previously mentioned processes are called “single core models”, and can be regarded as
the building blocks of an “integrated model”.

In this thesis, we first review the isolated single core mathematical models for the descrip-
tion of the LV function, and discuss their space and time discretizations with particular
emphasis on the coupling conditions. We consider both implicit and semi-implicit schemes
for the time discretization. The fully discretized single core problems thus obtained are
then combined to define integrated electromechanics and electrofluidmechanics problems.
We then focus on the numerical coupling strategy for the electromechanics solver in the
framework of the active strain formulation. First, we propose a monolithic strategy where
the discretized core models are solved simultaneously; then, several novel segregated
strategies, where the discretized core models are solved sequentially, are proposed and
systematically compared with each other. The segregated strategies are obtained by
exploiting a Godunov splitting scheme, which introduces a first order error on the solu-
tion. We show that, while the monolithic approach is more accurate and more stable for
relatively large timesteps, segregated approaches allow to solve the integrated problem
much more efficiently in terms of computational resources. Moreover, with segregated
approaches, it is possible to use different timesteps for the different core models in a
staggered fashion, thus further improving the computational efficiency of the schemes.

The monolithic and the segregated strategies for the electromechanics are used to solve a
benchmark problem with idealized geometry: the results are then compared in terms
of accuracy and efficiency. We numerically confirm that the segregated strategies are
accurate at least of order one. In light of the results obtained, we employ the proposed
strategies to simulate the electromechanics of a subject-specific LV for a full heartbeat.
We simulate both healthy and pathological scenarios: in the latter case, we account
for an ischemic necrosis of the tissue and analyze several clinical indicators such as
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pressure-volume loops and the end systolic pressure-volume relationship. Finally, we use
the proposed strategies to simulate the electrofluidmechanics of a realistic LV during the
systolic phase of the heartbeat.

When defining the integrated cardiac models, we establish a preprocess pipeline aimed
at preparing geometries and data for both idealized and subject-specific simulations.
The pipeline is succesfully used for the setting up of large scale simulations in a high
performance computing framework, where the (strong and weak) scalability of the
proposed coupling strategies is assessed.

Keywords: heart modelling; coupled problem; electromechanics model; electromechano-
fluid model; monolithic scheme; segregated scheme; staggered scheme; finite element
method; patient-specific simulations.
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Résumé
La modélisation mathématique du coeur soulève plusieurs défis, intrinsèquement liés
à la complexité de ses fonctions. Un modèle cardiaque satisfaisant doit être capable
de décrire une large gamme de processus différents, comme l’évolution du potentiel
transmembranaire dans le myocarde, la déformation causée par la contraction des muscles,
et la dynamique du sang à l’intérieur des cavités cardiaques. Dans ce travail, nous nous
concentrons sur le couplage entre l’électrophysiologie, les mécaniques actives et passives,
et la dynamique des fluides du sang dans le ventricule gauche (LV) du coeur humain. Les
modèles décrivant les processus précédemment mentionnés sont appelés “modèles noyau”
et peuvent être vus comme les blocs de construction d’un “modèle intégré”.

Dans cette thèse, nous revoyons tout d’abord les modèles mathématiques noyau isolé pour
la description des fonctions du LV, and nous discutons leurs discrétisations spatiales et
temporelles avec une accentuation sur les conditions de couplage. Nous considérons à la
fois des schémas implicites et explicites pour la discrétisation temporelle. Les problèmes
noyau entièrement discrétisés ainsi obtenus sont ensuite combinés pour définir des
problèmes d’électromécanique et d’électrofluidomécanique intégrés. Nous nous concentrons
ensuite sur la stratégie de couplage numérique pour les solveurs électromécaniques dans
le cadre de la formulation de la souche active. Tout d’abord, nous proposons une
stratégie monolithique où les modèles noyau discrétisés sont résolus simultanément ;
ensuite, plusieurs nouvelles stratégies séparé, où les modèles noyau discrétisés sont résolus
séquentiellement, sont comparées les unes aux autres. Les stratégies séparé sont obtenues
en exploitant un schéma de fragmentation de Godunov, qui introduit une erreur de premier
ordre sur la solution. Nous montrons que, tandis que l’approche monolithique est plus
précise et plus stable pour des pas de temps relativement grands, les approches segregated
permettent de résoudre le problème intégré bien bien plus efficacement en termes de
ressources computationnelles. De plus, avec les approches séparé, il est possible d’utiliser
différents pas de temps pour les différents modèles noyau d’une manière échelonnée. Cela
améliore encore l’efficacité computationnelle des schémas numériques.

Les stratégies monolithique et séparé pour l’électromécanique sont utilisées pour résoudre
des problèmes de référence avec des géométries idéalisées : les résultats sont ensuite
comparés en termes de précision et d’efficacité. Nous confirmons numériquement que
les stratégies séparé ont une précision d’ordre au moins un. À la lumière des résultats
obtenus, nous utilisons les stratégies proposées pour simuler l’électromécanique d’un LV
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spécifique à un patient pendant toute la durée d’un battement de coeur. Nous simulons
à la fois les scénarios sains et pathologiques : dans le deuxième cas, nous considérons
une nécrose ischémique du tissu et nous analysons plusieurs indicateurs cliniques tels que
les boucles pression-volume et la relation pression-volume systolique. Finalement, nous
utilisons les stratégies proposées pour simuler l’électrofluidomécanique d’un LV réaliste
pendant la phase systolique d’un battement de coeur.

Lorsque nous définissons les modèles cardiaques intégrés, nous déterminons une pipeline
de pré-traitement ayant pour but de préparer les géométries et les données, à la fois pour
les simulations idéalisées et pour les simulations spécifiques à un patient. La pipeline est
utilisée avec succès pour la mise en place de simulations à grande échelle dans le cadre de
calcul de haute performance, où l’évolutivité (faible et forte) des stratégies de couplage
proposées est évaluée.

Mots clés: modélisation du coeur; problème de couplage; modèle électromécanique; modèle
électrofluidomécanique; schéma monolithique; schéma séparé; schéma échelonnée; méthode
des éléments finis; simulations spécifiques aux patients.
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Introduction
The heart performs two simple, yet fundamental, tasks: it pumps the deoxygenated blood
to the lungs to get oxygen and release carbon dioxide, while it simultaneously pushes
the oxygen rich blood into the arteries delivering it to tissues and organs [Levick, 2013].
Cardiovascular related diseases represent the leading causes of death in the whole world
[Murray et al., 2014]: while advancements in medical practice are continuously improving
patients conditions and diseases outcomes, recent progresses in the mathematical modeling
of the cardiac function allow to perform realistic cardiovascular numerical simulations
[Eriksson et al., 2013, Colli Franzone et al., 2015a, Gerbi et al., 2017, Göktepe and Kuhl,
2010, Krause et al., 2012, Nordsletten et al., 2011, Quarteroni et al., 2017a, Quarteroni
et al., 2017b, Rossi, 2014, Sugiura et al., 2012, Trayanova, 2011, Usyk et al., 2002],
thus providing medical doctors and clinicians with valuable diagnostic and predictive
tools. Moreover, clinical data and the application of image segmentation techniques
to Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scans feed,
as inputs, the mathematical models, thus allowing numerical simulations in a subject-
specific framework [Augustin et al., 2016, Coupé et al., 2011, Crozier et al., 2016, Gerbi
et al., 2017, Krause et al., 2015, Lee et al., 2010, Plotkowiak et al., 2008, Potse et al.,
2014, Quarteroni et al., 2017b, Smith et al., 2011, Takizawa et al., 2010]; in addition,
uncertainty quantification techniques allow to estimate the models parameters and data,
and to cope with their variability [Eck et al., 2016, Eriksson et al., 2013, Manzoni et al.,
2016, Pagani, 2017, Sankaran and Marsden, 2011].

The heart function is the result of several physical processes taking place at different
spatial scales, i.e. at the cellular, tissue, and organ levels. The muscle contraction,
by which the two ventricles pump the blood in arteries and veins during the systole,
is set off by a complex intracellular mechanism (the mechanical activation) causing
the shortening of the myocardium muscle fibers (structures defining the anisotropy of
the myocardium at the cellular level), which are in turn triggered by an electric wave
propagating through the tissues (the action potential). The contraction of the ventricles,
in coordination with the valves opening/closing, ensures the flowing of the blood in the
circulatory system at each heartbeat. We hence identify the following main processes:
electrophysiology (which drives the action potential), mechanical activation (or active
mechanics), (passive) mechanics, and fluid dynamics. In the mathematical modeling,
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these isolated (single) processes have to be properly integrated; we refer to this as an
“integrated heart model” [Quarteroni et al., 2017a]. The models for the electrophysiology,
the active and the passive mechanics, and the fluid dynamics are referred to as “single core
models”, and are expressed by systems of Ordinary Differential Equations (ODEs) and
Partial Differential Equations (PDEs). Although their individual behavior is nowadays
quite understood, further theoretical studies and analysis are still needed to better
understand their interactions [Chapelle et al., 2009, Costabal et al., 2017, Eriksson et al.,
2013, Gerbi et al., 2017, Quarteroni et al., 2017b, Rocha et al., 2009].

The focus of this thesis is on the electrofluidmechanics mathematical and numerical
modeling of the left ventricle (LV). The models used for the description of the physical
processes are the monodomain and bidomain equations [Colli Franzone et al., 2006, Hunter
et al., 1997, Potse et al., 2006, Sainte-Marie et al., 2006] together with the minimal
Bueno-Orovio ionic model [Bueno-Orovio et al., 2008] for the electrophysiology. For the
passive mechanics, we use the popular Holzapfel-Ogden model [Holzapfel and Ogden,
2009] together with the active strain approach [Ambrosi et al., 2011, Ambrosi and
Pezzuto, 2012], the latter endowed with a recently proposed model for the transmurally
heterogeneous thickening of the myocardium [Barbarotta et al., 2017] in the framework of
the active strain formulation. The mechanical activation model provides then a coupling
between the electrophysiology and the mechanics by describing the shortening of the
myocardial fibers [Gerbi et al., 2017, Ruiz-Baier et al., 2014], triggered by a change in the
ionic concentrations in the cardiac cells, namely the intracellular calcium concentration.
For the description of the fluid, we consider two cases: a 3D “full” model, and a 0D
“reduced” one. In the latter case, we use simple ODE-based models for the fluid pressure
acting on the endocardium (the interface between the myocardium and the blood) as is
done, e.g., in [Hirschvogel et al., 2017, Rossi, 2014] thus obtaining an “electromechanics”
model of the LV. In the former case, the incompressible Navier-Stokes equations for
a Newtonian fluid [Gervasio et al., 2006, Quarteroni et al., 2010] are employed thus
obtaining a Fluid-Structure Interaction (FSI) problem [Formaggia et al., 2010, Forti,
2016, Nobile, 2001], and we refer to the integrated model thus obtained as one for the
“electrofluidmechanics” of the LV.

The numerical approximation of the single core models is carried out by means of the
Finite Element Method (FEM) for the space discretization while Backward Differentiation
Formulas (BDFs) are used for the time discretization [Quarteroni et al., 2010]. We consider
both implicit and semi-implicit schemes, the latter consisting in the partial evaluation of
the nonlinear terms with an approximation of the unknowns (extrapolation) of the same
order of the BDF scheme [Cellier and Kofman, 2006, Gervasio et al., 2006]. Once the
isolated discretized models are obtained, a central topic which we thoroughly investigate
in this thesis is the numerical strategy used for the integrated models, i.e. the way by
which we solve the isolated problems with respect to each other. Indeed, the discretized
integrated problems can be formulated by either a monolithic approach, where the
approximated equations are assembled in a single large system and simultaneously solved,
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or a segregated approach, where the approximated equations are solved sequentially (in a
suitable specified order). We refer to the solvers for the integrated problems as monolithic
and segregated solvers, respectively. Monolithic solvers usually show better accuracy and
stability properties with respect to segregated ones; however, they are typically (much)
more computationally demanding. Segregated solvers, on the other hand, usually require
less computational resources at the cost of a reduced accuracy due to an introduced
splitting error. Segregated solvers for the electromechanics of the LV are very common,
and are investigated in [Augustin et al., 2016, Baillargeon et al., 2014, Chapelle et al.,
2009, Göktepe and Kuhl, 2010, Land et al., 2012, Rossi, 2014, Usyk et al., 2002], where
the electrophysiology and the mechanics problems are solved separately. In [Dal et al.,
2011, Dal et al., 2013, Gerbi et al., 2017, Hirschvogel et al., 2017], monolithic solvers
are used instead. We formulate here a monolithic solver [Gerbi et al., 2017] and three
novel segregated solvers [Gerbi et al., 2018] for the electromechanics problem, and then
extend them to the electrofluidmechanics case. A distinguishing feature of our approach
is that the numerical coupling is performed on the electromechanics problem within
the active strain framework and with a physically meaningful transmurally variable
orthotropic activation validated in [Barbarotta et al., 2017]. We sistematically compare
the numerical results obtained by means of the segregated solvers with those of the
monolithic solver for some physically meaningful benchmark problems, and we show
that the segregated schemes are first order accurate. We again remark that one of
the main novelties of the solvers here proposed is due to the use of the active strain
instead of the active stress. Indeed, contrarily to the results obtained in [Niederer and
Smith, 2008] where the active stress approach is used, numerical instabilities do not
arise when segregating the electrophysiology and the mechanics blocks. Our segregated
solvers are formulated in a way that different timestep sizes for the electrophysiology
and the mechanics can be used, thus leading to the so-called staggered algorithms. The
use of different timestep sizes for the time discretization of the single core models is
indeed more natural for segregated approaches. Moreover, this is physically motivated as
each single core model features very different time scales: namely, the electrophysiology
requires a small timestep size while the mechanics yields stable and accurate results also
for relatively coarse time discretizations. Regarding the computational efficiency, we
show that the segregated solvers allow dramatic reductions of the computational costs
with respect to the monolithic scheme. This is particularly true for a segregated solver
in which the equations for the ionic concentrations, the monodomain, the mechanical
activation, the mechanics, and the fluid are fully decoupled and a timestep size of an order
of magnitude larger is used for the mechanics (or the FSI in the electrofluidmechanics
case) with respect to the electrophysiology.

When solving the discretized single core and integrated problems, suitable preconditioners
must be employed for the efficient solution of the large linear systems stemming from
the discretization of the problems. This is particularly true in the case of the monolithic
solvers, where an effective preconditioner is necessary to even ensure the convergence
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of the method for the solution of the linear system. Moreover, using a monolithic
black box preconditioner (typical examples being Multigrid [Briggs et al., 2000] or
Additive Schwarz [Quarteroni and Valli, 1996] preconditioners) would lead to the loss
of information related to the differential problem associated to a single core model and,
consequently, to “poor” performances in the solution of the linear system. With this
aim, we develop two monolithic preconditioners (for the monolithic electromechanics and
electrofluidmechanics) exploiting such information at the block level, that is we define a
preconditioner which exploits the physics of the coupled problem at the level of the block
structure. This is obtained by an inexact factorization of the Jacobian of the monolithic
algebraic linear problem, which allows to precondition separately each single core model
rather than the whole integrated problem. The proposed preconditioner is an extension
of the FaCSI preconditioner for FSI problems proposed in [Deparis et al., 2016b]. In
particular, the results that we obtain confirm that the the block corresponding to the
mechanics, which is strongly nonlinear and highly anisotropic, is the most troublesome
regading the preconditioning approach [Colli Franzone et al., 2015a, Pavarino et al.,
2015], thus representing the bottleneck of our simulations. The monolithic solvers are
tested in High Performance Computing (HPC) framework with meshes featuring millions
of vertices and thousands of processing units in order to assess the weak and the strong
scalability of the proposed preconditioners and solvers; analogous tests are performed
with the segregated solvers to allow the comparison of the different strategies for large
scale simulations.

The integrated models require several different information (data) to be effectively used,
namely the ventricle geometry, the fibers distribution, and other physical parameters
such as the conductivity of the tissue or the End Diastolic Pressure (EDP). This aspect
is particularly important if one aims at simulating a realistic subject-specific scenario;
still obtaining data with noninvasive in vivo measurements is a complex task which is not
routinely performed in clinical procedures, and is under study in several medical fields
[Kircher et al., 1990, Provost et al., 2011, Zhang et al., 2006]. Moreover, even when these
data are available, often additional procedures have to be performed to exploit them in
the so-called preprocess pipeline. This aims at obtaining the data that are needed to feed
the solvers as inputs. In this work, the preprocess pipeline includes the generation of the
computational geometries, the approximation of the fibers field in the myocardium, and
the estimation of the internal stresses in the myocardium when the latter is in mechanical
equilibrium under the action of the pressure exerted by the blood. More in detail, the
preprocess pipeline that we consider includes procedures for the discretization of the
geometries starting from medical images obtained with techniques such as the MRI.
The mesh thus obtained, together with additional information on the fibers orientation,
is then exploited for the definition of the fibers in the whole myocardium by using a
rule-based algorithm [Bayer et al., 2012, Rossi, 2014]. Finally, given the geometry, the
fibers, and the EDP, the computation of the prestress allows to estimate the internal
distribution of the stresses at the end of the diastolic phase, which we always consider
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as the starting time for our simulations. The advantage of defining this pipeline is also
given by the possibility of generating these data “offline” for each given geometry and
parameters set, instead of carrying out this somewhat computationally expensive tasks.

After having assessed the accuracy and the efficiency of the proposed electromechanics
solvers we show that they can be seamlessly used, after having performed the preprocess
pipeline, also for large scale subject-specific simulations with geometries segmented from
MRI images. In the electromechanics case, a full heartbeat is simulated by modeling
the pressure at the endocardium during the four phases in which the LV heartbeat
is conventionally split, i.e. the isovolumic contraction, the ejection, the isovolumic
relaxation, and the filling phases. The results thus obtained show that the proposed
methods are able to produce results which match physiological data, specifically in terms
of conduction velocities, displacements, stresses, and pressure. Pressure-volume loops,
common and synthetic representations of the LV function [Klabunde, 2011], are also
produced and discussed. We then simulate, with the same subject-specific geometry, a
pathological condition known as (ischemic) necrosis, characterized by a reduction in the
blood supply to the myocardial tissues [Griffin et al., 2008] which causes a shortage in
the oxygen supply required for the cellular metabolism and ultimately the death of the
cells of the affected portion of tissue. The necrosis is modeled by locally modifying the
models for the electrophysiology and for the mechanical activation, while we stress that
the same solver and parameters of the healthy case are used. In this case, we also produce
several medical indicators and compare them with physiological data. Finally, in the
electrofluidmechanics case, the LV systole (which includes the isovolumic contraction and
the ejection phases) is simulated on a realistic geometry, by which we obtain physiological
values for the blood velocity and pressure.

This thesis is organized in three parts and along the following chapters.

I Mathematical and numerical modeling

Chapter 1: we describe in detail the physical processes taking place in the LV
during the heartbeat and we recall the mathematical core models for the electro-
physiology, the active and the passive mechanics, and the fluid dynamics which
are used throughout the thesis. Particular emphasis is put on the interactions (the
coupling conditions, in mathematical terms) between the core models in both the
electromechanics and the electrofluidmechanics case.
Chapter 2: we carry out the space and time discretizations of the single core models
by using the FEM and BDFs, the latter with both implicit and semi-implicit time
schemes.
Chapter 3: the techniques employed to generate the data to be used as input for
the proposed solvers are outlined. These data include the approximated geometries
(i.e. the meshes), the myocardium fibers and sheets distribution representing the
local anisotropy directions, and the myocardium stresses at the initial time (i.e. the
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prestress).

II Electromechanics

Chapter 4: we propose, discuss, and analyze monolithic, segregated, and staggered
solvers for the electromechanics problem. The segregated and the staggered solvers
correspond to a Godunov splitting scheme [Godunov, 1959] and we show that first
order accuracy is guaranteed when using them.

Chapter 5: we report the numerical results obtained with the proposed methods.
These include in particular error convergence analysis, the error being computed
with respect to the solution given by the monolithic solver with a small timestep
size. We then carry out several tests to assess the weak and the strong scalability for
varying timestep sizes. Finally, we use the solvers to simulate the electromechanics
of a subject-specific LV during a full heartbeat. In the latter case we also model and
simulate a pathological scenario, where part of the myocardium is affected by an
ischemic necrosis.

III Electrofluidmechanics

Chapter 6: the proposed strategies for the electromechanics of the LV are extended
to the electrofluidmechanics problem. Since interactions of the fluid with models
other than the mechanics are not considered, the extension consists in replacing the
mechanics core model with the FSI core model.

Chapter 7: we report and discuss the numerical results obtained with the proposed
strategies for the simulation of the LV electrofluidmechanics with a realistic geometry.
In this case, we limit the simulation to the systolic phase due to the complexity of
simulating the full heartbeat.

Finally, we draw our Conclusions and outline several possible future developments.

All the numerical methods described in this thesis have been implemented by the author
in the open source finite element library LifeV 1. This thesis contains results which have
already been accepted or submitted for publication (see [Gerbi et al., 2017, Gerbi et al.,
2018, Landajuela et al., 2017]).

1http://www.lifev.org
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1 Mathematical models for the
human heart

In this review chapter we describe the physical processes taking place in the LV during a
heartbeat and the main mathematical models for their description. These include the
electrophysiology and the passive/active mechanics in the myocardium (i.e. the heart
muscle), and the blood dynamics in the chambers. For each process, we introduce the
variables of interest and give a brief review of the mathematical models employed to
describe the evolution of such variables, as well as their mutual interactions.

1.1 Heart function

The heart is composed of four chambers, the left and the right ventricles and atria. Its
function is to pump the blood through the circulatory system: the right side pushes the
deoxygenated blood to the lungs to pick up oxygen and get rid of carbon dioxide, while
the left side pushes the oxygen rich blood in the arteries to get it delivered to tissues
and organs (see Figure 1.1) [Opie, 2004]. It is estimated that the heart pumps some five
million liters of blood during an average lifetime [Jarvik, 1981].

The contraction of the ventricles, which are responsible for pumping the blood, is triggered
by a series of electrochemical reactions occuring in the myocardium. The stimuli initiating
these reactions are generated at the sinoatrial (SA) node [Brooks and Lu, 1972] – a
group of cells located on the right atrium wall – which acts as a natural peacemaker
and delivered through the so called Purkinje fibers network, as depicted in Figure 1.1.
The contraction is carried out by means of the excitable contractile cardiac muscle cells,
called cardiomyocytes. The latter are composed of myofibrils, long bundles of sarcomeres
(the basic unit of striated muscle tissue) forming bonds with each other by means of
calcium ions

[
Ca2+] molecules [Hoffman and Cranefield, 1960]. Once these bonds have

taken place, the shortening of the cardiomyocytes drives the tissue contraction at the
organ level. The evolution of the electric field through the cardiomyocytes depends on
a delicate balance between the transmembrane potential – i.e. the potential difference
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Figure 1.1 – Anterior view of a frontal section of the heart.

across the membrane separating the innser and the outer parts of the cells – and the
concentration of different ionic species like the calcium.

In the context of a full heartbeat, the contraction takes place in the systolic phase (see
Figure 1.15) causing the LV pressure to increase while the aortic and the mitral valves
are both closed. When the LV pressure reaches the value of the outer aortic pressure
measured on the other side of the aortic valve, the latter opens allowing the oxygenated
blood to flow in the arteries [Altman and Dittmer, 1971]. After the ejection of blood
starts, the LV undergoes a relaxation in the diastolic phase, during which it is filled with
the blood coming from the left atrium (LA) and passing through the mitral valve.

In the following, we analyze in detail the models that we use to capture the main features
of these physical processes.

1.2 Electrophysiology models

The myocardium cells are organized in membranes; these are characterized by channels
(or gates) which provide direct intercellular communications between the cytoplasmatic
compartments of two adjacent cells [Colli Franzone et al., 2006, Hoyt et al., 1989].
Different ionic species flow through the cellular membrane, depending on the electric
transmembrane potential v. At equilibrium, the ionic flux is zero and a resting state for v
can be defined; if an external electrical stimulus is applied to the cell, a complex system
of reactions generates an action potential, which propagates through the myocardium.
A detailed description of such phenomena can be found e.g. in [Colli Franzone et al.,

10
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Figure 1.2 – Ion channels in a cardiac cell. In the figure, K+, Na+, and Ca2+ are
channels allowing the corresponding ion to cross the membrane, while Na+/Ca2+ is
an exchanger which transports three Na+ ions for each Ca2+ ion. Image taken from
[Marbán, 2002].

2006, Keener and Sneyd, 1998].

1.2.1 Ionic models for single cells

By considering a single cell membrane and a single ionic species with concentration c(t),
its flux J through the membrane can be obtained by the superposition of two effects: a
component due to the gradient of the ion’s concentration (according to the Fick’s law)
and a second one due to the generated electric field ∇v. In mathematical terms:

J = Jc + Je = D
(
∇c+ c

zF

RT
∇v
)
, (1.1)

where D is the conductivity tensor, T is the membrane’s temperature, and z is the charge
of the ionic species; F and R are, respectively, the Faraday’s and the ideal gas constants.
By setting J = 0 in (1.1) and integrating in (xint, xext), where xint and xext are the
coordinates of the inside and the outside of the cell, respectively, the resting (or Nernst)
potential of the specific ion can be obtained:

vS = RT

zF
log
(
cext
cint

)
,

with cext and cint being the ion’s concentrations in the exterior and in the interior of the
cell, respectively. Therefore, when v 6= vS , an electric current density flows through the
membrane; according to Ohm’s law, this current is modeled as:

IS = ḡS(v − vS),

where the conductivity of the membrane ḡS has to be properly modeled.
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Chapter 1. Mathematical models for the human heart

The main factors in the determination of ḡS are the channels on the cell, which allow
the flux to pass through the membrane (see Figure 1.2). The simplest model for these
channels [Colli Franzone et al., 2006] is based on the assumption that they can be either
open or closed. By denoting the total number of channels per unit area as [T ] = [O] + [C],
where [O] and [C] are the open and closed channels per unit area respectively, the
gating variable w = [O]

[T ] are defined as the fraction of channels which are open. Taking
into account M kinds of channels for a specific ion, and defining the gating variables
wj ∈ [0, 1], j = 1, . . . ,M associated to S, the conductivity takes then the following form:

ḡS = gS ϕ(v), with ϕ(v) :=
M∏
j=1

w
Sj
j (v).

The number M of gating variables depends on the particular species considered, as
well as on the particular ionic model at hand. In general, Sj represents the number of
channel subunits of the j-th type [Keener and Sneyd, 1998]. Among the numerous works
attempting to model heart muscle cells, we recall simple models such as the Aliev-Panfilov
(M = 1) [Aliev and Panfilov, 1996], the minimal model (M = 3) [Bueno-Orovio et al.,
2008], or the more realistic Luo-Rudy (M = 6) [Luo and Rudy, 1991, Luo and Rudy,
1994] and the ten Tusscher (M = 13) [ten Tusscher et al., 2004] models. All of these aim
at describing ventricular cells, even if the same framework applies to different kinds of
cells, as in the case of the Noble model (M = 3) [Noble, 1962] for the Purkinje fibers.

Tipically, each gating variable wj is the solution of an ordinary differential equation
(ODE) of the form:

dwj
dt = αj(v)(w∞j (v)− wj) + βj(v)wj , (1.2)

αj , βj being the probability of channel opening and closing, respectively, while w∞j is
such that wj = αj

αj − βj
w∞j at the equilibrium. In the case of multiple ionic species, the

total ionic current density Iion can be obtained by summing the contribution given by p
different species. By using the Hodgkin-Huxley [Hodgkin and Huxley, 1952] formalism,
we write:

Iion(v,w, c) =
p∑

k=1
gk(c)

Mk∏
j=1

w
Skj
j (v − vk(c)), (1.3)

where, as previously stated, c = (c1, . . . , cp) are variables which represent the intracellular
concentration of the ions and w = (w1, . . . , wMp) are the gating variables. The 0D
equations which describe the evolution of the transmembrane potential in a a single cell
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Figure 1.3 – Evolution of the transmembrane electric potential in a cardiac cell, stimulated
with an external electric current. The figure highlights the following phases: 1) the resting
phase, when the potential remains at its rest value of approximately v = −90 mV until the
cell is stimulated; 2) the depolarizaton phase, when the cascade effect of electrochemical
reactions drives the opening of the ionic channels on the membrane, ultimately causing
a spike in the potential which switches sign; 3) the short repolarization phase, when
the potential shortly decreases immediately after the spike; 4) the plateau phase, when
the net flux of electric charge due to the ions flowing inward/outward with respect to
the cell membrane is zero; 5) the repolarization phase, when the channels, the ionic
concentrations and the potential slowly return to the rest configuration.

hence read:

dv
dt = 1

Cm
(Iapp − Iion(v,w, c)) t ∈ (0, T ],

dw
dt = R(v,w) t ∈ (0, T ],
dc
dt = S(v,w, c) t ∈ (0, T ],

v = v0, w = w0, c = c0 t = 0.

(1.4)

where T is the final time considered, Cm is the membrane capacitance, Iapp is an external
current density, the function R is usually of the form specified in Eq. (1.2), while the
function S describes the evolution of the ion concentration and depends on the considered
ionic model. We report in Figure 1.3 the evolution of the transmembrane potential v in
a cardiac cell as modeled with Eq. (1.4) with different phases highlighted.
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Chapter 1. Mathematical models for the human heart

Figure 1.4 – Myocardial tissue at the microscale, showing the disposition of the fibers in
the muscle. Image taken from [Akhgari et al., 2017].

For the sake of simplicity we will be using the minimal model of [Bueno-Orovio et al.,
2008] which is characterized by 3 gating variables only; nevertheless, it is suitable to
reproduce action potential morphologies and can be tuned to mimic the behavior of
other complex models such as the ten Tusscher [Rossi, 2014]. Moreover, in view of the
subsequent numerical discretization of the continuous model, this choice will allow to
contain the computational cost since the equations of the ionic model will be solved in
each degree of freedom of the discretized geometry.

1.2.2 Bidomain and monodomain models

Once the electrophysiological model of a single cell has been set up, it is possible to
model the behavior of a multi-cell tissue; however, rather than considering such tissue as
made of individual cells, the homogenization theory [Colli Franzone et al., 2006] suggests
that the extra-cellular and the intra-cellular regions can be considered as two continuous,
geometrically coincident domains which we denote by Ωs

0 (see Section 1.3).

The myocardium is a highly anisotropic material composed of fibers [Costa et al.,
1999, Fernandez-Teran and Hurle, 1982, Gilbert et al., 2007, Hoshino et al., 1983]. Fibers
are in turn composed of cardiomyocites, organized in groups, firmly tied up in collagen (see
Figure 1.4). Since the electrical and the structural properties of the myocardium depend
on a local frame of reference, we define the three vector fields f0 = f0(Xs), s0 = s0(Xs)
and n0 = n0(Xs) ∀Xs ∈ Ωs

0, which identify the fibers and the collagene sheets directions,
and the fibers-sheets normal (i.e. the vector normal to the plane identified by f0 and
s0), respectively. The anisotropy of the myocardium is then encoded in the conductivity
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tensors DE and DI for the extra-cellular and the intra-cellular domains, respectively, for
which we set:

DE = σE,tI + (σE,l − σE,t)f0 ⊗ f0,

DI = σI,tI + (σI,l − σI,t)f0 ⊗ f0,

where σE,t, σE,l (σI,t, σI,l) are the extra-cellular (intra-cellular) conductivities in the
directions transversal and longitudinal with respect to the fibers, respectively.

