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Abstract

A large part of computer vision research is devoted to building models and algorithms
aimed at understanding human appearance and behaviour from images and videos.
Ultimately, we want to build automated systems that are at least as capable as people
when it comes to interpreting humans. Most of the tasks that we want these systems
to solve can be posed as a problem of inference in probabilistic models. Although
probabilistic inference in general is a very hard problem of its own, there exists a very
powerful class of inference algorithms, variational inference, which allows us to build
efficient solutions for a wide range of problems.

In this thesis, we consider a variety of computer vision problems targeted at modeling
human appearance and behaviour, including detection, activity recognition, semantic
segmentation and facial geometry modeling. For each of those problems, we develop novel
methods that use variational inference to improve the capabilities of the existing systems.

First, we introduce a novel method for detecting multiple potentially occluded people in
depth images, which we call DPOM. Unlike many other approaches, our method does
probabilistic reasoning jointly, and thus allows to propagate knowledge about one part of
the image evidence to reason about the rest. This is particularly important in crowded
scenes involving many people, since it helps to handle ambiguous situations resulting
from severe occlusions. We demonstrate that our approach outperforms existing methods
on multiple datasets.

Second, we develop a new algorithm for variational inference that works for a large
class of probabilistic models, which includes, among others, DPOM and some of the
state-of-the-art models for semantic segmentation. We provide a formal proof that our
method converges, and demonstrate experimentally that it brings better performance
than the state-of-the-art on several real-world tasks, which include semantic segmentation
and people detection. Importantly, we show that parallel variational inference in discrete
random fields can be seen as a special case of proximal gradient descent, which allows us
to benefit from many of the advances in gradient-based optimization.
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Third, we propose a unified framework for multi-human scene understanding which
simultaneously solves three tasks: multi-person detection, individual action recognition
and collective activity recognition. Within our framework, we introduce a novel multi-
person detection scheme, which relies on variational inference and jointly refines detection
hypotheses instead of relying on suboptimal post-processing. Ultimately, our model takes
as an inputs a frame sequence and produces a comprehensive description of the scene.
Finally, we experimentally demonstrate that our method brings better performance than
the state-of-the-art.

Fourth, we propose a new approach for learning facial geometry with deep probabilistic
models and variational methods. Our model is based on a variational autoencoder with
multiple sets of hidden variables, which are capturing various levels of deformations,
ranging from global to local, high-frequency ones. We experimentally demonstrate the
power of the model on a variety of fitting tasks. Our model is completely data-driven
and can be learned from a relatively small number of individuals.

Keywords: human modeling, variational inference, depth-based human detection, condi-
tional random fields, activity recognition, facial modeling, deep probabilistic models.
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Résumé

La majorité de la recherche en vision par ordinateur est dévouée à la construction de
modèles et algorithmes ayant pour but de comprendre l’apparence et le comportement
humain, sur la base d’images et de vidéos. In fine, l’objectif est de construire des systèmes
automatisés au moins aussi performants que les humains. La plupart des tâches que ces
systèmes doivent résoudre peuvent être formulées comme problème d’inférence dans le
contexte de modèles probabilistes. Bien que l’inférence statistique soit un problème difficile,
il existe une catégorie très puissante d’algorithmes, à savoir l’inférence variationnelle, qui
permet de créer des solutions pratiques et efficaces pour une large variété de problèmes.

Dans cette thèse, nous considérons plusieurs problèmes en vision par ordinateur visant à
modéliser l’apparence et le comportement humain, incluant la détection, la reconnaissance
d’activité, la segmentation sémantique ainsi que la modélisation de la géométrie faciale.
Pour chacun de ces problèmes, nous développons de nouveaux modèles et méthodes
utilisant des approches variationnelles, afin d’améliorer les capacités de systèmes existants.

Dans un premier temps, nous introduisons une nouvelle méthode pour la détection de
plusieurs personnes en utilisant des images de profondeur, DPOM. À la différence d’autres
approches, notre méthode effectue un raisonnement probabiliste conjoint, en propageant la
connaissance d’une part de l’image sur l’autre afin de guider le raisonnement à faire. Ceci
est particulièrement important dans le contexte de scènes clauses comprenant un grand
nombre d’individus, comme cette méthode aide à gérer les situations ambigües résultant
d’occlusions importantes. Nous démontrons sur de multiples ensembles de données que
notre approche surpasse les méthodes actuelles.

Dans un deuxième temps, nous développons un nouvel algorithme d’inférence variationnelle
qui fonctionne pour une large classe de modèles probabilistes qui incluent, entre autres,
DPOM et certains modèles contemporains de segmentation sémantique. Nous fournissons
une preuve formelle de convergence, et démontrons expérimentalement que la performance
de notre algorithme est supérieure à celle des méthodes contemporaines sur plusieurs
tâches de vie réelle. In particulier, nous montrons que l’inférence variationnelle parallèle
dans le contexte de champs aléatoires discrets peut être considérée comme un cas spécial
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de descente du gradient proximal, ce qui nous permet de bénéficier d’un grand nombre de
progrès réalisés en optimisation basée sur le gradient.

Dans un troisième temps, nous proposons un cadre unifié pour la compréhension de scènes
comprenant plusieurs individus, qui résout trois tâches simultanément : la détection
d’individus multiples, la reconnaissance d’actions individuelles, ainsi que la reconnaissance
d’activités collectives. Nous introduisons un nouvel algorithme de détection d’individus
multiples, qui repose sur l’inférence variationnelle et qui raffine les hypothèses de détection
de manière conjointe, plutôt que de se baser sur un post-traitement sous-optimal. Notre
modèle prend pour entrée une séquence d’images et produit une description complète de
la scène. Finalement, nous montrons expérimentalement que notre méthode présente une
meilleure performance que les approches contemporaines.

Dans un quatrième et dernier temps, nous proposons une nouvelle approche pour l’ap-
prentissage de la géométrie faciale, utilisant des modèles probabilistes profonds ainsi que
des méthodes variationnelles. Notre modèle est basé sur un auto-encodeur variationnel
possédant plusieurs ensembles de variables cachées qui capturent différents niveaux de
déformations, allant du global au local. Nous démontrons expérimentalement la puissance
du modèle sur plusieurs tâches d’inférence. Notre modèle est entièrement fondé sur les
données et peut être appris à partir d’un nombre d’individus relativement restreint.

Mots clés : modélisation humaine, inférence variationnelle, détection humaine basée sur
la profondeur, champs aléatoires conditionnels, reconnaissance d’activité, modélisation
faciale, modèles probabilistes profonds.
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1 Introduction

Understanding scenes that involve human beings is a long-standing problem in computer
vision. This should not come as a surprise, because the amount of applications of
automated systems which can interpret scenes and make predictions based on the images
of people is countless: ranging from automotive industry to social science.

When one wants to create an automated system that is capable of interpreting and
making predictions about certain phenomena, such as human appearance or behaviour, it
seems natural to require this system to have an internal abstract representation of the
phenomena, or, in other words, to have a model. In our own subjective human experiences,
we sometimes experience the presence of such models, e.g. when spotting a familiar figure
when staring at the clouds in the sky or looking at kids drawings of human bodies. In
fact, evidence from neuroscience [32, 118, 131] suggests that a primate brain, a system
that has inspired a significant amount of computer vision research, possibly contains
structured models of faces and body parts.

For the purpose of this thesis, we will think of a model as a formal representation of
dependencies between variables. Variables can represent some quantities of interest
that we either observe, e.g. pixels of images of people, or are ultimately interested in
estimating, such as the locations of humans in the images or the geometrical structure of
their bodies. More formally, these dependencies between variables can be represented
by a multivariate function, which assigns a single scalar value to any combination of the
variables. Intuitively, the values of such a function indicate how compatible are its inputs:
for example, how likely it is that certain pixels of the image contain a human.

A natural choice for such a function is a probability density function (probability mass
function if the variables are discrete). Using probabilistic approach bears a lot of benefits,
ultimately making models much more interpretable and comparable between each other,
in particular by providing built-in mechanisms for measuring uncertainty. This principled
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Chapter 1. Introduction

way of designing models is called probabilistic modeling.

In this context, a model is represented as a probability distribution over two categories
of variables: observed, which often correspond to the inputs of the system, and hidden
(latent) variables, which are usually the unknowns. Ultimately we want to use these
models to answer some specific questions about the phenomena of interest, in other words,
to do inference. For example, given a model that represents interdependencies between
the image of a human face and its geometry, we might want to infer the latter from
the former. More generally, the goal of inference is to estimate the states of the hidden
variables, given the observations, either by finding a specific assignment of those variables,
or by estimating distributions over those variables or their subsets. As it turns out, for
a lot of non-trivial models the exact inference is computationally intractable, and thus
various approximations have been developed. Among those approximate methods one of
the most prominent ones is variational inference.

The core idea behind variational inference is to convert the problem of inference into the
problem of optimization. Namely, instead of looking for the true distribution of interest,
we introduce a parametric approximation, and then minimize the discrepancy between
the two. Interestingly, it can be shown that this minimization is equivalent to minimizing
the quantity known as (variational) free energy, a concept that is extensively used in
many fields outside of computer vision, including statistical physics [163], biology and
neuroscience [53,140].

In this work we demonstrate that a lot of core machine perception problems, in particular
those focused on understanding humans, can be successfully approached by designing
probabilistic models and developing corresponding variational inference techniques. An
important message of this work is that these methods not only provide a solid theoretical
framework, but are also of great practical importance for vision-based human modeling.

1.1 Applications

The ultimate goal of probabilistic modeling and inference is to solve real-world problems.
In what follows, we informally introduce the main application areas and their core
challenges, which we tackle with the methods developed in this thesis.

Human Detection

Localizing objects in images is a well-studied problem in computer vision. Traditionally,
the goal of object detection is to produce a bounding box for each object of interest in a
given image (Figure 1.1). Detecting humans is a well-established field on its own, both
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because of the impact it has in various industries, and because the problem is particularly
challenging, due to high variations in appearance and frequent occlusions.

Figure 1.1: Human Detection Example. The goal of a human detection algorithm is to
produce a bounding box (green squares) for each person (or person’s head in this case)
present in the given image.

This problem is particularly interesting from the perspective of the kind of methods
discussed in this thesis, because it is naturally suitable to probabilistic models and
variational inference. One of the reasons for this is the fact that the problem is inherently
multi-modal, that is, there can be multiple bounding boxes which are all valid answers to
the question of where an individual is. Moreover, in many realistic scenarios the scenes
are very crowded, and there are a lot of occlusions, which makes the problem significantly
harder and more ambiguous.

However, the vast majority of existing techniques for human detection (with few excep-
tions [9, 52]) ignore the aforementioned issues, and rely on sub-optimal post-processing.
To help filling this gap, we introduce two alternative approaches that rely on variational
inference, both in the context of depth-based human detection in Chapter 3, and in the
context of RGB-based human detection and action recognition in Chapter 5.

Activity Recognition

Human detection is an important vision problem, yet it is only the first step to un-
derstanding what is actually happening in the scene, a problem usually referred to as
activity or action recognition. Typically, the task of activity recognition is formulated
as a classification problem, that is, we want to assign labels to the image or its parts,
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Figure 1.2: Activity Recognition Example. In this example, our goal is to produce a
label for each volleyball player in the scene (e.g. “moving” or “standing”), as well as a
label describing the overall activity that is happening on the court (“right set” or “left set”
depending on which team is attacking).

in order to describe what is happening in the entire image or regions corresponding
to individual humans (Figure 1.2). Most of the existing approaches for multi-person
scene understanding use fragmented pipelines [31,69,123], with completely independent
detection, tracking and activity recognition steps. This ultimately leads to sub-optimal
decisions at each of those stages.

In Chapter 5, we propose a method that aims at solving those issues. Namely, we build
on top of a variational human detection algorithm and develop an end-to-end system
for multi-person scene understanding, which takes as input a sequence of images and
produces a comprehensive interpretation of the scene: locations of the individuals, their
actions and the group activity that they are performing.

Semantic Segmentation

Semantic image segmentation is a task of per-pixel image labelling, that is, we want to
assign each pixel in the image to a specific entity class (Figure 1.3). This problem is quite
challenging, one of the reasons being that it ultimately requires joint reasoning on the
local and global evidence.

Conditional random fields (CRFs), a specific class of probabilistic models, have been
successfully applied to this problem in a multitude of contexts [94,113,168]. CRFs are
very generic and offer a lot flexibility in how to model various dependencies between
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Figure 1.3: Semantic Segmentation Example. In this example we want to assign a “person”
label (indicated by pink color) for each pixel of the image containing a person, and
“background” label (indicated by black color) for all the others.

variables, thus allowing to jointly take into account image evidence on multiple levels.
Unfortunately, this flexibility comes at a price, and for many CRF-based models the
traditional inference algorithms either do not work or are too inefficient. In Chapter 4
we introduce an efficient and principled algorithm to do inference in these models, and
demonstrate that it can be successfully applied to the problem of semantic segmentation,
among others.

Modeling Faces

Figure 1.4: Modeling Facial Geometry Example. The goal of a facial reconstruction
algorithm is to estimate the facial geometry (picture on the right), typically represented
a collection of polygons (meshes), from a given image (picture on the left).

The problem of human geometry reconstruction, and, in particular, facial geometry
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reconstruction (Figure 1.4) has traditionally relied on parametric models [16, 33, 75]. The
reason for this is that the space of rough head shape geometries is rather limited. However,
it is still a huge challenge to build a model that is useful for high-quality reconstructions,
because they need to capture not only the overall head shape, but various levels of detail,
ultimately including small, high-frequency deformations. In Chapter 6 we introduce a
method to model multi-scale facial geometry which is based on deep probabilistic models,
variational autoencoders.

1.2 Contributions

In this section, we formally describe the main contributions of this thesis.

Variational Human Detection in Depth Images

We propose a novel approach to computing the probabilities of presence of multiple and
potentially occluding humans in a scene from a single depth map. To this end, we use a
generative approach that explicitly models the distribution of depth images that would be
produced if the probabilities of presence (occupancy maps) were known. We then optimize
these occupancy maps with a variational scheme such that the model explains observed
evidence as closely as possible. This allows us to exploit very effectively the available
evidence and outperform state-of-the-art methods without requiring large amounts of
data, or without using the RGB signal that modern RGB-D sensors also provide.

Efficient Variational Inference

Mean-field variational inference is a specific instance of variational inference which makes
certain factorization assumptions on the variational posterior distribution. It is one of the
most popular approaches to inference in conditional random fields, which are frequently
used for tasks related to human detection and semantic segmentation. Standard mean-field
optimization is based on coordinate descent and in many situations can be impractical.
Thus, in practice, various parallel techniques are used, which either rely on ad hoc
smoothing with heuristically set parameters, or put strong constraints on the type of
models.

In this thesis, we propose a novel proximal gradient-based approach to optimizing the
variational objective. It is naturally parallelizable and easy to implement. We prove its
convergence, and demonstrate that, in practice, it yields faster convergence and often finds
better optima than more traditional mean-field optimization techniques. Moreover, we
show experimentally that our method is less sensitive to the choice of hyper-parameters.
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Multi-Human Scene Understanding

We present a unified framework for understanding human social behaviors in raw image
sequences. Our model jointly detects multiple individuals, infers their social actions, and
estimates their collective actions with a single feed-forward pass through a neural network.
We propose a single architecture that does not rely on external detection algorithms but
rather is trained end-to-end to generate dense proposal maps that are refined via a novel
variational inference scheme. The temporal consistency is handled via a person-level
matching Recurrent Neural Network. The complete model takes as input a sequence of
frames and outputs detections along with the estimates of individual actions and collective
activities. We demonstrate state-of-the-art performance of our algorithms on multiple
benchmarks.

Variational Human Face Modeling

We propose a method for learning non-linear face geometry representations using deep
generative models. Our model is a variational autoencoder with multiple levels of hidden
variables where lower layers capture global geometry and higher ones encode more local
deformations. Based on that, we propose a new parameterization of facial geometry
that naturally decomposes the structure of the human face into a set of semantically
meaningful levels of detail. This parameterization enables us to do model fitting while
capturing varying level of detail under different types of geometrical constraints.

1.3 Outline

We start this thesis with a general introduction into probabilistic models and inference
methods in Chapter 2, with the main focus on variational methods. In Chapter 3,
we introduce DPOM, an approach for depth-based multi-human detection based on
probabilistic generative models. In Chapter 4 we propose a principled and efficient way
to do variational inference in a large family of discrete probabilistic models which include,
among others, the aforementioned DPOM and CRFs. In Chapter 5 we introduce a generic
framework for multi-human scene understanding which relies on variational inference
for joint multi-human detection. In Chapter 6 we discuss Compositional Variational
Autoencoders, a novel deep probabilistic model for learning facial geometry of humans.
Finally, in Chapter 7 we conclude this work with a general discussion and propose possible
future research directions.
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2 Background

In this thesis we consider a range of computer vision problems focusing on capturing
human appearance and behaviour. One of the primary tools that we use to tackle those
problems are probabilistic models and algorithms for inference. This chapter thus is
meant to give a formal introduction to modern probabilistic modeling with a focus on
variational inference-based methods.

2.1 Probabilistic Modeling and Inference

Computer vision is largely about building models and algorithms for reasoning about what
is happening in the real world based on the image evidence. Probabilistic modeling provides
a unified framework for reasoning and learning under uncertainty. Thus ultimately,
many computer vision problems, ranging from low-level perception to high-level scene
understanding, can be formulated as a problem of inference in probabilistic models.

More formally, let I be the set of observed variables, and X be a set of latent variables. In
the context of computer vision, I represents the image evidence, such as image pixels or
features, and X represents the unknowns we want to infer: depending on the application,
they could be the locations of the individuals or the image labelling. The relationship
between the observations and latent variables is captured by the joint density:

p(X, I) = p(I|X)p(X) , (2.1)

where p(I|X) is the likelihood that encodes how likely it is to observe I given the hidden
state X, and p(X) encodes our prior beliefs about X. Note that, Eq. 2.1 actually
defines the generative process: we can generate hidden variables by sampling from the
prior distribution, and then substitute them into the likelihood to obtain samples of the
observations, thus Eq. 2.1 is often called a generative model. This notion is clearly quite
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useful if we are interested in actually generating novel images, but it also demonstrated a
lot of potential in applications related to 3D reconstruction [7] and image completion [116].

Inference under the model of Eq. 2.1 amounts to computing the posterior distribution:

p(X|I) =
p(X, I)∫
p(X, I)dX

. (2.2)

For non-trivial models, computing p(X|I) exactly is often very expensive. The main
reason for this is the integral in the denominator of Eq. 2.2: for many non-trivial
models it is impossible to compute it in closed-form, and depending on the space of the
hidden variables, directly marginalizing out X can be prohibitively expensive if we do
not put any simplifying assumptions on p(X, I). For example, if we consider a task of
binary segmentation for images of relatively modest size 32× 32, the number of possible
combinations of latent variables X would be 21024, which is much more than the current
estimate of the number of atoms in the observable universe (≈ 2265). Thus, in most of
the realistic scenarios we have to resort to approximations. We discuss some of the most
prominent approximate inference methods in Section 2.2.

Note that, the formulation of Eq. 2.1 does not put any specific constraints on the functional
form of the distribution. In what follows, we discuss several important model families
which are used in computer vision applications.

2.1.1 Markov Random Fields

An important class of models that is especially popular in computer vision is known
as Markov Random Fields (MRF). MRFs are defined as a following Gibbs family of
distributions:

p(X, I) =
1

Z(I)
exp{−

∑
c⊂C

φc(Xc, Ic)} , (2.3)

where φc are a so-called potentials, functions defined on subsets of variables indexed by
c ∈ C, and Z(I) is the normalizer also known as partition function. Every potential φc
defines how variables in a specific subset interact between each other. If we consider
a task of image segmentation, a potential can describe our prior knowledge about the
distribution of the labels, for example that nearby pixels are more probable to correspond
to the same object class. Markov in the model name comes from the markovian property
that all the variables in the model should satisfy: every variable Xi should be independent
of all the other variables given all its neighbours (variables that appear in the same
potentials with it).
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2.1.2 Conditional Random Fields

A conditional version of MRFs are known as Conditional Random Fields (CRF). CRFs
have ultimately the same factorized form as MRFs, but instead of modeling the joint
distribution, directly model the posterior:

p(X|I) =
1

Z(I)
exp{

∑
c

−φc(Xc|I)} , (2.4)

where every potential function is conditioned on the global evidence I.

A specific version of this model, pairwise CRFs, have been widely used for semantic
segmentation problems:

p(X|I) =
1

Z(I)
exp{−

∑
i

φui (Xi|I)−
∑
i<j

φpij(Xi, Xj |I)} , (2.5)

where the output X represents the labelling of the image, with individual Xi representing
the label of an individual pixel, and I is the image evidence. Functions φui and φpij are
called respectively unary and pairwise potentials. Unary potentials can be obtained from
a classifier which produces a distribution of the labels for individual pixels from the image
evidence, and pairwise potentials encode interactions between those individual pixels.
Pairwise CRFs have been particularly successful because there are very efficient inference
algorithms designed for this class of models [88,89].

Pairwise CRFs are useful when we want to model interactions between individual variables,
but often it can be beneficial to model higher-order statistics, for example, label consistency
in certain image regions or cooccurrence of object classes in entire images. In these cases,
it is often useful to introduce higher-order potentials:

p(X|I) =
1

Z(I)
exp{−

∑
i

φi(Xi|I)−
∑
i<j

φij(Xi, Xj |I)−
∑
c∈C

φc(Xc|I)} , (2.6)

where potentials φc(Xc|I) are functions of multiple (more than two) hidden variables.
In the case of semantic segmentation, people have explored using potentials defined on
entire images [84,85], superpixels [66,67] and regions corresponding to potential object
candidates [93].

