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It was six men of Indostan

To learning much inclined,

Who went to see the Elephant

(Though all of them were blind),

That each by observation

Might satisfy his mind.

The First approached the Elephant,

And happening to fall

Against his broad and sturdy side,

At once began to bawl:

“God bless me! but the Elephant

Is very like a WALL!”

The Second, feeling of the tusk,

Cried, “Ho, what have we here,

So very round and smooth and sharp?

To me ’tis mighty clear

This wonder of an Elephant

Is very like a SPEAR!”

The Third approached the animal,

And happening to take

The squirming trunk within his hands,

Thus boldly up and spake:

“I see,” quoth he, “the Elephant

Is very like a SNAKE!”

The Fourth reached out an eager hand,

And felt about the knee

“What most this wondrous beast is like

Is mighty plain,” quoth he:

“‘Tis clear enough the Elephant

Is very like a TREE!”

The Fifth, who chanced to touch the ear,

Said: “E’en the blindest man

Can tell what this resembles most;

Deny the fact who can,

This marvel of an Elephant

Is very like a FAN!”

The Sixth no sooner had begun

About the beast to grope,

Than seizing on the swinging tail

That fell within his scope,

“I see,” quoth he, “the Elephant

Is very like a ROPE!”

And so these men of Indostan

Disputed loud and long,

Each in his own opinion

Exceeding stiff and strong,

Though each was partly in the right,

And all were in the wrong.

The blind men and an elephant by John Godfrey Saxe
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Abstract
This thesis is concerned with regular patterns found in ecology and biology, their linkages and

the statistical description of their fluctuations around average trends. Among such patterns,

often conforming to power laws, well-known examples include the Species-Area relationship

(SAR), quantifying the increase of the number of species S inhabiting an ecosystem with

ecosystem area, and the scale-invariant body size spectrum, routinely observed, e.g., in

aquatic ecosystems. In biology, Kleiber’s law is an allometric relationship describing how

metabolic rates scale with an organism’s body size.

While ecological laws have often been studied independently, simple heuristic reasonings

show that they are linked. The need for a unifying effort in ecology, coherently synthesizing the

vast and diverse set of empirical observations across scales, has been often voiced. However, a

theoretical framework answering this need was still lacking. Furthermore, ecological variables

are the result of the interplay between several stochastic ecological processes, and are therefore

stochastic variables fluctuating around average values. Ecological and biological scaling laws

typically make predictions for such averages, but the issue of fluctuations received scarce

attention in the literature. Similarly, biological fluctuations have been typically neglected

in the study of the size-scaling of metabolic rates, even though body sizes and metabolic

rates may have a significant variability within a species. Fluctuations may be relevant to

interpret empirical observations, judge the reliability of predictions and understand ecosystem

dynamics.

An hypothesis for the distribution of abundances and body sizes of species inhabiting an

ecosystem of finite area is proposed here. The hypothesis is inspired by finite-size scaling and

is used to derive macroecological patterns and their linkages within a coherent theoretical

framework. Stochastic models of community dynamics are used to support the hypothesis,

and the derived linkages are tested on empirical datasets. Several stochastic models of com-

munity dynamics are also used here to study the fluctuations of S and how they scale with

the average S. The intra-specific variability of metabolic rates and body sizes is investigated

experimentally using freshwater phytoplankton species by nanoscale secondary ion mass

spectrometry (NanoSIMS).

The linkages among ecological scaling laws predicted by the theoretical framework are verified

in several empirical datasets. Theoretical generalizations including deviations from pure

power-law behavior and heavy-tailed intra-specific size distributions are also addressed. The

theoretical study of the relative scaling of the fluctuations of S with the mean 〈S〉 in various

community dynamics models shows that different ecological processes predict radically
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different fluctuations scalings, highlighting the need of empirical investigations to sort out

which scenario applies to real ecosystems. Experiments on phytoplankton metabolic rate

scaling with body size suggest that intra-specific metabolic rate distributions are described by

a universal scaling form across different taxa and over three orders of magnitude in body size.

This thesis, along with previous works, suggests that scaling concepts derived for inanimate

systems can provide new insights into the dynamics of ecosystems and help unraveling

regularities across scales of biological complexity.

Key words: Ecology, scaling laws, allometry, Species-Area relationship, community size-

spectrum, macroecology, biodiversity, community dynamics, finite-size scaling, Kleiber’s

law, metabolic rate, body mass, intraspecific trait diversity
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Sommario
Questa tesi si occupa di pattern regolari osservati in ecologia e biologia, dei loro legami e della

descrizione statistica delle loro fluttuazioni attorno a un trend medio. Tra tali pattern, che

spesso seguono una legge di potenza, esempi noti includono la relazione Specie-Area (SAR),

che quantifica l’aumento del numero di species S con l’area dell’ecosistema che occupano, e

lo spettro di taglie corporee osservato regolarmente, ad esempio, in ecosistemi acquatici. In

biologia, la legge di Kleiber è una relazione allometrica tra la taglia di un organismo e il suo

tasso metabolico.

Nonostante le leggi ecologiche siano state spesso studiate indipendentemente, ragionamenti

euristici dimostrano che sono legate. Il bisogno di un tentativo di unificazione in ecologia, che

sintetizzi coerentemente le vaste e variegate osservazioni empiriche attraverso scale diverse,

è stato spesso espresso, ma un framework teorico rispondente a questo bisogno mancava.

Inoltre, le variabili ecologiche risultano dell’interazione di processi ecologici stocastici, e

sono quindi variabili stocastiche che fluttuano attorno a un valor medio. Le leggi di scaling,

generalmente, fanno previsioni per questo valor medio, ma le fluttuazioni hanno ricevuto

scarsa attenzione in letteratura. Allo stesso modo, le fluttuazioni biologiche sono solitamente

trascurate nello studio dello scaling del tasso metabolico con la taglia, nonostante entrambe

le variabili abbiano una significativa variabilità all’interno di una specie. Le fluttuazioni

possono essere rilevanti per interpretare le osservazioni empiriche, giudicare l’affidabilità

delle previsioni e comprendere la dinamica dell’ecosistema.

Qui viene proposta un’ipotesi per la distribuzione di abbondanze e taglie di specie che vivono

in un ecosistema di area finita. Tale ipotesi si ispira al finite-size scaling ed è usata per derivare

i pattern macroecologici e il loro legame. Modelli stocastici di dinamica di comunità sono

usati per dare supporto all’ipotesi. Diversi modelli di dinamica di comunità sono usati anche

per studiare le fluttuazioni di S e il loro scaling con la media 〈S〉. La variabiltà intra-specifica

dei rate metabolici e delle taglie è investigata sperimentalmente usando specie di fitoplancton

di acqua dolce tramite spettrometria di massa degli ioni secondari alla nanoscala (NanoSIMS).

I legami tra leggi di scala ecologiche predetti dal framework teorico sono verificati in diversi

dataset empirici. Vengono affrontate generalizzazioni teoriche tra cui deviazioni da una pura

legge di potenza e distribuzioni di taglie intraspecifiche ‘heavy-tailed’. Lo studio teorico dello

scaling delle fluttuazioni relative di S con la media 〈S〉 in vari modelli di dinamica di comunità

mostrano che diversi processi ecologici prevedono scaling delle fluttuazioni radicalmente

diversi, sottolineando il bisogno di investigazioni empiriche per individuare quale scenario si

applichi a ecosistemi reali. Gli esperimenti sullo scaling del tasso metabolico del fitoplancton
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con la taglia corporea suggeriscono che le distribuzioni intraspecifiche del tasso metabolico

siano descritte da una forma di scaling universale attraverso taxa differenti e tre ordini di

grandezza di taglia.

Questa tesi, insieme a lavori precedenti, suggerisce che i concetti di scaling derivati per sistemi

inanimati possano fornire una nuova visione della dinamica degli ecosistemi e aiutare a

scoprire regolarità attraverso scale di complessità biologica.

Parole chiave: Ecologia, leggi di scala, allometria, Species-Area Relationship, community

size-spectrum, biodiversità, dinamica di comunità, finite-size scaling, legge di Kleiber, tasso

metabolico, massa corporea, diversità dei tratti intraspecifica
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Introduction

Ecological systems are exceedingly complex, encompassing an extraordinary diversity of or-

ganisms unique in their forms, functions and interactions among themselves and with the

environment, itself variable in space and time. Such overwhelming complexity has occa-

sionally discouraged ecologists on whether a general and unifying description of ecological

systems is even possible [Simberloff, 2004]. Nevertheless, the large amount of disparate em-

pirical evidence collected during the last century highlighted the existence of some simple

and regular patterns characterizing ecosystems, communities and organisms [Marquet et al.,

2005]. Patterns may describe the mutual dependence of two ecological variables or the proba-

bility distribution describing their occurrence. As an example, the probability distribution of

individual sizes in a community (the community size-spectrum) is recurrently observed to

follow a power-law behavior, with larger organisms being rarer than smaller ones according

to a precise rule [Sheldon et al., 1972, Cavender-Bares et al., 2001, Marañón, 2015, Muller-

Landau et al., 2006, Condit et al., 2012]. This pattern has been observed for different types of

communities (e.g. marine or terrestrial), featuring a shape invariant across time, space and

environmental conditions. Similarly, many other regular patterns, remarkably constant and

often conforming to power-law shapes, have been found to describe attributes of individual

organisms (e.g. their metabolic requirements and vital rates in relation to their size), of com-

munities (e.g. the distribution of species’ abundance and body-size) and of entire ecosystems

(e.g. spatial patterns of biodiversity). In contrast with the view of Simberloff [2004], such

regular patterns, or ‘ecological laws’, seem to imply some degree of generality in the working

principles of organisms and ecological communities, suggesting that similar, overarching

processes associating them dominate over local or specific mechanisms. Additionally, the

ubiquitous power-law shape hints that the processes underlying them do not have a preferred

scale and apply through different categories of organisms and across scales of organismic size

and ecosystem size and type. Therefore, these simple patterns have been considered as a way

to tackle the complexity of nature, as they point out that among the plethora of processes

taking place in ecosystems and of the immense heterogeneity of characteristics of organisms

there are some very general ones which determine the emergent properties, and that these

emergent properties are quite simply described. To make a concrete example, power-law

community size-spectra with exponents in a quite narrow range have been observed in ma-

rine communities for a wide range of environmental conditions and for organisms ranging

from bacteria and unicellular autotrophs to large fish [Rodriguez and Mullin, 1986, Quinones
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et al., 2003, Sprules and Barth, 2016], suggesting that such distributions emerge as ubiquitous

properties of complex marine food webs. The different categories of organisms following this

pattern differ in many ways, e.g. in feeding and reproduction mechanisms, and changing

environmental conditions mean changes in the abiotic factors affecting communities, e.g.

primary resources supply or temperature. The observation that the functional shape of the

community size-spectrum is robust to these changes implies that the dominant processes

determining it are also robust (although the exponent has been seen to vary with ecosystem

type and resource supply rate [Cavender-Bares et al., 2001, Marañón, 2015]).

Power-laws are a simple and powerful tool to describe scaling patterns, as they describe

their behavior with only two parameters, their exponent and proportionality constant. While

in some cases they might be just an approximation of the real scaling of a variable and

deviations might arise at small or large scale due to scale-dependent processes, they have

proved successful in describing the order of magnitude of change of several ecological and

biological variables. For example, at the organismic scale, the 3/4 power-law scaling of the

metabolic rate of an individual with its body mass, called Kleiber’s law, is supported by many

physiological studies [Kleiber, 1932, 1947, Calder, 1984, Peters, 1986, West and Brown, 2004,

Brown et al., 2004, Savage et al., 2004], showing that mass explains much of the metabolic

rate variability of organisms across more than 27 orders of magnitude in body mass [West

and Brown, 2004]. At the macro scale, a power-law seems to be the best description of most

instances of the island species-area relationship (SAR) [Triantis et al., 2012], quantifying the

increase in the number of species S coexisting in an isolated ecosystem with the ecosystem

area.

Following a very large body of empirical observations, explanations have been proposed

for how single patterns emerge from microscopic processes and dynamics at the level of

communities [MacArthur and Wilson, 1967, Hubbell, 2001, Azaele et al., 2016, Blanchard

et al., 2017] and of single organisms [West et al., 1997, West, 1999, West and Brown, 2004,

Banavar et al., 1999b, 2010, 2014]. Such mechanistic explanations predicting the functional

forms of observed patterns in terms of microscopic dynamics are precious, as they provide

an understanding of the working principles of organisms and communities and highlight

the dominant processes which, among all those which are present, determine the observed

patterns. This knowledge is an important step for predicting how organisms and communities

would respond to changing conditions. For example, once the processes determining the

size-spectrum of marine community are identified and a mechanistic understanding of their

interplay is reached, predicting the effect of a change in environmental factors on the size

structure of the community would amount to studying its effect on the single processes.

Nevertheless, what is still lacking in ecology is a synthetic view, bridging patterns at the organ-

ismic scale with those at the scale of communities and at the macroscale [Marquet, 2017]. In

fact, the different scales and patterns are tightly linked. The properties of an individual, in par-

ticular its body mass, determine key organismic characteristics like its metabolic rate, growth

rate and life span [Brown et al., 2004] which, in turn, affect its role in the community. Therefore,
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patterns at the organismic level certainly have an influence on patterns at the community

level. Additionally, patterns describing different aspects of the same community will affect

each other due to consistency constraints. Finally, patterns observed at the macroscale, e.g in

the comparison of ecosystems of different sizes or different geographical location, will emerge

from the properties of the communities inhabiting those ecosystem. The clarification of the

nature of these linkages within and across scales requires a unifying framework, providing a

coherent view of the widest possible set of ecological patterns.

A powerful approach which has emerged recently is that of considering macroecological

observables as macroscopic variables emerging from the microscopic behavior of the system,

an idea that stems from statistical mechanics. Statistical mechanics studies systems of many

interacting particles and predicts macroscopic properties of the system by probability argu-

ments. In ecological systems, interacting particles are substituted by interacting individuals

or species. While the fundamental units of a physical system, particles, differ in few ways

(velocity, mass, charge...), those of an ecological system differ in many. The first difficulty in

applying the ideas of statistical physics to ecology is, therefore, to identify which properties of

individuals (or species) are important, at least for the phenomena of interest. For example, one

could hypothesize that birth rate, death rate and resource use are fundamental characteristics

of an individual, while the particular taxa to which it belongs is an information that can be

discarded. Macroscopic observables (e.g., the various ecological and biological patterns) then

follow from the probability of microscopic states of the system and from state variables, that

is, some fixed variables constraining the behavior of the system (e.g., ecosystem area, the

total number of individuals and species inhabiting the ecosystem). The second challenge is

therefore that of identifying the correct form of the microscopic probability distribution and

the appropriate state variables. The predictions and success of this approach depend on the

identification of all these elements.

Following this line of thought, Chapters 1 and 2 of this thesis concern a novel theoretical

framework in which many of the observed empirical patterns related to abundance, size and

biodiversity are derived in a consistent way from which their linkages emerge naturally. The

approach is based on the proposal of a finite-size scaling hypothesis describing the joint prob-

ability distribution of abundance and typical body mass for species inhabiting an ecosystem of

finite area A, i.e. the probability that one species, picked at random, has abundance n and the

typical body mass of its individuals is m, termed the fundamental distribution. Body mass is

considered as a ‘master trait’ summarizing species differences, on account of it being a strong

predictor of resource consumption rates, vital rates and other organismic properties [Brown

et al., 2004]. Ecosystem area is assumed as the only fixed variable in the system, imposing not

only a space constraint but also a constraint in the total resource supply rate. Such constraint

operates through finite-size cut-offs in observed laws, which are reflected in its appearance in

the fundamental distribution. As many of the empirically observed patterns descend from the

fundamental distribution, the central idea of the proposed framework is that such distribution

is constrained by the shapes of patterns which are observed empirically, which must be repro-

duced. The aim of this framework, therefore, is not that of predicting the shape of the single

3



Introduction

patterns but rather that of identifying the conditions under which the patterns are consistent

with each other and with the resource constraint. The value of this approach lies in the explicit

identification of the linkages among patterns, allowing to interpret empirical measurements

of scaling exponents within a coherent framework. Chapter 1 is devoted to the formulation

of the theoretical framework and to the derivation of the linkages among ecological laws. A

class of stochastic models of community dynamics, accounting for competition for finite

resources and including only the key processes in determining ecological patterns, is shown

to support the hypotheses made in the framework regarding the form of the joint probability

distribution of species abundance and typical body mass. Chapter 2 presents empirical tests

of the framework predictions on the available macroecological data. The linking relationships

constraining the covariations of scaling exponents are successfully verified on tropical forests

and island communities of mammals and lizards. The chapter also deals with challenges

posed by sampling biases and deviations from power-law behavior at small and large scale

emerging in the data analysis.

Within the first two chapters, ecological patterns are treated as ‘deterministic’: the area of the

ecosystem determines univocally the number of species, the mass of an individual determines

univocally its metabolic rate and so on. While such relationships are successful at describing

average trends of empirical data, fluctuations will be present around such trends. Their

causes, effects and importance depend on the particular pattern considered. Fluctuations

may limit the predictive power of ecological laws and omitting to consider their effect on

empirical measurements may lead to their misinterpretation. To include fluctuations in

the theoretical framework proposed in the first two chapters of the thesis or in any other

ecological model, in order to assess their potential role and effect, one needs to characterize

their statistical properties. Knowledge of the behavior and amplitude of the variability of

ecological and biological variables is necessary also to interpret correctly empirical data and

to make appropriate use of ecological laws. This thesis deals with this issue in chapters 3 and

4, respectively in the case of the SAR and of Kleiber’s law. In the first case, fluctuations are

studied through numerical modeling, while in the second through laboratory experiments at

the single-cell level for freshwater phytoplankton using state-of-the-art technology.

As an example of paramount importance in ecology, the island SAR, describing species in-

crease in isolated ecosystem of increasing area, has captured broad interest in ecology, in

particular relatively to its use to predict the numbers of species going extinct due to habitat

loss or fragmentation [Durrett and Levin, 1996, Hanski, 2013, Borile et al., 2013]. Typically,

SARs are meant as trends linking the average number of species to the ecosystem area. How-

ever, fluctuations in the number of species S are expected due to the intrinsic stochasticity

of ecosystem dynamics and to external perturbations. Therefore, here SARs are interpreted

as portraying only average trends in ecosystems, whose power in predicting the results of

empirical biodiversity measurements depends on the amplitude of fluctuations. In fact, if

relative fluctuations are large, a point empirical measurement of S may differ significantly

from the expected value. Such scenario poses problems both in the interpretation of field
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measurements and in the use of SARs for predictions, demanding for an assessment of the

behaviour of the variability of S. Chapter 3 examines the statistics of S in a number of com-

munity dynamics models which implement distinct ecological processes possibly driving the

S dynamics in real ecosystems. The different models are studied numerically and compared

in terms of the scaling of the relative fluctuations of S with the mean. The model exploration

starts from a minimal neutral model, where species have the same vital rates and resource

consumption rate and S variability is only driven by the stochasticity of diversification and

extinction events, and moves to non-neutral models with resource competition, models with

habitat stochasticity, and neutral models with external perturbations. The aim of this the-

oretical study is to determine how the scaling of fluctuations changes in response to the

introduction of different ecological processes. Predictions of different models differ remark-

ably, either foreseeing relative fluctuations which decay with increasing mean or instead ones

whose amplitude remains constant as the mean increases. In the former case, a deterministic

SAR makes reliable predictions for ecosystems with large enough S, while in the latter the

stochasticity of S hinders deterministic predictions in ecosystems of all sizes. Additionally,

perturbations might (depending on their characteristics, varied in the models) prevent the

system from reaching its stationary state, making stationary predictions inappropriate to

describe empirical biodiversity measurements. The model survey shows that the variability

of the number of species S underpinning the applicability of a deterministic SAR does not

have a universal behaviour but rather depend on the different ecological processes reflected

in various model assumptions. This conclusion suggests that empirical investigations should

determine which fluctuation scaling scenario applies in a specific context to guide future

modeling efforts and identify the process dominating community dynamics.

Chapter 4 deals again with fluctuations but concerning a different biological pattern, the

scaling of metabolic rate with organismic size. Metabolic rate is the rate at which organisms

use energy, or equivalently the resources from which energy is obtained, for life-sustaining

processes, growth and reproduction. Abundant evidence from physiological studies suggests

that this rate scales as a power of the organism’s body mass, a large part which yielding an

exponent of this scaling of 3/4 [Kleiber, 1932, Peters, 1986, Savage et al., 2004]. However, a

good number of studies showed deviations from this rule (see e.g. Dodds et al. [2001], Glazier

[2005]), with phytoplankton being a remarkable exception [Marañón, 2015]. Size-scaling of

metabolic rate is also linked to the the size-scaling of other important organismic properties

[Brown et al., 2004], especially growth rates, therefore it has a central role in structuring com-

munities, for example freshwater and marine microbial ones [Marañón, 2015] which are the

object of the experiments designed and carried out in the context of the present thesis and

presented in the chapter. Understanding how these communities are assembled and how they

respond to changes in environmental conditions, e.g. resource supply, is an issue of great im-

portance given the central role of phytoplankton in the regulation of global climate [Falkowski,

1998]. Typically, size-scaling of metabolic rates is studied for species averages. However, at

the intra-specific level body mass and metabolic rates are heterogeneous, and their fluctu-

ations around species averages are arguably correlated. A more appropriate description of
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the scaling relationship should also acknowledge such fluctuations, providing their statistical

characterization. Intra-specific mass variability has already been studied in Giometto et al.

[2013] for several different protist species and shown to be appropriately described by a scaling

form incorporating few species-specific details. Not much is known, instead, on the metabolic

rate variability and on its covariation with body mass at the intra-specific level, although

phenotypic variability has been recognized as an important factor for the functionality of

microbial populations and communities [Ackermann, 2015]. Chapter 4 presents the results of

experiments on three phytoplanktonic species (Synechococcus sp, Scenedesmus obliquus and

Cryptomonas ovata) aimed at measuring jointly their volume and nutrient uptake rates, which

are proxies of metabolic rate, at the single cell level. The scope of such measurements is to

test a scaling hypothesis for the intra-specific distribution of metabolic rates proposing that,

similarly to the body mass distribution, it is described by a general scaling form where average

species body mass acts as the only species-dependent constraint. The statistical characteriza-

tion of the two marginal distributions is the first step in the direction of the formulation of

a generalized scaling relationship of metabolic rate with size. Correlations between the two

variables are also investigated by the experiments, although with limitations related to the

methodological technique.

The importance of such a general description of correlated fluctuations of size and metabolic

rate on the basis of minimum biological detail is two-fold. At a fundamental level, its feasi-

bility would prove the generality of mechanisms underlying the heterogeneity of metabolic

requirements of organisms. For ecology, it would provide a theoretical framework synthesiz-

ing correlated fluctuations of size and metabolic rates of different origins at the intra- and

inter-specific levels, necessary to test their potential role in shaping size-related patterns and

their response to different environmental conditions, such as resource supply.

To summarize, this thesis combines methods and ideas coming from statistical physics, pri-

marily the use of finite-size scaling to describe joint probability distributions of correlated

variables constrained by the system size (in Chapter 1) or by a characteristic size (in Chapter

4), mathematical modeling and experiments to study quantitative laws in ecology and biology,

specifically to gain insight on their linkages and to asses the features and role of fluctuations.
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1 Covariations in ecological scaling laws

Scaling laws in ecology, intended both as functional relationships among ecologically-relevant

quantities and the probability distributions that characterize their occurrence, have long at-

tracted the interest of empiricists and theoreticians. Empirical evidence exists of power laws

associated with the number of species inhabiting an ecosystem, their abundances and traits.

Although their functional form appears to be ubiquitous, empirical scaling exponents vary with

ecosystem type and resource supply rate. The idea that ecological scaling laws are linked had

been entertained before, but the full extent of macroecological pattern covariations, the role of

the constraints imposed by finite resource supply and a comprehensive empirical verification

were still lacking. In this Chapter, such gap is addressed by presenting a theoretical scaling

framework that predicts the linkages of several macroecological patterns related to species’

abundances and body sizes. Such framework, based on a finite-size scaling approach, accounts

for deviations from pure power-law patterns entailed by the finite size of the ecosystem. The

proposed framework is consistent with the stationary state statistics of a broad class of resource-

limited community dynamics models, regardless of parametrization and model assumptions.

Testable predictions are provided in the form of algebraic relationship among scaling exponents.

The approach presented in this Chapter places the observed variability of ecological scaling

exponents into a coherent statistical framework where patterns in ecology embed constrained

fluctuations. Moreover, the framework can be generalized to assimilate empirical evidence that

is specific to certain ecosystems. The implications of such generalizations possible deviations

from pure power-law patterns and multiple trophic level ecosystems, are explored.1

1.1 Introduction

Over the span of decades, the study of ecosystems uncovered remarkable regularities recurring

in nature in the form of patterns of diversity, size and abundance which have often been

elevated to the rank of laws owing to their ubiquity [Levin, 1992, Marquet, 2000]. Among the

most relevant (and studied) patterns we count, for example: the Species-Area Relationship

1This chapter features contents from Zaoli et al. [2017].
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(SAR) [MacArthur and Wilson, 1963, 1967], quantifying the increase in the number of species

S coexisting in disjoint habitats of increasing area A [Rybicki and Hanski, 2013, Hanski, 2016];

the community size-spectrum [Sheldon et al., 1972, Cavender-Bares et al., 2001, Rinaldo et al.,

2002, White et al., 2007], describing the probability that an individual in a community has

size m, regardless of species; Kleiber’s law [Kleiber, 1932, 1947], that describes metabolic rate-

organismic body size relations operating across more than 27 orders of magnitude of body

mass [West et al., 2002]; Damuth’s law [Damuth, 1981, 1987, 1993], the scaling of a species’

abundance (i.e. its population within an ecosystem of area A) with its characteristic mass.

Patterns may equally refer to functional relationships between ecologically-relevant quantities

X ,Y , like e.g. for SARs, or to the probability distributions p(X ) characterizing their occurrence,

like e.g. for community size-spectra. Much field work has been devoted to measuring such

patterns in diverse types of ecosystems (e.g. terrestrial, aquatic) and organisms (e.g. mammals,

birds, phytoplankton and trees) and for many of them strong evidence suggests a power-

function shape [Levin, 1992, Marquet, 2000, Marquet et al., 2005], that is, respectively, X ∝ Y a

or p(X ) ∝ X −a . The empirically verified ubiquity of power-laws pushed theoreticians to

formulate mechanistic models to explain their emergence and the value of their scaling

exponents a, e.g. Brown [1995], West [1999], Hubbell [2001], West et al. [2002], West, G.B. et al.

[2003], Gherardi et al. [2013], Giometto et al. [2015], Azaele et al. [2016], Cuesta et al. [2017],

Blanchard et al. [2017], MacArthur and Wilson [1967]. Empirical evidence, however, shows

that such values vary considerably across ecosystems [Cavender-Bares et al., 2001, Finkel

et al., 2004, Marañón, 2015], suggesting that exponents of scaling ecological laws are far from

universal, although the power-law form proves remarkably robust (see Chapter 2).

Typically, studies focused on single patterns, often overlooking their mutual linkages (but

see Southwood et al. [2006], Banavar et al. [2007], Marquet [2017]), and therefore leading

to canonical estimates of scaling exponents which may not be simultaneously achievable

in a single ecosystem due to extant and consistency constraints. However, the existence of

linkages among laws characterizing an ecosystem, and therefore of relationships constraining

the co-variation of their scaling exponents (when applicable), is a fact. Simple heuristic

arguments can be used to show such linkages. Consider, for example, a community of N

individuals and S species hosted within an ecosystem of area A. Let the i -th species have

abundance ni and typical body mass mi and let s(m) be the community size-spectrum in such

an ecosystem and p(m) the probability distribution of species’ typical body masses. The total

number of individuals with size in [m,m+dm], which is given by N s(m)dm, is the product of

the number of species with typical size falling within the same interval, Sp(m)dm, and the

average abundance of a species having that typical size m, here labeled as 〈n|m〉:

N s(m) = S p(m) 〈n|m〉. (1.1)

Empirical evidence suggests that the three mass-related patterns involved in Eq. (1.1) are

described, at least approximately, by power-laws, i.e., s(m) ∝ m−η [Sheldon et al., 1972,

Cavender-Bares et al., 2001, Rinaldo et al., 2002, White et al., 2007], p(m) ∝ m−δ [Marquet and
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Taper, 1998, Marquet et al., 2005] and Damuth’ law 〈n|m〉 ∝ m−γ [Damuth, 1981, Marquet

et al., 1990, Damuth, 1993, Marquet, 2000]. Eq. (1.1) implies a consistency relationship among

the three scaling exponents:

η = δ + γ. (1.2)

Eq. (1.1) suggests also a second relationship, stemming from the dependence of the empirical

patterns involved on ecosystem area A. In fact, the dependence of the number of species S

on A (SAR) may be considered to assume a power-law form (at least in a range of scales), say

S ∝ Az , one of the most widespread ’laws’ of macroecology since the equilibrium theory of

island biogeography [MacArthur and Wilson, 1967]. Evidence exists for typical values z ≈ 1/4

[MacArthur and Wilson, 1963, Okie and Brown, 2009, Lomolino, 1982]. If one assumes N ∝ Aν,

where the most probable value of ν is 1, an additional power dependency on A for Eq. (1.1) is

needed for consistency. Neglecting, for the moment being, possible A-dependent cutoffs in

Eq. (1.1), the only pattern that can depend on powers of A is 〈n|m〉, i.e. 〈n|m, A〉∝ AΦm−γ,

implying

ν= z +Φ. (1.3)

This example and a few others identified earlier [Rinaldo et al., 2002, Southwood et al., 2006,

Banavar et al., 2007] highlight the need for a framework that comprehensively accounts for

linking relationships among macroecological scaling laws.

The drawback of of such back-of-the-envelope computations is that they neglect possible

finite-size corrections to power-law behavior, which arise due to physical or biological limits

of the available range of sizes, and they do not allow accounting for patterns which are

not pure power-laws. For example, empirical evidence suggests that the body size of the

largest organism found in an ecosystem scales with its area [Burness et al., 2001] and/or is

limited by mechanical properties of biological material [Thompson, D’Arcy W., 2001], therefore

supporting the existence of an upper limit beyond which the conditions or resources needed to

make organismic bodies sustainable fail (be they mechanical or altogether ecological). Power-

law dependencies cannot, consequently, extend over an infinite domain of body masses, but

they necessarily exhibit a viable finite range. When the ecosystem resource supply is limited,

and assuming such supply scales with the ecosystem area A, an A-dependent cut-off for

the maximum size is expected to apply. Additionally, in some cases back-of-the-envelope

calculations are not possible, therefore a self-consistent framework is needed to obtain all

linking relationships among patterns.

The ubiquity of power-laws and the presence of finite-size constraints suggested a parallel

with finite-size scaling theory for critical phenomena [Kadanoff et al., 1967, Fisher and Barber,

1972, Stanley, 1999, Stanley and Amaral, 2000], which proved a valid method to treat scaling

in ecosystems in a model-independent fashion [Banavar et al., 1999a, 2007, Zillio et al., 2008,

Simini et al., 2010]. To illustrate the central concept of finite-size scaling theory, let us consider
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the body-mass of an organism, m, as a reference variable. Let m be defined in units of

the minimum viable mass m0, so that m is dimensionless. In a system of infinite size, and

assuming no physiological constraints to body size, there is no upper bound on m and we can

conceive that, over evolutionary times, the upper limit of the spectrum of masses present in

the system diverges. In such case, the quantities depending on m, e.g. the community size

spectrum s(m) or Damuth’s abundance 〈n|m〉, would in principle be allowed to attain a pure

power-law behavior across the whole [1,∞) domain. Nevertheless, if the system is endowed

with a finite size A2, m will hold an upper limit that depends on A, say Aλ with λ> 0. When

m ∼ Aλ, quantities depending on m will show finite-size effects, exhibiting a fast decay to zero

(e.g. exponential). The finite-size scaling hypothesis posits that such finite size-effects will

have the shape of a cut-off function depending only on the dimensionless variable m/Aλ, e.g.

s(m) = m−η h
( m

Aλ

)
, (1.4)

where h is a function such that h(x) ∼ const when x ¿ 1 and limx→∞ h(x) = 0. When m is far

from the upper limit, power-law behavior is conserved, but when m/Aλ ∼ 1 finite-size effects

pitch in and cause a rapid decay to near-zero values of the fraction of organisms in that size

range. The validity of the scaling hypothesis can be verified by data collapse [Kadanoff et al.,

1967, Fisher and Barber, 1972, Stanley, 1999, Stanley and Amaral, 2000]. See Box 1.2 for an

explanation of how data collapse is performed and for the derivation of some consequences

of the finite-size scaling hypothesis in Eq. (1.4). Approaches based on a finite-size scaling

description of patterns are model-free, as they do not make any assumptions on the processes

that generate such patterns, but can give information on the value of exponents (through data

collapse) and on their covariations (see 1.4).

The use of finite-size scaling in ecology is not new. For instance, in Zillio et al. [2008], a scaling

argument has been proposed for the Relative Species Abundance (RSA) p(n|A)dn, which is

the probability that a species picked at random from a community inhabiting an ecosystem of

area A has abundance in [n,n +dn]. It was suggested therein that the n dependence of the

RSA might be captured by a scaling variable n/ f (A), where f (A) is the typical value of n in an

ecosystem of size A. Such hypothesis was successful in describing the RSA of several forest

plots [Zillio et al., 2008]. The authors identified its relationship with the SAR by nothing that

〈n|A〉 = N (A)/S(A), where N (A) is the total number of individuals in the ecosystem.

Banavar et al. [2007] first proposed to use a finite-size scaling framework to investigate the

linkage of ecological laws. Therein, a number of laws are linked by a two-variables scaling

ansatz for p(n,m|A), the joint probability density function of abundance and body-mass, i.e.,

p(n,m|A) = n−σ1 m−σ2 F
( n

AΦ1
,

m

AΦ2

)
(1.5)

2 A is measured in units of a reference area a0, therefore it is dimensionless. The reference area a0 is defined as
the smallest ecosystem area that can sustain an organism of mass m0.

10



1.1. Introduction

where σ1,σ2,Φ1,Φ2 > 0. Note that the properties of F proposed therein are:

lim
x→∞F (x, y) = 0 = lim

y→∞F (x, y) (1.6a)

lim
x→0

F (x, y) = f (y), lim
y→0

F (x, y) = g (x) (1.6b)

where f (y) is such that limy→0 f (y) = const, limy→∞ f (y) = 0 and g (x) has properties analo-

gous to those of f (y). In this framework, observable laws can be obtained by computing, for

example, the marginals, p(n|A) and p(m|A), and the moments of the joint distribution:

Ii , j = 〈ni m j 〉 =
∫ ∫

ni m j p(n,m|A) dndm ∝ Aψ(i , j ) (1.7)

where ψ(i , j ) is a function of the exponents σ1,σ2,Φ1,Φ2. The normalization of (1.5) is im-

posed as I0,0 = 1, which provides conditions on the exponents appearing therein. By suitably

tuning i and j , one obtains several relevant quantities. The average species’ abundance, for

example, is obtained from the moment of order (1,0), I1,0 = 〈n〉. Linking relationships between

their scaling exponents are obtained, as will be detailed better in section 1.4.

Although the above framework recovered many empirically observed laws connected to

abundance and size, it fails to obtain Damuth’s law [Damuth, 1981] which is solidly supported

by empirical observations. Consequently, instead of Eq. (1.2) it predicts η= δ. In this Chapter,

an alternative scaling hypothesis for p(n,m|A) is proposed which allows to link a larger set of

ecological laws, including Damuth’, and which accounts for resource limitation and finite-size

effects. Such framework predicts a set of linking relationships among scaling exponents which

clarify exactly how ecological patterns influence each other. The predicted relationships are

compatible with the available field data (see Chapter 2). Moreover, the scaling hypothesis at

the base of the framework is supported by a large class of stochastic models of community

dynamics describing a set of species competing for finite resources. The proposed framework

is suited to generalizations that account for several empirically-inspired facts and assumptions

that possibly encompass different conditions actually realized in nature. The framework is

thus a tool to investigate the effects of ecosystem-specific assumptions on pattern covariations.

In particular, the following generalizations are examined: intra-specific size-distributions, i.e.

a spread in the body mass of individuals belonging to the same species; a curvature in Kleiber’s

law, which has been suggested by some experimental and theoretical works [Kolokotrones

et al., 2010, Ballesteros et al., 2018, Banavar et al., 2014, Dodds et al., 2001, Marañón et al., 2013,

Mori et al., 2010]; a non-pure power-law forms of p(m|A) and an area-independent cut-off

on the maximum species’ typical body mass, which may arise due to physiological limits or

competition-based constraints and, finally, a two-trophic-levels community. We highlight if,

and how, the considered generalizations change the predictions for the linking relationships.