By redefining the transmembrane potential as v = vI − vE , where vI and vE are the
internal and external potentials with respect to a common point, respectively, the
transmembrane current per unit volume is:

Jm = χ

(
Cm

∂v

∂t
+ Iion(v,w, c)

)
,

where χ is the membrane surface area per unit volume. By denoting with JI = −DI∇vI
and JE = −DE∇vE the intra/extra-cellular current densities and following Section 1.2.1
regarding the modeling of the concentrations and the gating variables, the so called
bidomain model [Franzone et al., 2005] in parabolic-parabolic formulation reads:

χ

[
Cm

∂v

∂t
+ Iion(v,w, c)

]
= ∇0 · (DI∇0vI) in Ωs

0 × (0, T ],

χ

[
−Cm

∂v

∂t
− Iion(v,w, c)

]
= ∇0 · (DE∇0vE) + Iapp in Ωs

0 × (0, T ],

∂w
∂t

= R(v,w) in Ωs
0 × (0, T ],

∂c
∂t

= S(v,w, c) in Ωs
0 × (0, T ],

(DI,E∇0vI,E) ·Ns = 0 on ∂Ωs
0 × (0, T ],

v = v0, w = w0, c = c0 in Ωs
0 × {0},

(1.5)

where Ns is the outward normal vector with respect to the surface ∂Ωs
0, and Iapp is an

applied extracellular current per unit volume, satisfying the compatibility condition∫
Ωs0
Iapp dΩs

0 = 0.

The bidomain model is often rewritten in an equivalent form in terms of v and vE : in such
a case, which is also the formulation that we consider, the equations in parabolic-elliptic
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Chapter 1. Mathematical models for the human heart

form [Landajuela et al., 2017] read:

χ

[
Cm

∂v

∂t
+ Iion(v,w, c)

]
= ∇0 · (DI∇0(v + vE)) + Iapp in Ωs

0 × (0, T ],

−∇0 · (DI∇0v)−∇0 · ((DI + DE)∇0vE) = 0 in Ωs
0 × (0, T ],

∂w
∂t

= R(v,w) in Ωs
0 × (0, T ],

∂c
∂t

= S(v,w, c) in Ωs
0 × (0, T ],

(DI∇0(v + vE)) ·Ns = 0 on ∂Ωs
0 × (0, T ],

(DI∇0v + (DI + DE)∇0vE) ·Ns = 0 on ∂Ωs
0 × (0, T ],

v = v0, w = w0, c = c0 in Ωs
0 × {0},

(1.6)

A simpler model, called monodomain model, is often used instead of Eq. (1.5). The
monodomain model is obtained from the bidomain model by assuming that the anisotropy
ratio of the two media is the same, that is

DI = λDE ,

for λ ∈ R+. This model is intrinsically simpler than the bidomain model and is able to
reproduce the electrophysiology phenomena inducing the muscle contraction. However,
the monodomain model is not deemed to be suitable to describe phenomena for which
the current in the extracellular domain influences the transmembrane potential and the
ionic currents, as occurs for example during cardiac fibrillation and other pathological
cases [Potse et al., 2006]. The monodomain model reads:

χ

[
Cm

∂v

∂t
+ Iion(v,w, c)

]
= ∇0 · (DM∇0v) + Iapp in Ωs

0 × (0, T ],

∂w
∂t

= R(v,w), in Ωs
0 × (0, T ],

∂c
∂t

= S(v,w, c) in Ωs
0 × (0, T ],

(DM∇0v) ·Ns = 0 on ∂Ωs
0 × (0, T ],

v = v0, w = w0, c = c0 in Ωs
0 × {0}.

(1.7)

where

DM = DI(DI + DE)−1DI

≈ σtI + (σl − σt)f0 ⊗ f0.

In [Colli Franzone et al., 2006], a rigorous derivation of (1.7) is provided. Compared
to Eq. (1.5), this simplification entails a simpler model and hence, once approximated,
reduced compuational costs; morever, it is proven that, under specific conditions, problem
(1.7) has a unique solution [Rossi, 2014].
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1.2. Electrophysiology models

Figure 1.5 – Representation of a membrane channel activated by the membrane tension due
to the deformation of the muscle. The open channel allows the ions to flow inward/outward
resulting in a SAC.

In Eqs. (1.6)-(1.7) additional terms might be considered. First of all, if the domain Ωs
0

is subject to a deformation, as in our case, we need to include the dependence of the
diffusive term on the strain tensor F, where:

F = ∇0xs = ∂xs
∂Xs

= I + ∂ds
∂Xs

is the deformation gradient, Xs and xs = Xs + ds being the reference and the deformed
coordinates, respectively. Indeed in such a case the diffusive term in the first equation of
(1.7) takes the form [Colli Franzone et al., 2015b, Nordsletten et al., 2011]:

∇0 · (JF−1DMF−T∇0v), (1.8)

with J = det(F), and analogously in Eq. (1.6). Moreover, stretch activated currents (SAC)
might be included to consider the electric currents triggered by the deformation of the
myocardium [Kamkin et al., 2000, Davis et al., 1992], as shown in Figure 1.5. In general,
it accounts to introducing a term of the form [Colli Franzone et al., 2015b, Trayanova
et al., 2010]:

ISAC = ISAC(v, c,ds). (1.9)

In this work, we consider the dependence of the diffusion on the deformation of the
domain. We however neglect, for simplicity, the role of SAC currents: nonetheless we
remark that considering the term (1.9), in the context of the integrated problem, does
not change the coupling of the core models because a feedback from the mechanics
is already included by means of Eq. (1.8). More detailed studies on the topic of the
bioelectrical effects of mechanical feedbacks were carried out in [Colli Franzone et al.,
2016b, Colli Franzone et al., 2017, Colli Franzone et al., 2016a].

We conclude this Section by writing the weak formulation of the bidomain model in
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parabolic-elliptic form and of the monodomian model [Bourgault et al., 2009]. For the
sake of simplicity, from now on, the vector w = {wl}NIl=1 will comprehend both the
gating variables and the ionic concentrations. Indeed, in the case of the minimal model
[Bueno-Orovio et al., 2008], they both satisfy an equation in the form (1.2), which we
rewrite in vector form as

∂w(t)
∂t

+ U(v(t))w(t) = Q(v(t)).

We hence multiply the first two equations in (1.6) by a test function ψs ∈ H1(Ωs
0) and

the third one by φs ∈ [L2(Ωs
0)]NI , and integrate over the domain. By Integrating by

parts, we obtain the weak formulation of the bidomain model: find v(t) ∈ H1(Ωs
0),

vE(t) ∈ H1(Ωs
0)/R, w(t) ∈ [L2(Ωs

0)]NI such that∫
Ωs0
χ

[
Cm

∂v

∂t
+ Iion(v,w, c)

]
ψs dΩs

0 +
∫

Ωs0
(DI∇0(v + vE)) : ∇0ψs dΩs

0

=
∫

Ωs0
Iappψs dΩs

0, for all t ∈ (0, T ],
,

∫
Ωs0

(DI∇0v) : ∇0ψs dΩs
0 +

∫
Ωs0

((DI + DE)∇0vE) : ∇0ψs dΩs
0 = 0, for all t ∈ (0, T ],∫

Ωs0

∂w
∂t
· φs dΩs

0 +
∫

Ωs0
U(v)w · φs dΩs

0 =
∫

Ωs0
Q(v) · φs dΩs

0,

v(0) = v0, w(0) = w0,

for every ψs ∈ H1(Ωs
0) and every φs ∈ [L2(Ωs

0)]NI . The function vE belongs to the
quotient space H1(Ωs

0)/R because it is defined up to a constant in this formulation.

In the case of the monodomain model, the weak formulation reads: find v(t) ∈ H1(Ωs
0),

w(t) ∈ [L2(Ωs
0)]NI∫

Ωs0
χ

[
Cm

∂v

∂t
+ Iion(v,w, c)

]
ψs dΩs

0 +
∫

Ωs0
(DM∇0v) : ∇0ψs dΩs

0

=
∫

Ωs0
Iappψs dΩs

0, for all t ∈ (0, T ],∫
Ωs0

∂w
∂t
· φs dΩs

0 +
∫

Ωs0
U(v)w · φs dΩs

0 =
∫

Ωs0
Q(v) · φs dΩs

0,

v(0) = v0, w(0) = w0,

for every ψs ∈ H1(Ωs
0) and every φs ∈ [L2(Ωs

0)]NI .
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1.3. Myocardium mechanical models

Figure 1.6 – a) An ideal left ventricle muscle. b) A cardiac tissue block showing the
fibers’ orientation through its thickness. c) Fiber orientation projected on different slides.
Image from [Holzapfel and Ogden, 2009].

1.3 Myocardium mechanical models

The LV, among the four cardiac chambers, is by far the most studied from both the
physiological and the mathematical points of view: this is due to the fact that the vigorous
contraction of its walls is responsible for pumping oxygenated blood to tissues all over the
body through the circulatory system and it is in first instance responsible for the function
of the organs. The LV is endowed with the thickest walls among the other chambers and
the muscle forming them is composed of cardiomyocytes. As explained in Section 1.2, the
tissue is composed of fibers: at the macroscopical level, fibers are arranged in a helical
fashion and their orientation varies transmurally from the epicardium to the endocardium
(see Figure 1.6).

The mechanical models for the myocardial tissue are based on the finite elasticity theory,
since the myocardium undergoes large deformations throughout the heartbeat. In this
framework, the unknown displacement ds is determined by solving the momentum
conservation equation:

ρs
∂2ds
∂t2

−∇0 ·P(ds) = 0, in Ωs
0 × (0, T ]

+ boundary conditions,
+ initial conditions,

(1.10)

where ρs is the density of the material and the first Piola-Kirchhoff stress tensor P
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accounts for the properties of the considered material. Boundary and initial conditions
must be assigned in Eq. (1.10) to ensure the well posedness of the problem, and will be
specified later. Tensor P is often expressed in terms of the right Cauchy-Green tensor
C = FTF.

Under the additional assumption that the myocardium is a hyperelastic material [Ogden,
1997], the relationship between the stress and the strain derives from a strain energy
density function W =W(C); this accounts to assume that:

P = ∂W(C)
∂F . (1.11)

1.3.1 Passive mechanics

In this section we outline the models employed for the passive behavior of the myocardium.
We describe in particular the state of the art strain energy function for the left ventricle
tissue in a nearly-incompressible formulation. The mechanics problem is then formulated
and endowed with initial and boundary conditions.

Strain energy function

It is convenient to express the anisotropic components of W in a form which is invariant
with respect to the frame of reference. With this aim, we introduce the following invariants
of the tensor C:

I1 = tr(C),

I2 = 1
2
[
I2

1 − tr(C2)
]
,

I3 = det(C),
I4p = C : p0 ⊗ p0 = p · p,
I8pq = C : p0 ⊗ q0 = p · q, p,q ∈ {f , s,n} .

The subscript 0 means that the quantity is considered with respect to the reference
domain, while the vectors f , s, and n were defined in Section 1.2. The typical behavior of
biological tissue is such that the response of the material in terms of internal stresses is very
strong, compared to a relatively small deformation; many models in literature [Demiray,
1976, Humphrey and Yin, 1987, Humphrey et al., 1990, Costa et al., 2001, Schmid et al.,
2006] provide an expression for W in terms of exponential type in the invariants of C, for
which the energy grows quickly as the structure is deformed with respect to its resting
state. The state of the art of such models was obtained using experimental shear test
data from [Dokos et al., 2002]; in the model proposed in [Holzapfel and Ogden, 2009] the
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Figure 1.7 – Isovolumic strain energy of the form Wvol(J) = B
2 (J − 1) log(J), represented

as a function of J . Wvol is nonnegative, convex, and it attains its global minimum in
J = 1.

strain energy function W takes the form:m

W(C) =W1(I1) +W4f (I4f ) +W4s(I4s) +W8fs(I8fs), (1.12)

where

W1(I1) = a

2be
b(I1−3),

W4f (I4f ) = af
2bf

[
eb〈I4f−1〉2 − 1

]
,

W4s(I4s) = as
2bs

[
eb〈I4s−1〉2 − 1

]
,

W8fs(I8fs) = afs
2bfs

[
ebfsI

2
8fs − 1

]
,

and

〈x〉 =
{
x if x > 0,
0 otherwise,

indicates the positive part of x and its role consists in switching off the contributions to
the stresses of the fibers and sheets when the material is under compression along their
directions [Holzapfel and Ogden, 2015].

Nearly-incompressible formulation

Biological tissues are mostly composed of water, and therefore can be considered as
incompressible. However, in the case of the myocardium, volume changes has been
observed [Yin et al., 1996] even if these are fairly moderate [Cheng et al., 2005], ranging
from 2% to 15%. For this reason, a nearly-incompressible formulation is often adopted
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[Barbarotta et al., 2017, Rossi, 2014, Simo and Taylor, 1991], as it allows moderate volume
variations; at the same time, the resulting problem is simplier than in the case of the
incompressible formulation as the pressure is neglected. The nearly-incompressible formu-
lation prescribes a decomposition of the strain tensor into an isochoric (or isovolumetric)
F and a volumetric Fv part as:

F = FvF, with Fv = J
1
3 I and F = J−

1
3 F, (1.13)

where J = det(F) represents the volume change of an infinitesimal block (and hence
det(F) = 1). Together with (1.13), an additional term depending on J has to be consid-
ered in the definition of the strain energy function, in order to enforce the incompressibility
constraint:

W(C, J) =Wiso(C, J) +Wvol(J)
=W1(I1) +W4f (I4f ) +W4s(I4s) +W8fs(I8fs) +Wvol(J),

(1.14)

where I1 = J−
2
3I1 is the first invariant of the tensor C = FTF. Indeed, since the isochoric

part of the energy function Wiso is that of an incompressible material (as is assumed in
[Holzapfel and Ogden, 2009]), one should evaluate its terms in the invariants of C instead
of C; however, it is shown in [Sansour, 2008] that the evaluation of the anisotropic terms
must be performed with respect to the invariants of C to avoid unphysical deformations.

In order to enforce the incompressibility constraint, the term Wvol grows as the deforma-
tion deviates from being isochoric. A common choice [Pezzuto, 2013] is that of a function
bounded from below, convex, and whose slope in J = 1 is null, for instance:

Wvol(J) = B

2 (J − 1) log(J),

where the penalization factor B is called bulk modulus. The term Wvol is shown in
Figure 1.7 as a function of J .

Initial and boundary conditions

In order to ensure uniqueness for Eq. (1.10), initial and boundary conditions have to be
assigned. The latter are imposed on the boundaries depicted in Figure 1.8, and are chosen
to take into account for the interaction with the blood on the endocardium (the inner
surface of the myocardium), for the tension due to the continuity of the heart muscle on
the base (the imaginary surface identified by a plane orthogonal to the LV centerline
cutting it in the upper part) and for the presence of the pericardium, a sac containing
the heart enclosed in the pericardial cavity [Spodick, 1996]. In particular, following
[Hirschvogel et al., 2017], we use visco-elastic generalized Robin boundary conditions;
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1.3. Myocardium mechanical models

Figure 1.8 – A simplified representation of the boundaries of the LV. These are the
endocardium (blue), the epicardium (red) and the base (green). The pericardium (grey)
contains the whole heart, and covers part of the LV epicardium in the figure.

thus, the complete mechanics problem reads:

ρs
∂2ds
∂t2

−∇0 ·P(ds) = 0 in Ωs
0 × (0, T ],

(Ns ⊗Ns)
(
Kη
⊥ds + Cη⊥

∂ds
∂t

)
+ (I−Ns ⊗Ns)

(
Kη
‖ds + Cη‖

∂ds
∂t

)
+ P(ds) Ns = 0 on Γη0 × (0, T ],

P(ds) Ns = pendo(t)Ns on Γendo0 × (0, T ],

ds = ds,0,
∂ds
∂t

= ḋs,0 in Ωs
0 × {0}.

(1.15)

The boundary ∂Ωs
0 is partitioned into the three surfaces Γbase0 , Γendo0 , and Γepi0 , corre-

sponding to those indicated in Figure 1.8. For η ∈ {base, epi} we assign parameters
Kη
⊥,K

η
‖ , C

η
⊥, C

η
‖ ∈ R+, where Kη

j and Cηj are the spring stiffnesses and the dashpot vis-
cosities per unit reference surface area, respectively. Subscripts ⊥ and ‖ indicate wether
the condition is applied in the normal or in the tangential direction. On the endocardium,
on the other hand, the pressure pendo(t) (still prescribed at this stage) is imposed. Finally,
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Chapter 1. Mathematical models for the human heart

vector ds,0 denotes the initial displacement and ḋs,0 its temporal rate of change.

In order to obtain the weak formulation of Eq.(1.15) we multiply by a vector valued test
function ψs ∈ [H1(Ωs

0)]3, and integrate in Ωs
0 thus obtaining: find ds(t) ∈ [H1(Ωs

0)]3 such
that
∫

Ωs0
ρs
∂2ds
∂t2

·ψs dΩs
0 +

∫
Ωs0

P(ds) : ∇0ψs dΩs
0

+
∑

η∈{epi,base}

∫
Γη0

[
(Ns ⊗Ns)

(
Kη
⊥ds + Cη⊥

∂ds
∂t

)

(I−Ns ⊗Ns)
(
Kη
‖ds + Cη‖

∂ds
∂t

)]
: ∇0ψs dΩs

0,

=
∫

Γendo0

pendoNs ·ψs dΓendo0 , for all t ∈ (0, T ],

ds(0) = ds,0,
∂ds
∂t

(0) = ḋs,0,

(1.16)

for every ψs ∈ [H1(Ωs
0)]3.

Prestress

A common problem which has to be considered in the mathematical modeling of fluid-
structure interaction (FSI) phenomena is that the reference geometry of the structure
does not necessarily correspond to a stress–free configuration. In our case, this is due to
the fact that at the initial time t = 0 the blood pressure pendo = pendo(0) > 0 exerts
a force on the endocardium walls and hence the net force acting on the myocardium
is nonzero. This implies that solving problem (1.15) with a physiological endocardial
pressure pendo > 0 would give rise to non-physiological displacements as the internal
stresses are not in equilibrium with the intraventricular blood’s pressure. To take into
account this behavior, two strategies have been proposed in literature to address this issue:

Pressure preload [Eriksson et al., 2013, Rossi, 2014, Takizawa et al., 2010, Tezduyar et al.,
2008]: the reference geometry Ω0 is loaded with the prescribed pressure pendo. This is
done by iteratively solving the steady variant of the mechanics problem (1.15) while
gradually incrementing the pressure until it reaches the desired value pendo. The dis-
placement field so obtained is then used as an initial datum ds,0 for the unsteady problem.

Pressure prestress [Hsu and Bazilevs, 2011, Takizawa et al., 2012]: one computes an
internal stresses distribution such that the reference geometry is in equilibrium with the
blood pressure pendo. An additive decomposition of the stress tensor P̃ = P(ds) + P0 is
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1.3. Myocardium mechanical models

operated, where the prestress tensor P0 is determined to ensure a null displacement ds,0
in correspondance of the assigned pressure pendo.

We use the pressure prestress approach since in the preload one the procedure returns a
configuration which might be significantly different with respect to the initial geometry,
as shown in [Hsu and Bazilevs, 2011]. In order to compute P0 according to this approach,
we proceed as in [Gerbi et al., 2017] by adapting the method proposed in [Hsu and
Bazilevs, 2011] to our model. In particular, we look for a vector d̂s,0 and a tensor P0
such that

−∇0 ·P(d̂s,0) = ∇0 ·P0 in Ωs
0,

(Ns ⊗Ns)Kη
⊥d̂s,0 + (I−Ns ⊗Ns)Kη

‖ d̂s,0 + P(d̂s,0) Ns = 0 on Γη0,

(P(d̂s,0) + P0)Ns = pendoNs on Γendo0 ,

(1.17)

with d̂s,0 ≈ 0. We then use the stress tensor P̃(d) = P(ds) + P0 in place of P(ds) in the
first equation of problem (1.15), and set ds,0 = d̂s,0, ḋs,0 = 0. With this choice, since the
pair (d̂s,0,P0) is a solution of Eq. (1.17), the myocardium is in mechanical equilibrium
at t = 0.

The weak formulation of Eq. (1.17) reads: find d̂s,0 ∈ [H1(Ωs
0)]3 and P0 ∈ [L2(Ωs

0)]3×3

such that∫
Ωs0

P(d̂s,0) : ∇0ψs dΩs
0 +

∑
η∈{epi,base}

∫
Γη0

[
(Ns ⊗Ns)Kη

⊥ds + (I−Ns ⊗Ns)Kη
‖ds

]
: ∇0ψs dΩs

0,

=
∫

Γendo0

pendoNs ·ψs dΓendo0 −
∫

Ωs0
P0 : ψs dΩs

0,

for every ψs ∈ [H1(Ωs
0)]3.

1.3.2 Active mechanics

A fundamental property of the myocardium is the ability to actively change its own
configuration even without any externally applied load, as depicted in Figure 1.9; indeed,
the mechanical activation induced by the electrophysiology is responsible for such acti-
vation. Two main approaches have been proposed in order to model this phenomenon,
called active stress [Smith et al., 2004, Panfilov et al., 2005, Göktepe and Kuhl, 2010] and
active strain [Ambrosi and Pezzuto, 2012, Cherubini et al., 2008, Giantesio and Musesti,
2017a, Taber and Perucchio, 2000, Nardinocchi and Teresi, 2007, Nobile et al., 2012].
Both the active stress and active strain models exhibit advantages and disadvantages. Our
work is based on the active strain formulation as this approach leads to a problem which
enjoys better mathematical properties including admitting the existence of solutions.
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Chapter 1. Mathematical models for the human heart

Figure 1.9 – The two ventricles in relaxed (left) and contracted (right) configurations.

Conversely, the active stress approach leads to more complicated formulations of the
mechanical problem. An in-depth discussion of the topic can be found in [Ambrosi and
Pezzuto, 2012].

From now on, for clarity, we refer to the passive (or elastic) component of the stress
tensor as PE , whereas we denote with P the tensor including both the active and the
passive contributions (see also Appendix B.4).

Active stress

A common and simple way to take into account the active role of the cardiomyocytes
consists in assuming an additive decomposition of the stress tensor P as:

P = PA + PE ,

where PA and PE represent the active and the passive components of the stress, respec-
tively. Such assumption is widely used for simulations of the electromechanical activity
of the heart [Nash and Hunter, 2000, Sainte-Marie et al., 2006, Göktepe and Kuhl, 2010];
in these works, the active stress tensor is modeled as

1
ρs

PA = TAf ⊗ f0,

where TA represents the magnitude of the stress in the fibers direction due to the electrical
stimulus, while PE is the first Piola-Kirchhoff tensor used to model the passive mechanics,
defined in (1.11).
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1.3. Myocardium mechanical models

Figure 1.10 – The active strain decomposition of the strain tensor F.

Active strain

This approach considers the decomposition of the active and passive components of the
deformation tensor F as in [Lee and Liu, 1967]; such decomposition is applied to the
isochoric part of this tensor, thus reading:

F = FEFA = FvFEFA,

where we identified the passive (isochoric) FE and the active FA deformations, while
Fv is defined in Eq. (1.13). Within this approach, a virtual intermediate state Ω̂s,
representing the active part of the deformation between the reference domain Ωs

0 and the
deformed one Ωs

t (see Figure. 1.10), is introduced. The domain Ω̂s is reached from Ωs
0 by

applying a prescribed active transformation (which we will specify later) represented by
the tensor FA. On the other hand, the material’s elastic response to the prescribed active
transformation is embedded in the tensor FE and finally transforms Ω̂s into Ωs

t . The
tensor P in Ωs

0 with respect to the total displacement ds of the tissue is then obtained
by applying a pull-back to the stress computed in the intermediate state Ω̂s, i.e.:

P = det(FA)PEF−TA . (1.18)

The following models for the active tensor FA are available in literature:

• Transversely isotropic activation
Since myocytes do not change their volume significantly during contraction and the
deformation mainly occurs in the fibers direction [Boyett et al., 1991], it is assumed
that

FA = γ1f0 ⊗ f0 + γ2(I− f0 ⊗ f0).
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Chapter 1. Mathematical models for the human heart

Figure 1.11 – Sagittal (top row) and axial (bottom row) views of the LV at three different
moments of the heartbeat. The thickness of the LV walls increases significantly during
the systolic phase.

By imposing an isochoric deformation, one finds that γ2 = 1√
γ1
. Hence, the only

independent variable is γ = γ1, which represents the shortening of the fibers
provided by the electrophysiological model; γ is a function of time and spatial
coordinates in Ω0 through the transmembrane potential v.

• Orthotropic activation
An alternative approach [Rossi et al., 2014] considers the following form for the
active tensor FA:

FA = I + γf f0 ⊗ f0 + γss0 ⊗ s0 + γnn0 ⊗ n0,

where
γn = k′

(
1√

1 + γf
− 1

)
,

γs = 1
(1 + γf )(1 + γn) − 1.

(1.19)

The function γf represents the microscopic deformation in the fibers direction and
depends on the transmembrane potential v, while k′ is a parameter that relates the
shortening at the microscale to that of the macroscale. The advantage introduced
with this model is that it is able to capture the systolic wall thickening [Rossi, 2014]
occuring during the systolic phase, as depicted in Figure 1.11.

28



1.3. Myocardium mechanical models

• Transmurally non-homogeneous orthotropic activation
The orthotropic activation fails however to reproduce the heterogeneity of the
deformation in the myocardium [Rossi et al., 2014]. Indeed, the different orientation
and lever arm of the fibers at the endocardium and at the epicardium is such that
the thickening is increased at the endocardium. In light of these observations, a new
set of relations based on Eq. (1.19) was proposed in [Barbarotta, 2014, Barbarotta
et al., 2017] to overcome this issue. In this case, k′ is no longer a fixed parameter,
but a function of the transmural coordinate instead. The proposed equation reads:

k′(λ) = k
′
(
kendo

λ− λepi
λendo − λepi

+ kepi
λ− λendo
λepi − λendo

)
,

where λ ∈ [λendo, λepi] is the transmural coordinate and the parameters k′, kendo,
and kepi are tuned depending on the specific case.

In [Giantesio and Musesti, 2017b], it is observed that the correct way to use the active
strain approach is that of expliciting the dependence on FA directly in the strain energy
function definition and perform the derivation (1.11) with respect to F, instead of FE

(see Appendix B.4) as is done e.g. in [Giantesio and Musesti, 2017a, Hernández-Gascón
et al., 2013, Rossi et al., 2012]. Indeed, if FA depends on the displacement ds (and hence
on F) as will be the case in this work, an additional term appears in the definition of PE .
Nonetheless, since such dependence is not trivial to explicit in our case, we choose to
disregard this additional term. The final form of the first Piola-Kirchhoff stress tensor,
which we denote as P = P(ds, γf ) to highlight the dependence on the shortening of the
fibers, including both the active and the passive contribution, is detailed in Appendix B.4.

1.3.3 Mechanical activation

In order to use the active strain approach, we need to define the shortening of the fibers
γf once the solution of the electrophysiological problem is obtained. The model to
determine γf should describe the so called crossbridge cycle [Huxley and Kress, 1985],
by which myosin heads and actin (two motor proteins located on the sarcomeres) create
a bond followed by a traction caused by the bending of myosin (see Figure 1.12).

Simple models [Rossi, 2014] define it as the solution of an ODE of the form:

dγf
dt = C1θ − C2γf ,

where C1 and C2 are suitable constants while θ can represent either the transmembrane
potential v or one of the gating variables wj . However, even if this model is able to capture
the smooth mechanical activation, there is no direct connection with experimental data.
Other models try to describe the complex dynamics taking place inside the sarcomeres
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Figure 1.12 – Crossbridge dynamics determining the cardiomyocites contraction: an
active site on actin is exposed as Ca2+ binds troponin (top left); the myosin head forms
a crossbridge bond with actin (top right); the myosin head bends releasing ADP and
phosphate (bottom).

[Regazzoni et al., 2017], however these usually represent a system of ODEs which features
a large number of degrees of freedom, making their use for large scale geometries unfeasible.
Again in [Ruiz-Baier et al., 2014], the authors propose an activation law following the
work in [Stålhand et al., 2011] and based on principles of internal state theory. It is
assumed, as in other works [Hunter et al., 1997], that the shortening of the fibers is
mainly due to the calcium ions concentration level c = [Ca2+]. The model proposed in
[Ruiz-Baier et al., 2014], modified with the addition of a diffusion term in [Gerbi et al.,
2017], reads:

∂γf
∂t
− ε

g(c)∆0γf = 1
g(c)Φ(c, γf ,ds) in Ωs

0 × (0, T ],

∇0γf ·Ns = 0 on ∂Ωs
0 × (0, T ],

γf = 0 in Ωs
0 × {0}.

(1.20)

Here, g(c) = µ̂Ac
2, while the active force Φ(c, γf ,ds) is defined as:

Φ(c, γf ,ds) = Hc0(c)α(c− c0)2RFL(I4f ) +
5∑
j=1

(−1)j(j + 1)(j + 2)I4fγ
j
f ,

where Hc0(c) is the Heaviside function centered in the calcium threshold c0. The function
RFL is the sarcomere force-length relationship [Gordon et al., 1966, Ruiz-Baier et al.,
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2014], which takes the following form:

RFL(x) = χ[SLmin,SLmax](
√
xl0)

{
d0
2 +

3∑
n=1

[
dnsin(

√
xl0) + encos(

√
xl0)

]}
,

where l0 stands for the initial sarcomere length (SL), SLmin and SLmax are the sarcomere’s
minimum and maximum lengths respectively, cn and dn are coefficients of a truncated
Fourier series fitted to match experimental length-force relations, and α, µ̂A, ε ∈ R+ are
parameters which have to be suitably tuned and personalized.

The weak formulation of Eq (1.20) reads: given c(t) ∈ L2(Ωs
0) and ds(t) ∈ H1(Ωs

0) find
γf (t) ∈ H1(Ωs

0) such that∫
Ωs0

∂γf
∂t

ψs dΩs
0 −

∫
Ωs0

ε

g(c)∇0γf : ∇0ψs dΩs
0

=
∫

Ωs0

1
g(c)Φ(c, γf ,ds)ψs dΩs

0, for all t ∈ (0, T ],

γf (0) = 0,

for every ψs ∈ H1(Ωs
0).

With respect to the formulation used in [Rossi, 2014], as already done in [Gerbi et al.,
2017], we added the diffusive term ε∆0γf in Eq. (1.20) to yield a model in the form of a
PDE. While this is not strictly motivated by physical considerations, it can be interpreted
as the upscaling of the microscopic activation at the macroscopic continuum level of
the tissue. Moreover, this choice yields a more regular solution γf in terms of the space
variable Xs, from which the numerical approximation will also benefit. Eq. (1.20) will
be the activation model used in this work, as it succesfully captures the main features of
cellular shortening [Gerbi et al., 2017].

1.4 Blood flow modeling

The most important function of the LV is that of pushing the blood to flow into the
circulatory system to provide all sort of vital substances to the cells (see Figure 1.13).
While the modeling of the blood dynamics is a relevant and complex topic per se, involving
issues such as the newtonian assumption for the blood [Cho and Kensey, 1991, Janela
et al., 2010, Johnston et al., 2004], in this work we are mainly interested in modeling
the fluid in order to take into account for its interaction with the endocardium walls.
As will be detailed in the following sections, we model this interaction in two different
ways: a) by using the Navier-Stokes equations in Arbitrary Lagrangian Eulerian (ALE)
formulation, thus obtaining an integrated full order electrofluidmechanics problem; b) by
modeling the pressure at the endocardium only, using a reduced 0D model.
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Figure 1.13 – Circulation of the blood in the heart. For what regards the left side of
the heart, the oxygenated blood coming from the lungs flows from the LA to the LV in
the diastolic phase (with the aortic valve closed), and from the LV into the aorta in the
systolic phase (with the mitral valve closed).