In general, CRFs allow a lot of flexibility in the way we define the exact functional form
of the potential functions. However, depending on the particular choice of the potentials,
designing an efficient inference algorithm can be tricky. In Chapter 4 we discuss some
of these issues for discrete CRFs, and propose an efficient algorithm based on proximal
gradient descent, which works for a wide range of potential functions.
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2.1.3 Deep Probabilistic Models

Deep Neural Networks, and in particular Convolutional Neural Networks are a very
powerful tool that achieved astonishing results for a lot of computer vision tasks, such as
image classification [65,92], detection [101,125], action recognition [5,72] and semantic
segmentation [22,117,168]. It is thus a natural question to ask if we can use the strengths
of these methods to build more powerful probabilistic models.

In fact, it is relatively straightforward to construct a probabilistic model such that it is
parameterized with a neural network. One example would be to construct a CRF in such
a way so that the parameters of its potential functions are produced by a neural network,
something that has been extensively done for semantic segmentation [168] and people
detection [9].

More generally, given a prior distribution p(X), we can take the likelihood distribution
from a parametric family, and use a neural network to map the hidden variables X to the
parameters of this distribution:

p(X, I) = p(I|X;θ)p(X) = p(I; f(X;θ))p(X) , (2.7)

where f(X;θ) is an arbitrary function with its own set of parameters θ, which can be e.g.
a deep neural network.

The main issue with this kind of models, when we ultimately do not make any simplifying
assumptions on the shape of the likelihood, is that inference becomes very hard. That
is, not only the exact inference is intractable, but also many of the existing methods for
approximate inference, such as mean-field (Section 2.3) are also intractable. Nevertheless,
some recent advances [83,128] demonstrated that one can still do inference in these models
by combining variational approximations with stochastic optimization. We will discuss
those methods in more detail in Section 2.4.

2.2 Approximate Inference

Once the model have been specified, the goal of probabilistic inference is to compute
the posterior density p(X|I) distribution of the latent variables X given the observed
variables I. Since directly computing this density is often not possible, we need to resort
to approximations. In this section, we discuss two popular approaches that have been
extensively used in the field: those based on Monte Carlo sampling, and those based on
variational approximations.
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2.2.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a class of methods which have been widely used
for approximate inference. The general idea of MCMC is to approximate the density
of interest, e.g. p(X|I), by a set of samples. Since directly sampling from the target
distribution is often not feasible, MCMC algorithms use approximate samples from a
Markov chain, constructed in such a way so that the stationary distribution of this chain
is the actual target distribution, p(X|I).

One of the classical MCMC algorithms is Metropolis-Hastings [64, 104], which works
under the assumption that we have access to the unnormalized density p̃(X|I), which is
proportional to the true posterior p(X|I). Given p̃ and an additional proposal distribution q,
the Markov chain is built by iteratively sampling candidates from the proposal distribution
and stochastically accepting or rejecting those based on the acceptance ratio: a quantity
which indicates how probable is the new sample candidate with respect to the previously
accepted sample. This acceptance ratio is computed only using the ratios of probabilities,
thus having access to unnormalized p̃ is sufficient. For a complete introduction into
MCMC for probabilistic inference and machine learning see e.g. [4, 111].

The main benefit of MCMC-based algorithms is that asymptotically they converge to
the true posterior. However, this comes at a price: the main drawback of MCMC is its
efficiency, since obtaining correct samples requires the Markov chain to converge, which
can be very slow, thus making MCMC impractical for many real-world applications.

2.2.2 Variational Inference

Variational inference is a very popular alternative strategy to MCMC for computing
approximate densities. Generally, variational methods are much more efficient than
sampling-based methods, making them more scalable and applicable to larger datasets,
and thus in most cases these methods are more suitable for computer vision applications.

The main idea of variational inference is to pose the problem of density estimation as
optimization. In order to do so, we introduce an auxiliary density, a variational distribution
q(X;λ), from a family of distributions parameterized by free parameters λ. We then
proceed by minimizing the discrepancy between this parametric density and the true
density:

λ̂ = arg min
λ

KL(q(X;λ)||p(X|I)) , (2.8)

where KL is the Kullback-Leibler (KL) divergence, a classical way to measure similarity
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between two distributions, defined as:

KL [q(X)||p(X)] =

∫
q(X) log

q(X)

p(X)
= Eq(X) [log q(X)− log p(X)] . (2.9)

If the family q(X;λ) has enough flexibility, then minimizing the KL divergence should
yield a distribution q(X; λ̂) which is a good approximation to the true posterior.

Note that, the optimization problem of Eq. 2.8 is not fully specified: for each problem we
need to specify the true posterior and the variational family. Both of these choices are
important when developing efficient inference algorithms: the more complex the model
distribution and the approximating family are, the harder the optimization problem is.
Some popular choices for the “true” model are discussed in Section 2.1, and a very popular
choice for the variational family is presented in Section 2.3.

Assuming that we specified the model and the approximating family, if we examine the
KL divergence:

Eq [log q(X;λ)− log p(X|I)] = Eq [log q(X;λ)]− Eq
[
log

p(X, I)

p(I)

]
= Eq [log q(X;λ)]− Eq [log p(X, I)] + log p(I) ,

(2.10)

we will see that there is a term log p(I), log-evidence, which is the main reason we resorted
to approximations in the first place. However, since this term now does not depend on q,
we can equivalently maximize the following quantity:

L(λ) = Eq(X;λ) [log p(X, I)]− Eq(X;λ) [q(X;λ)] , (2.11)

which is often referred to as variational (evidence) lower bound, or (negative) variational
free energy. During optimization, the first term in Eq. 2.11 puts more weight on such values
of the parameters that explain the observations better, whereas the second term puts
weight on configurations which have higher entropy, and effectively acts as a regularizer.
It is not hard to show from Eq. 2.10-2.11 that L(λ) indeed bounds the log-evidence:

log p(I) ≥ log p(I)−KL [q(X;λ)||p(I|X)] = L(λ) , (2.12)

which holds for arbitrary choice of q(X;λ), since KL-divergence by definition is non-
negative.

To summarize, the goal of variational inference is to approximate the true posterior
p(X|I) with a variational distribution q(X;λ), by optimizing L(λ) from Eq. 2.11 to find
an optimal set of parameters λ̂. Depending on the settings of the problem, different
optimization algorithms can be used: the traditional approach which works for certain
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models and variational families is based on coordinate ascent, as discussed in Section 2.3.
In Chapter 4, we present an optimization algorithm developed for discrete CRFs which is
based on proximal gradient descent. More general variational approaches that work for
deep probabilistic models are discussed in Section 2.4.

2.2.3 Discussion

Although MCMC-based methods and variational inference are ultimately two different
approaches to solve exactly the same problem, that is not to say that one of them is
necessarily better than the other. In fact, there has been an extensive research effort to
understand the statistical properties of both of these approaches, and potentially building
hybrid approaches that combine the strengths of both [83,128,137]. In the remainder of
this chapter, we are focusing primarily on the variational methods, as they are generally
more suitable for large-scale computer vision problems.

2.3 Mean-Field Variational Inference

One of the simplest choices for the variational family is to use a fully-factorized ap-
proximation, which assumes that the latent variables are independent given variational
parameters:

q(X;λ) =
∏
k

qi(Xi;λi) , (2.13)

where each variable Xi has a separate density qi(Xi;λi) with its own parameters λi. This
approach is known as mean-field variational inference, and originates from similar methods
in statistical physics. The specific functional form of qi depends a lot on the application
in hand and the general structure of the problem. For example, in Chapter 3 we are
representing location occupancy maps with binary variables, and Bernoulli distribution is
a natural choice, whereas in Chapter 5 we are modeling human locations as continuous
vectors, and thus set qi-s to be multivariate Gaussians.

Recall from Section 2.2.2, that we want to find a set of parameters λ̂ that are a maxima
of the variational lower bound L(λ). Note that, generally L(λ) might be non-convex,
thus we are looking for an algorithm to find a local optima. For the mean-field variational
family, we can derive a coordinate ascent algorithm that proceeds by iteratively optimizing
the parameters of each individual factor qi(Xi;λi), while keeping all the others fixed.

Namely, if we substitute the factorized form of q(X;λ) from Eq. 2.13 into Eq. 2.11, we
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will get the following expression for the lower bound L(λ):

L(λ) = Eq[log p(X, I)]−
∑
i

Eqi [log qi] , (2.14)

where we omit the parameters of q-s for clarity. Further, we can write the lower bound L
function of a single factor qj , by separating the corresponding terms and collapsing the
remaining terms that do not depend on Xj into the constant:

L(qj) = Eqj [E¬qj [log p(X, I)]]− Eqj [log qj ] + const (2.15)

where E¬qj is the expectation with respect to all the factors except qj(Xj ;λj), i.e.∏
i6=j q(Xi;λi). If we now introduce the following auxiliary distribution:

q∗j (Xj ;λ
∗
j ) ∝ exp

{
E¬qj [log p(X, I)]

}
, (2.16)

we can rewrite the lower bound L(λ) as follows:

L(qj) = −KL[qj ||q∗j ] + const (2.17)

Only the first term in Eq. 2.17 depends on qj , thus maximization of L with respect
to a single factor qj is equivalent to the minimization of KL[qj ||q∗j ]. KL-divergence is
minimized when its two argument distributions are identical, hence in order to maximize
L with respect to qj , we should set qj = q∗j . Consequently, by sequentially updating
each factor with the update of Eq. 2.16, we gradually maximize the lower bound L(λ),
eventually converging to a local maxima.

Importantly, convergence of the coordinate ascent algorithm is guaranteed only if we
update each factor of the approximate posterior sequentially. In practice, as the number
of factors becomes larger, the algorithm quickly becomes highly inefficient. In some
specific cases, it can be shown [89] that updating all the factors in parallel does not
break the convergence guarantees. However, this result does not hold for a lot of useful
models [6, 52]. We address this issue in a more general setting in Chapter 4, and propose
an efficient and provably convergent algorithm that works for a large class of discrete
probabilistic models.

2.4 Stochastic Optimization for Variational Inference

The closed-form coordinate ascent algorithms exist only for specific models and variational
families [59]. If we do not want to put any restrictions on the kind models that we use,
and in particular parameterize our models with deep neural networks, those algorithms
are no longer applicable.
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An alternative class of algorithms that have been developed to work in a more general
context is largely relying on stochastic optimization [83,124]. Recall that our goal is to
optimize the lower bound L(λ):

L(λ) = Eq(X;λ) [log p(X, I)− log q(X;λ)] , (2.18)

which can be intractable for the generic shape of p(X, I). One way to overcome this issue
is to use Monte Carlo methods, and approximate the quantity with the samples from the
approximation q(X;λ):

L(λ) ≈
S∑
s=1

log(X(s), I)− log q(X(s);λ) , (2.19)

where S is the number of samples, and X(s) ∼ q(X;λ). For optimization purposes, we
are actually interested in the gradient of the variational objective ∇λL(λ):

∇λL(λ) = Eq [∇λ log q(X;λ)(log p(X, I)− log q(X;λ))] , (2.20)

which, similarly to L, is also intractable in the general case. However, as was demonstrated
in a classical work of [132], as far as we can compute unbiased estimates of the gradient,
we can still successfully use gradient-based optimization, subject to certain conditions on
the step size.

In fact, there are multiple ways to compute an unbiased estimate of the gradient ∇λL(λ).
For example, one could use the standard Monte Carlo estimate, sometimes called score
function estimator [55]:

∇λL(λ) ≈
S∑
s=1

∇λ log q(X(s);λ) (log p(X, I)− log q(X;λ)) , (2.21)

where X(s) ∼ q(X;λ). Unfortunately, although this estimate is relatively cheap to
compute, it is known to suffer from large variance [83], and typically requires carefully
designed variance reduction techniques [107,124].

An alternative gradient estimate, known as reparameterization estimate, works in the case
of continuous latent variables, and usually has significantly lower variance [83,105]. The
main idea, the reparameterization trick, is relatively straightforward: if X is a continuous
variable, we can represent it as a deterministic differentiable function of the variational
parameters λ and an auxiliary random variable ε sampled from a known distribution
p(ε):

X = f(ε;λ), where ε ∼ p(ε) , (2.22)
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where p(ε) and f(ε,λ) are chosen such that X ∼ q(X;λ). For example, if we only have
a single scalar hidden variable, X, and we choose the variational distribution q to be a
univariate Gaussian, such that X ∼ N (µ, σ2), it is not hard to see that we can express
the sampling procedure as X = µ+ σε, where ε ∼ N (ε; 0, 1).

Now, we can use the parameterization of Eq. 2.22 to get the stochastic estimator of the
variational lower bound of Eq. 2.19:

L(λ) ≈ 1

S

S∑
s=1

(
log p(X(s), I)− log q(X(s);λ)

)
,

where X(s) = f(ε,λ) , ε ∼ p(ε) .

(2.23)

If p(X, I) and q(X;λ) are both differentiable functions of X, we can directly take the
gradients of the estimate in Eq. 2.23, and use those with one of the standard stochastic
gradient descent updates. Ultimately, these techniques allow us to use complicated
likelihood models, and have led to a lot of progress in creating powerful generative models
in various domains [7, 83,120,127].

2.5 Related Paradigms

Probabilistic approach is not the only paradigm for building useful models for complex
data. In this section, we discuss related modeling paradigms that received a lot of
attention, especially in computer vision.

2.5.1 Structured Prediction

Structured prediction [114] is a generic term for prediction models on data where outputs
are not limited to single discrete or scalar values, but rather consist of multiple, possibly
high-dimensional and highly inter-dependent output variables. The key characteristic
of structured models is that they take into account not only how the outputs depend
on the inputs, but also model the dependencies between the output variables themselves.
In many cases, these dependencies are represented explicitly, through a specific loss or
density function. Ultimately, most of the probabilistic models that are discussed in this
thesis, and in particular CRFs, can be seen as specific instances of structured models.

2.5.2 Energy-Based Models

Energy-Based models, EBMs [97], is a large class of models which can be seen as a
generalization of probabilistic models. The key difference is that EBMs lift the requirement
of the model density to be a valid probability distribution, thus potentially avoiding
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problems arising from our inability to efficiently compute partition function. However,
when the application requires us to estimate uncertainty by producing a density model,
EBMs still have to resort to the probabilistic interpretation. Nevertheless, in certain
scenarios we might be interested in obtaining a single correct answer, and in this case it
seems reasonable to trade-in probabilistic interpretation and uncertainty estimates for
efficiency.

2.6 Discussion

In this section we formally introduced the general framework of probabilistic modeling
and variational inference. We gave several examples of probabilistic models, mainly those
which are widely used in vision applications. We introduced the standard factorized
variational family, the mean-field approximation, and used it to describe the traditional
coordinate ascent inference algorithm. We identified the main issues of that algorithm,
some of which we address in Chapter 4. We also explored the use of stochastic optimization
for variational inference in models with complicated likelihoods, which we use in Chapter 6
to develop a deep probabilistic model of facial geometries. In the remaining chapters,
we demonstrate the utility of the models and inference techniques described above on a
variety of human-centered computer vision problems.
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3 Variational Human Detection in
Depth Images

The advent of the original Kinect camera [80] and its sucessors has sparked a tremendous
regain of interest for RGB-D imagers, which were formerly perceived as being either
cumbersone or expensive. They have been used with great success for motion capture [141,
142] and are becoming increasingly popular for people detection in robotics applications [71,
103,108,147]. However, the former requires the algorithms to be trained on very large
training databases, which may not always be easy to create, to achieve the desired level
of performance while the latter usually do not make provisions for the fact that people
may occlude each other. This results in failures such as those depicted by Figure 3.2.

(a) (b)

Figure 3.1: DPOM: generative model for depth maps. (a) Objects can be thought of
as boxes, and images of objects are outlines within their rectangular projections. (b)
Background is modeled explicitly: for each pixel there is a probability distribution, whose
parameters are estimated from a set of background images.

In this chapter, we propose an approach that relies on a generative model to evaluate the
probability of target objects being present in the scene while explicitly accounting for
occlusions, which prevents such failures. It is inspired by an earlier approach to estimating
these probabilities from background subtraction results from multiple cameras with

21



Chapter 3. Variational Human Detection in Depth Images

overlapping fields of view [52]. Here, we use instead a single depth-map and approximate
probabilities of occupancy at separate locations by choosing these probabilities so that the
lower bound on the evidence is maximized. In contrast to many other approaches, ours
does statistical reasoning jointly, i.e. knowledge about one piece of image evidence helps
us to reason about the rest. This allows in particular to properly infer the presence of a
severely occluded target from the presence of a small fragment. The generative process is
illustrated by Figure 3.1.

Figure 3.2: Situations in which we outperform state-of-the-art methods. Our approach
(top) correctly detects most of the people including those that are severely occluded,
whereas [108] (middle) and [80] (bottom) fail to do so.

We demonstrate that our approach outperforms [108,142,147] for people detection purposes
while using only the depth image, whereas these other approaches also require either the
use of the RGB image and an additional classifier or extensive training. Furthermore,
because we do not require training, it took us very little additional effort to also detect
a completely different kind of objects, that is, flying drones potentially occluding each
other.

3.1 Related Work

There is an immense body of literature on people detection from regular images such
as [29, 35, 51] to name but a few. However, most algorithms rely on features that are
not necessarily present in depth images and are only rarely designed to be robust to
occlusions.
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3.1. Related Work

As far as using depth images is concerned, an impressive success was the original Kinect
algorithm [141,142] that could not only detect people but also estimate their 3D poses. It
has since been improved and is included in the latest Kinect for Windows SDK [80]. This
constitutes an extremely strong baseline against which we will compare our algorithm to
show that our approach to occlusion handling does boost performance when people hide
each other.

One of the reasons why the Kinect algorithm [141,142] works so well is that it relies on
decision forests that have been trained on huge datasets of synthetically generated data,
which would make it nontrivial to extend it to other categories of objects as we do for
drones in this chapter.

Among the recent approaches that do not require such extensive training databases are
those proposed in [71, 108, 147], which we briefly describe below and will also use as
baselines in our result section.

In [147], the authors introduce a descriptor called the Histogram of Oriented Depths
(HOD) that extends the HOG descriptor [29]. They train two separate SVMs, one for
HOG features for RGB data and the other on HOD features for depth images, and
combine their scores.

In [108], a complete framework for tracking people in RGB-D data is described. Detection
comprises two steps: hierarchical-clustering of the depth maps and HOG-based RGB
detection. The clustering step involves finding top-level clusters in a depth image and then
applying heuristics to detect people’s heads to produce more fine-grained sub-clusters.
The RGB detector, which is based on an improved version of the HOG features [36] and
trained on the INRIA Person dataset [29], is then applied to the corresponding parts of
the RGB image. The code is available in the Point Cloud Library [134] and we used it in
our experiments.

In [71], two detectors are also used, a depth-based one for people at close range and a
color-based one for those further afield. The depth detector relies on template-matching
followed by non-maxima suppression applied to regions of interests which are extracted
using 3D point cloud clustering. Specifically, a 2D histogram is built by projecting all
3D points that could belong to objects on the ground plane and then finding clusters in
that histogram. The RGB detector is a HOG-based detector with additional geometric
constraints to reduce the search-space. This approach is very similar to that of [108],
the main differences being the way RGB data is handled. Since this is not the main
focus of our work and since the code that implements [108] runs on standard hardware,
whereas that of [71] requires a modern GPU to use the complete RGB-D signal, we used
the former as a representative of this class of techniques in our experimental evaluation.
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To summarize: approaches discussed above typically do not perform occlusion reasoning
explicitly, and mostly rely on heuristics when handling depth signals, which in many
cases can provide reasonable results, but sometimes can lead to failures that are hard to
interpret and predict, such as ones depicted in Figure 3.2.

There is also a number of approaches related to ours [49, 74] in that they also apply
generative modeling and variational inference to vision problems. However, to the best
of our knowledge, they focus on very different problems, such as learning medium-level
representations of images [74] or learning natural scene categories [49], whereas our goal
is to estimate location of multiple occluding objects in the environment.

3.2 Method

As discussed in the previous section, given a depth map of a scene featuring several people
who are not occluding each other, state-of-the-art methods [80, 108,147] do a good job of
detecting them. However, these techniques do not perform the detection of all the targets
jointly. Consequently, they can not re-assess properly the presence of a certain target,
given evidence and the presence of occluding targets. More simply: a fragment of a target
T in an empty room is a poor evidence of the presence of T . However, the presence of the
same fragment when it is known that another target T ′ is present and hides the rest of T
is a good evidence of the presence of T . Moreover, some of these methods [71,108] rely
on heuristics that sometimes result in failures even in simple cases. Figure 3.2 depicts
both situations.

A similar problem arises when attempting to detect people on the basis of background
subtraction results from multiple cameras with overlapping fields of view. It was addressed
in [52] by using a generative model for background subtraction images. Namely, people
were represented as boxes that project to rectangles in individual views. The algorithm
was then estimating people locations on the discretized ground plane, such that the
image synthesized according to the generative model matched the background subtraction
results as well as possible in all the views. We will refer to this approach as POM. The
strength of POM is that occlusions are naturally handled by the fact that rectangles
corresponding to people further away from the camera are hidden by those corresponding
to people that are closer.

Here, we also advocate the use of such a generative model to handle occlusions, but one
designed to synthesize depth maps instead of binary images, as illustrated by Figure 3.1.
We will refer to this approach as DPOM.

In our model, we consider a finite number of locations on the ground. An object of interest,
located at one of these, is represented by a flat free-shape inside a rectangular bounding
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3.3. Formulation

box, as demonstrated in the Figure 3.1(a). In practice, with each location k we therefore
associate two random variables. The first is a Boolean Xk that denotes the presence or
absence of the object at location k. The second, a Boolean mask Mk, represents the
2D contour of that object and is intended to improve the fit of the generative model to
the data. We model the measured depths at each pixel in the image as conditionally
independent given these variables, and distributed around the depth of the closest object,
or according to the background distribution if no object is present.

Given this model, we estimate the Mk through a segmentation procedure, and turn the
estimation of the probabilities of presence P (Xk|D,M) into a Bayesian inference problem
as described formally in Section 3.3. Intuitively, what it allows us to do is predict the
distribution of depth images that would be produced if the probabilities of presence
were known and then to optimize them so that this distribution is centered around the
observed one.