The chapter is organized as follows. First, Box 1.2 presents some facts about finite-size scaling

which will be useful in the following. Then, in section 1.3, the scaling hypothesis is introduced

and justified. In section 1.4 the scaling hypothesis is used to obtain empirically observed

11



Chapter 1. Covariations in ecological scaling laws

scaling laws and the linking relationships among their exponents. Section 1.5 is devoted to

showing that models of community dynamics support the framework. Finally, section 1.6

illustrates several generalization which can be implemented in the framework.

1.2 Finite-size scaling

Consider a probability distribution of the form

p(x|C ) = 1

xa f

(
x

C b

)
, (1.8)

where C is a constant and x ≥ x0 a continuous variable. To allow for the convergence

of the moment of order k (order 0 being the normalization constant), one must ask

f (x) = o(xa−k−1) when x → ∞. The behavior in x ∼ 0 may instead vary. C represents

a characteristic scale for the variable x, whose meaning depends on the shape of the

scaling function f . If f (y) is a function approximately constant for y ¿ 1 and which

decays for y →∞, C b represents a characteristic scale for the maximum value of x, in fact

p(x|C ) decays when x >C b (see Fig. 1.1A). An example of function with these properties

if f (y) = e−y . Instead, when f (y) is a function with an internal mode, decaying both when

its argument is small and large (e.g., f (y) = e−(log y)2
), C b represents a characteristic scale

for the typical value of x (see Fig. 1.1B). Both types of scaling function will be used in this

chapter and in the following ones.

A B

f(x
)

x

f(x
)

x
1 10.01 0.1 0.10.01 10 100

1 1

0.5

0.2

10-4

10-8

Figure 1.1 – The two types of scaling functions described in the text, plotted in double
logarithmic scales. A) f (x) = e−x ; B) f (x) = e−l og (x)2

.

1.2.1 Properties of Eq. (1.8)

The interest in the scaling form of Eq. (1.8) is that it implies a particular scaling of the

moments of x with C , regardless of the specific function f (but depending on its general

shape). In order to derive the moments’ scaling, the two cases distinguished above must

be treated separately. Let us call case A the one where f (y) ' c when y ¿ 1 and decays at

large y values, and case B the one where f (y) has an internal mode.

12



1.1. Introduction

In case A, the scaling of moments of x can be obtained as follows:

Ik = 〈xk〉 =
∫ ∞

x0

xk p(x|C )d x =
∫ ∞

x0

xk−a f

(
x

C b

)
d x =C b(1+k−a)

∫ ∞

x0/C b
yk−a f (y)d y

'C b(1+k−a)
[

c
∫ ε

x0/C b
yk−ad y +

∫ ∞

ε
yk−a f (y)d y

]
=C b(1+k−a)[c ′C−b(1+k−a) + c ′′],

(1.9)

where the change of variable y = x/C b was performed, ε¿ 1 and c ′ is a constant that does

not depend on C . The integral c ′′ = ∫ ∞
ε yk−a f (y)d y converges owing to the properties of

f and does not depend on C . In the limit of large C , the moments display the scaling

Ik ∝C max{0,b(1+k−a)}. (1.10)

In this chapter, the role of C is played by the area of the ecosystem, therefore the large C

limit applies. Normalization poses a constraint on a, in fact it requires

1 = I0 ∝C max{0,b(1−a)}. (1.11)

Because the normalization constant cannot depend on C , one has a > 1.

In case B, the scaling of the moment is computed as

Ik = 〈xk〉 =
∫ ∞

x0

xk p(x|C )d x =
∫ ∞

x0

xk−a f

(
x

C b

)
d x =C b(1+k−a)

∫ ∞

x0/C b
yk−a f (y)d y

'C b(1+k−a)
∫ ∞

0
yk−a f (y)d y ∝C b(1+k−a),

(1.12)

where the prolongation of the integral to 0 is possible when x0/C b ¿ 1 thanks to the

properties of f (y), decaying fast in y ∼ 0. In this case, normalization imposes a = 1,

therefore Ik ∝C bk .

Note that, since 〈x〉 = I1 ∝C b , in case B Eq. (1.8) can be written as

p(x|〈x〉) = 1

x
F̃

(
x

〈x〉
)

. (1.13)

Additionally, subsequent moments have the property

〈xk+1〉
〈xk〉 ∝ 〈x〉, (1.14)

i.e. all moments can be expressed in terms of the mean.
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Chapter 1. Covariations in ecological scaling laws

1.2.2 Data collapse

Data collapse is a method to verify that probability distributions corresponding to differ-

ent values of C , obtained from empirical measurements or from numerical simulations,

are described by the scaling form in Eq. (1.8). It consists in plotting xa p(x|C ) against x
C b .

If the curves satisfy Eq. (1.8) they will all collapse on the same curve, f , for the appropriate

value of a and b. Bhattacharjee and Seno [2001] have proposed an algorithm to estimate

the value of a and b and their uncertainty by optimizing the collapse. The algorithm

computes the value of a functional Pb(a,b) measuring the area comprised between each

set of curves after their rescaling according to the exponents a,b. The optimal exponents

aopt and bopt are then estimated as the minimum of this functional and a confidence

level is obtained by finding, for each exponent, the value at which the functional is 1%

larger than its value at the minimum.

1.3 Scaling Framework

This section is devoted to introducing the scaling framework, with particular attention to

the assumptions made. Specifically, the framework applies to a community inhabiting an

ecosystem of area A and feeding on a common resource, supplied at a finite rate R. The finite

resource supply rate constrains the total community consumption, and therefore its size and

composition, as will be detailed below. At the core of the framework is a hypothesis for the

joint probability p(n,m|A) dn dm that a species chosen at random holds abundance and

body size (mass) in the ranges [n,n +dn] and [m,m +dm]. The probability distribution p

is termed “fundamental distribution”, as community structure and resource use follow from

it. The choice of the relevant variables, here n, m and A, is the minimum one that allows

obtaining scaling laws related to mass and abundance consistently with a finite resource

constraint. A general theoretical argument must in fact incorporate a minimum of biological

detail to be applicable to the widest range of organisms. Other quantities, such as the number

of species S or the total abundance N , emerge as predictions of the framework once the

constraint has been imposed. Considering body mass is deemed necessary to implement the

resource constraint, because the resource consumption of an individual, epitomized by its

metabolic rate, is determined by its mass through an allometric relation known as Kleiber’s

law [Kleiber, 1932], b = cmα where c is a constant and the typical value for the exponent is

α= 3/4 [West et al., 1997, Savage et al., 2007, Banavar et al., 1999b]. Assuming that the resource

supply rate is proportional to the ecosystem area, i.e. R = r A, where r is the resource supply

per unit area (assumed constant), the total community metabolic rate B ∝∑S
j=1 n j m̄α

j (m̄ j is

the typical mass of species j ) is constrained to be

B = R = r A ∝ A. (1.15)

In fact, if the scaling of B with A was super-linear, the metabolic rate would overgrow the

resource supply rate in the limit of large ecosystem area, resulting in a non sustainable commu-
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1.3. Scaling Framework

nity. Conversely, in the case of sub-linear scaling, the fraction of consumed resources would

tend to zero in the limit of large ecosystem area. For an ecosystem at stationarity, the total

metabolism of the community is expected to be the maximum sustainable one, corresponding

to a direct proportionality of B and A. Note that the constant r appearing in equation (1.15)

determines the type of ecosystem (with abundant or scarce resource supply rate, which could

be interpreted, e.g., as a tropical forest or a desert). Therefore, all scaling with ecosystem area

obtained via this framework are valid for a fixed value of r , i.e. for a set of islands, lakes or

forests sharing a similar climate or environmental conditions.

The scaling hypothesis formulated for the fundamental distribution must be such that the scal-

ing laws derived from it reproduce the empirical scaling observed in the field. The minimum

viable mass for an organism is assumed to be m0 > 0 independent of A, so that p(n,m|A) is

zero for m < m0. Mass and area are measured in units of m0 and of a reference unit area a0, so

that m and A are dimensionless. To facilitate the formulation of an empirically driven scaling

hypothesis, one can factorize the fundamental distribution in two parts:

p(n,m|A) = p(m|A)p(n|m, A). (1.16)

The first factor is the probability density of finding a species of typical mass m in an ecosystem

of area A. Empirical evidence [Marquet and Taper, 1998, Marquet et al., 2005] points to a

power-law dependence of p(m|A) on m, therefore the hypothesis made here is

p(m|A) = (δ−1)m−δ (1.17)

with δ> 1 for normalization. The scaling hypothesis for p(n|m, A) is dictated by the need to

reproduce the empirically observed Damuth’s law,

〈n|m, A〉 = m−γAΦh

(
m

Aλ

)
. (1.18)

where the function h, providing a cut-off to the power-law behavior in m, has the properties

h(x) = o
(
x−2+δ+γ

)
as x →∞ (1.19a)

h(x) ' h0 when x ¿ 1. (1.19b)

The presence of a cut-off function in 〈n|m, A〉, imposing an upper limit on viable body masses,

is supported by the results of a stochastic model of community dynamics, as shown in section

1.5. Note that Damuth’s law typically refers only to the mass dependence of 〈n〉, while here also

the A dependence is considered. The simplest hypothesis for the scaling form of p(n|m, A)

allowing to obtain Eq. (1.18) is

p(n|m, A) = g (m, A)Ĝ

(
n

〈n|m, A〉
)

(1.20)

where the term g (m, A) allows a further dependence on m and A required for normalization.
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Chapter 1. Covariations in ecological scaling laws

The function Ĝ(x) has the properties:∫ ∞

0
x j Ĝ(x)d x <∞ j = 0,1,2. (1.21)

An example of a function that satisfies the above requests is Ĝ(x) = e−x . The properties of h

and Ĝ are such as to allow convergence of the ( j ,k)-th moment of p(n,m|A) for j = 0,1,2 and

k ∈ [0,1]. These are all the moments needed to derive ecological scaling laws (see section 1.4).

Furthermore, the properties of Ĝ ensure that 〈n|m, A〉 = ∫ ∞
0 dn n p(n|m, A) = m−γAΦh

(
m
Aλ

)
,

that is, Damuth’s law is reproduced.

The normalization condition for p(n|m, A) reads:

1 =
∫ ∞

0
p(n|m, A)dn = g (m, A)

∫ ∞

0
Ĝ

(
n

〈n|m, A〉
)

dn

= g (m, A)〈n|m, A〉
∫ ∞

0
Ĝ(x)d x = g (m, A)〈n|m, A〉 C ,

(1.22)

where C = ∫ ∞
0 Ĝ(x)d x. Therefore, g (m, A) = (C〈n|m, A〉)−1, which substituted in Eq. (1.20)

gives

p(n|m, A) = 1

C〈n|m, A〉Ĝ

(
n

〈n|m, A〉
)
= n−1G

(
n

〈n|m, A〉
)

, (1.23)

where G(x) = 1
C xĜ(x), implying the condition

∫ ∞
0

G(x)
x d x = 1. In conclusion, joining the two

hypothesis in Eqs (1.17) and (1.23), the normalized fundamental distribution reads:

p(n,m|A) = (δ−1)n−1m−δG

[
nmγ

AΦ
1

h(m/Aλ)

]
. (1.24)

Note that Eq. (1.24) can be expressed as p(n,m|A) = n−1m−δF
(

n
AΦ̃

, m
Aλ

)
, with

F (x, y) = (δ−1)G
[

x yγ

h(y)

]
and Φ̃=Φ−γλ. In such form, at first glance Eq. (1.24) may look

like a particular case of the scaling framework of Banavar et al. [2007] (Eq. (1.5)). However, the

assumptions on the scaling properties of F made therein (Eqs (1.6)) are different than here,

making the two frameworks and the observable scaling laws and linking relationships distinct.

Most importantly, the hypotheses of Banavar et al. [2007] are incompatible with Damuth’s law.

1.4 Derivation of ecological scaling laws

The following empirically-observed ecological scaling laws can be obtained from the

fundamental distribution:

• the island SAR3, S ∝ Az ;

3The so-called island SAR [Preston, 1962], obtained by counting species inhabiting disjoint patches of land (e.g.
islands, lakes or, in general, areas separated by environmental barriers from the surroundings which we can think
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1.4. Derivation of ecological scaling laws

• the scaling of the total number of individuals N with A [Hubbell, 2001], N ∝ Aν;

• the scaling of the total body mass M with A, M ∝ Aµ;

• Damuth’s law, 〈n|m, A〉∝ m−γAΦh(m/Aλ);

• the community size-spectrum, s(m) ∝ m−η;

• the species’ mass distribution p(m|A) ∝ m−δ (which is a marginal of the fundamental

distribution explicitly given as an assumption of the framework in Eq. (1.17));

• the scaling of the largest organism’s mass with A [Burness et al., 2001, Okie and Brown,

2009], mmax ∝ Aξ;

• Taylor’s law [Cohen et al., 2012, Giometto et al., 2015], describing the scaling of the

variance of population abundance with its mean, var(n) ∝〈n〉β (here, reference is made

to the ‘spatial Taylor’s law’, dealing with the variability of species abundance in space,

and not to its temporal counterpart);

• the relative species’ abundance (RSA) [Preston, 1948], i.e., the probability of finding a

species with abundance n.

First, one can verify that equation (1.20) implies equation (1.18), i.e. Damuth’s law:

〈n|m, A〉 =
∫ ∞

0
np(n|m, A)dn =

∫ ∞

0
G

[
nmγ

AΦ
1

h(m/Aλ)

]
dn

= AΦm−γh

(
m

Aλ

)∫ ∞

0
G(x)d x = AΦm−γh

(
m

Aλ

)
,

(1.25)

where
∫ ∞

0 G(x)d x = 1 was set without loss of generality.

The following sections 1.4.1–1.4.5 are devoted to the derivation of the other laws and of their

linking relationships.

1.4.1 The SAR and other scaling relationships obtained from moments of
p(n,m|A)

The SAR, the scaling of the total biomass M and of the total number of individuals N with A

and Taylor’s law are obtained from the moments of the fundamental distribution. The scaling

of as closed ecosystems) must be distinguished from nested SARs, where areas are sub-patches of a single larger
domain [Harte et al., 2009, Azaele et al., 2016]. The two SARs are quite different, as the nested SAR is related to the
spatial distribution of individuals, while the island SAR stems from complex eco-evolutionary dynamics shaping
the community.
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Chapter 1. Covariations in ecological scaling laws

of the ( j ,k)th-moment ( j = 1,2, k ∈ [0,1]) with A, for large A, can be computed as:

I j ,k =
∫ ∞

1

∫ ∞

0
n j mk p(n,m|A) dn dm

= (δ−1)
∫ ∞

1
mk−δ

∫ ∞

0
n j−1G

[
nmγ

AΦ
1

h
(
m/Aλ

)]
dn dm

= (δ−1)A jΦ
∫ ∞

1
mk−δ− jγh j

(
m

Aλ

)
dm

∫ ∞

0
x j−1G (x)d x

∝ A jΦ
∫ ∞

1
mk−δ− jγh j

(
m

Aλ

)
dm

∝ A jΦ+λ(1+k−δ− jγ)
∫ ∞

1/Aλ
yk−δ− jγh j (y)d y

∝ A jΦ+λ(1+k−δ− jγ)
[

h j
0

∫ ε

1/Aλ
yk−δ− jγd y +

∫ ∞

ε
yk−δ− jγh j (y)d y

]
∝ A jΦ+λ(1+k−δ− jγ)

[
c1 A−λ(1+k−δ− jγ) + c2

]
∝ A jΦ+max{0,λ(1+k−δ− jγ)},

(1.26)

with ε ¿ 1, c1 and c2 constants. We used the property (1.21) to ensure that the integral∫ ∞
0 x j−1G (x)d x converges for j = 1,2, and properties (1.19a-1.19b) to evaluate the integral in

m (in particular, h(x) ' h0 constant for x ∈ (0,ε]).

The SAR is obtained by imposing the metabolic constraint (Eq. 1.15). The total metabolic rate

of the community can be computed as:

B ∝ S〈nmα〉 = S I1,α, (1.27)

where Kleiber’s law has been used to say that the metabolic rate of an organism of body

mass m is b ∝ mα and 〈nmα〉 is the average metabolic rate of a species (safe for Kleiber’s law

proportionality constant). The constraint in Eq. (1.15) implies then that the species number S

must scale as

S ∝ A(I1,α)−1 ∝ Az , with z = 1−Φ−max{0,λ(1+α−δ−γ)}. (1.28)

The scaling of the total biomass M and of the total number of individuals N are obtained as:

M = S〈nm〉 = S I11 ∝ A1+max{0,λ(2−δ−γ)}−max{0,λ(1+α−δ−γ)}, (1.29)

N = S〈n〉 = S I10 ∝ A1−max{0,λ(1+α−δ−γ)}. (1.30)

The exponent of Taylor’s law is obtained by noting that

var(n) = 〈n2〉−〈n〉2 = I2,0 − I 2
1,0

= k1 A2Φ+max{0,λ(1−δ−2γ)} −k2 A2Φ+2max{0,λ(1−δ−γ)} ∝ A2Φ∝〈n〉2
(1.31)
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1.4. Derivation of ecological scaling laws

where k1,k2 are constants and we used the fact that δ> 1. Therefore, β= 2 regardless of the

other exponents’ values. An analogous computation can be performed for the abundance of

species with fixed typical size, yielding 〈n2|m〉∝ 〈n|m〉2. Thus, also the mean abundance in a

fixed size range satisfies Taylor’s law with β= 2.

The following linking relationships are therefore obtained:

z = 1−Φ−max{0,λ(1+α−δ−γ)} (1.32a)

µ= 1+max{0,λ(2−δ−γ)}−max{0,λ(1+α−δ−γ)} (1.32b)

ν= 1−max{0,λ(1+α−δ−γ)} (1.32c)

Note that Eq. (1.32a) and Eq. (1.32c) imply Eq. (1.3), which was obtained with a heuristic

argument in the introduction.

1.4.2 The community size spectrum

The community size spectrum s(m|A) is equal to:

s(m|A) = S

N

∫ ∞

0
np(n,m|A) dn = δ−1

AΦ
m−δ

∫ ∞

0
G

(
nmγ

AΦh(m/Aλ)

)
dn

= δ−1

AΦ
m−δ

(
AΦ

mγ
h

(
m

Aλ

))∫ ∞

0
G(x)d x ∝ m−δ−γh

(
m

Aλ

) (1.33)

where in the first line we have used (1.28), (1.30) and δ > 1, and in the second line we

performed the change of variable x = nmγ/(AΦh(m/Aλ) and the properties of G ensure the

convergence of the integral. The size spectrum has a power-law dependence on m and one

can identify η= γ+δ, corresponding to Eq. (1.2). Note that both s(m|A) and 〈n|m, A〉 display

a cutoff at m ∝ Aλ. Nevertheless, their scaling exponents, determining the behavior before

the cut-off, satisfy the same relationship that was found with a heuristic calculation which

neglected cut-offs.

1.4.3 The scaling of the maximum body mass

The last linking relationship stems from the observation that the maximum expected body

mass observed in an ecosystem with S species is mmax such that

P (m ≥ mmax) =
∫ ∞

mmax

p(m|A)dm = 1/S. (1.34)

In fact, the species present in the ecosystem can be interpreted as S samples drawn from

p(m|A), and when the above condition is satisfied there is, on average, only one sampled

value among the S which is larger than mmax, which is therefore the expected maximum mass
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extracted. See box 1.4.4 for a more rigorous derivation of the scaling of the maximum sampled

value with sample size. Substituting S ∝ Az we find
∫ ∞

mmax
x−δd x ∝ A−z , leading to:

mmax ∝ A
z

δ−1 , (1.35)

which implies

z = ξ(δ−1). (1.36)

Note that, if λ < ξ, the cut-off on the abundances might make the largest organism’s mass

mmax not observable due to vanishing abundance. One would then have an effective scaling

of the maximum observable body mass m̃max ∝ Aλ.

1.4.4 Scaling of the largest sampled value with sample size for power-law dis-
tributions

This box presents a rigorous proof of the result used in section 1.4.3, stating how the

expected largest value in a sample of size S extracted from a power-law distribution in-

creases with S, adapted from Newman [2005]. Consider a power-law p(m) = (δ−1)m−δ,

defined on [1, ∞]. The proof consists in computing the average of the probability distri-

bution π(m) of the largest value in a sample of size S. π(m)dm is the probability that a

particular element (out of S) in the sample has value in [m,m+dm] and all the other have

smaller values. Knowing that P (m) = ∫ ∞
m p(m′) dm′ is the probability to find a value larger

than m and therefore 1−P (m) the probability to find a smaller one, π(m) is expressed as

π(m) = Sp(m)(1−P (m))S−1, (1.37)

where the factor S counts the possible choices for the element with the largest value. The

average is obtained as

〈mmax〉 =
∫ ∞

1
m π(m) dm = S

∫ ∞

1
mp(m)[1−P (m)]S−1 dm. (1.38)

P (m) is obtained as:

P (m) =
∫ ∞

m
p(m′)dm′ = (δ−1)

∫ ∞

m
m′−δ dm′ = m1−δ. (1.39)

Substituting P (m) and p(m) in Eq. (1.38), one has

〈mmax〉 = S(δ−1)
∫ ∞

1
m−δ+1

[
1−m1−δ

]S−1 = S
∫ 1

0

yS−1

(y −1)1/(δ−1)
d y

= SB(S, (δ−2)/(δ−1)),

(1.40)
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1.4. Derivation of ecological scaling laws

where the substitution y = 1−m1−δ was made and B(a,b) is Legendre’s beta function,

defined by B(a,b) = Γ(a)Γ(b)
Γ(a+b) , with Γ(a) the complete Γ-function. By using Stirling’s approx-

imation, one can show that the function B(a,b) is approximated by a power function when

either of its arguments are large. In particular, when a is large B(a,b) ∝ a−b . Therefore,

when the sample size S is large

〈mmax〉 ∼ SS− δ−2
δ−1 = S1/(δ−1), (1.41)

which confirms the result obtained with the heuristic method presented in section 1.4.3.
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Figure 1.2 – Inset: Relative species abundance p(n|A) computed numerically via (1.42) with the
choices of G(x) and h(x) specified in the text and parameter values h0 = 1, σ= 1/10, δ= 5/4,
γ = 3/4, λ = 3/4 and Φ = 1. Colors refer to different value of A, A = 102,103,104,105,106.
Main plot: Collapse of p(n|A) curves for different values of A (see text). The collapsed curves
(orange) are covered by the dashed lines (blue, green), which represent the approximation in
Eq. (1.44).

1.4.5 The RSA

Finally, the RSA is the marginal of the fundamental distribution obtained integrating over m:

p(n|A) =
∫ ∞

1
p(n,m|A)dm. (1.42)

The integral in Eq. (1.42) cannot be computed in the general case where the exact forms of h

and G are unknown. Nevertheless, one can show via analytical approximations and numerical

integration that for a particular choice of the two functions the scaling properties of p(n|A)

agree with the scaling assumption put forward by Zillio et al. [2008]. Here, computations are

performed for the particular choice G(x) = 1p
πσ

e−
1
σ

(log x+σ/4)2
, with σ> 0 constant. Note that∫ ∞

0 G(x)/x d x = 1 as prescribed in section 1.3 and
∫ ∞

0 G(x)d x = 1 as required in Eq. (1.25).
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Chapter 1. Covariations in ecological scaling laws

Regarding h(x), it is sufficient to posit that it must be monotonically decreasing, but for ease of

computation we consider h(x) = h0e−x , with h0 a constant. With these choices, it is possible

to derive an approximation (see Appendix 1.8.1 for details on the calculations) for the behavior

of p(n|A) in two different n ranges:

p(n|A) =


1
n
δ−1
γ

[
AΦ

n h0e−
σ
4

] 1−δ
γ

if n ' AΦh0e−σ/4

1
n
δ−1p
πσ

e
− 1
σ

[
log

(
n

h0 AΦ

)
+ σ

4

]2

2γ
σ

[
log

(
n

h0 AΦ

)
+ σ

4

] if n À AΦh0e−σ/4
(1.43)

Note that this result can be expressed as:

p(n|A) = 1

n
Q̃

( n

AΦ

)
= 1

AΦ
Q

( n

AΦ

)
(1.44)

with

Q̃(x) =


δ−1
γ

[
1
x h0e−

σ
4

] 1−δ
γ

if x ' h0e−σ/4

δ−1p
πσ

e
− 1
σ

[
log

(
x

h0

)
+ σ

4

]2

2γ
σ

[
log

(
x

h0

)
+ σ

4

] if x À h0e−σ/4
(1.45)

and Q(x) = 1
x Q̃(x). The validity of this approximation can be verified by integrating p(n|A)

numerically for a particular choice of the exponents δ, γ, Φ and λ and of the parameters

h0 and σ. Figure 1.2 (inset) shows the results of numerical integration for different values

of A. Outside the inset, the curves are collapsed by plotting AΦp(n|A) versus n/AΦ. The

dotted lines represent the approximation in Eq. (1.44), which is shown to describe well

the entire curve, excluded a small interval at the junction of the two approximations. In

particular, the expression obtained for intermediate n values still holds for n ¿ AΦh0e−σ/4.

The result is valid regardless of parameters values. Note that 〈n〉∝ AΦ, therefore we can write

p(n|A) = 1
〈n〉Q

(
n
〈n〉

)
. This result coincides with the scaling assumption put forward by Zillio

et al. [2008], with f (A) = 〈n〉.

1.4.6 Some observations on the results

In summary, the scaling framework predicts the following exact relationships among scaling

exponents:

η= γ+δ, (1.46a)

z = 1−Φ−max{0,λ(1+α−η)}, (1.46b)

µ= 1+max{0,λ(2−η)}−max{0,λ(1+α−η)}, (1.46c)

ν= 1−max{0,λ(1+α−η)}, (1.46d)

ξ= z

δ−1
. (1.46e)
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1.4. Derivation of ecological scaling laws

Eqs. (1.46b) and (1.46d) also imply

z +Φ= ν. (1.47)

The exponent β does not appear because its value is found to be independent from the

other exponents. Figure 1.3 summarizes the predictions on the values or bounds of scaling

exponents based on the linking relationships (1.46a-e), for different possible values of the

independent exponents.

Notice that there are only 5 independent exponents (e.g. γ, δ, Φ, α and λ), whereas the

observable laws amount to 10: Kleiber’s law and Eqs. (1.17), (1.18), (1.28)–(1.30), (1.33) and

(1.35). Note that Eq. (1.18) contains three laws because it describes the scaling of the average

abundance of a species with its typical body mass and with the area of the ecosystem and

the scaling of its cut-off with the area of the ecosystem. Eq. (1.46b) implies that, in any

ecosystem where z > 0, as typically observed,Φ< 1 and therefore species’ densities decrease

with increasing area. In Chapter 2, this prediction will be shown to be verified by a dataset of

lizard species encompassing several islands worldwide [Novosolov et al., 2015]. Eq. (1.46e) is

compatible with the linking relationship derived in Southwood et al. [2006], which is shown

here to be one component of a broader set of linking relationships (see next paragraph).

While some of the obtained scaling relationships coincide with the results of heuristic calcula-

tions performed assuming pure power-law behavior, their derivation within the framework

allows us to assess the role of finite-size effects. In particular, while the combination of Eqs

(1.46b) and (1.46d) can be obtained by the heuristic reasoning explained in the introduction,

the effect of the cut-off on masses with exponent λ on the values of z and ν cannot be obtained

by that reasoning. However, such information gives interesting predictions, as Eq. (1.46d)

fixes a constraint on the exponents α, δ and γ such that ν assumes its most likely value of 1,

1+α< δ+γ. Additionally, this very general formulation allows to study the consequences of

any change in the initial hypotheses, including non-power law behavior, as will be shown in

section 1.6.

1.4.7 Compatibility with previous works

Southwood et al. [2006] derived a linking relationship that is equivalent to Eq. (1.46)e. Here,

their result is briefly reviewed and corrected due to a few miscalculations in the original paper.

The authors start from the observation [May, 1988] that the total number of species of length

class L scale as SL(L) ∝ SL−∆, where ∆ = 3/2 and S is the total number of species in the

ecosystem. The estimate ∆ = 3/2 made in that study [Southwood et al., 2006] is incorrect,

because the correction needed to account for logarithmic binning [Stegen and White, 2008,

White et al., 2008] is missing (see also Box 2.2 in the next chapter). The correct estimate

that accounts for logarithmic binning [Stegen and White, 2008] is ∆= 5/2. First, Southwood

et al. [2006] say that the maximum length is obtained by imposing SL(Lmax) = SL−∆
max = 1, i.e.
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Chapter 1. Covariations in ecological scaling laws
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If η>2

1z = − Φ

1ν =
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Figure 1.3 – Scheme of predictions on the values or bounds of scaling exponents based on the
linking relationships (1.46a-e). Names of datasets which are analyzed in Chapter 2 are located
in different columns according to the available information on their exponents’ values. Forests
include Barro Colorado Island [Condit et al., 2012], Luquillo [Zimmerman et al., 2010], SSI
stands for Sunda Shelf Islands [Okie and Brown, 2009], LIZ for the dataset of lizard densities on
islands worldwide [Novosolov et al., 2015]. See Chapter 2 for details on the datasets. Note that
the relationship z < ξα is valid for forests only before the physiological constraint has been
attained (see section 1.6.3).

24



1.5. Stochastic models of community dynamics

S ∝ L∆max. This calculation is also incorrect, because it makes an improper use of probability

distributions. In fact, SL(L) is the fraction of species with length in [L,L+dL] and the maximum

species’ length is found by imposing that the probability of finding a species with length

larger than Lmax be equal to 1/S (as explained in section 1.4.3 and Box 1.4.4) which results in

S ∝ L∆−1
max. Incidentally, these two miscalculations compensate each other and together lead to

the estimate S ∝ L3/2
max. However, and this is crucial to derive the correct linking relationship,

the correct equation is S ∝ L∆−1
max and not the one suggested in [Southwood et al., 2006], i.e.

S ∝ L∆max. The equation relating S and L converts into a species-mass relationship via the

scaling L ∝ m1/3, where we have assumed that body density does not scale with body mass.

Specifically, one finds S ∝ mδ−1
max with δ= (∆+2)/3. Then, one can use the finding by [Burness

et al., 2001], mmax ∝ Aξ, to derive the linking relationship between z, ξ and δ. In fact, by

comparing S ∝ mδ−1
max ∝ Aξ(δ−1) with the SAR S ∝ Az one obtains the linking relationship

z = ξ(δ−1), which coincides with Eq. (1.46)e. However, it should be noted that, in [Southwood

et al., 2006], z was meant as the exponent of the nested species-area relationship, differently

from here. Nonetheless, the linking relationship is the same. The original results presented

in section 1.4 thus agree with the earlier result by Southwood et al. [2006], where one of the

linking relationships was discovered.

As mentioned in the introduction, an approach based on on a scaling hypothesis for p(n,m|A)

was also presented in Banavar et al. [2007]. The original work presented in this chapter

has nonetheless important differences with respect to the approach in Banavar et al. [2007],

namely: 1) the enforcement and the implications of resource limitation, 2) the validation based

on a broad class of community dynamics models, and 3) the richer set of macroecological laws

that the scaling framework accounts for, most importantly Damuth’s law, which allows us to

reconcile the predicted linkages with empirical data (see Chapter 2) and community dynamics

models (see, e.g. Fig. 1.4). The framework in [Banavar et al., 2007], expressed by Eqs (1.5) and

(1.6), leads to different predictions for the pattern covariations (e.g. the linking relationship

η= δ) that are falsified by empirical data and by the model simulations (Fig. 1.4, see section

1.5). Note that the introduction of a constraint on the total community consumption rate in

the framework of Banavar et al. would not affect the relationship η = δ, which is instead a

byproduct of the assumptions on p(n,m|A).

1.5 Stochastic models of community dynamics

The scaling hypothesis for the fundamental distribution p(n,m|A) presented in section 1.3 was

justified by the fact that it is the simplest hypothesis compatible with the empirically observed

ecological scaling laws. The hypothesis in Eq. (1.24) might not be the only one satisfying such

empirical constraint, therefore an additional corroboration of its appropriateness is useful

to strengthen the tenet. This section is devoted to showing that a broad class of stochastic

models for the dynamics of a community limited by resource supply supports Eq. (1.24). In

fact, despite major changes in the speciation dynamics and regardless of parametrization, all

models which reproduce empirical scaling laws are compatible with the finite-size scaling
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Figure 1.4 – Density-scatter plot of δ+γ (panel a) and δ (panel b) versus η in simulations of
the stochastic community dynamics model (model a, see section 1.5), with the exponents
estimated at each sampling time-point. The parameters of the stochastic community dynam-
ics model are reported in Fig. 1.14; shown are simulation data for the largest simulated area
A = 103. Density histograms are normalized to one, with blue representing the value zero and
yellow the value one. Note that the small deviations from the 1:1 line are also due to statistical
errors in the estimation of the exponents at each time step. Panel b) shows that the prediction
[Banavar et al., 2007] that η = δ is not supported by simulation data. See section 1.5.1 for
details on how the exponents were estimated.

structure of Eq. (1.24).

Several variants of a basic community dynamics model are considered, all accounting for

the constraint on resource supply rate and incorporating empirically observed allometric

relationships for the dependence of vital rates on individuals’ body sizes [Brown et al., 2004].

In all the models, the birth and death rates at which an individual of a species of mass mi and

abundance ni is born or dies are, respectively:

ui = m−θ
i ni ,

vi =
[

v0 + (1− v0)c

∑
j n j mα

j

R

]
m−θ

i ni ,
(1.48)

and thus the per-capita growth rate of species i is ui−vi
ni

= (1− v0)
[

1− c
R

∑
j n j mα

j

]
m−θ

i , which

is equal to zero when c
∑

j n j mα
j =R ∝ A, where R is the resource supply rate. At the station-

ary state, therefore, the total rate of resource consumption of the community fluctuates around

R but the ecological dynamics continues and determines species’ abundances through the

constraints imposed by resources and by physiological rates. Sections 1.5.1 to 1.5.4 present

several model variants. Starting from a basic model, where the total number of species is fixed

to S ∝ Az , variants are produced by changing the speciation mechanism or by letting S free

to fluctuate, in which case the relationship 〈S〉∝ Az is an emergent property of the commu-

nity dynamics. Testing several model variants allows assessing the robustness of the results
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Figure 1.5 – Scaling patterns from the basic community dynamics model. Different colors refer
to different values of A = 10i , from i = 1 (lower blue curve in panel C) to i = 8 (upper blue curve
in panel C). Panels A, B, C and f show respectively p(m|A), s(m|A), 〈n|m, A〉 and p(n|m, A)
at stationarity. Panels D and G show collapses of 〈n|m, A〉 and p(n|m, A). Eqs. (1.17),(1.18)
and (1.20) are verified because the curves np(n|m, A) versus n/〈n|m, A〉 collapse on the same
curve for different A (panel G), and so do the curves mγA−Φ〈n|m, A〉 versus m/Aλ (panel D).
Panel E: density histogram plot of η vs δ+γ at different times. Panel H: scaling of 〈mmax〉 (red
crosses and dashed lines), 〈N〉 (black dots and dashed lines) and 〈M〉 vs A (blue crosses and
dashed lines).

to changes in the models’ assumptions. Data-collapses of p(m|A), p(n|m, A) and 〈n|m, A〉
calculated using model data (Fig. 1.5) show that they all comply with Eqs. (1.17),(1.18) and

(1.20). Note that the values of the scaling exponents depend on model specifications, but the

scaling properties of the fundamental distribution p(n,m|A) always hold.

1.5.1 Basic community dynamics model

This section concerns the simplest model of community dynamics that reproduces the set of

empirically-observed macroecological laws reported in section 1.4. This model will be referred

to as “basic model” in the following.