1.4.1 Blood dynamics: 3D model

Blood is composed mainly by red blood cells suspended in the plasma, the latter
constituting about 55% of the blood volume [Dill and Costill, 1974]; since plasma is
mostly composed by water, blood in large vessels can be modeled as a Newtonian
fluid [Formaggia et al., 2010]. Hence, we consider the Navier-Stokes equations in ALE
formulation (see, among the others, [Bazilevs et al., 2013, Crosetto, 2011, Crosetto et al.,
2011a, Formaggia et al., 2010, Nobile, 2001]), as we will be dealing with a moving fluid
domain Ωf

t . In this framework, we first identify the reference structure and fluid domains
Ωs

0, Ωf
0 and their common interface as Γendo0 = ∂Ωs

0 ∩ ∂Ωf
0 ; then, the current fluid domain

is defined as

Ωf
t =

{
xf = At(Xf )

∣∣∣ Xf ∈ Ωf
0

}
,
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with the time-dependent map At determined by the following harmonic extension
(Laplace) problem:

−∆0df = 0 in Ωf
0 ,

df = ds(t) on Γendo0 ,

∇0df Nf = 0 on ∂Ωf
0 \ Γendo0 ,

(1.21)

for all t > 0. The vector Nf is the outward directed unit vector normal to the fluid
domain surface, while the map At(Xf ) = Xf + df at time t is determined once a
displacement ds(t) is given. The ALE-NS equations then read:

ρf
∂u
∂t

∣∣∣∣
Xf

+ ρf ((u− v) · ∇)u−∇ · σf (u, p) = 0 in Ωf
t , t ∈ (0, T ],

∇ · u = 0 in Ωf
t , t ∈ (0, T ],

u ◦At = ∂ds
∂t

on Γendot , t ∈ (0, T ],

u = uD on Γft,D, t ∈ (0, T ],

σf nf = gN on Γft,N , t ∈ (0, T ],

u = u0 in Ωf
0 , t = 0.

(1.22)

where

∂

∂t

∣∣∣∣
Xf

= ∂

∂t
+ v · ∇ and v = ∂df

∂t
.

The vectors v and u represent the velocity of the fluid domain and of the fluid itself; in
our case, it is determined by the deformation of the myocardium at the interface Γendo0
which is in turn caused by the propagation of the action potential. The Cauchy stress
tensor for the fluid is defined as

σf (u, p) = µf (∇u + (∇u)T )− pI,

where µf is the dynamic viscosity of the fluid and p the pressure. Finally, the domain
boundaries are defined as Γendot = At(Γendo0 ), Γft,N = At(Γf0,N ), and Γft,D = At(Γf0,D) with
Γendo0 ∪ Γf0,N ∪ Γf0,D = ∂Ωf

0 , while nf is the outward surface normal in the deformed
configuration. The third equation in (1.22) accounts for the continuity of the fluid and
the domain velocities at the endocardium.

The weak formulation of Eq.(1.21) reads: given ds(t) ∈ [H−1/2(Γendo0 )]3, find
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df ∈ [H1(Ωf
0)]3 such that∫

Ωf0
∇0df : ∇0ψf dΩf

t = 0, t ∈ (0, T ],

df = ds(t), on Γendo0 , t ∈ (0, T ].

for every ψf ∈ [H1(Ωf
0)]3. Regarding Eq.(1.22), it reads: given ∂ds

∂t ∈ [H−1/2(Γendo0 )]3

and ∂df
∂t ∈ [H1(Ωf

t )]3, find uf ∈ [H1(Ωf
t )]3, p ∈ L2(Ωf

t ), and λ ∈ [H−1/2(Γendo0 )]3 such
that

∫
Ωft
ρf

(
∂u
∂t

∣∣∣∣
Xf

+
((

u− ∂df
∂t

)
· ∇
)

u
)

: ψf dΩf
t

+
∫

Ωft
σf (u, p) : ∇ψf dΩf

t =
∫

ΓfN
gN ·ψf dΓft,N , t ∈ (0, T ],∫

Ωft
φf∇ · u dΩf

t = 0, t ∈ (0, T ],∫
Γendo0

(u ◦At) ·ψΓ dΓendo0 =
∫

Γendo0

∂ds
∂t
·ψΓ dΓendo0 , t ∈ (0, T ],

u = uD on Γft,D, t ∈ (0, T ],
u(0) = u0,

(1.23)

for every ψf ∈ [H1(Ωf
t )]3, φf ∈ L2(Ωf

t ), and ψΓ ∈ [H−1/2(Γendo0 )]3. When Eq. (1.15) is
coupled with Eq. (1.21) and (1.22) we obtain an FSI model. In such a case, the boundary
condition in Eq. (1.15) on the interface Γendo0 must be properly adapted in order to
impose the continuity of the structure and the fluid stresses. The condition hence reads:

P(ds, γf ) Ns = −σf (u, p) nf = −λ, (1.24)

As a consequence, we add a term to the momentum conservation equation in both
(1.16) and (1.23) to weakly impose the continuity of the stresses (see e.g. [Bazilevs et al.,
2008, Forti, 2016, Forti et al., 2016, Gee et al., 2011, Hron and Turek, 2006]). These
terms are defined as follows:∫

Γendo0

λ ·ψs dΓendo0 ,

∫
Γendo0

λ ·
(
ψf ◦At

)
dΓendo0 , (1.25)

in (1.16) and (1.23), respectively. The function λ ∈ [H−1/2(Γendo0 )]3 is an auxiliary
variable defined on Γendo0 , and can be regarded as a Lagrange multiplier used to enforce
the continuity of the velocities at the interface.
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Figure 1.14 – The aortic and mitral valves (left side of the heart), and the pulmonary
and tricuspid valves (right side of the heart).

1.4.2 Endocardial pressure: 0D model

A model of reduced complexity for the fluid in the LV can be obtained by modeling
the endocardial pressure only. We assume in particular that it is uniform on the whole
endocardial wall and we denote such value by pendo(t), since it does not depend on the
space variable. The evolution of pendo(t) depends on a number of factors: some of them,
such as the interaction of the cardiac valves – depicted in Figure 1.14 – with the fluid,
are not taken into account in this model. Hence, in order to acknowledge the effect of
their state (either open or close), we consider the four phases in which the heartbeat is
conventionally split (see Figure 1.15).

Depending on the phase of the heartbeat, we solve different 0D models based on ODEs
following [Eriksson et al., 2013, Rossi, 2014, Usyk et al., 2002]. These are, in order:

• Isovolumic contraction: the early stages of the LV contraction drive an increment
of the endocardial pressure pendo from the End Diastolic Pressure (EDP) pendoEDP

(about 10 mmHg) to the value measured in the aorta pao (about 85 mmHg). We
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Chapter 1. Mathematical models for the human heart

Figure 1.15 – The Wiggers diagram [Katz, 2010] of the left heart depicting the aortic,
ventricular, and atrial pressures and the ventricular volume, as well as the four phases of
the cardiac cycle.

determine pendo as the solution of

dV endo

dt (pendo) = 0, t ∈ (0, T1], (1.26)

where V endo(0) is set to the initial LV volume. Thus, we require that the ventricular
volume V endo remains constant; T1 = T1(pendo) is the earliest time occurrence at
which pendo ≥ pao;

• Ejection: the ventricular volume decreases due to the contraction of the LV forcing
the blood to flow through the aortic valve. For this phase we use a two elements
windkessel 0D model [Westerhof et al., 2009] in the form:

C
dpendo
dt = −p

endo

R
− dV endo

dt , t ∈ (T1, T2], (1.27)

with pendo(T1) = pao, where the parameters C,R > 0 represent the capacitance
and resistance of the electric circuit analogy mimicking the blood flow in the aorta.
The phase ends when pendo become smaller than pao, thus causing the closing of
the aortic valve. Since we do not model the evolution of the aortic pressure over
time, we set in Eq. (1.27) T2 = T2(V endo) as soon as dV endo

dt ≥ 0;
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1.4. Blood flow modeling

• Isovolumic relaxation: the endocardial pressure pendo decreases as a consequence of
the LV early relaxation while V endo remains constant and is treated similarly to the
isovolumic contraction. We denote the final time of this phase as T3 = T3(pendo),
the occurrance at which pendo ≤ pendomin (about 5 mmHg);

• Filling: the pressure drop in the LV causes the opening of the mitral valve, which
in turn causes an increment of V endo due to the blood flowing inside the LV, until
both the pressure pendo and the volume V endo reach the EDP values. We model
this phase by linearly increasing pendo until it attains the initial value pendoEDP at
the time T 3 = 0.7 s, and by keeping its value constant from T 3 to the final time
T = 0.8 s, that is by imposing

dpendo
dt = ς, t ∈ (T3, T ], (1.28)

whereς = pendoEDP − pendo(T3)
T 3 − T3

, if t ∈ (T3, T 3],

ς = 0, otherwise.
(1.29)
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2 Numerical approximation

In this chapter, we approximate the single core models for the electrophysiology (1.6),
(1.7), the mechanical activation (1.20), for the myocardium mechanics (1.15), and the
fluid geometry (1.21), and dynamics (1.22) with respect to the space and time indepen-
dent variables. We use in particular the Finite Element Method (FEM) for the space
discretization while Backward Differentiation Formulas (BDF) are employed for the time
discretization [Quarteroni et al., 2010] by considering both implicit and semi-implicit
schemes.

2.1 Space discretization

The FEM discretization of the differential equations introduced in Chapter 1 allows us to
obtain systems of ODEs for each core model. With this aim, we first consider two meshes
composed of pairwise disjoint tetrahedra Ts,h and Tf,h, corresponding to the structure
and the fluid domains, respectively, such that ∪Ks∈Ts,hKs = Ωs

0 and ∪Kf∈Tf,hKf = Ωf
0 ,

where h is the maximum size of the tetrahedra. We only consider the case of unstructured
meshes, conforming at the common interface Γendo0 [Thompson et al., 1998] that is
Ts,h

∣∣∣
Γendo0

= Tf,h
∣∣∣
Γendo0

as in Figure 2.1. Then, we define the following finite dimensional
spaces of real valued functions and their size:

X rs,h =
{
v ∈ C0(Ωs

0) : v|Ks ∈ Pr(Ks) ∀Ks ∈ Ts,h
}
, Ndof

s,r = dim(X rs,h),

X rf,h =
{
v ∈ C0(Ωf

0) : v|Kf ∈ Pr(Kf ) ∀Kf ∈ Tf,h
}
, Ndof

f,r = dim(X rf,h);

Pr(Ks) (Pr(Kf )) is the set of polynomials of degree smaller than or equal to r in the
element Ks (Kf ), and

X rΓ,h = X rs,h
∣∣∣
Γendo0

= X rf,h
∣∣∣
Γendo0

, Ndof
Γ,r = dim(X rΓ,h);
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Chapter 2. Numerical approximation

Figure 2.1 – Meshes of the Ωs
0 and the Ωf

0 domains. The interface Γendo0 between the two
is highlighted.

X rs,h
∣∣∣
Γendo0

and X rf,h
∣∣∣
Γendo0

denote the restriction of X rs,h and X rf,h to Γendo0 , respectively.
Moreover, we set:

X r
s,h =

[
X rs,h

]3
, X r

f,h =
[
X rf,h

]3
, X r

Γ,h =
[
X rΓ,h

]3
,

The common interface between the structure and the fluid domains Γendo0 is the support of
the functions belonging to X rΓ,h. By indicating with {ψs,j}

Ndof
s,r

j=1 , {ψf,j}
Ndof
f,r

j=1 , and {ψΓ,j}
Ndof

Γ,r
j=1

three basis for X rs,h, X rf,h, and X rΓ,h, respectively, it holds:

X rs,h = span
(
ψs,1, . . . , ψs,Ndof

s,r

)
= span

(
{ψs,j}

Ndof
s,r

j=1

)
,

X r
s,h = span

({
ψ1
s,j

}Ndof
s,r

j=1
,
{
ψ2
s,j

}Ndof
s,r

j=1
,
{
ψ3
s,j

}Ndof
s,r

j=1

)
, ψks,j = ψs,jek,

X rf,h = span
(
ψs,1, . . . , ψf,Ndof

s,r

)
= span

(
{ψf,j}

Ndof
s,r

j=1

)
,

X r
f,h = span

({
ψ1
f,j

}Ndof
f,r

j=1
,
{
ψ2
f,j

}Ndof
f,r

j=1
,
{
ψ3
f,j

}Ndof
f,r

j=1

)
, ψkf,j = ψf,jek,

X rΓ,h = span
(
ψΓ,1, . . . , ψΓ,Ndof

Γ,r

)
= span

(
{ψΓ,j}

Ndof
Γ,r

j=1

)
,

X r
Γ,h = span

({
ψ1

Γ,j
}Ndof

Γ,r

j=1
,
{
ψ2

Γ,j
}Ndof

Γ,r

j=1
,
{
ψ3

Γ,j
}Ndof

Γ,r

j=1

)
, ψkΓ,j = ψΓ,jek,

(2.1)
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2.1. Space discretization

where ek is the k-th unit vector of R3. For the sake of clearness, we will use the same
index for the basis of every space in (2.1) even if their number may be different. In
particular, regarding the vector valued basis functions for X r

s,h, X r
f,h, and X r

Γ,h, we will
write:

ψs,j for j = js + (k − 1)Ndof
s,r = 1, . . . , 3Ndof

s,r , (js = 1, . . . , Ndof
s,r , k = 1, 2, 3),

ψf,j for j = jf + (k − 1)Ndof
f,r = 1, . . . , 3Ndof

f,r , (jf = 1, . . . , Ndof
f,r , k = 1, 2, 3),

ψΓ,j for j = jΓ + (k − 1)Ndof
Γ,r = 1, . . . , 3Ndof

Γ,r , (jΓ = 1, . . . , Ndof
Γ,r , k = 1, 2, 3).

We then denote by
{
Xs
j

}Ndof
s,r

j=1
,
{
Xf
j

}Ndof
f,r

j=1
,
{
XΓ
j

}Ndof
Γ,r

j=1
the set of the Degrees of Freedom

(DoFs) associated to X rs,h,X r
s,h, to X rf,h, X r

f,h, and to X rΓ,h, X r
Γ,h, respectively.

Functions in both X rs,h and X rf,h can be projected, at the algebraic level, on X rΓ,h by using
the following operators:

Πs
Γ ∈ RN

dof
Γ,r×N

dof
s,r : vs 7−→ Πs

Γvs,

Πf
Γ ∈ RN

dof
Γ,r×N

dof
f,r : vf 7−→ Πf

Γvf ,

where vs (vf ) is a vector containing the nodal values of vs ∈ X rs,h (vf ∈ X rf,h); Πs
Γ (Πf

Γ)
maps the degrees of freedom of X rs,h (X rf,h) belonging to Γendo0 to those of X rΓ,h. In matrix
form, the operators can be written as

(Πs
Γ)ij =

{
1 if XΓ

i = Xs
j ,

0 otherwise,
(Πf

Γ)ij =

1 if XΓ
i = Xf

j ,

0 otherwise.

Finally, we set

Πs
Γ = diag

(
Πs

Γ,Πs
Γ,Πs

Γ
)
, Πf

Γ = diag
(
Πf

Γ,Π
f
Γ,Π

f
Γ

)
.

Once these definitions have been established, we can finally introduce the trial solutions
in the Galerkin-FEM subspace vh, vE,h, γh, ds,h, df,h, uh, ph, and λh, whose definition
is reported in Table 2.1, approximating v, vE , γf , ds, df , u, p, and λ, respectively;
moreover, we denote by vh, vE,h, γh, ds,h, df,h, uf,h, and λh the vectors containing
the nodal values of the aforementioned functions. We remark that, from now on, we
drop the subscript from γf to avoid confusion with the one used to distinguish the fluid
displacement from the structure displacement.

2.1.1 Ionic model

The ionic model does not explicitly depend on the space variable, however its equations
depend on the value of v which is not uniform in Ωs

0. Thus, we write the equations of
the ionic model in each nodal value Xs

j , j = 1, . . . , Ndof
s,r . The semi-discrete formulation
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Table 2.1 – List of finite element functions and vectors, grouped by model. The domain
in which the functions are defined is also indicated.
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2.1. Space discretization

of the ionic model hence reads: given v(t), find w(t) such that{
ẇ(t) + U(v(t))w(t) = Q(v(t)), t ∈ (0, T ],
w(0) = w0,

(2.2)

where the diagonal matrix U and the vector Q are defined as

Uii(v) = αl(vi)− βl(vi),
Qi(v) = αl(vi)w∞l (vi),

with i = l Ndof
s,r + j, for l = 1, . . . , NI , j = 1, . . . , Ndof

s,r . Regarding the minimal model, for
which NI = 3, the form of the terms αl, βl, w∞l is stated in Appendix B.1.

2.1.2 Bidomain and monodomain equations

By using the FEM for the space discretization of the monodomain equation we obtain
the following semi-discrete problem: given w(t) and ds(t), find v(t) such that{

Msv̇(t) + KM (ds(t))v(t) + Iion(v(t),w(t)) = MsIapp(t), t ∈ (0, T ],
v(0) = v0,

(2.3)

where

Ms
ij =

∫
Ωs0
ψs,jψs,i dΩs

0,

Iappi (t) = Iapp(Xs
i , t),

KM,ij(ds) =
∫

Ωs0
(JhF−1

h DMF−Th ∇0ψs,j) · ∇0ψs,i dΩs
0,

Iioni (v,w) =
∫

Ωs0
Iion

(
vh, w

1
h, . . . , w

NI
h

)
ψs,i dΩs

0,

for i, j = 1, . . . , Ndof
s,r and Fh = ∂dh

∂Xs
, Jh = det(Fh), while the initial value is set to

v0,h =
{
v0(Xs

j)
}Ndof

s,r

j=1
. On the other hand, the bidomain problem reads: given w(t) and

ds(t), find (v(t),vE(t)) such that

Msv̇(t) + KI(ds(t)) (v(t) + vE(t)) + Iion(v(t),w(t)) = MsIapp(t), t ∈ (0, T ],

KI(ds(t))v(t) +
(
KI(ds(t)) + KE(ds(t))

)
vE(t) = 0, t ∈ (0, T ],

v(0) = v0, ,

vE(0) = vE,0,

(2.4)
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Chapter 2. Numerical approximation

where

(KI,E)ij(ds) =
∫

Ωs0
(JhF−1

h DI,EF−Th ∇0ψs,j) · ∇0ψs,i dΩs
0.

The bidomain model in the form of Eq. (2.4) is however not well posed, since the vector
vE is defined up to an additive constant; in order to close the problem, we force a single
entry of vector vE to take the value 0, by properly modifying the global system matrix
corresponding to the second equation of (2.4).

Regarding the numerical integration of the term Iion, at least two possibilities are
considered in literature [Pathmanathan et al., 2010, Pathmanathan et al., 2012] for the
evaluation of the ionic current at the quadrature nodes. In the first one, called State
Variable Interpolation (SVI) [Pathmanathan et al., 2012, Patelli et al., 2017] the variables
vh, w

1
h, . . . , w

NI
h are evaluated (“interpolated”) at the quadrature nodes x̃sq, q = 1, . . . , NQ,

that is∫
Ωs0
Iion

(
vh, w

1
h, . . . , w

NI
h

)
ψs,i dΩs

0

≈
NQ∑
q=1

Iion

Ndof
s,r∑
j=1

vj , ψs,j(x̃sq),
Ndof
s,r∑
j=1

w1
jψs,j(x̃sq), . . . ,

Ndof
s,r∑
j=1

wNIj ψs,j(x̃sq)

ωq.
This approach corresponds to the standard Galerkin-FEM method. In the second one,
known as Ionic Current Interpolation (ICI) [Krishnamoorthi et al., 2013, Pathmanathan
et al., 2010], the currents are first evaluated in the degrees of freedom and then interpolated
at the quadrature nodes:∫

Ωs0
Iion

(
vh, w

1
h, . . . , w

NI
h

)
ψs,i dΩs

0,

≈
NQ∑
q=1

Ndof
s,r∑
j=1

Iion
(
vj , w

1
j , . . . , w

NI
j

)
ψs,j(x̃sq)ωq.

The aim of ICI is that of reducing the computational cost associated to the assembly of the
ionic currents term in the SVI case. However, since the computational resources bottleneck
in the assembly of the integrated problems considered in this work is represented by the
mechanics problem, we rely on the SVI approach.

We also remark that since the ionic currents (zero order) term in both Eq. (2.3) and
Eq. (2.4) dominates the diffusion (second order) one, a known numerical issue [Burman
and Ern, 2003] may occur and cause numerical instabilities; to avoid them, we use a
lumped mass matrix ML in place of Ms.
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2.1. Space discretization

2.1.3 Mechanical activation

As already noted, the terms in Eq. (1.20) depend on the calcium concentration c(t);
we hence identify with l̂ ∈ NI the index such that wl̂(t) = c(t). The semi-discrete
formulation of (1.20) then reads: given w(t) and ds(t), find γ(t) such that{

Msγ̇(t) + εKγ(w(t))γ(t) + Φ(w(t),γ(t),ds(t)) = 0 t ∈ (0, T ],
γ(0) = 0,

(2.5)

where:

(Kγ)ij(w) =
∫

Ωs0

ε

µA(wl̂h)2
∇0ψj · ∇0ψi dΩs

0,

Φi(w,γ,ds) = −
∫

Ωs0

1
µA(wl̂h)2

Φ
(
wl̂h, γh,ds,h

)
ψi dΩs

0,

for i, j = 1, . . . , Ndof
s,r .

2.1.4 Passive and active mechanics

The semi-discrete formulation of the mechanics problem (1.10) is: given pendo(t) or λ(t),
and γ(t), find ds(t) such thatρsM

s
3d̈s(t) + Fḋs(t) + Gds(t) + S(ds(t),γ(t)) = ρ t ∈ (0, T ],

ds(0) = d0, ḋs(0) = 0,
(2.6)

where

Ms
3,ij =

∫
Ωs0
ψs,j ·ψs,i dΩs

0,

Fkij =
∑

η∈{epi,base}

∫
Γη0

(
Cη⊥(Ns ⊗Ns) + Cη‖ (I−Ns ⊗Ns)

)
ψs,j ·ψs,i dΓη0,

Gk
ij =

∑
η∈{epi,base}

∫
Γη0

(
Kη
⊥(Ns ⊗Ns) +Kη

‖ (I−Ns ⊗Ns)
)
ψs,j ·ψs,i dΓη0,

Si(d,γ) =
∫

Ωs0
P(dh, γh) : ∇0ψs,i dΩs

0,

for i, j = 1, . . . , 3Ndof
s,r . Regarding ρ, it takes two different forms depending if we are

considering the electromechanics problem coupled with a given pressure, or the full
electrofluidmechanics problem. In the first case, we set

ρi(t) =
∫

Γendo0

pendo(t)Ns ·ψs,i dΓendo0 , for i = 1, . . . , 3Ndof
s,r ,
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Chapter 2. Numerical approximation

whereas we assume that the only force acting on Γendo0 is the pressure, considered
homogeneous on the interface. On the other hand, if we consider the electrofluidmechanics
model, ρ is used to account for the continuity of the normal component of the stresses,
which is imposed weakly as in [Deparis et al., 2016b, Forti, 2016, Forti et al., 2016]; in
such a case, recalling (1.24), we define ρ as

ρ(λ(t)) = Πf
sλ(t),

where

Πf
s = Πs

Γ
TΠf

Γ.

The discretized prestress problem (1.17) can also be written by using the same terms
defined for the mechanics problem. Thus, it reads: given pendo = pendo(0), find (d̂0,P0)
such that

Gd̂s,0 + S(d̂s,0) = pendo − S0,

where S does not depend on γ since the latter is zero at the initial time, and

S0,i =
∫

Ωs0
P0 : ∇0ψs,i dΩs

0, pendoi =
∫

Ωs0
pendo(0)Ns ·ψs,i dΩs

0,

for i = 1, . . . , 3Ndof
s,r .

2.1.5 Fluid geometry and Navier-Stokes equations

We write the approximated harmonic extension problem (1.21) (steady for each fixed t)
at first in the following simple form: given ds,h(t), find df,h(t) such thatKGdf,h = 0,

Πf
Γdf,h = Πs

Γds,h,
(2.7)

with

KG,ij =
∫

Ωf0
∇0ψf,j · ∇0ψf,i dΩs

0,

for i, j = 1, . . . , 3Ndof
f,r . In order to impose the condition on Γendo0 , we set

K̃G = KG

∣∣∣
Γendo0

, Πs
f = Πf

Γ
T
Πs

Γ = Πf
s
T
,
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2.1. Space discretization

where KG

∣∣∣
Γendo0

is obtained from KG by setting K
G,̂ij

= δ̂
ij
(the Dirac delta) for every

î = is + (k− 1)Ndof
f,r such that Xf

is
∈ Γendo0 ; this operation is used to enforce the essential

condition on the fluid-structure interface. In this way, we can recast Eq. (2.7) as:

K̃Gdf −Πs
fds = 0. (2.8)

We conclude this section by writing the semi-discrete Navier-Stokes equations in ALE
formulation (1.22). The problem thus reads: given ḋf (t) and ḋs(t), find (u(t), p(t), λ(t))
such that

ρfMf
3 u̇(t) + µfAu(t) + ρfC(u(t)− ḋf (t))u(t) + BTp(t) + Πf

Γ
T
λh(t) = 0 t ∈ (0, T ],

Bu(t) = 0,

−Πs
Γḋs(t) + Πf

Γu(t) = 0,
u(0) = u0, u̇(0) = 0,

(2.9)

where the terms are:

Mf
3,ij =

∫
Ωft
ψf,j ·ψf,i dΩf

t ,

Aij =
∫

Ωft
(∇ψf,j + (∇ψf,j)T ) : ∇ψf,i dΩf

t ,

Cij(u− ḋf ) =
∫

Ωft
((uh − ḋf,h) · ∇)ψf,j ·ψf,i dΩf

t ,

for i, j = 1, . . . , 3Ndof
f,r , and

Bij =
∫

Ωft
∇ ·ψf,jψf,i dΩf

t

for i = 1, . . . , Ndof
f,r , j = 1, . . . , 3Ndof

f,r .

In Eq. (2.9), additional terms have to be considered. Indeed, it is well known that if
incompatible function spaces in the inf–sup sense for the velocity and pressure variables
are chosen, as is the case for (2.1), stabilization terms need to be introduced [Quarteroni,
2010], such as those given by the Streamline Upwind Petrov-Galerkin (SUPG) stabilization
[Brooks and Hughes, 1982]. On the other hand, a numerical stabilization is required at
high Reynolds regimes: in such cases, in order to avoid a very fine spatial discretization
and hence a large computational cost, the Variational Multiscale (VMS) method can
be exploited leading to the VMS-LES [Forti, 2016, Hughes et al., 2000, Hughes et al.,
2001, Bazilevs et al., 2007] – LES standing for Large Eddy Simulation – or the VMS-
SUPG [Forti and Dedè, 2015] methods. This allows to take into account the effect of
the small scales without actually solving them. In this work, since the Reynolds number
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Chapter 2. Numerical approximation

for the blood in the ventricle is around 2 − 3 × 103 [Krittian et al., 2010], the fluid is
not in the turbulent regime and we will use for simplicity the SUPG stabilization. This
accounts to adding the terms SSUPGM (u,p) and SSUPGC (u,p) to the left hand side of the
first and of the second equation of Eq. (2.9), respectively, where:

SSUPGM,i (u,p) =
∫

Ωft

(
ρf ((uh · ∇)ψf,i) · τM (uh)rM (uh, ph) + (∇ ·ψf,i)τC(uh)rC(uh)

)
dΩf

t ,

(2.10)

for i = 1, . . . , 3Ndof
f,r ,

SSUPGC,i (u,p) =
∫

Ωft
∇ψf,i · τM (uh)rM (uh, ph) dΩf

t , (2.11)

for i = 1, . . . , Ndof
s,r and

rM (uh, ph) = ρf u̇h + ρf (uh − ḋf,h) · ∇uh +∇ph − µf∆uh,
rC(uh) = ∇ · uh,

τM (uh) =
(
σ2ρ2

f

∆t2 +
ρ2
f

h2
Kf

|uh|2 +
µ2
f

h4
Kf

Cr

)− 1
2

,

τC(uh) =
h2
Kf

τM (uh) .

hKf denotes the diameter of the element Kf ∈ Tf,h, while Cr is a constant obtained by
an inverse inequality [Quarteroni and Valli, 1994]. σ and ∆t denote the order of the time
discretization and the timestep size (see Section 2.2).

2.2 Time discretization

We use Backward Differentiation Formulas (BDFs) for the time discretization of the
semi-discrete unsteady single core problems obtained in Section 2.1 by considering both
implicit and semi-implicit schemes. In order to better illustrate our methodology, we set

z = (w, v, vE , γ, ds, df , u, p, λ)T ,

where each block correponds to the nodal values of the finite element functions associated
to on of the core model considered, in the most general case (i.e. the electrofluidmechanics
problem with the bidomain equations). We then rewrite the unsteady semi-discrete
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2.2. Time discretization

problems in a generalized form as:
Bizi(t) + Ti(z(t)) = Hi(t) t ∈ (0, T ], i = 1, 2, 4, 5, 7,
zi(0) = zi,0, i = 1, 2, 4, 5, 7,
ż5(0) = 0,

(2.12)

where

z1 = w, z2 = v, z4 = γ, z5 = ds, z7 = u,

B1 = I
d
dt , B2 = Ms d

dt , B4 = Ms d
dt , B5 = ρsMs

3
d2

dt2
, B7 = ρfMf

3
d
dt ,

and the terms Ti and Hi are specific of the corresponding core model. In order to
obtain a fully discretized formulation using the BDF scheme we exploit the following
approximation of the time derivatives:

d
dtzi(t

n+1) ≈ 1
∆t

(
ϑI

0zn+1
i − zI

i

)
, zI

i =
σ∑
k=1

ϑI
kzn−k+1
i , i = 1, 2, 4, 5, 7,

d2

dt2
z5(tn+1) ≈ 1

(∆t)2

(
ϑII

0 zn+1
4 − zII

5
)
, zII

5 =
σ+1∑
k=1

ϑII
k zn−k+1

5 ,

(2.13)

where ∆t = T
NT

is the timestep length, NT being the number of timesteps, while the
parameters ϑI

k, ϑ
II
k , k = 0, . . . , σ depend on the order σ of the BDF scheme.

In the implicit case, we obtain the nonlinear problems in the form:

Ai(zn+1) = hn+1
i , n = σ, . . . , NT − 1, (2.14)

with zn assigned for n = 0, . . . , σ. Even though the time discretization was carried out
the unsteady problems corresponding to i = 1, 2, 4, 5, 7 only, the form of Eq. (2.14) clearly
holds for the steady problems too (i.e. the equations for γ, df , p, and λ). We will hence
consider, from now on, Eq. (2.14) for i = 1, . . . , 9. In the semi-implicit case, on the other
hand, we extrapolate the variables in the nonlinear terms Ai(zn+1) by means of the
Newton-Gregory backward polynomials [Cellier and Kofman, 2006] – as is done, e.g., for
the Navier-Stokes equations in [Gervasio et al., 2006] – thus yielding a linear system at
each timestep. The extrapolated variables are evaluated as a linear combination of the
variables at previous timesteps, with an approximation of the same order σ of the BDF
scheme:

zi(tn+1) ≈ z∗i =
σ∑
k=1

βkzn−k+1
i .