The introduction of the shape latent variables Mk leads to a better fit between the
observed signal and the model, which is critical given that we exploit a single camera
view. The standard POM algorithm achieves target localization through triangulation,
using two or more cameras: even if the correct location of a target does not correspond
to the best match in a individual view – in particular along the axis toward the camera
– it is enforced through consistency in the other views which have non-parallel camera
axis. In DPOM, since we use a single view signal, the accuracy along the axis of view is
entirely due to the precision of the model.

3.3 Formulation

In this section, we formally describe our generative model, explain how we do inference
on it, and then describe some implementation aspects.

3.3.1 Generative Model

We introduce first some notations, which are summarized with those of other sections in
Table 3.1.

Let D ∈ D|L| denote the depth map, with L = {1, . . . , N} being the set of all pixels,
and D being a set of all possible depth values. Let d∞ ∈ D be a special value of depth
encoding situation when no depth is observed (depicted in black in Figure 3.1(b)).

Let us assume we have discretized the ground plane into possible object locations K =

{1, . . . ,K}, as depicted in Figure 3.1(a). We introduce hidden binary variables X =

{Xk, ∀k ∈ K} with Xk = 1 if location k is occupied, 0 otherwise. Furthermore, for each
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K set of all locations
L set of all pixels
D set of all possible depth values
Xk binary occupancy variable for a location k
Di observed depth value variable at pixel i
d∞ special value for when no depth is observed
Mki segmentation mask at pixel i for location k
Sk object silhouette for k-th location
|Sk| number of pixels in the k-th silhouette
Ep · expectation w.r.t. a distribution p
σ(x) sigmoid function (1 + e−x)−1

ρk approximate posterior Q(Xk = 1)
π∞ probability of observing d∞

π◦ probability of observing an outlier
∆l,i log θl,i(d), l ∈ K ∪ {bg}

Table 3.1: Notations used in this chapter.

location k, we have a corresponding crude rectangular representation of an object, which
we call silhouette Sk ⊂ L. For each pixel of a silhouette we specify a corresponding depth
distribution over d ∈ D:

θki(d),∀i ∈ Sk , (3.1)

where the specific shape and parameterization of the distribution θki depends very much
on the sensor used for depth acquisition. We will introduce a more detailed model in
Section 3.3.3.

The silhouette specifies a very simplistic rectangular shape, whereas most of the objects
have much more complex outlines. To encounter for that, we introduce segmentation
masks Mk ⊂ L,∀k ∈ K. If i ∈Mk, it means that the pixel i ∈ Sk actually belongs to the
object outline at k-th location (see Figure 3.1(a)).

Finally, some pixels belong to the background, rather than objects. In particular, when
there are no objects in the scene, we observe only background. Thus, for each pixel of
the depth map we have a corresponding background distribution over d ∈ D:

θbg,i(d),∀i ∈ L . (3.2)

Our ultimate goal is to estimate the posterior distribution P (X|D,M) given the depth
image D and segmentation masks M. To do that, we introduce a generative model
P (D|X,M) and then apply Bayes’ rule.
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3.3. Formulation

First, we assume that the prior occupancies X are independent from each other, i.e.:

P (X) =
∏
k∈K

P (Xk) , (3.3)

which intuitively means that objects occupy locations regardless of the presence of other
objects.

Second, we assume that the observations for individual pixels Di,∀i ∈ L are conditionally
independent, i.e. given X and M.

We can now synthesize depth Di for each pixel i ∈ L of the depth image. We select the
model corresponding to a silhouette which is present (Xk = 1), contains the pixel (i ∈ Sk),
belongs to the object segmentation mask (i ∈Mk), and is the closest to the camera. It
is, of course, also possible that we observe background at a specific pixel. This happens
either if no silhouettes are present that has a model for this pixel (i /∈Mk, ∀k ∈ K), or if
all of the silhouettes are further away from the camera (object is occluded by a part of the
background). Note, that we assume that all the depth distributions θl,i(d),∀l ∈ K ∪ {bg}
are ordered w.r.t. the distance to the camera. In practice, we order them by their mean
value E[θl,i(d|d 6= d∞)]. More formally, ∀i ∈ L:

l∗ = arg min
l:{Xl=1,i∈Ml,l∈K}∪{bg}

E[θl,i(d|d 6= d∞)], (3.4)

Di ∼ θl∗,i(d). (3.5)

3.3.2 Inference

Even under the assumptions of our generative model, computing P (X|D,M) directly is
still computationally untractable, due to the dimensionality of X,M and D. To solve
this, we first assume that M is given, by computing it as described in Section 3.3.4, and
then derive a variational approximation for P (X|D,M). Let us introduce the following
mean-field variational posterior over hidden variables X:

Q(X) =
∏
k∈K

Q(Xk) , (3.6)

where each Q(Xk) is a Bernoulli distribution.

We then minimize the KL-divergence between Q(X) and P (X|D,M), which, as we saw
in Chapter 2, is equivalent to getting an updated approximate posterior Q∗(Xk) for each
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Xk:

Q∗(Xk) ∝ exp
(
EQ(X\Xk)[logP (D,M,X)]

)
, (3.7)

where EQ(X\Xk)[·] denotes an expectation w.r.t. all the variables except for Xk.

Knowing that Xk is a Bernoulli variable, we can get the following update rule for
ρk = Q(Xk = 1):

ρk = σ( EQ(X\Xk)[logP (D,X,M)|Xk = 1]−
EQ(X\Xk)[logP (D,X,M)|Xk = 0]) ,

(3.8)

where σ(x) = (1 + e−x)−1 is a sigmoid function.

We want to substitute our generative model P (D|X,M) into Eq. 3.8. Let’s first introduce
some notations. Let ∆k,i = log θki(d), and ∆bg,i = log θbg,i(d). Let us denote the prior
of occupancy ε = P (Xk = 1), assuming it is identical ∀k ∈ K. If we assume, without
loss of generality, that silhouettes are sorted w.r.t. the distance to the sensor, then the
probability of all silhouettes Sl : l < k being absent at a pixel i ∈ L will be:

τki =
∏

l<k,i∈Ml

(1− ρl) , (3.9)

which can be considered as a transparency at a certain pixel.

If we now substitute our model into Eq. 3.7, and evaluate expectation w.r.t. the current
estimate of Q(X) we will get the following update for ρk, ∀k ∈ K:

ρk = σ(log ε
1−ε+∑

i∈Mk
τk,i∆k,i−∑

i∈Mk

1
1−ρk (

∑
l>k,i∈Ml

τl,iρl∆l,i + τ|K|,i∆bg,i)) .

(3.10)

A complete derivation of Eq. 3.10 is provided in Appendix A.

3.3.3 Numerical Model

Up until now, we have not specified exactly our pixel depth distributions θki(d) and
θbg,i(d). The shape of those distributions can vary depending on the type of the sensor,
but here we describe one that worked well for both versions of Kinect.

We assume that the distribution has two components: a Dirac and a robust Gaussian.
The former is necessary, since in some cases sensor is incapable of producing a reasonable
estimate of the depth, and reports a special value, d∞. The robust Gaussian component
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is simply a mixture of a Gaussian (N ) and a uniform distribution (U), which takes care
of possible outliers. Thus, each θl,i has four parameters: π∞li , a probability of observing
d∞, π◦li, a probability of observing an outlier, and µli, σ2li, which are the mean and the
variance of the Gaussian component.

Finally, ∀l ∈ K ∪ {bg}:

θli(d|d 6= d∞) = π◦liU(d) + (1− π◦li)N (d|µli, σ2li) . (3.11)

Particularly, the mean for object pixel distributions θki(d), ∀k ∈ K is a value one would
observe if object was a flat surface facing the camera. The variance is fixed for an object
type, e.g. for people we use a fixed value σ2ki = 100,∀k ∈ K. For background pixel
distributions, we estimate all the parameters from a set of background frames.

3.3.4 Computing Segmentation Masks

As already mentioned, in theory we also could have obtained an approximation to posterior
P (M|D), but it would be rather expensive computationally. Thus, given the observed
depth map d ∈ D|L|, we apply the following simple procedure to obtain a point estimate
for Mk, ∀k ∈ K:

Mk = {i : π◦U(di) > (1− π◦)N (di|µki, σ2), di 6= d∞} , (3.12)

which in words means that we consider a pixel i to be a part of the object if depth value
is observed and not considered an outlier under the model Eq. 3.11.

Note that, with the advent of fully-convolutional deep learning architectures [22,102], the
quality of semantic segmentation has dramatically improved. Thus ultimately, one can
instead use a neural network trained on a large dataset of RGB images to estimate M.
This means, however, that the method would additionally require RGB signals as inputs,
as well as the calibration between depth and RGB sensors.

3.3.5 Implementation Details

In reality, we have noticed that the update of Eq. 3.10 is not very robust. Namely, the
predicted ρk are very peaky, and sometimes for a relatively small amount of evidence, the
confidence of occupancy is very high. Since the depth maps are relatively noisy, it can
lead to a large number of false positives. To avoid that, we use soft thresholding based
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on the amount of pixel evidence:

ρ∗k = σ

(
α

∑
i∈Mk

τki

|Sk|
+ β

)
· ρk , (3.13)

where, α and β are sigmoid parameters. They were set to disable those estimates that
have very little evidence w.r.t. the size of our crude rectangular silhouette (we are using
α = −100, β = 8). In addition to that, we use a damping parameter to be able to make
updates for each k in parallel. A more principled method based on gradient descent is
proposed in Chapter 4.

3.4 Evaluation

In this section, we first report our people detection results and compare them against
those of the baseline methods introduced in Section 3.1. We then show that our approach
can be easily adapted to a very different detection problem, namely detecting flying
drones that may occlude each other.

3.4.1 Datasets

There are many well-known and publicly available RGB datasets for testing pedestrian
detection algorithms, such as those of [29, 37]. For RGB-D data, there are far fewer.

The Kinect Tracking Precision dataset (KTP) presented in [108] contains several sequences
of at most 5 people walking in a small lab environment. They were recorded by a depth
camera mounted on a robot platform and we use here the only one that was filmed while
the camera was static. Authors provide ground truth locations of the individuals both
on the image plane, and on the ground plane. Unfortunately, the quality of the ground
truth for the ground plane is limited, due to the poor quality registration of the depth
sensor location to the environment. In order to fix this, we made an effort and manually
specified points corresponding to individuals on the depth maps, then projected them on
the ground plane, and took an average to get a single point representing person location.
This introduces a small bias as we only observe the outer surface of the person but any
motion capture system would have similar issues.

In [103,147], the authors report their results in a dataset containing about 4500 RGB-D
images recorded in a university hall from a three statically mounted Kinects (UNIHALL).
Unfortunately, there is no ground plane ground truth available, thus we only report results
for image plane. To compare to their results, we follow evaluation procedure described
in [147], that is, without penalizing approaches for not detecting occluded or hidden
people. We also report our performance for the full dataset separately.
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There are no publicly available datasets for multiple people tracking using the latest
Kinect SDK [80] and we therefore created two of them ourselves. The first one (EPFL-LAB)
contains around 1000 RGB-D frames with around 3000 annotated people instances. There
are at most 4 people who are mostly facing the camera, presumably the scenario for which
the Kinect software was fine-tuned. The second one (EPFL-CORRIDOR) was recorded in
a more realistic environment, a corridor in a university building. It contains over 3000
frames with up to 8 individuals. Sample frames together with our detection results are
shown in Figure 3.6.

The ground truth for the ground plane locations was obtained similarly to what has been
described for KTP dataset, that is, for each person instance, we specified the points on the
depth maps, projected them on the ground plane, and computed the average to get a
location. In order to get individuals’ bounding boxes in the image plane, for every target
we compute the average of the projections of the marked pixels onto the image plane,
and add a bounding box centered on it and sized according to their average depth.

Some approaches, including ours, require knowing both extrinsic and intrinsic camera
parameters. The intrinsics were fixed for the specific Kinect we used. To compute the
extrinsics, we manually specified the region of the depth map corresponding to the ground
plane and then estimated the transformation from camera space to that plane.

3.4.2 Baselines

We use the following baselines for comparison purposes:

• KINECT2 - the results obtained from the human pose estimation of the latest Kinect
for Windows SDK [80]. It is not publicly known what specific algorithm is used.
However in [141], the authors report that their algorithm is at the core of the human
pose estimation for the older version of the Kinect software. For undisclosed reasons,
the framework supports tracking up to 6 people, with the working depth range
limited to 4.5 meters. To ensure fairness, we kept this restrictions in mind when
using the EPFL-LAB and EPFL-CORRIDOR datasets. We do not penalize algorithms
for not detecting more than 6 people or people who are further than 4.5 meters
away.

• UNIHALL - RGB-D detector [147] based on HOG and HOD features. The code is not
available and we therefore report only a single point on the precision-recall curve.

• PCL-MUNARO - RGB-D detector [108]. It uses modified HOG features [36] on regions
extracted by depth segmentation. We used the implementation from the PCL
library [134].
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• ACF - RGB detector from [34], based on AdaBoost and aggregate channel features [35]
to give a sense of what a state-of-the-art detector that does not use depth can do
on these sequences.

3.4.3 Overall Performance
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Figure 3.3: MODA (top) and precision-recall (bottom) for image plane ground truth. For
each algorithm, the label indicates what type of information it uses: D - depth only, RGB
- color only, RGB-D - both depth and color.
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Figure 3.4: MODA (top) and precision-recall (bottom) for ground plane ground truth.
For each algorithm, the label indicates what type of information it uses: D - depth only,
RGB - color only, RGB-D - both depth and color.

In Figure 3.3, we report overall performance comparisons on the four datasets introduced
in Section 3.4.1. For each one, we report results in two different ways. We plot both
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Multiple Objects Detection Accuracy (MODA) [13], as a function of bounding box overlap
in the image plane, and also precision-recall curves. We made this choice to compare
ourselves to authors who report image plane-only results. Here, precision-recall curves
are shown for an overlap threshold of 0.4 as in [147]. The MODA curves are computed
for fixed detector confidence threshold, the best-performing one for each approach, except
in the case of KINECT2 for which we have no way to set any threshold.

DPOM clearly outperforms all other approaches. This is true even though, as the
KINECT2, we use only the depth information whereas the other algorithms also use the
RGB information. Only for UNIHALL dataset, at overlap threshold above 0.55, does
DPOM become slightly worse. This can be ascribed to the fact that we use a fixed-sized
object model, and for this particular dataset and ground truth this size happens to be
too small. This is not very crucial though, since at those values of overlap threshold,
absolute performance of all the evaluated methods is rather low.

Note that KINECT2 performs much worse on the EPFL-CORRIDOR sequence that in EPFL-LAB
one. It is very hard to know why exactly, because the specific algorithm being used is a
trade-secret. Our best guess is that in EPFL-CORRIDOR, the camera is slightly tilted and
people do not appear to as being strictly vertical. If this interpretation were correct, it
would illustrate the dangers of training an algorithm under specific assumptions that
may prevent generalization. Another possible explanation is that some sequences start
with people already present in the field of view, thus making it hard to use any kind of
background subtraction. Whatever the case, the EPFL-LAB sequence presents neither of
these difficulties and DPOM still performs better.

In Figure 3.4, we report MODA and precision-recall values computed in the ground plane
instead of the image plane for the three methods for which it can be done. In ground-
plane settings, we consider detection a match to the ground truth if it is within a certain
Euclidean distance to it. The values of MODA are shown as a function of Euclidean
thresholds, for a single best detection threshold for each algorithm. Precision-recall curves
are plotted for a fixed Euclidean distance threshold of 500mm. The performance ordering
stays essentially the same.

Recall that the evaluation procedure we have used so far is that of [147] in which not
detecting occluded or hidden people is not penalized. To demonstrate that this choice does
not have a major impact on our conclusions, we plot in Figure 3.5 equivalent precision-
recall curves when they are penalized. As expected, the performance numbers are worse
than those shown in Figure 3.3 for all methods. However, the ranking is preserved and
the performance drop is smaller for DPOM. This highlights once more its ability to deal
with occlusions.
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Figure 3.5: MODA (left) and precision-recall (right) for image plane ground truth for
UNIHALL dataset. Approaches were penalized for not detecting occluded or hidden people.

Figure 3.6: Sample detections for selected frames of our test datasets. From top to
bottom, we show KTP, UNIHALL, EPFL-LAB, and EPFL-CORRIDOR.

3.4.4 Drones

To demonstrate the versatility of our approach, we have also applied it to a completely
different type of objects, that is, drones. Note that, for people, we estimated their
locations on the discretized ground plane. For drones, we instead use a discretized 3D
space, and our algorithm thus estimates occupancy probabilities for each discrete 3D
location in that space.

We filmed two drones flying in a room, sometimes occluding each other and sometimes
being hidden by furniture. As in our people sequences, we obtained ground truth by
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Figure 3.7: Detection results for drones. (a) Sample detections. (b) MODA score. (c)
Detection with background occlusions. (d) Detection with occlusions.

manually specifying points on the drones, and then computing the bounding cube. To
determine whether a detection is a match, we use overlap in bounding cubes.

Since there are no canonical baseline approaches, we only report our own MODA values
in Figure 3.7. For overlap thresholds below 0.4, we obtain reasonable performance. For
larger thresholds, the drop in performance is attributable to the fact that we discretize
the 3D space, which means a relatively large localization error compared to the small size
of the drones.

3.5 Discussion

We have introduced a probabilistic approach to estimating occupancy maps given depth
images. We have shown that it outperforms state-of-the-art approaches both on publicly
available datasets and our own challenging sequences. Moreover, the approach is generic
enough to be easily adapted to a completely different object type, which we demonstrated
by using it for detecting drones.

However, a weak point of our approach is speed: our current implementation is not
real-time, and takes several seconds to process a single depth frame on a 2.3GHz Intel
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CPU. This problem can be addressed using GPUs, since the bottleneck of our algorithm
is iterating through the pixels. Another limitation, which is a consequence of using a
rough generative model, is the lack of discriminative power. Our approach requires no
training data but cannot distinguish between different object types as long as they fit
our model well enough. Therefore, a possible future direction for extending this work
would be to provide means for either combining our occupancy maps with the output
of a discriminative classifier or making object models more sophisticated, possibly by
learning them from the data. Furthermore, our approach relies on a static camera set-up,
which limits the scope of potential applications. In practice, this issue can be solved by
re-estimating the pose of the sensor with respect to the ground plane at every frame.
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4 Efficient Variational Inference in
Discrete Random Fields

Many Computer Vision problems, ranging from image segmentation to depth estimation
from stereo, can be naturally formulated in terms of Conditional Random Fields (CRFs).
Solving these problems then requires either estimating the most probable state of the
CRF, or the marginal distributions over the unobserved variables. Since in general there
can be many such variables, it is usually impossible to get an exact answer, and one must
instead look for an approximation.

input baseline ours ground truth

Figure 4.1: First two rows: VOC2012 images in which we outperform a baseline by
adding simple co-ocurrence terms, which our optimization scheme, unlike earlier ones,
can handle. Bottom row: Our scheme also allows us to improve upon a baseline for the
purpose of recovering a character from its corrupted version.

Mean-field variational inference [158] is one of the most effective ways to do approximate
inference and has become increasingly popular in our field [89, 136, 156]. It involves
introducing a variational distribution that is a product of terms, typically one per hidden
variable. These terms are then estimated by minimizing the Kullback-Leibler (KL)
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divergence between the variational and the true posterior. The standard scheme is to
iteratively update each factor of the distribution one-by-one. This is guaranteed to
converge [14, 86], but is not very scalable, because all variables have to be updated
sequentially. It becomes impractical for realistically-sized problems when there are
substantial interactions between the variables. This can be remedied by replacing the
sequential updates by parallel ones, often at the cost of failing to converge.

It has nonetheless recently been shown that parallel updates could be done in a provably
convergent way for pairwise CRFs, provided that the potentials are concave [89]. When
they are not, an ad hoc heuristic designed to achieve convergence, which essentially
smooths steps by averaging between the next and current iterate, has been used over the
years. This heuristic is mentioned explicitly in some works [20, 54, 149], or used implicitly
in optimization schemes [6, 52, 156] by introducing an additional damping parameter.

However, a formal justification for such smoothing is never provided, which we do in this
chapter. More specifically, we show that, by damping in the natural parameter space
instead of the mean-parameter one, we can reformulate the optimization scheme as a
specific form of proximal gradient descent. This yields a theoretically sound and practical
way to chose the damping parameters, which guarantees convergence, no matter the shape
of the potentials. When they are attractive, we show that our approach is equivalent to
that of [89]. However, even when they are repulsive and can cause the earlier methods to
oscillate without ever converging, our scheme still delivers convergence. For example, as
shown in Figure 4.1, this allows us to add co-occurrence terms to the model used by a
state-of-the-art semantic segmentation method [22] and improves its results. Furthermore,
we retain the simplicity of the closed-form mean-field update rule, which is one of the key
strengths of the mean-field approach.

In short, the contribution of this chapter is threefold:

• We introduce a principled, simple, and efficient approach to performing parallel
inference in discrete random fields. We formally prove that it converges and
demonstrate that it performs better than state-of-the-art inference methods on
realistic Computer Vision tasks such as segmentation and people detection.

• We show that many of the earlier methods can be interpreted as variants of ours.
However, we offer a principled way to set its metaparameters.

• We demonstrate how parallel mean-field inference in random fields relates to the
gradient descent. This allows us to integrate advanced gradient descent techniques,
such as momentum and ADAM [81], which makes mean-field inference even more
powerful.

To validate our approach, we first evaluate its performance on a set of standardized
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benchmarks, which include a range of inference problems and have recently been used to
assess inference methods [54]. We then demonstrate that the performance improvements
we observed carry over to three realistic computer vision problems, namely Characters
Inpainting, People Detection and Semantic Segmentation. In each case, we show that
modifying the optimization scheme while retaining the objective function of state-of-the-
art models [22,52,115] yields improved performance and addresses the convergence issues
that sometimes arise [156].