In the basic model, each species speciates with probability w per unit time (i.e., species-

specific speciation events are Poisson-distributed with rate w). At each speciation event,

a species is selected at random and a random fraction of individuals from such species is

assigned to a new species j . This speciation mechanism, called ‘fission’ speciation, is intended

to mimic the mechanism of allopatric speciation (also called vicariant speciation), when a

fraction of a species becomes isolated from the rest of the individuals and therefore experiences

different selective pressures, eventually bringing to speciation. The mass of the new species is

obtained from the mass of the parent species as m j = max{m0; qmi } where q is extracted from

a lognormal distribution with mean and variance equal to unity so that the descendant has, on
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Chapter 1. Covariations in ecological scaling laws

average, the same mass of the parent species. The maximum in the expression for m j ensures

that the bound on the minimum mass m0 that a species can attain is satisfied. The mass of the

parent species is left unchanged. Species’ masses thus undergo a process that is a combination

of this evolutionary dynamics of masses and of the birth/death dynamics. Note that the

evolutionary dynamics of body masses resembles a multiplicative bounded process, known to

produce power-laws [Solomon and Levy, 1996, Sornette and Cont, 1997] (see Box 1.5.2 for a

proof). However, the correspondence is not exact. In fact, when a new mass is introduced in

the system, the parent mass also remains and can still speciate giving birth to new masses.

As shown by the results of the model simulations reported in the following, the outcome of

this process, in combination with the ecological dynamics, is also a power-law, although the

exponent differs from that expected in the case of a simple bounded multiplicative process.

In fact, the latter predicts an exponent δ= 3/2 when q has mean and variance equal to unity,

while the numerical simulations always produce δ> 2.

The number of species S is set to a constant value proportional to the area: S = 10Az . Although

the number of species in natural ecosystems may fluctuate in time, fixing it in the basic model

allows us to vary the scaling exponent z to effectively account for relevant ecological and

evolutionary processes not included in the model which may affect the value of z in natural

ecosystems (see also section 1.7 for further comments on this). Note that fixing the number

of entities in the model (here, S) is a common approximation in many related fields, such

as population genetics (e.g., the Wright-Fisher model [Wright, 1931] with fixed population

size N ) and neutral and metacommunity theory [Azaele et al., 2016]. To maintain S constant,

each extinction event is followed by a speciation event. Viceversa, at each speciation event,

extinction is enforced on a species selected at random with probability inversely proportional

to its abundance (i.e., more abundant species are less likely to go extinct) and proportional to

the power −θ of its mass, which accounts for the fact that ecological rates are faster for smaller

species. A variation on this extinction rule is discussed in section 1.5.3.

The total number of individuals N = ∑S
i=1 ni and the total biomass M = ∑S

i=1 ni mi are not

fixed in the basic model (nor in the other variants discussed), but fluctuate in time around

mean values that depend on the models’ parameters and, most importantly, on the ecosystem

area A. In other words, the mean biomass and the mean total abundance are given by a

balance between birth, death and speciation events, with the constraint of resource supply

limitation set by the ecosystem area A. The model thus allows to study the scaling of the total

number of individuals and the total biomass as functions of A.

The distribution p(m|A) exhibits power-law behavior in m, as prescribed by Eq. (1.17) (Fig.

1.5A). The size spectrum is also a power-law across several orders of magnitude (Fig. 1.5B).

The exponents δ and η were estimated, respectively, as the average of the exponents δ and η

computed at every sampling time in the simulation data for the largest area with a maximum-

likelihood algorithm [Clauset et al., 2009] (see Box 2.2 in Chapter 2). The curves 〈n|m, A〉
exhibit power-law behavior in m and A with a cutoff at large m (Fig. 1.5C). Data collapse

(Fig. 1.5D) shows that its functional form is the one given by Eq. 1.18. In fact, the curves
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mγA−Φ〈n|m, A〉 plotted versus m/Aλ collapse onto the same curve for different values of A.

Estimates ofΦ, γ and λwere computed by minimizing a measure of data collapse [Bhattachar-

jee and Seno, 2001]. Moreover, Fig 1.5G shows that the curves n p(n|m, A) versus n/〈n|m, A〉
collapse onto the same curve for different values of m and A, implying that Eq. 1.20 holds. Fig

1.5F shows the uncollapsed curves. The mean total biomass 〈M〉 and the mean total abun-

dance 〈N〉 were measured for each value of A as the mean of the total biomass and the mean

of the total abundance across sampling times. They show power-law behavior (Fig. 1.5H) and

the exponents µ and ν were measured via least-squares fitting of log-transformed data. To

measure the scaling of the mean maximum mass 〈mmax〉 with the area A, we verified through

data-collapse that the distribution of mmax in the simulations (estimated by measuring the

maximum mass at each sampling time point) is of the form P (mmax|A) = m−χ
maxL

(mmax
Aω

)
, and

the scaling function L is such that
∫ ∞

0 x j−χL(x) converges for j = 0,1. This scaling form of

P (mmax|A) implies that the mean value of mmax satisfies 〈mmax〉∝ Aω(2−χ) = Aξ (Fig. 1.5H),

that is, a power-law as predicted by the theoretical scaling framework. All the estimated values

for the exponents and their 68% confidence intervals are reported in table 1.1.

Parameter values used to generate the simulation data reported in Fig. 1.5 are: w = 10−3,

z = 1/4, α = 3/4, θ = 1/4, v0 = 1/2 and c = 10−5. The stochastic model was simulated via a

Gillespie tau-leap algorithm with estimated midpoint technique [Gillespie, 2001], with time

step τ= 1.

Because the ansatz for the fundamental distribution p(n,m|A) given by Eqs. (1.17),(1.18) and

(1.20) holds, the linking relationships among exponents (Eqs. 1.46) are satisfied at steady

state by the basic model. The linking relationship η= δ+γ is satisfied by the mean values of

the exponents, and the density scatter-plot computed counting the occurrences of the pairs

(η,δ+γ) during the temporal evolution of the community dynamics model (Fig. 1.5E, shown

are simulation data for the largest area value) is peaked along the 1:1 line. Thus, Eq. 1.46a is

satisfied, on average, during the temporal evolution of the community dynamics model.

A thorough exploration of the parameters’ space is computationally unfeasible. Nonetheless, a

partial exploration, performed varying the values of the parameters that are most meaningful

for the dynamics (i.e. Kleiber’s law exponent α, the speciation rate w , the SAR exponent z

and the exponent θ that describes the scaling of vital rates with body mass), suggests that

the scaling characterization of the stationary state always holds and the linking relationships

in Eqs. 1.46 are always satisfied. Such exploration of the parameter space was performed

starting from the set of parameters w = 10−3, z = 1/4, α= 3/4 and θ = 1/4 (parameters used to

generate Fig. 1.5) and varying one or two parameters at a time, keeping the other ones fixed.

The parameters v0 and c which appear in Eq. 1.48 were fixed to v0 = 1/2 and c = 10−5. The

figures showing the ecological patterns computed at stationarity for each set of parameters

and the corresponding tables reporting the estimates of the scaling exponents are in Appendix

1.8.3. For each set of parameters, the relationships in Eqs. 1.46 are satisfied within errors,

the data collapses predicted by our scaling framework hold and the density scatter-plot of η

versus δ+γ estimated at each time-step (Figs. 1.6–1.12, panel e) is peaked along the 1:1 line,
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implying that the linking relationship (1.46a) is satisfied, on average, at all times.

1.5.2 Bounded multiplicative process

The content of this box is adapted from [Sornette and Cont, 1997].

A multiplicative process w is described by

wt+1 = qt wt (1.49)

where qt > 0 is a stochastic variable with probability distributionΠ(qt ). When the process

has no bound (unless 0), w is distributed according to a log-normal distribution at

stationarity. In fact,

log wt+1 = log qt + log wt =
t∑

i=0
log qi + log w0. (1.50)

The variable x := log w therefore evolves according to a random walk with steps l := log q

distributed according to the probability distribution π(l ) = e lΠ(e l ). Therefore, thanks to

the central limit theorem, and assuming π(l ) has finite variance, x = log w is a gaussian

variable, making w lognormal.

Consider now the case when the process w has a lower bound w0. This corresponds

to putting back wt to w0 as soon as it would become smaller. In terms of the process

x = log w , we then find the following behavior:

• If 〈l〉 > 0, the random walk of x is biased towards +∞, therefore the lower boundary

has no effect in the long term (apart from small boundary effects at x0), therefore

the result is still a lognormal distribution.

• If 〈l〉 < 0, the random walk drifts toward the barrier. At the stationary state, the

drift is balanced by reflection. The stationary solution can be found by writing the

master equation for the process x

P (x, t +1) =
∫ ∞

−∞
π(l )P (x − l , t )dl . (1.51)

When π(l ) is a narrow enough distribution (for example, a gaussian) one can ap-

proximate the master equation by expanding P (x − l ) as

P (x − l ) = P (x, t )− l
∂P

∂x
|x,t + 1

2
l 2 ∂

2P

∂x2 |x,t (1.52)
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which, substituted into the master equation, leads to the Fokker-Plank equation:

∂P (x, t )

∂t
=−〈l〉∂P (x, t )

∂x
+D

∂2P (x, t )

∂x2 (1.53)

where D = 〈l 2〉− 〈l〉2. The stationary solution is of the form Pst at (x) = A − B
s e−sx ,

where s = |〈l〉|
D and A,B are integration constants. The lower boundary is imposed

as ∫ ∞

x0

Pst at (x)d x = 1, (1.54)

which implies A = 0, B = s2e sx0 , therefore Pst at (x) = se s(x−x0). Translating back to

the variable w , this gives

Pst at (w) = sw0
−s

w1+s , (1.55)

that is, a power-law with exponent −(1+ s).

To compare this prediction with the results of the simulations of the stochas-

tic model in section 1.5.1, let us remind that in the model q is distributed as a

lognormal with mean and variance 1. Therefore, l is a gaussian variable with

mean 〈l〉 = 〈log q〉 = − log2
2 and variance var (l ) = var (log q) = log2. Therefore,

s = log2/2
log 2 = 1

2 , and the exponent of the power law is −3/2. However, in the results of

the stochastic models presented in the text, the exponent −δ of the species’ body

mass distribution is always found to be <−2. This difference is due to the not exact

correspondence of the two process of mass evolution following speciation and to

the interplay with ecological dynamics.

1.5.3 Variation on the speciation dynamics

A variation of the basic model is investigated in which the species that goes extinct at each spe-

ciation event (to maintain S constant) is chosen randomly with a weight inversely proportional

to its abundance, but independent of its mass. The model was run with the same parameter

values reported in section 1.5.1 for the basic model. Such modified model is compatible with

the scaling framework, and thus with the predicted pattern covariations, which are verified

within the errors. Table 1.1 in Appendix 1.8.3 reports the corresponding exponents values and

Fig. 1.13 displays the macroecological patterns in this model.

1.5.4 Fluctuating number of species

In order to further investigate the sensitivity of the results to changes in the dynamic model

assumptions, in this section the constraint of a fixed number of species S is relaxed. This is

achieved this by maintaining the ecological dynamics of births and deaths as in the basic
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model and by modifying the speciation dynamics in two different ways:

a. At each time step, the number of species that undergo speciation is drawn from a

Poisson distribution with rate w4. The species that undergo speciation are selected

randomly. At speciation, a random number n′
i < ni of individuals of species i maintains

the original mass mi , whereas a number n j of individuals are assigned to a new species

j with mass m j = max{m0, qmi }, where q is drawn from a lognormal distribution with

constant mean and variance. To avoid instability (i.e. extreme fluctuations, see Chapter

3), the sum of the consumption rates of species i and j after speciation is imposed to be

equal to the consumption rate of species i before speciation. This is done by setting the

abundance of species j such that n′
i mα

i +n j mα
j = ni mα

i , i.e. n j = (ni −n′
i )mα

i /mα
j .

b. Same as in model a, but the species that undergo speciation are selected randomly with

a weight proportional to their abundance, so that more abundant species are more likely

to speciate.

Both these models give rise to the empirically observed set of macroecological laws, with

exponents values depending both on the model specifications and on the model parameters.

Most importantly, despite differences in the speciation dynamics, these models are also

compatible with the scaling framework. Thereby, macroecological patterns in these models

comply with the predicted pattern covariations (Eqs. 1.46). Tables 1.3 and 1.4 in Appendix

1.8.3 report the exponents values measured in these models and Figs. 1.14–1.17 display

the corresponding macroecological patterns. Parameter values used to run the models are

reported in the figures captions.

1.5.5 Value of η in the community dynamics models

The size spectrum exponent η in natural ecosystems typically assumes values η ∈ (1,2] (see

Tables 2.2, 2.3 and 2.4 in Chapter 2), although values of η > 2 can also be found in marine

environments (Table 2.2). All the community dynamics models investigated in the previous

sections yield values of η that are on average larger than 2 (the average is performed over

time, see Tables 1.1, 1.2 and 1.3), although panels e in Figs. 1.6–1.17 show that η can assume

values smaller than 2 at any fixed time point (i.e. in snapshots of the ecosystem). Unfortu-

nately, a suitably broad exploration of the parameters space in the models is computationally

unfeasible, as the estimation of scaling exponents requires several hours of computation

in a high-performance computer in order to properly estimate the tails of the distribution

p(n,m|A). However, based on the exploration of parameters’ space, 〈η〉 = 2 does seem to be a

lower limit in the community dynamics models. Increasing the mean q̄ of the multiplicative

factor q that specifies the mass of the descendant species at a speciation event (this may be

4Note that having species’ specific speciation rate to be a constant, as in the basic model, or total speciation
rate to be a constant does not change qualitatively the results. It only changes the value of the overall speciation
rate, which in the first case is w̃ = wS. Since in this model S fluctuates in time, the second option was chosen to
have a constant overall speciation rate.

32



1.6. Generalizations of the scaling framework

seen as an implementation of Cope’s rule [Rensch, 1948], which postulates that descendant

lineages tend to increase in body size) causes a reduction of the mean size spectrum exponent

〈η〉 (Figs. 1.16 and 1.17, and Table 1.4). Nonetheless, parameter sets that yield 〈η〉 < 2 lead to

communities that are very unstable and that rapidly go towards extinction. It thus appears

that the community dynamics models considered here are missing processes that would allow

multiple species to coexist at a stable equilibrium with 〈η〉 < 2. An hypothetical reason for

this behavior may be the fact that the models assume a well-mixed system, unlike terrestrial

ecosystems such as forests. In this sense, it may not be coincidental that values of η> 2 are

typically found in aquatic ecosystems (Table 2.2) rather than terrestrial ones (Tables 2.2, 2.3

and 2.4).

1.6 Generalizations of the scaling framework

In this section, some generalizations of the scaling framework are presented. Specifically,

section 1.6.1 introduces an intra-specific size distribution in the framework, presenting two

alternative shapes for such distribution based on empirical evidences. Section 1.6.2 accounts

for a curvature in Kleiber’s law, which has been occasionally observed empirically. Section

1.6.3 shows that the framework can be generalized to alternative shapes of the distribution of

species’ typical body masses p(m|A), either having a cut-off or displaying an internal mode.

Finally, section 1.6.4 presents the generalization to a two-trophic level system.

1.6.1 Intra-specific size distribution

In the framework presented in section 1.3, each individual of a species is assumed to have

the same mass, thereby neglecting intra-specific size variability. In this section, the effects of

accounting for intra-specific size distributions are analyzed. Two types of size distributions

with different scaling properties found in empirical datasets are considered: distributions with

an internal mode (e.g. lognormal) and power-laws.

Internal mode intra-specific size distributions

Let p(m|m̄)dm be the probability that an individual of a species with typical body mass m̄ has

an individual body mass m. Assume that m, similarly to m̄, has a lower limit m0. Giometto

et al. [2013] found that protist species belonging to four different phyla and covering five

orders of magnitude in mass have size distributions compatible with the scaling form:

p(m|m̄) = 1

m
F1

(m

m̄

)
, (1.56)

where F1(x) → 0 suitably fast for x → 0 and x →∞. In Giometto et al. [2013], p(m|m̄) was

experimentally found to be compatible (within accuracy) with a log-normal distribution, i.e.

F1(x) = 1p
2πσ2

e−
(log x−µ)2

2σ2 . By assuming that intra-specific size distributions are described by Eq.
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(1.56), the results of the scaling frameworks (section 1.4) hold exactly, as shown in this section.

The moment ( j ,k) is given by:

I j ,k =
∫ ∞

0

∫ ∞

1

∫ ∞

1
n j mk p(n,m̄|A)p(m|m̄) dm dm̄ dn

=
∫ ∞

0

∫ ∞

1
n j p(n,m̄|A)〈mk |m̄〉 dm̄ dn

(1.57)

where :

〈mk |m̄〉 :=
∫ ∞

1
mk p(m|m̄)dm. (1.58)

Usinq Eq .(1.56), one obtains:

〈mk |m̄〉 =
∫ ∞

1
mk−1F1

(m

m̄

)
dm = m̄k

∫ ∞

1/m̄
xk−1F1(x)d x

' m̄k
∫ ∞

0
xk−1F1(x)d x ∝ m̄k

(1.59)

where x = m/m̄ and
∫ ∞

0 xk−1F1(x)d x is a constant. The prolongation of the integral to 0 is

an acceptable approximation when F1 decays sufficiently fast. Substituting this result in Eq.

(1.57), we have

I j ,k =
∫ ∞

0

∫ ∞

1
n j m̄k p(n,m̄|A)dm̄ dn, (1.60)

which corresponds to Eq. (1.26). Therefore, introducing an intra-specific size distribution of

the type in equation (1.56) does not change the scaling of the moments I j ,k with the area. The

linking relationships (1.46b–d), whose derivation relies on the scaling of I j ,k with A, are thus

unchanged.

Furthermore, the linking relationship in Eq. (1.46a) is also unchanged. In fact the size spectrum

is obtained as:

s(m|A) = S

N

∫ ∞

0
n

∫ ∞

1
p(n,m̄|A)m−1F1

(m

m̄

)
dm̄dn

= S

N

∫ ∞

0

∫ ∞

1
m̄−δG

[
nm̄γ

AΦh(m̄/Aλ)

]
m−1F1

(m

m̄

)
dm̄dn

= m−δ S

N

∫ ∞

0

∫ ∞

1/m
x−δG

[
n(xm)γ

AΦh(xm/Aλ)

]
F1

(
1

x

)
d xdn

= m−δ−γAΦ
S

N

∫ ∞

1/m
x−δ−γh

(
xm

Aλ

)
F1

(
1

x

)
d x

∫ ∞

0
G(y)d y,

(1.61)

where x = m̄/m, y = [
n(xm)γ

]
/
[

AΦh(xm/Aλ)
]

and
∫ ∞

0 G(y)d y is a constant. Note that the

scaling of s(m|A) with m cannot be computed analytically from (1.61), because m appears

both at the lower limit of the integral in x and in the argument of h. However, for large m, the

lower limit of the integral in x tends to 0 and thus s(m|A) ∝ m−δ−γh̃(m/Aλ) in the limit of

large m, where h̃(y) = ∫ ∞
0 x−δ−γF1(1/x)h(x y)d x has the same limiting behavior of h(y) at
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y → 0 and y →∞5, and thus the linking relationship η= δ+γ (Eq. 1.46a) still holds.

Eq. (1.46e) is obtained as in section 1.4, with ξ being the exponent of the scaling of the largest

species’ typical mass (not of its largest organism’) with area A. Nevertheless, for an intraspecific

distribution of the form in Eq. (1.56), the largest organism’s mass scales with the area with

the same exponent as the largest species’ mass. In fact, for each species, the body mass of its

largest individual, being the largest sampled value in n extractions from the pdf in Eq. (1.56),

scales linearly with m̄. This is seen by noting that the expected maximum value extracted in n

extractions is the value mmax such that, on average, only one extracted value is ≥ mmax:

1

n
=

∫ ∞

mmax

p(m|m̄)dm =
∫ ∞

mmax

1

m
F1

(m

m̄

)
dm =

∫ ∞

mmax/m̄

1

x
F1(x)d x. (1.62)

Differentiating with respect to m̄ gives

0 =
[

mmaxm̄−2 −m̄−1 dmmax

dm̄

]
m̄

mmax
F1

(mmax

m̄

)
, (1.63)

that is,

0 = mmax

m̄
− dmmax

dm̄
(1.64)

giving

mmax ∝ m̄. (1.65)

Therefore the size of the largest organism of a species with average size m̄ will have the same

scaling as the average. Consequently, Eq. (1.36) still holds with the exponent ξ therein being

both the exponent of the scaling of the largest organism’s mass and of the largest species’ mass

with the area.

In conclusion, introducing intra-specific variability in mass according to Eq. (1.56) does not

alter the linking relationships (1.46).

Power-law intra-specific size distributions

In tree communities, intra-specific size distributions are much wider than the distribution

described by (1.56). An analysis of intra-specific tree size-distribution of Barro Colorado Island

(BCI, Panama) and the Luquillo forest (Puerto Rico), presented in section 2.3 of next chapter,

5 Because limx→∞ h(x) = 0, limx→0 h(x) = h0, h(x) ≤ h0 and
∫ ∞

0 x−δ−γF1(1/x)d x < ∞ if δ+ γ > 1, then
limy→∞ h̃(y) = 0 and limy→0 h̃(y) = const follows from the Lebesgue’s dominated convergence theorem.
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showed that such distributions are characterized by the following finite-size scaling form:

p(m|m̄) = m−∆F2

( m

m̄Ω

)
, (1.66)

where Ω = 1/(2−∆) ensures that
∫

mp(m|m̄)dm = m̄ and F2(x) is a scaling function with

limiting behaviors F2(x) → const for x → 0 and F2(x) → 0 more rapidly than any power of x

for x →∞. The exponent ∆, fitted as explained in section 2.3, has value ∆ = 1.12±0.06 for

the BCI forest and ∆= 1.14±0.03 for the Luquillo forest. Note that, although the shape of Eq.

(1.66) seems similar to Eq. (1.56), the different properties of the finite-size functions render

the two distribution very different. Eq. (1.56), in fact, describes a distribution with an internal

mode around which most of the individuals’ sizes are found, since the tails of the distribution

are thin. The sizes of a tree species described by Eq. (1.66) are still characterized by a finite

mean, thanks to the cut-off function, but have no internal mode as they show a power-law

behavior before the cut-off.

Equation (1.66) implies some small corrections to the relationships linking the scaling expo-

nents, some of which can be computed exactly. Using Eq.(1.66) one has:

〈mk |m̄〉 =
∫ ∞

1
mk−∆F2

( m

m̄Ω

)
dm = m̄Ω(1+k−∆)

∫ ∞

1/m̄Ω
xk−∆F2(x)d x

= m̄Ω(1+k−∆)
[

c
∫ 1

1/m̄Ω
xk−∆d x +

∫ ∞

1
xk−∆F2(x)d x

]
= m̄Ω(1+k−∆)

[
c̃ m̄−Ω(1+k−∆) +

∫ ∞

1
xk−∆F2(x)d x

]
∝ m̄max{0,Ω(1+k−∆)},

(1.67)

where c, c̃ are constants and we used the properties of F2(x) to ensure that the integral∫ ∞
1 xk−∆F2(x)d x converges and to substitute F2(x) ∼ c when x < 1. The ( j ,k)th moment I j ,k

is obtained by substituting (1.67) in (1.57):

I j ,k =
∫ ∞

0

∫ ∞

1
n j m̄max{0,Ω(1+k−∆)}p(n,m̄|A)dm̄ dn

∝ A jΦ+max{0,λ(1−δ− jγ+max{0,Ω(1+k−∆)})},
(1.68)

where the calculations have been performed similarly to the ones in section 1.4.1. Equation

(1.68) differs only slightly from (1.26), the corresponding equation in the case without an

intraspecific size distribution. As a result, a small correction applies to the linking relationship

(1.46b): the term α in equation (1.46b) is substituted by 1+α−∆
2−∆ , which for the empirical value

∆= 1.12±0.06 found for BCI results in a very small correction C =α− 1+α−∆
2−∆ = (α−1)

(1−∆
2−∆

)' 0

which is compatible with zero, given that ∆ is compatible with one (within two standard

deviations). Equations (1.46c,1.46d and 1.46e) are unchanged.

The size-spectrum cannot be computed exactly. However, it is possible to derive an approx-

imation that holds for large m (see Appendix 1.8.2), which is a power-law with exponent:
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η̃=∆− (2−∆)(1−δ−γ), (1.69)

The correction to the linking relationship (1.46a) is small because the difference between

η = δ+γ computed via (1.46a) and η̃ computed via (1.69) is η− η̃ = (∆−1)(δ+γ−2) which,

again, is compatible with zero within two standard deviations. Using the values of δ and

γ estimated in for the Barro Colorado Island forest in Chapter 2 (see Table 2.3), we find

η− η̃'−0.07±0.03.

1.6.2 Kleiber’s law with curvature

The constraint on the total resource consumption of the community has been imposed

assuming that an organism of body mass m has a metabolic rate determined by a power of its

body mass, b ∝ mα. Nevertheless, empirical evidence exists supporting that Kleiber’s law may

differ from a simple power-law, as it purportedly displays curvatures in a metabolic rate-mass

log-log plot [Dodds et al., 2001, Kolokotrones et al., 2010, Mori et al., 2010, Marañón et al.,

2013, Banavar et al., 2014, Ballesteros et al., 2018]. Mori et al. [2010], for example, found that

trees’ respiration rates scale linearly with m until m1 ' 40 g and as m3/4 above, which might

be explained by the change in the ratio of photosynthetically active biomass to total biomass

from saplings to adult trees. For mammals, respiration rates have been claimed [Dodds et al.,

2001] to scale as m2/3 (reflecting surface-to-volume scaling for constant organismic body

density) until m ' 400 g and as m3/4 above and in general a variety of α values have been

observed, ranging from 2/3 to 1. A proposed explanation [Ballesteros et al., 2018] is that the

energy consumption of an organism is the sum of the energy dispersed as heat, proportional

to m2/3, and the energy necessary to sustain vital processes, proportional to m. The resulting

energy consumption would be the sum of two power-laws with different exponents, resulting

in an apparent exponent in the interval (2/3,1), with variable value depending on the observed

range of m, as one or the other term might in turn dominate. The implications of a departure

of Kleiber’s law from a pure power-law on the other macroecological patterns can be inferred

by plugging in a modified Kleiber’s law in the resource constraint. As suggested in [Ballesteros

et al., 2018], let us consider the sum of two powers of m:

b(m) = c0mα0 + c1mα1 (1.70)

where c0,c1 are positive constants and 0 <α0 <α1. Eq. (1.70) describes a convex curvature in

Kleiber’s law. Using Eq. (1.70) one can compute the total community consumption rate per
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species:

B/S =
∫ ∞

1

∫ ∞

0
n b(m) p(n,m|A) dndm

=(δ−1)
∫ ∞

1

∫ ∞

0
b(m)m−δG

[
nmγ

AΦ
1

h
(
m/Aλ

)]
dndm

∝AΦ
∫ ∞

1
b(m)m−γ−δh

(
m

Aλ

)
dm

∫ ∞

0
G(x)d x

∝AΦ
∫ ∞

1
c0mα0−γ−δh

(
m

Aλ

)
dm + AΦ

∫ ∞

1
c1mα1−γ−δh

(
m

Aλ

)
dm

=c̃0 AΦ+max{0,λ(1+α0−γ−δ)} + c̃1 AΦ+max{0,λ(1+α1−γ−δ)},

(1.71)

where c̃0 and c̃1 are constants and the properties of h have been used to carry out the inte-

grations. Therefore, the specific community consumption rate B/S scales as the sum of two

powers of A. Imposing the resource constraint B ∝ A, we find that the SAR has the following

behavior:

S ∝ A1−Φ

c̃0 Amax{0,λ(1+α0−δ−γ)} + c̃1 Amax{0,λ(1+α1−δ−γ)}
(1.72)

Depending on the value of α0 and α1, therefore, the situation differs. If 1+α0 −δ−γ,1+α1 −
δ−γ> 0

S ∝ A1−Φ−λ(1+α1−δ−γ)

c̃0 Aλ(α0−α1) + c̃1
. (1.73)

Recalling that α1 > α0, in the large A limit c̃1 À c̃0 Aλ(α0−α1) therefore asymptotically z =
1−Φ−λ(1+α1 −δ−γ). For smaller areas, where c̃1 < c̃0 Aλ(α0−α1), the scaling exponent would

be z̃ = 1−Φ−λ(1+α0 −δ−γ) > z, therefore the SAR would appear concave. The initial slope

differs from the asymptotic slope by ∆z =λ(α1 −α0). If 1+α1 −δ−γ> 0 but 1+α0 −δ−γ< 0,

the situation is similar but the exponents differ by ∆z =λ(1+α1 −δ−γ). In both these cases

the SAR is not a pure power-law but for large A the smaller exponent dominates, therefore one

has, asymptotically,

z = 1−Φ−max{0,λ(1+α0 −γ−δ)}. (1.74)

For intermediate values of A the slope will appear steeper, with an exponent intermediate

between the two. The value of A at which Eq. (1.74) begins to be valid depends on the values of

c0,c1,α0,α1. Therefore, under these conditions a convex curvature in the relationship between

individual metabolic rates and body mass causes a concave curvature in the scaling of S with

A.

If, instead, 1+α0 −δ−γ,1+α1 −δ−γ< 0, one simply has S ∝ A1−Φ, therefore:

z = 1−Φ. (1.75)
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In this case, the curvature in Kleiber’s law has no effect on the SAR. In conclusion, a convex

curvature in Kleiber’s law might or might not imply a concave curvature in the SAR, depending

on the values of the scaling exponents.

1.6.3 Alternative hypotheses on p(m|A)

In section 1.3 we considered p(m|A) to be a pure power function, with only the cut-off on

abundances (Damuth’s law) to hinder the presence of organisms larger than sustainable

sizes. In this section, we will analyze possible relaxations of this hypothesis which do not

compromise analytical tractability.

A-dependent cut-off

Here we consider the presence of an A-dependent cut-off at large sizes, similar to the one

imposed in Damuth’s law:

p(m|A) = m−δH1

(
m

Aλ

)
(1.76)

with δ > 1 (for normalization purposes), where the exponent λ is the same as the one of

the cut-off in Damuth’s law (1.18) and where H1(x) is such that limx→0 H1(x) = const and

l i mx→∞H1(x) = 0. The presence of this additional cut-off does not prevent the computation

of moments and of the community size spectrum. Both calculations are performed as in

section 1.4, the only difference consisting in the product H1

(
m
Aλ

)
h j

(
m
Aλ

)
, j = 1,2, playing

the role of h j
(

m
Aλ

)
. The linking relationships (1.2), (1.32a–1.32c) remain therefore valid. The

cut-off in the community size-spectrum is now given by the product of the two functions

H1 and h. However, it is not possible to compute analytically the size of the largest species,

therefore we cannot provide the equivalent of Eq. (1.36) in this scenario.

A-independent cut-off

Eq. (1.35) predicts that, if z > 0, the maximum species’ mass increases with A as mmax = Aξ.

When A is very large, area-independent constraints could settle in to limit the maximum body

size, either due to physiological limits or due to competitive ecological dynamics making

larger body sizes unfavorable. Because ξ= z/(δ−1), the critical value of A above which the

maximum body size is independent of A is equal to Ac = M (δ−1)/z
0 , with M0 the maximum

size allowed independent of A. This observation can be reconciled with our framework by

generalizing Eq. (1.17) as:

p(m|A) = m−δH2

(
m

M0

)
, (1.77)
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where the cutoff function H2 is such that H2(x) ' const when x ¿ 1 and

limx→∞ H2(x)/xmax{2−δ−γ,1−δ} = 0. This generalization of Eq. (1.17) does not affect our

results for A < Ac . In fact, the joint probability distribution in such a generalized setting reads:

p(n,m|A) = n−1m−δH2

(
m

M0

)
G

[
nmγ

AΦh(m/Aλ)

]
(1.78)

and integrals of this distribution (e.g. marginals and moments) depend on which of the two

finite-size cutoffs (h and H2) sets in at the lowest value of m. We show this by calculating the

moment I j ,k with j ,k > 0:

I j ,k =
∫ ∞

1

∫ ∞

0
n j−1mk−δG

[
nmγ

AΦh(m/Aλ)

]
H2

(
m

M0

)
dndm

= A jΦ
∫ ∞

1
mk−δ− jγh j

(
m

Aλ

)
H2

(
m

M0

)
dm

∫ ∞

0
x j−1G(x)d x,

(1.79)

where the properties of G ensure the convergence of the integral in x. The scaling of I j ,k with

A is thus determined by which of the two functions h j (m/Aλ) and H (m/M0) decays earlier in

m. For A < M 1/λ
0 , the function h decays before H2, and therefore nothing changes with respect

to the case in section 1.4. For A > M 1/λ
0 , the function H2 decays before h, therefore h can be

neglected, and we obtain:

I j ,k ∝ A jΦ
∫ ∞

1
mk−δ− jγH2

(
m

M0

)
dm ∝ A jΦ, (1.80)

where the integral in m converges owing to the properties of H2. Therefore, for large areas the

linking relationships (1.46b–1.46e) are substituted by

z = 1−Φ (1.81a)

ν= 1 (1.81b)

µ= 1 (1.81c)

ξ= 0. (1.81d)

This could be the situation for the two forest datasets analyzed in section 2.3, where one

should have λ= 0 to verify the reasonable assumption µ= ν= 1 (see section 2.3 for details).

Eq. (1.46a), instead, remains unchanged although the cutoff in the size spectrum is now given

by the function H2

(
m
M0

)
. Furthermore, the cutoff in Damuth’s law would not be observable

due to the extremely low probability to observe a species with m > M0. In conclusion, when

maximum body size is limited by a constraint independent from the ecosystem area, the

scaling exponents related to area (z, ν and µ) have a crossover at the area where the constraint

is attained, Ac . Note, however, that if η ≥ 2 Eqs (1.46b–1.46d) reduce to Eqs (1.81a–1.81c),

therefore there is no crossover.
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Internal mode

Some empirical studies [Siemann et al., 1996, Labra et al., 2015] found a p(m|A) showing an

internal mode, well-fitted by a log-normal.This case can be described as

p(m|A) = m−δH3

( m

Aλ

)
(1.82)

where H3(x) is such that limx→0,∞ x j H3(x) = 0 ∀ j . Normalization requires δ = 1. p(m|A)

described by Eq. (1.82) has therefore a peak around a size mp ∝ Aλ, where λ is taken to be

the same exponent appearing in Damuth’s law cut-off for ease of calculations. Note that this

does not mean that p(m|A) peaks at the same size at which Damuth’s law cut-off starts to

be effective, but only that the two points scale with the same power of A. The scaling of the

( j ,k)th-moment ( j = 1,2, k ∈ [0,1]) with A, for large A, can be computed as:

I j ,k =
∫ ∞

1

∫ ∞

0
n j mk p(n,m|A) dn dm

=
∫ ∞

1
mk−1H3

( m

Aλ

)∫ ∞

0
n j−1G

[
nmγ

AΦ
1

h
(
m/Aλ

)]
dn dm

= A jΦ
∫ ∞

1
mk−1− jγH3

( m

Aλ

)
h j

(
m

Aλ

)
dm

∫ ∞

0
x j−1G (x)d x

∝ A jΦ
∫ ∞

1
mk−1− jγH3

( m

Aλ

)
h j

(
m

Aλ

)
dm

∝ A jΦ+λ(k− jγ)
∫ ∞

1/Aλ
yk−1− jγH3(y)h j (y)d y ∝ A jΦ+λ(k− jγ),

(1.83)

where x = nmγ

AΦ
1

h(m/Aλ) and y = m
Aλ . We used the property (1.21) to ensure that the integral∫ ∞

0 x j−1G (x)d x converges for j = 1,2 and, in the last passage, the properties of H3 to note

that the integral depends only weakly on the lower extreme 1/Aλ. Therefore, using I j ,k ∝
AΦ j+λ(k−γ j ) to obtain the scalings of S, N and M as was done in section 1.4.1, the linking

relationships (1.46b–1.46d) are replaced by:

z = 1−Φ−λ(α−γ) (1.84a)

ν= 1−λα (1.84b)

µ= 1+λ(1−α) (1.84c)

The community size-spectrum is computed as:

s(m|A) = S

N

∫ ∞

0
np(n,m|A)dn = S

N
m−1H3

( m

Aλ

)∫ ∞

0
dnG

( nmγ

AΦh(m/Aλ)

)
∝ m−1

( Aλ

m

)γ
H3

( m

Aλ

)
h
( m

Aλ

)
= m−1H

( m

Aλ

) (1.85)

where H (x) := x−γH3(x)h(x) is such that limx→0,∞ x j H (x) = 0 ∀ j . Therefore, s(m|A) is not a

power-law, but has an internal mode, similarly to p(m|A). The generalization of Eq. (1.46e) in
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this scenario cannot be computed analytically.

1.6.4 Multiple trophic levels

The metabolic constraint imposed, B ∝ A, refers to a community competing for the same

resources, i.e. a single trophic level. The results obtained apply, therefore, to primary produc-

ers, e.g. forests or phytoplanktonic communities, or to consumers competing for the same

resource like herbivorous mammals or predators sharing the same preys.