We thus avoid the nonlinear terms by partially evaluating Ai in the extrapolated variable
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z∗, i.e. we approximate the nonlinear term as

Ai(zn+1) ≈
9∑
j=1

Aji (z∗)zn+1
j + Ãi(z∗). (2.15)

By recalling Eq. (2.14), we hence obtain a system in the form:

9∑
j=1

Ai,j(z∗)zn+1
j = bn+1

i , n = σ, . . . , NT − 1,

with zn assigned for n = 0, . . . , σ and bn+1
i = hn+1

i − Ãi(z∗).

2.2.1 Implicit and semi–implicit schemes

Now that the general framework in which we discretize in time the semi-discrete problems
has been established, we list the fully discrete formulations used for each core model. In
the case of the electrophysiology and of the mechanical activation, both implicit and
semi–implicit schemes are proposed. Regarding the mechanics, all the semi-implicit
formulations that were tested (not reported) proved not to be stable unless extremely
small timesteps were employed, and we hence consider the implicit scheme only. This will
however affect also the choice of the scheme for the fluid, since the full FSI part of the
problem will be in all cases solved in a monolithic fashion: this choice was made to avoid
the so called added mass effect [Bathe et al., 1999, Le Tallec and Mouro, 2001, Nobile,
2001, Causin et al., 2005], which is typical of loosely coupled time advancing schemes
for haemodynamics problems, where the densities of the fluid and the structure are
comparable. As a consequence, for coherence with the mechanics scheme, the fluid will
always be solved with an implicit scheme.

Ionic model

The fully discretized formulation of the ionic model with the implicit scheme takes, at
each timestep, the following form

ϑI

∆tw
n+1 + U(vn+1)wn+1 −Q(vn+1) = 1

∆tw
I. (2.16)

Eq. (2.16) depends both on wn+1 (linearly) and on vn+1 (nonlinearly). If the mono/bido-
main is solved at once with the ionic model in a monolithic fashion, the Newton method
for (2.16) readsJn+1

I,k δw
n+1
k+1 + Jn+1

IE ,kδv
n+1
k+1 = −rn+1

I,k ,

wn+1
k+1 = wn+1

k + δwn+1
k+1 ,
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2.2. Time discretization

where the increment δvn+1
k+1 = vn+1

k+1 −vn+1
k is determined by the simultaneous application

of the Newton method to the mono/bidomain equations, and

Jn+1
I,k = ϑI

∆tI + U(vn+1
k ),

Jn+1
IE ,k = ∂vU(vn+1

k )− ∂vQ(vn+1
k ),

rn+1
I,k = ϑI

0
∆tw

n+1
k + U(vn+1

k )wn+1
k −Q(vn+1

k )− 1
∆tw

I,

where ∂vU ∈ RÑ×Ñ is a diagonal matrix with Ñ = NIN
dof
s,r , and ∂vQ ∈ RÑ×Ndof

s,r ; the
latter are defined as(

∂vUl
)
ii

(v) = α′l(vi)− β′l(vi),(
∂vQl

)
ii

(v) = α′l(vi)w∞l (vi) + αl(vi)(w∞l )′(vi),

∂vU = diag
(
∂vU1, . . . , ∂vUNI

)
, ∂vQ =

(
∂vQ1, . . . ,QNI

)T
,

for i = 1, . . . , Ndof
s,r , l = 1, . . . , NI .

If we choose to solve Eq. (2.16) in a segregated fashion with respect to the mono/bidomain
equations, before the transmembrane potential vn+1 has been determined, we use in its
place the value v∗ extrapolated from the previous timesteps. Thus, in such case, we
rewrite Eq. (2.16) as(

ϑI
0

∆tI + U(v∗)
)

wn+1 = 1
∆tw

I + Q(v∗). (2.17)

We highlight that Eq. (2.17) is a linear system of equations in wn+1 and can hence be
solved directly without resorting to the Newton method. Moreover, since the linear
system is diagonal, all the equations are uncoupled and can be solved indipendently.
Incidentally, the derivation of a semi-implicit scheme for the ionic model also leads to
Eq. (2.17).

Monodomain and bidomain equations

Several approaches have been proposed and used to solve the monodomain and the
bidomain equations, usually together with the equations for the ionic model. For instance,
explicit schemes [Heidenreich et al., 2010, Rossi, 2014], implicit schemes [Munteanu and
Pavarino, 2009, Potse et al., 2006, Whiteley, 2006], and the so-called implicit-explicit
(IMEX) schemes [Ascher et al., 1997, Colli Franzone et al., 2015a, Spiteri and Dean, 2008]
have been used in literature. However, explicit and IMEX schemes they tend to have
undesirable time-step restrictions to ensure stabilities. In the following, we formulate
both an implicit scheme and a semi-implicit one.
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Chapter 2. Numerical approximation

We first consider the monodomain equation which, after having replaced Ms with ML as
explained in Section 2.1.2, takes the following form in the implicit case

ϑI

∆tM
Lvn+1 +KM (dn+1

s )vn+1 + Iion(vn+1,wn+1) = 1
∆tM

LvI +MLIapp(tn+1), (2.18)

while the Newton method employed to solve it readsJn+1
EI ,kδw

n+1
k+1 + Jn+1

E,k δv
n+1
k+1 + Jn+1

EM,kδd
n+1
s,k+1 = −rn+1

E,k ,

vn+1
k+1 = vn+1

k + δvn+1
k+1 ,

(2.19)

where

Jn+1
EI ,k = ∂wIion(vn+1

k ,wn+1
k ),

Jn+1
E,k = ϑI

∆tM
L + KM (dn+1

s,k ) + ∂vIion(vn+1
k ,wn+1

k ),

Jn+1
EM,k = ∂dsKM (dn+1

s,k ,vn+1
k ),

rn+1
E,k = ϑI

∆tM
Lvn+1

k + KM (dn+1
s,k )vn+1

k + Iion(vn+1
k ,wn+1

k )

− 1
∆tM

LvI −MLIapp(tn+1),

and in particular

(∂wIion,l)ij(v,w) =
∫

Ωs0

∂Iion(vh, w1
h, . . . , w

NI
h )

∂wlh
ψs,jψs,i dΩs

0,

(∂vIion)ij(v,w) =
∫

Ωs0

∂Iion(vh, w1
h, . . . , w

NI
h )

∂vh
ψs,jψs,i dΩs

0,

(∂dsKM )ij(d,v) =
∫

Ωs0

(
∂(JhF−1

h DMF−Th ∇0vh)
∂Fh

)
[∇0ψs,j ] · ∇0ψs,i dΩs

0,

(2.20)

where we denote by Z[ B ] the contraction of the third order tensor Z with the second
order one B (see Appendix A). The definition of ∂Iion

∂wl
h

, ∂I
ion

∂vh
(for the minimal model) and

of
(
∂(JhF−1

h
DMF−T

h
∇0v)

∂Fh

)
[∇0ψs,j ] are reported in Appendix B.1 and B.2, respectively.

We also consider the case in which the displacement is given, and hence remove in
Eq. (2.18) the dependence on dn+1

s by evaluating the stiffness matrix K in the extrapolated
displacement d∗s. This yields to discarding the last term on the left hand side of Eq. (2.19),
and to change accordingly the residual rn+1

E,k . Finally, we consider the following semi-
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implicit scheme

ϑI

∆tM
Lvn+1 + KM (d∗s)vn+1 +

NI∑
l=1

Iionwl (v∗,w∗)wn+1 + Iionv (v∗,w∗)vn+1

= 1
∆tM

Lvn + MLIapp(tn+1)− Ĩion(v∗,w∗),
(2.21)

where we applied an additive decomposition of the form (2.15) to the ionic currents term.
To this aim, we propose a splitting of the Iion function which is reported in Appendix B.1.

The fully discretized bidomain equations, obtained with the implicit time scheme, take
instead the form

ϑI

∆tM
Lvn+1 + KI(d

n+1
s )(vn+1 + vn+1

E ) + Iion(vn+1,wn+1)

= 1
∆tM

LvI + MLIapp(tn+1),

KI(d
n+1
s )vn+1 +

(
KI(d

n+1
s ) + KE(dn+1

s )
)

vn+1
E = 0,

whereas in this case the Newton method for its solution reads

Jn+1
EI ,kδw

n+1
k+1 + Jn+1

E11,k
δvn+1

k+1 + Jn+1
E12,k

δvn+1
E,k+1 + Jn+1

EM1 ,k
δdn+1

s,k+1 = −rn+1
E1,k ,

Jn+1
E21,k

δvn+1
k+1 + Jn+1

E22,k
δvn+1

E,k+1 + Jn+1
EM2 ,k

δdn+1
s,k+1 = 0,

vn+1
k+1 = vn+1

k + δvn+1
k+1 ,

vn+1
E,k+1 = vn+1

E,k + δvn+1
E,k+1,

(2.22)

where

Jn+1
E11,k

= ϑI

∆tM
L + KI(d

n+1
s,k ) + ∂vIion(vn+1

k ,wn+1
k ),

Jn+1
E12,k

= Jn+1
E21,k

= KI(d
n+1
s,k ),

Jn+1
E22,k

= KI(d
n+1
s,k ) + KE(dn+1

s,k ),

Jn+1
EM1 ,k

= ∂dsKI(d
n+1
s,k ,vn+1

k + vn+1
E,k ),

Jn+1
EM2 ,k

= ∂dsKI(d
n+1
s,k ,vn+1

k ) + KI(d
n+1
s,k ,vn+1

E,k ) + KE(dn+1
s,k ,vn+1

E,k ),

rn+1
E1,k = ϑI

∆tM
Lvn+1 + KI(d

n+1
s )(vn+1 + vn+1

E ) + Iion(vn+1,wn+1)

− 1
∆tM

LvI −MLIapp(tn+1).

The definition of matrices ∂dsKI and ∂dsKE is analogous to that of ∂dsKM , provided
that the tensors DI and DE are used in place of DM . The semi-implicit scheme for the

53



Chapter 2. Numerical approximation

bidomain equations [Ethier and Bourgault, 2008] reads

ϑI

∆tM
Lvn+1 + KI(d

∗
s)(vn+1 + vn+1

E ) +
NI∑
l=1

Iionwl (v∗,w∗)wn+1 + Iionv (v∗,w∗)vn+1

= 1
∆tM

Lvn + MLIapp(tn+1)− Ĩion(v∗,w∗),

KI(d
∗
s)vn+1 +

(
KI(d

n+1
s ) + KE(dn+1

s )
)

vn+1
E = 0.

(2.23)

Mechanical activation

The mechanical activation equation with the implicit scheme for the time discretization,
and the Newton method for this case respectively read

ϑI

∆tM
Lγn+1 + εKγ(wn+1)γn+1 + Φ(wn+1,γn+1,dn+1

s ) = 1
∆tM

LγI, (2.24)

and Jn+1
AI ,kδw

n+1
k+1 + Jn+1

A,k δγ
n+1
k+1 + Jn+1

AM,kδd
n+1
s,k+1 = −rn+1

A,k ,

γn+1
k+1 = γn+1

k + δγn+1
k+1 .

(2.25)

where

Jn+1
AI ,k = ε∂wKγ(wn+1

k ,γn+1
k ) + ∂wΦ(wn+1

k ,γn+1
k ,dn+1

s,k ),

Jn+1
A,k = ϑI

∆tM
L + εKγ(wn+1

k ) + ∂γΦ(wn+1
k ,γn+1

k ,dn+1
s,k ),

Jn+1
AM,k = ∂dsΦ(wn+1

k ,γn+1
k ,dn+1

s,k ),

rn+1
A,k = ϑI

∆tM
Lγn+1

k + εKγ(wn+1
k )γn+1

k + Φ(wn+1
k ,γn+1

k ,dn+1
s,h )− 1

∆tM
LγI,

and

(∂wKγ)ij(w,γ) = −
∫

Ωs0

ε

µA(wl̂h)3
∇0ψj · ∇0ψi dΩs

0,

(∂wΦ)ij(w,γ,ds) =
∫

Ωs0

∂Φ(wh, γh,ds,h)
∂wh

ψs,jψs,i dΩs
0,

(∂γΦ)ij(w,γ,ds) =
∫

Ωs0

∂Φ(wh, γh,ds,h)
∂γh

ψs,jψs,i dΩs
0,

(∂dsΦ)ij(w,γ,ds) =
∫

Ωs0

(
∂Φ(wh, γh,ds,h)

∂Fh
: ∇0ψs,j

)
ψs,i dΩs

0.
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In this case, the semi-implicit scheme is obtained from Eq. (2.24) by extrapolating the γ
variable and reads(

ϑI

∆tM
L + εKγ(w∗) + Φγ(w∗,γ∗,d∗s)

)
γn+1
k = 1

∆tM
LγI + Φ̃(w∗,γ∗,d∗s). (2.26)

The definition of the terms in Eq. (2.25), (2.26) is reported in Appendix B.3.

Mechanics

As already mentioned, the implicit scheme only is used for the mechanics problem because
no stable semi-implicit were found to be stable for the problem under consideration,
unless unreasonably small timesteps were employed. We conjecture that this is due to the
peculiar form of the first Piola-Kirchhoff stress tensor, which features exponential and
logarithmic nonlinearities as well as a strong anisotropy. This accounts to an accentuated
sensibility of the values taken by the stress tensor P on the displacement: for this reason,
the extrapolated variable d∗s is not sufficiently close to dn+1

s to ensure that P(d∗s) is a
close approximation of P(dn+1

s ).

The implicit scheme for the mechanics problem reads(
ρs
ϑII

∆t2M
s
3 + ϑI

∆tF + G
)

dn+1
s + S(dn+1

s ,γn+1) = ρs
1

∆t2M
s
3d

II
s + 1

∆tFdI
s + ρn+1,

and the Newton methodJn+1
MA,kδγ

n+1
k+1 + Jn+1

M,kδd
n+1
s,k+1 = −rn+1

M,k,

dn+1
s,k+1 = dn+1

s,k + δdn+1
s,k+1,

(2.27)

where

Jn+1
MA,k = ∂γS(dn+1

s,k ,γ
n+1
k ),

Jn+1
M,k =

(
ρs
ϑII

∆t2M
s
3 + ϑI

∆tF + G
)

+ ∂dsS(dn+1
s,k ,γ

n+1
k ),

rn+1
M,k =

(
ρs
ϑII

∆t2M
s
3 + ϑI

∆tF + G
)

dn+1
s,k + S(dn+1

s,k ,γ
n+1
k )

− ρs
1

∆t2M
s
3d

II
s −

1
∆tFdI

s − ρn+1
k .

(2.28)

The calculation of terms of the Jacobian matrix in Eq. (2.28) is a complex task which
requires knowledge of matrix and tensor calculus. The differentiation of the (second
order) stress tensor PE with respect to the (second order) deformation tensor F gives
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rise to a fourth order tensor; the latter is then subsequently contracted with the (second
order) deformation gradient tensor of the basis function ψs,j , that is

∂γS(ds,γ) =
∫

Ωs0

(
PE

∂F−1
A

∂γh
ψs,j

)
: ∇0ψs,i dΩs

0,

∂dsS(ds,γ) =
∫

Ωs0

(
∂PE

∂Fh

) [
∇0ψs,j

]
F−1
A : ∇0ψs,i dΩs

0,

where - with an abuse of notation - we used the same symbol introduced for the contraction
of a third with a second order tensor, to denote the contraction of a fourth with a second
order tensor. We report in Appendix A the minimal set of rules which is required to
perform the differentiation of PE ; the latter is then carried out in Appendix B.4.

We recall that, as explained in detail in Section 2.1.4, if the full 3D Navier-Stokes
equations are solved together with the mechanics we have ρn+1

k = ρ(λn+1
k ) = Πf

sλ
n+1
k .

As such, we add the term Jn+1
ML,kλ

n+1
k to the first of Eq. (2.27), where Jn+1

ML,k = Πf
s .

Fluid

We write the implicit scheme for the fluid velocity and pressure, the fluid geometry, and
the Lagrange multipliers in a single system since, as previously stated, in this thesis the
corresponding equations are always solved simultaneously together with the mechanics:

K̃Gdn+1
f −Πs

fd
n+1
s = 0,(

ρf
ϑI

∆tM
f
3 + µfA + ρfC(un+1 − ḋ

n+1
f )

)
un+1 + BTpn+1

+ Πf
Γ
T
λ
n+1 + SSUPGM (un+1,pn+1) = ρf

1
∆tM

f
3uI,

Bun+1 + SSUPGC (un+1,pn+1) = 0,

− ϑI

∆tΠ
s
Γdn+1

s + Πf
Γun+1 = − 1

∆tΠ
s
ΓdI

s,

(2.29)

where we set ḋ
n+1
f = 1

∆t

(
ϑIdn+1

f − dI
f

)
, the approximation of the fluid geometry dis-

placement time derivative given by the BDF. The Newton method for the solution of the
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nonlinear Eq. (2.29) reads:

Jn+1
F11,k

δun+1
k+1 + Jn+1

F12,k
δpn+1

k+1 + Jn+1
FL,kδλ

n+1
k+1 = −rn+1

F1,k
,

Jn+1
F21,k

δun+1
k+1 + Jn+1

F22,k
δpn+1

k+1 = −rn+1
F2,k

,

Jn+1
G,k δd

n+1
f,k+1 = −rn+1

G,k ,

Jn+1
LM,kδd

n+1
s,k+1 + Jn+1

LF ,kδu
n+1
k+1 = −rn+1

L,k ,

un+1
k+1 = un+1

k + δun+1
k+1 ,

pn+1
k+1 = pn+1

k + δpn+1
k+1 ,

dn+1
f,k+1 = dn+1

f,k + δdn+1
f,k+1,

λ
n+1
k+1 = λ

n+1
k + δλ

n+1
k+1 ,

where

Jn+1
F11,k

= ρf
ϑI

∆tM
f
3 + µfA + ρf∂uC(un+1
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f,k ) + ∂uSSUPGM (un+1
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Γ
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n+1
f )

)
un+1 + BTpn+1 + Πf

Γ
T
λ
n+1

+ SSUPGM (un+1,pn+1)− ρf
1

∆tM
f
3uI,

rn+1
F2,k

= Bun+1 + SSUPGC (un+1,pn+1),

rn+1
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f −Πs
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L,k = − ϑ
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∆tΠ
s
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s + Πf
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∆tΠ
s
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and in particular

∂uC(u, ḋf ) =
∫

Ωft

(
((uh − ḋf,h) · ∇)ψf,j ·ψf,i + (ψf,j · ∇)uh ·ψf,i

)
dΩf

t .

We remark that we are here neglecting the shape derivatives terms (i.e. the Jacobian of
C differentiated with respect to df ), thus in this case the method employed is in fact
an inexact Newton method. For the sake of readability, we do not report the Jacobian
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terms corresponding to the SUPG stabilization.

2.2.2 Discretization of the 0D fluid model

We evaluate the volume V endo(t) at time tn by exploiting the formula

V endo,n = V endo(dnh) =
∫

Γendo0

J(dnh)ξ · F−Th (dnh)Ns dΓ0, (2.30)

which is rigorously derived in [Rossi, 2014] and where ξ is a vector directed as the normal
to the plane of the LV base. We then model the endocardial pressure pendo(t) with
different 0D models, following [Eriksson et al., 2013, Rossi, 2014, Usyk et al., 2002], for
each of the aforementioned phases (in the following, we drop the “endo” superscript for
simplicity).

1. Isovolumic contraction: Isovolumic contraction: we use the Newton method to
solve Eq. (1.26) by iteratively updating the pressure as

pn+1
k+1 = pn+1

k −
(
∂V

∂p
(pn+1
k )

)−1
(V n+1
k − V n),

for k = 0, 1, . . ., with pn+1
0 = pn and V n+1

0 = V n. By dimensional arguments, we
approximate ∂V

∂p (pn+1
k ) as −∆t

ζ

[
mm4s2

g

]
. At each iteration, pn+1

k+1 is used to solve
the electromechanics problem thus obtaining V n+1

k+1 with (2.30); the procedure is

repeated until the condition |V
n+1
k+1 −V

n|
∆t < ε is satisfied. The parameter ζ < 0 has

to be “sufficiently” small in order for the fixed point algorithm to converge;

2. Ejection: the two elements Windkessel model (1.27) is solved in the pressure
variable with a BDF scheme of order σ = 1:

C
pn+1 − pn

∆t = −p
n+1

R
− V n − V n−1

∆t .

3. Isovolumic relaxation: modeled as the first isovolumic contraction phase.

4. Filling: the pressure is simply updated as:

pn+1 = pn + ∆t ς.
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3 Preprocessing

We discuss in this chapter the set of procedures to be performed, after the numerical
discretization has been completed, before it is possible to execute simulations in the
framework that we established. First, we describe how to obtain the mesh approximating
the domains Ωs

0 and Ωf
0 , wether they represent an idealized geometry or a subject-specific

Magnetic Resonance Imaging (MRI) fitted LV. Then, we recall a simple algorithm for the
generation of the fibers, the sheets, and the normal fields on the nodes of the myocardium
mesh. Finally, we outline the algorithm implemented to solve the prestress problem. After
these elements have been obtained, they can be used as the input for the electromechanics
and electrofluidmechanics problems in the following chapters.

3.1 Mesh generation

In this section we describe the three different cases that were dealt with for the generation
of the meshes used in this work. While we aim at simulating the LV function using
subject-specific meshes, the extraction of a real LV geometry from medical images is
often a time consuming task; moreover, the mesh thus obtained feature a large number
of degrees of freedom – which is required to ensure a fine description of the geometry
– making their use in the development and testing phases impractical. Therefore, it is
convenient to use at first a mesh approximating an idealized, simple, geometry, for which
the number of tetrahedra can be controlled. Besides these two scenarios, we will also
consider the case in which the geometry is given in the form of a set of non conforming
surfaces.

In general, dealing with surface and/or volume meshes is a complex task. A large
number of files and formats exists, to begin with; among the most popular we used
the Visualization Toolkit1 (.vtk) 2D format [Schroeder et al., 2004], introduced in the
homonymous C++ library, the STereo Lithography (.stl) 2D format [Béchet et al., 2002],

1https://www.vtk.org
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Chapter 3. Preprocessing

one of the most commonly used in Computer-Aided Design (CAD) software and in the
context of 3D printing, and the INRIA Medit (.mesh) 3D format [Frey, 2001], which
is the standard one for the LifeV library. Moreover, a multitude of both commercial
and academic software has been developed for the generation, the manipulation and the
repairing of meshes. The ones exploited in this work are:

• 3D Slicer2: an open source software platform for medical image informatics, image
processing, and three-dimensional visualization [Fedorov et al., 2012], which was
used to manage and segment the Digital Imaging and COmmunications in Medicine
(DICOM) sets [Mildenberger et al., 2002] of cardiac MRI.

• ParaView3: an open source data analysis and visualization application [Ahrens
et al., 2005], for both the preprocessing of the meshes and the postprocessing of
the data.

• MeshLab4: an open source system for the processing and the editing of 3D triangular
meshes [Cignoni et al., 2008], for the manipulation and application of filters to the
meshes.

• NetFabb®: a commercial software for additive manufacturing and design developed
by Autodesk®, which is however free for academic and educational use, for the fine
tuning of the meshes.

• GMSH5: an open source three-dimensional finite element mesh generator [Geuzaine
and Remacle, 2009] using the Delauney triangulation algorithm [Lee and Schachter,
1980], for the generation of the 3D meshes.

We cite, among others, the Vascular Modeling Toolkit (VMTK), a collection of libraries
and tools for 3D reconstruction, geometric analysis, mesh generation and surface data
analysis oriented towards the modeling of blood vessels and based on VTK [Antiga et al.,
2008]. Indeed, even if it was not directly used for the simulations included in this work, it
has proven to be a valuable tool for the generation of blood vessels from medical images
[Colciago, 2014, Deparis et al., 2016b, Masci et al., 2017, Faggiano et al., 2013].

3.1.1 Idealized geometry

In the field of 2D and 3D cardiac modeling, it is common in the literature the adoption of
a prolate geometry [Eriksson et al., 2013, Guccione and McCulloch, 1991, Guccione et al.,
1995, Rossi, 2014, Wang et al., 2013], also known as Auckland heart model [LeGrice et al.,

2https://www.slicer.org
3https://www.paraview.org
4http://www.meshlab.net
5https://www.gmsh.info
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d [mm] νendo νepi µbase [°]
37 0.4 0.7 120

d [mm] νendo νepi µbase [°]
45 0.6 0.8 110

Figure 3.1 – Prolate ellipsoid geometries for two distinct sets of parameters, representing
a canine LV (left) as in [Guccione et al., 1995], and a human LV (right) as in [Wang
et al., 2013].

2001]. The name is due the fact that it is described in a reference prolate spheroidal
coordinate system:

x = d sinh(ν) sin(µ) cos(θ),
y = d sinh(ν) sin(µ) sin(θ),
z = d sinh(ν) cos(µ),

where d is the focal length, ν ≥ 0, and µ, θ ∈ (0, 2π] [Pezzuto, 2013]. The geometry is
then the region of space defined as

Ωs
0 = {(ν, µ, θ, ) : νendo < ν < νepi, µbase < µ < 0, 0 ≤ θ < 2π} .

In Figure 3.1 we show two different prolate geometries and the corresponding parameters
used to define them.

The GMSH software is used to define surfaces and volumes described by analytic functions
and parametrization, and was used to generate the three dimensional mesh and to set
different flags at the boundaries, namely the endocardium, the epicardium, and the
base. Setting the flags is a mandatory step which will allow the finite element library
to assign the boundary conditions on the correct boundaries. The geometry on the
right side of Figure 3.1 is the one which was considered in this thesis, obtained by using
the parameters indicated therein. From it, we generate a base coarse mesh featuring
1’827 nodes and 6’500 tetrahedra, and subsequently refine it by edge halvening to obtain
four increasingly finer meshes. The base prolate mesh and the first two refinements are
reported, together with the fibers and the sheets field, in Figure 3.7.
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Chapter 3. Preprocessing

Figure 3.2 – An overview of the 3D MRI images along three orthogonal slices, as given
by the 3D Slicer software. The pulmonary artery is clearly visible in the central slice,
while the LV with the sinus of Valsalva and the aorta can be seen in the right slice.

3.1.2 Image processing and segmentation

Image segmentation is the process of locating regions of interest (ROI) in the form of a
subset of pixels [Haralick and Shapiro, 1985] which, in the context of 3D imaging, are
volumetric pixels (voxels) [Chen et al., 2012]. In biomedical applications, this amounts to
assign different flags to regions containing different types of tissues and/or fluids. This
result, depending on the properties of the biological material which is to be segmented,
can often be achieved through semi–automatic or automatic procedures (see e.g. [Fedele
et al., 2015, Isgum et al., 2009, Trentin et al., 2015] for arteries and blood vessels and
[Bordas et al., 2010, Vergara et al., 2014] for the Purkinje network), exploiting a large set
of different techniques. However, since the development of algorithms for the segmentation
of the chambers of the heart [Peters et al., 2007, Zheng et al., 2007, Zhuang et al., 2010]
is beyond the scope of this work, we used a manual procedure based on the brightness of
the pixels of 3D MRIs. The MRI images that we used were provided by Prof. J. Schwitter
(Chief physician at the Centre Hospitalier Universitaire Vaudois CHUV, Lausanne) and
Dr. P. Masci in the framework of the collaboration CMCS@EPFL-CHUV hospital.

The procedure used to create the subject-specific mesh can be outlined as follows. The
MRI is first imported in 3D Slicer as in Figure 3.2 and subsequently cropped to the
region of interest, that is the smallest rectangular box cointaining the LV. The same
software features a set of modules aimed to identify the subregions where the different
tissues lie, both manually by seleting sets of adjacent voxels, and semi-automatically with
filters based on the brightness of the voxels. We use in particular a filter exploiting the
GrowCut algorithm [Vezhnevets and Konouchine, 2005] which, after different samples
characterizing different tissues are given as input, tries to expands such samples coherently
with the brightness to fill the whole region of interest. After this procedure has been
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Figure 3.3 – The segmented LV after several smoothing steps, overlayed on three slices
of a subset of the MRI shown in Figure 3.2.

fulfilled, several Gaussian smoothing steps [Wink and Roerdink, 2004] are performed
to improve the overall quality of the mesh, which would otherwise feature a very rough
surface, and isolated not connected regions are discarded. The result, shown in Figure 3.3,
represents the first stage of the mesh and is exported in .vtk format.

Before it is actually possible to use the (still only surface at this stage) subject-specific
mesh, we perform the following steps: we clip the vtk triangulation with respect to a
plane orthogonal to the ventricle centerline with ParaView, disregarding the region close
to the aortic and the mitral valves; then, further local smoothing is carried out with
MeshLab, and filters to fill the holes and clean the mesh are applied; finally, a fine tuning
and repairing is performed with NetFabb® to fix mismatched vertices and edges. The
.stl mesh thus obtained can be used to generate a labelled 3D .mesh with GMSH as
previously done for the prolate geometry.

In the case of the geometry of Figures 3.2-3.3, the MRI image from which it was segmented
was taken at the end of the diastolic phase, that is when the LV reaches its maximum
enlargement. The internal volume of the subject-specific myocardium at this stage of the
heartbeat measures approximately 95 ml. The mesh is reported, together with the fibers
and the sheets field, in Figure 3.8.

63



Chapter 3. Preprocessing

Figure 3.4 – The full-heart cardiac atlas colored by the first four modes obtained from the
PCA analysis of the shape of the cardiac components of multiple subjects [Hoogendoorn
et al., 2013]. From this perspective, the LV is located at the bottom right corner of each
image.

3.1.3 Cardiac atlas

The last mesh generation case reported in this section concerns the generation of both the
Ωs

0 and the Ωf
0 domains for the electrofluidmechanics model. Since the level of detail of

the MRI of Section 3.1.2 was not sufficient to ensure that the myocardium in the region
close to the valves and the aorta were accurately reproduced, we decided to use instead
the cardiac atlas data provided in [Hoogendoorn et al., 2013]. The latter represents a
cardiac geometry split into 13 components, obtained as the average of 134 subject-specific
geometries. In the same work, a principal component analysis is carried on, and the
obtained modes of variation are included in the data shown in Figure 3.4.

The data is provided as a .vtk file and the surface geometry features a relatively small
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Figure 3.5 – Fibers field (top left) generated for the subject-specific mesh, and the mesh
boundaries (top right), together with a close-up of a transmural slice of the myocardium
with fibers, sheets and normals (bottom). Angles αendo and αepi are highlighted at the
endocardium and epicardium, respectively.

number of triangles, which allows it to use for the testing of the electrofluidmechanics
solvers. A procedure similar to the one outlined in Section 3.1.2 was performed, however
in this case we clipped the fluid domain instead of the structure one, as soon as it
bifurcates towards the aorta and the left atrium, respectively. The myocardium and the
blood meshes thus obtained are reported, together with the fibers and the sheets field, in
Figure 3.9.

3.2 Fibers and sheets distribution

In Chapter 1, we introduced the fibers, the sheets, and the (fibers-sheets) normals as
vector fields defined on Ωs

0 influencing the electrical and mechanical properties of the
tissue in an anisotropic manner. In this section, we report a common rule-based algorithm
for the generation of these three fields on the mesh approximating Ωs

0, which assumes
that fibers are arranged in a helical fashion and their orientation varies transmurally
from the epicardium to the endocardium, while sheets are directed transmurally [Rossi
et al., 2014, Rossi, 2014].