4.1 Related Work

In this section, we briefly revisit basic Conditional Random Field theory and the use of
variational mean-field inference to solve the resulting optimization problems. We also give
a short introduction into proximal gradient descent algorithms, on which our method is
based. Note that, in this chapter we focus on models involving discrete random variables.

4.1.1 Conditional Random Fields

Let X = (X1, . . . , XN ) represent hidden variables and I represent observed variables.
For example, for semantic segmentation, the Xis are taken to be variables representing
semantic classes of N pixels, and I represents the observed image evidence.

Recall from Section 2.1.2, a Conditional Random Field (CRF) models the relationship
between X and I in terms of the posterior distribution

P (X | I) =
1

Z(I)
exp

 ∑
c⊂{1,...,N}

φc(Xc | I)

 , (4.1)

where φc(.) are non-negative functions known as potentials and Z(I) is the partition
function. It is a constant that we will omit for simplicity since we are mostly concerned
by estimating values of X that maximize P (X | I).

This model is often further simplified by only considering unary and pairwise terms:

P (X | I) ∝ exp

∑
i

φi(Xi, Ii) +
∑
(i,j)

φij(Xi, Xj)

 . (4.2)
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4.1.2 Mean-Field Inference

Typically, one wants either to estimate the posterior P (X|I) or to find the vector X̂

that maximizes P (X|I), which is known as the MAP assignment. Unfortunately, even
for the simplified formulation of Eq. 4.2, both are intractable for realistic sizes of X.
As a result, many approaches settle for approximate solutions. These include sampling
methods, such as Gibbs sampling [58], and deterministic ones such as mean-field variational
inference [164], belief propagation [87, 106, 109], and others [17, 62]. A comprehensive
comparison of inference methods in discrete models is provided in [76].

Note that, mean-field methods have been shown to combine the advantages of good
convergence guarantees [14], flexibility with respect to the potential functions that can be
handled [136], and potential for parallelization [89]. As a result, they have become very
popular in our field. Furthermore, they have recently been shown to yield state-of-the-art
performance for several computer vision tasks [22,136,156,168].

Mean-field involves introducing a distribution Q of the factorized form

Q(X = (x1, . . . , xN );q) =

N∏
i=1

Qi(Xi = xi;qi) , (4.3)

where Qi( . ;qi) is a categorical distribution with mean parameters qi. That is,

∀l, Qi(Xi = l;qi) = qi,l, (4.4)

with q in the space M such that ∀i ∈ {1, . . . , N}, l ∈ {1, . . . , L}, 0 ≤ qi,l ≤ 1 and
∀i,
∑

l qi,l = 1, where N is often the number of pixels, and L is the number of labels.

Q is then used to approximate P (X | I) by minimizing the KL-divergence:

KL(Q||P ) =
∑
x

Q(X = x;q) log
Q(X = x;q)

P (X = x | I)
. (4.5)

In some cases, this approximation is the desired final result. In others, one seeks a MAP
assignment. To this end, a standard method is to select the assignment that maximizes
the approximate posterior Q(X;q), which is equivalent to rounding when the Xis are
Bernoulli variables. An alternative approach is to draw samples from Q(X;q).

When minimizing the KL-divergence of Eq. 4.5, Q(X;q) can be reparameterized in terms
of its natural parameters defined as follows. For each variable Xi and label l, we take the
natural parameter θi,l to be such that

Q(Xi = l;qi) = qi,l ∝ exp[−θi,l]. (4.6)

40



4.1. Related Work

As we will see below, this parameterization often yields simpler notations and implemen-
tations.

Sweep Mean-Field Inference

Minimizing the expression of Eq. 4.5 is equivalent (see Section 2.2.2) to minimizing

F(q) = −EQ(X;q)[logP (X | I)]︸ ︷︷ ︸
E(q)

+EQ(X;q)[logQ(X;q)]︸ ︷︷ ︸
−H(q)

, (4.7)

with respect to q ∈M. F(.) is sometimes called the variational free energy, or (negative)
variational lower bound. Its first term is the expectation of the energy under Q(X;q),
and its second term is the negative entropy, which acts as a regularizer.

As discussed in Section 2.3, one can minimize F(q) by iteratively updating each qi,l in
sequence while keeping the others fixed. Each update then involves setting qi,l to

q?i,l ∝ exp
[
EQ(X/Xi;q)

[
logP (X | I)

]]
. (4.8)

In what follows, we refer to this coordinate descent procedure, which we will call SWEEP.
As demonstrated in Section 2.3, it is guaranteed to converge to a local minimum of
F . However, it tends to be very slow for realistic image sizes and impractical for many
computer vision problems [89,156]. Namely, in the case of dense random fields, it involves
re-computing a large number of expectations (one per factor adjacent to the variable)
after each sequential update. Filter-based mean-field inference [88] attempts to reduce
the complexity of these updates, but it effectively performs parallel updates, which we
will describe below.

Parallel Mean-Field Inference

To obtain reasonable efficiency in practice, computer vision practitioners often perform
the updates of Eq. 4.8 in parallel as opposed to sequentially. Not only does it avoid
having to reevaluate a large number of factors after each update, it also allows the use
of vectorized instructions and GPUs, both of which can have a dramatic impact on the
computation speed.

Unfortunately, these parallel updates invalidate the convergence guarantees and in practice
often lead to undesirable oscillations in the objective. Several approaches to remedying
this problem have been proposed, which we review below.
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Damping A natural way to improve convergence is to replace the updates of Eq. 4.8
by a damped version, expressed as

qt+1
i,l = (1− η) · qti,l + η · q?i,l , (4.9)

where t denotes the current iteration, q?i,l is the result of solving the optimization problem
of Eq. 4.8, and η is a heuristically chosen damping parameter. This damping is explicitly
mentioned in papers such as [20,54,149]. In [156], convergence issues are mentioned and
a damping parameter is provided in the publicly available code. Similarly, multi-person
detection methods such as POM [52] and DPOM, which we discussed in the previous
chapter, rely on mean-field optimization with repulsive terms and use the same damped
update of Eq. 4.9.

Damping delivers satisfactory results in many cases, but does not formally guarantee
convergence. It may fail if the parameter η is not carefully chosen, and sometimes changed
at different stages of the optimization. In all the approaches that we are aware of, this is
done heuristically. We will refer to this type of methods as ADHOC.

Concave potentials A principled way to address the convergence issue for the pair-
wise random fields is offered in [89], and we refer to the corresponding algorithm as
FULL-PARALLEL. However, authors restrict their potentials φij of Eq. 4.2 to be concave,
which in some cases is reasonable, but as we will show in Section 4.3, many Computer
Vision models violate this requirement. By contrast, our approach is similarly principled
but without additional constraints. In practice it works for higher-order, or, equivalently,
non-pairwise potentials.

4.1.3 Proximal Gradient Descent

Let F be a generic objective function of the form F (x) = f(x) + g(x), where g is a
regularizer, and xt is the value of the optimized variable at iteration t of a minimization
procedure on a constraint set X . Proximal gradient descent, also known as composite
mirror-descent [43], is an iterative method that relies on the update rule

xt+1 = arg min
x∈X

{〈x,∇f(xt)〉+ g(x) + λΨ(x,xt)} , (4.10)

where Ψ is a non-negative proximal function that satisfies Ψ(x,xt) = 0 if and only if
x = xt, and λ > 0 is a scalar parameter. g contains the terms of the objective function
that do not need to be approximated to the first order, while still allowing efficient
computation of update of Eq. 4.10. Ψ can be understood as a distance function that
accounts for the geometry of X [151] while also making it possible to compute the update
of Eq. 4.10 efficiently. λ can then be thought of as the inverse of the step size. Intuitively,
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solving the minimization problem of Eq. 4.10 amounts to minimizing the first-order
approximation of F (x), while taking into account the composite structure of the function
and keeping the next estimate xt+1 close to xt.

As shown in Section 4.2.1, our algorithm is a version of proximal gradient descent in
which Ψ is based on the KL-divergence and allows automated step-size adaptation as
the optimization progresses. Recently, a variational approach that also relies on the
KL-divergence as the proximal function has been proposed [79]. This work explores the
connection between the KL-proximal method and the Stochastic Variational Inference [2,
68]. However, the method presented there is not directly applicable to discrete random
fields, especially for the Vision problems we consider. Moreover, it does not allow for
step size adaptation, which often yields better performance, as we demonstrate in our
experiments.

4.2 Method

As discussed in the previous section, the goal of mean-field inference is to

minimize
q∈M

F(q) (4.11)

where F is the variational free energy of Eq. 4.7. Performing sequential updates of the
qi,l is guaranteed to converge, but can be slow. Parallel updates are usually much faster,
but the optimization procedure may fail to converge.

In this section, we introduce our approach to guaranteeing convergence whatever the shape
of the pairwise potentials. To this end, we rely on proximal gradient descent as described
in Section 4.2.1 and formulate the proximal function Ψ in terms of the KL-divergence.
This is motivated by the fact that it is more adapted to measuring the distance between
probability distributions than the usual L2 norm, while being independent of how the
distribution is parameterized.

We will show that this both guarantees convergence and yields a principled way to obtain
a closed form damped update equation equivalent to Eq. 4.9.

4.2.1 Proximal Gradient for Mean-Field Inference

In our approach to minimizing the variational free energy of Eq. 4.7, we treat E as the
function f of Eq. 4.10 and the negative entropy −H as the regularizer g. This choice
stems from the fact that −H is separable, and therefore, can be minimized in parallel in
Eq. 4.10, without using a first order approximation. Also, −H being the regularizer g
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means that we do not need to look at its derivatives with respect to the mean-parameters,
which are not well behaved when they approach zero. We then define

Ψt(q,qt) =
∑
i

∑
l

dti,lqi,l log
qi,l
qti,l

= Dt �KL(q||qt) , (4.12)

where KL is the non-negative KL-divergence, which is a natural choice to measure
discrepancy between distributions. Dt is a diagonal matrix with positive diagonal elements
dti,ls, which we introduce to allow for anisotropic scaling of the proximal KL-divergence
term. As will be discussed below, different choices of the dti,ls yield different variants of
our algorithms. Note however that, Ψt is a valid proximal function.

The update of Eq. 4.10 then becomes

qt+1 = arg min
q∈M

{〈q,∇E(qt)〉 − H(q) + Dt �KL(q||qt)} . (4.13)

This computation can be performed independently for each index i ∈ {1, . . . , N}. Fur-
thermore, we prove in the Appendix B that it can be done in closed form and can be
written as

qt+1
i,l ∝ exp[ ηti,l · EQ(X/Xi=l;q)

[
logP (X|I)

]
(4.14)

+(1− ηti,l) · log qti,l] ,

where ηti,l =
1

1 + dti,l
. Eq 4.14 can be rewritten as

θt+1
i,l = ηti,l · θ?i,l + (1− ηti,l) · θti,l , (4.15)

where θ?i,l = −EQ(X/Xi;q)

[
logP (X|I)

]
now is a natural parameter, like those of Eq. 4.6.

In other words, we have replaced the heuristic update rule of Eq. 4.9 in the space of mean
parameters by a principled one in the space of natural ones. As we will see, this yields
performance and convergence improvements in most cases. As for the stopping criteria,
one can define one based on the value of the objective, or, in practice, run inference for a
fixed number of iterations.
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4.2.2 Fixed Step Size

The simplest way to instantiate our algorithm is to fix all the dti,ls of Eq. 4.12 to the same
value d and to write

∀t , Dt = D = dI ⇒ ∀t, i, l, ηti,l =
1

1 + d
, (4.16)

where ηti,l plays the same role as the damping factor of Eq. 4.9. We now show that this
is guaranteed to converge when the proximal term is given enough weight.

In our mean-field settings, E(q) is a polynomial function of the mean-parameters vector
q. Therefore, one can always find some positive real number L such that the gradient of
E is L-Lipschitz continuous.

In Appendix B, we prove that this property implies that our proximal gradient descent
scheme is guaranteed to converge for any fixed matrix D = dI such that d > L.

Intuitively, when updating the value of qt to qt+1, the magnitude of the gradient change
controlled and thus the coordinate-wise optimum θ?i,l = −∇E(qt)i,l will also be changing
smoothly across iterations. As a result, L is the key value to understand oscillations. In
practice, our goal is to find its smallest possible value to allow steps as large as possible
while guaranteeing convergence.

In the pairwise case, the Hessian of the objective function is a constant matrix, which
we call potential matrix. Therefore, the highest eigenvalue of the potential matrix is a
valid Lipschitz constant and efficient methods allow to compute it for moderately sized
problems.

In fact, the convergence result presented in [89] is strongly related to this. Namely,
assuming that the potential matrix is negative semi-definite, is equivalent to assuming
that L < 0 in our formulation. This directly corresponds to the concavity assumptions
on the potentials in [89]. Therefore, under the assumptions of [89], our algorithm leads to
η = 1, corresponding to the fully-parallel update procedure. In that sense, our procedure
is a generalization of the one proposed by [89].

In the non-pairwise case, the Hessian is not constant, and the calculation of the Lipschitz
constant is not trivial. For each specific problem, bounds should be derived using the
particular shape of the CRF at hand.
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4.2.3 Adaptive Step Size

Note that the Hessian of the KL-proximal term is diagonal with

∂2Dt ·KL(q||qt)
∂q2i,l

|q=qt =
dti,l
qti,l

. (4.17)

Therefore, when some of the qi,ls get close to 0, the elements of the Hessian may become
very large, especially when using a constant value for the dti,l as suggested above. When
that happens, the local KL-approximation remains a valid upper bound of the objective
function, but not a tight enough one, which results in step sizes that are too small for
fast convergence.

This can be reduced by choosing a matrix Dt that compensates for this. A simple
way to do this would be to scale the dti,l proportionally to max(qi,0, . . . , qi,Li−1) to start
compensating for diagonal terms. However, this method is still sub-optimal because it
ignores the fact that all our variables lie inside the simplexM. A better alternative is to
bound from below the proximal term by a quadratic function, but onM rather than on
Rn.

Note that, we only apply this method to the binary case, for which we set

dti,0 = dti,1 = qti,0q
t
i,1 · d , (4.18)

were d is an additional parameter that should be set close to L. Extending this approach
to the multi-label case will be a topic for future work. In Section 4.2.4, we provide a
different alternative to performing adaptive anisotropic updates in all settings.

Intuitively, when the current parameters are close to the borders of the simplex, the mean
parameters are less sensitive to natural parameters, which, therefore, need less damping.
We demonstrate in our experiments that it provides a way to choose the step size without
tuning.

4.2.4 Momentum

Our approach can easily be extended to incorporate techniques that are known to speed-
up gradient descent and help to avoid local minima, such as the classic momentum
method [119] or the more recent ADAM technique [81]. The momentum method involves
averaging the gradients of the objective f(x) over the iterations in a momentum vector m
and use it as the direction for the update instead of simply following the current gradient.
To integrate it into our framework, we replace the gradient ∇E in Eq. 4.13 by its rolling
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exponentially weighted average m computed as

mt+1 = γ1m
t + (1− γ1)∇E(qt) , (4.19)

with the exponential decay parameter γ1 ∈ [0; 1]. This substitution brings the following
update rule

θt+1
i,l = η ·mt

i,l + (1− η) · θti,l . (4.20)

In what follows, we refer to this approach as OURS-MOMENTUM.

4.2.5 ADAM

The ADAM method [81] has become very popular in deep learning. Our framework makes
it easy to use for mean-field inference as well by appropriately choosing the matrix Dt at
each step and combining it with the momentum technique.

We define the averaged second moment vector v of the natural gradient as

vt+1
i,l = γ2[θ

t
i,l +∇E(qt)i,l]

2 + (1− γ2)vti,l , (4.21)

where v is initialized to a strictly positive value and γ2 ∈ [0; 1] is an exponential memory
parameter for v.

Then, the Dt matrix is defined through each of its diagonal entries as

dti,l =
√
vt+1
i,l d+ ε− 1 , (4.22)

where ε is a fixed parameters and d controls the damping. We will refer to this method
as OURS-ADAM.

Intuitively it is good at exploring parameter space thanks to a form of auto-annealing
of the gradient. The natural gradient θt + ∇E(qt) is zero at a local minimum of the
objective function [68]. Therefore, close to a minimum, the proximal term Dt becomes
small, thus allowing more exploration of the space. On the other hand, after a long
period of exploration with large natural gradients, more damping will tend to make the
algorithm converge.
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4.3 Evaluation

In this section, we evaluate our method on a variety of inference problems and demonstrate
that in most cases it yields faster convergence and better minima.

4.3.1 Baselines and Variants

We compare several variants of our approach to some of the baselines we introduced in
the related work section. The baselines we consider are as follows:

• SWEEP. As discussed in Section 4.1.2, it involves sequential coordinate descent [14]
and is not always computationally tractable for large problems.

• ADHOC. As discussed in Section 4.1.2, it performs parallel updates with the ad hoc
damping parameter η of Eq. 4.9 chosen manually.
• FULL-PARALLEL. As also discussed in Section 4.1.2, it relies on the inference described

in [89]. For example, the popular densecrf framework [88] uses this approach.

We compare to these the following variants of our approach:

• OURS-FIXED. Damping occurs in the space of natural parameters instead of mean
ones as described in Section 4.2.2.

• OURS-ADAPTIVE. Adaptive and anisotropic damping in the space of natural parame-
ters as described in Section 4.2.3.

• OURS-MOMENTUM. Similar to OURS-ADAPTIVE, but using the momentum method in-
stead of ordinary gradient descent, as described in Section 4.2.4. We use the same
parameter value γ1 = 0.95 for all datasets.

• OURS-ADAM. Similar to OURS-ADAPTIVE but using the ADAM method instead of
ordinary gradient as described in Section 4.2.5. We use the same parameters as in
the original publication [81], γ1 = 0.99, γ2 = 0.999 and ε =1E-8 for all datasets.

All four methods involve a parameter η = 1
1+d , defined in Eq. 4.16 for OURS-FIXED,

Eq. 4.18 for OURS-ADAPTIVE, Eq. 4.20 for OURS-MOMENTUM and Eq. 4.22 for OURS-ADAM.
Additionally, in Section 4.3.3 and Figure 4.2 we demonstrate that our method is less
sensitive to the choice of this parameter than its competitors.

4.3.2 Experimental Setup

We evaluated all the methods first on a set of standardized benchmarks [54]: DBN, con-
taining 108 instances of deep belief networks (on average 920 variables), GRID, containing
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21 instances of two-dimensional grids (1600 variables), and SEG, containing 100 instances
of segmentation problems (230 variables), where each instance is represented as a binary
pairwise random field.

We then consider three realistic Computer Vision tasks that all involve minimizing a
functional of the form given in Eq. 4.7. We describe them below.

Characters Inpainting We consider character inpainting, formulated as a binary
pairwise random field, Decision Tree Fields (DTF, [115]). The dataset contains 100 test
instances of occluded characters, and the goal is to restore the occluded part, as shown
in the last row of Figure 4.1. We use pre-computed potentials provided by the authors
of [115]. Note, that this model consists of data-driven potentials, and includes both short
and long-range interactions, which makes it particularly interesting from the optimization
perspective.

People Detection We consider detecting upright people in a multi-camera settings,
using the Probabilistic Occupancy Map approach (POM, [52]), that relies on a random
field with high-order repulsive potentials, which models background subtraction signal
given the presences of people in the environment. We evaluate it on the ISSIA [40]
dataset, which contains 3000 frames of a football game, captured by 6 cameras located
on two sides of the field. The original work [52] does not explicitly mention it, but the
publicly available implementation uses the ADHOC damping method. We implement all
our methods and remaining baselines directly in this code of [52].

Semantic Segmentation We consider semantic segmentation on PASCAL VOC 2012
dataset [48], which defines 20 object classes and 1 background class. We based our evalua-
tion on DeepLab-CRF model [22], which is currently one of the best-performing methods.
This model uses CNNs to obtain unary potentials, and then employs densecrf of [89] with
dense pairwise potentials. However, this basic CRF model does not contain any strong
repulsive terms, and thus we expect densecrf’s standard inference, FULL-PARALLEL, to
work well. To improve performance, we additionally introduced co-occurrence poten-
tials [156], which, as we will show, violate the conditions assumed in densecrf, but can
still be successfully handled by our method. Intuitively, these co-occurrence terms put
priors on the sets of classes that can appear together. We made minor modifications of
densecrf to support both our inference and co-occurrence potentials.

We performed all the experiments on Intel(R) Xeon(R) CPU E5-2680 2.50GHz, and a
GPU GeForce GTX TITAN X (12GB GRAM).
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4.3.3 Comparative Results

In order to understand how the methods behave in practical settings, when the available
computational time is limited, we evaluate all methods for several computational budgets.
The shortest budget corresponds to the early-stopping scenario after few iterations, the
longest one roughly models the time until convergence, and the middle one is around
20-30% of the longest.

method 0.05s 0.30s 1.00s
SWEEP -112.94 -2088.07 -2138.13
FULL-PARALLEL -1952.52 -1951.54 -1942.86
ADHOC -2047.31 -2047.31 -2047.31
OURS-FIXED -2081.91 -2081.91 -2081.91
OURS-ADAPTIVE -2125.48 -2130.61 -2130.61
OURS-MOMENTUM -2260.98 -2362.14 -2374.51
OURS-ADAM -2107.98 -2107.93 -2107.93

Table 4.1: Results for KL minimization for the DBN (deep belief networks) benchmark
dataset [54]. All the numbers are KL divergence (lower is better) averaged over the
instances.

method 0.05s 0.30s 1.00s
SWEEP -5540.59 -16675.55 -18592.26
FULL-PARALLEL -2564.39 -2777.33 -2439.08
ADHOC -18345.42 -18348.80 -18349.03
OURS-FIXED -18213.81 -18219.42 -18219.45
OURS-ADAPTIVE -18245.93 -18252.48 -18252.48
OURS-MOMENTUM -18143.48 -19074.45 -19184.37
OURS-ADAM -18617.06 -18732.59 -18740.36

Table 4.2: Results for KL minimization for GRID (two-dimensional grids) benchmark
dataset [54]. All the numbers are KL divergence (lower is better) averaged over the
instances.
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Figure 4.2: Sensitivity of OURS-FIXED (red) and OURS-ADAPTIVE (dashed red) vs ADHOC
(blue) to the damping parameter η = 1

1+d . We report KL-divergence (lower is better) vs the
value of the parameter, both in log-space.
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method 0.05s 0.30s 1.00s
SWEEP 78.81 75.50 75.50
FULL-PARALLEL 75.66 75.66 75.66
ADHOC 76.10 75.66 75.66
OURS-FIXED 77.17 75.61 75.61
OURS-ADAPTIVE 77.68 75.64 75.61
OURS-MOMENTUM 74.35 73.75 73.75
OURS-ADAM 72.37 72.32 72.32

Table 4.3: Results for KL minimization for the SEG (binary segmentation) benchmark
datasets [54]. All the numbers are KL divergence (lower is better) averaged over the
instances.
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Figure 4.3: Convergence results. (a) OURS-ADAM and OURS-MOMENTUM converge very fast
to a much better minima. (b) OURS-FIXED outperforms ADHOC both in terms of speed of
convergence and the value of the objective. (c) OURS-ADAM and OURS-FIXED show the best
performance. The former converges a bit slower, but in the end provide slightly better
minima. ADHOC for this dataset converges rather fast, but fails to find a better optima.