Consider now a simple foodweb made of two trophic levels, with one level feeding on abiotic

factors like light (i.e. the producers) and the other feeding on the lower trophic level (i.e. the

consumers). In such an ecosystem, producers would be described by the framework in section

1.3 where resources are limited by ecosystem area, that is, R ∝ A, while consumers would

be described by the same framework where the limiting resource is now the total producers’

biomass, which scales as Aµp (the subscript p identifies the producers). For the producers’

trophic level, Eqs (1.46) are therefore valid. At the consumers’ level, instead, the different

resource scaling affects the SAR exponent directly, as:

zc =µp −Φc −max{0,λc (1+αc −ηc )}, (1.86)

which differs from (1.46b) only for the exchange of 1 with µp (the subscript c identifies the

consumers). Such modification propagates to equations (1.46c) and (1.46d) (recall that N =
SI1,0 and M = SI1,1) which become:

µc =µp +max{0,λc (2−ηc )}−max{0,λc (1+αc −ηc )},

νc =µp −max{0,λc (1+αc −ηc )}.
(1.87)

Note, however, that µp is possibly equal to one in many ecosystems. In such a case, the con-

sumers level is described exactly by the framework in section 1.3. Analogous generalizations

to multiple trophic levels are possible.

In summary, in a multi-trophic level system, the linking relationships Eqs (1.46) are valid within

single trophic levels. Power law distributions and relationships, however, are usually observed

empirically even across trophic levels. For example, power-law size spectra are routinely

observed in marine microbial ecosystems over several orders of magnitude in organismic size

[Sheldon et al., 1972] comprising both primary producers and consumers (and measurable

regardless of species below a threshold mass, say, via flow cytometry e.g.[Cavender-Bares

et al., 2001]). If the scaling exponents exhibit the same value (within accuracy) in all trophic

levels, global scaling laws will have the same exponents as the single-level ones, therefore the

relationships Eqs (1.46) are valid globally. On the other hand, if the exponents differ across

trophic levels the situation becomes more difficult to sort out. Suppose, for example, that in

the simple two-level system described above the numbers of species in the two levels scale

respectively as Sp = cp Azp and Sc = cc Azc , where the subscripts p and c refer to producers and
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consumers. The total number of species S = Sp +Sc is not a pure power-law, although when

zp − zc is small it will look very similar to one. If fitted to a power-law, the apparent exponent

will be comprised between zp and zc , with the exact value determined by the weights cp and

cc . The other scaling laws behave similarly, but unfortunately it is not possible to find simple

relationships linking them.

1.7 Discussion

The theoretical framework proposed here produces model-free testable predictions on the

relationships among ecological laws, rationalizing the observed variability of ecological expo-

nents across ecosystems. Jointly with empirical evidence (which will be presented in Chapter

2), the framework supports the tenet that scaling exponents may vary across ecosystems but

must satisfy consistency relationships that result in exact covariations of ecological patterns.

One of the main conclusions of this theoretical work is that, when applying scaling laws, for

example in conservation, care should be exerted not to combine exponents measured in dif-

ferent settings, which may not satisfy the relationships (1.46) leading to incorrect predictions

for unmeasured patterns.

The investigation of dynamic birth, death and speciation models presented in section 1.5

corroborates the generality of the scaling framework and the predicted pattern covariations.

In fact, all the models investigated that are compatible with the empirically observed macroe-

cological patterns are all characterized by the same scaling properties of p(n,m|A), which

are encapsulated in the scaling framework and univocally specify the pattern covariations in

Eqs. 1.46. Therefore, Eqs. (1.17),(1.18) and (1.20) do not rely on specific assumptions about

the population and speciation dynamics of a community, but rather specify the universal

scaling properties that possibly any dynamic model compatible with the empirically observed

macroecological laws must satisfy. Furthermore, the pattern covariations predicted by the

scaling framework agree with broad empirical evidence (see Chapter 2) and with heuristic ar-

guments, like for example the back-of-the-envelope calculations reported in section 1.1. Thus,

one can speculate that such scaling framework describes not only the community dynamics

models studied in section 1.5, but more generally any ecosystem subject to the constraint

of finite resource supply rate. The basic model is thus arguably the simplest of a class of

models that share the same scaling properties of the fundamental distribution, which in turn

imply the same covariations of ecological patterns. This is akin to the concept of universality

class [Stanley, 1999, Stanley and Amaral, 2000], applied to the scaling form rather than to the

exponents of the joint probability distribution and of ecological scaling laws.

It must be understood, however, that the scaling framework does not predict the values of

scaling exponents, but rather their covariations. The various community dynamic models

studied here, instead, do predict scaling exponents values, which emerge from the rates

and assumptions concerning birth, death and speciation events. However, there may exist

several dynamic models capable of reproducing quantitatively one specific set of exponents’
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Chapter 1. Covariations in ecological scaling laws

values, as it is often the case that several processes lead to the same pattern [Newman, 2007].

Furthermore, the dynamic models presented here cannot be claimed to describe any real

ecosystem in all its complexity, as such models are of course overly simplified to encompass

the broad range of processes that may set the values of macroecological scaling exponents

(e.g. species’ interactions, landscape structure and ecological disturbances, to name a few).

When modelling any natural process, the first step is that of abstraction: unnecessary details

are removed, until one reaches the simplest model that is still compatible with the observed

patterns, which for the purpose of this investigation are the functional forms of the various

scaling relationships and distributions. In this sense, the studied models of birth, death and

speciation arguably capture the essential ingredients that produce the empirically-observed

functional forms of macroecological laws and that set the scaling properties of the joint

distribution of mass and abundance, and thus the pattern covariations. The exact values of the

macroecological scaling exponents, instead, are most likely determined by several processes

that are not included in the community dynamics models considered here, but can be properly

described by the scaling framework.

The proposed framework adopts the minimum set of hypotheses allowing to reproduce

widespread macroecological patterns found in empirical data, without compromising analyti-

cal tractability. Such analytical tractability is important in this context because it highlighs

the relationships among macroecological patterns in simple terms, i.e. via algebraic rela-

tionships among their scaling exponents. In section 1.6, generalization to the framework

were presented which prove its flexibility in assimilating novel empirical ecological evidence.

Specifically, the framework may account for two different intra-specific size distributions, one

which applies to marine microorganisms and one which applies to tropical tree species, and

for curvatures affecting Kleiber’s law [Kolokotrones et al., 2010, Mori et al., 2010, Marañón

et al., 2013, Banavar et al., 2014]. These generalizations imply small (or no) corrections to the

linking relationships obtained in section 1.4, suggesting that macroecological laws are quite

robust with respect to change in ecosystem details. In particular, there are no corrections to

the linking relationships highlighted in 1.4 if the intra-specific body size distributions has an

internal mode (e.g., as found for unicellular protists [Giometto et al., 2013]). Conversely, small

deviations to such linking relationships arise if the intra-specific body size distribution is a

power law, as shown for tree species. Additionally, a concave curvature in the SAR might stem

from a convex curvature in Kleiber’s law, depending on the value of the scaling exponents.

The framework proved also capable of including a cut-off in the species’ size distribution

p(m|A) or its possible non-scaling form. The effects of these assumptions on the other scaling

laws were derived, showing in particular how an internal mode in p(m|A) translates into a

corresponding internal mode in the community size-spectrum. It is argued that such flexibility

makes our framework widely adaptable to describe diverse empirical settings and to find the

implications of particular ecological assumptions. In the most general scenario in which the

dependence of p(m|A) on m and 〈n|m, A〉 on m and A cannot be expressed as in (1.17) and

(1.18) (which, however, are compatible with several empirical case studies) nor described by

the generalizations treated in section 1.6, one would have to rely on numerical methods to
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derive the covariations between macroecological patterns, following the same route adopted

in our theoretical investigation. Generalizations of Eqs. (1.46) would hold in this scenario, al-

though they would be expressed as integral equations in terms of the probability distributions

introduced above.
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1.8 Appendix

1.8.1 Relative species abundance (RSA)

The RSA is the distribution of species abundances p(n|A). In our framework it can be obtained

by marginalizing p(n,m|A) over m:

p(n|A) =
∫ ∞

1
p(n,m|A)dm

= (δ−1)n−1
∫ ∞

1
m−δG

(
n

〈n|m, A〉
)

dm.
(1.88)

This integral cannot be computed in the general case, that is, without specifying G and h.

We compute it here for the particular choice G(x) = 1p
πσ

e−
1
σ

(log x+σ/4)2
, with σ> 0 constant.

Note that
∫ ∞

0 G(x)d x = ∫ ∞
0 G(x)/xd x = 1 as prescribed in sections 1.3 and 1.4. For h(x), it is

sufficient to know that h(x) is monotonically decreasing to carry out the calculations, but to

simplify the expressions we take h(x) = h0e−x with h0 > 0 constant. With these assumptions,

p(n|A) reads:

p(n|A) = 1

n

δ−1p
πσ

∫ ∞

1
m−δe f (m)dm, (1.89)

where we defined

f (m) =− 1

σ

[
log

(
nmγ

h0 AΦ

)
+ m

Aλ
+ σ

4

]2

. (1.90)

The integral in (1.89) cannot be computed analytically. However, noticing that the contribution

to the integral is maximum when m = m∗ where m∗ maximizes f (m), we can approximate

the integral for certain values of n. The approximation is akin to the Laplace method, but it is

not possible to give an upper bound on the error made by the approximation. Nonetheless,

the approximation can be compared to the numerical computation of p(n|A) (see Fig. 1.2).

The derivative of f (m) reads:

f ′(m) =− 2

σ

[
log

(
nmγ

h0 AΦ

)
+ m

Aλ
+ σ

4

](
γ

m
+ 1

Aλ

)
. (1.91)

Note that the derivative f ′(m) is negative for any m ∈ [1,∞] if n > AΦh0e−1/Aλ

e−σ/4 '
AΦh0e−σ/4. Thus, for n À AΦh0e−σ/4 (i.e. in the tail of the distribution) f (m) is maximum at
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m∗
tail = 1 and the approximation gives:

p(n|A)tail =
1

n

δ−1p
πσ

e
− 1
σ

[
log

(
n

h0 AΦ

)
+ 1

Aλ
+ σ

4

]2

2
σ

[
log

(
n

h0 AΦ

)
+ 1

Aλ + σ
4

](
γ+ 1

Aλ

)
' 1

n

δ−1p
πσ

e
− 1
σ

[
log

(
n

h0 AΦ

)
+ σ

4

]2

2γ
σ

[
log

(
n

h0 AΦ

)
+ σ

4

] .

(1.92)

Note that the tail of the RSA resembles that of a lognormal distribution, which is typically found

empirically [Azaele et al., 2016], plus a correction of the form C1 +C2 logn at the denominator,

where C1 depends on A.

If n < AΦh0e−1/Aλ

e−σ/4 ' AΦh0e−σ/4, the maximum of f (m) occurs at a value m̂ > 1. However,

one cannot solve f ′(m) = 0 analytically to determine m̂. We can approximate the RSA at small

and intermediate values of n as follows. The behavior of p(n|A) can be characterized for

n ' AΦh0e−σ/4 by recognizing that, at such values of n, the value m∗
body maximizing f (m) is

close to 1. Therefore, we approximate log
(

nmγ

h0 AΦ em/Aλ
)
' log

(
nmγ

h0 AΦ e1/Aλ
)

in f ′(m) = 0 (see Eq.

1.91) and solve for m, yielding m∗
body '

[
AΦh0

n e−1/Aλ

e−σ/4
] 1
γ

. By applying the approximation

method, one finds that the approximation for the RSA for n ' AΦh0e−σ/4 is:

p(n|A)body = δ−1

γ

[
AΦh0e−

σ
4

] 1−δ
γ

n−1− 1−δ
γ , (1.93)

which is a power law with exponent −1− 1−δ
γ . The extents of the tail and body of the RSA

distribution depend on the values of h0 and σ.

1.8.2 Community size-spectrum with intra-specific size-distribution

In the case of section 1.6.1, the size spectrum is given by:

s(m|A) = S

N

∫ ∞

0
n

∫ ∞

1
p(n,m̄|A)m−∆F

( m

m̄Ω

)
dm̄dn

= S

N

1

m∆

∫ ∞

1

1

m̄δ
F

( m

m̄Ω

)∫ ∞

0
G

[
nm̄γ

AΦh(m̄/Aλ)

]
dn dm̄

= S

N
m−∆+(1−δ)/Ω

∫ m

0
x(δ−1)/Ω−1F (x)

×
∫ ∞

0
G

[
n(m/x)γ/Ω

AΦh
[
(m/x)1/Ω/Aλ

]]
dn d x

= S

N
AΦm−∆+(1−δ−γ)(2−∆)

∫ ∞

0
G(y)d y

×
∫ m

0
x(2−∆)(δ+γ−1)−1F (x)h

[
(m/x)1/Ω

Aλ

]
d x

(1.94)
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where x = m/m̄Ω,Ω= 1/(2−∆),

y = [
n(m/x)1/Ω

]
/
{

AΦh
[
(m/x)1/Ω/Aλ

]}
and

∫ ∞
0 G(y)d y is a constant. Note that we cannot

compute the scaling exponent of s(m|A) with m exactly, because x and m are found in the

arguments of both F and h. We can, however, derive an approximation that holds for large

m. This is most easily seen if we assume that no finite-size effect is found in Damuth’s law, i.e.

h = const, for which we have:

s(m|A) ∝ S

N
AΦm(2−∆)(1−δ−γ)−∆

∫ m

0
x−(2−∆)(1−δ−γ)−1F (x)d x. (1.95)

When m À 1, the fast decay of F makes the integral depend only weakly on m. Therefore

s(m|A) is, to a good approximation, a power-law with exponent:

η=∆− (2−∆)(1−δ−γ), (1.96)

which generalizes Eq. (1.2) to the case of intra-specific size distributions as in (2.14).

When h is not constant, going back to Eq. (1.94), for m À 1 we make a small mistake

if we extend the upper limit of the integral in x to ∞. In analogy to the calculations

performed in section 1.6.1, we find s(m) ∝ m(2−∆)(1−δ−γ)−∆h̃
(
m/AλΩ

)
, where the function

h̃(y) = ∫ ∞
0 x−(−2−∆)(1−δ−γ)F (x)h

[
(y/x)1/Ω

]
d x has the same limiting behavior of h(y) for

y → 0 and y → ∞6. Therefore, the linking relationship in (1.96) holds also when h is not

identically constant.

6 Because limx→∞ h(x) = 0, limx→0 h(x) = h0, h(x) ≤ h0 and
∫ ∞

0 x−δ−γF (1/x)d x < ∞ if δ+ γ > 1, then
limy→∞ h̃(y) = 0 and limy→0 h̃(y) = const follows from the Lebesgue’s dominated convergence theorem.
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1.8.3 Supplementary figures and tables
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Figure 1.6 – Basic model statistics with parameters z = 1/4, w = 10−3, α = 3/4, θ = 1/4 (simulation
results shown in Fig. 1.5). Different colors refer to different values of A = 10i , from i = 1 (lower blue
curve in panel c) to i = 8 (upper blue curve in panel c). Panels a-c, f and h show respectively p(m|A),
s(m|A), 〈n|m, A〉, p(n|m, A) and p(mmax|A) estimated at stationarity. Panels d, g and i show collapses
of simulation data for 〈n|m, A〉, p(n|m, A) and p(mmax|A), respectively. Panel e shows the density
scatter-plot of δ+γ versus η. The density histogram is normalized to one, with blue representing the
value zero and yellow the value one. Shown are simulation data for the largest area A = 108. Panel l
shows the scaling of the average total biomass 〈M〉 (blue crosses and dashed lines) and average total
abundance 〈N〉 (black dots and dashed lines) with A. See Table 1.1 for estimates of exponents’ values.

   a                b              c     d                 e

 

   f             g               h      i                l

m
100 104 10810

-1
8

10
-9

10
0

m m

A

‹N
›, 

‹M
›

η
1.3 3.8

δ+
γ

1.
3

3.
8

100 104 10810
-1

8
10

-9
10

0

100 105 101010
0

10
6

10
9

10-5 100 10510
0

10
3

10
5

A
-Ф

m
γ ‹

n|
m

,A
›

p(
m

|A
)

s(
m

|A
)

‹n
|m

,A
›

100 106 101210
-1

8
10

-9
10

0

10-8 10-2 10410
-1

5
10

-6
10

3

100 104 10810
-1

4
10

-7
10

0

10-1 103 10710
-1

2
10

-5
10

2

100 10710
6

10
12

n

p(
n|

m
,A

)

n/‹n|m,A›

n 
p(

n|
m

,A
)

mmax

p(
m

m
ax

|A
)

mmax/A
ω

m
χ p

(m
m

ax
|A

)

m/Aλ

10
3

104

10
9

1:1 line

Figure 1.7 – Basic model statistics with parameters z = 1/4, w = 10−4, α= 3/4, θ = 1/4. Different colors
refer to different values of ecosystem area A = 10i , with i = 2 (cyan);3 (orange);4 (yellow);5 (purple);6
(green). Panels a-c, f and h show respectively p(m|A), s(m|A), 〈n|m, A〉, p(n|m, A) and p(mmax|A)
estimated at stationarity. Panels d, g and i show collapses of simulation data for 〈n|m, A〉, p(n|m, A)
and p(mmax|A), respectively. Panel e shows the density scatter-plot of δ+γ versus η. The density
histogram is normalized to one, with blue representing the value zero and yellow the value one. Shown
are simulation data for the largest area A = 106. Panel l shows the scaling of the average total biomass
〈M〉 (blue crosses and dashed lines) and average total abundance 〈N〉 (black dots and dashed lines)
with A. See Table 1.1 for estimates of exponents’ values.
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Figure 1.8 – Basic model statistics with parameters z = 1/4, w = 10−5, α = 3/4, θ = 1/4. Different
colors refer to different values of ecosystem area A = 10i , with i = 3 (cyan);4 (orange);5 (yellow);6
(purple). Panels a-c, f and h show respectively p(m|A), s(m|A), 〈n|m, A〉, p(n|m, A) and p(mmax|A)
estimated at stationarity. Panels d, g and i show collapses of simulation data for 〈n|m, A〉, p(n|m, A)
and p(mmax|A), respectively. Panel e shows the density scatter-plot of δ+γ versus η. The density
histogram is normalized to one, with blue representing the value zero and yellow the value one. Shown
are simulation data for the largest area A = 106. Panel l shows the scaling of the average total biomass
〈M〉 (blue crosses and dashed lines) and average total abundance 〈N〉 (black dots and dashed lines)
with A. See Table 1.1 for estimates of exponents’ values.
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Figure 1.9 – Basic model statistics with parameters z = 1/4, w = 10−3, α= 1/2, θ = 1/4. Different colors
refer to different values of ecosystem area A = 10i , with i = 2 (cyan);3 (orange);4 (yellow);5 (purple);6
(green). Panels a-c, f and h show respectively p(m|A), s(m|A), 〈n|m, A〉, p(n|m, A) and p(mmax|A)
estimated at stationarity. Panels d, g and i show collapses of simulation data for 〈n|m, A〉, p(n|m, A)
and p(mmax|A), respectively. Panel e shows the density scatter-plot of δ+γ versus η. The density
histogram is normalized to one, with blue representing the value zero and yellow the value one. Shown
are simulation data for the largest area A = 106. Panel l shows the scaling of the average total biomass
〈M〉 (blue crosses and dashed lines) and average total abundance 〈N〉 (black dots and dashed lines)
with A. See Table 1.1 for estimates of exponents’ values.
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Figure 1.10 – Basic model statistics with parameters z = 1/4, w = 10−3, α = 1/4, θ = 1/4. Different
colors refer to different values of ecosystem area A = 10i , with i = 2 (cyan);3 (orange);4 (yellow);5
(purple);6 (green). Panels a-c, f and h show respectively p(m|A), s(m|A), 〈n|m, A〉, p(n|m, A) and
p(mmax|A) estimated at stationarity. Panels d, g and i show collapses of simulation data for 〈n|m, A〉,
p(n|m, A) and p(mmax|A), respectively. Panel e shows the density scatter-plot of δ+γ versus η. The
density histogram is normalized to one, with blue representing the value zero and yellow the value one.
Shown are simulation data for the largest area A = 106. Panel l shows the scaling of the average total
biomass 〈M〉 (blue crosses and dashed lines) and average total abundance 〈N〉 (black dots and dashed
lines) with A. See Table 1.1 for estimates of exponents’ values.
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Figure 1.11 – Basic model statistics with parameters z = 1/4, w = 10−3, α = 3/4, θ = 1/2. Different
colors refer to different values of ecosystem area A = 10i , with i = 2 (cyan);3 (orange);4 (yellow);5
(purple);6 (green). Panels a-c, f and h show respectively p(m|A), s(m|A), 〈n|m, A〉, p(n|m, A) and
p(mmax|A) estimated at stationarity. Panels d, g and i show collapses of simulation data for 〈n|m, A〉,
p(n|m, A) and p(mmax|A), respectively. Panel e shows the density scatter-plot of δ+γ versus η. The
density histogram is normalized to one, with blue representing the value zero and yellow the value one.
Shown are simulation data for the largest area A = 106. Panel l shows the scaling of the average total
biomass 〈M〉 (blue crosses and dashed lines) and average total abundance 〈N〉 (black dots and dashed
lines) with A. See Table 1.1 for estimates of exponents’ values.
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Figure 1.12 – Basic model statistics with parameters z = 1/2, w = 10−3, α = 3/4, θ = 1/4. Different
colors refer to different values of ecosystem area A = 10i , where i = 1 (cyan);2 (orange);3 (yellow);4
(purple). Panels a-c, f and h show respectively p(m|A), s(m|A), 〈n|m, A〉, p(n|m, A) and p(mmax|A)
estimated at stationarity. Panels d, g and i show collapses of simulation data for 〈n|m, A〉, p(n|m, A)
and p(mmax|A), respectively. Panel e shows the density scatter-plot of δ+γ versus η. The density
histogram is normalized to one, with blue representing the value zero and yellow the value one. Shown
are simulation data for the largest area A = 104. Panel l shows the scaling of the average total biomass
〈M〉 (blue crosses and dashed lines) and average total abundance 〈N〉 (black crosses and dashed lines)
with A. See Table 1.1 for estimates of exponents’ values.
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Figure 1.13 – Variation of the basic model, described in section 1.5.3. Statistics computed with
parameters z = 1/4, w = 10−6, α= 3/4, θ = 1/2. Different colors refer to different values of ecosystem
area A = 10i , where i = 1 (cyan);3/2 (orange);2 (yellow);5/2 (purple);3 (green). Panels a-c, f and h show
respectively p(m|A), s(m|A), 〈n|m, A〉, p(n|m, A) and p(mmax|A) estimated at stationarity. Panels d, g
and i show collapses of simulation data for 〈n|m, A〉, p(n|m, A) and p(mmax|A), respectively. Panel e
shows the density scatter-plot of δ+γ versus η. The density histogram is normalized to one, with blue
representing the value zero and yellow the value one. Shown are simulation data for the largest area
A = 103. Panel l shows the scaling of the average total biomass 〈M〉 (blue crosses and dashed lines) and
average total abundance 〈N〉 (black crosses and dashed lines) with A. See Table 1.2 for estimates of
exponents’ values.
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Figure 1.14 – Model a (section 1.5.4) statistics computed with the parameter set: α = 3/4, θ = 1/4,
w = 10−2, v0 = 1/2 and c = 10−5. Different colors refer to different values of ecosystem area A = 10i ,
where i = 1 (cyan);3/2 (orange);2 (yellow);5/2 (purple);3 (green). Panels a-c, f and h show respectively
p(m|A), s(m|A), 〈n|m, A〉, p(n|m, A) and p(mmax|A) estimated at stationarity. Panels d, g and i show
collapses of simulation data for 〈n|m, A〉, p(n|m, A) and p(mmax|A), respectively. Panel e shows the
density scatter-plot of δ+γ versus η. The density histogram is normalized to one, with blue representing
the value zero and yellow the value one. Shown are simulation data for the largest area A = 103. Panel
l shows the scaling of the average total biomass 〈M〉 (blue crosses and dashed lines), average total
abundance 〈N〉 (black crosses and dashed lines) and average number of species 〈S〉 (red crosses and
dashed lines) with A. See Table 1.3 for estimates of exponents’ values.
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Figure 1.15 – Model b (section 1.5.4) statistics computed with the parameter set: α = 3/4, θ = 1/4,
w = 10−2, v0 = 1/2 and c = 10−5. Different colors refer to different values of ecosystem area A = 10i ,
where i = 1 (cyan);3/2 (orange);2 (yellow);5/2 (purple);3 (green). Panels a-c, f and h show respectively
p(m|A), s(m|A), 〈n|m, A〉, p(n|m, A) and p(mmax|A) estimated at stationarity. Panels d, g and i show
collapses of simulation data for 〈n|m, A〉, p(n|m, A) and p(mmax|A), respectively. Panel e shows the
density scatter-plot of δ+γ versus η. The density histogram is normalized to one, with blue representing
the value zero and yellow the value one. Shown are simulation data for the largest area A = 103. Panel
l shows the scaling of the average total biomass 〈M〉 (blue crosses and dashed lines), average total
abundance 〈N〉 (black crosses and dashed lines) and average number of species 〈S〉 (red crosses and
dashed lines) with A. See Table 1.3 for estimates of exponents’ values.
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Figure 1.16 – Model a (section 1.5.4) statistics computed with the parameter set: α = 3/4, θ = 1/4,
w = 10−2, v0 = 1/2, c = 10−5 and q̄ = 1.2 (q̄ is the mean of the multiplicative factor q that defines
the descendant species’ mass at each speciation event, cfr. section 1.5.4). Different colors refer to
different values of ecosystem area A = 10i , where i = 1 (cyan);3/2 (orange);2 (yellow);5/2 (purple);3
(green). Panels a-c, f and h show respectively p(m|A), s(m|A), 〈n|m, A〉, p(n|m, A) and p(mmax|A)
estimated at stationarity. Panels d, g and i show collapses of simulation data for 〈n|m, A〉, p(n|m, A)
and p(mmax|A), respectively. Panel e shows the density scatter-plot of δ+γ versus η. The density
histogram is normalized to one, with blue representing the value zero and yellow the value one. Shown
are simulation data for the largest area A = 103. Panel l shows the scaling of the average total biomass
〈M〉 (blue crosses and dashed lines), average total abundance 〈N〉 (black crosses and dashed lines) and
average number of species 〈S〉 (red crosses and dashed lines) with A. See Table 1.4 for estimates of
exponents’ values.
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Figure 1.17 – Model b (section 1.5.4) statistics computed with the parameter set: α = 3/4, θ = 1/4,
w = 10−2, v0 = 1/2, c = 10−5 and q̄ = 1.2 (q̄ is the mean of the multiplicative factor q that defines
the descendant species’ mass at each speciation event, cfr. section 1.5.4). Different colors refer to
different values of ecosystem area A = 10i , where i = 1 (cyan);3/2 (orange);2 (yellow);5/2 (purple);3
(green). Panels a-c, f and h show respectively p(m|A), s(m|A), 〈n|m, A〉, p(n|m, A) and p(mmax|A)
estimated at stationarity. Panels d, g and i show collapses of simulation data for 〈n|m, A〉, p(n|m, A)
and p(mmax|A), respectively. Panel e shows the density scatter-plot of δ+γ versus η. The density
histogram is normalized to one, with blue representing the value zero and yellow the value one. Shown
are simulation data for the largest area A = 103. Panel l shows the scaling of the average total biomass
〈M〉 (blue crosses and dashed lines), average total abundance 〈N〉 (black crosses and dashed lines) and
average number of species 〈S〉 (red crosses and dashed lines) with A. See Table 1.4 for estimates of
exponents’ values.
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1.8. Appendix

Table 1.1 – Scaling exponents measured in the basic model for different sets of parameters’
values. Each row (delimited by horizontal lines) refers to a set, indicated by the parameter
which value has been changed with respect to the parameters set described in text (indicated
as “Base set", specified in section 1.5.1. Under each value, the lower and upper ends of the
confidence intervals are reported. The estimates and the confidence intervals were obtained
as described in the text.

δ η γ Φ λ χ ω µ ν

Base set 2.23 2.54 0.26 0.74 0.38 0.99 0.18 1.0016 0.9982
Fig. 1.6 2.05 2.28 0.20 0.72 0.32 0.87 0.17 1.0016 0.9980

2.41 2.79 0.34 0.76 0.42 1.03 0.21 1.0017 0.9983

w = 10−4 2.27 2.64 0.33 0.76 0.52 0.98 0.19 1.0030 0.9968
Fig. 1.7 2.01 2.22 0.28 0.74 0.50 0.92 0.17 1.0027 0.9967

2.54 2.94 0.38 0.78 0.57 1.04 0.20 1.0034 0.9969

w = 10−5 2.28 2.63 0.30 0.75 0.46 0.94 0.18 1.000 0.998
Fig. 1.8 2.00 2.21 0.25 0.74 0.41 0.73 0.16 0.996 0.995

2.54 2.94 0.36 0.79 0.52 1.05 0.22 1.005 1.001

Fig. 1.9 2.00 2.21 0.26 0.74 0.73 0.93 0.18 1.0029 0.9989
2.54 2.93 0.31 0.78 0.87 1.03 0.21 1.0031 0.9989

α= 1/4 2.38 2.64 0.29 0.76 0.63 0.98 0.19 1.000 1.000
Fig. 1.10 2.01 2.22 0.25 0.73 0.60 0.94 0.19 0.998 0.998

2.54 2.94 0.35 0.80 0.69 1.03 0.20 1.002 1.000

θ = 1/2 2.13 2.62 0.49 0.78 0.47 0.95 0.22 1.002 0.997
Fig. 1.11 1.88 2.26 0.26 0.75 0.44 0.87 0.21 1.002 0.996

2.36 2.94 0.56 0.86 0.53 1.03 0.26 1.003 0.998

z = 1/2 2.23 2.41 0.32 0.50 0.93 0.98 0.38 1.0 0.99
Fig. 1.12 2.05 2.28 0.31 0.49 0.92 0.96 0.36 1.00 0.99

2.54 2.79 0.34 0.51 0.96 1.05 0.39 1.01 1.00
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Chapter 1. Covariations in ecological scaling laws

Table 1.2 – Scaling exponents measured in the variation of the basic model described in section
1.5.3, Fig. 1.13. Under each value, the lower and upper ends of the confidence intervals are
reported. The estimates and the confidence intervals were obtained as described in the text.

δ η γ Φ λ χ ω µ ν

2.54 2.78 0.13 0.76 0.36 0.94 0.14 1.0021 0.998
2.22 2.29 0.04 0.74 0.35 0.7 0.14 1.0021 0.998
2.83 3.11 0.28 0.78 0.40 1.1 0.17 1.0022 0.998

Table 1.3 – Scaling exponents measured in the community dynamics models with fluctuating
numbers of species. Each row (delimited by horizontal lines) refers to a different model
(see section 1.5.4). Model parameters are reported in Figs. 1.14 and 1.15. Under each value,
the lower and upper ends of the confidence intervals are reported. The estimates and the
confidence intervals were obtained as described in the text.

Model δ η γ Φ λ χ ω µ ν z

a 2.52 2.83 0.28 0.51 0.92 1.00 0.32 1.01 1.00 0.50
Fig. 1.14 2.26 2.50 0.24 0.48 0.82 0.91 0.29 1.00 0.99 0.49

2.77 3.15 0.34 0.56 0.99 1.08 0.33 1.01 1.00 0.50

b 2.52 2.69 0.13 0.50 0.60 0.98 0.32 1.00 1.00 0.50
Fig. 1.15 2.27 2.41 0.10 0.48 0.56 0.92 0.30 0.98 0.99 0.49

2.76 2.96 0.18 0.52 0.66 1.11 0.34 1.02 1.01 0.50

Table 1.4 – Scaling exponents measured in the models with fluctuating numbers of species
and q̄ > 1 (see section 1.5.5). Each row (delimited by horizontal lines) refers to a model and
parameter set. Model parameters are reported in Figs. 1.16 and 1.17. Under each value,
the lower and upper ends of the confidence intervals are reported. The estimates and the
confidence intervals were obtained as described in the text. The parameter q̄ is the mean of
the multiplicative factor q that defines the descendant species’ mass at each speciation event
(cfr. section 1.5.4).

Model δ η γ Φ λ χ ω µ ν z

a with 1.96 2.22 0.31 0.52 0.80 0.94 0.50 1.06 0.98 0.49
q̄ = 1.2 1.75 1.98 0.26 0.50 0.75 0.75 0.45 0.91 0.95 0.48

Fig. 1.16 2.16 2.44 0.34 0.55 0.90 1.18 0.58 1.20 1.00 0.50

b with 1.93 2.06 0.25 0.53 0.93 0.91 0.64 1.13 0.93 0.47
q̄ = 1.2 1.71 1.83 0.19 0.50 0.89 1.65 0.57 0.97 0.87 0.43

Fig. 1.17 2.14 2.27 0.28 0.55 1.10 0.46 0.70 1.30 0.99 0.52
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2 Ecological scaling laws in macroeco-
logical data

Empirical laws portraying patterns in ecology are routinely measured in marine and terrestrial

environments, and observations suggest that their power-law shape is ubiquitous. However,

their scaling exponents do not seem to have a universal value. For example, the abundance of

individuals decreases as a power-law of their body mass, but the rate of decrease may vary across

different ecosystem types or environmental conditions. The theoretical framework presented

in Chapter 1 predicts linking relationships among the scaling exponents of several ecological

laws, which describe precisely how their variations are related. In this Chapter, these predictions

are tested on available empirical datasets. Tropical forests censuses permit to estimate the

exponents of the community size spectrum, of Damuth’s law and of the species’ typical body

mass distribution. The latter pattern is also measured in a dataset of mammal communities on

the Sunda Shelf archipelago, together with the SAR and the scaling of the mass of the largest

organism with ecosystem area. Finally, island communities of lizards allow estimating the SAR,

Damuth’s law and the species’ typical body mass distribution. The data permit the verification

of three of the five linking relationships derived in Chapter 1.1

2.1 Introduction

Starting from the second half of the last century, the mathematical quantification of empirical

observations has provided abundant examples of power-law patterns in ecology. Figure

2.1 summarizes some of the most important milestones in the identifications of ecological

patterns, starting from the influential work of MacArthur and Wilson [1963] on the equilibrium

theory of island biogeography. The ubiquity of the power-law functional form, observed for

several different patterns and in diverse types of ecosystems, has fascinated and challenged

scientist thence.

The scaling patterns considered in this Chapter are either functional relationships between

two relevant ecological quantities or probability distributions characterizing their occurrence.

1This Chapter features contents from [Zaoli et al., 2017].
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Chapter 2. Ecological scaling laws in macroecological data

η= γ+δ

z =1−Φ
...

Figure 2.1 – Time line associated with the description of different macroecological patterns
and their integration through statistical mechanic approaches: The species area relationship
S ∝ Az , the size spectra s(m) ∝ m−η, the scaling of density and size 〈n|m〉 ∝ m−γ, and the
power law distribution of body sizes p(m) ∝ m−δ. At the far right are some of the relationships
among exponents derived in Chapter 1. Figure modified from [Marquet, 2017].

Power-law functional relationships have the form

y = axb (2.1)

where y is the dependent variable, x the independent one, b the scaling exponent and a a

proportionality constant. Power-law probability distributions, instead, have the form

p(x) = ax−b . (2.2)

Eq. (2.2) can be normalized only if x ∈ [x0,∞), with x0 > 0, and b > 1. The constant a is then

fixed by normalization. Power-laws have been observed in very diverse fields of science, from

biology to physics. To name a few examples, though many more exist, power-law distributions

describe the magnitude of earthquakes, the population of cities, the intensity of solar flares,

the frequency of words [Newman, 2005], the size of marine organisms [Sheldon et al., 1972,

Cavender-Bares et al., 2001, Marañón, 2015, Quinones et al., 2003, Rodriguez and Mullin, 1986]

and of trees in a forest [Muller-Landau et al., 2006, Condit et al., 2012]. The commonness of

this type of distributions has been explained by the many different processes which produce

them [Newman, 2005]. Power-law functional relationships are also observed quite frequently,

for example many properties of living organisms (metabolic rate, life span, heart rate, ...) are

proportional to a power of their body mass.