Unlike the geometry, the fibers and the sheets fields in the myocardium may not be
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Figure 3.6 – Stages of the fibers generation rule algorithm, for the subject specific
geometry. In the top row, we show the scalar potential Φ (top left), its gradient ∇0Φ
before normalization (top), and the centerline direction k‖c (top right). In the second
row, the field k⊥s0 (bottom left), the unrotated fiber field f̃0 (bottom), and the final result
f0 (bottom right).

extracted from medical images unless special procedures are applied [Reese et al., 1995],
such as Diffusion Tensor Imaging (DTI), which provides three orthotropic axes for every
voxel in an imaged heart data set [Hsu et al., 1998, Scollan et al., 1998]. For this reason,
several mathematically rule-based definitions of the fields have been used in literature
[Göktepe and Kuhl, 2010, LeGrice et al., 2001, Nickerson et al., 2005, Rossi et al., 2012],
which try to approximate their orientation. A more involved approach for the generation
of the fibers in biventricle geometries of both the left and the right ventricles known as
Laplace-Dirichlet Rule-Based (LDRB) was proposed in [Bayer et al., 2012].

In this work we assume that, at the epicardium and at the endocardium, the fiber
direction is tangential to the boundary, while the sheet direction belongs to the plane
identified by the normal and the ventricle centerline; in the most general case, angles
αendo, αepi, βendo, and βepi, representing the inclination of the fibers and the sheets with
respect to the base plane, are assigned. In order to determine the direction of fibers
and sheets inside the myocardium, we solve a Laplace problem imposing a transmurally
linear mapping of the fibers angle. A first study of the influence of the angles on both
the conductivity and the deformation was carried out in [Eriksson et al., 2013]. Since
this kind of analysis goes beyond the scope of this work, we will consider for all the
geometries employed the algorithm and parameters proposed in [Wong and Kuhl, 2014]
and further developed in [Rossi, 2014], therefore setting αendo = −60◦, αepi = +60◦,
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3.2. Fibers and sheets distribution

Figure 3.7 – Mesh of the idealized prolate LV geometry (top left), together with the
fibers (top) and the sheets (top right) fields. The finer meshes (b) and (c) are obtained
by hierarchical refinement of the coarsest mesh (a).

βendo = βepi = 0◦ (see Figure 3.5).

The algorithm implemented to generate the fibers can be formulated as follows. It is first
assumed that the sheets vector field s0 is irrotational, and hence there exists a scalar
potential φ which fully determines it up to an additive constant:

∇0 × s0 ⇒ s0 = ∇0φ.

Therefore, since the sheets are oriented along the direction going form the epicardium to
the endocardum, we impose that the potential φ varies transmurally; in order to do so,
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Figure 3.8 – Mesh of the patient–specific geometry (left), together with the fibers (center)
and the sheets (right) fields.

we define it as the solution of the Laplace problem

−∆0φ = 0, in Ωs
0,

φ = 0, on Γendo0 ,

φ = 1, on Γepi0 ,

∇0φ ·Ns = 0, on Γbase0 .

(3.1)

After (3.1) has been solved, a gradient recovering technique [Zienkiewicz and Zhu, 1992]
is used to obtain ∇0φ and hence s0 by normalization:

s0 = ∇0φ

‖∇0φ‖2
.

Let now be k‖c a vector oriented as the LV centerline; we then define k⊥s0 as the projection
of k‖c on the plane orthogonal to s0:

k⊥s0 = k‖c − (k‖c · s0)s0,

then, a first approximation of the fibers field (with zero component in the centerline
direction) is obtained by setting

f̃0 = s0 ×
k⊥s0

‖k⊥s0‖2
.

The last step consists in the definition of the matrix Rs0(φ), which describes the local
rotation of a single fiber around the s0 axis. Assuming a bijective relation between the
rotation angle and the potential φ, we set

Rs0(φ) = I + sin(θ)[s0]× + 2 sin2(θ)[s0 ⊗ s0 − I],
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Figure 3.9 – Meshes of the cardiac atlas myocardium and blood geometries (left), together
with the fibers (center) and the sheets (right) fields.

where

[s0]× =

 0 −s0,x s0,y
s0,z 0 −s0,x
−s0,y s0,x 0

 , s0 = [s0,x s0,y s0,z]T .

Finally, the fibers field f0 are obtained by setting

f0 = Rs0(φ)f̃0.

We remark that, for simplicity, the normals field n0 is not generated and saved, but
rather computed once at simulation runtime as n0 = f0 × s0.

In Figures 3.7, 3.8, and 3.9, we show the fields obtained by applying the algorithm to the
prolate, the subject specific, and the atlas meshes, respectively. The algorithm herein
described is implemented in LifeV and the result is saved into a Hierarchical Data Format
(HDF5) file [Folk et al., 1999, Folk et al., 2011], a format designed to store and organize
large amounts and high volume of data with efficient parallel I/O, thus making its use
convenient in a HPC framework.

3.3 Prestress

In Section 2.1.4 we discretized in space the equations for the prestress, which we recall
they take the form:

Gd̂s,0 + S(d̂s,0) = pendo − S0, (3.2)

where in particular

S0,i =
∫

Γendo0

P0 : ∇0ψs,i dΩs
0, (3.3)
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Algorithm 1 Prestress computation

function Prestress(S, p, εpre, P0,0)
for k = 1, . . . , S do

set m = 1, Pm
0,k = P0,k−1;

repeat
solving problem (1.17) by means of the Newton method with
p = pk = k

Sp and P0 = Pm
0,k, thus obtaining dm+1

k ;

update Pm+1
0,k = Pm

0,k + P
(
dm+1
k , I

)
by means of Eq. (B.1);

set m = m+ 1;

until ‖P(dmk ,I)‖∞
‖Pm0,k‖∞

< εpre

set P0,k = Pm
0,k;

end for
return P0,S

end function

for i = 1, . . . , 3Ndof
s,r .

In Eq. (3.2), both d̂s,0 and P0 (and hence S0) have to be determined. However, since it is
equivalent to a system of 3 non linear equations in 12 unknowns (3 for the displacement,
9 for the prestress tensor), Eq. (3.2) is underdetermined. We solve it by using a numerical
continuation method [Meyn, 1983, Chen and Yamamoto, 1994, Chen and Womersley,
2006, Allgower and Georg, 2012], which given an initial guess will produce an increasingly
accurate approximation of a pair (d̂s,0,P0) satisfying Eq. (3.2) by exploiting a fixed point
scheme.

We first set

pk = k

S
pendo, k = 1, . . . , S, (3.4)

where S ∈ N is the number of steps of the continuation method exploited to gradually
increase the endocardial pressure value. Then, given S, pendo, a tolerance εpre, and an
initial guess P0,0, the fixed point Algorithm 1 is applied to obtain the tensor
P0 = Prestress(S, εpre, pendo,P0,0). At each fixed point iteration, the Newton method
is used to solve Eq. (3.2).

We empirically observe that the best results in terms of accuracy/efficiency ratio is
obtained when Algorithm 1 is applied twice: a first approximation P̃0 is computed by
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setting S = S1, εpre = εpre1 and P0,0 = 0, and then used to re-initialize Algorithm 1 with
S = 1, εpre = εpre2 � εpre1 , and P0,0 = P̃0. The additional step is performed to require a
smaller tolerance when Algorithm 1 has already reached a closer value of the tensor P̃0 to
the target. Typical value used for the tolerances are εpre1 = 10−2, εpre2 = 10−7, while the
number of steps S1 has to be large enough to ensure the convergence of the continuation
method, however its value is proportional to the computational cost of Algorithm 1
and depends on the value of pendo. Setting S1 = 100 proved to be sufficient in all the
cases with the considered meshes and values of pendo ranging from 5 to 15 mmHg. We
nonetheless observe that, while ‖P(dmk ,I)‖∞

‖Pm0,k‖∞
−→ 0 for m −→ +∞ according to the fixed

point method, the displacement dm+1
k does not converge to 0 but to a vector which we

denote by d̂. However, we observe that the d̂ accounts mostly to a rigid translation of
the domain, and that this initial displacement ensures that the prestress is in equilibrium
with the pressure at the epicardium. Therefore, we decide to set ds,0 = d̂s,0 in (1.15).

Algorithm 1 is implemented in LifeV, and the solution is saved again in a HDF5 format
file. However, in order to keep the implementation as simple as possible, and since we
only need the prestress in the form of the vector S0 defined in Eq. (3.3), we save the
latter instead of the original tensor field P0.

3.4 A critical discussion on the preprocess pipeline

In this chapter, we outlined the pipeline for the preprocessing to be followed before the
methods presented in Chapter 2 can be fully exploited; the pipeline is summarized in
Figure 3.10.

We highlight that all the procedures described, with the notable exception of the mesh
generation, can be fully automatized once the mesh and the LV centerline are given. The
latter could be estimated from the medical images [De Vito and Qian, 1995, Bauer and
Bischof, 2008, Xu et al., 2007] but, since the estensive test of multiple real geometries
goes beyond the scope of this work, was manually measured. Nonetheless, we chose to
complete each stage of the pipeline individually, instead of perfoming them automatically
before the simulations. This choice was made for efficiency reasons. Indeed, even if the
generation of fibers and sheets requires a negligible computational cost with respect to
the integrated simulations, the prestress computation took several hours for the finest
meshes considered. It was hence more convenient at this stage to compute the latter
once before the simulations, instead of recomputing it each time.
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Prestress

Mesh generation

Prestress_Pr.h5

ds0_Pr.h5

Subject-specific imaging

blood.mesh myocardium.mesh Fibers/sheets

FiberDirection_Pr.h5

SheetDirection_Pr.h5

Figure 3.10 – The preprocess pipeline aiming at collecting the data required for the
simulations. From the top left corner, counter-clockwise: the generation of the mesh,
preceded by the segmentation of medical images in case of subject-specific geometries,
produces the myocardium mesh file (and the blood one in the electrofluidmechanics
case); the fibers and the sheets fields are defined in the nodes (depending on the FEM
polynomial order r) of the myocardium mesh; the mesh and the fields are used to generate
the prestress and the initial displacement.

Automatizing the pipeline would also simplify the managing of the simulations. With
the current setting, the user is required to provide the following 10 input files:

1. myocardium.mesh and blood.mesh;

2. FiberDirection_Pr.xmf,.h5 (fibers f0 field);

3. SheetDirection_Pr.xmf,.h5 (sheet s0 field);

4. Prestress_Pr.xmf,.h5 (prestress P0);

5. ds0_Pr.xmf,.h5 (initial displacement d̂s,0),

besides an additional file for the setting of the simulation parameters. This approach
tends to be error prone and disk space demanding: we remark however that at a “release”
stage an automatic pipeline can be implemented.
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Mesh Figure Vertices Tetrahedra Edge [mm]
Ideal 3.7a 1’827 6’500 5.85

Refined Ideal 3.7b 11’658 52’000 2.93
2x Refined Ideal 3.7c 81’335 416’000 1.46
3x Refined Ideal - 602’749 3’328’000 0.73
4x Refined Ideal - 4’629’817 26’624’000 0.36
Subject-specific 3.8 126’031 637’379 1.00

Atlas (myocardium) 3.9 4’126 15’543 4.55
Atlas (fluid) 3.9 3’443 14’254 4.43

Table 3.1 – List of meshes used in this thesis, with their number of vertices, tetrahedra,
and average edge length.

We conclude the chapter by reporting in Table 3.1 the meshes considered in the thesis
with their number of vertices and tetrahedra and average edge length.
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4 Algorithms for the EM of the LV

The second part of this thesis is dedicated to the proposal of several algorithms for the
solution of the electromechanics problem, which are based on the discretization of the
single core models described in Chapter 2. As previously explained, the interaction of
the myocardium with the fluid is taken into account only in the form of the endocardial
pressure pendo(t), which in this chapter will be considered as given. Moreover, without
loss of generality, we consider the monodomain equation for the remainder of this chapter
for the sake of readability.

4.1 Fully monolithic strategy (IIEIAIMI)

We use the implicit scheme (2.14) for the time discretization of each core model and
we assemble the integrated problem in a monolithic fashion, thus considering a “strong”
coupling among the fully discretized core models; see [Gerbi et al., 2017]. This accounts
to solve, for n = σ, . . . , NT − 1, the following system of size 8Ndof

s,r :

(IIEIAIMI) :



(
ϑI

0
∆t + U(vn+1)

)
wn+1 −Q(vn+1) = 1

∆tw
I,(

ϑI
0

∆tM + K(dn+1
s )

)
vn+1 + Iion(vn+1,wn+1) = 1

∆tMvI + MIapp(tn+1),(
ϑI

0
∆tM + εK(wn+1)

)
γn+1
f + Φ(wn+1,γn+1

f ,dn+1
s ) = 1

∆tMγ
I
f ,(

ρs
ϑII

0
(∆t)2M3 + ϑI

0
∆tF + G

)
dn+1
s + S(dn+1

s ,γn+1
f )

= ρs
1

(∆t)2M3d
II
s + 1

∆tFdI
s + pendo(tn+1)− S0,

(4.1)

77



Chapter 4. Algorithms for the EM of the LV

which we indicate as (IIEIAIMI), where I stands for the implicit solver, and compactly
rewrite in algebraic form as

An+1
EM (zn+1) = bn+1

EM , (4.2)

with notation being understood. We then apply, at each timestep, the Newton method
[Quarteroni et al., 2010] to approximate the solution of the nonlinear problem (4.2) by
iteratively solving the linear system{

JEM (zn+1
k+1) δzn+1

k+1 = −rn+1
k

zn+1
k+1 = zn+1

k + δzn+1
k+1 ,

(4.3)

for k = 0, . . ., until ‖rn+1
k ‖L2 < εNtol, where εNtol is a given tolerance. JEM is the Jacobian

matrix of (4.2), evaluated in zn+1
k :

JEM (z)=



ϑI

∆tI + U(v) ∂vU(v)− ∂vQ(v) 0 0

∂wIion(v,w)
ϑI

∆tM
L + KM (ds)

+∂vIion(v,w)
0 ∂dsKM (ds,v)

ε∂wKγ(w,γ)
+∂wΦ(w,γ,ds)

0
ϑI

∆tM
L + εKγ(w)

+∂γΦ(w,γ,ds)
∂dsΦ(w,γ,ds)

0 0 ∂γS(ds,γ) ρs
ϑII

∆t2M
s
3 + ϑI

∆tF + G

+∂dsS(ds,γ)



,

while the residual is defined as rn+1
k = bn+1

EM − An+1
EM (zn+1

k ). We highlight the block
structure of JEM :

JEM =

J11 J12 0 0
J21 J22 0 J24

J31 0 J33 J34

0 0 J43 J44



, (4.4)

where we pointed out the diagonal blocks corresponding to the electrophysiology, the
mechanical activation, and the mechanics, respectively.

While (IIEIAIMI) is “numerically” stable and convergent as long as the initial guess
zn+1

0 in (4.3) is, at each time, sufficiently close to the solution, it also requires to use
the same timestep for the time discretization of each core model. Hence, even if the
electrophysiology and the mechanics are characterized by very different time scales, the
former dictates our choice for the timestep of the fully monolithic problem.
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4.1. Fully monolithic strategy (IIEIAIMI)

4.1.1 Preconditioning the monolithic problem

We rewrite, for the sake of readability, the linear system associated to a single Newton
iteration for the implicit scheme (4.3) in the following form:

JEM δz = −r. (4.5)

We use the GMRES method [Saad, 2003] for the solution of the linear problem (4.5)
as JEM is non-symmetric and the distribution of the eigenvalues of its spectrum is not
known a priori.

The choice of the preconditioner is critical in order to ensure the convergence of the
linear solver; while this is true in general, it is even more relevant in the case of
monolithic multiphysics problems [Keyes et al., 2013]. Indeed, using a black–box algebraic
preconditioner for problem (4.5) the information related to each differential problem
associated to a single core model would be neglected; we instead consider a strategy
exploiting such information at the block level, that is we create a preconditioner that
exploits the “physics” of the coupled problem at the level of the block structure. Following
[Deparis et al., 2016a, Deparis et al., 2016b, Forti et al., 2016] for FSI problems, we
propose a block Gauss-Seidel preconditioner PEM obtained by dropping the upper
triangular blocks of matrix JEM , i.e. the off–diagonal blocks, thus obtaining:

PEM =


J11 0 0 0
J21 J22 0 0
J31 0 J33 0
0 0 J43 J44

 .

PEM can then be factorized into four model–specific nonsingular matrices, namely Pion,
Ppot, Pact, and Pmec corresponding to the ionic, the potential, the activation, and the
mechanics single core models, respectively:

PEM =


J11 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I


︸ ︷︷ ︸

P1=Pion


I 0 0 0
J21 J22 0 0
0 0 I 0
0 0 0 I


︸ ︷︷ ︸

P2=Ppot


I 0 0 0
0 I 0 0
J31 0 J33 0
0 0 0 I


︸ ︷︷ ︸

P3=Pact


I 0 0 0
0 I 0 0
0 0 I 0
0 0 J43 J44

 .
︸ ︷︷ ︸

P4=Pmec

This decomposition can also be interpreted as an inexact factorization of matrix JEM .
The preconditioned version of problem (4.5) then reads:{

JEMP−1
EMy = −r

PEMδz = y.
(4.6)

Since each diagonal block Jii appears in a distinct factor Pi, for i = 1, . . . , 4, then
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Chapter 4. Algorithms for the EM of the LV

physics–specific ad–hoc preconditioners can be efficiently used to approximate its inverse.
Indeed, we define the symbolic operation δz = P−1

EMy in (4.6) as the application of the
following sequential steps

δzw = J−1
11 yw,

δzV = J−1
22 (yV − J21δzw),

δzd = J−1
33 (yd − J31δzw),

δzγ = J−1
44 (yγ − J43δzd);

(4.7)

the solution of each linear system in (4.7) is carried out by using again the GMRES
method and by exploiting Algebraic Multigrid (AMG) [Briggs et al., 2000] and Additive
Schwarz (AS) [Quarteroni and Valli, 1996] preconditioners. The preconditioner PEM can
be regarded as a generalization of the FaCSI preconditioner for FSI problems proposed
in [Deparis et al., 2016b] (see also [Deparis et al., 2016a, Forti et al., 2016]).

4.2 Segregated schemes

Even though the monolithic strategy (IIEIAIMI) presented in Section 4.1 is stable, it has
two main practical drawbacks. First, the time advancement of Eq. (4.1) must be carried
out using the same timestep size ∆t for all the core models involved: as a consequence, the
the small timestep size required by the electrophysiology must be used for the mechanics
too, thus solving the latter more often than “necessary”. Second, the large size of the
Jacobian matrix JEM requires a relatively large amount of memory to be stored, and of
processing units for its assembly. In order to overcome these issues, we propose three
segregated algorithms exploiting the Godunov splitting scheme [Godunov, 1959]. The
latter consists in solving Eq. (4.1) in two consecutive steps at each timestep, by properly
uncoupling the core problems. However, as we will show, the scheme introduces a first
order error on the solution.

The block structure of JEM , and the different characteristic time scales for the electro-
physiology and for the mechanics, suggest a first splitting between the latter models,
and we choose to keep the mechanical activation core problem coupled with the electro-
physiology. To this aim, the dependence of the monodomain/bidomain equations and of
the mechanical activation on the displacement dn+1

s is realized by evaluating them in
d∗s instead. We show that this operation introduces a first order error on the following
model problem:

du
dt = Lu + f , t ∈ (0, T ],

u(0) = u0,
(4.8)
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where

L =
[
Lvv Lvd
Ldv Ldd

]
, u =

[
v

d

]
, f =

[
fv
fd

]
.

Here, v and d synthetically represent the variables associated to the electrophysiology
and to the mechanics, respectively. To this aim, let us first prove the following result
relative to the error introduced on a single timestep:

Theorem 1. Consider Eq. (4.8) with T = ∆t and the uncoupled problem
dw
dt = L1w + L2w0 + f , t ∈ (0,∆t],

w(0) = w0 = u0,
(4.9)

where

L = L1 + L2 =
[
Lvv 0
Ldv Ldd

]
+
[
0 Lvd
0 0

]
.

Then, it holds:

e(∆t) = ‖u(∆t)−w(∆t)‖ ≤ C1∆t2

for a positive constant C1.

Proof. We first write u and w at time t = ∆t in terms of their Taylor expansion around
time t = 0:

u(∆t) = u0 + ∆t∂u
∂t

∣∣∣∣∣
0

+ ∆t2
2
∂2u
∂t2

∣∣∣∣∣
0

+O(∆t3)

= u0 + ∆t(Lu0 + f(0)) + ∆t2
2

(
L(Lu0 + f(0)) + ∂f

∂t
(0)
)

+O(∆t3)

= u0 + ∆t(Lu0 + f(0)) + ∆t2
2 (L2u0 + Lf(0) + ∂f

∂t
(0)) +O(∆t3),

and
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w(∆t) = w0 + ∆t∂w
∂t

∣∣∣∣∣
0

+ ∆t2
2
∂2w
∂t2

∣∣∣∣∣
0

+O(∆t3)

= w0 + ∆t(L1w + L2w0 + f)
∣∣∣
0

+ ∆t2
2

∂

∂t
(L1w + L2w0 + f)

∣∣∣
0

+O(∆t3)

= w0 + ∆t(L1w0 + L2w0 + f(0)) + ∆t2
2

(
L1(L1w0 + L2w0 + f(0)) + ∂f

∂t
(0)
)

+O(∆t3)

= u0 + ∆t(Lu0 + f(0)) + ∆t2
2

(
(L2

1u0 + L1L2u0 + L1f(0)) + ∂f
∂t

(0)
)

+O(∆t3).

Then, we evaluate the difference between u(∆t) and w(∆t):

u(∆t)−w(∆t) = ∆t2
2 (L2u0 + Lf(0)− L2

1u0 − L1L2u0 − L1f(0)) +O(∆t3)

= ∆t2
2
(
(L2 − L2

1 − L1L2)u0 + (L− L1)f(0)
)

+O(∆t3)

= ∆t2
2
(
(L2

2 + L2L1)u0 + L2f(0)
)

+O(∆t3)

= ∆t2
2 L2 (Lu0 + f(0)) +O(∆t3)

= ∆t2
2 L2

∂w
∂t

∣∣∣∣∣
0

+O(∆t3).

The result follows then from the definition of e(∆t).

We have hence proven that a second order error is introduced when solving a single
timestep of the uncoupled problem. Considering now the error at the final time e(T ), we
have

e(T ) ≈ NT e(∆t) ≤
T

∆tC1∆t2 ≤ C2(T )∆t.

Thus, the solution of the uncoupled problem converges to the solution of the coupled
problem linearly with respect to ∆t. We now take advantage of this result to formulate
three different segregated (and possibly staggered) strategies.

4.2.1 Partially segregated strategy (IIEIAI)–(MI)

As anticipated, we first break the strong coupling between the electrophysiology and
the mechanical activation (IIEIAI) and the tissue mechanics (MI). We hence evaluate
the terms K(dn+1) and Φ(wn+1,γn+1,dn+1) of Eq. (4.1) in the extrapolated variable d∗

instead of dn+1, thus obtaining two separated problems which are solved in a segregated
fashion. We notice that the (IIEIAI) problem is still fully coupled, while it is decoupled
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4.2. Segregated schemes

Figure 4.1 – Graphical representation of the time advancement for the (IIEIAI)–(MI)
and the (ISIESIASI)–(MI) schemes.

from the (MI) block, hence the denomination (IIEIAI)–(MI).

This approach allows to use a smaller timestep for the (IIEIAI) problem, which we denote
by τ , with respect to the one used for the mechanics (MI). In such a case, we speak of a
staggered strategy. For our purposes, we set in particular

τ = ∆t
Nsub

,

where Nsub ∈ N is the number of intermediate substeps; τ is the timestep size of (IIEIAI)
and ∆t that of (MI). This implies that τ ≤ ∆t and tn+ m

Nsub = tn+mτ form = 1, . . . , Nsub.
Nsub can also be regarded as the ratio of the timestep lengths used for the mechanics, and
for the electrophysiology and activation. The overall time advancement is represented in
Figure 4.1. Another clear advantage of this approach is that, in the isovolumic phases,
only the mechanics problem needs to be solved, contrarily to the fully monolithic one
where Eq. (4.1) has to be solved at each subiteration. Problem (IIEIAI) from tn to tn+1

reads:

(IIEIAI) :



(
ϑI

0
τ

+ U(vn+ m
Nsub )

)
wn+ m

Nsub −Q(vn+ m
Nsub ) = 1

τ
wI,(

ϑI
0
τ
M + K(d∗)

)
vn+ m

Nsub + Iion(vn+ m
Nsub ,wn+ m

Nsub ) = 1
τ
MvI + MIapp(tn+ m

Nsub ),(
ϑI

0
τ
M + εK(wn+ m

Nsub )
)
γ
n+ m

Nsub + Φ(wn+ m
Nsub ,γ

n+ m
Nsub ,d∗) = 1

τ
MγI,

(4.10)

for m = 1, . . . , Nsub, where the terms wI, vI, and γI (defined in Eq. (2.13)) are evaluated
by using the variables at times tn, tn − τ, . . . , tn − (σ− 1)τ . As in the case of the implicit
electromechanics, we use the Newton method to solve problem (4.10), and the block
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structure of the correspondent Jacobian matrix JEA is:

JEA =
J11 J12 0
J21 J22 0
J31 0 J33.


 (4.11)

We exploit the same preconditioning technique that was outlined in Section 4.1 for the
(IIEIAIMI) strategy, only restricted to the block (IIEIAI). After solving Eq. (4.10) for
Nsub steps, we solve at tn+1 the implicit mechanics problem (MI):

(MI) :

(
ρs

ϑII
0

(∆t)2M3 + ϑ′0
∆tF + G

)
dn+1 + S(dn+1

,γn+1)

= ρs
1

(∆t)2M3d
II + 1

∆tFdI + pendo(tn+1)− S0,

(4.12)

by means of the Newton method. We highlight that the vector γn+1 in Eq. (4.12) is
already known, since it is given after the last step of Eq. (4.10) (i.e. for m = Nsub).

4.2.2 Partially segregated strategy (ISIESIASI)–(MI)

By considering now the semi-implicit scheme for the time discretization, the (ISIESIASI)
problem reads:

(ISIESIASI) :



(
ϑI

0
∆t + U(v∗)

)
wn+ m

Nsub = 1
τ

wI + Q(v∗),(
ϑI

0
∆tM + K(d∗) + Iionv (v∗,w∗)

)
vn+ m

Nsub + Iionw (v∗,w∗)wn+ m
Nsub

= 1
τ
MvI + Ĩion(v∗,w∗) + MIapp(tn+ m

Nsub ),(
ϑI

0
τ
M + εK(w∗) + Pγf (w∗,γ∗,d∗)

)
γ
n+ m

Nsub = 1
τ
MγI + Φ̃(w∗,γ∗,d∗),

(4.13)

for m = 1, . . . , Nsub. In this case, the block pattern of the matrix AEA, stemming from
the linear system (4.13), is:

AEA =
A11 0 0
A21 A22 0
0 0 A33


. (4.14)
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4.2. Segregated schemes

Figure 4.2 – Graphical representation of the time advancement for the
(ISI)–(ESI)–(ASI)–(MI) scheme.

As in the case of the (IIEIAI) strategy, after solving Eq. (4.13) for Nsub steps, we solve
the implicit mechanics problem (MI) (4.12).

4.2.3 Fully segregated strategy (ISI)–(ESI)–(ASI)–(MI)

Finally, we further segregate the (ISIESIASI) block, that is instead of solving (ISIESIASI)
(4.13) in a monolithic fashion, we solve the three subproblems sequentially. In Figure 4.2
we show a representation of the time advancement in this case. At each time tn, the
algorithm amounts to perform, for m = 1, . . . , Nsub, the following steps, in order:
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1. find wn+ m
Nsub by solving:

(ISI) :
(
ϑI

0
∆t + U(v∗)

)
wn+ m

Nsub = 1
τ

wI + Q(v∗); (4.15)

2. use wn+ m
Nsub , obtained with Eq. (4.15), to find vn+ m

Nsub by solving:

(ESI) :

(
ϑI

0
∆tM + K(d∗) + Iionv (v∗,wn+ m

Nsub )
)

vn+ m
Nsub = 1

τ
MvI

+Ĩion(v∗,wn+ m
Nsub )− Iionw (v∗,wn+ m

Nsub )wn+ m
Nsub + MIapp(tn+ m

Nsub );
(4.16)

3. use wn+ m
Nsub and vn+ m

Nsub , obtained with Eq. (4.15) and Eq. (4.16), to find γn+ m
Nsub

by solving:

(ASI) :

(
ϑI

0
τ
M + εK(wn+ m

Nsub ) + Pγ(wn+ m
Nsub ,γ∗,d∗)

)
γ
n+ m

Nsub

= 1
τ
MγI + Φ̃(wn+ m

Nsub ,γ∗,d∗).
(4.17)

After Nsub steps, we once again solve problem (4.12) and finally obtain dn+1.
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5 Numerical simulations

In this chapter we show the results obtained with the simulation of different scenarios
with the strategies proposed in Chapter 4. In the first part, we setup a benchmark in
which the ventricle is stimulated with a current and let contract freely while a constant
pressure is applied at the endocardial wall. The strategies proposed in the previous
chapter are tested in this setting and the results compared in terms of accuracy and
efficiency. In the second part, the same strategies are used for a subject-specific simulation
(in healthy conditions), with the MRI-segmented geometry showed in Chapter 3. In
this case, a full heartbeat is simulated, and the heartbeat pressure-volume (pV) loops
obtained are also reported. Finally, after having introduced an ad hoc methodology
for the electrophysiology and the mechanics modeling of infarcted tissue, we detail an
application of the electromechanics solvers for the simulation of an ischemic heart.

5.1 Free contraction benchmark

We use the coarse idealized prolate mesh of Figure 3.7 for the free contraction benchmark.
The monodomain and the Bueno-Orovio [Bueno-Orovio et al., 2008] models are used
for the electrophysiology, and the parameters used for each core model are reported in
Appendix B. Finite elements of order r = 1 are employed for the space discretization to
keep the computational cost low, while BDF of order σ = 1, 2 are employed for the time
discretization to ensure A-stability while maximizing the convergence order [Quarteroni
et al., 2010]. The simulation is started by applying an external current, represented by
Iapp, in three points located on the endocardium; the current then triggers the electrical
activity in the idealized LV which drives the fibers shortening and hence the contraction.
The final time of the simulation is set to T = 100 ms, during which time the endocardial
pressure is kept at the constant value pendoEDP = 10 mmHg. With these settings, the
ventricular volume halves going from approximately 136 ml at t = 0 to around 68 ml at
the end of the simulation thus approximately reproducing the physiological shrinking of
the LV during the systole.
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Chapter 5. Numerical simulations

Figure 5.1 – Transmembrane potential v at times T = 2.4 ms (first row), T = 4.8 ms
(second row), T = 7.2 ms (third row), and AT (fourth row) obtained with the (IIEIAIMI)
strategy and timesteps τ = 8× 10−5 s (left), τ = 16× 10−5 s (center), and τ = 24× 10−5

s (right).

Before quantitatively comparing the four strategies, we discuss the results of the bench-
mark test obtained by using the (IIEIAIMI) strategy. In Figure 5.1 we show the
transmembrane potential v in the prolate LV at the three distinct times T = 2.4 ms,
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Figure 5.2 – Evolution of the transmembrane potential v (left y-axis), the fibers shortening
γf , and the ionic variables w1, w2, w3 (right y-axis) in a point located on the apex,
during the free contraction benchmark.