Benchmarks Quantitative results for the benchmarks are given in Tables 4.1-4.3. Our
methods systematically outperform the ADHOC damping method. The SWEEP method
usually provides good performance, but is generally slow due to its sequential nature.

Figure 4.2 shows that our methods are less sensitive to damping parameter changes than
ADHOC. In Figure 4.2, the vertical orange lines corresponds to the choice of the damping
parameter according to d = L, which can be computed directly by the power-method.
Interstingly, for the GRID dataset, which includes strong repulsive potentials, algorithms
do not produce reasonable results when no damping is applied. On the other hand, for the
segmentation task, SEG, all the algorithms work well even without damping, in accordance
with the results of [89] or Section 4.2.2.

Characters Inpainting Quantitative results in terms of average pixel accuracy and
KL-divergence are given in Table 4.4 and Figure 4.3 (a). Our method, especially when
used with more advanced gradient descent schemes, outperforms all the baselines. SWEEP
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0.05s 0.3s 3s
method KL PA KL PA KL PA
SWEEP -6342.56 54.57 -25233.54 58.38 -49519.33 62.50
FULL-PARALLEL -49516.98 60.99 -49519.27 62.00 -49519.33 62.05
ADHOC -49514.27 61.46 -49520.09 62.15 -49520.20 62.17
OURS-FIXED -49505.59 60.99 -49520.33 62.26 -49521.71 62.35
OURS-ADAPTIVE -49503.43 60.93 -49520.14 62.32 -49522.49 62.60
OURS-MOMENTUM -49513.57 63.69 -49536.67 65.26 -49540.76 65.95
OURS-ADAM -49516.02 65.36 -49538.84 67.03 -49544.58 67.12

Table 4.4: Results for characters inpainting problem [115] based on DTFs. PA is the pixel
accuracy for the occluded region (bigger is better). Our methods outperform the baselines
by a margin of 3-5%. Since FULL-PARALLEL is not damped, it gets to low KL-divergence
value quickly, however the actual solution is significantly worse.

0.5s 1.3s 5s
method KL MODA KL MODA KL MODA
SWEEP 1865.43 0.630 1795.66 0.656 1795.60 0.656
FULL-PARALLEL 2573.79 0.000 2573.79 0.000 8500.90 0.030
ADHOC 2573.79 0.308 1760.02 0.781 1753.71 0.829
OURS-FIXED 1783.63 0.626 1754.55 0.802 1753.63 0.829
OURS-MOMENTUM 1931.36 0.040 1797.19 0.650 1753.83 0.826
OURS-ADAM 2008.52 0.021 1813.66 0.501 1754.52 0.824

Table 4.5: Results for people detection task [40] based on POM [52]. OURS-FIXED
outperforms the baselines and adaptive methods. This means that this problem does not
require more sophisticated parameter exploration techniques.

shows relatively good performance, but does not scale as well in terms of the running
time. See the bottom row of Figure 4.1 for an example of a result.

People Detection Quantitative results, presented in Table 4.5 and Figure 4.3 (b),
demonstrate that our method with a fixed step size, OURS-FIXED, brings both faster
convergence and better performance. Thanks to our optimization scheme, the time
required to get a Multiple Object Detection Accuracy (MODA, [13]) within 3% of the
value at convergence is reduced by a factor of two. This can be of big practical importance
for surveillance applications of the algorithm [6, 12], in which it is required to run in
real-time. SWEEP exhibits much worse performance than our parallel method because of
its greedy behavior.
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5s 15s 50s
method KL I/U KL I/U KL I/U
FULL-PARALLEL [o] − 67.18 − 67.70 − 68.00
OURS-ADAM [o] − 66.45 − 67.50 − 68.07
FULL-PARALLEL -3129799 67.21 -3134437 67.72 -3133010 68.01
ADHOC -3129469 67.19 -3134557 67.73 -3136865 68.04
OURS-FIXED -3100079 67.76 -3135225 68.18 -3138206 68.44
OURS-MOMENTUM -3060405 66.20 -3128121 67.39 -3136543 68.18
OURS-ADAM -3091787 67.08 -3131624 68.02 -3138335 68.47

Table 4.6: Results for semantic segmentation problem [48] based on DeepLab-CRF [22].
For all the budgets, our method obtains better segmentation accuracy. Again,
FULL-PARALLEL obtains lower KL faster, with a price of reduced performance. On
the top, we provide results for the original DeepLab-CRF model without co-occurrence
potentials (denoted by [o]), for which the KL divergence has therefore a different meaning
and is not shown.

Semantic Segmentation Quantitative results are presented in Table 4.6 and Fig-
ure 4.3 (c). We observe that a similar oscillation issue as noted by [156] starts happening
when the FULL-PARALLEL method is used in conjunction with co-occurrence potentials,
producing even worse results than without those. Using our convergent inference method
fixes oscillations and provides an improvement of 0.5% in the average Intersection over
Union measure (I/U) compared to the basic method without co-occurrence. This is a
significant improvement that would be sufficient to increase the position of an algorithm
by 2 or 3 places in the official ranking [48]. What it represents is a big improvement in
performance, as the ones shown in Figure 4.1, for at least 30-40 images out of total 1449.
Note also, that we obtain this improvement with minimal changes in the original code. By
contrast, authors [22] get similar or smaller improvements by significantly augmenting the
training set or by exploiting multi-scale features, which leads to additional computational
burden.

4.4 Discussion

We have presented a principled and efficient way to do parallel mean-field inference
in discrete random fields. We have demonstrated that proximal gradient descent is a
powerful theoretical framework for mean-field inference, which unifies and sheds light
on existing approaches. Moreover, it naturally allows to incorporate existing adaptive
gradient descent techniques, such as ADAM, to mean-field methods. As shown in our
experiments, it often brings dramatic improvements in performance. Additionally, we
have demonstrated, that our approach is less sensitive to the choice of parameters.

53



Chapter 4. Efficient Variational Inference in Discrete Random Fields

Our method makes it possible to use variational mean-field inference with a wider range
of potential functions, which was previously unachievable due to the lack of convergent
optimization. Thus, there is a large amount of possible future applications of our approach,
especially in the tasks where higher-order and repulsive potentials can be useful, not only
in segmentation, but also in object localization.
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5 Multi-Human Scene Understanding

Human social behavior can be characterized by “social actions” – an individual act which
nevertheless takes into account the behaviour of other individuals – and “collective actions”
taken together by a group of people with a common objective. For a machine to perceive
both of these actions, it needs to develop a notion of collective intelligence, i.e., reason
jointly about the behaviour of multiple individuals. In this chapter, we propose a method
to tackle such intelligence. Given a sequence of image frames, our method jointly locates
and describes the social actions of each individual in a scene as well as the collective
actions (see Figure 5.1). This perceived social scene representation can be used for sports
analytics, understanding social behaviour, surveillance, and social robot navigation.

Recent methods for multi-person scene understanding take a sequential approach [31, 69,
123]: i) each person is detected in every given frame; ii) these detections are associated over
time by a tracking algorithm; iii) a feature representation is extracted for each individual
detection; and finally iv) these representations are joined via a structured model. Whereas
the aforementioned pipeline seems reasonable, it has several important drawbacks. First
of all, the vast majority of state-of-the-art detection methods do not use any kind of
joint optimization to handle multiple objects, but rather rely on heuristic post-processing,
and thus are susceptible to greedy non-optimal decisions. Second, extracting features
individually for each object discards a large amount of context and interactions, which
can be useful when reasoning about collective behaviours. This point is particularly
important because the locations and actions of humans can be highly correlated. For
instance, in team sports, the location and action of each player depend on the behaviour
of other players as well as on the collective strategy. Third, having independent detection
and tracking pipelines means that the representation used for localization is discarded,
whereas re-using it would be more efficient. Finally, the sequential approach does not
scale well with the number of people in the scene, since it requires multiple runs for a
single image.
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Figure 5.1: Jointly reasoning on social scenes. Our method takes as input raw image
sequences and produces a comprehensive social scene interpretation: locations of indi-
viduals (as bounding boxes), their individual social actions (e.g., “blocking"), and the
collective activity (“right spike" in the illustrated example).

Our method aims at tackling these issues. Inspired by recent work in multi-class object
detection [125, 126] and image labelling [73], we propose a single architecture that
jointly localizes multiple people, and classifies the actions of each individual as well as
their collective activity. Our model produces all the estimates in a single forward pass
and requires neither external region proposals nor pre-computed detections or tracking
assignments.

Our contributions can be summarized as follows:

• We propose a unified framework for social scene understanding by simultaneously
solving three tasks in a single feed forward pass through a Neural Network: multi-
person detection, individual’s action recognition, and collective activity recognition.
Our method operates on raw image sequences and relies on joint multi-scale features
that are shared among all the tasks. It allows us to fine-tune the feature extraction
layers early enough to enable the model to capture the context and interactions.

• We introduce a novel multi-object detection scheme, inspired by the classical work
on Hough transforms. Our scheme relies on probabilistic inference that jointly
refines the detection hypotheses rather than greedily discarding them, which makes
our predictions more robust.

• We present a person-level matching Recurrent Neural Network (RNN) model to
propagate information in the temporal domain, while not having access to the the
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trajectories of individuals.

In Section 5.3, we show quantitatively that these components contribute to the better
overall performance. Our model achieves state-of-the-art results on challenging multi-
person sequences, and outperforms existing approaches that rely on the ground truth
annotations at test time. We demonstrate that our novel detection scheme is on par with
the state-of-the art methods on a large-scale dataset for localizing multiple individuals in
crowded scenes. Our implementation will be made publicly available.
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Figure 5.2: General overview of our architecture. Each frame of the given sequence is
passed through a fully-convolutional network (FCN) to produce a multi-scale feature
map Ft, which is then shared between the detection and action recognition tasks. Our
detection pipeline is another fully-convolutional network (DFCN) that produces a dense
set of detections Bt along with the probabilities Pt, followed by inference in a hybrid MRF.
The output of the MRF are reliable detections bt which are used to extract fixed-sized
representations f t, which are then passed to a matching RNN that reasons in the temporal
domain. The RNN outputs the probability of an individual’s action, pI , and the collective
activity, pc across time. Note that Ldet (Eq. 5.3) is the loss function for the detections,
and LCI (Eq. 5.14) is the loss function for the individual and collective actions.

5.1 Related Work

The main focus of this chapter is creating a unified model that can simultaneously detect
multiple individuals and recognize their individual social actions and collective behaviour.
In what follows, we give a short overview of the existing work on these tasks.

Multi-object detection - There already exists large body of research in the area of object
detection. Most of the current methods either rely on a sliding window approach [139,167],
or on the object proposal mechanism [60,126], followed by a CNN-based classifier. The
vast majority of those state-of-the-art methods do not reason jointly on the presence
of multiple objects, and rely on very heuristic post-processing steps to get the final
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detections. A notable exception is the ReInspect [148] algorithm, which is specifically
designed to handle multi-object scenarios by modeling detection process in a sequential
manner, and employing a Hungarian loss to train the model end-to-end. We approach
this problem in a very different way, by doing probabilistic inference on top of a dense set
of detection hypotheses, while also demonstrating state-of-the-art results on challenging
crowded scenes. Another line of work that specifically focuses on joint multi-person
detection [6, 52, 166] uses generative models, however, those methods require multiple
views or depth maps and are not applicable in monocular settings.

Action recognition - A large variety of methods for action recognition traditionally rely
on handcrafted features, such as HOG [29,162], HOF [95] and MBH [159]. More recently,
data-driven approaches based on deep learning have started to emerge, including methods
based on 3D CNNs [72] and multi-stream networks [50,144]. Some methods [145,160],
exploit the strengths of both handcrafted features and deep-learned ones. Most of these
methods rely in one way or another on temporal cues: either through having a separate
temporal stream [50,145], or directly encoding them into compact representations [95,159,
159]. Yet another way to handle temporal information in a data-driven way is Recurrent
Neural Networks (RNNs). Recently, it has received a lot of interest in the context of action
recognition [38, 42, 144, 155]. All these methods, however, are focusing on recognizing
actions for single individuals, and thus are not directly applicable in multi-person settings.

Collective activity recognition - Historically, a large amount of work on collective
activity recognition relies on graphical models defined on handcrafted features [3, 23,24,
25,77,78]. The important difference of this type of methods with the single-person action
recognition approaches is that they explicitly enforce simultaneous reasoning on multiple
people. The vast majority of the state-of-the-art methods for recognizing multi-person
activities thus also rely on some kind of structured model, that allows sharing information
between representations of individuals. However, unlike earlier handcrafted methods, the
focus of the recent developments has shifted towards merging the discriminative power of
neural networks with structured models. In [31], authors propose a way to refine individual
estimates obtained from CNNs through inference: they define a trainable graphical model
with nodes for all the people and the scene, and pass messages between them to get the
final scene-level estimate. In [69], authors propose a hierarchical model that takes into
account temporal information. The model consists of two LSTMs: the first operates
on person-level representations, obtained from a CNN, which are then max pooled and
passed as input to the second LSTM capturing scene-level representation. [123] explores a
slightly different perspective: authors notice that in some settings, the activity is defined
by the actions of a single individual and propose a soft attention mechanism to identify
her. The complete model is very close to that of [69], except that the attention pooling is
used instead of a max pool. All of those methods are effective, however, they start joint
reasoning in late inference stages, thus possibly discarding useful context information.
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Moreover, they all rely on ground truth detections and/or tracks, and thus do not really
solve the problem end-to-end.

Our model builds upon the existing work in that it also relies on the discriminative power
of deep learning, and employs a version of person-level temporal model. It is also able to
implicitly capture the context and perform social scene understanding, which includes
reliable localization and action recognition, all in a single end-to-end framework.

5.2 Method

Our main goal is to construct comprehensive interpretations of social scenes from raw
image sequences. To this end, we propose a unified way to jointly detect multiple
interacting individuals and recognize their collective and individual actions.

5.2.1 Overview

The general overview of our model is given in Figure 5.2. For every frame It ∈ RH0×W0×3

in a given sequence, we first obtain a dense feature representation Ft ∈ R|I|×D, where
I = {1, . . . ,H×W} denotes the set of all pixel locations in the feature map, |I| = H×W
is the number of pixels in that map, and D is the number of features. The feature
map Ft is then shared between the detection and action recognition tasks. To detect,
we first obtain a preliminary set of detection hypotheses, encoded as two dense maps
Bt ∈ R|I|×4 and Pt ∈ R|I|, where at each location i ∈ I, Bt

i encodes the coordinates of
the bounding box, and Pt

i is the probability that this bounding box represents a person.
Those detections are refined jointly by inference in a hybrid Markov Random Field (MRF).
The result of the inference is a smaller set of N reliable detections, encoded as bounding
boxes bt ∈ RN×4. These bounding boxes are then used to smoothly extract fixed-size
representations f tn ∈ RK×K×D from the feature map Ft, where K is the size of the fixed
representation in pixels. Representations f tn are then used as inputs to the matching
RNN, which merges the information in the temporal domain. At each time step t, RNN
produces probabilities ptI,k ∈ RNI of individual actions for each detection btn, along with
the probabilities of collective activity ptC ∈ RNC , where NI , Nc denote respectively the
number of classes of individual and collective actions. In the following sections, we will
describe each of these components in more detail.

5.2.2 Joint Feature Representation

We build upon the Inception architecture [150] for getting our dense feature representation,
since it does not only demonstrate good performance but is also more computationally
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Figure 5.3: Example of ground truth (top) and predicted (bottom) maps. We show
segmentation map P projected on the original image, followed by two out of four channels
of the regression map B, which encode respectively vertical and horizontal displacement
from the location i to one of the bounding box corners.

efficient than some of the more popular competitors [92, 143].

One of the challenges when simultaneously dealing with multiple tasks is that repre-
sentations useful for one task may be quite inefficient for another. In our case, person
detection requires reasoning on the type of the object, whereas discriminating between
actions can require looking at lower-level details. To tackle this problem, we propose using
multi-stage features: instead of simply using the final convolutional layer, we produce our
dense feature map F ∈ R|I|×D (here and later t is omitted for clarity) by concatenating
multiple intermediate activation maps. Since they do not have fitting dimensions, we
resize them to the fixed size |I| = H ×W via differentiable bilinear interpolation. Note
that similar approaches have been very successful for semantic segmentation [63, 102],
when one has to simultaneously reason about the object class and its boundaries.

5.2.3 Dense Detections

Given the output of the feature extraction stage, the goal of the detection stage is to
generate a set of reliable detections, that is, a set of bounding box coordinates with
their corresponding confidence scores. We do it in a dense manner, meaning that, given
the feature map F ∈ R|I|×D, we produce two dense maps B ∈ R|I|×4 and P ∈ R|I|,
for bounding boxes coordinates and presence probability, respectively. Essentially, P
represents a segmentation mask encoding which parts of the image contain people, and
B represents the coordinates of the bounding boxes of the people present in the scene,
encoded relative to the pixel locations. This is illustrated by Figure 5.3.
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We can interpret this process of generating P,B from F in several different ways. With
respect to recent work on object detection [60, 125, 126], it can be seen as a fully-
convolutional network that produces a dense set of object proposals, where each pixel
of the feature map F generates a proposal. Alternatively, we can see this process as an
advanced non-linear version of the Hough transform, similar to Hough Forests [10,57]. In
these methods, each patch of the image is passed through a set of decision trees, which
produce a distribution over potential object locations. The crucial differences with the
older methods are, first, leveraging deep neural network as a more powerful regressor and,
second, the ability to use large contexts in the image, in particular to reason jointly about
parts.

Let us now introduce B and P more formally, by defining how we convert the given
ground truth object locations into dense ground truth maps B̂, P̂. For each image I, the
detection ground truth is given as a set of bounding boxes {(y0, x0, y1, x1)1, . . . , }. To
obtain the value for the specific location i = (iy, ix) ∈ I of the ground truth probability
map P̂, we set P̂i = 1 if y0 ≤ iy ≤ y1, x0 ≤ ix ≤ x1 for any of the ground truth boxes,
and P̂i = 0 otherwise. For the regression map, each location i represents a vector
B̂i = (ty0, tx0, ty1, tx1), where:

ty0 = (iy − y0)/sy, tx0 = (ix − x0)/sx , (5.1)

ty1 = (y1 − iy)/sx, tx1 = (x1 − ix)/sy , (5.2)

where sy, sx are scaling coefficients that are fixed, and can be taken either as the maximum
size of the bounding box over the training set, or the size of the image. Ultimately, our
formulation makes it possible to use ground truth instance-level segmentation masks to
assign each i to one of the ground truth instances. However, since these masks are not
available, and there can be multiple ground truth bounding boxes that contain i, we
assign each i to the bounding box with the highest y0 coordinate, as shown in Figure 5.3.
Note that, B̂i are only defined only for i : P̂i = 1, and the regression loss is constructed
accordingly.

The mapping from F to B, P is a fully-convolutional network, consisting of a stack of
two 3 × 3 convolutional layers with 512 filters and a shortcut connection [65]. We use
softmax activation function for P and ReLU for B. The loss is defined as follows:

Ldet =− 1

|I|
∑
i

P̂i logPi+

wreg
1∑
i P̂i

·
∑
i

P̂i||B̂i −Bi||22 ,
(5.3)

where wreg is a weight that makes training focused more on classification or regression.
For datasets where classification is easy, such as volleyball [69], we set it to wreg = 10,
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whereas for cluttered scenes with large variations in appearance lower values could be
beneficial.

5.2.4 Inference for Dense Detection Refinement

The typical approach to get the final detections given a set of proposals is to re-score
them using an additional recognition network and then run non-maxima suppression
(NMS) [73,126]. This has several drawbacks. First, if the amount of the proposals is large,
the re-scoring stage can be prohibitively expensive. Second, the NMS step itself is by no
means optimal, and is susceptible to greedy decisions. Instead of this commonly used
technique, we propose using a simple inference procedure that does not require re-scoring,
and makes NMS in the traditional sense unnecessary. Our key observation is that instead
of making similar hypotheses suppressing each other, one can rather make them refine
each other, thus increasing the robustness of the final estimates.

To this end, we define a hybrid MRF on top of the dense proposal maps B∗, which we
obtain by converting B to the global image coordinates. For each hypothesis location
i ∈ I we introduce two hidden variables, one multinomial Gaussian Xi ∈ R4, and one
categorical Ai ∈ I. Xi encodes the “true” coordinates of the detection, and Ai encodes the
assignment of the detection to one of the hypothesis locations in I. Note that, although
this assignment variable is discrete, we formulate our problem in a probabilistic way,
through distributions, thus allowing a detection to be “explained” by multiple locations.
The joint distribution over X1:|I|, A1:|I| is defined as follows:

P (X1:|I|, A1:|I|) ∝
∏
i,j

exp

(
−1[Ai = j] · ||Xi −Xj ||22

2σ2

)
, (5.4)

where σ is the standard deviation parameter, which is fixed.