Power-laws are often regarded as elegant and beautiful patterns due to their simplicity

and their lack of a preferred scale (p(bx) = g (b)p(x), see [Newman, 2005]), which might

partly explain their large success as a candidate hypothesis against which to test empirical

data. On top of their use for prediction and modeling, power-laws have received much

interest in ecology and biology because they are considered as a sign that, underneath the

complexity of organisms and ecosystems, there exist some general properties and processes

which dominate and determine the emergent patterns. In fact, power-law trends, like the

probability distribution of organismic size and size-related allometries, hold across very

different organisms, from the smallest microbes to much more complicated organisms,
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2.1. Introduction

from autotrophs to heterotrophs. This cross-category validity is thought to result from some

fundamental properties or processes which associate all living organisms.

For some patterns, a candidate mechanism explaining the power-law shape can be identified.

For example, network structure and optimization principles have been invoked to justify the

scaling behaviour of metabolic rate with size [West et al., 1997, West, 1999, Banavar et al.,

2002, 2010]. Nevertheless, their precious role in the description of empirical patterns, in

prediction and in modeling is independent of their mechanistic explication. In some cases,

power-laws might be just an approximation of the real behaviour of data but, still, a useful

one. First, because they typically capture well the order of magnitude of the dependent

variable, which is often sufficient. Second, because they describe the overall behavior of the

pattern with just two parameters (one in the case of probability distributions, where the

proportionality constant is fixed by normalization), making comparisons straightforward.

Third, because their simplicity is convenient when the relationship they describe needs to

be used in a wider modeling framework. Clearly, limits of validity of the description must

be taken into consideration. For example, power-laws might only describe the pattern

in a certain range of values of the independent variable and deviations at small or large

values can be explained either by different processes driving the system at small scales or

by finite-size arguments. Additionally, power-law functional relationships might only de-

scribe the average trend of the pattern, around which potentially important fluctuations occur.

The literature reporting empirical measurements of power-law patterns for the ecological

and biological laws considered in Chapter 1 is large. Table 2.1 contains a non-exhaustive list

of relevant references divided by type of ecosystems: forests, terrestrial (typically mammals)

and aquatic. Note that, for the sake of completeness, the table contains also references for

the RSA, although this pattern is usually not a power-law (but see Ser-Giacomi et al. [2018]).

A comparison of empirical results highlights the non-universality of the values of scaling

exponents. Fig. 2.2 shows evidences of Kleiber’s law (panel A), Damuth’s law (panel B), the

Species-Area Relationship (SAR) (panel C) and the community size-spectrum s(m) (panel D)

for the three types of ecosystems listed above. Regression lines in Fig. 2.2 are fits provided in

the original papers (see legends), except for the patterns for forests and terrestrial ecosystems

in panel B, which were fitted by linear least-squares fits on log-transformed data, and for the

community size-spectra from BCI and Niwot Ridge datasets in panel D, which were fitted

with maximum likelihood [Clauset et al., 2009]. Table 2.2 reports the estimates for the scaling

exponents. It is clear from these results that exponents values have considerable variations

across different types of ecosystems. As shown later in this chapter for consecutive censuses

of a tropical forest, they can also vary in time. According to the results obtained in Chapter 1,

these variations must be such that at all times the scaling exponents satisfy a set of five linking

relationships descending from consistency arguments and from the finite resources constraint

present in a finite ecosystem. Specifically, the linking relationships that the exponents have to
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Chapter 2. Ecological scaling laws in macroecological data

satisfy are the following:

η= γ+δ, (2.3a)

z = 1−Φ−max{0,λ(1+α−η)}, (2.3b)

µ= 1+max{0,λ(2−η)}−max{0,λ(1+α−η)}, (2.3c)

ν= 1−max{0,λ(1+α−η)}, (2.3d)

ξ= z

δ−1
. (2.3e)

This chapter is devoted to the testing of the relationships in Eqs. (2.3a-e) in empirical datasets.

As each of the exponents appearing in Eqs. (2.3a-e) could assume different values in different

ecosystems and environmental conditions, in order to verify the validity of Eqs. (2.3a-e) each

relationship must be verified on a single dataset, where all the exponents appearing in that

particular relationship have been measured simultaneously. A dataset where all the scaling

exponents implied in Eqs. (2.3a-e) does not seem to exist to date, but single relationships

could be verified on separate datasets, as showed in the following sections.

Box 2.2 explains how to recognize and fit power-laws in empirical data, with particular atten-

tion to the cases encountered in the data analysis presented in the following. In section 2.3, Eq.

(2.3a) is successfully tested in two tropical forests datasets, in section 2.4 Eq. (2.3b) is tested in

a dataset of lizard species living on several islands worldwide and finally in section 2.5 Eq.

(2.3e) is tested on a dataset of mammal species living on islands of the Sunda Shelf archipelago.

2.2 Power-laws in empirical data

This box presents methods to fit power-laws in empirical data, focusing on the tools used

in the following sections. The content of the box is adapted from [Newman, 2005] and

[Clauset et al., 2009]. All computations concern the case of continuous variables, relevant

for the applications in this chapter.

2.2.1 Plotting a power-law

Power-laws enjoy the useful property of being linear when plotted in a log-log scale.

In fact, if y = axb , then log y = log a +b log x. The slope of the line in the log-log plot

is the power-law exponent. Double logarithmic scale plots are therefore a first tool to

reveal power-law behavior. Nevertheless, in the case of power-law distributions matters

are complicated because of binning. If a simple linear binning in used, the tail of the

distribution will appear very noisy, as few data points will fall in each bin. Often, the tail

of the distribution contains useful information which one does not want to discard. One

possible solution is then to use bins whose size grows with x. In particular, a common

60



2.1. Introduction

Mori et al. (2010)
Dodds et al. (2001)
Marañón et al. (2007)

Condit et al. (2012)
Novosolov et al. (2015)
Cohen et al. (2003)

Londsdale (1999)
Okie et al. (2009)
Dodson (1992) Condit et al. (2012)

Halfpenny (2016)
Marañón et al. (2014)

b 
(W

 o
r  

m
m

ol
 s

-1
)

m (kg)

V (µm3)
10310110-110-310-5

103

101

10-1

10-3

10-5

10310110-110-310-5

b 
(p

gC
 c

el
l-1

 d
-1

)

102

100

10-2

1010

106

10-2

10-6

D
en

si
ty

 (m
-2

)

m (kg)
1061010-410-910-14 1011

s(
m

)  
(g

-1
)

10-1

10-6

10-11

10-16

m (g)
101010710410

V (mm3)
101010710410

S

104

103

102

101

100

A (m2)
101110710310-1

A B

C D

102

Figure 2.2 – Empirical evidence of scaling ecological patterns in different ecosystems: forests
(green), terrestrial (yellow) and aquatic ecosystems (magenta). Regression lines are linear least
square fits of log-transformed data. A) Kleiber’s law: metabolic rates in µmol s−1 (forests), W
(terrestrial ecosystems), pgC cell−1 d−1 (aquatic ecosystems). Size in kg (forests and terrestrial
ecosystems) and in µm3 (aquatic ecosystems); B) Damuth’s Law (m̄ is a species’ mean mass).
See section 2.4 for a comment on the scattering of points of the dataset in Novosolov et al.
[2015]; C) SAR; D) Community size-spectrum: size in g (forests and terrestrial ecosystems) and
µm3 (aquatic ecosystems). See section table 2.2 for scaling exponents estimates/errors.
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choice is logarithmic binning, where bins are chosen such that each is a fixed multiple

wider than the one before it. This means that the bins in the tail of the distribution get

more samples than they would if bin sizes were fixed, and this reduces the statistical

errors in the tail. It also has the nice side-effect that the bins appear to be of constant

width when the histogram is plotted on log scales. Probability distributions throughout

this thesis are plotted with this method. Note that a correction to the counts is necessary

to take into account the increasing bin size. In order to obtain counts per unit interval

of x, the counts in a bin of size ∆x must be divided by ∆x. In the case of power-laws,

failure to correct for the logarithmic binning causes a biased estimation of the exponent,

which results increased by 1. In fact, if bins have all the same size in a logarithmic scale,

a bin centered around x has width ∆x ∝ x in the linear scale. Therefore, its counts will

be multiplied by a factor x, modifying the slope of the plotted line. This issue has often

caused some confusion on the empirical values of scaling exponents reported in the

literature.

Another method for reducing the noise is plotting cumulative distributions, that is, the

probability that the variable exceeds a value x,

C (x) =
∫ ∞

x
p(x ′)d x ′. (2.4)

If p(x) = ax−b , with b > 1 (otherwise the distribution cannot be normalized), C (x) will

also be a power-law with a shallower exponent −b +1:

C (x) =
∫ ∞

x
ax ′−bd x ′ = a

b −1
x−(b−1). (2.5)

This method does not require any binning, solving all problems related to bins size.

2.2.2 Fitting a power-law

In the case of power-law functional relationships, a linear least square fit of log trans-

formed data is a reliable method to estimate the parameters a and b. In the case of a

power-law distribution p(x) = ax−b , instead, such method is known to introduce system-

atic bias in the estimated value of the exponent [Goldstein et al., 2004]. A more reliable

method to estimate the parameters is maximum likelihood. To explain how that works,

let us begin by noting that a pure power-law distribution can only be normalized on

[xmin,∞] when xmin > 0. Therefore, either p(x) = 0 for x < xmi n , or p(x) has a different

behavior before xmin (for example, flat or increasing). Consider first the simpler case in

which the value xmin is known. The normalized form of p(x) is then

p(x) = b −1

xmin

(
x

xmin

)−b

. (2.6)
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Given a set of n values xi , assuming they are independent, the probability that they were

generated from this distribution is

P (x|b) =
n∏

i=1
p(xi ) =

n∏
i=1

b −1

xmin

(
x

xmin

)−b

. (2.7)

This quantity is called the likelihood of the dataset. The probability that the power-law

exponent has value b, given the dataset {xi }, is related to P (x|b) by Bayes’ theorem:

P (b|x) = P (x|b)
P (b)

P (x)
(2.8)

where P (x) is the prior probability of the data, and P (b) is the prior probability of the

exponent, assumed uniform. Therefore, maximizing P (b|x) with respect to b is equivalent

to maximizing the likelihood P (x|b) with respect to b. One can equivalently maximize

the log likelihood

L = logP (x|b) =
n∑

i=1
[log(b −1)− log xmin −b log

xi

xmin
]

= n log(b −1)−n log xmin −b
n∑

i=1
log

xi

xmi n
.

(2.9)

Setting ∂L /∂b = 0, one obtains the estimate

b = 1+n

[
]
∑

i
log

xi

xmin

]−1

. (2.10)

One can also give an error to this estimate by computing the standard deviation of P (b|x),

σ=
√

〈b2〉−〈b〉2 (see Newman [2007]), which when n À 1 is approximated by

σ= b −1p
n

(2.11)

where b is the maximum likelihood estimate.

In practice, xmi n is usually not known exactly and needs to be estimated before one can

estimate b. Wrongly choosing xmi n can create bias in the estimated b, either because

data from the non power-law regime are included in the estimate, or because useful data

are discarded, increasing the statistical error. An objective method to estimate xmi n is

proposed in [Clauset et al., 2009]. The fundamental idea behind this method is that the

estimate of xmi n is that such that the best-fit power-law model with that value of xmi n

is as similar as possible to the measured data above xmi n . An algorithm to perform the

estimation is provided in [Clauset et al., 2009]. The algorithm tests increasing values

of xmi n , for each computes the best-fit power law and compares it to the data by a

Kolmogorov-Smirnov test. The estimated value of xmi n is the one minimizing the KS
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Chapter 2. Ecological scaling laws in macroecological data

distance. The algorithm is used to fit power-law distributions in this chapter when no

cut-off at large size is present.

2.2.3 Power-laws with cut-off at large value

In some cases, probability distributions studied in this chapter show a power-law be-

havior followed by a faster decay at large x. The exponent of the power-law part of the

distribution can still be estimated by maximum likelihood if the shape of the cut-off is

known. For example, let us consider the case where the cut-off is exponential, i.e.,

p(x) = ax−be−cx (2.12)

for x > xmi n . The constant a is fixed by normalization to a = c1−b

Γ(1−b,xmi n b) where Γ is the

incomplete Gamma function. The log likelihood is then

logL (b,c) = n log

(
c1−b

Γ(1−b, xmi nb)

)
−b

n∑
i=1

log xi − c
n∑

i=1
xi , (2.13)

which can be maximized numerically with respect to b and c.

2.3 Test of the relationship η= γ+δ in tropical forests

2.3.1 The datasets

The three exponents involved in Eq. (2.3a) are simultaneously measurable in censuses of

tropical forests, were individual sizes of trees are measured jointly with the species to which

they belong. Here, two dataset are considered: the Barro Colorado Island (BCI) forest [Condit

et al., 2012] (Fig. 2.3) and the Luquillo forest [Zimmerman et al., 2010] (Fig. 2.4). The BCI forest

is situated in an island of 1560 ha in the Panama canal which was formed when engineers

dammed the Chagres River in 1914 to create Gatun Lake. Censuses of a 50 ha plot were

performed regularly starting from 1985 every 5 years. The Luquillo forest is located within the

U.S. El Yunque National Forest, in the northeastern Puerto Rico. The Luquillo Forest Dynamics

Plot, 16 ha, is censused regularly. The analysis reported here concerns the fifth, sixth and

seventh censuses of BCI and the five censuses of the Luquillo forest available online in the

Center for Tropical Forest Science (CTFS) dataset collection. These datasets report the trunk

diameter and the species’ identity of every tree having a diameter at breast height (dbh) >10

mm contained in the censused plot. Diameters were converted into mass using an established

allometric relationship between mass and diameter [Enquist and Niklas, 2001, Simini et al.,

2010], m = 0.124d 8/3 kg, with d expressed in cm.
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2.3.2 Estimating the scaling exponents δ and η

The community size-spectrum and the species typical body mass distribution are shown in

Figs. 2.3A and B and 2.4A and B. To compute p(m̄|A), where m̄ is the typical species’ mass, the

mean mass of the species’ individuals was used as an estimate of m̄. To obtain estimates of δ

and η, the probability distributions p(m̄|A) and s(m|A) were fitted via maximum likelihood

to the functional forms p(m̄|A) = a1m̄−δe−b1m̄ and s(m|A) = a2m−ηe−b2m , where a1 and a2

are the normalization constants (which can be expressed in terms of b1 and b2), b1 and b2

are constants that accounts for possible finite-size effects, and δ and η are the power-law

exponents (see Box 2.2.2). Section 1.6.3 justifies the possible presence of an upper cutoff

in p(m̄|A). To account for deviations from the power-law behavior at low values of m or m̄

(these may arise for various reasons, like e.g. sampling protocols affecting the estimates of

mean masses and mean abundances at small masses, as described later in the section) δ

and η were estimated via maximum-likelihood by considering only the data with m > mk at

various values of mk = ak 0.124 kg in the range (0.124−102) kg (with 1 < a < 2 and k integer).

Note that 0.124 kg is the mass of a tree with dbh=10 mm, i.e. the lower limit of the sampling

protocol. If the data were distributed according to a pure power-law with no finite-size effects,

such procedure would return approximately the same value of the exponent for any mk . If

the data were distributed according to a power-law with finite-size effects at small and large

values of m, instead, one would observe an approximately constant estimate of the exponent

at intermediate mk and deviations from such estimate at small and large values of mk (see e.g.

Fig. 2.5). For each fit, the extent of the power-law regime was identified and the estimate of

the exponent and the associated error are, respectively, the mean and standard deviation of

the maximum-likelihood exponent at different values of m̄k in the power-law regime.

2.3.3 Estimating the scaling exponents γ

Damuth’s law in the two datasets is plotted respectively in Figs. 2.3C and 2.4C. The estimate

of Damuth’s law exponent γ, describing the decay of mean abundances with species’ typical

masses m̄, requires a correction for a bias introduced by the sampling protocol on the estimates

of mean abundances and mean masses at small values of m̄. In fact, the sampling protocol in

tropical forests censuses instructs to sample only the trees with dbh larger than 10 mm. The

measured abundances of small species (i.e. those with typical diameter close to 10 mm) are

therefore lower than the true ones because individuals with diameter d ≤ 10 mm were not

censused. As a result, the average abundance as a function of a typical species’ mass initially

increases with m̄ and is followed by the decreasing power-law regime where the effect of the

sampling protocol becomes unimportant (Fig. 2.6A). The initial increase is a sampling artifact.

One can verify that this is the case by creating an artificial forest dataset where species’ mean

abundances follow Damuth’s law exactly. Within such artificial forest, species mean masses m̄

are distributed according to the pure power-law p(m̄) = (δ−1)m̄−δ. The abundance of each

species is drawn from a Poisson distribution with mean m̄−γ. Finally, each individual of each

species needs to be assigned a mass. To do so, a characterization of the intra-specific mass
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Figure 2.3 – Empirical evidence of scaling patterns in Barro Colorado Island [Condit et al.,
2012], seventh census: A) Community size-spectrum s(m), B) Distribution of species mean
masses p(m̄) , C) Damuth’s law 〈n|m̄〉, where each point is the average abundance over bins of
logarithmic size. Red dots represent empirical data, dashed black lines show power-functions
with exponents reported in Table 2.3. Details on exponents’ estimates are reported in the text.
Note that finite-size effects may be present both at small and large values of m and m̄, for
example due to the sampling protocol (see text).
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exponent η estimated using only data with mass m > mk . The estimated exponent initially
increases (until mk ' 0.2 kg) due to a finite-size effect, then is rather stable until the statistics
is not sufficient to properly estimate it (mk > 20 kg).

distributions of tropical trees p(m|m̄) was used, i.e. the probability that an individual has mass

in (m,m +dm) given that it belongs to a species with mean mass m̄. Such characterization is

presented in section 2.3.4. The masses of individuals belonging to each species in the artificial

forest can then be randomly sampled from such distributions. Finally, the sampling protocol

is mimicked by eliminating all individuals with mass lower than 0.124 kg (corresponding to

a dbh of 10 mm) and Damuth’s law is computed in such a filtered dataset. Fig. 2.6C shows

that, despite the fact that mean species abundances in the artificial forest follow Damuth’s law

exactly, the sampling protocol causes the emergence of a new regime at small m̄ where the

relationship between 〈n|m̄〉 and m̄ is monotonically increasing. This demonstrates that the

sampling protocol introduces an artificial deviation from the power-law regime which has to

be considered with care while interpreting empirical data.

To derive the estimate for γ and the associated error, the typical species masses were binned

logarithmically and the mean abundance of all species within each bin was computed. Then,

the exponent of Damuth’s law was computed for different choices of the number of bins

nbi n via least-squares fitting of log-transformed data, weighted by the standard deviation

of abundances within each bin, yielding estimates γnbi n . The estimate for γ is the mean

γ = 〈γnbi n 〉 across several values of nbi n . To correct for the bias caused by the sampling

protocol, such computation was repeated by considering only the species with mean mass

m̄ > m̄k , with m̄k = ak 0.124 kg in the range (0.124−102) kg (with 1 < a < 2 and k integer).

If mean abundances followed Damuth’s law exactly (in the absence of sampling bias and

with sufficient statistics), such procedure would return the same value of γ for any m̄k . If

finite-size effects were present at small and large values of m̄, instead, one would observe an

approximately constant estimate of the exponent at intermediate m̄k and deviations from

such estimate at small and large values of m̄k (see e.g. Fig. 2.6B). For each fit, the extent

of the power-law regime was identified and the estimate of γ and the associated error are,

respectively, the mean and standard deviation of the exponents estimated at the different
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effects become relevant). C) Damuth’s law in an artificial forest after mimicking the sampling
protocol (see text for details). The effect of the sampling bias is visible at small masses.

values of m̄k in the power-law regime.

2.3.4 Intra-specific body mass distribution for trees

The intra-specific mass distributions were computed in the BCI and Luquillo forests for species

with more than 1500 (BCI) and 400 (Luquillo) individuals and are shown in Fig. 2.7. Most

species have intra-specific size distributions characterized by the finite-size scaling form:

p(m|m̄) = m−∆F
( m

m̄Ω

)
, (2.14)

where Ω= 1/(2−∆) ensures that
∫

mp(m|m̄)dm = m̄, ∆= 1.12±0.06 for the BCI forest and

∆= 1.14±0.03 for the Luquillo forest and F (x) is a scaling function with limiting behaviors

F (x) ' const when x ¿ 1 and limx→∞F (x) = 0. The estimate of the exponent∆ is obtained by

optimizing the data collapse of p(m|m̄) of several tree species: plotting m∆p(m|m̄) vs m/m̄Ω,

all the curves collapse on the same curve F for the appropriate value of ∆, see insets in Fig.

2.7. The optimization is performed according to the method described in [Bhattacharjee and

Seno, 2001]. The error is computed as the value of the exponent at which the error functional

Pb defined in [Bhattacharjee and Seno, 2001] is 1% larger than its value at the minimum. The

cut-off function obtained by data collapse is well fitted by F (x) = q0e−q1x , where q0 and q1 are

constants. The fitted values are q0 = 0.17, q1 = 0.21 for the BCI forest, and q0 = 0.14, q1 = 0.15

for the Luquillo forest.

2.3.5 Test of the linking relationship

The estimated exponents in each of the considered censuses of the two forests, reported

in tables 2.3 and 2.4, satisfy the linking relationship (2.3a) within the errors. Whereas BCI

censuses appear very similar to each other (and therefore also the exponent values estimated
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in different censuses), the Luquillo forest appears to be more dynamic (note that the forest was

hit by a major hurricane between censuses 2 and 3), with the values of γ decreasing in time

after 1998 (census 2, see Table 2.4). Because the estimate of δ remains constant suggesting

that climatic, ecological or anthropogenic dynamics affected only species’ abundances in this

forest, the framework would predict via Eq. (2.3a) that η would also decrease in time, and

in fact this is also found in the data, with Eq. (2.3a) being verified in all censuses. Note that

both the BCI and the Luquillo datasets reject the linking relationship η= δ predicted by the

previous theoretical work in [Banavar et al., 2007].

Although there is no estimate of the exponents µ and ν for tropical forests, a reasonable

assumption is µ = 1 = ν. Given that η < 2 for the BCI and the Luquillo datasets, such

assumption is only verified if λ = 0, i.e. if the maximum body size does not scale with the

ecosystem area. An analysis of this situation is provided in section 1.6.3.

2.4 Test of equation z = 1−Φ−max{0,λ(1+α−η)} on a dataset of

lizard species

The validity of (2.3b) was tested on a dataset gathering population densities of several species

of lizards on 64 islands worldwide (LIZ) [Novosolov et al., 2015], with areas ranging from

10−1 to 105 km2. In this dataset, the SAR was fitted with linear least-squares regression on

log-transformed data and p(m̄|A) via maximum-likelihood [Clauset et al., 2009] (Fig. 2.8A

and B), where m̄ are species’ mean masses. p(m̄) is computed gathering together species

from all the islands in the dataset. The exponent Φ = 0.78 (describing the dependence of

〈n|m̄, A〉 on A) was obtained by maximizing the coefficient of determination R2 of the linear

least-squares regression of the pairs
(
logm̄, log n

AΦ

)
obtained by varyingΦ in the interval [0,2]

(Fig. 2.8C and D). The estimate of γ is obtained from the pairs
(
logm̄, log n

AΦ

)
computed with

the optimal value ofΦwith the same methods used for forests, with m̄k = 2ck 10−1 kg in the

range (10−1 −102) kg ( with 1 < c < 2 and k integer). Note that this estimate of γ is different

from the one given in Table 2.2 for the same dataset, which was obtained by plotting densities

versus typical masses (equivalent to taking Φ = 1) in order to allow comparison with other

data from the literature. Accounting for the different area of the islands through the factor

AΦ reduces the scatter of the points (compare the yellow dots in Fig. 2.2B and Fig. 2.8D).

The remaining scatter in Fig. 2.8D, as well as that in Fig. 2.8A, can be explained, first, by

the different environmental conditions of the different islands, possibly implying a different

proportionality factor in front of the scaling with A of the species densities and of the number

of species. This cause of scattering is minimized when data come from islands of the same

archipelago, sharing the same environmental conditions (see, for example, the data used in

section 2.5). Secondly, scatter might be caused by measurement errors. Finally, a certain

amount of scatter is expected even in optimal measuring conditions, being the number of

species and their densities the outcome of the stochastic processes of community dynamics,
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and as such subject to random fluctuations (see Chapter 3 for a more thorough discussion

of this point). However, the scatter does not prevent the estimation of the average trends

of the SAR and of Damuth’s law in Figs 2.8A and D. The estimates for the scaling exponents

in this dataset are reported in Table 2.5. Because in this dataset η = δ+γ is compatible

with 2, Eqs. (2.3c) and (2.3d) imply µ = ν. Furthermore, because in general α ≤ 1, one has

max{0,λ(1+α−η)} = 0 and therefore our framework predicts

z = 1−Φ, (2.15a)

ν=µ= 1. (2.15b)

Eq. (2.15a) is satisfied within the errors by the estimates of z andΦ (see Table 2.5). Eq. (2.15a)

implies that in order to have z > 0, as always found empirically,Φ needs to be smaller than one.

SinceΦ describes the scaling of 〈n|m̄, A〉 with A, the framework predicts that species’ densities

should decrease with increasing ecosystem area, as found in the LIZ dataset. Note that Eq.

(2.3a) could not be tested on this dataset because the body size of single individual was not

measured, therefore η cannot be estimated. Also Eqs (2.3c) and (2.3d) could not be tested, as

total abundance and biomass information is not available. As individual body masses are not

known, Eq. (2.3e) could not be tested either.

2.5 Test of the relationship z = ξ(δ− 1) on a dataset of mammal

species

The validity of (2.3e) was tested on a dataset of terrestrial mammals species presence/absence

data on several islands in Sunda Shelf (SSI) [Okie and Brown, 2009], covering a wide range

of island areas (101 to 106 km2). The dataset includes extant species and species that went

extinct during historic times because of human impacts and excludes human-introduced

species. For each species, mean body mass is known (see Okie and Brown [2009] for details).

The SAR and the scaling of the maximum body mass with the area were fitted with linear

least-squares regression on log-transformed data, while p(m̄|A) was fitted with maximum-

likelihood [Clauset et al., 2009]. p(m̄) is computed gathering together species from all the

islands in the dataset. Scaling exponents in this dataset, reported in Table 2.6, are consistent

with Eq. (2.3e) within one standard error, as z = 0.23±0.02 and ξ(δ−1) = 0.29±0.1. Note

that Eqs (2.3a) and (2.3b) could not be tested in this dataset because abundances are missing.

Eqs (2.3c) and (2.3d) could not be tested, as total abundance and biomass information is not

available.

2.6 Discussion

In this chapter, linking relationship predicted by the theoretical framework in Chapter 1 were

successfully tested on empirical data on tropical forests, and island communities of lizard and

mammals. The empirical tests performed are summarized in Table 2.7. Since the framework
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assumptions on the scaling form of p(n,m|A) (Eq. (1.24) in Chapter 1) cannot be verified

directly on empirical data, due to the practical difficulty in gathering the necessary type and

amount of data in the field, verifying its consequences on the linkage of scaling exponent is

the best available test of the theory. While single ecological laws have often been measured,

datasets allowing the simultaneous measurement of several scaling exponents are rare. This

limits the possibilities to test the framework. Additionally, the measurement of the exponents

ν and µ in Eqs (2.3c) and (2.3d) would be technically very difficult, as it would require counting

the number of individuals present in the whole ecosystem area, and their total biomass, for

several ecosystems of different areas, preventing the verification of these two laws. As an

outlook of the present work, the hope is to guide future empirical efforts in the direction of

more comprehensive observations of ecosystems, allowing the simultaneous measurement of

several exponents. Note that exponents describing scalings with ecosystem area (z, ν, µ, ξ,Φ)

must be estimated comparing entire ecosystems of different areas, and not sub-patches of the

same ecosystem, as the scaling might differ in the two cases. Consider for example the SAR.

In the limit of a well-mixed ecosystem, where there is no species clustering, a large-enough

sub-patch of the ecosystem would already contain as many species as the entire ecosystem.

On the contrary, a smaller ecosystem of the same size of this sub-patch would contain less

species, as the evolutionary process would have produced less diversification in this smaller

ecosystem, with a smaller number of individuals.

The knowledge of linking relationships among the different patterns could also guide the

interpretation of empirical observations. As an example, the equation η= γ+δ tells us that a

change in the slope of the size-spectrum (observed, e.g., in marine microbial communities

with different resource supply rates [Cavender-Bares et al., 2001, Marañón, 2015]) can be due

either to a change in species composition, affecting the slope δ of the species size distribution,

or to a modified balance in the abundance of large/small species, affecting the slope γ of

Damuth’s law, or both. Therefore, a mechanistic explanation of the observed size-spectrum

and of the changes in its slope should also reproduce the observed behavior of the other two

patterns.

In conclusion, the set of linking relationships resulting from the theoretical framework pro-

posed in this thesis and supported by the available empirical data are intended as a guide

for the coherent interpretation and rationalization of empirical observations from different

settings and scales.
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Table 2.1 – References to empirical measurements of the ecological patterns discussed in the
main text. RSA stands for Relative Species Abundance and Max. body mass stands for the
scaling of the maximum body mass with the area of the ecosystem.

Law Forests Terrestrial Aquatic

Kleiber’s law Mori et al. [2010] Kleiber [1932] Nielsen and Sand-Jensen [1990]
Dodds et al. [2001] Finkel et al. [2004]

Marañón et al. [2007]

SAR Lomolino [1982] MacArthur and Wilson [1963] Dodson [1992]
Newmark [1986] Lonsdale [1999]

Okie and Brown [2009] Smith et al. [2005]
Preston [1962]

Damuth’s law Cohen et al. [2012] Damuth [1981] Cyr et al. [1997]
Nee et al. [1991] Cohen et al. [2003]

Novosolov et al. [2015]

s(m) Muller-Landau et al. [2006] White et al. [2007] Sheldon et al. [1972]
Stegen and White [2008] Halfpenny [2018] Rodriguez and Mullin [1986]

Condit et al. [2012] Cavender-Bares et al. [2001]
Rinaldo et al. [2002]

Quinones et al. [2003]
Marañón [2015]

p(m) Marquet and Taper [1998]
Smith et al. [2003]

Marquet et al. [2005]
Southwood et al. [2006]

Max. body mass Burness et al. [2001]
Okie and Brown [2009]

RSA Zillio et al. [2008] Preston [1948] Ser-Giacomi et al. [2018]

Taylor’s law Giometto et al. [2015] Taylor [1961]
Taylor et al. [1980]

Anderson et al. [1982]
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Table 2.2 – Estimates for the scaling exponents of the ecological patterns depicted in Fig. 2.2.
Errors are SEM, CI stands for confidence interval. If no error is reported, none was given in the
original paper.

Law Forests Terrestrial Aquatic
Kleiber’s law (panel a) 0.80±0.01 0.67±0.2 1.10, CI 95% : [0.94,1.21]

Damuth’s law (panel b) 0.26±0.05 0.57±0.08 0.73, CI 95% : [0.73,0.92]
SAR (panel c) 0.27±0.01 0.23±0.02 0.094

s(m) 1.59, CI 95% : [1.57,1.63] 1.5±0.2 2.11

Table 2.3 – Estimates of scaling exponents η, δ and γ in the BCI forest. Errors are computed as
reported in the text.

BCI forest Census 5 Census 6 Census 7

s(m) η= 1.43±0.04 η= 1.43±0.03 η= 1.44±0.04
p(m) δ= 1.03±0.03 δ= 1.05±0.03 δ= 1.07±0.05
Damuth’s law γ= 0.41±0.07 γ= 0.40±0.06 γ= 0.38±0.06

Table 2.4 – Estimates of scaling exponents η, δ and γ in the Luquillo forest [Zimmerman et al.,
2010]. Errors are computed as reported in the text.

Luquillo forest Census 1 Census 2 Census 3 Census 4 Census 5

s(m) η= 1.27±0.04 η= 1.18±0.03 η= 1.09±0.03 η= 1.09±0.04 η= 0.95±0.07
p(m) δ= 1.02±0.02 δ= 1.01±0.03 δ= 1.02±0.05 δ= 1.02±0.03 δ= 1.02±0.01
Damuth’s law γ= 0.21±0.08 γ= 0.23±0.04 γ= 0.16±0.04 γ= 0.09±0.06 γ= 0.03±0.04

Table 2.5 – Estimates of scaling exponents z, δ,Φ and γ for the LIZ dataset [Novosolov et al.,
2015]. Errors on z and δ are SEM, the error on γ is the SD, the error on Φ was obtained by
bootstrapping.

S AR z = 0.17±0.01 R2=0.46
Damuth’s law Φ= 0.78±0.08
Damuth’s law γ= 0.53±0.03 R2=0.89
p(m) δ= 1.45±0.06

Table 2.6 – Estimates of scaling exponents z, ξ and δ for the SSI dataset [Okie and Brown, 2009].
Errors on z, δ and ξ are SEM. R2 is the coefficient of determination.

S AR z = 0.23±0.02 R2 = 0.93
Mmax ξ= 0.49±0.09 R2 = 0.76
p(m) δ= 1.6±0.2

Table 2.7 – Summary of the empirical tests performed. References are to equations in the text.

Dataset Measured exponents Relationship that was verified

BCI η, γ, δ (Table 2.3) Eq. (2.3a): η= δ+γ
Luquillo η, γ, δ (Table 2.4) Eq.(2.3a): η= δ+γ
LIZ z,Φ,γ, δ (Table 2.5) Eq.(2.3b): z = 1−Φ−max{0,λ(1+α−γ−δ)}
SSI z, ξ, δ (Table 2.6) Eq.(2.3e): ξ= z

δ−1

75





3 Fluctuations scaling of the species-
area relation
The species–area relationship (SAR) is under intense scrutiny in contemporary ecology to probe

its reliability in predicting the numbers of species going extinct as a direct result of habitat loss.

Here, SARs are considered as portraying average trends in ecosystems, around which fluctuations

are expected due to the intrinsic stochasticity of ecosystem dynamics and to external perturba-

tions. This probabilistic interpretation of SARs, though implicit in the original theory of island

biogeography, has not been equally well studied and poses significant theoretical and practical

problems. In this Chapter, a suite of theoretical models of ecosystem dynamics is explored where

the number of species S emerges from diverse ecological and evolutionary processes, and station-

ary predictions for the scaling with the mean of the relative fluctuations of S, i.e its coefficient

of variation, are compared. Different models are found to diverge radically in their predic-

tions. In island biogeography and in neutral frameworks, where fluctuations are only driven

by the stochasticity of diversification and extinction events, relative fluctuations decay when

the mean increases, therefore the average value of S is representative of point measurements for

ecosystems with large enough S. For small systems, relative fluctuations remain non-negligible,

and point measurements may deviate significantly from the SAR describing the mean trend.

Computational evidence suggests that such result is robust in the presence of competition for

space or resources. When species compete for finite resources, and mass is introduced as a trait

determining species’ resource consumption, relative fluctuations emerge whose size does not

decay with increasing system size due to the occasional arrival of new species with large resource

demand. The new arrivals, by immigration or speciation, prompt extinctions in the community.

Habitat stochasticity, in the context of metapopulation models, causes small variability in the

number of coexisting species, which proves negligible with respect to that caused by stochasticity

in community dynamics. The effect of generic external perturbations in neutral dynamics is also

investigated. If the number of species going extinct during perturbations increases linearly with

S, the predicted stationary average of S becomes progressively less informative about the system

state. This study shows that modeling does not provide a unique description of the scaling with

the average of the relative fluctuations of S. Therefore, empirical investigations should sort

out the fluctuation scaling scenario that applies to their specific context, thus pointing at the

modeling approach that includes the processes controlling community assembly. 1

1This chapter features contents from [Zaoli et al., 2018] (in review).
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Chapter 3. Fluctuations scaling of the species-area relation

3.1 Introduction

Among the many regular patterns discussed in Chapters 1 and 2, emerging across scales of

space, time and organizational complexity, one of the most well-known and studied is the

Species–Area Relationship (SAR). The SAR quantifies the observation that species richness S

tends to increase with increasing sampling area A, a relationship firmly placed at the origins

of quantitative ecology [Arrhenius, 1921, Gleason, 1922, MacArthur and Wilson, 1967]. The

SAR formulation most supported by data states that the number of species S inhabiting an

ecosystem increases as a power of its area, A, such that S = c Az , where c is a constant and

z ≤ 1 is the SAR’s scaling exponent.

A distinction should be made between types of SARs under study, which radically differ in

the way area and species sampling are chosen [Drakare et al., 2006] thus reflecting different

measures of biodiversity. Notably, ‘island’ SARs are obtained by counting species inhabiting

disjoint, isolated patches in the same biogeographical region (e.g. islands, lakes, mountain

tops or any set of areas separated by environmental barriers) [MacArthur and Wilson, 1967].