T = 4.8 ms, and T = 7.2 ms, before the ventricle is fully depolarized. In the same figure,
the activation time (AT) is displayed: the latter is defined, in each point, as the time at
which the electric potential reaches a threshold value vthr (we set in particular vthr = 10
mV) [Pagani, 2017, Usyk and McCulloch, 2003]. The results shown are obtained by
using the timesteps τ = 8 × 10−5 s, τ = 16 × 10−5 s, and τ = 24 × 10−5 s. We recall
that in this case, because of the monolithic nature of the strategy, it holds ∆t = τ and
hence we conventionally set Nsub = 1. We also report in Figure 5.2 the values of the
transmembrane potential v, of the fibers shortening γf , and of the ionic variables w1, w2,
w3 in the external apical point of the LV, obtained with (IIEIAIMI) and τ = 8× 10−5.
The depolarization wave reaches the apical point in around 5 ms, thus triggering the
action potential. The transmembrane potential enters then the plateau phase [Rudy,
2008], followed by the repolarization which is not reached in Figure 5.2 since the final
time falls within the plateau phase.

We highlight that the conduction velocity, that is the velocity at which the potential wave
propagates in the myocardium, is overestimated – and conversely the AT is underestimated
– with respect to physiological values. This is a known numerical issue [Pezzuto et al., 2016]
which arises when using the monodomain or the bidomain equations with meshes featuring
tetrahedra with diameter h & 0.1 mm [Rossi, 2014]. Nonetheless, we use the coarsest
idealized meshes in order to keep the computational costs reasonable since we want to
extensively test the proposed strategy for varying τ and Nsub. This will not represent
an issue for this benchmark: indeed, since no exact solution to the electromechanics
problem is available, the analysis of the convergence with respect to the timesteps will be
carried out by using a reference solution on the same mesh, effectively disregarding the
error in space. The estimated conduction velocities are also influenced by the timestep
employed, as detailed in [Rossi, 2014]. It can indeed be observed from Figure 5.1 that a
larger timestep corresponds to an overestimation of the conduction velocities. Finally, a

89



Chapter 5. Numerical simulations

Figure 5.3 – Deformed myocardium at six different times during the free contraction
benchmark, coloured by the displacement magnitude ‖ds,h‖2 and compared with the
reference domain Ωs

0.

factor contributing to the underestimation of the propagation speed is to be identified
in the use of mass lumping for the monodomain equation (see Section 2.1.2) with large
elements size [Pathmanathan et al., 2012], as is the case with these simulations. A more
in-depth analysis of these numerical issues is carried out, among other works, in [Niederer
et al., 2011, Pezzuto et al., 2016, Rossi, 2014].

In Figure 5.3 the deformed myocardium is shown at different times with the displacement
magnitude ‖ds,h‖2 (where ‖ · ‖2 denotes the Euclidean norm), and compared with the
reference domain Ωs

0. A significant thickening of the LV walls takes place, which is in
accordance with experimental observations [Quinn and Kohl, 2013] and with the nearly
incompressible formulation employed. The model, with the set of parameters used, fails
however to produce a significant rotation of the LV: a recent work [Pezzuto and Ambrosi,
2014] suggests that this behavior is related to the choice of the volumetric strain energy,
the bulk modulus B magnitude, and the boundary conditions, but this issue is not further
investigated in this work.
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Figure 5.4 – Errors in L2(Ωs
0) (left) and L∞(Ωs

0) (right) norms of the potentials v̂τh (top)
and of the displacements d̂τs,h (bottom) obtained using (IIEIAIMI) with timestep τ , at
times T = 24 ms (blue), T = 48 ms (green) and T = 96 ms (red) in logarithmic scale.
The errors for both BDF1 (dashed lines) and BDF2 (solid lines) are reported, together
with linear and quadratic reference slopes.

5.1.1 Convergence with respect to time discretization

In order to assess the properties of the proposed strategies and to evaluate their be-
havior for different timestep lengths, we set τ = 1, 2, 4, 8, 12, 16, 24, 32 × 10−5 s and
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Figure 5.5 – Evolution of the transmembrane potential vτh in the apex obtained using
(IIEIAI)–(MI) (top) and (ISIESIASI)–(MI) (bottom) for different τ and Nsub = 1 (and
hence ∆t = τ). The close-ups highlight the instant in which the depolarization wave
reaches the apex.

Nsub = 1, 2, 4, 8, 16 for the segregated strategies, while ∆t = τ (as previously done) for
the monolithic strategy. The absolute tolerances for the Newton method and the GMRES
solver are set to εN = 10−4 and εG = 10−8, respectively. For all the numerical simulations
of this benchmark, 6 cpus are used. As already noted, we use the solution obtained
by using (IIEIAIMI) with the smallest timestep as a reference one (a manufactured
“exact” solution). Indeed, with (IIEIAIMI), we are forced to use the smallest timestep
for the electrophysiology, the mechanical activation, and the mechanics, and all the
coupling conditions between the core models are enforced in the extradiagonal blocks of
the monolithic system matrix. However, as we will show, this accuracy comes at a high
computational cost.

In the following, we denote by v̂τh and d̂τs,h the potential and the displacement solutions,
respectively, obtained with (IIEIAIMI) and timestep τ while τ̂ = 10−5 s is the smallest
timestep considered. We first verify numerically that in the (IIEIAIMI) case the errors
in L2(Ωs

0) and L∞(Ωs
0) norms of the potential and of the displacement magnitude decay

as τ and τ2 when using BDF with σ = 1 (i.e. Backward Euler) and σ = 2, respectively.
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Figure 5.6 – Evolution of the fibers shortening γτh in the apex obtained using
(IIEIAI)–(MI) (top) and (ISIESIASI)–(MI) (bottom) for different τ and Nsub = 1 (and
hence ∆t = τ). The close-ups highlight the instant in which the calcium concentration
reaches the threshold and γτh starts to decrease.

To this aim, we display in Figure 5.4 the errors ||v̂τh − v̂τ̂h||, and ||d̂τs,h − d̂τ̂s,h|| against the
timestep length τ . The converge rate is indeed coherent with the order σ of the BDF
scheme under use.

We begin the analysis of the results given by the strategies by inspecting the evolution
of several variables in the apex of the LV against the time for different choices of
τ . First, in Figure 5.5, the transmembrane potential vτh given by (IIEIAI)–(MI) and
(ISIESIASI)–(MI) is reported. We observe that, while in both cases vτh converges to vτ̂h
as τ −→ τ̂ , numerical instabilities take place when a timestep larger than τ = 8× 10−5

is used with the (ISIESIASI)–(MI) strategy, and the value of vτh increasingly oscillates
for increasing τ . A similar effect, though less pronounced, is observable also in wτ

h

for τ ≥ 24× 10−5 (not reported). Nonetheless such instabilities appear to be “non-
destructive”, meaning that the evolution of γτh is reasonably close to that obtained with
smaller timesteps even when using the largest one (see Figure 5.6). This is due to the
diffusive term in Eq. (1.20) which regularizes the solution γτh. We also deduce from the
close-ups of vτh in Figures 5.5-5.6 that in the implicit case the conduction velocity is
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Figure 5.7 – Evolution of the displacement in the Z direction dτs,h ·e3 in the apex obtained
using (IIEIAI)–(MI) (top) and (ISIESIASI)–(MI) (bottom) for different τ and Nsub = 1
(and hence ∆t = τ). The close-ups highlight the instant in which the apex starts moving.

overestimated, and hence the action potential is triggered earlier with respect to the
reference solution; on the other hand, in the semi-implicit case, the conduction velocity
is underestimated and the dynamics is in turn delayed. This behavior is expected and in
accordance with the results reported in [Whiteley, 2006], and we speculate that this is
due to the additional dependence on the variables obtained at the previous timesteps
introduced in the linearization of the ionic currents terms.

In this benchmark, the boundary conditions do not depend on time and hence the displace-
ment of the LV is fully determined by the evolution in time of γτh . Indeed the early/late
activation in the (IIEIAI)–(MI)/(ISIESIASI)–(MI) case drives an anticipated/delayed
deformation of the myocardium, as shown in Figure 5.7 where the displacement of the
apex in the Z direction is reported. The latter is oriented as the LV centerline, in the
base-apex direction: thus, the displacement decreases as the LV contracts (see Figure 5.3).
As in the previous cases, the approximation given by (IIEIAI)–(MI) is more accurate
with respect to that given by (ISIESIASI)–(MI) for equal timestep length. In the latter
case, using the largest timestep length τ = 32× 10−5 s causes an underestimation up to
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Figure 5.8 – Evolution of the displacement in the Z direction dτs,h ·e3 in the apex obtained
using (IIEIAI)–(MI) (top) and (ISIESIASI)–(MI) (bottom) for different Nsub and τ = τ̂
(and hence ∆t = Nsubτ̂). The close-ups highlight the instant in which the apex starts
moving.

100% of the displacement.

We also investigate how the displacement is influenced by using different Nsub while
keeping τ = τ̂ , which is reported in Figure 5.8. In this case the displacements obtained
with large Nsub (and consequently large ∆t) appear as staircase functions. This is due
the fact that the displacement is not updated during the Nsub steps of electrophysiology
and mechanical activation which are performed between two consecutive mechanics
timesteps. Nonetheless we observe that, when a time corresponding to the solution of
the mechanics problem is reached, the displacement is updated and the deviation of the
volume from the reference solution drops. The reason why this happens is due to our
choice of solving the mechanical activation together with the electrophysiology. Indeed,
since the displacement is driven by the active shortening of the fibers, the more accurate
is the approximation of γf (i.e. the one obtained with a smaller timestep), the more
accurate is the approximation of ds. From this macroscopic perspective we speculate that,
if the goal is that of reducing the computational cost of the simulation, increasing Nsub
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Figure 5.9 – Errors in L2(Ω0) (left) and L∞(Ω0) (right) norms of the potentials vτ̂h (top)
and of the displacements dτ̂s,h (bottom) at times T = 24 ms (blue), T = 48 ms (green)
and T = 96 ms (red) obtained by solving the problem with (IIEIAI)–(MI) and timestep
τ , in logarithmic scale against Nsub.

represents a better alternative to increasing τ in terms of accuracy – with the advantage
of avoiding the electrophysiology instabilities for large timestemps. This approach is
also coherent with the multiphysics nature of the problem under study: with a larger
Nsub we impose a stronger separation of the time scales of the electrophysiology and the
mechanics, and each problem can be solved with a timestep proportional to its own time
scale.

After having qualitatively discussed the results of the benchmark test for different
strategies and parameters, we quantitatively study the convergence of the errors for the
segregated strategies as was done for (IIEIAIMI) in Figure 5.4. The first step that we
take in the analysis of the convergence is that of weighting the influence of the splitting
scheme on the mechanical feedback in the monodomain equation, which is realized by the
dependence of the diffusion tensor on the deformation gradient F and of the mechanical
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Figure 5.10 – Errors in L2(Ωs
0) (left) and L∞(Ωs

0) (right) norms of the potentials vτh (top)
and of the displacements dτs,h (bottom) obtained using (IIEIAI)–(MI) with timestep τ
and Nsub = 1, at times T = 24, 48, 96 ms in logarithmic scale.

activation equation on I4f . To this aim, we display in Figure 5.9 the errors made when
using (IIEIAI)–(MI) with τ̂ at times T = 24, 48, 96 ms against Nsub. In this way, we use
the smallest timestep length for the electrophysiology and the activation – the same used
to obtain the reference solution – while using different timestep sizes for the mechanics.
We first observe that the convergence rate is linear with respect to Nsub (equivalently,
with respect to ∆t since ∆t = Nsubτ) in all cases; this behavior is expected since the
employed Godunov splitting scheme introduces a first order error in time. Furthermore,
while the magnitude of the error of the potential v̂τh is negligible when compared to the
errors in Figure 5.4, the same does not hold for the displacement dτ̂h. This is also largely
expected since in Figure 5.9 the value of τ is fixed while that of ∆t is not: nonetheless
it clearly shows that the splitting error introduced on the potential is several orders of
magnitude smaller than the one introduced when using a larger τ .
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Figure 5.11 – Errors in L2(Ωs
0) (left) and L∞(Ωs

0) (right) norms of the potentials vτh (top)
and of the displacements dτs,h (bottom) obtained using (IIEIAI)–(MI) with timestep τ
and Nsub = 1, 2, 4, 8, 16, at time T = 96 ms in logarithmic scale.

We then analyze the errors made when using the (IIEIAI)–(MI) for varying τ . By
observing Figure 5.10, we assess that the errors for vτh and dτs,h with Nsub = 1 decay
quadratically even if the splitting scheme is of the first order. Indeed, even if a first order
only convergence rate is granted, as previously mentioned, the errors are superconvergent.
The dependence of the convergence rate on the parameter Nsub is further investigated by
considering the errors at time T = 96 ms for different choices of Nsub, which we report in
Figure 5.11. We deduce from it that the potential vτh is superconvergent for any choice
of Nsub, while the same holds for the displacement dτs,h in the Nsub = 1, 2 cases only.
On the other hand, when larger Nsub (and hence larger mechanics timestep ∆t) are
employed, the splitting error magnitude becomes significant and we therefore observe a
linear convergence.

We then report in Figure 5.12 the errors for the (ISIESIASI)–(MI) and the
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Figure 5.12 – Errors in L2(Ωs
0) (left) and L∞(Ωs

0) (right) norms of the potentials vτh and
of the displacements dτs,h obtained using (ISIESIASI)–(MI) (first and third rows) and
(ISI)–(ESI)–(ASI)–(MI) (second and fourth rows) with timestep τ and Nsub = 1, at times
T = 24, 48, 96 ms in logarithmic scale.
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Figure 5.13 – Errors in L2(Ωs
0) (left) and L∞(Ωs

0) (right) norms of the potentials vτh
(top) and of the displacements dτs,h (bottom) obtained using (ISIESIASI)–(MI) (first and
third rows) and (ISI)–(ESI)–(ASI)–(MI) (second and fourth rows) with timestep τ and
Nsub = 1, 2, 4, 8, 16, at time T = 96 ms in logarithmic scale.
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Figure 5.14 – Errors in L2(Ωs
0) (left) and L∞(Ωs

0) (right) norms of the displacements
dτs,h obtained using (IIEIAI)–(MI) (first row), (ISIESIASI)–(MI) (second row), and
(ISI)–(ESI)–(ASI)–(MI) (third row) with fixed mechanics timestep ∆t = Nsubτ at time
T = 96 ms, in logarithmic scale against Nsub.

(ISI)–(ESI)–(ASI)–(MI) strategies at the times T = 24, 48, 96 ms against τ . We highlight
that the difference in the error between the two strategies is negligible: the only difference
between the two strategies – up to the GMRES tolerance – is due to the fact that the
variable wn+mτ

h is used instead of w∗h when evaluating the terms in Eqs. (4.16)-(4.17).
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(IIEIAIMI)
τ (= ∆t) N

N
N
G

TW

10−5 s 2.1 8.5 363’
2× 10−5 s 2.4 8.1 188’
4× 10−5 s 3.0 7.8 101’
8× 10−5 s 3.5 7.7 54’
12× 10−5 s 3.6 7.9 36’
16× 10−5 s 4.0 7.6 28’
24× 10−5 s 4.7 7.9 22’
32× 10−5 s 5.2 9.2 18’

Table 5.1 – The average number of Newton (NN ) and GMRES (NG) iterations for the
solution of the monolithic problem (IIEIAIMI), and the total wall time (TW , in minutes)
for the benchmark simulations, for each τ (= ∆t) considered.

As was observed in Figure 5.5, numerical instabilities cause the potential to oscillate for
τ > τ = 8× 10−5 s. Indeed, for this reason, the errors in Figure 5.12 become significantly
larger when the timestep is larger than τ : the effect of these oscillations is however less
pronounced in the error of the displacement. Moreover, similarly to the (IIEIAI)–(MI)
case, we observe from Figure 5.13 that, for τ ≤ 12× 10−5, the convergence rate of the
errors is at least linear while the error on the potential is superconvergent.

We conclude the convergence analysis by reporting in Figure 5.14 the errors obtained with
the three segregated strategies when keeping the mechanics timestep ∆t fixed, while letting
Nsub vary. In this way, we can verify how increasing the number of electrophysiology
and mechanical activation steps between two consecutive mechanics steps influences
the error once ∆t is chosen. We observe that in the (IIEIAI)–(MI) case the error is
not significantly affected by using different Nsub, while in the (ISIESIASI)–(MI) and
(ISI)–(ESI)–(ASI)–(MI) cases a significant error reduction is obtained when increasing
Nsub, if ∆t is large enough. This is the case when we want to use a large mechanics
timestep in order to reduce the computational cost: with the semi-implicit strategies
it is particularly convenient to choose Nsub so that it holds τ ≤ τ , thus avoiding the
numerical instabilities for the electrophysiology.

Finally, we discuss the efficiency of the considered strategies for the benchmark test. In
Table 5.1, the average number of Newton (NN ) and GMRES (NG) iterations, and the
total wall time TW are reported for the (IIEIAIMI) case, for each employed timestep
τ . As expected, for increasing τ , NN becomes larger while TW drops significantly. The
average number of GMRES iterations NG required to solve the linear system with the
proposed monolithic preconditioner is on the other hand not significantly affected by
the choice of τ . In Table 5.2 we report the same quantities for the (IIEIAI)–(MI), the
(ISIESIASI)–(MI), and the (ISI)–(ESI)–(ASI)–(MI) strategies, when varying both τ and
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(IIEIAI)–(MI)
Nsub = 1 Nsub = 2 Nsub = 4 Nsub = 8 Nsub = 16

τ N
N

N
G

TW N
N

N
G

TW N
N

N
G

TW N
N

N
G

TW N
N

N
G

TW

1 2.5 4.4 300’ 2.7 4.7 221’ 2.8 5.6 178’ 3.3 5.4 156’ 3.6 7.0 144’
2 2.7 4.7 144’ 2.8 5.6 101’ 3.3 5.4 81’ 3.6 7.0 69’ 4.1 10.3 63’
4 2.8 5.6 70’ 3.3 5.4 50’ 3.6 7.0 38’ 4.1 10.2 32’ 4.5 14.5 29’
8 3.3 5.4 38’ 3.6 7.0 26’ 4.1 10.3 20’ 4.4 14.6 16’ 5.2 18.7 15’
12 3.4 6.2 26’ 3.8 8.8 18’ 4.4 12.6 13’ 4.8 17.2 11’ 5.4 21.9 10’
16 3.6 7.0 20’ 4.2 10.2 14’ 4.4 14.6 10’ 5.2 18.7 9’ 5.5 24.7 8’
24 3.8 8.9 15’ 4.4 12.6 10’ 4.8 17.2 8’ 5.4 21.9 6’ 6.0 28.8 6’
32 4.2 10.3 12’ 4.5 14.6 8’ 5.3 18.7 6’ 5.5 24.8 5’ 6.0 33.2 5’

(ISIESIASI)–(MI)
Nsub = 1 Nsub = 2 Nsub = 4 Nsub = 8 Nsub = 16

τ N
N

N
G

TW N
N

N
G

TW N
N

N
G

TW N
N

N
G

TW N
N

N
G

TW

1 2.5 4.4 258’ 2.7 4.7 179’ 2.8 5.6 137’ 3.3 5.4 115’ 3.6 7.0 107’
2 2.7 4.7 123’ 2.8 5.6 81’ 3.3 5.4 59’ 3.6 7.0 48’ 4.1 10.2 42’
4 2.8 5.6 60’ 3.3 5.4 39’ 3.6 7.0 27’ 4.2 10.2 21’ 4.5 14.5 18’
8 3.3 5.4 32’ 3.6 7.0 20’ 4.1 10.2 14’ 4.5 14.5 10’ 5.2 18.6 8’
12 3.4 6.2 22’ 3.9 8.8 13’ 4.4 12.5 9’ 4.8 17.1 7’ 5.4 21.8 5’
16 3.5 7.0 16’ 4.1 10.2 10’ 4.4 14.5 7’ 5.2 18.6 5’ 5.5 24.6 4’
24 3.7 8.7 11’ 4.3 12.3 7’ 4.7 16.9 4’ 5.3 21.5 3’ 6.0 28.4 2’
32 3.8 9.9 8’ 4.3 13.9 5’ 4.8 18.5 3’ 5.3 23.9 2’ 10.6 23.9 2’

(ISI)–(ESI)–(ASI)–(MI)
Nsub = 1 Nsub = 2 Nsub = 4 Nsub = 8 Nsub = 16

τ N
N

N
G

TW N
N

N
G

TW N
N

N
G

TW N
N

N
G

TW N
N

N
G

TW

1 2.5 3.2 242’ 2.7 3.6 159’ 2.8 4.4 118’ 3.3 4.4 97’ 3.6 5.8 84’
2 2.7 3.6 114’ 2.8 4.5 71’ 3.3 4.5 50’ 3.6 5.8 38’ 4.1 8.5 32’
4 2.8 4.5 57’ 3.3 4.5 36’ 3.6 5.8 24’ 4.2 8.5 18’ 4.5 12.2 14’
8 3.3 4.5 31’ 3.6 5.9 18’ 4.2 8.6 12’ 4.5 12.2 8’ 5.2 15.9 7’
12 3.4 6.0 21’ 3.8 8.0 13’ 4.4 11.1 8’ 4.8 15.2 6’ 5.4 19.6 4’
16 3.5 7.0 16’ 4.1 10.1 10’ 4.4 14.3 6’ 5.2 18.3 4’ 5.5 24.3 3’
24 3.7 8.2 11’ 4.3 11.6 6’ 4.6 15.7 4’ 5.4 20.2 3’ 6.0 26.7 2’
32 3.8 8.5 8’ 4.3 12.0 5’ 4.8 15.9 3’ 5.4 20.5 2’ 9.8 28.7 1’

Table 5.2 – The average number of Newton (NN ) and GMRES (NG) iterations for the
solution of the mechanics problem and the total wall time (TW , in minutes) for the benchmark
simulations, for each segregated strategy, τ (in 10−5 s), and Nsub considered.

Nsub. In this case, however, the number of iterations NG and NN account for the solution
of the mechanics problem only: we choose to do so since the solution of the mechanics
problem is the clear computational bottleneck of the simulation, and because it is the
one which is mostly affected by the choice of Nsub.
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Figure 5.15 – Errors in L2(Ωs
0) norm of the displacements dτs,h obtained with

(IIEIAI)–(MI) (left), (ISIESIASI)–(MI) (center) and (ISI)–(ESI)–(ASI)–(MI) (right) at
time T = 96 ms, for every τ and Nsub considered, in logarithmic scale against the wall
time. The errors obtained with (IIEIAIMI) are also reported in each figure.

By analyzing the data in Table 5.2 we observe that, in constrast with the (IIEIAIMI)
strategy, the number of GMRES iterations NG gets larger for increasing values of both τ
and Nsub. Nonetheless, the wall time TW drops dramatically accounting for a speed-up of
more than 300× times when using (ISI)–(ESI)–(ASI)–(MI), timestep τ = 32× 10−5, and
Nsub = 16, compared to using (IIEIAIMI) and timestep τ = 1× 10−5. If the stability of
the electrophysiology must be ensured, one can use e.g. (IIEIAI)–(MI) with the same
parameters with a 72× speed-up, or (ISI)–(ESI)–(ASI)–(MI) with τ = 8 × 10−5 and
Nsub = 16 with a 52× speed-up.

However, by comparing the wall time, we are neglecting the information on the accuracy.
We hence conclude this section by gathering together the values of TW and the errors on
the displacement at the time T = 96 ms for all the cases considered. We then verify the
balance between the accuracy and the efficiency of each strategy by reporting in Figure 5.15
the errors against TW . In this way, given a tolerance representing the maximum admissible
error on the displacement, we can verify which strategy and parameters allow to attain
such error in the shortest time. We first observe that the (IIEIAI)–(MI) strategy with
Nsub = 1 is always more convenient with respect to (IIEIAIMI), meaning that the
same accuracy can be obtained with a shorter wall time. This is in agreement with our
previous observations on the magnitude of the splitting error introduced by using the
(IIEIAI)–(MI) strategy. Moreover, the errors in the (ISI)–(ESI)–(ASI)–(MI) case are the
same as those in the (ISIESIASI)–(MI) case; the latter, however, requires a shorter wall
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5.1. Free contraction benchmark

time, as reported also in Table 5.2. The (ISI)–(ESI)–(ASI)–(MI) strategy is hence always
more convenient with respect to (ISIESIASI)–(MI).

We observe that, in general, the proposed segregated strategies represent a better
alternative with respect to the monolithic one if a relatively large error on the displacement
is acceptable. We conclude that the choice of the strategy should depend on the
requirements on the efficiency of the simulation and the accuracy of the approximated
solution. If the goal is that of reducing the computational cost, (ISI)–(ESI)–(ASI)–(MI)
should be used, although its accuracy drops for larger timesteps. On the other hand,
if accuracy is the driving factor in the choice, (IIEIAI)–(MI) can be used instead of
(IIEIAIMI) with little to no compromise on the precision, thus avoiding the extremely
long wall times needed by the latter.

5.1.2 Scalability test and h-refinement

After having assessed the accuracy and the efficiency of the proposed strategies on
the coarsest idealized mesh, we now focus on increasing the size of the discretized
electromechanics problem by using the refined meshes indicated in Table 3.1. We
want indeed to verify the scalability – i.e. the effectiveness of increasing the number
of processors – of our solvers, with a particular focus on the mechanics solver and
preconditioner for the segregated strategies. The solution of the mechanical core problem,
indeed, is the computational bottleneck of the simulations. To this aim, we perform
several simulations to study the weak and the strong scalability [Grama, 2003]. These are
defined as the capability of the algorithm to cut down the solution time when increasing
the number of CPUs, and to keep the solution time constant while increasing the problem
size (i.e. the number of DoFs), provided that the ratio between the latter and the number
of CPUs employed is kept constant, respectively. All the computations were carried
out using Piz Daint, a Cray XC50/XC40 supercomputer installed at the Swiss National
Supercomputing Center (CSCS)1.

We begin by performing a strong scalability test for the (IIEIAIMI) strategy with the
finest idealized mesh, which features 4’629’817 vertices. We set ∆t = 2 × 10−4 s and
solve 100 timesteps – i.e. we set T = 10−2 s. For this set of simulations, we use an
Additive Schwarz preconditioner (Ifpack [Sala and Heroux, 2005]) for the preconditioning
of the mechanics core block: indeed, it is known to be more scalable compared with
Algebraic Multigrid [Forti, 2016]. We use 800, 1’600, and 3’200 cpus: since with this
mesh the total number of DoFs of the monolithic system amounts to 37’038’536, the
number of DoFs per CPU is around 46’298, 23’149, and 11’574, respectively. We did not
perform a simulation with less CPUs because of memory limitations preventing us from
using more DoFs per CPU. Nonetheless, it must be noted that, in the application of
the preconditioner, we effectively solve the core problems when “inverting” the diagonal

1http://www.cscs.ch
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Figure 5.16 – Strong scalability for (IIEIAIMI): the average number of Newton iterations
N
N (top left) and GMRES iterations NG (top right), the average time spent for the

assembly and application of the preconditioner TP (bottom left), and the total wall time
TW (bottom right). The total number of DoFs amounts to 37’038’536.

blocks of the monolithic matrix: this operation is carried out with 5’787, 2’894, and 1’447
DoFs per CPU, respectively. In Figure 5.16 we report the number of Newton and GMRES
iterations NN and NG in the first row, while the time required for the simulation TW
and the average preconditioner assembly and application time TP in the second row. We
observe that, while NN and NG are kept almost constant, the wall time does not scale.
Indeed, when using 1’600 CPUs, the speedup with respect to the simulation with 800
CPUs is only around 10%; when using 3’200 CPUs the wall time TW even significantly
increases. This is due to the fact that, when using a small number of DoFs per CPU
when solving the core problems, the communication between the CPUs becomes the
computational bottleneck of the simulation. We conclude that, even if the number of
Newton and GMRES iterations does not significantly vary when increasing the number
of CPUs, there exist strong lower and upper constraints on the number of DoFs per CPU
(due to the communication bottleneck and to the large size of the monolithic problem,
respectively). Indeed, the increment in the average time required for the application of
the preconditioner TP for an increasing number of CPUs (see Figure 5.16) is responsible
for this behavior.

In order to analyze the behavior of the mechanics solver, we choose to study the strong
and the weak scalability for the (ISI)–(ESI)–(ASI)–(MI) strategy with τ = 8×10−5 s and
T = 100 ms. This choice was shown to provide a reasonable balance between accuracy
and efficiency in Section 5.1.1. In Table 5.3 we report the number of CPUs used for the
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5.1. Free contraction benchmark

CPUs Vertices/CPUs DoFs/CPUs
400 11’575 34’725
800 5’787 17’361
1600 2’894 8’682

Table 5.3 – Strong scalability for (ISI)–(ESI)–(ASI)–(MI): the number of CPUs, the
Vertices/CPUs ratio, and the DoFs/CPUs ratio for the mechanics problem.
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Figure 5.17 – Strong scalability for (ISI)–(ESI)–(ASI)–(MI): the total wall time TW (top
left), the average number of Newton iterations NN (top) and GMRES iterations NG

(top right), the average assembly time for the preconditioner TP (bottom left) and the
Jacobian matrix (bottom), and the GMRES average time TG for the solution of the
mechanics problem (bottom right).

strong scalability test with the finest idealized mesh, while in Figure 5.17 the results
are displayed. In this case we employ both Algebraic Multigrid (ML [Gee et al., 2006])
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Refinement Vertices Tetrahedra CPUs Vertices/CPUs DoFs/CPUs
2× 81’335 416’000 14 5’809 17’427
3× 602’749 3’328’000 104 5’796 17’388
4× 4’629’817 26’624’000 800 5’787 17’361

Table 5.4 – Weak scalability for (ISI)–(ESI)–(ASI)–(MI): the level of hierarchical refine-
ment, the number of vertices and tetrahedra for each idealized mesh, the number of
CPUs, the Vertices/CPUs ratio, and the DoFs/CPUs ratio for the mechanics problem.
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Figure 5.18 – Weak scalability for (ISI)–(ESI)–(ASI)–(MI): the total wall time TW (top
left), the average number of Newton iterations NN (top) and GMRES iterations NG

(top right), the average assembly time for the preconditioner TP (bottom left) and the
Jacobian matrix (bottom), and the GMRES average time TG for the solution of the
mechanics problem (bottom right).

108



5.1. Free contraction benchmark

Figure 5.19 – Transmembrane potential at time T=10 ms (left) and displace-
ment magnitude (center and right) at time T=100 ms obtained by using the
(ISI)–(ESI)–(ASI)–(MI) strategy for each of the five idealized meshes indicated in Ta-
ble 3.1.
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and Additive Schwarz (Ifpack) preconditioners and we set Nsub = 8. The first clear
conclusion that can be drawn by observing the wall time TW plot is that the Ifpack
preconditioner is strongly scalable while the ML preconditioner is not; nonetheless, the
latter allows to solve the problem in a shorter time, in particular when using a large
number of DoFs per CPU. The improved scalability of the Ifpack preconditioner is mostly
due to the significantly lower average number of GMRES iterations NG and, in particular,
of Newton iterations NN . Indeed, a larger NG for ML does not imply a longer GMRES
solution time TG with respect to Ifpack since the assembly of the former is much faster
than that of the latter; however, the poor performances of ML are confirmed from the
fact that NG is almost equal to the maximum number of GMRES iterations (which was
set to 200), thus determining a number of Newton iterations NN almost an order of
magnitude larger than in the Ifpack case.