Intuitively, Eq. 5.4 jointly models the relationship between the bounding box predictions
produced by the fully-convolutional network. The basic assumption is that each location
i ∈ I on the feature map belongs to a single "true" detection location j, which can be
equal to i, and the observation Xi should not be far from the observation Xj at this "true"
location. The goal of inference is to extract those "true" locations and their corresponding
predictions by finding the optimal assignments for Ai and values of Xi. In other words,
we want to compute marginal distributions P (Xi), P (Ai), ∀i ∈ I. Unfortunately, the
exact integration is not feasible, and we have to resort to an approximation. We use
the mean-field approximation, that is, we introduce the following factorized variational
distribution:

Q(X1:|I|, A1:|I|) =
∏
i

N (Xi ;µi, σ
2) · Cat(Ai ;ηi) , (5.5)
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where µi ∈ R4 and ηi ∈ R|I| are the variational parameters of the Gaussian and categorical
distributions respectively. Then, we minimize the KL-divergence between the variational
distribution Eq. 5.5 and the joint Eq. 5.4, which leads to the following fixed-point updates
for the parameters of Q(·):

ητij ∝ −
||µτ−1i − µτ−1j ||22

2σ2
,ατi = softmax(ητi ) , (5.6)

µ̂τi =
∑
j

αijµ
τ−1
j , (5.7)

where τ ∈ {1, . . . , T } is the iteration number, ατi ∈ R|I|,
∑

j α
τ
ij = 1 is the reparameteri-

zation of ητi . The complete derivation of those updates is provided in Appendix C.

Starting from some initial µ0, one can now use Eq. 5.6 and Eq. 5.7 until convergence.
In practice, we start with µ0 initialized from the estimates B∗, thus conditioning our
model on the observations, and only consider those i ∈ I, for which the segmentation
probability Pi > ρ, where ρ is a fixed threshold. Furthermore, to get µτ we use the
following smoothed update for a fixed number of iterations T :

µτi = (1− λ) · µτ−1 + λ · µ̂τ , (5.8)

where λ is a damping parameter that can be interpreted as a step-size [8].

To get the final set of detections, we still need to identify the most likely hypothesis out of
our final refined set µT . Luckily, since we also have the estimates αTi for the assignment
variables Ai, we can identify them using a simple iterative scheme similar to that used
in Hough Forests [10]. That is, we identify the hypothesis with the largest number of
locations assigned to it, then remove those locations from consideration, and iterate until
there are no unassigned locations left. The number of assigned locations is then used as a
detection score with a very nice interpretation: a number of pixels that “voted” for this
detection.

5.2.5 Matching RNN for Temporal Modeling

Previous sections described a way to obtain a set of reliable detections from raw images.
However, temporal information is known to be a very important feature when it comes to
action recognition [95,159]. To this end, we propose using a matching Recurrent Neural
Network, that allows us to merge and propagate information in the temporal domain.

For each frame t, given a set of N detections btn, n ∈ {1, . . . , N}, we first smoothly
extract fixed-sized representations f tn ∈ RK×K×D from the the dense feature map Ft,
using bilinear interpolation. This is in line with the ROI-pooling [126], widely used in
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object detection, and can be considered as a less generic version of spatial transformer
networks [70], which were also successfully used for image captioning [73]. Those rep-
resentations f tn are then passed through a fully-connected layer, which produces more
compact embeddings etn ∈ RDe , where De is the number of features in the embedded
representation. These embeddings are then used as inputs to the RNN units.

We use standard Gated Recurrent Units (GRU [26]) for each person in the sequence,
with a minor modification. Namely, we do not have access to the track assignments
neither during training nor testing, which means that the hidden states htn ∈ RDh and
ht+1
n ∈ RDh , where Dh is the number of features in the hidden state, are not necessarily

corresponding to the same person. Our solution to this is very simple: we compute the
Euclidean distances between each pair of representations at step t and t− 1, and then
update the hidden state based on those distances. A naive version that works well when
the ground truth locations are given, is to use bounding box coordinates bt,bt−1 as the
matching representations, and then update htn by the closest match ht−1n∗ :

n∗ = arg min
m

||btn − bt−1m ||22 , (5.9)

htn = GRU(etn,h
t−1
n∗ ) . (5.10)

Alternatively, instead of bounding box coordinates bt, one can use the embeddings et.
This allows the model to learn a suitable representation, which can be potentially more
robust to missing/misaligned detections. Finally, instead of finding a single nearest-
neighbor to make the hidden state update, we can use all the previous representations,
weighted by the distance in the embedding space as follows:

wtnm ∝ exp(−||etn − et−1m ||22) ,
∑
m

wtnm = 1, (5.11)

ĥt−1 =
∑
m

wtnmh
t−1
m , (5.12)

htn = GRU(etn, ĥ
t−1) . (5.13)

We experimentally evaluated all of these matching techniques, which we call respectively
boxes, embed and embed-soft. We provide results in Section 5.3.

To get the final predictions ptC for collective activities, we max pool over the hidden
representations ht followed by a softmax classifier. The individual actions predictions
ptI,n are computed by a separate softmax classifier on top of htn for each detection n. The
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loss is defined as follows:

LCI =− 1

T ·NC

∑
t,c

p̂tC,c log ptC,c

− wI
1

T ·N ·NI

∑
t,n,a

p̂tI,n,a log ptI,n,a ,

(5.14)

where T is the number of frames, NC , NI are the numbers of labels for collective and
individual actions, N is the number of detections, and p̂∗ is the one-hot-encoded ground
truth. The weight wI allows us to balance the two tasks differently, but we found that
the model is somewhat robust to the choice of this parameter. In our experiments, we set
wI = 2.

5.3 Evaluation

In this section, we report our results on the task of multi-person scene understanding and
compare them to multiple baselines. We also compare our detection pipeline to multiple
state-of-the-art detection algorithms on a challenging dataset for multi-person detection.

5.3.1 Datasets

We evaluate our framework on the recently introduced volleyball dataset [69], since
it is the only publicly available dataset for multi-person activity recognition that is
relatively large-scale and contains labels for people locations, as well as their collective
and individual actions.

This dataset consists of 55 volleyball games with 4830 labelled frames, where each player is
annotated with the bounding box and one of the 9 individual actions, and the whole scene
is assigned with one of the 8 collective activity labels, which define which part of the game
is happening. For each annotated frame, there are multiple surrounding unannotated
frames available. To get the ground truth locations of people for those, we resort to the
same appearance-based tracker as proposed by the authors of the dataset [69].

5.3.2 Baselines

We use the following baselines and versions of our approach in the evaluation:

• Inception-scene - Inception-v3 network [150], pre-trained on ImageNet and fine-
tuned to predict collective actions on whole images, without taking into account
locations of individuals.
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• Inception-person - similar to previous baseline, but trained to predict individual
actions based on high-resolution fixed-sized images of individual people, obtained
from the ground truth detections.

• HDTM - A 2-stage deep temporal model model [69], consisiting of one LSTM to
aggregate person-level dynamics, and one LSTM to aggregate scene-level temporal
information. We report multiple versions of this baseline: the complete version
which includes both scene-level and person-level temporal models, scene, which
only uses scene-level LSTM, and person, which only uses person-level LSTM.

• OURS-single - A version of our model that does not use an RNN. We report results
for ground truth locations, as well as detections produced by our detection pipeline.

• OURS-temporal - A complete version of our model with GRU units for temporal
modeling. We report results both for ground truth locations and our detections, as
well as results for different matching functions.

5.3.3 Implementation Details

All our models are trained using backpropagation using the same optimization scheme: for
all the experiments and all datasets, we use stochastic gradient descent with ADAM [81],
with the initial learning rate set to 10−5, and fixed hypereparameters to β1 = 0.9, β2 =

0.999, ε = 10−8.

We train our model in two stages: first, we train a network on single frames, to jointly
predict detections, individual, and collective actions. We then fix the weights of the feature
extraction part of our model, and train our temporal RNN to jointly predict individual
actions together with collective activities. Note that in fact our model is fully-differentiable,
and the reason for this two-stage training is purely technical: backpropagation requires
keeping all the activations in memory, which is not possible for a batch of image sequences.
The total loss is simply a sum of the detection loss (Eq. 5.3) and the action loss (Eq. 5.14)
for the first stage, and the action loss for the second stage. We use a temporal window of
length T = 10, which corresponds to 4 frames before the annotated frame, and 5 frames
after.

The parameters of the MRF are the same for all the experiments. We run inference on
the bounding boxes with the probability Pi above the threshold ρ = 0.2, and set the
standard deviation σ = 0.005, step size λ = 0.2, and the number of iterations T = 20.

Our implementation is based on TensorFlow [1] and its running time for a single sequence
of T = 10 high-resolution (720x1080) images is approximately 1.2s on a single Tesla-P100
NVIDIA GPU.
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5.3.4 Multi-Person Scene Understanding

The quantitative results on the volleyball dataset are given in Table 5.1. Whenever
available, we report accuracies both for collective action recognition and individual action
recognition. For variants of our methods, we report two numbers: when the output of
our detection pipeline was used (MRF), and the ground truth bounding boxes (GT). Our
method is able to achieve state-of-the-art performance for collective activity recognition
even without ground truth locations of the individuals and temporal reasoning. With our
matching RNN, performance improvements are even more noticeable. The comparison
to Inception-person, which was fine-tuned specifically for the single task of individual
action recognition, indicates that having a joint representation which is shared across
multiple tasks leads to an improvement in average accuracy on individual actions. When
we use the output of our detections, the drop in performance is expected, especially since
we did not use any data augmentation to make the action recognition robust to imperfect
localization. For collective actions, having perfect localization is somewhat less important,
since the prediction is based on multiple individuals. In Figure 5.4 we provide some visual
results, bounding boxes and actions labels are produced by OURS-temporal model with
embed-soft matching from raw image sequences from the test set.

Method collective individual
Inception-scene (GT) 75.5 -
Inception-person (GT) - 78.1
HDTM-scene [69](GT) 74.7 -
HDTM-person [69](GT) 80.2 -
HDTM [69](GT) 81.9 -
OURS-single (MRF/GT) 83.3 / 83.8 77.8 / 81.1
OURS-temporal (MRF/GT) 87.1 / 89.9 77.9 / 82.4

Table 5.1: Results on the volleyball dataset. We report average accuracy for collective
activity and individual actions. For OURS-temporal for the ground truth bounding boxes
(GT) we report results with the bbox matching, and for the detections (MRF) we report
results with the embed matching.

In Table 5.2 we compare different matching strategies. For the ground truth detections,
as expected, simply finding the best match in the bounding box coordinates, boxes,
works very well. Interestingly, using the embed and embed-soft matching are beneficial
for the performance when detections are used instead of the ground truth. It is also
understandable: appearance is more robust than coordinates, but it also means that our
model is actually able to capture that robust appearance representation, which might not
be absolutely necessary for the prediction in a single frame scenario. Note that, whereas
for the collective actions the temporal data seems to help significantly, the improvement
for the individual action estimation is very modest, especially for the detections. We
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hypothesize that in order to discriminate better between individual actions, it is necessary
to look at how the low-level details change, which could be potentially smoothed out
during the spatial pooling, and thus they are hard to capture for our RNN.
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Figure 5.4: Examples of visual results (better viewed in color). Green boxes around
the labels correspond to correct predictions, red correspond to mistakes. The bounding
boxes in the images are produced by our detection scheme, and obtained in a single pass
together with the action labels.

Method collective individual
boxes (MRF/GT) 82.0 / 89.9 68.6 / 82.4
embed (MRF/GT) 87.1 / 90.0 77.9 / 81.9
embed-soft (MRF/GT) 86.2 / 90.6 77.4 / 81.8

Table 5.2: Comparison of different matching strategies for the volleyball dataset.
boxes corresponds to the nearest neighbour (NN) match in the space of bounding box
coordinates, embed corresponds to the NN in the embedding space e, and embed-soft is
a soft matching in e.

We also conducted experiments to see if our joint detection using MRF is beneficial, and
compare it to the traditional non-maxima suppression, both operating on the same dense
detection maps. The results for various matching strategies are given in Table 5.3. For
all of them, our joint probabilistic inference leads to better accuracy than non-maxima
suppression.
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Method collective individual
boxes MRF 82.0 68.6
boxes NMS 77.0 68.1
embed MRF 87.1 77.9
embed NMS 85.2 76.2
embed-soft MRF 86.2 77.4
embed-soft NMS 85.1 75.7

Table 5.3: Comparative results of detection schemes on the volleyball dataset. We
report the average accuracy for the collective and individual action recognition.

5.3.5 Multi-Person Detection

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1-precision

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

re
ca

ll

OverFeat

Faster-RCNN

ReInspect

ReInspect-rezoom

OURS

Method AP EER
Overfeat [139] 0.67 0.71
Faster-RCNN [126] 0.79 0.80
ReInspect [148] 0.78 0.81
ReInspect-rezoom [148] 0.89 0.85
OURS 0.88 0.87

Figure 5.5: Results for multi-person detection on the brainwash [148] dataset (better
viewed in color).

For completeness, we also conducted experiments for multi-person detection using our
dense proposal network followed by a hybrid MRF. Our main competitor is the ReInspect
algorithm [148], which was specifically designed for joint multi-person detection. We
trained and tested our model on the brainwash dataset [148], which contains more than
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11000 training and 500 testing images, where people are labeled by bounding boxes
around their heads. The dataset includes some highly crowded scenes in which there are
a large number of occlusions.

Many of the bounding boxes in this dataset are extremely small and thus have very
little image evidence, however, our approach allows us to simultaneously look at different
feature scales to tackle this issue. We use 5 convolutional maps of the original Inception-v3
architecture to construct our dense representation F. We do not tune any parameters on
the validation set, keeping them the same as for volleyball dataset.

In Figure 5.5 we report average precision (AP) and equal error rate (EER) [47], along
with the precision-recall curves. We outperform most of the existing detection algorithms,
including widely adopted Faster-RCNN [126], by a large margin, and perform very similarly
to ReInspect-rezoom. One of the benefits of our detection method with respect to the
ReInspect, is that our approach is not restricted only to detection, and can be also used
for instance-level segmentation.

5.4 Discussion

We proposed a unified model for joint detection and activity recognition of multiple
people. Our approach does not require any external ground truth detections nor tracks,
and demonstrates state-of-the-art performance both on multi-person scene understanding
and detection datasets. Future work will apply the proposed framework to explicitly
capture and understand human interactions.
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6 Face Modeling with Compositional
Variational Autoencoders

Building robust and expressive face models is challenging because they must be able to
capture deformations at many different scales. These range from large ones to represent
the overall shape of specific person’s face to small ones to capture subtle expressions such
as a smirk or a frown.

Most existing methods can be roughly split into two categories depending on whether
they use global linear models [16, 33, 75] or local ones [152, 165]. While the former are
simple to use and usually robust to noise and mismatches, the underlying linear space is
over-constrained and does not provide sufficient flexibility to represent high-frequency
deformations. By contrast local models bring flexibility by separately modeling local
deformations. However, they are also more vulnerable to noise and outliers, and can easily
produce non-face shapes. Even recent hybrid methods that enforce global anatomical
constraints [165] remain limited to person-specific settings and it is not clear how to
extend them to capture facial features across multiple identities.

With the advent of Deep Learning, there have been several attempts at using deep nets
for data-driven face reconstruction [41, 130, 153]. However, these methods still rely on
global linear models, which precludes from performing required multi-scale modeling.

In this chapter, we propose a novel method to model multi-scale face geometry that learns
the facial geometry from the data without making any restrictive linear assumptions.
Our approach starts with the observation that both global and local linear models can be
viewed as specific instances of autoencoders. They can therefore both be incorporated
into a generic compositional architecture that combines the strengths of both local and
global models, while being completely data-driven. In particular, our approach features
a new Variational Autoencoder (VAE) with multiple layers of hidden variables that
capture various level of geometrical details. In effect, some network layers capture the
low-frequency geometry while others represent high-frequency details.
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In the experimental evaluation we demonstrate our model’s effectiveness on a variety
of fitting tasks, including dense depth data, sparse 2D and 3D correspondences, as well
as shape-from-shading reconstruction. We show that it can capture high-quality face
geometry even when trained using a database featuring only 16 different people.

In short, our main contribution is a model that encodes facial geometry over a range of
scales and generalizes to new identities and arbitrary expressions, while being learned
from a small number of different people. The last point is important because creating
databases of high-quality meshes that cover a wide range of human expressions and a
large number of different identities is both expensive and time-consuming.

6.1 Related Work

One of the main motivations for this work is to demonstrate that it is possible to
use deep probabilistic models and variational methods to learn meaningful geometric
representations directly from the data. In this section, we therefore first review existing
face models and several recent efforts on applying deep learning to data-driven face
reconstruction. We then give a very brief introduction into deep probabilistic models
with a focus on Variational Autoencoders.

6.1.1 Parametric Face Models

Many different global 3D face parameterizations have been proposed over the years. They
include Active Appearance Models (AAM) [27], blendshapes [98], principal components
analysis (PCA) derived from a set of training shapes [16,96], and multilinear models [157].
They have been successfully used to overcome the ambiguities associated with monocular
face tracking [15,30,33, 46,56,99, 138]. However, because they are designed to model the
whole face at once, it is difficult to use them to represent small details without making
them exceedingly large and unwieldy.

Local or region-based shape models have therefore also been proposed to remedy this
problem. For example Joshi et al. [75] use a region-based blendshape model for keyframe
facial animation and automatically determine the best segmentation using a physical
model. Na and Jung [110] use local blendshapes for motion capture retargeting and
devise a method for choosing the local regions and their corresponding weighting factors
automatically. Tena et al. [152] learn a region-based PCA model based on motion capture
data, which allows direct local manipulation of the face. Neumann et al. [112] extract
sparse localized deformation components from an animated mesh sequence, for the purpose
of intuitive editing as well as statistical processing of the face. Brunton et al. [18] rely
on many localized multilinear models to reconstruct faces from noisy or occluded point
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cloud data. All these approaches offer more flexibility than the globals models but at the
cost of being less constrained to realistically represent human faces.

Wu et al. [165] propose a hybrid approach that combines a local 3D model made of many
overlapping patches, which can be locally deformed, and a global model in the form
of anatomical constraints that simulate the existence of a skull and jaw bone. This is
effective, but it has to be tailored to each individual, and only considers bone structure,
while ignoring other types of constraints.

6.1.2 Deep Learning for 3D Face Reconstruction.

Deep models have been successfully used for 3D face reconstruction. In [153], the authors
propose a weakly-supervised approach to learning a CNN-based regressor from the space of
images into a pre-defined semantic space, which includes global pose and facial expressions,
as well as illumination and texture. Similarly, in [129], used a large dataset of artificially
rendered face images to train a CNN that maps images into the space of facial geometry.
Both these approaches, however, rely on a pre-defined geometry space based on a variation
of a bilinear AAM model [27].

By contrast, applying deep generative models to learning a geometric representation
has been largely overlooked. The approach of [45] is an exception that relies on deep
restricted Boltzmann machines to model the shape of the face. However, that approach
does not model the entire facial geometry, but is restricted to represent a sparse set of
facial landmarks.

6.1.3 Deep Generative Models

Deep Generative Models, including Variational Autoencoders (VAEs) [82] and Genera-
tive Adversarial Networks (GANs) [39, 44, 61], are highly effective at learning complex
high-dimensional distributions and have been put to good use for image synthesis and
unsupervised learning. However, GANs are notoriously hard to train, which we noticed
empirically in preliminary experiments. We therefore chose to rely on VAEs. We provide
the basics of VAE below and will use the same formalism in the next section to describe
how we use it for our purposes.

LetM = {M(1), . . . ,M(M)} be a set of observations M(i) which are distributed according
to the generative distribution p(M(i), z(i);θd) = p(M(i)|z(i);θd) · p(z(i);θd), where z(i) is
a vector of latent (hidden) variables, and θd are the parameters of the distribution. In
theory, these parameters can be learned by maximizing the log-likelihood of the observed
data
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log p(M1:M ;θd) =

M∑
i=1

log p(M(i);θd) . (6.1)

As discussed in Chapter 2, computing the actual log-likelihood is intractable for non-trivial
models, and instead, we can resort to the following variational approximation:

L = Eq(z|M;θe)[log p(M, z;θd)− log q(z|M;θe)] , (6.2)

where we dropped the indices (i) for clarity and Eq[·] denotes expectation with respect to
the variational distribution q defined over hidden variables z and parameterized by θe.
We can further rewrite Eq. 6.2 as

L = Eq[log p(M|z;θd)]− Eq[log
q(z|M;θe)

p(z;θd)
] , (6.3)

where the left-hand term can be understood as a negative reconstruction error of the
generative model (decoder) p(M|z) and the right-hand term is the KL divergence between
the approximate posterior (encoder) q(z|M) and the prior p(z), which acts as a reguralizer.
Without this term, there would be no incentive to learn a smooth and meaningful
representation for z, which is crucial if we want to then traverse this space when doing
model fitting. In the context of deep generative models, both the generative model
p(M|z) and the approximate posterior q(z|M) are parameterized using deep neural
networks. Distribution q is usually taken to be a diagonal Gaussian, but more sophisticated
distributions have been investigated in [82,127,154].