They stem from the eco-evolutionary dynamics shaping communities on ecological and

evolutionary timescales. For ‘island’ SARs, field evidence points at power-law functional

relationships as the most explanatory [Triantis et al., 2012]. Nested SARs are obtained by

considering sub-patches of different size within a larger, encompassing domain [Harte et al.,

2009]. Compared to island SARs, they are affected by the spatial distribution of individuals

(say, the degree of species clustering) within the domain. This Chapter is focused on island

SARs.

The interest in SARs and in the value of their exponent has been broad from all of ecology, in

particular for their implied predictive use to forecast the effects of large-scale environmental or

climatic change on biodiversity [Thomas et al., 2004], in particular as a consequence of habitat

loss or fragmentation [Durrett and Levin, 1996, Hanski, 2013, Borile et al., 2013]. In fact, within

a deterministic power-law framework, the fraction of species surviving a habitat reduction

from area A to area Anew would simply be equal to (Anew /A)z . Note that only the scaling

exponent z matters for such a prediction (and not the proportionality constant), explaining

the interest in the exponent’s value, see e.g. [Rybicki and Hanski, 2013]. Such estimate certainly

neglects some important factors which have an impact on the number of surviving species,

e.g. the spatial configuration of the remaining habitat [Rybicki and Hanski, 2013] and the

temporal dynamics of extinctions [Pimm and Raven, 1995]. However, SARs still provide an

order-of-magnitude estimate of species loss and can be used as a base on which to build more

specific estimates. Against this background, assessing theoretically the nature of SARs and

the reliability of their predictions is an issue of longstanding interest to community ecology,

biogeography, and macroecology.

A factor seemingly overlooked both in the modeling and in the interpretation of SARs concerns

the fluctuations of the number of species S that the ‘law’ is meant to address. Deterministic

approaches, in fact, only address the average biodiversity, neglecting any fluctuations due to
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3.1. Introduction

the intrinsic stochasticity of the processes taking place in ecosystems and to external sources

of variability. In models of ecosystem dynamics, however, the number of species S in stationary

conditions results from the balance of competing stochastic processes, which according to

neutral theory [Hubbell, 2001] are speciation, immigration and drift. Therefore, the number of

species S, as well as other variables describing the state of the ecosystem, should be seen as

stochastic variables and thus subject to fluctuations. If it were possible to capture its evolution

in time within one single ecosystem, or compare it in exact replicas of the same ecosystem

with the same area (assuming ergodicity of the process), S would assume different values

according to its stationary distribution p(S, t →∞) = p(S). Past theoretical work [MacArthur

and Wilson, 1963, 1967, Rosenzweig, 1995] focused mainly on the deterministic SAR emerging

for its average value 〈S〉 by determining its functional dependence on ecosystem area A

and related coefficients [Durrett and Levin, 1996, Lomolino, 2000, Azaele et al., 2016], and

studying its behavior following changes in speciation rate, typical dispersal length and system

size [Pigolotti and Cencini, 2009, Cencini et al., 2012, Shem-Tov et al., 2017]. One exception

has been provided by Diamond and Gilpin [1980], who tackled the issue of the scaling of the

relative fluctuations of S with ecosystem size A in the case of the equilibrium theory of island

biogeography [MacArthur and Wilson, 1967].

While the interest in studying average behaviours is not questionable, fluctuations of S may

not be negligible with respect to their mean (Figure 3.1) and thus they must be considered as

an important component of the ecosystem’s dynamics. Scatter in measured SARs is usually

disregarded because either related to measuring errors or to factors impossible to quantify.

However, the residual noise attributable to ecological dynamics (defined ‘turnover noise’ by

Diamond and Gilpin [1980]) reflects a theoretically interesting problem. In fact, there would

exist cases where, depending on prevailing ecosystem’s dynamics, the instantaneous value

of S, the target of any field measurements, may differ significantly from its expected value.

Technically, the amplitude of the relative fluctuations of the (random) number of species S is

described by its coefficient of variation:

∆S

〈S〉 =
√

〈(S −〈S〉)2〉
〈S〉 =

p
var(S)

〈S〉 , (3.1)

When relative fluctuations decay with the mean, S can be considered deterministic for ecosys-

tems with large enough 〈S〉 because observable values lie within a negligible distance from

the mean. Whether (and why) relative fluctuations do not decay is an interesting question. In

fact, in the latter scenario, when using a deterministic SAR one should be aware of its reduced

predictive power due to the potential large distance of observations from the average. Note

that theoretically the scaling of the variance with the mean of a random variable has been

often found to conform to a power-law with exponent between 1 and 2 [Taylor, 1961, Cohen,

2014, Giometto et al., 2015], var(S) ∝〈S〉β, an observation that is often referred to as ‘Taylor’s

law’ or ‘fluctuation scaling’. The value of the exponent β discriminates over the behavior of
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Chapter 3. Fluctuations scaling of the species-area relation

the relative fluctuations (Figure 3.1), because:

∆S

〈S〉 ∝ 〈S〉 β2 −1. (3.2)

If β ≥ 2, relative fluctuations do not decay for increasing 〈S〉. As an example, for a Poisson

random variable X , var(X ) = 〈X 2〉−〈X 〉2 = 〈X 〉, therefore β= 1 and the relative fluctuations

vanish in the limit 〈X 〉 →∞. On the other hand, for a random variable X distributed as a

power-law with exponent α ∈ (1,2), the sample mean and variance yield β= (3−α)/(2−α) ≥ 2,

i.e. relative fluctuations diverge in the 〈X 〉 →∞ limit. The value of β is therefore a useful

quantity to characterize the fluctuations of S, and classify different models of ecosystem

dynamics as done below. Note that increasing ecosystem size A corresponds to increasing

the average biodiversity 〈S〉 when the SAR is monotonically growing, which is almost always

found empirically, in particular for island SARs. Therefore, when relative fluctuations decay

with increasing 〈S〉, one can equivalently state that they decay with increasing ecosystem size.

Here, the statistics of S are examined in a number of community dynamics models which im-

plement distinct ecological processes possibly influencing the S dynamics in real ecosystems.

The scaling of the relative fluctuations of S with the mean is characterized to determine how

their behavior changes in response to the introduction of different ecological processes. Exact

results, reviewed in section 3.2, exist for the simplest models, i.e. the model of MacArthur and

Wilson and the non-interacting neutral model, offering a natural starting point for the study

of the behavior of fluctuations. Species competition will be investigated and shown, under

certain circumstances, to be a cause of important perturbations to the system, leading to

relative fluctuations which do not decay with the mean. Furthermore, the effects of different

types of external perturbations on the system will be examined, addressing the effects of their

size and frequency in relation to system size and recovery rate (due to speciation/immigration).

The scope of such model comparison is to further our understanding of the possible statistical

properties of S which should be expected in field observations.

3.2 Species richness from minimalist models of community dy-

namics

The equilibrium theory of island biogeography [MacArthur and Wilson, 1963] has been the

first attempt to explain mechanistically SARs. Even in its original formulation, it has theo-

retical significance to the problem at hand because the stationary state can be understood

in probabilistic terms [Diamond and Gilpin, 1980]. In this theory, the stationary number of

species emerges from the balance between immigration from a species pool, containing P

species, and extinction, with rates I (S) and E(S), respectively. In this approach, the variance

of S is exactly [MacArthur and Wilson, 1967, Diamond and Gilpin, 1980]:

var(S) = I (〈S〉)
dE/dS −d I /dS

, (3.3)
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Figure 3.1 – A conceptual scheme highlighting the probabilistic structure of SARs: (top)
Three equivalent (in terms of environmental conditions), independent ecosystems of area
A,10A,102 A are sketched. The ecosystems are meant to comply with the stipulations of the
theory of island biogeography; (bottom) Three SAR scenarios are shown, differing for the value
of β, respectively by plotting (left) the mean number of species with its confidence interval
(the expected one and an example of the outcome of an hypothetical measurement for each
of the three areas). The plot, in double logarithmic scale, is based on a power-law SAR with
slope equal to z. (right) A sketch of what a time-series of measured total number of species
would look like in the three test ecosystems, should a perfect replicated field study be staged
therein. The parameter β subsumes the properties of the scaling of the variance of the random
variable S, number of observable species within an ecosystem of area A, with its mean 〈S〉
(Taylor’s law). From top to bottom, the case of the Taylor’s law exponent β< 2 would support
a deterministic validity of the SAR in some large area A limit. A notable exception is the case
β= 2 for which the variance scales with the mean, and thus fluctuations cannot be neglected
whatever the size of the ecosystem. Fluctuations grow instead without bounds in the last case
β> 2 and in such cases deterministic SARs are not particularly informative.
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Chapter 3. Fluctuations scaling of the species-area relation

where the average number of species 〈S〉 is obtained from the condition

I (〈S〉) = E(〈S〉). (3.4)

Diamond and Gilpin [1980] showed that, for a specific choice of I (S) and E(S), at stationarity

var(S) increases linearly with 〈S〉 (β= 1) when 〈S〉¿ P , reaches a maximum around 〈S〉 = P/2

and then decays to zero as 〈S〉 approaches P . Such result implies, therefore, that relative

fluctuations decay as 1/
p〈S〉 when 〈S〉 ¿ P and even faster afterwards. This behavior is

related to the lack of speciation in the model, limiting the maximum number of species to the

number of species in the pool.

Such predictions can be compared with the ones of a neutral model where new species are

introduced by speciation and immigration without a fixed upper limit on S. Consider a

community dynamics where new species appear as a point Poisson process with rate λ and

are characterized by a birth rate b and a death rate d that are identical for all species, i.e. the

model is neutral. For this model with non-interacting species, the number of species S at

stationarity is a Poisson random variable [Suweis et al., 2012b] with mean

〈S〉 =λ〈τ〉, (3.5)

where 〈τ〉 is the average lifetime of a species, also called persistence time. An alternative

formulation of this model is the following: the arrival of new species in the system is a Poisson

process of rate λ and their lifetimes τ are i.i.d. variables with mean 〈τ〉. With this formulation,

the fact that S is Poisson-distributed with mean given by Eq. (3.5) corresponds to a known re-

sult of queuing theory [Benes, V, 1965]. As a consequence of p(S) being a Poisson distribution,

one has β= 1. Therefore, relative fluctuations decay with the mean and S is effectively deter-

ministic in the limit of large S. The same result can be proved for the mean-field multi-species

Voter model [Suweis et al., 2012b], where species interact through the competition for space,

in the large A limit (when interactions become negligible). Note that, with the introduction

of space, 〈τ〉 becomes a function of the ecosystem area A. Therefore, Eq. (3.5) provides a link

between persistence times and the SAR [Bertuzzo et al., 2011].

The introduction of more realistic features such as a finite dispersal length, non-negligible

interactions or the relaxation of the neutral assumption prevent exact results to be obtained for

p(S). In fact, interactions make persistence times τ not independent, while introducing a trait

differentiating species, e.g. mass, makes the persistence times τ not identically distributed

across species and the above results do not necessarily apply. Therefore, the statistical proper-

ties of S in a variety of stochastic models of ecosystem dynamics were explored numerically,

varying the assumption of neutrality and the presence or absence of competition. The sta-

tionary distributions p(S) was studied in different generalizations of the simple neutral model

of non-interacting species presented above, comparing different mechanisms of mean-field

competition for resources (section 3.3), neutral and non-neutral models and different specia-

tion mechanisms (section 3.4). For each model and each of the simulated system sizes A, the
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3.3. Neutral models with competition

following quantities were computed: p(S|A) (i.e., the probability that in an ecosystem of size

A, at stationarity, S species coexist), its average 〈S〉, its variance var(S) = 〈S2〉−〈S〉2 and the

relative fluctuations ∆S/〈S〉, p(τ|A) (i.e., the probability that a species in an ecosystem of area

A has a persistence time τ) and its average 〈τ〉. In addition, the effect of habitat stochasticity

was also explored by considering a metapopulation model [Rybicki and Hanski, 2013], where

the biodiversity level is determined by the habitat diversity present in the landscape, allowing

species with different niches to survive (section 3.6). Also for this model, for each simulated

system size A, p(S|A) was computed under randomization of the landscape, along with its

average, variance and relative fluctuations.

3.3 Neutral models with competition

Two different ways of introducing competition for a shared resource, i.e. interaction among

species, are considered: a spatially explicit one in section 3.3.1 and a spatially implicit one in

section 3.3.2.

3.3.1 Multi-species Voter model (MSV)

In the multi-species Voter model (MSV) with speciation and nearest-neighbors dispersal,

each individual occupies a node of an L × L lattice and N = L × L is the total number of

individuals, therefore space is the common resource. At each time step, one individual chosen

at random dies and is replaced with probability λ by an individual of a new species or with

probability 1−λ by an offspring of one of its nearest neighbors. The probability λ should be

interpreted as the sum of the probability of speciation and of the probability of immigration

of a new species from outside the lattice, and will be called ‘diversification rate’ hereafter.

While for the well-mixed case (or equivalently for infinite dispersal length), in the limit A →∞,

a parallel can be established with the non-interacting case [Suweis et al., 2012b] allowing

to extend the analytical results, no analytical results are known when the dispersal length

is finite. A semi-analytical approach gives an approximation for 〈S〉 [Shem-Tov et al., 2017],

but not for p(S). The MSV model was simulated on periodic lattices of size A = L ×L with

L = 50, 100, 200 and diversification rate λ = 10−3. Results are expected to be robust with

respect to the diversification rate λ. To compute p(S) for the different areas, 1000 independent

realizations of S at the stationary state were obtained for each value of A by simulating the

model with the coalescent method [Etienne and Olff, 2004], taking advantage of the dual

representation of the Voter model [Holley and Liggett, 1975]. This method assures that the

realizations of S are independent. Since persistence times cannot be measured with the

coalescent method, one forward simulation of the model was also performed for each value

of A. Species’ persistence times were measured as the interval between the appearance of a

species and its extinction. The simulations were continued until the estimate of 〈τ〉 did not

increase further with simulation length.
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3.3.2 Neutral-Spatially Implicit model (N-SI)

Competition for resources can also be introduced in a spatially-implicit model, in which

a space-dependent resource constraint is implemented in the birth and death rates, as in

the community dynamic model used in Chapter 1. In this section, a neutral version of that

model is considered. Let A be the area of the ecosystem, and R ∝ A the resources supply rate.

Individual births and deaths are Poisson-distributed events. An individual of a species with

abundance ni is born or dies with rates, respectively:

ui = ni ,

vi =
[

v0 + (1− v0)c
N (t )

R

]
ni ,

(3.6)

where c is the resource consumption rate of an individual and the per-capita birth rate for

an individual of unit mass is taken equal to one without loss of generality. A proportionality

constant u0 between ui and ni would simply correspond to re-scaling time by 1/u0. When the

resource consumption of the community cN (t ) is equal to the resource supply rate R, the birth

rate is equal to the death rate, u = v , and the community has no net growth (this is considered

to be stationarity). However, N (t) will continue to fluctuate with time. Diversification is

implemented as a Poisson process with rate λ. At each diversification event, a species is

chosen at random and a random fraction of individuals from such species is assigned to a new

species (fission speciation). In this model, space is introduced implicitly via the assumption

R ∝ A, which determines the number of individuals that the ecosystem can sustain. The

model was simulated for A = 10i with i = 2,3,4,5, λ = 10−4, v0 = 1/2 and c = 10−4. Also in

this case, the results are expected to be robust with respect to a broad range of parameters’

variations. The stationary state was considered attained when the number of species S did

not show a net change in time, but only fluctuations around a stationary mean value. To

compute p(S) at the stationary state, the number of species S was sampled with frequency

f = 10−5. Such a low sampling frequency guarantees the independence of the sampled S

values. Persistence times were measured as explained in section 3.3.1. In the following, this

model is referred to as N-SI (neutral-spatially implicit). Differently from the MSV model, where

each individual always occupies one node, i.e. consumes a fixed amount of resources, here the

neutral assumption for the resource consumption rate can easily be relaxed (see section 3.4).

3.3.3 Comparison with the neutral model without competition

Numerical results suggest that the exact results valid in the non-interacting case (i.e., S be-

ing a Poisson variable with mean given by Eq. (3.5)) are still valid for the two models with

competition in the large area limit. Figs. 3.2 and 3.3 show p(S) obtained from simulations of,

respectively, the the MSV and the N-SI model for different values of A and the corresponding

theoretical predictions for the non-interacting case, i.e. Poisson distributions with mean λ〈τ〉.
The results match closely the predictions and, as expected for a Poisson random variable,

var(S) scales as a power of 〈S〉 with an exponent β compatible with 1, i.e S is asymptotically de-
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3.4. Non-neutral models

terministic. The estimates of β for the two models are, respectively β= 0.985±0.005 (R2 = 1.0)

and β= 1.08±0.06 (R2 = 0.99). Fig. 3.4A displays the time-evolution of S for two different areas

in the N-SI model (a similar dynamics is found for the MSV model). The average number of

species is found to scale as a power-law of A. The values of z estimated by linear least square

fitting of (log A, logS) for the MSV and N-SI models are, respectively, z = 0.998±0.002 (R2 = 1.0)

and z = 0.496±0.001 (R2 = 0.99). Note that the value z = 1 for the MSV model is expected

from the results in [Shem-Tov et al., 2017] to hold independently of λ. Some considerations

regarding the distribution of persistence times in the two models are presented in Appendix

3.8.1.
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Figure 3.2 – p(S|A) for the MSV model with λ= 10−3 and A = L2 with L = 50,100,200 obtained
from 1000 simulations of the model with the coalescent method. Continuous lines are Poisson
distribution with mean λ〈τ〉, where 〈τ〉 was obtained from a forward model simulation.

3.4 Non-neutral models

The neutral assumption can be relaxed by distinguishing different species via specific traits.

Here, mass is considered as the master species’ trait, given its importance in determining

a species’ physiology and ecology [Kleiber, 1932, Brown et al., 2004, Giometto et al., 2013,

Marañón, 2015]. Two variants of the N-SI model are studied, implementing empirically

observed allometric relationships for the dependence of vital rates on individuals’ body sizes

[Brown et al., 2004] and resource consumption rates [Kleiber, 1932]. Models of this class are of

interest as they are capable of reproducing the empirically observed scaling laws related to

abundance and size (see Chapter 1, section 1.5). In these models, an individual of a species
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are Poisson distributions with mean λ〈τ〉(A).

with abundance ni and body mass mi is born or dies with rates, respectively,:

ui = ni m−1/4
i ,

vi =
[

v0 + (1− v0)c

∑
j n j m3/4

j

R

]
ni m−1/4

i ,
(3.7)

where c is the resource consumption rate of an individual with unit mass and the per-capita

birth rate for an individual of unit mass is taken equal to one without loss of generality. The

exponent values −1/4 and −3/4 are the typical values for the corresponding allometries and it

was shown in section 1.5 that they affect the scaling exponents of macroecological patterns,

but not their functional form and covariations. Similarly to the corresponding neutral model

(N-SI), the community net grow is zero when the community consumes all the available

resources, i.e. when c
∑

j n j m3/4
j = R ∝ A. The two variants investigated here differ in the

diversification mechanism: in model M1, diversification is implemented as a Poisson process

with rate λ. This model corresponds to the basic model in section 1.5.1, but with no constraint

on S2. In model M2, the overall rate of diversification λ depends on the area of the ecosystem

as λ = λ0 A−ξ. This choice accounts for the finding of Bertuzzo et al. [2011], which showed

that the species diversification rate scales with the area as λ∝ A−ξ with ξ= 0.84, a result that

was obtained by contrasting the prediction of a neutral model for species persistence times,

p(t ) ∝ t−αe−kλt with constant k, with empirical data on breeding birds and herbaceous plants

[Suweis et al., 2012a]. This result agrees with the interpretation of λ as the sum of the rate of

immigration and that of speciation, as the arrival of new species by immigration is expected to

diminish as the ecosystem area increases [Chisholm and Lichstein, 2009].

2The results presented here concern the case were overall speciation is a Poisson process with rate λ, but the
case where species’ specific speciation has rate λ produces similar results.
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Figure 3.4 – Dynamics of the number of species S in the models presented in the text. A) Model
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of species at fixed frequencies is due to the specific perturbations that we added by design to
the neutral dynamics (see text). Black dotted lines mark the average S. The metapopulation
dynamics model is not shown because its temporal dynamics is not explicitly simulated to
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In models M1 and M2, diversification is implemented via a fission mechanism as in model

N-SI, and the evolution of mass due to a speciation event is the same described in section

1.5. The descendant species j conserves, on average, the mass mi of the parent species

i , being obtained as the product of mi and a random factor with mean 1. More precisely,

m j = max{m0; q ·mi } where q is extracted from a lognormal distribution with mean and

variance equal to unity. The maximum in the expression for m j introduces a bound on the

minimum mass m0 that a species can attain. The mass of the parent species is left unchanged.

The distribution of species’ masses in the system is determined by the combination of this

multiplicative bounded process, known to produce power-laws (as was shown in Box 1.5.2),

and the birth/death dynamics. Models M1 and M2 were simulated for A = 10i with i =
1.5,2,2.5,3,3.5,4 and parameters values c = 10−3, m0 = 1. The diversification rate was set to

λ= 10−2 for M1, while for M2 λ0 = 1 and ξ= 0.5 were used. The number of species and the

persistence times were measured as for the N-SI model.

The dynamics of the random variable S in the two models, displayed in Fig. 3.4B and C, shows

strikingly different features in comparison with the neutral model. In particular, the ratio

∆S/〈S〉 does not decrease with A. The species’ number distributions, shown in Figs. 3.5A and

3.6A, deviate strongly from a Poisson distribution, with fluctuations quantified, respectively,

by β= 1.88±0.05 and β= 1.93±0.14. Rather than being Poisson distributed, species number

distributions in models M1 and M2 are described by the following finite-size scaling form:

p(S|A) = S−σ F

(
S

Az

)
(3.8)

where F is a function such that F (x) → 0 for x → 0,∞. Normalization requires that σ = 1

(see Box 1.2). The validity of Eq. (3.8) is shown by plotting, in Fig. 3.5B and 3.6B the curves

Sp(S) versus S
Az for different values of A and noting that they all collapse. Note that an attempt

to collapse the distributions obtained with the N-SI model according to Eq. (3.8) fails (Fig.

3.7), due to the different behavior of the fluctuations of S. The visual comparison, in Fig.

3.8, of Poisson distributions and lognormal distributions of the same mean, which satisfy

Eq. (3.8), clearly shows this difference. The values of z yielding the best collapses for M1

and M2, computed with the algorithm in [Bhattacharjee and Seno, 2001], are, respectively,

z = 0.46 with 95% confidence interval [0.44, 0.52], and z = 0.222 with 95% confidence interval

[0.216, 0.244]. A consequence of the validity of Eq. (3.8) (see Box 1.2) is that 〈S〉 ∝ Az (Fig.

3.9). The values of the exponent z estimated by performing a least-squares linear fit of the

pairs (log A, log〈S〉) are compatible with the values obtained by collapse of the distributions.

Estimates are, respectively: z = 0.464±0.001, and z = 0.233±0.002. Equation (3.5) proves

still valid: figures 3.14C and 3.15C show the points (λ〈τ〉,〈S〉) for different values of A falling

on the 1:1 line. As expected from equation (3.8) (see Box 1.2), consecutive moments of p(S)

satisfy 〈S j+1〉/〈S j 〉 ∝ 〈S〉 (see Figs 3.5C and 3.6C). Therefore, var(S) = 〈S2〉− 〈S〉2 ∝ 〈S〉2, i.e.

β= 2. Using Eq. (3.2), this implies that the relative fluctuations of S remain constant as the

system grows. As a consequence, the two non-neutral models M1 and M2 do not support a

deterministic approach to biodiversity prediction, as it is not possible to define a threshold

88



3.5. The role of perturbations

P
(S

|A
)

S
 P

(S
|A

)

102100 103

z

<S
j+

1 >/
<S

j >

10110-110-2

102

103E
(z

)

1

1

<S4>/<S3>
<S3>/<S2>
<S2>/<S>

10-2

10-4

10-3

100

10-3

10-2

10-4

10-5

10-1

101

10-1

A B C

S S/Az <S>
101 100

100

0.45 0.550.35

-1.6

-2.4

101 102

Figure 3.5 – Statistics of S for model M1. A) p(S|A), different colors refer to different values
of A = 10i , from i = 1.5 to i = 3.5. B) Collapse of p(S|A). Equation (3.8) is verified because
Sp(S|A) versus S/Az collapse on the same curve for different values of A. Inset: the minimum
of the functional E(z) provides the best estimate for the exponent and the associated error
[Bhattacharjee and Seno, 2001]. C) Scaling of the ratio of consecutive moments with 〈m〉.

area above which the deviation of S from the deterministic prediction is smaller than any

prescribed value. The effect of the different behavior of fluctuations of S on the uncertainty of

field measurements is exemplified in the inset of Fig. 3.8, which compares the scattering of

single values of S around the S = Az line in a (A, S) plot for values distributed according to Eq.

(3.8) and to a Poisson distribution.

One may speculate that the reason for the difference between the neutral and the non-neutral

cases lies in the different characteristics of the perturbations caused to the system by a di-

versification event. In the neutral case, the appearance or disappearance of a species causes

a fixed change in the available resources (and therefore in the death rates) because each

species has the same consumption rate (or occupies the same space, in the case of the MSV

model). When A increases (and so does R), this change becomes relatively smaller and so do

relative fluctuations around stationary mean values. In the non-neutral models, instead, the

appearance or disappearance of a species brings a change in the total resources consumption

which depends on its mass. As A increases, the ecosystem can sustain larger and larger species,

therefore the potential amplitude of fluctuations increases with A. To further investigate how

the presence and characteristic of perturbations influence the behavior of S, section 3.5 is

devoted to examining the dynamics of neutral models where perturbations are imposed, to

disentangle them from the diversification mechanism and to better understand the role of

perturbations in shaping the stationary probability distribution of S.

3.5 The role of perturbations

In section 3.4, perturbations were hypothesized to be the most important factor in determining

the fluctuations of S, and in particular the dependence of their amplitude on ecosystem size to
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be key in discriminating between the asymptotically deterministic scenario and the strongly

stochastic one. In the two non-neutral models M1 and M2, perturbations arise naturally

from the diversification dynamics, where a new species randomly arriving by speciation

or immigration would increase resource consumption and therefore determine a resource

debt causing extinctions, i.e. downward fluctuations of S. Recovery from perturbations, on

the other hand, is controlled by the diversification rate. In models M1 and M2, the rate at

which perturbations happen is related to the recovery rate, rendering the exploration of their

interplay impossible. Also, it is not possible to control the size of such perturbations a priori. In

general, however, the rates of perturbations and diversification may be unrelated, for example

when perturbations are caused by the environment. This section is devoted to examining

the effects of imposing external perturbations of a given size and frequency, which can be

controlled independently from the diversification rate. The frequency of the perturbations

is chosen to be constant with respect to ecosystem area A, to assess in a paradigmatic case

the effects of the same type of perturbation on ecosystems of different areas. The N-SI model

dynamics is an appropriate base to study the effect of external perturbation as it is, in itself,

stable.

Perturbations may have different origins, e.g. climatic or environmental events or temporary

shifts in resource availability. As such, they vary in frequency and in their way in which they

affect ecosystems. Here, the effect of transient disturbances is modeled directly in terms of

species loss. For simplicity, disturbances are assumed to occur with a fixed frequency, but

equivalent results are expected if they arrive as a fixed-rate Poisson process. Two types of

perturbations are compared. In model N-SI-P1, perturbations of fixed magnitude are added to

the dynamics of model N-SI, regardless of S: with a fixed frequency νp , a number Sp of species

is removed from the system. In model N-SI-P2, instead, perturbations grow with system size:

with a fixed frequency νp , a fraction fp of species is removed from the system. This second type

of perturbations could describe, for example, the case of response to an environmental change.

Imagine in fact that each species has a certain probability q to survive, adapting to the new

environmental conditions. Then, on average (1−q)S species will go extinct. The two models

were simulated for A = 10i with i = 2.5,3,3.5,4,4.5,5,5.5, Sp = 5, fp = 3/4 and 1/νp = 5 ·106.

Figure 3.4D and E display the temporal dynamics of S in the two cases. As expected, the

statistics of S in model N-SI-P1 do not differ strongly from the unperturbed case, yielding

β= 0.96±0.07 (R2=0.975). Relative fluctuations therefore vanish rather fast with increasing

ecosystem size, allowing the identification of a threshold area over which a deterministic

SAR is an acceptable approximation, as in the neutral unperturbed case. The SAR shows a

power-law pattern with a slope comparable with the value of z measured in the unperturbed

case (Fig. 3.10), z = 0.436±0.005 (R2=0.99). The dynamics of model N-SI-P2, shown in figure

3.4E, is instead rather different. For small areas, between two perturbations the system is able

to return to the stationary state of the unperturbed model, with Poisson fluctuations around

the mean value of S. Although β' 2, indicating non-negligible stochasticity, if the system is

observed at timescales that are smaller than the perturbation timescale 1/νp , one would see no

differences with the unperturbed case. However, increasing the area causes the recovery time
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to increase, and the system will spend less and less time in the stationary state corresponding

to the unperturbed system, until a threshold value of A is reached, above which the system

is unable to ever reach such a stationary state. When this situation occurs, the observed

value of S might be far from the average predicted by assuming ecosystem stationarity even

at small time scales, and strongly dependent on the ecosystem history. The area at which

this behavior starts depends on the interplay of diversification rate and perturbation rate.

This non-stationary regime shows deviations from a pure power-law both in the SAR (Fig.

3.10), whose slope decreases gradually towards zero, and in Taylor’s law. The decreasing slope

of the SAR is qualitatively explained by a simplified deterministic description of the model

dynamics, where S grows linearly in time with rate r with a hard limit at S̄st at = c Az , the

stationary average of S in the unperturbed model N-SI, and with rate νp a perturbation makes

f S species go extinct, with S the number of species when the perturbation occurs. As shown

in appendix 3.8.2, one can distinguish between two cases: when η= νp f c Az

r ≤ 1 the stationary

state is reached, while when η> 1 it is never reached. One can show (see appendix 3.8.2) that

the slope of the scaling of 〈S〉 with increasing A is z when η¿ 1 but decreases as η increases,

reaching zero when η ≥ 1. For Taylor’s law, a value of β = 3 is predicted at small η values,

decreasing with increasing η. Taylor’s law in model N-SI-P2 indeed shows a slope β∼ 3 for

middle-large areas, but the decrease is not seen at the simulated areas.

This simple model identifies the factors playing a role in determining the dynamics of biodi-

versity in the presence of perturbations. When perturbations size increases with ecosystem

size (as in model N-SI-P2), the ratio η= νp f c Az

r determines whether the system spends most of

the time in its unperturbed stationary state (small η) or whether it spends most or all the time

recovering from perturbations (η≥ 1). In particular, all the other factors being fixed, a larger

system will spend more time recovering, as is seen clearly in Fig. 3.4E. This differs from the

case where perturbation size and diversification rate are independent of ecosystem size, as in

model N-SI-P1, in which ecosystems of all sizes have the same behavior: either they all return

to the stationary state, or none does.

3.6 Effect of habitat stochasticity in a metapopulation dynamics

model

In a given ecosystem, the availability of different niches might change in time, affecting the

number of species surviving in it and therefore creating additional variability. It might also

differ between ecosystems of the same size. Here, a spatially explicit metapopulation model is

considered, a well-established tool to study biodiversity patterns in a spatially heterogeneous

environment [Hanski and Ovaskainen, 2000, Rybicki and Hanski, 2013, Grilli et al., 2015] which

allows assessing the role of habitat stochasticity in the variability of S. The metapopulation

model is based on the interplay between extinction and colonization dynamics. Each species

has a probability pi to be present (with one or more individuals) in a site i of the landscape,

which is a L×L lattice. Species do not interact, thus they have independent dynamics. Let Ei

be the rate at which a species becomes extinct in patch i and Ci the rate at which the patch is
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Figure 3.10 – Scaling of average number of species 〈S〉 versus ecosystem size A in models N-SI
(circles), N-SI-P1 (diamonds) and N-SI-P2 (squares). Lines are least square fit of logarithmically
transformes data, see text for exponent estimates. Error bars are SEM.

colonized. The probability of occupancy pi of patch i is then governed by

d pi

d t
=Ci

(
1−pi

)−Ei pi . (3.9)

Each patch is characterized by a habitat type, determined by the value of a parameter h,

0 ≤ h ≤ 1. A species is characterized by 5 parameters: the colonization rate c, the extinction

rate e, the phenotype φ, the niche width γ and the average dispersal distance 1/α. For a focal

species, the fitness in a patch i with habitat parameter hi is q = exp
[−(hi −φ)2/(2γ2)

]
. The

fitness, which is larger when φ is similar to hi , determines how well the species will perform in

that patch, i.e. the probability that it will become extinct, the extinction rate being defined as

Ei = e/qi . In turn, the colonization rate, given by Ci = c/(2π)
∑

j 6=i α
2e−di jαq j p j , governs the

interactions between the different patches. Species parameters are extracted at random from

a uniform distribution in a suitable interval. The values of h characterizing the landscape are

also extracted at random, but with a fixed spatial correlation (see below for details) and are

constant in time. It was shown [Hanski and Ovaskainen, 2000] that the condition under which

Eq. ((3.9)) has an equilibrium solution different from pi = 0 ∀i is

λM > e/c, (3.10)

where λM is the metapopulation capacity, i.e. the leading eigenvalue of an appropriate matrix,

which depends on the landscape and on the species phenotypeΦ, niche width γ and dispersal

range 1/α. It is therefore said that a species is persistent in the landscape if it satisfies the

condition in Eq. ((3.10)).

To study the variability in the number of species persisting in a landscape of a given size

in the presence of habitat stochasticity, a pool of S0 = 500 species was considered, then the

number of species satisfying the condition in Eq. (3.10) were evaluated and the operation was
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Figure 3.11 – p(S|A) for the metapopulation model with landscapes generated according to
Rybicki and Hanski [2013] A) and with the HYDRO_GEN algorithm (see text) B). Colors, from
blue to orange, refer to landscape sizes A = 252,502,1002,2002.

repeated in a set of 1000 different random landscapes at fixed spatial correlation with the same

pool of species. Spatially correlated random landscapes were generated with two alternative

methods. The first is the one used in Rybicki and Hanski [2013], while the second uses the

HYDRO_GEN algorithm [Bellin and Rubin, 1996] for the generation of correlated random

fields, which has the advantage of allowing us to set a prescribed correlation. Landscape

areas A = 252, 502, 1002, 2002 were considered. Initially, 1000 landscapes of size 2002 were

generated, then the 1000 smaller landscapes were obtained as subsets. Species parameter

ranges were taken as follow: c ∈ [0.25, 2], e ∈ [0.025, 0.4],φ ∈ [0.1, 0.9], γ ∈ [0.1, 0.5],α ∈ [0.07, 1].

To increase the species pool without increasing the computational time (mainly dependent

on the λM computation), for each of the 500 sets of φ, γ and λ 15 additional values of c and e

were extracted, effectively enlarging the species pool to S0 = 8000.