Regarding now the weak scalability, we report in Table 5.4 the information related to the
meshes and the number of CPUs used for the weak scalability simulations. We use in this
case the ML preconditioner since it ensures a shorter TW with the chosen number of DoFs
per CPU (see Figure 5.17). The simulations are performed for Nsub = 1, 2, 4, 8, 16, and
the results reported in Figure 5.18. We observe that, similarly to the strong scalability
case, NG significantly grows with the number of CPUs confirming the non-optimal
performances when using ML. On the other hand, in contrast with the strong scalability
case, TG grows accordingly to the number of GMRES iterations. The increment of NG

is notable in particular for Nsub > 2; nonetheless, for Nsub = 16, the time saved by using
a larger Nsub (∆t) balances the effect on the total wall time in all cases.

We conclude our discussion on the topic by showing in Figure 5.19 the potential at
time T=10 ms and the displacement at time T=100 ms for the five idealized meshes
of Table 3.1. We observe that, in the coarsest cases, the activation time is highly
underestimated for reasons which were discussed in Section 5.1. On the other hand, the
displacement magnitude is overestimated up to around 30% with respect to the finest
mesh.

5.2 Subject-specific LV: the full heartbeat

In this section, we use the four strategies to simulate a full heartbeat with the subject-
specific mesh (see Figure 3.8). The heartbeat is reproduced by coupling the electrome-
chanics solver with the 0D model for the endocardial pressure. The final time (i.e. the
heartbeat duration) is set to T = 0.8 s. Finite elements of order r = 1 are employed, thus
obtaining a system of size M = 8×Ndof

1 = 1’008’248 in the monolithic case, together
with BDF of order σ = 2. The timestep size is set to τ = 5× 10−5 s while Nsub = 1, 5, 10.
For these set of simulations, 72 CPUs are used in all cases.

As in the previous tests, a current is applied at the endocardium in three distinct points for
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5.2. Subject-specific LV: the full heartbeat

Figure 5.20 – Transmembrane potential at different times (top row) and activation time
(bottom row) for the subject-specific simulation.

3 ms to trigger the heartbeat. We show the results obtained with (ISI)–(ESI)–(ASI)–(MI)
in Figure 5.20, where the transmembrane potential at times T = 10, 20, 40 ms is
depicted together with the activation time. The latter is defined, in each point, as the
time at which the electric potential reaches a threshold value vthr (we set in particular
vthr = 10 mV) [Pagani, 2017, Usyk and McCulloch, 2003]. Taking around 40 ms for
the complete activation of the myocardium, the activation time is in agreement with
experimental data obtained from healthy patients [Cassidy et al., 1984, Vassallo et al.,
1986].

In Figure 5.21 we show the displacement magnitude on the deformed myocardium, with
the reference geometry Ωs

0, during the full heartbeat. The isovolumic contraction phase is
characterized by a displacement of the base towards the apex; then, during the ejection
phase, the base and the apex move towards the center of the LV which remains essentially
steady; finally, during the isovolumic relaxation and filling phases, the LV quickly returns
to the initial configuration. Compared with the in vivo results in [Codreanu et al., 2010],
the results given by our integrated model correctly reproduce the longitudinal movement
of the LV. Moreover, as in the idealized geometry case, a significant thickening takes
place while the rotation of the LV is underestimated [Codreanu et al., 2010].

In order to better appreciate the behavior of the employed model, we also estimate the
components of the stress tensor in the fibers and sheets direction σff = (Pf0)f and
σss = (Ps0)s. With this aim, we solve the following L2-projection problem: find σff
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Figure 5.21 – Deformed subject-specific geometry and displacement field at different
times, compared with the reference domain Ω0, for the full heartbeat simulation.
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5.2. Subject-specific LV: the full heartbeat

Figure 5.22 – Stress components σss (left) and σff (right) depicted on three slices of the
deformed domain at different times.

such that∫
Ωs0
σffψi dΩs

0 =
∫

Ωs0
(Pf0)fψi dΩs

0,

for i, . . . , Ndof
1 , and analogously for σss. In Figure 5.22 we show the two fields obtained

at times T = 100, 200, 300 ms; we highlight that T = 200 ms corresponds approximately
to the time at which the LV pressure attains its maximum (around 120 mmHg). The
values assumed by σss mostly fall in the physiological range [Holzapfel and Ogden,
2009, Streeter et al., 1970, Wong and Rautaharju, 1968, Yin et al., 1987] and match
the pressure value at the endocardium. Nonetheless the stress value peaks in the region
close to the myocardium base; we believe that this is due to the thickness of the septum
wall which, in this subject-specific geometry, was reconstructed as particularly thin.
Regarding the stress σff , the model reproduces much larger values with respect to those
indicated in [Barbarotta et al., 2017, Holzapfel and Ogden, 2009, Yin et al., 1987], thus
overestimating them by almost an order of magnitude especially where the myocardium
wall is (much) thinner. We remark, however, that the available medical data used in
[Holzapfel and Ogden, 2009] to fit the strain energy function is obtained with in vitro
loading tests, hence accounting only for the passive component of the stress.

Finally, we compare in Figure 5.23 the pressure-volume (pV) loops obtained with the
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Figure 5.23 – LV internal volumes (top left) and endocardial pressures (bottom left) versus
time, with pV loops (right) for the subject-specific simulations with all the strategies
considered (the parameter Nsub used is indicated in legend with a subscript).

different numerical coupling strategies. A close up of the pV loops in the ejection phase
is also reported to better assess the differences among them. We observe that, as in
the benchmark test, the difference between the results obtained with (ISIESIASI)–(MI)
and those obtained with (ISI)–(ESI)–(ASI)–(MI) is negligible. We conclude that the
main deviation among the pV loops is caused by the choice of different timestep lengths
∆t = Nsubτ for the mechanical model. Specifically, during the last part of the first
isovolumic phase, the endocardial pressure increases very rapidly, while the change of
the phase (as detailed in Section 1.4.2) takes place when the condition pendo ≥ pao is
satisfied. Hence, when using a large mechanics timestep ∆t, the value of the pressure is
higher when the ejection phase begins.

We conclude the analysis of this set of simulations by reporting in Table 5.5 the values of
N
N , NG, and TW , for the simulation of the heartbeat with final time set to T = 0.073 s

(the maximum final time attainable using (IIEIAIMI), because of the 24 hours limit for
jobs on Piz Daint) for all the strategies used. We observe that, even if in this case the
number of Newton and GMRES iterations is larger with respect to the benchmark case,
the segregated schemes, and in particular the staggered schemes, allow to greatly reduce
the computational costs for the subject-specific simulations too. Indeed, a speed-up of
up to 16× is obtained when using the (ISI)–(ESI)–(ASI)–(MI) strategy with Nsub = 10,
compared to (IIEIAIMI) used with the same timestep length τ .
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5.3. Application to a pathological scenario: LV with ischemic necrosis

Strategy Nsub ∆t N
N

N
G

TW

(IIEIAIMI) - 5 3.3 18.7 1440’
(IIEIAI)–(MI) 1 10 4.4 40.8 723’
(IIEIAI)–(MI) 5 25 5.1 71.8 284’
(IIEIAI)–(MI) 10 50 5.8 93.6 259’

(ISIESIASI)–(MI) 1 10 4.4 40.8 543’
(ISIESIASI)–(MI) 5 25 5.0 72.1 136’
(ISIESIASI)–(MI) 10 50 5.7 93.7 130’

(ISI)–(ESI)–(ASI)–(MI) 1 10 4.4 37.7 582’
(ISI)–(ESI)–(ASI)–(MI) 5 25 5.1 66.1 148’
(ISI)–(ESI)–(ASI)–(MI) 10 50 5.7 86.4 93’

Table 5.5 – The mechanics timestep ∆t (in 10−5 s), the average number of Newton (NN )
and GMRES (NG) iterations, and the total wall time (TW , in minutes) for the simulation
of the heartbeat with final time T = 0.073 s with the subject-specific mesh, using the
four strategies considered and Nsub = 1, 5, 10.

5.3 Application to a pathological scenario: LV with is-
chemic necrosis

Cardiac ischemia is a pathological condition characterized by a reduction in the blood
supply to the myocardial tissues [Griffin et al., 2008] which causes a shortage in the
oxygen supply required for the cellular metabolism. In the most severe cases, it leads
to the death of the cells of the affected portion of tissue: in this case the pathology is
called ischemic necrosis. Regarding the electrophysiology, the cells in a necrotic region
are characterized by a reduced excitability and altered ionic currents [Rozanski et al.,
1998]; on the other hand, the contractibility of the affected tissue and its surrounding
is strongly inhibited, thus determining a reduction in the stroke volume ( the volume
of blood pumped from the left ventricle per beat) [Gaudron et al., 1993, Shimkunas
et al., 2013]. Nonetheless a complex remodeling process takes place in the weeks after
the infarct episode [Mitchell et al., 1992, Pinto and Boyden, 1999], by which the necrotic
region undergoes a marked thickening (hypertrophy) [Rozanski et al., 1998] while the LV
cavity is persistently enlarged. The enlargement of the cavity tends to restore the stroke
volume, despite a depressed ejection fraction (the ratio between the stroke volume and
the end diastolic volume of the LV) [Pfeffer and Braunwald, 1990].

We propose here a method developed to model the electromechanics of the LV with a
region of the myocardium affected by ischemic necrosis. In such a region cells behave
as passive conductors, preventing the depolarization of the tissue [Pagani, 2017]. We
model this behavior by “switching off” the ionic currents and the mechanical activation
equations in the DoFs belonging to the necrotic region. A more complex technique at
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Figure 5.24 – Transmembrane potential at times T = 150, 200, 250 ms for the small (top
row), medium (middle row), and large (bottom row) necrotic regions for the simulations
using the monodomain equation.

the cellular level have been proposed, e.g., in [Shaw and Rudy, 1997]. For our purposes,
we proceed as follows: we first define a subset of the reference domain Ωs

0,isc ⊂ Ωs
0

representing the region affected by the necrosis. Then, we define the subset of DoFs, say
Υ ⊂ (1, . . . , Ndof

s,r ), such that Xi ∈ Ωs
0,isc if i ∈ Υ and we set Iion

wl,i
= Iionv,i = Ĩioni = 0 for

every i ∈ Υ in Eq. (2.21) (or in Eq. (2.23)), and Φγ,i = Φ̃i = 0 in Eq. (2.26).

We analitically define the necrotic region as

Ωs
0,isc =

{
X = (x, y, z) : (x− x0)4 + (y − y0)4 + (z − z0)4 < R4

}
,

and R > 0 determines the extension of the necrotic region. We consider the values
R = 5, 10, 15 to model small, medium, and large regions, and we choose the point
(x0, y0, z0), in a way such that it is located inside the myocardium and the points in
which the external current is applied fall outside of Ωs

0,isc.
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5.3. Application to a pathological scenario: LV with ischemic necrosis

Figure 5.25 – AT for the simulations with the small (left), medium (center), and large
(right) necrotic regions. The results obtained by using the bidomain equations (top row)
and the monodomain equation (bottom row) are both reported.

For the simulations of this section, we use the same setting considered in Section 5.2 for
the healthy case; we hence use in particular the (ISI)–(ESI)–(ASI)–(MI) strategy with
τ = 5 × 10−5, while we set Nsub = 5. We use both the monodomain equation, with
conductivities

σl = 1.2042× 102 mm2s−1, σt = 0.1761× 102 mm2s−1,

and the bidomain equations with conductivities

σE,l = 1.2042× 102 mm2s−1, σE,t = 0.7044× 102 mm2s−1,

σI,l = 2.4084× 102 mm2s−1, σI,t = 0.3522× 102 mm2s−1,

since we want to verify if important phenomena arise [Roth, 1997] when the intra/extra-
cellular conduction anisotropy ratios are different, that is when

σE,l
σE,t

6= σI,l
σI,t

.

However, as we will show, the difference between the transmembrane potentials obtained
by using the two models is essentially negligible.
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Figure 5.26 – Fibers shortening at times T = 150, 200, 250 ms for the small (top row),
medium (middle row), and large (bottom row) necrotic regions.

In Figure 5.24 we show the transmembrane potential at times T = 20, 40, 60 ms in
the three considered cases. The necrotic regions act as an obstacle in the transmission
of the depolarization wave, and therein the transmembrane potential remains at its
resting value of 85 mV for the full heartbeat. More detailed information on the electrical
activation of the LV can be gathered from Figure 5.25, where the AT for the three cases
is reported for both the monodomain and the bidomain. We observe that the size of
the necrosis significantly influences the conduction velocities also in the regions close
to it. Specifically, the conduction velocity is reduced in the points laying close to the
necrosis, since the diffusion terms of Eq. (1.5) and Eq. (1.7) imply a dependence on the
potential value inside the necrosis. Moreover, we observe the solution obtained by using
the monodomain or the bidomain equation is essentially the same in the two cases, and
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Figure 5.27 – Deformed subject-specific geometry and displacement field at times
T = 150, 200, 250 ms for the small (top row), medium (middle row), and large (bot-
tom row) necrotic regions.

we speculate that this is due to the simple pacing strategy adopted which prevents the
formation of reentry spiral waves [Bueno-Orovio et al., 2008, Roth, 1997].

In Figures 5.26, 5.27, and 5.28 we show the fibers shortening, the displacement, and
the stress component σff , respectively, at three times around the instant at which the
maximum contraction is attained (T = 200 ms). Coherently with the approach that
we used to model the necrosis as a completely passive tissue, the fibers do not shorten
in the affected region since therein γf = 0. Indeed, contrarily to the healthy tissue, in
Figure 5.27 the necrosis does not thicken throughout the heartbeat and, since the internal
pressure is not balanced by the contraction, the myocardium is inflated. The stress along
the fibers direction σff reported in Figure 5.28, compared at time T = 200 ms with that
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Figure 5.28 – Stress component σff at times T = 150, 200, 250 ms for the small (top
row), medium (middle row), and large (bottom row) necrotic regions.

of Figure 5.22, is not significantly different with respect to the healthy case. Nonetheless,
the distribution of σff is less regular in the pathologic case.

In Figure 5.29 we then report the LV internal volume, the endocardial pressure, and the
pV loops corresponding to the healthy and to the three pathological cases. We observe
that the End Systolic Volume (ESV), i.e. the value of V endo at the end of the systole,
which is also the minimal value V endo, increases as we increase the size of the necrotic
region. This result is qualitatively in good agreement with experimental data [Pfeffer and
Braunwald, 1990]: this behavior is due to the fact that the muscle in the necrotic region
does not contract (or, in less sever cases, its contraction is reduced), a smaller overall
force is applied when the LV pushes the blood during systole. Indeed, the maximum
pressure decreases as the necrotic region size increases. We highlight that the ESV is
considered a major determinant of the patient’s prognosis after infarction [White et al.,
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Figure 5.29 – LV internal volumes (top left) and endocardial pressures (bottom left)
versus time, with pV loops (right) for the

1987]. In the clinical practice, the ESV and the End Diastiolic Volume (EDV) values, are
tipically used to calculate the Stroke Volume (SV) and the (Left Ventricular) Ejection
Fraction (LVEF) according to the following formulas:

SV = EDV − ESV, LV EF = SV

EDV
. (5.1)

It has been established that the LVEF is reduced when large portion of the myocardial
tissue are damaged [Burns et al., 2002]: the latter is indeed one of the most used measure
of the pumping efficiency of the LV.

Another commonly considered quantity is the End Systolic Pressure-Volume Relationship
(ESPVR), representing the so called inotropic state, which is a measure of the contractility
of the LV. It is defined as the ratio between the ventricular pressure and volume at the
end of the systole, and is easily evaluated as the slope of the tangent in the upper left
corner of the pV loop. In Figure 5.30 we report the pV loops together with the value of
ESPVR: the latter is indeed significantly lower in the pathological cases thus signaling a
reduced contractility. In Table 5.6 we summarize the value of the introduced quantities
for all the considered cases.

In this work we do not take into account the previously mentioned remodeling process; the
latter takes place over a relatively long time (weeks/months) by permanently modifying
the myocardium morphology, and ultimately produces an enlargement of the LV with
hence larger EDV values [Fletcher et al., 1981, Pfeffer and Braunwald, 1990]. This has
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Figure 5.30 – The pV loops and the ESPVR for the healthy and the three pathological
cases.

Healthy Small Medium Large
EDV [ml] 95 95 95 95
ESV [ml] 41 43 46 52
SV [ml] 54 52 49 43
LVEF 57% 55% 52% 45%

ESPVR [mmHg/ml] 2.9 2.7 2.5 2.0

Table 5.6 – EDV, ESV, SV, LVEF, and ESPVR for the healthy and the pathological
cases.

the effect of restoring physiological values for the SV however the LVEF, as is trivial from
its definition Eq. (5.1), remains low thus indicating a permanent lowered effectiveness of
the LV pumping of the blood into the systemic circulation.
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6 Algorithms for the EFM of the
LV

In this chapter, we briefly extend the four strategies described in Chapter 4 to the
electrofluidmechanics case. For the monolithic strategy this accounts to solve an even
larger system with respect to (IIEIAIMI), which in this case we coherently denote as
(IIEIAIMIGIFI) – where we recall that G and F refer to the models for the deformation of
the fluid geometry, and to the Navier-Stokes equations, respectively. Indeed, we use here
the ALE framework ([Donea et al., 1982, Forti, 2016, Hu et al., 2001]) for which modeling
the fluid domain displacement is necessary. Conveniently, since no direct interaction
between the fluid and the electrophysiology is taken into account, the coupling conditions
between the FSI and the electrophysiology subproblems are unchanged with respect to
the electromechanics problem.

6.1 The FSI problem

Extensive work has been carried out in the past on the development of algorithms for
the solution of time dependent FSI problems; we cite [Badia et al., 2008, Bazilevs et al.,
2008, Crosetto et al., 2011b, Deparis et al., 2006, Gerbeau and Vidrascu, 2003, Nobile
et al., 2013, Quaini, 2009] just to name a few. Generally speaking, two main approaches
can be found in literature for its solution, namely, the segregated and the monolithic
ones. In the first case, the segregated problem is solved by exploiting Steklov-Poincare
operators [Deparis et al., 2006], inexact factorizations [Quaini, 2009], or Newton-like
methods [Gerbeau and Vidrascu, 2003]. On the other hand, the monolithic approach has
been widely studied e.g. in [Forti, 2016, Gee et al., 2011, Küttler et al., 2010, Tezduyar
et al., 2006].

According to [Tricerri et al., 2015], the monolithic approach leads to a more accurate
and robust time discretization of the FSI problem, compared to the segregated one.
Moreover, as already discussed in Chapter 2, the monolithic approach allows to avoid
the added mass effect [Bathe et al., 1999, Causin et al., 2005, Le Tallec and Mouro,
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Figure 6.1 – The boundaries Γft,D and Γft,N on which we impose the essential (“Dirichlet”)
condition for the continuity of the domain and the fluid velocities, and the natural
(“Neumann”) condition.

2001, Nobile, 2001, Van Brummelen, 2009], which is a peculiarity in biomechanics where
the similar density of the fluid and the structure, combined with incompressible flows,
leads to increased numerical effort. This observations motivate our choice of a monolithic
approach to solve the FSI, with a fully implicit time scheme, necessary to ensure the
converge of the mechanics part of the problem.

The solution of the monolithic FSI problem is a computationally expensive task. The
choice of an effective preconditioner is hence critical in order for the linear solver to reach
convergence in a reasonable time. We opt for the recently proposed FaCSI preconditioner
[Deparis et al., 2016a, Deparis et al., 2016b, Forti et al., 2016], which has been shown to
provide good performances when used in haemodynamics applications, and is scalable
up to thousands of cores.

We remark that, with respect to the FSI problems considered in [Forti, 2016] (on which
our formulation is based), we strongly impose an additional coupling between the fluid
domain velocity and the fluid velocity on Γft,D, depicted in Figure 6.1. This is motivated
by the need of imposing the no-slip condition for the fluid on Γft,D, representing the blood
wall in the region between the myocardium base and the aortic and mitral valves, and
the surface corresponding to the mitral valve which we model as always closed, since the
systolic phase only is simulated. Hence, while on the interface Γendo we set u = ḋs, on
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Γft,D we must set u = ḋf . At the discrete level, this is obtained by imposing:

− ϑ
I

∆tΠ
f

Γft,D
dn+1
f + Πf

Γft,D
un+1 = − 1

∆tΠ
f

Γft,D
dI
f , (6.1)

for the DoFs belonging to Γft,D by modifying the fluid momentum equation, as will be
cleared out in Section 6.2.

6.2 Fully monolithic strategy (IIEIAIMIGIFI)

Recalling that Ndof
s,r , Ndof

f,r , and Ndof
Γ,r represent the size of the (scalar) finite element spaces

X rs,h, X rf,h, X rΓ,h – equivalently, the size of a scalar core problem defined in Ωs
0, Ωf

0 , Γendo0
– the fully implicit monolithic (IIEIAIMIGIFI) accounts to solve, for n = σ, . . . , NT − 1,
the following system of size 8×Ndof

s,r + 7×Ndof
f,r + 3×Ndof

Γ,r :

(IIEIAIMIGIFI) :
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The Jacobian JEFM corresponding to the tangent problem arising from the application
of the Newton method to (IIEIAIMIGIFI) is reported in the next page with landscape
orientation for the sake of readability.

In the definition of JEFM we stress the presence of the additional extradiagonal block
− ϑI

∆tΠ
f

Γft,D
, arising from the imposition of Eq. (6.1) in the rows corresponding to the fluid

momentum equation; it is understood that the other blocks on the same rows have to be
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modified accordingly to Eq. (6.1). The block pattern of JEFM is then:

JEFM =

J11 J12 0 0 0 0 0 0
J21 J22 0 J24 0 0 0 0
J31 0 J33 J34 0 0 0 0
0 0 J43 J44 0 0 0 J48

0 0 0 J54 J55 0 0 0
0 0 0 0 J65 J66 J67 J68

0 0 0 0 0 J76 J77 0
0 0 0 J84 0 J86 0 0





, (6.2)

with boxed blocks corresponding to the electrophysiology (IE), the mechanical activation
(A), the mechanics (M), the fluid geometry (G), and the fluid dynamics (F), respectively,
the latter with additional contraints given by the Lagrange multipliers.

6.2.1 Preconditioning the monolithic problem

The same preconditioning strategy described in Section 4.1.1 is now extended to the
monolithic preconditioner PEFM for (IIEIAIMIGIFI). To this aim, we first define the
block pattern of PEFM , which is again obtained by discarding the upper triangular
extradiagonal blocks of JEFM as follows:

PEFM =



J11 0 0 0 0 0 0 0
J21 J22 0 0 0 0 0 0
J31 0 J33 0 0 0 0 0
0 0 J43 J44 0 0 0 0
0 0 0 J54 J55 0 0 0
0 0 0 0 J65 J66 J67 J68
0 0 0 0 0 J76 J77 0
0 0 0 J84 0 J86 0 0


,

where the submatrix

P̃fl =

 J66 J67 J68
J76 J77 0
J86 0 0

 ,
corresponding to the stabilized Navier-Stokes and the Lagrange multipliers equations,
is here treated as an individual block. As was done in Section 4.1.1, PEFM is then
factorized as:

PEFM = PionPpotPactPmecPgeoPfl,
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where:

Pion =



J11 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 0 I 0 0 0
0 0 0 0 0 I 0 0
0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 I


, Ppot =



I 0 0 0 0 0 0 0
J21 J22 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 0 I 0 0 0
0 0 0 0 0 I 0 0
0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 I


,

Pact =



I 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0
J31 0 J33 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 0 I 0 0 0
0 0 0 0 0 I 0 0
0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 I


, Pmec =



I 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 J43 J44 0 0 0 0
0 0 0 0 I 0 0 0
0 0 0 0 0 I 0 0
0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 I


,

Pgeo =



I 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 J54 J55 0 0 0
0 0 0 0 0 I 0 0
0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 I
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, Pfl =



I 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 0 I 0 0 0
0 0 0 0 J56 J66 J67 J68
0 0 0 0 0 J76 J77 0
0 0 0 J84 0 J86 0 0


.

Following [Forti, 2016], Pfl can be further factorized in order to isolate the block P̃fl.
The latter is then reduced by operating a static condensation on the interface fluid
variables at the level of the fluid preconditioner (for another approach consisting in the
removal of the interface variables from the unknowns set of the FSI problem see [Gee
et al., 2011, Mayr et al., 2015]). Regarding the preconditioner for the reduced fluid block,
we use the SIMPLE preconditioner [Elman et al., 2008, Patankar and Spalding, 1972].
The FSI part of the PEFM preconditioner coincides with the FaCSI preconditioner: we
refer the reader to [Deparis et al., 2016b, Forti, 2016] for more details on its definition.

6.3 Segregated strategies

As already pointed out, the extension of the segregated strategies introduced in Section 4.2
to the electrofluidmechanics case is straightforward. Indeed, it only accounts to replace
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the last step (i.e. the solution of the (MI) mechanics problem) with the solution of the
following FSI problem:

(MIGIFI) :
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We will refer to the strategies thus obtained as (IIEIAI)–(MIGIFI), (ISIESIASI)–(MIGIFI),
and (ISI)–(ESI)–(ASI)–(MIGIFI).

We remark that solving the coupled problem (MIGIFI) is significantly more “expen-
sive” than solving the (MI) problem only. In these respect, we expect an even more
substantial speedup when using the staggered strategies compared to the monolithic
(IIEIAIMIGIFI), since they ultimately allow to reduce the number of times that the FSI
problem is solved. On the other hand, since the bottleneck of the electrofluidmechanics
simulation is represented by the solution of (MIGIFI), the further speedup given by
(ISIESIASI)–(MIGIFI) and (ISI)–(ESI)–(ASI)–(MIGIFI) with respect to (IIEIAIMIGIFI)
is limited, compared to the electromechanics case.
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7 Numerical simulations

In this chapter we use the numerical strategies introduced in Chapter 6 to simulate
the electrofluidmechanics of the human LV. As already mentioned, we simulate the
systolic phase only due to the complexity of simulating the full heartbeat. Hence, we
assume the mitral valve to be always closed and we impose an essential no-slip condition
correspondingly. Regarding the aortic valve, which is located in the sinus of Valsalva
outside the outflow of our geomety (the boundary Γft,N in Figure 6.1), we use a natural
resistance (or defective) condition [Bazilevs et al., 2008, Bazilevs et al., 2009] to obtain
meaningful blood flows and to account for the downstream circulation in the aorta
[Tagliabue et al., 2017]. In order to impose the resistance condition, we first recall the
definition of the flowrate throught the Γft,N surface:

Qao =
∫

Γft,N
u · nf dΓft,N . (7.1)

By recalling now Eq. (1.22), the boundary condition reads:

σf nf = gN where gN = gNnf and gN = −(CoutQao + pV );

Cout is a resistance constant to be tuned and pV a physiologically realistic pressure, which
we set to pV ≈ 80 mmHg, approximately the value measured at the root of aorta when
the aortic valve is closed [Chen et al., 1997]. We choose to impose the resistance condition
in an explicit way, for simplicity, by evaluating Qao in Eq. (7.1) with the velocity un,
when solving the problem at time tn+1.

We highlight that numerical instabilities may occur on Γft,N when using the resistance
boundary condition for the fluid [Tagliabue et al., 2017]. These instabilities are associated
to nonphysical reinflow at the valve, and could be avoided by considering additional
stabilizing terms to the boundary condition [Moghadam et al., 2011]. Nonetheless, the
model is able to reproduce physiological results even in presence of such instabilities.
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Myocardium Fluid Interface
Vertices 4’126 3’443 1’283

I E A M G F
DoFs 12’378 4’126 4’126 12’378 10’329 13’772

(IEA) (MGF) (IEAMGF)
DoFs 20’630 40’328 60’958

DoFs / CPUs 3’438 6’721 10’160

Table 7.1 – Top table: the number of vertices for the myocardium, the fluid, and the
common interface meshes. Middle table: the number of DoFs for each single core problem.
Bottom table: the number of DoFs and DoFs per CPU for the (IEA) (electrophysiol-
ogy + mechanical activation), (MGF) (FSI), and (IEAMGF) (electrofluidmechanics)
problems.

7.1 Realistic LV: systolic phase

For the simulations of this chapter we use the “Atlas” geometry shown in Figure 3.9; in
Table 7.1 we report the number of vertices for the myocardium, the fluid, and the common
interface, together with the number of DoFs for each single core problem, and for the
integrated problems (IEA), (MGF), and (IEAMGF). The first is monolithically solved
when using the (IIEIAI)–(MIGIFI) or the (ISIESIASI)–(MIGIFI) strategies, the second
when using any of the segregated strategies, and the third when using the (IIEIAIMIGIFI)
strategy. Finite elements of order r = 1 and BDF of order σ = 2 are employed, while 6
CPUs are used for all the simulations. We report in Table 7.1 the number of DoFs per
CPU for the (IEA), (MGF), and (IEAMGF) problems.

We set the final time to T = 0.25 s and, as previously done in Chapter 5, the simulation
is started by applying an external current at three points located on the endocardium.
We show in Figure 7.1 the transmembrane potential and the activation time obtained by
using the (ISI)–(ESI)–(ASI)–(MIGIFI) strategy, with timestep size τ = 8 × 10−5 s and
Nsub = 8 (and hence ∆t = Nsubτ = 64× 10−5 s). Coherently with the discussion on the
conduction velocities carried out in Chapter 5, the conduction velocity is significantly
reduced in this case with respect to Figure 5.1 since the mesh employed features a smaller
mesh size h (see Table 3.1).

We then show in Figure 7.2 the fiber shortening on the deformed myocardium, and the
displacement magnitude for both domains, compared with the reference ones at different
times. While for clarity in the representation the two domains are reported separetely,
the continuity of the displacements at the common interface is evident. According with
the results reported in Chapter 5 (see in particular Figure 5.21) for the electromechanics
model, the contraction in the early systole takes place mostly in the base-apex longitudinal
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7.1. Realistic LV: systolic phase

Figure 7.1 – Transmembrane potential (top row) at three different times and activation
time (bottom row) from different viewpoints.

direction, in a way such that the longitudinal displacement is comparable at the base
and at the endocardium. Then, in the late systole, the largest displacement occurs in
the region close to the apex.

We verify that the volume of the LV and the average pressure pendo inside it are compatible
with the results obtained by simulating the electromechanics only. With this aim,
anticipated, we consider the subregion obtained by clipping the fluid domain as depicted
in Figure 7.3. We use this procedure mainly for two reasons: first, the subdomain
thus obtained approximately represents the same region filled in by the blood in the
subject-specific mesh of Figure 3.8, hence making it possible to compare the results
obtained with the electromechanics simulation reported in Figure 5.23; second, by using
the same subdomain to calculate the average pressure, we neglect the region close to the
aortic valve in which the pressure oscillates for the numerical instabilities discussed at
the beginning of this chapter.