6.2 Method

In this section, we first describe the mesh parameterization that enables us to efficiently
apply CNNs to the face geometry. We then discuss an important insight behind our
method, which is that both global and local linear models that are central to most state-
of-the-art approaches to modeling 3D faces can be expressed as shallow auto-encoders. A
natural way to increase their flexibility would therefore be to simply replace the linear
encoders and decoders by non-linear ones. However, in practice, this would not be
enough because model fitting requires a well-behaved parameter space that is well suited
for optimization. We therefore show that the convolutional VAEs can be used for this
purpose in the global case. Finally, since this results in a model that is more flexible than
the original ones but still suffers from the limitations of all global ones, we introduce a
compositional version of VAEs, which combines the strength of local and global models
by explicitly representing various deformation levels.
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6.2.1 Mesh Representation

Typically, face geometry is represented as a triangular mesh, or, more formally, as a
pair (V, T ), where V ∈ RN×3 is a collection of 3D vertices and T is a set of triangles
that defines the topology. Note that, we keep the same triangulation for all the faces
and assume the shape variations are all captured by the V coordinates. Details on how
to perform mesh registration are given in Section 6.4.1. Further, these coordinates are
represented as a 3-channel image M ∈ RH×W×3 and the triangles in T by triplets of the
vertex indices of the form {(i, j), (i+1, j), (i+1, j+1)} and {(i, j), (i, j+1), (i+1, j+1)},
as shown in Figure 6.1. Importantly, this means that pixels that are neighbors in terms
of pixel coordinates are also topological neighbors. This makes it natural to perform 2D
convolutions on meshes and efficiently use the deep learning machinery.

Figure 6.1: Example of (mean-subtracted) UV parameterization of a face. From left-to-
right: x, y, z coordinates.

6.2.2 Linear Face Models as Autoencoders

A global linear model such as the one of [16] represents all possible face shapes as linear
combinations in a set of basis vectors. In [16], it was obtained by performing principal
component analysis on a training database.

Formally, we can write

h = We ·M , M̂ = Wd · h , (6.4)

where We ∈ Rk×3N , Wd ∈ R3N×k are respectively encoding and decoding matrices, and
h ∈ Rk is a set of k linear coefficients, such that ‖M− M̂(h)‖ is mimimized in the space
spanned my We. The transformations of Eq. 6.4 can be implemented by a shallow linear
auto-encoder, as shown in Figure 6.2 (a). Given the observations such as depth maps or
the 2D positions of sparse landmarks, which we will denote X, fitting a model to it can
then be expressed as finding a set of parameters ĥ that maximizes the data likelihood
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p(X|Wd · h).

Local linear models such as [152] give more flexibility than global ones by decoupling the
parameters between different parts of the mesh. In practice, this means that h is factored
into independent sets of parameters hρ for distinct patches Mρ of the mesh. Assuming
that all these parameters are expressed in the same bases θe,θd, these local models can
be seen as shallow convolutional auto-encoders, whose space of potential deformations is
captured by a convolutional feature map h, as shown in Figure 6.2 (b). Bases θe and θd
are then the parameters of the convolutional layers of respectively encoder and decoder,
which are shared among all the patches.

(a) Global model (b) Local model

(c) Convolutional VAE (d) Compositional VAE

Figure 6.2: Autoencoding architectures for face geometry.

6.2.3 Convolutional Mesh VAE

Given that linear models can be viewed as linear auto-encoders, a natural way to extend
them and potentially solve the problems discussed in Section 6.1, is to use non-linear
versions of the encoders and decoders.

For global models, we therefore write

h = E(M;θe) , M̂ = D(h;θd) , (6.5)

where E(·;θe) and D(·;θd) are multi-layer convolutional encoders and decoders, parame-
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terized by weights θe and θd respectively, similarly to architectures in Figure 6.2 (c)-(d).
In a similar manner as for the linear case, we can estimate θe and θd from the train-
ing data and then do model fitting by finding the parameter vector ĥ that maximizes
p(X|D(h;θd)).

The non-linear parameterization of Eq. 6.5 is more flexible than the one of Eq. 6.4.
Unfortunately, it does not guarantee anymore that even small differences in the value of h
from the values observed during training will not result in estimated shapes M̂ = D(h;θd)

which are not representative of the true posterior, or, in other words, which are not
face-like. To remedy this, we replace the simple auto-encoder of Eq. 6.5 by a variational
auto-encoder based on the formalism described in Section 6.1.3, which ensures the
smoothness of the learned space by enforcing a prior on the posterior q.

Namely, we parameterize the distribution over latent variables q(z|M;θe) and the genera-
tive model p(M|z;θd) in terms of a deep net encoder E(·) and decoder D(·) respectively.
This yields a variational reformulation of Eq. 6.5:

ν = E(M;θe) , z ∼ q(z|ν) , M̂ = D(z;θd) , (6.6)

where ν are the parameters of the approximate posterior, which is assumed to be a
diagonal Gaussian. In practice, evaluating M̂ now requires sampling from q(z|ν), which
is not a differentiable operation. This was addressed in [83] by representing z as a
deterministic variable that depends on ν and auxiliary noise, which makes it possible to
minimize the lower bound L of Eq. 6.2 and Eq. 6.3 using stochastic gradient descent. In
Section 2.4, we discuss this solution and related background in more detail.

6.2.4 Compositional Mesh VAE

The non-linear parameterization of Eq. 6.6 is more flexible than the linear one of Eq. 6.4
while still providing a latent space that is smooth and easy to optimize over. However,
both formulations still depend on a single low-dimensional vector, namely h in Eq. 6.4
and z ∼ q(·|ν) in Eq. 6.6, to represent the shape, which makes it difficult to capture
high-frequency deformations.

In this section, we propose a solution to this difficulty by introducing multiple layers
of hidden variables z1:L, where each individual layer models a separate level of detail.
Intuitively, the goal of the encoder is then to gradually decompose the input mesh M into
those variables, such that the decoder can then compose those individual representations
back into a final reconstruction M̂. The higher-level layers, that is, those corresponding
to lower l-s, have more degrees of freedom and more local control with smaller receptive
field, are therefore well suited to represent the high-frequency geometric components,
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whereas the lower-level layers have more control over the global shape. This will be
demonstrated at the end of the evaluation section.

Formally, the joint distribution for the observed meshes M and latent variables z1:L can
now be written as

p(M, z1:L) = p(M|M̂(z1:L)) ·
L∏
l=1

p(zl|ξl) , (6.7)

where ξl are the parameters of the prior, and the approximate posterior q is factorized
over layers l as

q(z1:L|M;θe) =

L∏
l=1

q(zl|νl) . (6.8)

Figure 6.3: Compositional VAE layers. Encoder (left): given activations hl−1e we output
the lower-dimensional activations hle along with the posterior parameters νl. Decoder
(right): given activations hl+1

d and a sample zl+1 we output the higher-dimensional
activation hld along with the prior parameters ξl.

To account for the new factorized structure of our latent space, we expand the formulation
of Eq. 6.6 and write

hle,ν
l = El(hl−1e ;θle) ,

zl ∼ q(zl|νl) ,
hld, ξ

l = Dl(hl+1
d , zl+1;θld) ,

(6.9)

where νl ∈ RHl×W l×Cl and ξl ∈ RHl×W l×Cl are parameters of the approximate posterior
q(zl|νl) and prior p(zl|ξl), respectively, which we take to be diagonal Gaussians as in
the original VAE [83]. During training, the KL term of Eq. 6.3 ensures that q(zl|νl)
stays close to the prior p(zl|ξl), which encourages the model to learn a more well-
behaved representation for zl. Note that, for zL, we do not have to predict hLe , and
the corresponding prior is set to zero-mean unit-variance ξL = (0, I). Figure 6.3 shows
a graphical illustration of Eq. 6.9, and Figure 6.2 (d) depicts the whole architecture.
Note that, the overall architecture is quite similar to the U-Net [133], which is widely
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used for semantic segmentation, with an important difference that in our model the skip
connections are probabilistic.p

Finally, substituting Eqs. 6.7 and 6.8 into the lower bound of Eq. 6.3 gives us the training
objective that we can optimize given a training set using SGD. We give additional details
on this procedure in Section 6.4.2.

6.3 Model Fitting

The compositional VAE model described above is designed to effectively encode the facial
deformations in different layers of its hidden variables. An important property that is a
result of the factorized structure and the variational nature of the model is its ability to
extrapolate, which is especially useful for face model fitting given 3D or 2D constraints.
In what follows, we describe the model fitting procedure in different application scenarios,
ranging from depth map-based face fitting to shading-based face reconstruction from just
a single image.

Namely, given generic image data X and the pre-trained decoder D, our goal is to find
parameter vectors z1:L such that decoded mesh whose shape is given by M̂ = D(z1:L)

fits the data as well as possible. Formally, this is equivalent to solving a MAP problem,
that is, maximizing

log p(X|M̂(z1:L)) +

L∑
l=1

log p(zl|ξl(zl+1)) , (6.10)

wrt z1:L, where p(X|M̂) is the probability of observing X if the mesh shape is given by
M̂. Note that the prior probability terms act as regularizers that prevent the model
parameters from straying too far away from values observed in the training data. While
this may be advantageous in the presence of noise, it also limits the ability of the model
to extrapolate. In the results section, we will therefore compare results with different
combinations of these terms across various types of constraints and noise levels. In
practice, we use gradient descent to iteratively optimize Eq. 6.10. Below, we describe the
formulation of the data term p(X|M̂) for different types of input data.

3D to 3D correspondences. The simplest case is when we know the position Mi of
a subset I of vertices up to some precision, for example obtained from a multi-view setup.
Assuming a Gaussian error distribution with unit variance and conditional independence
of individual observations, we write∑

i∈I
log p(Mi|M̂i) ∝ −

∑
i∈I
||Mi − M̂i||22 . (6.11)
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2D to 3D correspondences. In realistic scenarios, 3D to 3D correspondences are
rarely available but 2D to 3D ones can be established by matching sparse facial landmarks
in an image. Therefore, let I now be the set of vertices Mi for which we have 2D
projections Pi ∈ R2. Given camera intrinsic K ∈ R3×3 and extrinsic R|t ∈ R3×4

parameters, and making the same Gaussian IID assumptions about the observations, we
can write:∑

i∈I
log p(Pi|M̂i) ∝ −

∑
i∈I
||Pi −ΠK,R|tM̂i||22 , (6.12)

where ΠK,R|tM̂i are the 2D projections of the model vertices.

Depth maps. Depth cameras have now become an inexpensive and widely available
means for face capture. Furthermore, high-quality depth maps can be obtained by stereo
matching of high-resolution RGB images. Let D ∈ RHD×WD be such a depth map.
We now need to define p(D|M̂). Ignoring differentiability for a moment, we consider
the set of vertices visible from the depth camera point of view IV ⊂ H ×W , compute
their image coordinates (ûi, v̂i) in the depth map coordinate frame defined by K,R|t.
Then, we evaluate the difference between the depth value stored at those coordinates
Di = Di(ûi, v̂i) and the one that projected from the 3D vertex position using camera
extrinsics D̂i = (R · M̂i + t)z. Under the same Gaussian assumptions as before, this
allows us to write∑

i∈IV

log p(Di|M̂i) ∝ −
∑
i∈IV

||Di − D̂i||22 . (6.13)

Unfortunately, self-occlusions make visibility non-differentiable. To overcome this difficulty,
we compute IV by rendering the mask of visible vertex indices using OpenGL during
forward passes and keep IV fixed during the backward passes. Furthermore, in order
for us to be able to propagate gradients not only through the values of depth, but also
through the image coordinates (û, v̂), we employ a bilinear kernel

Di =
∑
u,v

D(u, v) max(0, 1− |u− û|) max(0, 1− |v − v̂|) , (6.14)

to perform the differentiable sampling, as in [70].

Shape from Shading Constraints. Another compelling but very challenging appli-
cation is to fit face model to a single RGB image. Whereas the rough expression can
be estimated using sparse 2D-3D correspondences, they are not sufficient to capture
identity-specific high-frequency detail. One approach to overcome this is using image
formation models. Let I ∈ RHI×WI×3 be an RGB image. Our goal is now to define
p(I|M̂). We assume a simple Lambertian model, with a single 3-channel light source

80



6.4. Evaluation

parameterized by L ∈ R3×3. Further, we use the mesh M̂ to compute vertex normals
N̂, which amounts to computing a cross product between two sets of vectors. Then, the
model intensity can be computed as Îi = Ti · L · N̂i, given the texture Ti. Computing
the texture is a highly non-trivial task, and here we simply set it to be uniform white,
assuming that to some extent the albedo can be captured by L. We now can write∑

i∈IV

log p(Ii|M̂i) ∝ −
∑
i∈IV

||Ii − Îi||22 (6.15)

where we used same approach for sampling and computing IV as for the depth maps.
Moreover, we also use a similar trick for computing L: at every forward pass, we use the
current estimate of N̂ to solve Eq. 6.15 for L, and then keep it fixed during the backward
pass.

6.4 Evaluation

We start with a description of our face geometry dataset and give some implementation
details. We then present quantitative results on several benchmarks and demonstrate
qualitatively that our model can be used both to fit noisy depth maps and to perform
shape-from-shading. Finally, we present experiments designed to explore the learned
latent space and showcase its decompositional power.

6.4.1 Dataset

A face geometry dataset aligned with a reference topology is required to train and evaluate
our model. However, none of the publicly available face shape datasets [19, 21] offer truly
high-resolution models, which would not allow us to fully test descriptive power of our
compositional model. We thus built a new one that comprises high-quality face geometries
using a multi-view camera setup similar to [11] and performing stereo-based 3D face
reconstruction. We captured 20 different people, each performing a set of expressions
similar to those of blendshapes of [75]. This resulted in 2140 high-quality meshes. To
create a uniform face topology, we first defined a generic neutral face template mesh
with a precomputed UV map. This generic mesh was then aligned to the mesh for
each subject with their expression being neutral. To this end, we performed non-rigid
mesh deformation [146] with facial landmark constraints, which were detected on the
corresponding RGB images from the multi-view setup [161].

Given those topologically aligned neutral meshes for each individual, we further aligned
them to identity-specific peak expression scans using facial landmarks, geometrical
constraints, and optical flow-based constraints. This produced fully-aligned meshes, which
are all registered to the same topology represented as a UV map of size H×W = 256×256.
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Finally, we removed from all mesh coordinates the global rotation and translation of the
head. Figure 6.4 depicts some of the fully-registered meshes.

Figure 6.4: Samples from the dataset.

In all of our numerical experiments, we use a total of 1712 meshes of 16 randomly chosen
subjects for training, and 428 meshes of the remaining 4 subjects for testing.

6.4.2 Implementation Details

All the models are trained using stochastic gradient descent with ADAM [81] optimizer
with step size 1× 10−4 and the hyperparameters β1 = 0.9, β2 = 0.999. For the convolu-
tional models, we use identical architecture with 5 residual blocks, with down(up)-sampling
after each block of the encoder(decoder). Each block consists of two 4x4 convolutional
layers with ELU non-linearities, with weights initialized from a zero-mean Gaussian
distribution with standard deviation 0.001. The final 8× 8 convolutional representation
is mapped to the bottleneck representation using a fully connected layer. Both linear and
convolutional VAE models use 128-dimensional bottleneck. For the compositional VAE,
we use 64-dimensional bottleneck z6, all the remaining convolutional maps z5, . . . , z1-s
have 16 channels and the size of the corresponding activation layers. When training
variational models, we employ the free-bits technique of [82] with λ = 4, as we found that
it leads to better convergence.

Given a pre-trained model, the model fitting is done by optimizing Eq. 6.10 with one of
the data terms from Section 6.3 using gradient descent with ADAM optimizer. For noisy
depth maps from Section 6.4.4, we found that using a more robust L1 loss leads to better
results. For the 2D-3D and 3D-3D fitting results presented in the following section, the
optimization takes around 3-4s per image, and for depth fitting it takes around 8s, on a
single NVidia P100 GPU.
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6.4.3 Quantitative Evaluation

In this section, we evaluate quantitatively the behavior of our model and compare it
to that of baselines on synthetically generated 3D to 3D correspondences, 2D to 3D
correspondences, and depth maps. In all three cases, we perform the fitting as described
in Section 6.3 and will demonstrate in the following section that our approach works
equally well on real stereo and shape-from-shading data.

Our baselines include the traditional linear model, introduced in Section 6.2.2, as well
as a the deep convolutional VAE from Section 6.2.3. We will refer to them as VAE and
LINEAR in the result tables below.

We also compare multiple variants of our approach depending on how we handle the prior
terms log p(zl|ξl(zl+1)) of Eq. 6.10. We denote them as zl for simplicity and can either
use them or ignore them. More specifically, we report our results that range from using
only z1 (less priors) to z1:4 (more priors). Recall from Section 6.2.4 that the lower values
of l denote layers that influence most the overall shape and the higher values the fine
details. This means that we progressively make constraints more and more global.

Method 0.2% 0.5% 2% 10%
LINEAR 2.795 1.309 1.016 0.980
VAE 1.678 1.317 1.176 1.139
OURS z1 1.470 1.079 0.596 0.247
OURS z1:2 1.468 1.121 0.609 0.336
OURS z1:3 1.396 1.020 0.616 0.467
OURS z1:4 1.320 0.986 0.775 0.717

Table 6.1: Results for model fitting with 3D-3D correspondences. RMSE in mm for
different proportions of constrained vertices.

3D to 3D correspondences. In Table 6.1, we report the average RMSE in mm when
constraining the 3D position of a subset of mesh vertices, as a function of the proportion
of vertices being fixed. While these are chosen randomly for each subsampling level, the
error is measured for all mesh vertices. All variants of our full compositional model
outperform LINEAR and VAE, even when constraining as few as 0.2% of the vertices, which
amounts to about 60 3D to 3D correspondences. This suggests that the performance
boost is not only attributable to the increased flexibility of our representation but also
to the fact it captures the right priors about face geometry. Unsurprisingly, the fewer
correspondences we have, the more important the global shape constraints become, as
evidenced by the fact that we get the best results when using the priors for all the layers
in the 0.2% case but only the ones on the fine details in the 2% and 10% cases.
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Method 0.2% 0.5% 2% 10%
LINEAR 4.381 3.691 3.394 3.302
VAE 3.606 3.183 3.114 3.077
OURS z1 2.690 2.521 2.390 2.330
OURS z1:2 2.660 2.521 2.396 2.343
OURS z1:3 2.606 2.512 2.431 2.396
OURS z1:4 2.586 2.545 2.472 2.453

Table 6.2: Results for model fitting with 2D-3D correspondences. RMSE in mm for
different proportions of constrained vertices.

2D to 3D correspondences. In Table 6.2, we present fitting results obtained by
constraining some mesh vertices to project at the right location in one of the camera
views. As before, we report results obtained by constraining in this fashion from 0.2% to
10% of the vertices. Due to 2D-3D ambiguities, this is a more difficult that exploiting 3D
to 3D correspondences and the accuracies for all methods are worse than those reported
in Table 6.2. Nevertheless all variants of our approach still outperform the baselines and
we observe again that, the sparser the data is, the more important it is to account for the
priors at all four levels of our architecture.

Method σ2 = 1 σ2 = 2 σ2 = 3

LINEAR 3.908 3.924 3.953
VAE 3.167 3.199 3.249
OURS z1 3.032 3.142 3.252
OURS z1:2 3.020 3.114 3.215
OURS z1:3 3.079 3.127 3.191
OURS z1:4 3.110 3.150 3.226

Table 6.3: Results for model fitting with depth data. RMSE in mm for different noise
levels.

Depth maps. We generate synthetic depth maps from the ground truth data and
corrupt them by adding different levels of IID Gaussian noise. We report our results in
Table 6.3. Since the correspondences must be established and computing visibility is
a non-differentiable operation as discussed in Section 6.3, fitting is more difficult than
before. As a result, our method still outperforms the baselines but by a smaller margin.
In this case, the best variants of our model are those that enforce priors up to z3. In
other words, in the presence of noisy but dense data, over-constraining the model can be
less beneficial.

6.4.4 Qualitative Results

We now turn to more realistic image data to demonstrate the power of our model. To
this end, we first captured two additional subjects using a small 3-camera setup, and
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Figure 6.5: Visual results for fitting noisy depth maps. From left-to-right: input depth
map, rendered mesh (LINEAR), rendered mesh (OURS), rendered mesh (OURS) overlaid with
the image.
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used stereo to compute noisy depth maps that are representative of what can expect in a
real world environment. Figure 6.5 depicts our results alongside those of LINEAR. Our
method correctly captures not only the overall head shape but also fine details whereas
LINEAR introduces numerous artifacts instead.

Figure 6.6: Visual results for shape-from-shading for images from [135]. From left-to-right:
rendered mesh (LINEAR) rendered mesh (OURS).

In Figure 6.6, we demonstrate the ability of our model to capture an unusual expression—
that of the woman of the top—or face—that of the man at the bottom—using images
from 300-W dataset [135]. We initialize the process by using the 2D landmarks provided
by [135], to compute the head pose and general expression, and then solve the MAP of
Eq. 6.10 with the data term of Eq. 6.15. For comparison purposes, we also used LINEAR,
which again produced unwanted artifacts.

6.4.5 Exploring the Latent Space

We start with an experiment that demonstrates the spatial extent the changes in a single
hidden variable at different levels have on the output. For that, we first fix all the variables
z1:L to the values corresponding to the mean face, and then vary a single location in
zl from the minimum to the maximum value for that variable across the dataset. The
results of those variations are shown in Figure 6.7. Naturally, the variables from the
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Figure 6.7: Visualizing the receptive field: how changing the value of a single variable
affects the output. Heatmaps represent the MSE between the deformed mesh and the
original in the UV space. From left-to-right: z6 - z2.

Figure 6.8: Visualizing the effect of varying the first PCA component of z1:2 (top) and
z4:5 (bottom) representations.
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layers which are closer to the bottleneck have global influence on the mesh, and as we go
closer to the output, their effective receptive field gradually shrinks.

Further, we explore the learned space by looking at the kind of details that different
subsets of variables z1:L are capturing. PCA is a classical approach for this kind of
exploratory analysis. Namely, we first compute the projections ẑ1:L for all the meshes in
the dataset by optimizing the posterior of Eq. 6.10, and then compute the PCA basis
via SVD for a subset of variables of interest. We report visual results of varying first
principal components of z1,2 and z5,6 in Figure 6.8. As can be seen from this illustration,
the higher layers z1,2, which have smaller receptive field size and more degrees of freedom,
capture high-frequency deformations, such as beards and wrinkles. On the other hand,
the lower layers z5,6 evidently capture global details, such as the general shape of the
head.