This model differs from the ones presented above in that the number of persisting species is

not determined by the equilibrium of the competing stochastic processes of speciation and

extinction, but to the diversity of habitat types present in the landscape. A larger landscape

tends to have more habitat diversity, therefore more species (on average) are able to persist

in it. The p(S|A) resulting from the metapopulation model with the two different methods

of landscape generation are shown in figures 3.11A and B. The variance decreases with the

mean with a pattern that is not described by a power-law, and therefore an estimation of β is

not possible. However, relative fluctuations decrease with the average much faster that in all

other considered models, at least as 1/〈S〉. Note that by using the condition in Eq. (3.10) to

count the number of surviving species, the stochasticity of the dynamics in each individual

landscape results effectively averaged. Therefore, the observed variability is only that due to

the habitat stochasticity. In conclusion, the variability generated by habitat stochasticity at

fixed spatial correlation is negligible with respect to the one possibly caused by community

dynamics, at least within the assumptions of the present model.
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3.7 Discussion

When SARs are used to predict biodiversity, and biodiversity responses to habitat loss or

fragmentation, it is implicitly assumed that the average value, 〈S〉, described by the SAR is

representative of what could be actually measured empirically, and that all ecosystem features

of interest are stationary. The work presented in this Chapter draws attention on the fact

that such conditions are not always met, and that the scaling of the relative fluctuations

with the mean is a useful tool to tell apart different scenarios. Specifically, when relative

fluctuations decay with increasing mean (or, equivalently, increasing ecosystem size), they

eventually become negligible in a large enough ecosystem, and the deterministic SAR becomes

an appropriate prediction tool (Figure 3.1). Nevertheless, fluctuations might still be important

for small systems. When relative fluctuations do not decay (or decay very slowly), ecosystems

of any size maintain the same level of relative stochasticity. If this level is non-negligible, the

predictions of the SAR will not be representative of the behavior of the ecosystem, where

S may fall far apart from the predicted average. These results are based on an extensive

survey of models of ecosystem dynamics reflecting different types of internal dynamics and

external perturbations driving the system. Even though the analysis does not encompass all

the models of community dynamics ever explored, it shows that different models can lead to

very different predictions for the fluctuations of the number of species S. This study shows that

the fluctuations of the number of species S underpinning the applicability of a deterministic

SAR do not have a universal behavior but rather depend on the main ecological processes

reflected in various model assumptions. Specifically:

• In a neutral framework where fluctuations are only driven by the stochasticity of di-

versification and of extinction events, biodiversity is asymptotically deterministic, i.e.

its relative fluctuations decay with increasing ecosystem size (the case where Taylor’s

β= 1). Fluctuations are non-negligible for small areas, where single realizations of S

may deviate significantly from the deterministic prediction S = c Az . As a consequence,

the empirical verification of theoretically predicted small-scale patterns would require

a time or ensemble average of biodiversity measurements. It is possible to define a

threshold area above which the expected deviation of S from 〈S〉 is smaller than a fixed

threshold εt . More precisely, if 〈S〉 = c Az is the deterministic prediction,

∆S

〈S〉 =
1p〈S〉 =

1p
c Az

≤ εt ⇐⇒ A ≥
(

1

εt
p

c

)2/z

Computational evidence was produced showing that such result is also valid in the

presence of competition for space or resources, where the analytical results valid for the

non-interacting case still proves applicable;

• The introduction of mass as a trait determining resource consumption of individuals,

following Kleiber’s law, causes large fluctuations in the number of species due to the

occasional introduction by speciation/immigration of new species with large resource
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consumption capabilities. The over-exploitation of the ecosystem’s resources following

such events triggers extinctions. The related stationary distribution p(S) displays relative

fluctuations which remain constant as the area A increases (β= 2). Therefore, it is not

possible to define a threshold area above which deviations of S from the deterministic

predictions are smaller than a prescribed value. In such a scenario, deterministic SARs

should be considered only as an average trend of ecosystems, with the understanding

that actual field observations might differ significantly from it. Note that non-neutral

resource consumption does not necessarily cause this behavior of the fluctuations. In

fact, if the introduction of new species in the system (by immigration or speciation) is

strictly constrained by supply limitation, i.e. the total community consumption rate can

never exceed the supply rate, fluctuations would behave similarly to the neutral case.

Nevertheless, it is deemed possible that no similar constraint apply and the scenario

described by our model holds;

• Habitat stochasticity, e.g. as introduced by Rybicki and Hanski [2013], causes small vari-

ability in the number of coexisting species, which decays relatively fast with ecosystem

area. It is overall negligible with respect to the variability caused by the stochasticity of

community dynamics. Remark that habitat stochasticity is implemented at fixed spatial

correlation scale of habitat type. If habitat stochasticity were allowed to uniform/diver-

sify habitat types present in the ecosystem, fluctuations would increase accordingly;

• Peaks in resource consumption caused by the arrival of new species are just one possible

cause of driving noise for the ecosystem. The effects of generic perturbations with fixed

frequency on the dynamics of biodiversity were explored and found to depend on the

specific properties of the perturbations. In particular, perturbations whose magnitude

(the number of species going extinct in one burst of activity) does not depend on the

number of species present in the ecosystem become progressively less important for

increasing ecosystem size. The dynamics thus becomes asymptotically similar to the un-

perturbed one. Instead, when the magnitude of perturbations is larger for species-richer

communities, larger systems need progressively longer times to recover, and therefore

the theoretically predictable stationary average is progressively less informative about

the ecosystem’s state. In such conditions, empirically measured values of S will often be

far from the expected stationary average. Therefore, a SAR estimated from empirical

measurements will have little predictive power. Depending on the ratio between the

frequency of perturbations and the recovery rate, on the perturbations intensity and

on the ecosystem size, the system can still be considered stationary at short timescale

and away from perturbation events, and the conclusions found for the non-perturbed

neutral dynamics apply. Note that perturbations are modeled phenomenologically.

In fact, no explicit description of the response of individual species to environmental

events was given, but only the overall response of the set of species was considered.

A further step could be to investigate what type of individual response would cause a

certain overall effect of perturbations.
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The different conclusions obtained with different models call for further research to clarify

which scenario applies to a specific real ecosystems. That would imply estimating the variance

of S measurements from islands or isolated ecosystems of different areas but similar environ-

mental conditions (e.g., similar climate), like e.g. the Solomon archipelago [Diamond and

Gilpin, 1980], and testing its scaling with the mean. Not only the scaling of the mean, but also

the amplitude of fluctuations should be considered. In fact, relative fluctuations could not

decay but be small enough so as not to prevent deterministic predictions. The variance could

be measured across different replicate ecosystems (that is, ecosystems of very similar size) or

from long-term time series of a single ecosystem [Vellend et al., 2013, Dornelas et al., 2014].

Long-term time series would also prove useful to spot trends highlighting non-stationarity.

For example, Vellend et al. [2013] and Dornelas et al. [2014] provide meta-analyses of several

time-series with various durations up to tens of years. While overall there is no dominating

trend, a number of single time series show an increasing or decreasing trend, signaling non-

stationary conditions [Dornelas et al., 2014]. Moreover, through repeated observations in

time, recovery dynamics after a perturbation may be assessed, say, after a fire or the arrival of

an invasive species. Identifying the time required to return to stationarity after perturbation

and comparing it to the expected time between consecutive perturbation events would allow

assessing whether the system’s biodiversity should be expected to spend most of its time

around its stationary average or else in transient states possibly far from it. The study of the

dynamics following a perturbation would also indicate whether its effects scale with system

size, supporting the scenario of model N-SI-P2. One could for example observe if the arrival

of an invasive species causes more extinctions in a more diverse community than in a less

diverse one.

The analysis presented in this Chapter proves that modeling does not provide a unique

answer on how the fluctuations in the number of species scale with the mean. Rather, models

reflecting different ecological assumptions and processes support different scalings. Therefore,

comparison of model predictions with empirical observations of such scaling, jointly with

empirical investigation of the effect of perturbations on systems of different size, shed light on

the processes controlling community assembly. This work provided an overview of the effect

of specific modeling choices and ecological assumptions on fluctuation scaling, and identified

which mechanisms could cause relative fluctuations which do not decay with system size. In

conclusion, conventional SARs describe a mean trend in biodiversity which may or may not

be appropriate to predict measurable patterns of biodiversity, depending on the processes

acting within the ecosystem and the nature of the external sources of variability.
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3.8 Appendix

3.8.1 Persistence time distribution

The persistence time distributions of the analyzed models, as shown in Figs. 3.12, 3.13, 3.14A

and B and 3.15A and B, satisfy

p(τ|A) = 1

Aθ
G

(
τ

Aθ

)
(3.11)

with θ = z for models MSV, N-SI and M1 and θ = z +ξ for model M2, where z is the exponent

of the SAR. The function G(x) is such that G(x) ∼ c when x < 1, with c > 0 a constant and

limx→∞G(x) = 0. This result is in agreement with Eq. (3.5), in fact, when A is large:

〈τ〉 =
∫ ∞

1
τp(τ|A)dτ= 1

Aθ

∫ ∞

1
τG

( τ
Aθ

)
dτ= Aθ

∫ ∞

1/Aθ
xG(x)d x

≈ Aθ
[

c
∫ 1

1/Aθ
xd x +

∫ ∞

1
xG(x)d x

]
= Aθ[

c

2
A−2θ+ c ′] ∝ Aθ

(3.12)

where x = τ/Az , c ′ > 0 is a constant and the properties of G(x) were used to evaluate the

integrals. Therefore, substituting in Eq. (3.5) and recalling that for M2 one has λ=λ0 A−ξ, one

finds 〈S〉∝ Az .

In the MSV model, a more precise characterization of p(τ|A) is possible. In fact, as found in

Bertuzzo et al. [2011], the distribution of persistence time p(τ) is a power-law with exponential

cutoff when τ> A, where A the number of time-steps in a “generation”, i.e. the time interval

when on average every individual dies and gets replaces. For τ< A, p(τ) is roughly constant

(Fig. 3.13). Therefore, one can write:

p(τ) =C

1 for τ≤ A(
τ
A

)−α e−λ( τA −1) for τ> A
(3.13)

where C =
[

A+ Aαeλ
(
λ
A

)α−1
Γ(1−α,λ)

]−1

is the normalization constant. The value of α

depends on the topology of the lattice (dimension and connectivity, see Bertuzzo et al. [2011]).

For the 2D lattice considered here, a maximum likelihood fit of the tail of the distribution to a

power-law with exponential cutoff gives α∼ 3/2. The fitted curves are the dashed lines in Fig.

3.13.

3.8.2 Deterministic model of a system subject to perturbations

This appendix describes a deterministic model describing the dynamics of the number of

species S in a system subject to periodical perturbations causing the extinction of species.

The model is intended to mimic the stochastic models N-SI-P1 and N-SI-P2 in a simplified

way which allows obtaining analytic results explaining qualitatively the behavior of the two
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Figure 3.12 – Persistence time distributions for the N-SI model. Colors refer to different values
of A. A) p(τ|A) for the N-SI model with λ= 10−3 and A = 10i with i = 2,3,4. B) Ap(τ|A) is a
function of τ/Az , where z is the SAR exponent (see text).

stochastic models. As shown later, this is possible only in the cases where the perturbations

dominate over intrinsic stochasticity in determining the statistics of S.

Let νp be the frequency of perturbations and f Sα the number of species going extinct due to a

perturbation, where S is the number of species present at the moment when the perturbation

occurs and α ∈ [0,1]. The values α= 0,1 correspond, respectively, to the situations in models

N-SI-P1 and N-SI-P2. Let us assume, for simplicity, that between two perturbations S grows

linearly with rate r , but analogous computations can be performed also for other types of

growth. The stationary value of S in the unperturbed N-SI model, S̄st = c Az , is taken as a hard

boundary to the growth of S. Te constant c is set to 1 in the following. Supposing that the

upper boundary S̄st was reached before a perturbation, the time T needed to return to it is

such that

Az − f Aαz + r T = Az , (3.14)

therefore T = f Aαz

r . Two cases must therefore be distinguished: i) when T ≤ 1
ν , the upper

boundary is reached between two perturbations, and the system stays at S = S̄st for an interval
1
ν −T (see Fig. 3.16A); ii) when T > 1

ν the upper boundary is never reached, and the system

eventually stabilizes on a cycle where the growth in time 1/ν is equal to the loss of species

due to the perturbation (see Fig. 3.16B). Defining η= ν f Aαz

r , the two cases are identified by

η≤ 1 and η> 1. Note that, when α= 0, η does not depend on A. Therefore, all other parameter

being fixed, systems of different sizes all belong to the same case: either they all reach the

upper boundary or none of them does.

100



3.8. Appendix

B
10-2

10-4

10-6

10-8

10-10

10-12

10-14

P
(τ

|A
)

100 105 1010

τ

A=502

A=2002

A=1002

fit

A=502

A=2002

A=1002

fit

A
 P

(τ
|A

)

τ/A

10-2

10-4

10-6

10-8

10-10

10-12

102

100

10-5
100 105

A

Figure 3.13 – Persistence-time distribution for the MSV model. A) p(τ|A) for the MSV model
with λ= 10−3 and A = L2 with L = 50,100,200. The dotted lines are maximum likelihood fits of
the tail of the distribution (τ> A) to a power-function with exponential cutoff (Eq. (3.13)). B)
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Figure 3.14 – Persistence time distributions for model M1. A) p(τ|A), colors from blue to
orange correspond to areas A = 10i with i = 2,2.5,3,3.5,4. B) Ap(τ|A) is a function of τ/Az ,
where z is the SAR exponent (see text). C) Plot of 〈S〉, vs λ〈τ〉, showing that Eq. (3.5) is verified.
The continuous line has slope one.

Case η≤ 1

After an initial phase where there is net growth, the upper boundary is reached and S(t)

becomes periodic with period 1/ν. Within a period, the evolution of S is described by

S(t ) =
Az − f Aαz + r t t ≤ T

Az t > T.
(3.15)
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Figure 3.15 – Persistence time distribution for model M2. A) p(τ|A), colors from blue to orange
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is the SAR exponent and β the exponent of the dependence of the diversification rate on A
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The average of S over a period can be computed as follows:

〈S〉 = ν
∫ 1/ν

0
S(t )d t = ν

[∫ T

0
(Az − f Aαz + r t )d t +

∫ 1/ν

T
Az d t

]
= Az

(
1− η f

2
A−(1−α)z

)
. (3.16)

One immediately sees that, for η¿ 1, the SAR is a power-law with slope z. For non-negligible

η values, the slope of the SAR is obtained as

d log〈S〉
d log A

= z

(
1− 2α−1

2r
f 2νA2α−1 −1

)
. (3.17)

Therefore, when α> 1/2 the slope changes from z to 0 as A increases (all other parameters

being equal, valid until η≤ 1). When α< 1/2, instead, the slope is z in the large A limit. This

result explains why model N-SI-P1 has a power-law SAR similar to the one in the absence

of perturbations, while the N-SI-P2 model has a SAR with gradually decreasing slope. The

plateau reached at larger areas for model N-SI-P2 is explained by the case η> 1.

To compute the exponent β, we first compute the second moment of S:

〈S2〉 = ν
∫ 1/nu

0
S(t )2d t = ν

[∫ T

0
(Az − f Aαz + r t )2d t +

∫ 1/ν

T
A2z d t

]
= A2z − f ηA(α+1)z + f 2η

3
A2αz .

(3.18)

Therefore, we have

var (s) = 〈S2〉−〈S〉2 = A2αz f 2η

3

(
1− 3

4
η

)
= A2αz f 3ν

3r

(
1− 3

4
η

)
, (3.19)
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which, when η¿ 1, gives β= 3α. For α= 1, this explains correctly the results of model N-SI-P2

for middle-large values of the area. For α= 1/3 the fluctuations given by the perturbations

are characterized by β = 1, therefore they have the same scaling as the fluctuations due to

the intrinsic stochasticity of the dynamics. For α < 1/3, therefore, the predictions of the

deterministic model are not valid, because the intrinsic stochasticity will dominate on the

perturbations, giving β= 1, as observed for the N-SI-P1 model (α= 0).

Case η> 1

When η> 1, the process becomes periodical before reaching the upper boundary S = Az . To

show this, let us consider the case α= 1 for simplicity and call Si the number of species after

the i -th perturbation. The process is therefore expressed by

Si+1 = min{(1− f )(Si + r /ν), (1− f )Az }. (3.20)

This process has two fixed points, S̃1 = (1− f )r
ν f and S̃2 = (1− f )Az . The fixed point S̃1, corre-

sponding to the situation in which the growth in an interval of length 1/ν is equaled by the

loss of species due to a perturbation, is attractive, i.e. |S̃1 −Si+1| < |S̃1 −Si |. Therefore, when

S̃1 < S̃2 (which is, when η> 1), the process will tend to this fixed point ∀S0 < Az . This situation

corresponds to a periodic dynamics described by

S(t ) = (1− f )r

ν f
+ r t t ≤ 1/ν (3.21)

which does not depend on A. The average over a period therefore is also independent of A:

〈S〉 = ν
∫ 1/ν

0
S(t ) = r (2− f )

2ν f
, (3.22)

which explains the plateau observed in the SAR of model N-SI-P2 in Fig. 3.10. Being S(t)

independent of A, all moments are independent of A and therefore also the relative fluctuation
∆S
S are constant.
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Figure 3.16 – Dynamics of the deterministic model of a system subject to perturbations
described in section 3.5. A) Case η≤ 1, the system reaches the upper boundary; B) case η> 1,
the system never reaches the upper boundary.
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4 Single-cell metabolic rates size-
scaling in freshwater phytoplankton

The scaling of metabolic rate with organismic body mass holds a central role in structuring

communities, given its link with size scaling of growth rates and other organismic properties.

Typically, this relationship is measured for mean metabolic rates and characteristic body masses

of species. However, when considering a population in detail, individual metabolic rates and

body sizes show variabilities, possibly affecting inter-species average allometric scaling and ex-

plaining its documented anomalies. The present chapter fills a gap by providing evidence for the

statistical features of intra-specific metabolic rate distributions using experiments on freshwater

phytoplanktonic cultures measuring jointly nutrient uptake rates and size at the single-cell level.

Measurements were conducted for monocultures of strains of Synechococcus sp., Scenedesmus

obliquus and Cryptomonas ovata using NanoSIMS, a technique based on secondary ions mass

spectrometry in combination with stable isotope labeling. Joint measurements of cell volume

and uptake rates of carbon and nitrogen were carried out. Although limited by the sample

sizes that current technology allows probing, results highlight relevant statistical features of

marginal probability distributions of uptake rate and size, showing universality across different

taxa covering three orders of magnitude in volume. Such results prove the feasibility of a general

description of the joint distribution of metabolic rate and size independent of most biological

details and suggests the scaling form required of it to be consistent with measured marginals.

4.1 Introduction

Decades of research in ecology and biology have unraveled stunning regularities in the distri-

bution of species, their abundances and metabolic requirements [Brown et al., 2004, Marquet

et al., 2005]. These ubiquitous patterns hold for most ecosystems on Earth and help us predict

how ecological communities assemble in the environment and how they respond to environ-

mental change. Kleiber’s law (KL) is regarded as one of the most important and widespread of

such patterns [Kleiber, 1932, 1947], although the extent to which it holds has been questioned

[Kolokotrones et al., 2010, Marañón et al., 2013, Banavar et al., 2014, DeLong et al., 2010]. KL
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states that the metabolic rate b of an organism scales with its body mass, m, according to a

universal power-law b = cmα (where α is a scaling exponent, c a constant). Supported by an

array of physiological studies [Kleiber, 1932, Calder, 1984, McMahon and Bonner, 1983, Peters,

1986], it purportedly holds across more than 27 orders of magnitude in body mass – from

metabolic machinery (e.g. mitochondria) to whales and sequoias [West and Brown, 2004]. The

metabolic power required to support life across that range spans over 21 orders of magnitude

[West and Brown, 2004].

The majority of experimental studies supports the claim that KL applies across species withα∼
3/4 in many groups of organisms [Brown, 1995, Bartels, 1982, Feldman and MacMahon, 1983,

Savage et al., 2004], a predominance [Savage et al., 2004] that has been referred to as the central

paradigm of comparative physiology [White and Seymour, 2005]. Metabolic demand per unit

mass is thus agreed to decrease as body mass increases. Theoretical explanations have been

proposed to support the 3/4 exponent based on some general features of metabolic networks

that hold across different species and levels of organismic complexity [West et al., 1997,

Banavar et al., 1999b]. The ’universality’ of the exponent 3/4 has however been challenged

based on robust empirical evidence of a wealth of exponents α deviating from 3/4 [Dodds

et al., 2001, Glazier, 2005, Hubert, 2010, DeLong et al., 2010, Marañón et al., 2013, Marañón,

2015, Ahluwalia, 2017] and by arguments suggesting curvatures altering the power law relation

[Clarke et al., 2010, Kolokotrones et al., 2010, Mori et al., 2010].

Metabolic requirements of organisms are claimed to influence many fundamental organismic

properties [Brown et al., 2004, West et al., 2002] such as growth rate, mortality rate or carrying

capacity, attributing KL a central role in several ecological processes and in the understanding

of patterns related to body size and abundance [Zaoli et al., 2017, Cavender-Bares et al., 2001,

Marañón, 2015] (its use in Chapter 1 being an example). Notably, the change of slope of the

community size-spectra of marine phytoplankton between oligotrophic and eutrophic condi-

tions [Cavender-Bares et al., 2001, Marañón, 2015] could be explained by a change of slope in

KL across different resource supply conditions, modifying the relative advantages of organism

of different sizes in the uptake and use of resources, although the precise mechanisms at work

have not been clarified theoretically yet. Therefore, understanding the limits of KL and its

validity is of paramount importance.

Most studies investigating KL focused on average metabolic rates and body masses of species,

therefore addressing a mean trend. Nevertheless, individuals within a species show hetero-

geneity in both body size and metabolic rate, with the latter ranging from basal to maximum

and varying in relation to individual life cycle stage and individual age. In its classic form,

KL explains only a part of the total metabolic rate variability, relating it deterministically to

body size. A generalized KL, acknowledging the variability, should describe the joint prob-

ability p(m,b|〈m〉) dmdb that an individual has a metabolic rate in [b, b +db] and a body

mass in [m, m +dm], given that it comes from a species with typical body mass 〈m〉. The

feasibility of such a general description of correlated fluctuation of m and b, independent of

most biological details of species, except for their average body size, would be meaningful at a
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fundamental level. In fact, first it would prove that processes underlying the heterogeneity of

body size and metabolic requirements of organisms are general and valid across biological

scales. Second, it would provide a theoretical framework synthesizing correlated fluctuations

of size and metabolic rates of different origins at the intra- and inter-specific levels. Such a

synthesis is necessary to test the potential role of intra-population variability in individual

traits in shaping size-related patterns and their response to different environmental condi-

tions, e.g. resource supply. For example, characterizing the joint fluctuations of body size and

metabolic rates would help generalizing the theoretical framework in Chapter 1 and predict

possible effects of such fluctuation on patterns covariations predicted therein. As a matter of

fact, intrapopulation variability in individual traits (i.e. phenotypic heterogeneity) is being

increasingly recognized as an important factor for the functionality of microbial populations

and communities [Ackermann, 2015]. Additionally, the knowledge of p(m,b|〈m〉) would allow

assessing if the maximum or minimum metabolic rate expected for a species scale differently

from the average, possibly explaining the different exponents measured empirically, and if

intra-specific scaling differs from inter-specific scaling. The latter information would clarify

the effect of a sheer change in organismic size, other organismic properties being equal, on

the metabolic rate.

The intra-specific probability distribution of body sizes has been studied previously [Giometto

et al., 2013]. It obeys general statistical properties across size scales and taxa, allowing its

full description on the basis of a minimum of species-specific detail (see Methods, section

4.2.1). Concerning metabolic rate variability, Dodds et al. [2001] analyzed the fluctuations of

the average metabolic rate of mammal and bird species around the mean trends but did not

investigate intra-specific heterogeneity. Single-cell variability was examined in single species

(e.g. [Schreiber et al., 2016, Kennard et al., 2016, Welkenhuysen et al., 2017, Zimmermann

et al., 2015]), often looking at species-specific molecular pathways. A previous study [Labra

et al., 2007], investigating the temporal fluctuations of metabolic rates of single individuals,

found that such fluctuations follow a universal distribution. However, no systematic measures

of intra-specific metabolic rate heterogeneity and of its covariation with body size have been

performed across taxa and scales of body size and metabolic rate with a uniform measuring

method, as required to answer the research question addressed in this chapter.

This Chapter presents the results of an experiment designed to measure simultaneously body

size and metabolic rate at the single-cell level for three species of freshwater phytoplankton,

covering three orders of magnitude in volume (1 µm3 to 1000 µm3). The choice of phytoplank-

ton as a study organism is twofold: on the one hand, it allows covering a significant range of

scales while maintaining taxonomic similarity of the studied species, which allow uniform

measuring methods and direct comparison of results; on the other, such choice is motivated

by the importance of understanding the mechanisms driving size-related patterns in marine

and freshwater primary producers [Marañón, 2015], an aim towards which the formulation

of a generalized KL heads. Recently, methods for single-cell investigation of metabolism and

other cell properties have become available (see Vasdekis and Stephanopoulos [2015] for

a review), allowing the investigation of the intra-population heterogeneity which classical
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population-level measurement average out. Here, Nano Secondary Ion Mass Spectrometry

(NanoSIMS), in combination with stable isotope labeling, is used to permit the simultaneous

measurement of cell size and of rates of nutrient uptake (see section 4.2), a proxy of metabolic

activity of particular relevance for phytoplanktonic communities. Specifically, nitrogen and

carbon uptakes were targeted (see section 4.2.4). Cell size is measured by the volume v . Note

that, when cell density is constant, volume and mass only differ by a proportionality constant,

therefore KL and its generalization can equivalently be formulated for mass m or volume v . In

the following, therefore, the variable v is used (see section 4.4 for further comments on the

suitability of this assumption for phytoplankton).

The experiment tests the viability of a description of metabolic rate fluctuations holding across

taxa and in which biological detail only enters in the form of the dimensionless variable b/〈v〉α
(see section 4.2.1 for an exact statement of the hypothesis). It also gathers preliminary yet

significant information on the covariation of metabolic rate and size at the single cell level.

The long-term scope of this line of research is thus to experimentally validate a generalized KL

formulation embedding fluctuations in both body size and metabolic rates.

4.2 Methods

4.2.1 Generalized Kleiber’s law

The scope of this chapter is to characterize the joint probability distribution of body size v

and metabolic rate b for the individuals of a species S. Such distribution is indicated with

p(v,b|S), where the symbol | indicates the conditioning on species-specific traits, and quanti-

fies the probability that an individual of a species of typical body size 〈v〉 has metabolic rate

in [b,b +db] and body size in [v ,v +d v]. Because mass is a strong determinant of a species’

physiology and ecology [McMahon and Bonner, 1983, Peters, 1986, Marañón, 2015], and in

line with previous investigations on intra-specific size distributions [Giometto et al., 2013],

species’ typical body size 〈v〉 is assumed to be the most relevant species trait for this problem.

The form of the joint probability distribution p(v,b|〈v〉) is subject to some empirically driven

constraints: i) it must imply the observed scaling of the average b with the average v , that

is, the classical KL, ii) it must yield marginal distributions of body size and metabolic rate

(i.e., p(v |〈v〉) = ∫
dbp(v,b|〈v〉) and p(b|〈v〉) = ∫

d v p(v,b|〈v〉)) akin to those measured ex-

perimentally. Its two marginal distributions p(v |〈v〉) and p(b|〈v〉) describe respectively the

intra-specific variability in body size and metabolic rate. The marginal distributions of body

sizes of several microbial species spanning four orders of magnitude in volume have been

shown to satisfy [Giometto et al., 2013]

p(v |〈v〉) = 1

v
F

(
v

〈v〉
)

, (4.1)

where F a species-independent function such that limx→0,∞ F (x) = 0. Note that the prefactor

v−1 is required for normalization (see Appendix 4.5.1 for details). The viability of such a

general description for the variability of intra-specific body mass might be explained by the
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processes of cell growth and division shaping it [Giometto et al., 2013], common to different

species.

The hypothesis made here is that the intra-specific metabolic rate variability might be de-

scribed by an analogous scaling form i.e.

p(b|〈v〉) = 1

b
G

(
b

〈v〉α
)

, (4.2)

with α> 0 and G a species-independent function such that limx→0,∞G(x) = 0. The meaning

of this hypothesis is that the species average body size constrains the typical scale of the

metabolic rate of its individuals, proportional to 〈v〉α, and the fluctuations around this

typical value are described by a function G , which is the same for all the species. Therefore,

the metabolic rate distributions of different species, with different typical body mass

〈v〉, hold the same shape when rescaled by a factor 〈v〉α (see Box 1.2 in Chapter 1). The

hypothesis in Eq. (4.2) implies classical KL, i.e. 〈b〉∝ 〈v〉α (see Appendix 4.5.1). The prefactor

b−1 is required, again, by normalization. The scaling behavior of Eqs (4.1) and (4.2) also

implies that all the moments of the distributions scale with the average, i.e. 〈vk〉 ∝ 〈v〉k

and 〈bk〉 ∝ (〈v〉α)k ∝ 〈b〉k (see Appendix 4.5.1). A remarkable implication of this is that

the maximum and minimum metabolic rates observable within a given species scale with

size with the same exponent as the average (see Appendix 4.5.1). For comparison with

the experiments, two exponents αC and αN and two functions GC and GN describing the

variability of nutrient uptake rates of C and N are considered.

The heterogeneity of metabolic rates within a species will derive partly from the body size

heterogeneity and partly from the intrinsic causes of variation mentioned in the introduction.

The former component of the heterogeneity is expected to have the general statistic features

hypothesized in Eq. (4.2), as it descends from (4.1). The hypothesis that also the latter

component enjoys such general features is based on the conjecture that the processes leading

to that intrinsic variability are quite general as well, and that their biological specificity can

be summarized by the average species’ body size. Some sort of ‘universal’ behavior of the

fluctuations is a necessary condition for the formulation of a generalized KL based on little

species-specific details, and is what the experiment presented in the following intends to test.

4.2.2 Maintenance of phytoplanktonic cultures

Monocultures of the cyanobacterium Synechococcus sp. (SYN), the chlorophyte Scenedesmus

obliquus (SCE) and the cryptophyte Cryptomonas ovata (CRY) obtained from the Culture

Collection of Algae and Protozoa (CCAP) were grown semicontinuously in WC medium at 20◦C

under cool white light with a photon flux of 25-50 µEm−2s−1 with a 14L:10D photoperiod.

Samples for the measurement of single-cell size and metabolic rate were obtained during the

exponential phase.
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4.2.3 Labeling experiment

In order to assess the C and N uptake rate of single cells, samples were incubated in enriched

WC medium. The enriched medium was prepared by adding 1 ml of K15NO3 1M stock solution

and 1ml of NaH13CO3 1M stock solution to 1 L of WC medium prepared without Na14NO3,

which was substituted by K15NO3. Cultures were diluted in a 1:1 proportion with the enriched

medium and incubated for 3h. The time interval for incubation was chosen such that the

uptake would be above detection levels while still allowing to neglect cell division. At the

end of the incubation period, the cultures were fixed in 1% paraformaldehyde. A comparison

of cell volumes between fixed and unfixed cultures showed that fixation did not cause cell

shrinkage. Note that the enriched medium contained the same amount of N as the standard

WC medium but a higher quantity of C. Nevertheless, the pH difference was verified to be

negligible, therefore growth conditions during the incubation can be considered analogous to

the maintenance conditions.

4.2.4 NanoSIMS measurements

NanoSIMS is an ion microprobe which performs mass spectrometry on secondary ions sput-

tered from a solid target by the impact of a primary beam of charged particles. Secondary ions

are sputtered from the top few atomic monolayers of the sample. The high spatial precision of

the ion beam (∼ 100nm) allows the creation of an ion image of the sample through a raster of

the primary beam on the sample surface. See Box 4.2.8 for more details on the principles of

NanoSIMS.

The measurement of isotope ratios (13C:12C and 15N:14N) in single cells which have been incu-

bated in enriched medium allows to compute their carbon and nitrogen uptake rates, while

size (volume) can be inferred from the image, as detailed in section 4.2.6. The measurement

of cellular uptake rates a posteriori of the labeling experiment allows to probe also the vari-

ability due to heterogeneous microenvironments cells might experience in populations, for

example due to spatial and temporal gradients of nutrients or irradiance.This is an advantage

of NanoSIMS with respect to other single-cell measurement techniques which require cell

isolation (e.g. microfluidic techniques). The NanoSIMS technique has been previously used

with success on biological samples [Pernice et al., 2012, Schreiber et al., 2016] and specifically

on phytoplanktonic cells [Bonnet et al., 2016].

For each strain, a control sample before incubation and an enriched sample after incubation

were prepared for NanoSIMS analysis by filtering an appropriate amount of fixed culture on

polycarbonate filters of diameter 5mm (IsoporeT M Membrane Filters from Merck Millipore,

cat. no. RTTP01300) with pore size 1.2 µm, which had been previously coated in gold. The

quantity of culture to be filtered was estimated such that a single layer of cell would deposit

on the filter, so that all analyzed cells would lie on the same plane. The prepared filters were

once more coated in gold previous to NanoSIMS analyses. The samples were imaged with

the NanoSIMS ion microprobe of the Laboratory for Biological Geochemistry at EPFL, in

Lausanne (Switzerland), in order to measure their 13C:12C and 15N:14N ratios. Cells were
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located with the camera of the NanoSIMS instrument and bombarded with a primary beam

of Cs+ ions of intensity 40 nA focused to a spot of about 180 nm on the sample surface. An

initial pre-sputtering to remove the surface of the sample and permit the imaging of internal

layers of the cells was performed using diaphragm D1-1 or D1-2, resulting in an intensity of

3.5 pA on the sample surface. For the imaging, the beam was focused to a spot of about 180

nm on the sample surface (diaphragm D1-3), resulting in a beam of intensity 1.5 pA on the

sample. Ion images of the sample were obtained by rastering the primary beam across the

sample with a dwell-time of 5 ms per pixel. Secondary ion images for 12C14N−, 12C15N−, 12C2

and 13C12C were simultaneously recorded from analysis areas of 15×15 µm to 50×50 µm with

a resolution of 256 × 256 pixels. Ratio images were obtained taking the ratio of the 12C15N−

and 12C14N− image and of the 13C12C− and 12C−
2 image (see examples of ratio images in Fig.

4.1). Mass resolution of the detectors (δM/M) was >8000, sufficient to resolve the interference

between 13C12C and 12C2H and between 12C15N and 13C14N. The measured ratios 13C12C:12C2

were converted to 13C:12C ratios by halving them [Nuñez et al., 2018], while the 12C15N:12C14N

ratios was considered equivalent to the 15N:14N ratios. These approximations are sufficient for

the present scopes.

4.2.5 C-N analysis

To measure the average C and N content of cells, necessary to compute the total C and N

uptake during the incubation period (as explained in section 4.2.6), an adequate quantity

of each culture was filtered on a pre-ashed glass microfiber filter (VWR, cat. no. 516-0343,

particle retention: 0.7µm). The number of cells on each filter was estimated by flow cytometric

measurement of the cultures. The filters were stored in ashed aluminum foil, dried at 100oC

for 30 minutes and analyzed for TOC and TN by gas chromatography. The average C and N

content per cell, 〈C〉 and 〈N〉, were then obtained by dividing the TOC and TN values by the

number of cells on the filter.

4.2.6 Computation of volumes and uptake rates

Regions of interest (ROI) were defined for each single cell imaged following its contour (Fig.

4.1). Individual cell volumes were inferred from the images by measuring axes of the ROIs

(cells’ cross sections) and using appropriate geometrical assumptions. A spherical shape

was assumed for Synechococcus and an ellipsoidal one for the other two strains. The average

isotope ratios rC =13C/12C and rN =15N/14N of each single cell were obtained by averaging

the value of all the ROI pixels in the corresponding ratio image. In doing so, it was assumed

that the analyzed layer is representative of the entire cell. As superficial layers show lower

enrichment than internal ones, this assumption is an approximation, causing an over- or

under-estimation of the real average enrichment depending on the position of the analyzed

layer within the cell. Nevertheless, given that the expected variability in the analyzed layer

position is low, all cells lying on the same plane, this error is expected not to compromise

results.
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For each single cell imaged, the uptake rate bi of element i , where i =C or N, is computed as

follows:

bi =
(r̄i − r̄i ,0)Ci

r̄i ,med

1

∆t
(4.3)

where r̄i = ri
1+ri

are, respectively, the ratios 13C:C and 15N:N, ¯ri ,0 are the natural ratios 13C:C and
15N:N measured in the control sample, r̄i ,med are the 13C:C and 15N:N ratios in the incubation

medium, ∆t is the incubation time, and Ci is the total cell content of, respectively, C and N.

Ci is computed from the average C and N contents measured for each strain, by noting that

the average C and N content of a cell scales sublinearly with the average cell volume of that

strain, 〈v〉, i.e. 〈Ci 〉∝ 〈v〉γi with γi < 1. For carbon, a similar result had already been observed

in several studies, as reviewed in Gosselain et al. [2000]. The observed value of the scaling

exponent γC measured in the studies cited therein, for tens of taxa covering several order of

magnitude in cell volume, ranges from 0.76 to 1.04. The measurements on the three strains

used in this experiment, covering three orders of magnitude in cell volume, yield, respectively,

γC = 0.8±0.1 and γN = 0.8±0.1 (see Fig. 4.3a). Making the most parsimonious assumption,

that is, that the same scaling holds also at the individual cell level within a species, Ci is

obtained as

Ci = ki 〈Ci 〉
(

v

〈v〉
)γi

, (4.4)

where ki ' 1 is a constant not depending on individuals or species identity (see Appendix

4.5.2).