The results reported in Figure 7.4 show that, even if the maximal values of both the volume
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Figure 7.2 – Fibers shortening (left) and displacement magnitude of the deformed
myocardium (center) and blood (right) domains.
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7.1. Realistic LV: systolic phase

Figure 7.3 – The fluid subregion considered to calculate the ventricular volume and
the averaged pressure, obtained by clipping the fluid domain in correspondance of the
myocardium base.
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Figure 7.4 – The volume (top left) and the averaged pressure (bottom left) in the same
subregion over time and the partial pV loop (right).

and the pressure are 10-20% larger with respect to those reported for the electromechanics
model in Figure 5.23, the results are qualitatively in agreement. We remark that the
numerical instabilities occurring when using the resistance condition are responsible for
the “small” oscillations on the pressure in the first part of the systole.
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Figure 7.5 – Blood velocity magnitude (left) and pressure field with fixed (center) and
variable (right) scales on a slice of the fluid domain.
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7.1. Realistic LV: systolic phase

Figure 7.6 – Streamlines (top row) and velocity vector field (bottom row) on the blood
deformed domain, at three different times.

We then analyze more in detail the behavior of the blood inside the LV. In Figure 7.5,
the pressure and the velocity magnitude on a slice of the fluid domain are shown. We
observe that at all the three instants reported the pressure is spatially homogeneous
far from the outflow, and in agreement with the data reported in Figure 7.3. Moreover,
while the peak value of the pressure (≈ 150 mmHg) is around 20% larger with respect to
physiological data [Wallace et al., 1963], the peak velocity (≈ 120 cm/s) is in agreement
with values measured in healthy individuals [Sabbah et al., 1986]. The distribution
is also in agreement with our observations on the displacement of the myocardium:
indeed, during the early systole, the contraction in the longitudinal direction determines
a pressure gradient along the same direction, while in mid systole the thickening of the
myocardium induces a somehow larger pressure in the central region of the domain.

Finally, we report in Figure 7.6 the (backwards) streamlines calculated starting from the
outflow Γft,N , and the velocity vector field. The streamlines shed light on the dynamics of
the blood inside the ventricle: the results show that in the early and in the late systole
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(IIEIAIMIGIFI)
τ (= ∆t) N

N
N
G

TW

8× 10−5 s 4.5 98.1 911’
16× 10−5 s 5.8 71.8 474’
24× 10−5 s 6.8 59.3 325’

Table 7.2 – The average number of Newton (NN ) and GMRES (NG) iterations for the
solution of the monolithic problem (IIEIAIMIGIFI), and the total wall time (TW , in
minutes) for the electrofluidmechanics simulations, for each τ (= ∆t) considered.

the blood ejected in the aorta comes from the region close to the aortic and mitral valves,
while in the mid systole the streamlines and the velocty vector field indicate a laminar
flow involving the blood in the whole ventricle. As in the electromechanics case, in
Figure 7.2 we do not observe an appreciable rotation of the myocardium; nonetheless,
we highlight that the fluid close to the endocardium (see the velocity vector field in
Figure 7.6) still exhibits an angular momentum with respect to the longitudinal direction,
due to the contraction along the fibers direction and the continuity of the velocities.

7.2 Comparison of computational costs

We now investigate and discuss the computational costs associated to the monolithic and
the three segregated strategies introduced in Chapter 6 for the electrofluidmechanics.
Nonetheless, since as we will show the former are dramatically larger in this case with
respect to the electromechanics case, we repeat the simulation of Section 7.1 with T = 0.1
and we investigate a smaller set of parameter τ , Nsub, and ∆t with respect to the
one used in Section 5.1. Starting with the monolithic (IIEIAIMIGIFI) strategy, we
τ = ∆t = 8, 16, 24 × 10−5 s; while smaller timestep lengths are avoided to ensure an
acceptable total wall time, we observe that larger values prevent the convergence of the
Newton method because the initial guess is not close enough to the solution. In Table 7.2
we report NN , NG, and TW obtained in the three cases. Coherently with the results of
Table 5.1, the average number of Newton iterations NN gets larger for increasing τ , while
N
G and TW are significantly reduced. We remark that, compared with (IIEIAIMI), the

wall time TW is almost 17 times larger for τ = 8× 10−5 s and almost 15 times larger for
τ = 24× 10−5 s.

Regarding the segregated strategy, we choose to set τ = 8×10−5 s and Nsub = 4, 8, 16; we
report the results relative to the solution of the FSI problem and the wall time in Table 7.3.
First of all we notice that the number of Newton iterations remains constant among
the three strategies, while the number of GMRES iterations increases, in particular in
the (ISI)–(ESI)–(ASI)–(MIGIFI) case. We also observe that, while NG is kept relatively
small in all cases, NN significantly increases. By comparing the results in Table 7.2

140



7.2. Comparison of computational costs

(IIEIAI)–(MIGIFI)
Nsub ∆t N

N
N
G

TW

4 32 ×10−5 s 8.0 29.2 217’
8 64 ×10−5 s 13.4 21.1 146’
16 128 ×10−5 s 26.2 17.1 115’

(ISIESIASI)–(MIGIFI)
Nsub ∆t N

N
N
G

TW

4 32 ×10−5 s 8.0 34.2 200’
8 64 ×10−5 s 13.5 24.7 129’
16 128 ×10−5 s 27.1 19.7 97’

(ISI)–(ESI)–(ASI)–(MIGIFI)
Nsub ∆t N

N
N
G

TW

4 32 ×10−5 s 8.0 51.5 199’
8 64 ×10−5 s 13.5 40.6 126’
16 128 ×10−5 s 27.1 34.1 95’

Table 7.3 – The average number of Newton (NN ) and GMRES (NG) iterations for the
solution of the mechanics problem and the total wall time (TW , in minutes) for the
electrofluidmechanics simulations, for each segregated strategy, and Nsub considered and
τ = 8× 10−5 s.

with those in Table 7.3 we conclude that, in the monolithic case too, the FSI part of
the problem is the principal responsible for the monotonic increment (decrement) of
N
N (NG) with respect to ∆t. We believe however that, as with the electromechanics

model, the mechanics core model is the main responsible for this behavior also in the
FSI case. Finally, we compare the wall times TW with those reported in Table 5.2. In
the electrofluidmechanics case, the latter is from 10 to 14 times larger wth respect to the
electromechanics case, while the maximum difference among the different strategies is
around 15% between (IIEIAI)–(MIGIFI) and (ISIESIASI)–(MIGIFI). Significant differ-
ences are not noticeable between (ISIESIASI)–(MIGIFI) and (ISI)–(ESI)–(ASI)–(MIGIFI).
In conclusion, the computational cost in terms of TW is even more significantly reduced
in the electrofluidmechanics case by using staggered strategies, compared to the elec-
tromechanics one. Indeed, we obtained a speedup of more than 8× by simply using the
(IIEIAI)–(MIGIFI) strategy with Nsub = 16 instead of (IIEIAIMIGIFI), while keeping
τ = 8 × 10−5 s fixed. Moreover, since the bottleneck of the simulation is definitely
represented by the solution of the FSI problem, which is in turn much more “expensive”
than the mechanics alone, the wall time among the segregated strategies for given val-
ues of τ and Nsub is almost the same. As a comparison, the same sets of parameters
determined a speedup of less than 3× in the electromechanics case. Hence, if saving
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Figure 7.7 – Strong scalability for (IIEIAIMIGIFI): the total wall time TW (top left),
the average number of Newton iterations NN (top right), the average assembly time for
the preconditioner TP (bottom left), and the average GMRES solution time TG (bottom
right).

computational resource is a critical issue, the (IIEIAI)–(MIGIFI) should be used instead
of (IIEIAIMIGIFI). The further speedup obtained by using (ISIESIASI)–(MIGIFI) and
(ISI)–(ESI)–(ASI)–(MIGIFI), which we recall that are not stable for “relatively” large
values of τ , is minimal.

We conclude this chapter by reporting in Figure 7.7 the strong scalability results for
(IIEIAIMIGIFI). These were obtained by solving the electrofluidmechanics problem
using a refined mesh featuring 558’890 vertices for the structure, 409’585 vertices for the
fluid, and 99’123 vertices for the interface. The total number of DoFs for this simulations
is 7’076’694, while 128, 256, and 512 CPUs were employed. The results obtained show
that the problem is indeed strongly scalable when using the Ifpack preconditioner for the
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mechanics, with up to 256 CPUs, while it is not when using the ML preconditioner. We
remark that these results are coherent with the strong scalability in the electromechanics
case.
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Conclusions
In this thesis, we proposed and analyzed several strategies for the solution of the
electromechanics and electrofluidmechanics problems for the LV in the human heart. We
first described the physical processes at play in the LV during the heartbeat, that is the
electrophysiology, the passive and active mechanics, and the fluid dynamics, and discussed
the single core models used in this work for their individual mathematical description.
We considered in particular: the monodomain and the bidomain equations, together with
the minimal ionic model, for the electrophysiology; the Holzapfel-Ogden model and a
model for the fibers shortening for the passive and the active mechanics, respectively, in
the active strain framework with a new transmurally variable orthotropic activation; the
incompressible Navier-Stokes equations in ALE formulation for the fluid dynamics. Then,
we discretized in space the continuous core models by means of the FEM and in time by
using BDFs with implicit and semi-implicit schemes. The fully discretized core models
thus obtained were then exploited to define our electromechanics model, by considering
both monolithic and segregated strategies for the solution of the integrated problem. The
same strategies were then extended to the electrofluidmechanics case. We carried out
several numerical simulations using the proposed strategies both in idealized settings to
assess the accuracy, the efficiency, and the scalability of the strategies, and in subject-
specific settings. In the latter case, a comparison with physiological experimental data,
where available in literature, showed that the behavior of the LV is at least qualitatively
correctly reproduced.

We report herein the main scientific contributions of this thesis.

• We proposed strategies for the electromechanics and the electrofluidmechanics of the
LV with state-of-the-art models for the description of the myocardium active and
passive mechanics using in particular the active strain framework and a model for
the etherogeneous thickening of the myocardium. The complexity of the mechanical
model allows to obtain results in agreement with experimental data over the whole
heartbeat, however it requires a significant amount of computational resources to
be solved at the discrete level. We then formulated two preconditioners for the
monolithic algorithms, one for each integrated problem considered, based on the
inexact factorization of the Jacobian of the nonlinear monolithic system. This
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approach, which exploits the block structure of the Jacobian matrix, allows to
precondition the individual blocks arising from the discretizations of the single core
model with black-box preconditioners tailored on the specific physics represented
by the core model. Even if the wall time required for the solution of the problem
using the monolithic strategy resulted to be large, we showed that the monolithic
preconditioner for the electromechanics is strongly scalable when using meshes up
to several millions of vertices and several thousands of CPUs.

• We proposed three novel segregated strategies, obtained by uncoupling the core
models in the monolithic problems with a Godunov splitting scheme, by exploiting
both implicit and semi-implicit time schemes for the electrophysiology and the
mechanical activation. The segregated strategies are also generalized to staggered
strategies, where different timestep sizes can be used for the uncoupled problems.
We then carried out a rigorous and thorough numerical study of the accuracy of
the proposed monolithic and staggered strategies in the electromechanics case, by
studying the convergence rate with respect to a manufactured “exact” solution
obtained using a fine time discretization. The errors introduced with the Godunov
splitting used for the segregated strategies were theoretically and numerically
verified to be at least of the first order in time. The efficiency of the monolithic
and of the staggered strategies was assessed by comparing the errors and the wall
times for several choices of the timestep sizes. The dramatic reduction in the wall
time obtained by using the segregated strategies is such that, even if they feature a
lower accuracy, the latter are often more efficient than the monolithic strategy. The
staggered strategies, both in the electromechanics and the electrofluidmechanics
cases, are employed for large scale simulations in an HPC framework.

• The electromechanics model was used to simulate an ischemic necrosis in the
myocardium tissue over a full heartbeat. The results obtained are in agreement
with several clinical indicators commonly used by medical doctors to assess the
residual contractility of the ventricle.

• The formulation and simulation of a full 3D electrofluidmechanics problem for the
LV, with rigorously justified models and methods, represents a novelty itself. Even
if the systolic phase only was considered, and a resistance boundary condition
was used to model the aortic valve in a simplified way, the extension to the whole
heartbeat can be obtained by properly modeling the valves behavior.

• We established a preprocess pipeline, including in particular algorithms for the
generation of fibers and sheets and for the calculation of the prestress, that is
the stresses in the myocardium for a given “initial” endocardial pressure. The
preprocess pipeline was used generate the data required to initialize the simulations
for idealized, realistic, and subject-specific myocardium meshes, thus proving its
robusteness.
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Several future development and perspectives arise from the work carried out in is thesis.
We identify the following fields that should be better investigated.

• Mathematical models

Several improvements to the mathematical models employed in this thesis are
possible. For instance, a more sophisticated ionic model, which would in general
feature a much larger number of equations, could be employed; in this work, the
choice of a simple ionic model was driven by the goal of simulating the LV function
with meshes featuring a large number of vertices, hence ultimately by the need
of reducing the computational cost. Moreover, the model for the mechanical
activation here employed was developed for the systolic phase only: indeed, in order
to correctly represent the diastolic phase when simulating the whole heartbeat, we
modified the model by changing the µA parameter depending on the heartbeat
phase. This choice was motivated by empirical observations on the contraction of
the LV in the diastolic phase, nonetheless a physically motivated such as the one
proposed in [Regazzoni et al., 2017] should be employed if the increased complexity
of the model is acceptable.

• Numerical methods

Here, for simplicity, we only developed first order (Godunov) splitting schemes.
The accuracy of the proposed strategies could however be improved by using
second order (Strang) splitting schemes [McLachlan and Quispel, 2002]. More in
general, different segregating strategies could be employed, namely by uncoupling
the core models for the FSI in the electrofluidmechanics case. Moreover, a staggered
approach could be used for the space discretization, that is by using different meshes
for the electrophysiology and the mechanics/FSI. In particular, by using a finer
mesh for the electrophysiology only, as is done e.g. in [Rossi, 2014] by using Radial
Basis Functions (RBF) [Deparis et al., 2014] for the interpolation of the solutions
between two different and possibly nonconforming meshes, the conduction velocities
in the myocardium would be better estimated.

• Further couplings and cardiovascular processes

Additional feedbacks from the mechanics to the electrophysiology (such as the
stretch activated currents) could be added to the integrated models [Colli Franzone
et al., 2016b]. Indeed, different conclusions on the efficiency of the strategies might
be drawn by verifying wether the splitting error in the segregated cases is influenced
by different mechanical feedbacks. The electrofluidmechanics model, moreover,
could be enriched with a model for each of the two valves, firstly with a reduced
model [Mynard et al., 2012], and secondly with a full FSI model [De Hart et al.,
2003]; a one dimensional model for the blood [Lamponi, 2004], coupled with the
inflow and the outlow, would then allow to simulate the full blood cycle in the
circulatory system.

147



Conclusions

• Efficiency improvement of the methods

The prestress technique developed for our simulations, which is based on a continu-
ation method, requires a significant wall time to reach convergence. In this thesis,
since the prestress is computed “offline” once for each given geometry, mechanics
parameters, and endocardial pressure, we did not focus on improving the efficiency
of the prestress computation algorithm. Nonetheless, a more efficient algorithm
would allow to remove the need for the offline preprocessing phase. Regarding
the integrated solvers, significant improvements could be obtained by exploiting
time adaptation techniques, namely by using different timestep sizes depending on
the phase of the heartbeat. Furthermore, encouraging results have been obtained
by avoiding the (computationally expensive) update the Jacobian matrix of the
mechanics problem at each timestep [McCormick et al., 2013]. Finally, if one is
interested in reproducing the myocardium mechanics only for the whole heartbeat,
the electrophysiology could be “switched off” during the diastolic phase, where
it plays a smaller role in determining the displacement compared to the systolic
phase.

• Subject- and patient-specific simulations

Since we showed that the model is capable to reproduce physiological data, a natural
step forward in this direction would be that of estimating the models parameters
with uncertainty quantification techniques [Manzoni et al., 2016, Pagani, 2017]; in
this way, it would also be possible to simulate (eventually pathologcal) subject-
specific scenarios to compare the results with data measured from the same subject
for which the parameters have been tuned. The subject-specific simulations could
then provide a useful predictive tool for clinicians.

148



A Matrix calculus

We summarize in this Appendix several matrix calculus rules, useful for the computation
of the Jacobian matrices for the discrete mono/bidomain and momentum mechanics
equations, carried out in Appendix B. The following identities were taken in part from
[Petersen et al., 2008].

Let now X ∈ R3×3 with entries Xij , and a0,b0 ∈ R3 two vectors with entries a0,i, b0,i;
moreover, we set a = Xa0 and b = Xb0. We use the Einstein notation, for which an
implicit summation is performed when an index is repeated.

• Basic derivation rules:

∂Xkl

∂Xij
= δkiδjl,

∂
(
X−1

)
kl

∂Xij
= −

(
X−1

)
ki

(
X−1

)
jl
,

∂
(
X−1

)
kl

∂Xij
= −

(
X−1

)
ki

(
X−1

)
jl
,

∂ detX
∂Xij

= detX
(
X−T

)
ij
.

• Linear form derivation rule:

∂(a ⊗ b0)kl
∂Xij

= ∂(Xa0bT0 )kl
∂Xij

= ∂(Xkna0,nb0,l)
∂Xij

= δkia0,jb0,l = δki(a0 ⊗ b0)jl.
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• Quadratic forms derivation rule:

∂ trXTX
∂Xij

= 2Xij ,

∂a0 ·XTXb0
∂Xij

= ∂(a0,kXnkXnlb0,l)
∂Xij

= a0,k(δniδkjXnl +Xnkδniδlj)b0,l
= a0,jXilb0,l + b0,jXika0,k

= a0,jbi + b0,jai = (a ⊗ b0 + b⊗ a0)ij .

Let now Y ∈ R3×3×3, Z ∈ R3×3×3×3 a third and a fourth order tensor with entries Yklij
Zkij , respectively, We then denote by

((Y) [X])k = YkijXij , ((Z) [X])kl = YklijXij ,

the contractions (Y) [X] ∈ R3 and (Z) [X] ∈ R3×3 .
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B Models

In this Appendix we list, for each core model, the functions and coefficients not explicitly
reported in the main chapters. In the following, Ha(z) is the Heaviside function centered
in a ∈ R, while

HM
a (z) = (1 + tanh(M(z − a)))

2

stands for its smooth approximation depending on a constant parameter M ∈ R+ (where
a larger M corresponds to a sharper transition at z = a). Its derivative is equal to

(HM
a )′(z) = M(1− tanh2(M(z − a)))

2 .

B.1 Ionic model and ionic currents terms

vo v1 v−1 v2 v−2 v3 vso v̂

0.006 0.3 0.015 0.015 0.03 0.9087 0.65 1.58

w∞∗ k2 k3 kso τ+
1 [s] τ+

2 [s] τ∞2
0.94 65 2.0994 2 1.4506× 10−3 280× 10−3 0.07

τ1 [s] τ1 [s] τ2 [s] τ2 [s] τ3 [s] τ3 [s]
60× 10−3 1150× 10−3 70× 10−3 20× 10−3 2.7342× 10−3 3× 10−3

τ o [s] τ o [s] τ so [s] τ so [s] τsi [s] τfi [s]
6× 10−3 6× 10−3 43× 10−3 0.2× 10−3 2.8723× 10−3 0.11× 10−3

Table B.1 – Values of the coefficients used for the minimal model [Bueno-Orovio et al.,
2008]. The coefficients indicated in scientific notation were rescaled from the original
work, from [ms] to [s].
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• Time functions

τ−1 (v) = (1−Hv−1
(v))τ1 +Hv−1

(v)τ1,

τ−2 (v) = (1−Hkso
v−2

(v))τ2 +Hkso
v−2

(v)τ2,

τ−1 (v) = (1−Hv2(v))τ3 +Hv2(v)τ3,

τ−1 (v) = (1−Hvo(v))τ o +Hvo(v)τ o,
τso(v) = (1−Hkso

vso (v))τ so +Hkso
vso (v)τ so.

• Model terms

α(v) =
(

1−Hv1(v)
τ−1 (v)

,
1−Hv2(v)
τ−2 (v)

,
1

τ3(v)

)T
,

β(v) =
(
−Hv1(v)

τ+
1

, −Hv2(v)
τ+

2
, 0

)T
,

w∞(v) =
(

1−Hv−1
(v), Hvo(v)

(
w∞∗ − 1 + v

τ∞2

)
+ 1− v

τ∞2
, Hk3

v3 (v)
)T

.

• Minimal model ionic currents terms

Iion(v, w1, w2, w3) = Ifi(v, w1) + Iso(v) + Isi(v, w2, w3),

Ifi(v, w1) = −w1Hv1(v)(v − v1)(v̂ − v)
τfi

,

Iso(v) = (v − vo)(1−Hv2(v))
τo(v) + Hv2(v)

τso(v) ,

Isi(v, w2, w3) = −Hv2(v)w2w3
τsi

.

• Minimal model ionic currents Jacobian terms

∂Iion

∂w1
(v) = −Hv1(v)(v − v1)(v̂ − v)

τfi
,

∂Iion

∂w2
(v, w3) = −Hv2(v)w3

τsi
,

∂Iion

∂w3
(v, w3) = −Hv2(v)w2

τsi
,

∂Iion

∂v
(v, w1, w2, w3) = −

w1(H ′v1(v)(v − v1)(v̂ − v) +Hv1(v)(−2v + v1 + v̂))
τfi

+
((1−Hv2(v))− (v − vo)H ′v2(v))τo(v)− (v − vo)(1−Hv2(v))τ ′o(v)

τ2
o (v)

+
H ′v2(v)τso(v)−Hv2(v)τ ′so(v)

τ2
so(v) −

H ′v2(v)w2w3
τsi

.
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• Semi-implicit splitting of the ionic currents

Iionw1 (v∗) = −Hv1(v∗)(v∗ − v1)(v̂ − v∗)
τfi

,

Iionw3 (v∗, w∗2) = −Hv2(v∗)w∗2
τsi

,

Iionv (v∗) = (1−Hv2(v∗))
τo(v∗)

,

Ĩion(v∗) = (1−Hv2(v∗))vo
τo(v∗)

− Hv2(v∗)
τso(v∗)

.

.

B.2 Monodomain and bidomain

χ Cm σl [mm2s−1] σt [mm2s−1]
1 1 1.2042× 102 0.1761× 102

χ Cm σE,l [mm2s−1] σE,t [mm2s−1] σI,l [mm2s−1] σI,t [mm2s−1]
1 1 1.2042× 102 0.7044× 102 2.4084× 102 0.3522× 102

Table B.2 – Coefficient used for the monodomain (top table) and the bidomain (bottom
table) equations.

The term

∂(JF−1DmF−T∇0v)
∂F ,

in Eq. (2.20) is a third order tensor, which is contracted with the second order ∇0ψs
and the first order ∇0ψs ones, thus yielding a scalar. In order to display it, we write it
in terms of its components(

∂(JF−1DmF−T∇0v)
∂F

)
kij

= ∂(JF−1DmF−T∇0v)k
∂Fij

.

Hence(
∂(JF−1DmF−T∇0v)

∂F

)
kij

= ∂(JF−1DmF−T )kl
∂Fij

(∇0v)l

= (F−T )ij(D0∇0v)k
− (F−1)ki(D0)jl(∇0v)l
− (D0)lpδqiδpj(F−1)qk(∇0v)l,
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where D0 = JF−1DmF−T .

B.3 Mechanical activation

d0 d1 e1 d2 e2 d3 e3
4.33 2.57 -2.05 1.33 0.30 0.10 0.22 ×103

SLmin [µm] SLmax [µm] l0 [µm] c0 α ε µ̂A,1 µ̂A,2 µ̂A,3 µ̂A,4
1.7 2.6 1.95 0.05 -6 5 2.1 7 12 500

Table B.3 – Coefficients of the truncated Fourier series approximating the force-length
relationship (top table); minimum, maximum, and reference sarcomere length, calcium
threshold and the tuning parameters. The parameter µ̂A used for each of the four
heartbeat phases is specified.

• Mechanical activation Jacobian terms

∂Φ(c, γ,ds)
∂c

= α(H ′c0(c)(c− c0)2 + 2Hc0(c)(c− c0))RFL(I4f ),

∂Φ(c, γ,ds)
∂γ

=
4∑
j=1

(−1)jj(j + 1)(j + 2)I4fγ
j−1,

∂Φ(c, γ,ds)
∂F =

Hc0(c)α(c− c0)2R′FL(I4f ) + 2
5∑
j=1

(−1)j(j + 1)(j + 2)γjf

 (f ⊗ f0).

• Semi-implicit splitting of the active force

Φγ(c∗, γ∗,d∗s) = −Hc0(c∗)α(c∗ − c0)2RFL(I∗4f ),

Φ̃(c∗, γ∗,d∗s) =
5∑
j=1

(−1)j(j + 1)(j + 2)I∗4f (γ∗f )j−1.

.
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B.4 Mechanics

a [Pa] b af [Pa] bf as [Pa] bs afs [Pa] bfs B [Pa] ρ [g/mm3]
59 8.023 18472 16.02 2481 11.120 216 11.436 5000 10−3

Kbase
⊥ [Pa/mm] Kbase

‖ [Pa/mm] Cbase⊥ [Pa·s/mm] Cbase‖ [Pa·s/mm]
1500 10−4 1 0

Kepi
⊥ [Pa/mm] Kepi

‖ [Pa/mm] Cepi⊥ [Pa·s/mm] Cepi‖ [Pa·s/mm]
10 0 5 0

Table B.4 – Parameters for the nearly incompressible Holzapfel-Ogden strain energy
function (top table); density and boundary conditions coefficients (mid and bottom
tables).

• Holzapfel-Ogden (passive) nearly incompressible strain energy function

W(C) =W1(J−
2
3I1) +W4f (I4f ) +W4s(I4s) +W8fs(I8fs) +Wvol(J)

= a

2be
b(J−

2
3 I1−3) + af

2bf

[
eb〈I4f−1〉2 − 1

]
+ as

2bs

[
eb〈I4s−1〉2 − 1

]
+ afs

2bfs

[
ebfsI

2
8fs − 1

]
+ B

2 (J − 1) log(J),

where 〈x〉 denotes the positive part of x.

• First Piola-Kirchhoff (passive) stress tensor

PE(ds) = P1
E(ds) + P4f

E (ds) + P4s
E (ds) + P8fs

E (ds) + Pvol
E (ds)

= ∂W1(J− 2
3IE1 )

∂FE
+
∂W4f (IE4f )

∂FE
+ ∂W4s(IE4s)

∂FE
+
∂W8fs(IE8fs)

∂FE
+ ∂Wvol(J)

∂FE

= aeb(J
− 2

3 IE1 −3)J−
2
3

(
FE −

IE1
3 F−TE

)
+ 2afebf 〈I

E
4f−1〉2〈IE4f − 1〉 (fE ⊗ f0)

+ 2asebs〈I
E
4s−1〉2〈IE4s − 1〉 (sE ⊗ s0)

+ afse
bfs
(
IE8fs

)2
IE8fs (fE ⊗ s0 + sE ⊗ f0)

+ B

2 J
(

1 + log(J)− 1
J

)
F−TE ,

(B.1)

where

fE = FEf0, sE = FE , s0, FE = FF−1
A .
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• First Piola-Kirchhoff (active and passive) stress tensor

P(ds, γf ) =
[
aeb(J

− 2
3 IE1 −3)J−

2
3

(
FE −

IE1
3 F−TE

)

+ 2afebf 〈I
E
4f−1〉2〈IE4f − 1〉 (fE ⊗ f0)

+ 2asebs〈I
E
4s−1〉2〈IE4s − 1〉 (sE ⊗ s0)

+ afse
bfs
(
IE8fs

)2
IE8fs (fE ⊗ s0 + sE ⊗ f0)

+ B

2 J
(

1 + log(J)− 1
J

)
F−TE

]
F−1
A ,

where

FA = FT
A = I + γf f0 ⊗ f0 + γs(γf )s0 ⊗ s0 + γn(γf )n0 ⊗ n0,

F−1
A = F−TA = I− γf

1 + γf
f0 ⊗ f0 −

γs(γf )
1 + γs(γf )s0 ⊗ s0 −

γn(γf )
1 + γn(γf )n0 ⊗ n0.

• Holzapfel-Ogden (active and passive) Jacobian terms(
∂P(ds, γf )

∂FE

)
klij

=
(
∂PE(ds)
∂FE

F−1
A

)
klij

= ∂PEkl (ds)
∂FEip

(
F−1
A

)
pj
.

∂PEkl
∂FEij

= ∂PE,1kl

∂FEij
+ ∂PE,4fkl

∂FEij
+ ∂PE,4skl

∂FEij
+ ∂PE,8fskl

∂FEij
+ ∂PE,volkl

∂FEij
.

∂PE,1kl

∂Fij
= a

∂(eb(J
− 2

3 I1−3))
∂Fij

J−
2
3

(
Fkl −

I1
3
(
F−T

)
kl

)

+ aeb(J
− 2

3 I1−3)∂J
− 2

3

∂Fij

(
Fkl −

I1
3
(
F−T

)
kl

)

+ aeb(J
− 2

3 I1−3)J−
2
3

∂Fkl
∂Fij

− 1
3
∂I1
∂Fij

(
F−T

)
kl
− I1

3
∂
(
F−T

)
kl

∂Fij


= aeb(J

− 2
3 I1−3)J−

2
3{[

−2
3
(
bJ−

2
3I1 + 1

) (
F−T

)
ij

+ 2bJ−
2
3Fij

](
Fkl −

I1
3
(
F−T

)
kl

)

+
[
δkiδjl −

2
3Fij

(
F−T

)
kl

+ I1
3
(
F−T

)
il

(
F−T

)
kj

]}
.
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∂PE,4fkl

∂Fij
= 2af

∂(ebf (I4f−1)2)
∂Fij

(I4f − 1)(f ⊗ f0)kl

+ 2afebf (I4f−1)2 ∂(I4f − 1)
∂Fij

(f ⊗ f0)kl

+ 2afebf (I4f1)2(I4f − 1)∂(f ⊗ f0)kl
∂Fij

= 2afebf (I4f−1)2
{

2
(
2bf (I4f − 1)2 + 1

)
(f ⊗ f0)kl(f ⊗ f0)ij + (I4f − 1) δki(f0 ⊗ f0)jl

}
.

∂PE,4skl

∂Fij
= 2as

∂(ebs(I4s−1)2)
∂Fij

(I4s − 1)(s⊗ s0)kl

+ 2asebs(I4s−1)2 ∂(I4s − 1)
∂Fij

(s⊗ s0)kl

+ 2asebs(I4s1)2(I4s − 1)∂(s⊗ s0)kl
∂Fij

= 2asebs(I4s−1)2
{

2
(
2bs (I4s − 1)2 + 1

)
(s⊗ s0)kl(s⊗ s0)ij + (I4s − 1) δki(s0 ⊗ s0)jl

}
.

∂PE,8fskl

∂Fij
= afs

∂(ebfs(I8fs)
2
)

∂Fzq
I8fs ((f ⊗ s0)kp + (s⊗ f0)kp)

+ afse
bfs(I8fs)2 ∂I8fs

∂Fzq
((f ⊗ s0)kp + (s⊗ f0)kp)

+ afse
bfs(I8fs)2

I8fs
∂ ((f ⊗ s0)kp + (s⊗ f0)kp)

∂Fzq

= afse
bfsI2

8fs

{
(2bfsI2

8fs + 1)(f ⊗ s0 + s⊗ f0)ij(f ⊗ s0 + s⊗ f0)kl

+ δkiI8fs ((f0 ⊗ s0) + (s0 ⊗ f0))jl

}
.

∂PE,volkl

∂Fij
= B

2 J(2 + J log(J))
(
F−T

)
ij

(
F−T

)
kl
− (J + J log(J)− 1)

(
F−T

)
il

(
F−T

)
kj
.
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