4.2.7 Hypothesis testing

The hypotheses that the body size distributions satisfy Eq. (4.1) and that the uptake rate distri-

butions satisfy Eq.(4.2) was tested as follows. First, the exponents αC and αN are estimated by

optimizing the data collapse of p(bC |〈v〉) and p(bN |〈v〉) for the three species. When p(Bi |〈V 〉)
satisfies eq. (4.2), in fact, the curves Bi p(Bi |〈V 〉) vs Bi /〈V 〉αi collapse on the same curve Gi

1

for the appropriate value of αi . The value of αi is therefore estimated optimizing the collapse

with the method in Bhattacharjee and Seno [2001] (separately for i =C , N ). Secondly, note

that if the body sizes and the uptake rates satisfy respectively Eq. (4.1) and Eq. (4.2) then

the rescaled variables X = log
(

v
〈v〉

)
and Yi = log

(
bi

〈v〉αi

)
satisfy, respectively, p(X ) = F (X ) and

p(Yi ) =Gi (Yi ). That is, the probability distributions of the rescaled variables X and Yi are the

same in the three strains. For each variable (v , bC and bN ), a K-Sample Anderson-Darling test

was used to test the null hypothesis that the rescaled samples from the three different strains

come from the same distribution. If the null hypothesis cannot be discarded, it follows that

the hypotheses in Eqs. (4.1) and (4.2) also cannot be discarded.

1The function is allowed to be different for carbon and nitrogen uptake, thence the index i .
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Figure 4.1 – Examples of ratio images obtained with the NanoSIMS. Each pixel’s color refers
to the 13C enrichment with respect to the control sample in that pixel, measured as δ =
rmes−rctr l

rctr l
×1000, with r =13 C 12C /12C2, indicated by the color bar adjacent to each picture.

White contours are the defined ROI over which the isotopic ratio is averaged, details in section
4.2.6. A) Synechococcus sp., black circles are pores in the filter; B) Scenedesmus obliquus; C)
Cryptomonas ovata.

113



Chapter 4. Single-cell metabolic rates size-scaling in freshwater phytoplankton

4.2.8 Principles of NanoSIMS

This Box contains a description of the NanoSIMS technique which scope is to allow a

better understanding of the experimental methods and of the data. The content of the

Box has been adapted from Hoppe et al. [2013].

Sputtering, ionization, transmission and ion detection

Figure 4.2, reproduced from Hoppe et al. [2013], illustrates the physical principle of

secondary ions mass spectroscopy (SIMS). The surface of a solid sample, contained in an

ultra-high-vacuum environment, is hit by a primary beam of ions with energies typically

in the range of several kilo-electron volts (keV). When a primary ion hits the surface

of the target, it triggers a collision cascade, causing atoms and small molecules from

the upper layers of the sample (typically down to 5–20 nm depth) to be ejected. This

process is referred to as ‘sputtering’. Of these sputtered particles, only a small fraction is

ionized, typically in the range between 10−5and 10−2. These ions, referred to as ‘secondary

ions’, leave the sample surface with relatively low kinetic energies and are extracted by

an electrostatic field. The are then transferred to a magnetic sector mass spectrometer,

where secondary ions of different mass-to-charge ratio are physically separated by the

Lorentz force as they pass through a magnetic field arranged perpendicular to the velocity

vector of the secondary ions. A precise isotope measurement requires that this process

has high transmission that is, low loss of secondary ions between the sample surface and

the detector, and high mass resolution, that is, the capability to separate the secondary

ions or molecules of interest from other ions/molecules of very similar mass. The design

of NanoSIMS meets both requirements.

The high lateral resolution of NanoSIMS, allowing to probe samples at the cellular and

sub-cellular level, requires a primary beam of small intensity, typically 1pA. This beam is

focused on an area of, typically, 100 nm × 100 nm. As a consequence, a smaller number of

primary ions hit the sample with respect to conventional SIMS, consequently producing a

smaller number of secondary ions and making technically more difficult to obtain precise

measurements. Primary beam ions are chosen to maximize the secondary ion yield (that

is, the fraction of the atoms released by a primary ion hitting the surface which is ionized).

For the measurement of isotopes of H, C, N, O, Si, and S ions of Caesium (Cs+) are used.

Secondary ions separated by the mass spectrometer are then detected by electrons multi-

pliers. Technical difficulties encountered in the detection process, described in detail in

Hoppe et al. [2013], include isobaric interference, quasi-simultaneous arrival of ions on

the detector, detector dead time.
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Figure 4.2 – The physical principle of SIMS. Impacting primary ions on a sample surface
creates sputtering or ejection of atoms and small molecules, a fraction of which are
ionised. These secondary ions are subsequently transferred through a mass spectrometer
and counted. Figure reproduced from Hoppe et al. [2013].

Design and optics

The fundamental property distinguishing the NanoSIMS from other types of magnetic-

sector SIMS instruments is its ability to produce a small primary beam diameter (defined

as encompassing 68% of the primary beam flux assuming a Gaussian density distribu-

tion) on the surface of a flat sample. Under optimal tuning condition, minimum beam

diameters for Cs+ ion beams are ∼50 nm. The beam is produced by a CsCO3 source. An

optical path (details in Hoppe et al. [2013]) focuses the beam, corrects it for aberrations

and allows to raster it across the sample with a maximum area of 200 × 200 µm2. This

raster allows ion images to be created. Ion yields are largely constant across relatively

large areas in ion images. An aperture of variable size allows to control the beam diameter

by limiting its angular dispersion. The beam hits the sample normally, and the ions ex-

traction and initial focusing occurs co-axially. Owing to this feature of NanoSIMS, the ion

optical elements can be placed much closer to the sample surface than in conventional

ion probe instruments. This allows obtaining a smaller beam diameter and a higher ion

yield. Due to this short distance between the optics and the sample, it is not possible to

do real-time viewing of the sample in an optical microscope. Nevertheless, the sample

can be inspected by a high-resolution reflected light image if it is moved away from its

analysis position.

The secondary ions are separated from the oppositely charged primary ions by a deflec-

tion plate, centered and focused before entering the detector. The masses are separated

by a magnetic field, in which focal plane seven detectors sit, of which six can be moved

to detect different isotopes. The maximum mass separation that can be detected by the

NS50L instrument is 21. Mass resolution is defined as m/∆m, where m is the (mean)
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mass and ∆m the mass difference between the two species to be separated. Only when

the achieved mass resolution is larger than this quantity, the peaks corresponding to the

two species can be separated.

4.3 Results

4.3.1 Scaling of uptake rates with cell volume

Figures 4.3C) and D) display the measured values (v , bi ), respectively for i =C , N , for the three

strains. Each point represents a cell and the strain averages (〈v〉, 〈bi 〉) are plotted in black. The

average uptake rates scale with the average strain cell volume, respectively, with exponents

αC = 0.69±0.01 for carbon and αN = 0.59±0.01 for nitrogen (obtained by linear least squares

fitting of log-transformed values). These exponents, close to 2/3, suggest that the cell uptake

might be limited by membrane transport, rather than by diffusion (see Box 4.3.7), which is

realistic given the nutrient rich medium.

Fig. 4.3C) and D) also shows that fluctuations of b and v are correlated at the intraspecific level.

However, the observed pattern rests on the assumption that the inter-specific scaling of C and

N content also holds at the intra-specific level, an assumption which could not be verified

experimentally due to the impossibility of measuring absolute C and N content of single cells

with the experimental methods used here. On the other hand, the C- and N-specific uptake

rates, obtained as

b̃i = bi

Ci
= (r̄i − r̄i ,0)

r̄i ,med

1

∆t
(4.5)

and shown respectively in figures 4.3E) and F), are not affected by that assumption. Within a

single species, the correlation of b̃i with volume is very small, that is, fluctuations of size and C-

and N-specific uptake for cells of the same species are roughly independent. The correlation

of total uptake rates bC and bN with v is therefore mediated by the cellular content of C and N.

Note, finally, that a small number of Synechococcus cells show a very small C uptake, much

lower than average. Some of these cells are visible in Fig. 4.3E), while some do not appear

in the plot in log-scale as their enrichment is ' 0. The same cells exhibit an N uptake within

expectation, with the exception of one cell which has both uptake rates far below average.

These cells were likely affected by errors during manipulation and/or SIMS analysis and were

excluded from the following analysis.

4.3.2 Correlation of C and N uptake rates

Carbon-specific and nitrogen-specific uptake rates show a strong positive correlation (Pearson

coefficient 0.83, see Fig. 4.3B), suggesting that the two uptake processes are strongly coupled

in the present experimental conditions. Note that the presence of correlation is tested on the

nutrient-specific rates because the multiplication by cell volume necessary to obtain total

uptake rate introduces a strong but trivial correlation.
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Figure 4.3 – A) Scaling of the average cell content of carbon (red squares) and nitrogen (black
circles) with average cell volume for the three strains. Lines are linear least squares fit of log
transformed values; B) Scatter plot of single-cell specific uptake rates of carbon and nitrogen,
bC /C and bN /N ; C) Scaling of the single cell carbon uptake rate with single cell volume for
the three strains; D) Scaling of the single cell nitrogen uptake rate with single cell volume for
the three strains. In C) and D) black dots are species averages (〈v〉,〈bi 〉), i =C,N, and black
lines are linear least squares fit of (log〈v〉,log〈bi 〉); E) Scaling of single cell carbon-specific
carbon uptake rate bc /C with single cell volume for the three strains; F) Scaling of single
cell nitrogen-specific nitrogen uptake rate bN /N with single cell volume for the three strains.
Diamonds: SYN, Squares: SCE, Circles: CRY.
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of the three collapsed curves, yielding the estimate of the parameter σ of the lognormal fit.
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4.3.3 Marginal probability distributions of body size

The intra-specific volume distributions p(v |〈v〉), shown in Fig. 4.4A). Fig. 4.4B) shows their

successful collapse according to eq. (4.1). The function F is well fitted by a parabola in a

log-log plot (R2=0.86), corresponding to a lognormal distribution of body sizes [Giometto

et al., 2013], p(v |〈v〉) = 1p
2πσv

e−
(log(v/〈v〉)+σ2/2)2

2σ2 with σ = 0.46 (95% confidence interval [0.38,

0.53]). The parameter σwas estimated by fitting a parabola to the average of the three rescaled

volume distributions obtained by plotting log(v p(v)) versus log(v/〈v〉). Note that this is a

one-parameter fit, because a log-normal derived from a normal distribution with mean µ and

varianceσ2 satisfies Eq. (4.1) only if µ=−σ2/2 [Giometto et al., 2013]. The resulting lognormal

fits of the size distribution are plotted in Fig. 4.4A). The K-Sample Anderson-Darling test

on the three rescaled samples (see methods, section 4.2.7) does not reject the hypothesis

that the samples come from the same distribution at the 5% confidence level (p-value: 0.17).

Therefore, the data support the hypothesis in Eq. (4.1), in accordance with the previous results

of Giometto et al. [2013].

4.3.4 Marginal probability distributions of uptake rates

The probability distributions of bC and bN for the three species are plotted in Figs. 4.5A)

and C). Figs. 4.5B) and D) show the successful collapse of the three curves according to Eq.

(4.2) for the exponent values optimizing the collapse, respectively, αC = 0.685±0.002 and

αN = 0.585±0.005. The error is computed as the value of the exponents at which the error
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functional Pb (defined in [Bhattacharjee and Seno, 2001] by the sum of the areas enclosed

between all pairs of rescaled curves) is 1% larger than its value at the minimum. Both estimates

are compatible with the ones obtained from the scaling of the average uptake rate with the

average body size, as expected for consistency (see section 4.2.1). For both C and N uptake

rates, the K-Sample Anderson-Darling on the rescaled samples cannot reject the hypothesis

that the three samples come from the same distribution at the 5% confidence level (p-values:

0.09, 0.07 respectively). Therefore, the data support the hypothesis in Eq. (4.2).

4.3.5 Joint distribution of body size and uptake rates

As b and m are two correlated random variables, their joint probability distribution is not sim-

ply given by the products of the two marginals. Rather, p(m,b|〈m〉) = p(m|〈m〉)p(b|m,〈m〉)
where p(b|m,〈m〉) is the metabolic rate distribution conditional both on typical species’ mass
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and individual mass. To study p(b|m,〈m〉), or equivalently the full joint distribution, one

needs to bin the experimental data both in body size and in the metabolic rate. This procedure

requires a number of analyzed cells for each species much larger than that achievable with

the experimental methods used here. Nevertheless, based on the observed properties of

marginals, a reasonable assumption for the scaling properties of the joint distribution is

p(v,b|〈v〉) = 1

vb
H

(
v

〈v〉 ,
b

〈v〉α
)

, (4.6)

where H is a species-independent function. See Appendix 4.5.3 for additional detail.

4.3.6 Contribution of intrinsic variability of b to the total observed variability

The observed variability of metabolic rate within one species is partly caused by the intra-

specific heterogeneity in cell volume and partly by the intrinsic variability of metabolic rates,

related to cell cycle stage, cell age, physiological conditions, etc. The importance of the

intrinsic variability can be estimated by computing the fraction of the total observed intra-

specific variance of b explained only by the intra-specific variance of m as a consequence

of classical KL. Specifically, if there was no intrinsic variability and the metabolic rate of an

individual of volume v was simply obtained as

b = b0vα, (4.7)

the intra-specific distribution of b would be expected to have a variance

var (b) = b2
0 var (vα) (4.8)

where var (vα) is computed within each species. Computing this expected variance for each

species, both for bC and bN , using the values of b0 and α estimated by fitting the points (〈v〉,
〈b〉), one finds that the variance of the intraspecific distribution of volume explains only 34

to 58 % of the observed variance of C uptake rates within one species and only 14 to 31% of

the variance of N uptake rates. Intrinsic variability is therefore shown to be a non-negligible

contribution.

4.3.7 Diffusion-limited and transport-limited uptake

Consider a spherical cell of radius R immersed in a medium containing nutrients. The cell

uptakes the nutrient through the membrane, creating a nutrient gradient and therefore a

flow towards itself, due to diffusion. The flow of nutrient through the entire membrane

per unit time is the cell uptake rate.

Let ρ̄ be the nutrient concentration very far from the cell. If diffusion is the only process

at work, the concentration ρ(r, t) at distance r from the center of the cell and at time t
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satisfies

∂ρ

∂t
= D∇2ρ = D

1

r 2

d

dr

[
r 2 dρ

dr

]
, (4.9)

where the fact that ρ is spherically symmetric was used. At stationarity, this gives

0 = D
1

r 2

d

dr

[
r 2 dρ

dr

]
=⇒ r 2 dρ

dr
= c (4.10)

with c a constant. Integrating,

ρ(r ) =−c

r
+ c ′. (4.11)

The integration constants can be fixed by imposing boundary conditions ρ(∞) = ρ̄ and

ρ(R) = ρR , yielding

ρ(r ) = R

r
(ρR − ρ̄)+ ρ̄. (4.12)

Now, using Fick’s law, the flux through the membrane (incoming nutrient per unit time

and surface) is

J =−D
dρ

dr
|R =−D

ρ̄−ρR

R
. (4.13)

where the minus sign indicates that it is directed towards the interior of the cell.

Now, two cases must be distinguished:

• if the membrane is able to uptake all the nutrient it comes in contact with, ρ(R) = 0.

Then, the flux is J =−D ρ̄
R . This case is called “diffusion limited”;

• if the flux potentially crossing the membrane is larger than what the membrane

can sustain (due to limited number and efficiency of transport sites), J = Jmax,

independent of R. This case is called “transport limited”.

Summarizing, J = min{Jmax,−D ρ̄
R }. For a fixed nutrient concentration, the crossover

between the two situations happens for cells of radius Rc = −D ρ̄
Jmax

. For a fixed cell

size, it happens for a nutrient concentration ρ̄C = −R Jmax
D . The uptake rate is obtained

multiplying the flux by the cell surface:

b = 4πR2|J | =
4πR2 Jmax ∝ v2/3 transport− limited

4πD
ρ̄ R ∝ v1/3 diffusion− limited.

(4.14)

The exponents of the scaling of nutrient uptake rate with cell volume found experimentally

(sec. 4.3.1) suggest that the cells are not limited by diffusion. The higher values of
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exponents measured (∼ 2/3) could be due to transport limits or to other mechanisms not

included in the simple analysis presented in this Box.

4.4 Discussion

For the development of a theoretical framework of ecosystem dynamics accounting for in-

dividual heterogeneity of relevant biological traits, empirical characterization of the scaling

properties of metabolic rates and body size at the individual level is needed. The results of this

Chapter support the validity of an approach based on general statistical features valid across

biological scales. In fact, they suggest that intra-specific metabolic rate heterogeneity is suc-

cessfully described by a scaling probability distribution in which the average body size is the

only biological trait differentiating the distributions of different species. When confronting the

enormous diversity of phytoplankton form and function, two broadly divergent (although not

mutually exclusive) approaches exist, one emphasizing the existence of common constraints

and master traits, such as cell size, that explain much of that diversity, the other emphasizing

phylogenetic variability. The latter implies that taxonomic differences would be crucial to

explain functional differences. The results obtained here show consistent patterns in the

intra-specific variability of size-dependent metabolic rates of species that differ widely in their

phylogenetic affiliation, therefore supporting body size as a fundamental trait to understand

the structure and function of microbial ecosystems.

In Giometto et al. [2013], biotic and abiotic stresses were shown to act on the average 〈v〉, but

not on the shape of the intra-specific body size distribution. One may expect that the same

holds true for the metabolic rate distribution, although the experiments presented here did

not investigate the effects of stress.

The properties of the statistical characterization of intra-specific metabolic rate variability

supported by the experiments would suggest that maximum or minimum metabolic rates

do not scale differently from the average, inter-specifically. This implies that discrepancies

in the measured value of the scaling exponent α could not be explained by discrepancies in

the measuring method (say, targeting basal, field or maximum metabolic rates) but would

rather reflect real shifts in the exponent value reflecting different degrees of allometry as a

consequence of varying degrees of resource supply limitation [Rinaldo et al., 2002, Finkel et al.,

2004].

Limitations of the current measurements ought to be pointed out at this point. In partic-

ular, further work should expand the size range considered and increase the sample size

analyzed for each species. In fact, in terms of theoretical deductions, the limited number

of individual cells that can be analyzed with the current preparation technology precludes

proper identification of joint probability distributions. Also, the specific study organisms

considered (freshwater phytoplakton) and a few experimental circumstances limit the claims

of generality that may be deduced by these early trials, that should therefore be seen as a
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proof of concept of the need for broader investigations. First, cultures were grown at likely

sub-saturating irradiances, which may explain the fact that the observed mean size-scaling

exponent for the whole data set is lower (0.69 for C and 0.59 for N) than earlier values obtained

under light-saturating conditions (∼ 0.8−0.9). In fact, low light is known to induce a shallower

slope in the cell size-metabolic rate relationship [Finkel et al., 2004], one possible reason

being that the larger the cells, the more they suffer from the package effect (a reduction in

chlorophyll-specific light absorption), which becomes progressively more important as light

levels decrease (low light induces higher pigment content and therefore a lower absorption

efficiency). Nutrient concentration can also influence the scaling of uptake rate (Box 4.3.7).

Further experiments should therefore vary both light intensity and nutrient concentration.

Secondly, determining C and N content at the single-cell level would be a major advance.

In fact, the results presented here rest on the assumption that individual elemental content

can be predicted by cell volume, but their relationship at the intra-specific level has not been

tested to date. Combining electron-probe X-ray microanalysis (XRMA) [Segura-Noguera et al.,

2012], which allows the measurement of elemental content in single cells, with NanoSIMS

analyses is a possible solution. Related to this, previous observations [Marañón et al., 2013]

have shown that elemental content is a much better predictor of metabolic rate than cell

volume. Therefore, relating metabolic rate to elemental content rather than volume would be

a promising avenue for future investigations.

Finally, it should be noted that a prediction of Kleiber’s rule is that mass-specific metabolic

rates (units of h−1) scales as the -1/4-power of body mass. The fact that Synechococcus and

Scenedesmus have similar mass-specific metabolic rates, despite having a ∼ 15-fold difference

in cell C and N, supports a significant deviation of phytoplankton metabolism from Kleiber’s

rule (which predicts that the mass-specific metabolic rate of Scenedesmus should be roughly

half of that of Synechococcus). Such a deviation was found recently in a comprehensive analysis

of the size-dependence of phytoplankton growth [Kremer et al., 2017].

In conclusion, the analysis reported in this Chapter suggests that the intra-specific variability

in metabolic rate and size can be described in terms of general statistical features, potentially

providing a key to a generalization of Kleiber’s rule of metabolic rate size-scaling, currently

assumed to play a central role in shaping ecosystems. Although these results should be seen

as a proof of concept owing to the limited samples that current technology allows for single

cell measurements, they are suggestive of scaling features of the marginal distributions, in

turn pointing at the characters likely required of a joint probability distribution of mass and

metabolic rates operating inter-species across scales.
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4.5 Appendix

4.5.1 Properties of p(v |〈v〉) and p(b|〈v〉)
This section is devoted to showing some properties of probability distributions of the form

p(x|C ) = 1

xσ
f

(
x

Cδ

)
, (4.15)

with σ,δ> 0 and C a positive constant setting a typical scale for x. Eq. (4.15) applies both to

the intra-specific distribution of body mass in Eq. (4.1) and to the intra-specific distribution

of metabolic rate in Eq. (4.2). The experimental results in figures 4.4 B) and 4.5 B), D) as well

as those in [Giometto et al., 2013] show that both F and G in Eqs. (4.1) and (4.2) are functions

with an internal mode, decaying fast when their argument tends to 0 or ∞. Therefore, here the

case in which the function f (x) decays to 0 both when x → 0 and when x →∞ is considered.

In 0, a decay f (x) ∼ xε with ε> 0 is sufficient to assure the integrability of xk f (x) for k ≥−1,

while in ∞ a behavior f (x) ∼ o(x−(k+1)) assures the integrability of xk f (x). Here, for simplicity,

f (x) is assumed to decay faster than any power of x in ∞, a condition which assures the

convergence of all moments and which is realized for the lognormal form of p(v |〈v〉) found in

[Giometto et al., 2013] and supported by the data presented in this Chapter.

First, let us show that normalization requires σ= 1. The condition to impose is

1 =
∫ ∞

0
p(x|C ) d x =

∫ ∞

0

1

xσ
f

(
x

Cδ

)
d x =Cδ(1−σ)

∫ ∞

0

1

yσ
f (y) d y, (4.16)

where the substitution y = x/Cδ was performed within the integral. For the normalization

constant not to depend on C , one must impose σ= 1. Additionally, the function f must be

such that
∫ ∞

0
1
y f (y) d y = 1.

The moments of (4.15) are obtained as follows:

〈xk〉 =
∫ ∞

0
xk p(x|C ) d x =

∫ ∞

0
xk−1 f

(
x

Cδ

)
d x =Cδk

∫ ∞

0
yk−1 f (y) d y ∝Cδk , (4.17)

where the substitution y = x/Cδ was performed. The integral
∫ ∞

0 yk−1 f (y)d y converges for

k ≥ 0 thanks to the properties of f . Considering the case k = 1, one has

〈x〉∝Cδ. (4.18)

This implies that, in the case C = 〈x〉 (case of Eq. (4.1)), δ= 1 for consistency. Instead, in the

case of Eq. (4.2) the above result implies

〈b〉∝ 〈v〉α, (4.19)

therefore α can be identified as the exponent of the classical Kleiber’s law.

For the moment of order k, from Eqs. (4.17) and (4.18) follows that all moments of the
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distribution are proportional to the mean:

〈xk〉∝ 〈x〉k . (4.20)

One can also show that, when Eq. (4.2) holds, the maximum and minimum values of b in a

sample scale with 〈v〉 with the same exponent as the mean. In fact, for a species of abundance

N , its individuals’ metabolic rates are N draws from the distribution p(b|〈v〉). Therefore, the

expected maximum value extracted is the value bmax such that, on average, only one extracted

value is ≥ bmax:

1

N
=

∫ ∞

bmax

p(b|〈v〉)db =
∫ ∞

bmax

1

b
G

(
b

〈v〉α
)

db =
∫ ∞

bmax/〈v〉α
1

x
G(x)d x. (4.21)

Differentiating with respect to 〈v〉 gives

0 =
[
αbmax〈v〉−α−1 −〈v〉−αdbmax

d〈v〉
] 〈v〉α

bmax
G

(
b

〈v〉α
)

, (4.22)

that is,

0 =αbmax

〈v〉 − dbmax

d〈v〉 (4.23)

giving

bmax ∝〈v〉α. (4.24)

A similar computation gives the corresponding result for bmin. As a consequence of this, if

the variability of metabolic rates satisfy Eq. (4.2), the maximum and minimum metabolic

rates measured in a sample of individuals of the same species scales with 〈v〉 with the same

exponent α of the mean metabolic rate scaling.

4.5.2 Single-cell content of C ad N

Let Ci be the content of element i in a single cell of volume v . Experimental measurements

yielded 〈Ci 〉 = k1,i 〈v〉γi , where k1,i is a constant and the average is over cells of the same

species. The assumption made to estimate single-cell elemental content is Ci = k2,i vγi , that is,

the same scaling exponent holds at the intra- and inter-specific level. With this assumption,

and using Eq. (4.1),

〈Ci 〉 = k2,i 〈vγi 〉 = k2,i

∫ ∞

0
d v vγi p(v |〈v〉) = k2,i

∫ ∞

0
d v vγi−1F

(
v

〈v〉
)

= k2,i 〈v〉γi

∫ ∞

0
d x xγi−1F (x),

(4.25)
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where x = v/〈v〉. Substituting k2,i =Ci /vγi , one has

〈Ci 〉 =Ci

( 〈v〉
v

)γi
∫ ∞

0
d xxγi−1F (x). (4.26)

Calling 1/ki := ∫ ∞
0 d xxγi−1F (x), finally

Ci = ki 〈Ci 〉
(

v

〈v〉
)γi

. (4.27)

Using the values of γC = 0.8 = γN estimated experimentally and the function F fitted to the

experimental volume distribution in section 4.3.3, kC = kN = 0.98.

4.5.3 Appendix: Possible forms of p(v,b|〈v〉)
Experimental results allowed, although with a precision limited by the amount of data, the

characterization of the marginal distribution of metabolic rates (Eq. (4.2)). Being b and v

two correlated variables, their joint distribution is not simply given by the product of the two

marginals, but rather by p(v,b|〈v〉) = p(v |〈v〉)p(b|v,〈v〉), where p(b|v,〈v〉) is the distribution

of metabolic rates conditional on both the species typical body size 〈v〉 and the body size

v of the individual. Now, the scaling properties of p(b|v,〈v〉) cannot be inferred from the

experimental data since they would require binning in both v and b. With the amount of data

available, this is not possible as very few data would fall in each bin. Nevertheless, knowing that

p(b|v,〈v〉) must be compatible with the form of the marginal p(b|〈v〉), reasonable hypotheses

can be made on its shape. In particular, two cases can be distinguished, depending on whether

the intra-specific size-scaling of b has the same exponent α as the inter-specific scaling, or a

different one.:

• In the case in which the intra-specific scaling of b has the same exponent of the inter-

specific scaling, a reasonable further assumption is

p(b|v,〈v〉) = p(b|v) = 1

b
G̃1

(
b

vα

)
, (4.28)

where G̃1 is a function with the same properties of G . This assumption means that,

knowing the individual body size v , the average species body size 〈v〉 does not give

me further information on the individual metabolic rate. This hypothesis implies that

〈b|v,〈v〉〉 = ∫
bp(b|v,〈v〉)db ∝ vα (see section 4.5.1), therefore α is also the exponent of

the intra-specific size-scaling of b. The joint distribution would then have the form

p(v,b|〈v〉) = 1

vb
F

(
v

〈v〉
)

G̃1

(
b

vα

)
= 1

vb
H1

(
v

〈v〉 ,
b

〈v〉α
)

(4.29)

where H1(x, y) = F (x)G̃1( y
xα ). The function H1(x, y) decays faster than F when x → 0,∞.
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This form yields a marginal with the form in Eq. (4.2):

p(b|〈v〉) =
∫ ∞

0
p(v,b|〈v〉) d v = 1

b

∫ ∞

0

1

v
H1

(
v

〈v〉 ,
b

〈v〉α
)

d v

= 1

b

∫ ∞

0

1

x
H1

(
x,

b

〈v〉α
)

d x = 1

b
G

(
b

〈v〉α
) (4.30)

where the substitution x = v/〈v〉 was performed and G(y) = ∫ ∞
0 x−1H1(x, y) d x, con-

verging thanks to the properties of H (x, y). The form of the marginal implies (see section

4.5.1) that 〈b|〈v〉〉∝ 〈v〉α, i.e., the exponent of the inter-specific scaling is also α.

• If the the intra-specific scaling of b has a different scaling exponent than the inter-

specific one, one can hypothesize

p(b|v,〈v〉) = 1

b
G̃2

(
b

vα
,

v

〈v〉
)

, (4.31)

where G̃2(x, y) is a function that decays fast enough when x → 0,∞, to allow for nor-

malization and convergence of moments (conditions similar to those required for the

function G appearing in the marginal distribution). The normalization condition on this

distribution implies that
∫ ∞

0
1
x G̃2

(
x, v

〈v〉
)

d x = 1. This condition is satisfied, for example,

by a lognormal distribution of the form

p(b|v,〈v〉) = 1

b

1p
2πσ2

e−
(
log b

vα
−η log v

〈v〉
)2

2σ2 (4.32)

which is normalized and has mean 〈b|v,〈v〉〉 = eσ
2/2vα+η〈v〉−η. In general, Eq. (4.31)

implies

〈b|v,〈v〉〉 =
∫ ∞

0
bp(b|v,〈v〉)db = vαQ

(
v

〈v〉
)

(4.33)

where Q(y) = ∫ ∞
0 G̃2(x, y)d x converges thanks to the properties of G̃2. To have a power-

law intra-specific size-scaling of b, one need therefore to ask Q(y) ∝ yη, which gives

〈b|v,〈v〉〉∝ vα+η〈v〉−η. (4.34)

Therefore, intra-specifically (for fixed 〈v〉) the scaling exponent is α+η.

In this case, the joint distribution has the form

p(v,b|〈v〉) = 1

vb
F

(
v

〈v〉
)

G̃2

(
b

vα
,

v

〈v〉
)
= 1

vb
H2

(
v

〈v〉 ,
b

vα

)
(4.35)

where H2(x, y) = F (x)G̃2(y, x). Note that this can also be rewritten as p(v,b|〈v〉) =
1

vb H̃2

(
v
〈v〉 , b

〈v〉α
)

with H̃2(x, y) = H2
(
x, y

xα
)
. Therefore, the scaling form of the joint distri-

bution is formally the same in the two cases, although the behavior of the functions H1
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and H̃2 differs. This form, again, yields a marginal with the form in Eq. (4.2):

p(b|〈v〉) =
∫ ∞

0
p(v,b|〈v〉) d v = 1

b

∫ ∞

0

1

v
H2

(
v

〈v〉 ,
b

vα

)
d v

= 1

b

∫ ∞

0

1

x
H2

(
x,

b

xα〈v〉α
)

d x = 1

b
G

(
b

〈v〉α
) (4.36)

where the substitution x = v/〈v〉 was performed and G(y) = ∫ ∞
0 x−1H2(x, y/xα) d x. This

marginal implies

〈b|〈v〉〉∝ 〈v〉α, (4.37)

that is, the inter-specific scaling is described by the exponent α, different from the

exponent of the intra-specific.

Both hypotheses are compatible with the p(b|〈v〉) supported by the data, but the data do not

allow distinguishing between the two for two reasons. First, the data points are not sufficient

to verify the scaling form of p(b|v,〈v〉). Second, the intra-specific scaling of b observed in the

data (figures 4.3 C and D of the main text) is dependent on our assumption that the C and N

content of cells scale with volume at the intra-specific level with the same exponent of the

inter-specific scaling (see section 4.2.6 of methods). This assumption needs verification before

one can draw conclusions regarding the intra-specific scaling of metabolic rates.
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The present Thesis has shown that scaling laws prove a precious tool to describe the properties

of complex ecosystems and organisms across scales by proposing a theoretical framework

unifying the observed patterns and predicting their covariations and investigated the statistical

properties of fluctuations around the average trends described by such patterns.

Chapters 1 and 2 were dedicated to the formulation and empirical validation of the theoretical

framework linking several empirically observed patterns. The framework is based on the

idea, inspired from statistical physics, that macroscopic observables (i.e., ecological laws) can

be derived from the probability distribution of microscopic states of the system, which can

be interpreted, in the ecological case, as the joint probability distribution of body mass and

abundance of species. In Chapter 1 a scaling hypothesis for such joint probability distribution

was proposed and its consequences in terms of linking relationships among the scaling

exponents of ecological laws were derived. The scaling hypothesis was shown to be supported

by a class of stochastic models of community dynamics including the minimal set of processes

allowing to reproduce empirically observed patters. In Chapter 2, the predictions of the

framework were successfully compared to the available empirical data.

While previous attempts to link ecological laws exist, the approach presented in this thesis

represents an advancement due to the larger number of patterns linked, the empirical verifica-

tion of predictions and the flexibility of the proposed framework to the inclusion of deviations

from pure power-laws or additional ecological details, e.g. intra-specific size distributions.

The necessity of a general theory of ecology encompassing different spatial, temporal and

biological scales has been voiced on several occasions [Levin, 1992, Marquet, 2017, Ellison,

2018]. The approach presented in Chapters 1 and 2 is a step in that direction, offering a frame-

work that links organism-level patterns, like the size-scaling of metabolism, to community-

and ecosystem- level patterns, but certainly much work is left to do. In fact, the framework

presented here takes the shape of the empirical patterns as a fact, but , in the words of Levin

[1992], “simple statistical description of patterns is a starting point, but correlations are no

substitute for mechanistic understanding”. Therefore, future work will have to investigate the

mechanistic basis of empirical patterns and clarify which processes determine the shape of

ecological laws and the value of the independent exponents.

In Chapters 3 and 4 fluctuations around the average trends described by the Species-Area

Relationship and by Kleiber’s law were studied by numerical modeling and by experiments
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at the single-cell level. In Chapter 3, the scaling with the mean of relative fluctuations of the

number of species S coexisting in an ecosystem at stationarity was studied by numerical simu-

lations in several stochastic models of community dynamics. The models include different

processes possibly determining the dynamics of S in real ecosystems. The results obtained

showed that including different processes in the dynamics may produce a different behavior

of relative fluctuations, in some cases impairing the use of a deterministic SAR for predictions.

This non-univocal result of modeling indicates that empirical investigations should sort out

which fluctuation scaling scenario applies in real ecosystems, possibly depending on specific

contexts. Empirical observations then, through a comparison with modeling results, will point

out which processes have a central role in community assembly.

Chapter 4 explored, by theoretical and experimental methods, the possibility to formulate a

generalized law describing the size-scaling of metabolic rate which acknowledges the intra-

specific variability of body size and metabolic rate. Such variability was measured experimen-

tally at the single-cell level for three species of freshwater phytoplankton. Results support the

hypothesis that the intra-specific distributions of body size and metabolic rate enjoy statistical

properties that hold across taxa and scales of body size, indicating that they are underlain

by fundamental physiological processes. In fact, distributions pertaining to different species,

covering three orders of magnitude in volume, are identical upon appropriate rescaling ac-

cording to the mean species’ body size. Body size is thus confirmed in its role of “master

trait” having high explanatory power on many organismic properties. Nevertheless, this role

is now interpreted in a probabilistic way, rather than in a deterministic one as in the classic

Kleiber’s law. Experimental results were limited, mainly, in two regards. First, specific nutrient

uptake rates were measured (uptake rates per unit carbon or nitrogen present in the cell),

therefore the computation of total uptake rate required an estimation of single-cell carbon

and nutrient content, introducing uncertainty and, possibly, biases. Secondly, the number of

cells which the current experimental method allowed to probe was too small to investigate

the joint probability distribution of body size and metabolic rate. While a reasonable scaling

hypothesis for such joint distribution could be put forward on the basis of the measured

marginals, additional empirical support is needed. Further experimental developments are

envisaged, planning to use alternative measurement techniques with higher throughput and

which allow either the measurement of absolute uptake rates (or other proxies of metabolism,

e.g. respiration rates) or the simultaneous measurement of single-cell nutrient content.

In this thesis, scaling was used in two forms. First, power-laws were used to describe how

relevant quantities scale with the size of the system, the organism, or any size characterizing

the problem. Secondly, scaling hypotheses were used to describe how the size of the system or

a typical size characterizing the problem affect the probability distributions of the variables of

interest. This approach provides a statistical characterization of such variables which does not

depend on any model but can still contribute useful information, as proved in Chapters 1 and

4. It is therefore a powerful tool to interpret patterns across spatial and biological scales, where

different specific mechanisms could be at work preventing an encompassing mechanistic

description.
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