Figure 6.9: Visual results for detail transfer. The leftmost and rightmost columns are
the two original meshes. Top: interpolating z1,2 while keeping z5,6 details fixed. Bottom:
interpolating z5,6 while keeping z1,2 fixed.

An alternative way to explore the latent space, which is usually employed in deep
generative model literature, is to directly traverse the space between the projections of
the data samples. To do that we select several random pairs of meshes and find the
corresponding values of ẑ1:L by optimizing Eq. 6.10. Given those, we then can interpolate
the values of a certain subset of variables between two projections, while keeping all the
others fixed. The visual demonstration of this detail transfer process for z1,2 and z5,6 is
shown in Figure 6.9. We see that higher layers z1,2 are capturing higher-frequency details,
e.g. beards and small variations in eyelids and lips, whereas the lower layers z5,6 are
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capturing the overall shape of the head and the general expression. This indicates that
the model indeed separates the geometrical details into different semantically meaningful
layers of representation. We provide additional detail transfer results in Appendix D.

6.5 Conclusion

We proposed a novel data-driven parameterization for face geometry, and demonstrated
its versatility on a variety of model fitting tasks. An exciting direction for future work is
investigating alternative architectures for the decoders, such as PixelRNN, and learning to
predict hidden representations directly from the images, without a need for optimization.
We believe that applying modern generative modeling techniques to geometry data
is a very promising field, especially since, unlike for natural images, there exist more
straightforward ways to evaluate the quality of the latent space.
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7 Concluding Remarks

7.1 Summary

In this thesis, we develop multiple methods for a diverse range of computer vision tasks
focused on human modeling and scene understanding. All of the proposed methods
benefit from a powerful class of approximate inference methods - variational inference.

In Chapter 3 we introduce DPOM, a probabilistic approach for detecting humans in depth
images. Majority of existing methods for depth-based detection rely on heuristics and
rarely perform explicit occlusion reasoning [71,108,147], and thus are prone to failures
which are hard to explain and predict. This motivates our approach, which is based
on a principled generative model for depth images, which enables joint reasoning and
explicitly takes into account possible occlusions. This makes DPOM particularly useful
in crowded scenes when occlusions are common. Since the exact inference in the model
is computationally intractable, we develop an efficient approximate algorithm based on
variational methods. In our experiments, we demonstrate that our approach performs
better than the state-of-the-art on multiple challenging datasets.

In Chapter 4 we propose a novel algorithm for mean-field variational inference, which
supports a large class of discrete probabilistic models, such as POM [52], DPOM and, more
generally, CRF models with repulsive and higher-order terms. The main motivation for our
approach comes from the fact that existing algorithms for mean-field variational inference
are either too inefficient for realistic vision applications, or suffer from non-convergence
for many useful models. Our method is based on a special variant of proximal gradient
descent, and, unlike existing methods, it is very efficient and provably convergent for a
large class of models. We show experimentally that using our algorithm yields improved
performance on multiple tasks, such as human detection and semantic segmentation.

In Chapter 5 we develop a unified framework for multi-human scene understanding. Most
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of the recent methods that tackle the problem [31,69,123] do not aim at solving the entire
problem end-to-end, and rely on fragmented pipelines, using off-the-shelf algorithms for
detection and tracking, which ultimately results in inefficiencies. In order to tackle these
issues, we propose an architecture that jointly localizes humans and produces estimates of
their individual actions and their collective activity, all in a single forward pass through a
neural network. The detection part of our architecture relies on a variational scheme that
refines detection proposals jointly rather then using greedy post-processing, ultimately
making detections more robust. We demonstrate the efficiency of our methods both on
multi-person scene understanding and detection datasets.

Finally, in Chapter 6 we introduce Compositional VAE, a new way of learning non-linear
facial geometries using deep probabilistic models. The core insight that motivates our
method is that most of the existing facial models can be formulated as shallow linear
autoencoders, and hence a natural way to increase their flexibility is to switch to their
non-linear, deeper counterparts. We thus propose a model that is based on a deep
variational autoencoder, which features multiple levels of latent variables that naturally
decompose facial geometries into varying levels of deformations. The variational part is
important because ultimately we want to use the model for fitting tasks, which require a
well-behaved parameter space. In our experiments, we show that our model can be used
for a variety of fitting tasks, when trained on a modestly sized database of 16 individuals.
Additionally, we show that our model can be used for detail transfer between individuals.

7.2 Limitations and Future Work

In this section, we discuss the main limitations of the proposed methods and propose
potential directions for the future work.

Weakly Supervised Depth-Based Detection One of the main strengths of our
DPOM model introduced in Chapter 3 is that ultimately it works without any training
data. However, this comes at a price - our proposed object model is rather crude, and its
discriminative power is limited. A natural direction to improve model’s capabilities is
thus to introduce a more flexible data-driven model, e.g. by reusing ideas discussed in
Chapter 6. Unfortunately, even though depth sensors are getting cheaper, depth data
is still not as widely available as normal images (which can be simply crawled from the
Web), and thus collecting large-scale datasets of depth images is still very expensive.
Luckily, structured models like DPOM are particularly useful [114] in weakly-supervised
settings, ultimately allowing us to estimate model parameters with fewer training data or
by using weak supervision, such as the geometry of the environment (which is relatively
easy to estimate from depth maps) or temporal consistency. In particular, a similar
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variational approach for RGB-based multi-view setups has been proven successfull [9].

Recognizing Social Interactions In Chapter 5 we introduced a unified framework
for multi-human scene understanding. Although our method already produces a compre-
hensive interpretation of what is happening in the scene, it is still quite limited. Namely,
our model assumes that action labels can be assigned individually to each human in the
scene. In other words, an action label can be seen as an unary predicate. However, a lot of
social interactions involve at least two humans, in other words, they can be seen as binary
predicates. Thus, one exciting direction for further research is building models that are
capable of explicitly capturing such binary (and possibly higher-order) interactions. The
main obstacle to this is collecting training data, since exhaustive annotations for binary
interactions ultimately require labels for each pair of objects in the scene. Nevertheless,
recently there have been some progress in this direction [90,91].

From Detection to Instance Segmentation The detection part of the system that
we presented in Chapter 5 is based on an efficient and principled way to do joint reasoning
on a set of proposals. However, it still relies on bounding boxes, which is quite an arbitrary
way to formulate the object detection problem. We can speculate that the main reason
for using bounding boxes is that the training data is relatively easy to collect. However,
even for human annotators the task of labelling images with bounding boxes is quite
ambiguous: it is not clear if the box should be around the whole body or only its visible
parts, a problem which becomes much more pronounced when there are a lot of occlusions.
Luckily, now there are multiple large-scale datasets that provide fine-grained instance
segmentation labels [28, 100], and thus it seems natural to extend existing detection
methods to benefit from them. As discussed in Section 5.2, our method can easily adapted
to this task.

Deep Probabilistic Models for Geometry In Chapter 6 we present a deep proba-
bilistic model for learning facial geometries. The proposed model is quite generic, and thus
can also be applied to other human parts or to other kinds of objects, e.g. cars. However,
the core assumption behind the model is that the overall topology of the objects of interest
is fixed, which is a valid assumption for the shapes like faces or body parts, but is not
reasonable if we want to build models for arbitrary objects. One very promising direction
thus is to build a separate model for the topology itself: it will ultimately allow us to build
models for arbitrary meshes, and potentially benefit from transfer learning across different
kinds of 3D data. However, designing such models seems to be a highly non-trivial
task, as it requires jointly modeling discrete (vertices and edges) and continuous (vertex
coordinates) entities. A more practical direction is to build models for arbitrary fixed
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topologies, in other words, model coordinates of the vertices and provide topologies as
fixed inputs. For example, one could extend PointNet-style models [121,122], which work
on point clouds, to take into account the neighbourhood structure from the given mesh
topologies.
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A Appendix for Chapter 3

In this appendix, we provide the derivation of the mean-field updates of Chapter 3. Please
refer to Table 3.1 for the notations.

By definition Xk is a Bernoulli variable (Q(Xk = 1) +Q(Xk = 0) = 1), and keeping in
mind Eq. 3.7:

Q(Xk = 1) =
exp (E[logP (D,X,M)|Xk = 1])

Z̃XK
(A.1)

Q(Xk = 0) =
exp (E[logP (D,X,M)|Xk = 0])

Z̃XK
(A.2)

which allows us to find the normalizing factor Z̃XK and get the following update on
ρk = Q(Xk = 1) (Eq. 3.8):

ρk = σ( EQ(X\Xk)[logP (D,X,M|Xk = 1]−
EQ(X\Xk)[logP (D,X,M|Xk = 0])

(A.3)

Let’s take a closer look at the conditional expectation of the joint EQ(X\Xk)[logP (D,X,M)|Xk =

ξ], ξ ∈ {0, 1} (omitting M for clarity):

EQ(X\Xk)[logP (D,X)|Xk = ξ] =

EQ(X\Xk)[logP (D|X)P (X)|Xk = ξ] =∑
i∈Sk E[logP (Di|X)|Xk = ξ] +

∑
l∈K E[logP (Xl)|Xk = ξ]

where we used an assumption of conditional independence between pixels, and also
assumption of independence of occupancies a-priori.
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We now need to evaluate the expectation of the observation likelihood logP (Di|X)

conditioned on Xk = ξ for ξ ∈ {0, 1}. Under our generative model, each pixel is either
generated by one of the silhouettes, or by the background. If it was generated by some
silhouette Sl, then, first, all the silhouettes that are closer to the camera should be absent
(which happens with probability τl,i), and, second, the silhouette itself should be present
(which happens independently with probability ρl). Otherwise, all the silhouettes are
absent (probability τ|K|,i), and pixel was generated by the background. Now, let’s write
down the expected log-likelihood for observing some value d at pixel i ∈ L (omitting
segmentation masks for clarity):

EQ(X)[logP (Di = d|X)] =
∑
l∈K

τl,iρl log θli(d) + τ|K|,i log θbg,i(d)

When conditioned on Xk = 1 the expectation will be:∑
l<k

τl,iρl log θli(d) + τk−1,i log θki(d)

And conditioned when on Xk = 0:

∑
l<k

τl,iρl log θli(d) +

∑
l>k τl,iρl log θli(d) + τ|K|,i log θbg,i(d)

(1− ρk)

Now, one can evaluate EQ(X\Xk)[logP (D,X)|Xk = ξ] (expectations for the priors is
trivial, see e.g. [52]). If one substitutes these into Eq. A.3, one will get Eq. 3.10:

ρk = σ(log ε
1−ε+∑

i∈Mk
τk,i log θk,i−∑

i∈Mk

1
1−ρk (

∑
l>k,i∈Ml

τl,iρl log θl,i + τ|K|,i log θbg,i))
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B.1 Proximal Gradient Mean-Field Inference

In this section, we derive the closed-form update rule for the proximal gradient descent
introduced in Section 4.2 of the thesis.

Let us now consider the proximal gradient update,

minimize
q∈M

{
〈q,∇E(qt)〉 − H(q) + Dt �KL(q||qt)

}
, (B.1)

where the first and the second terms are the expected energy and negative entropy
respectively, and the last term is the proximal term. It can be written as

Dt �KL(q||qt) =
∑
i,l

di,l · qi,l log
qi,l
qti,l

, (B.2)

where Dt is a diagonal matrix with non-zero elements di,l.

Our goal is to derive a closed-form update for all the mean parameters qi,l, or, alternatively,
for all the natural parameters θi,l. We can write down the partial derivative of the expected
energy with respect to any qi,l as

∇E(qt)i,l =
∂E(qt)

∂qi,l
= EQ(X|qt¬i)[log p(X|I)|Xi = l] . (B.3)

Note, that both our objective F and the constraints q ∈ M are separable over the
variables X1, . . . , XN , which makes it possible to minimize independently for each Xi. In
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other words, our goal is to solve for all i

minimize
qi

∑
l

qi,l∇E(qt)i,l +
∑
l

qi,l log qi,l + dti
∑
l

qi,l log
qi,l
qti,l

, (B.4)

subject to
∑
l

qi,l = 1 (B.5)

We can now make each problem to unconstrained by introducing the Lagrangian

L(qi, µi) =
∑
l

qi,l∇E(qt)i,l +
∑
l

qi,l log qi,l ,

+ dti
∑
l

qi,l log
qi,l
qti,l
− µi

(∑
l

qi,l − 1

)
,

(B.6)

where µi is a corresponding Lagrange multiplier.

We then differentiate it with respect to qi,l, ∀i, l

(1 + dti) log q?i,l = EQ(X|q−i)[log p(X|I)|Xi = l] + dti log qti,l + µi , (B.7)

which in turn leads to the update rule

qt+1
i,l ∝ exp

[
ηti · EQ(X|q−i)[log p(X|I)|Xi = l] + (1− ηti) · log qti,l

]
, (B.8)

where ηti = 1
1+dti

, and normalization constant can be obtained from µi.

B.2 Proving Convergence

In this section, we prove that the fixed step-size algorithm introduced in Section 4.2.2
guarantess convergence. In the remainder of this appendix, we will work under the
assumption that

∀i, t ∃dti s.t. ∀l dti,l = dti,

which is verified for the fixed and adaptive step size and methods described in Chapter 4.
We will therefore replace di,l by di in the subsequent derivations. Note that, this property
does not hold for OURS-ADAM. Nevertherless, as shown in the experimental evaluation, in
practice it tends to converge faster and to a better minima.

Lemma B.2.1 The gradient of the proximal term at the current iteration point ∇qD
t �

KL(q||qt)|q=qt is orthogonal toM.
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Proof Let’s write down the gradient:

∇qD
t �KL(q||qt) = (dt1 · ∇q1KL(q1||qt1), . . . , dtN∇qNKL(qN ||qtN )) , (B.9)

with each component containing:

∇qiKL(qi||qti) = (log
qi,1
qti,1

+ 1, . . . , log
qi,M
qti,M

+ 1) . (B.10)

The partial gradient at the current iteration point qti is the all-ones vector:

∇qiKL(qi||qti)|qi=qti
= (1, . . . , 1) , (B.11)

which is obviously orthogonal to the hyperplane defined by the constraint
∑

l qi,l = 1.
Thus, dti∇qiKL(qi||qti)|qi=qti

is also orthogonal to this hyperplane, and we easily obtain
the orthogonality of the product vector ∇qD

t �KL(q||qt)|q=qt toM.

Lemma B.2.2 For all qt inM,

∀q ∈M, Dt ·KL(qt+1||qt) ≥ L

2
‖q− qt‖22 .

Proof We start with noting that the Hessian of the KL-proximal term is diagonal with

∀q ∈M,
∂2Dt ·KL(q||qt)

∂q2i,l
|q =

dti,l
qi,l
≥ L . (B.12)

Therefore, the proximal term is L-strongly convex onM. For all qt inM,

∀q ∈M, Dt ·KL(q||qt) ≥ 〈∇qD
t �KL(q||qt)|q=qt ,q− qt〉+ L

2
‖q− qt‖22 . (B.13)

The first term of the right hand side is null according to the orthogonality property B.2.1.
Which leads to

∀q ∈M, Dt ·KL(qt+1||qt) ≥ L

2
‖q− qt‖22 . (B.14)

Further, we now demonstrate, that under certain assumptions, applying updates of
Eq. B.8 leads to a decrease in objective at each iteration.

Theorem B.2.3 If E is L-Lipschitz gradient onM, and that dtis are chosen such that
dti ≥ L, ∀t, i. Then the objective function is decreasing at each step.
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Proof Let us assume that E is L-Lipschitz gradient onM and that dti ≥ L, ∀t, i. Then,
we can show that the value of the objective function E(qt+1)−H(qt+1) at step t+ 1 has
to be smaller than E(qt)−H(qt)

E(qt)−H(qt) ≥ arg min
q

[
E(qt) + 〈(q− qt),∇E(qt)〉 − H(q) + Dt ·KL(q||qt)

]
(B.15)

≥ E(qt) + 〈(qt+1 − qt),∇E(qt)〉 − H(qt+1) + Dt ·KL(qt+1||qt)
(B.16)

≥ E(qt) + 〈(qt+1 − qt),∇E(qt)〉 − H(qt+1) +
L

2
‖qt+1 − qt‖22

(B.17)

≥ E(qt+1)−H(qt+1) (B.18)

where step Eq. B.16 comes from the fact that by definition qt+1 realizes the minimum,
Eq. B.17 holds by strong-convexity lower bound B.2.2 and Eq. B.18 holds by L-Lipschitz
gradient property of E .

B.3 Adaptive Steps

We now formally justify the update rule used in Section 4.2.3 of the thesis. In the proof
of Lemma B.2.2, in Eq. B.12, we used the fact that 1

qi,l
≥ 1. This bound is correct, but

can be too large since ultimately qi,l can be very close to 0. This leads to the choice of
di = L , ∀i, which ensures di

qi,l
≥ L.

Alternatively, one can choose a smaller value di = Lmax(qti,0, . . . , q
t
i,Li−1), which also

ensures that di
qti,l
≥ L , ∀i, l but unfortunately the gain is still very minor.

However, all the previous bounds ignore the fact that all our variables lie on the simplex
M. We will now show, that one can obtain a proximal term that provides a much closer
local upper-bound for the objective function.

Let us start by writing a second-order Taylor expansion of the KL-proximal term for
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variable i around the current iteration point. This yields

dti ·KL(qt+1||qt) =dti〈∇qiKL(qi||qti)|qi=qti
,qt+1

i − qti〉

+
dti
2

∑
l

(qt+1
i,l − q

t
i,l)

2

qti,l
+ o(‖qt+1

i − qti‖22) (B.19)

=
dti
2

∑
l

(qt+1
i,l − q

t
i,l)

2

qti,l
+ o(‖qt+1

i − qti‖22) , (B.20)

where we used Lemma B.2.1 to get Eq. B.20.

For a derivation similar to Eq. B.15-Eq. B.18 to hold (up to a second order approximation),
we need to choose dti so that

dti
∑
l

(qt+1
i,l − q

t
i,l)

2

qti,l
≥ L‖qt+1

i − qti‖22 .

However, we also should take into account the fact that both qt+1 and qt lie inM, and

therefore
∑
l

qt+1
i,l − q

t
i,l = 0. Finally, one can choose

L

dti
as the optimum of the following

program:

minimize
δ

∑
l

δ2l
qti,l

,

subject to
∑
l

δl = 0 ,∑
l

δ2l = 1 .

(B.21)
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In this appendix we provide derivations for the mean-field updates of Chapter 5 (Eq. 5.6-
5.7)

Recall that our goal is to refine a dense set of detection hypotheses produced by a
fully-convolutional neural network, by doing inference in the following model:

P (X,A) ∝
∏
i,j

exp

(
−1[Ai = j] · ||Xi −Xj ||22

2σ2

)
, (C.1)

where for each hypothesis location i ∈ I = {1, . . . ,H ×W} we introduce two hidden
variables, one multivariate Gaussian Xi ∈ R4, and one categorical Ai ∈ I. Note that, we
use 1[Ai = j] to denote the function that equals one if Ai = j and zero otherwise. Xi

encodes the “true” coordinates of the detection, and Ai encodes the assignment of the
detection to one of the hypothesis locations in I. Ultimately, we want to estimate the
marginal distributions P (Xi), P (Ai),∀i ∈ I. However, integrating Eq. C.1 directly is not
tractable, and thus we resort to mean-field approximation. We introduce the following
parameterized fully-factorized distribution:

Q(X,A) =
∏
i

Q(Xi)Q(Ai) =
∏
i

N (Xi ;µi, σ
2)Cat(Ai ;ηi) , (C.2)

where µi ∈ R4 and ηi ∈ R|I| are the variational parameters of the Gaussian and categorical
distributions respectively. The categorical distribution is a generalization of the Bernoulli
distribution and is defined as follows:

Cat(Ai ;ηi) =
∏
j

(
eηij∑
k e

ηik
)1[Ai=j] =

∏
j

α
1[Ai=j]
ij , (C.3)

where αij = eηij∑
k e

ηik
is a probability of Ai = j. Note that, we are using two ways to

parameterize this distribution: through natural parameters ηi and mean parameters αi.
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Both of them are equivalent, but the former is somewhat more convenient for deriving
the updates for Q(Ai), whereas the later is used in the updates for Q(Xi).

The goal of the variational inference is to find the values of the parameters, such that
Q(X,A) closely approximates P (X,A). This is done by minimizing the Kullback-Leibler
(KL) divergence between the two:

KL(Q||P ) = −
∫
X,A

Q(X,A) log
P (X,A)

Q(X,A)
. (C.4)

As we saw in Section 2.3, optimizing Eq. C.4 can be done by iteratively applying the
following updates for each of the approximate marginals Q(Xi), Q(Ai):

logQτ (Xi) ∝ EQτ−1
¬Xi

[logP (X,A)] ,

logQτ (Ai) ∝ EQτ−1
¬Ai

[logP (X,A)] ,
(C.5)

where E[·] denotes expectation, and Qτ−1¬Xi
indicates that the expectation is computed

w.r.t. approximate distribution over all the variables except Xi (similarly for Ai). We
now can substitute Eq. C.1 and Eq. C.2 into Eq. C.5, to get the fixed-point updates for
the variational parameters.

Let us start with the parameters of Q(Ai), using that E[Xi]Qτ = µτi :

logQτ (Ai = j) ∝ ηij ∝ −EQτ−1
¬Ai

[
1[Ai = j] · ||Xi −Xj ||22

2σ2
] (C.6)

= −
||EQτ−1

¬Ai
[Xi]− EQτ−1

¬Ai
[Xj ]||22

2σ2
(C.7)

= −
||µτ−1i − µτ−1j ||22

2σ2
. (C.8)

Let’s now derive the updates for Q(Xi). Noting that EQτ [1[Ai = j]] = ατij ,
∑

j α
τ
ij = 1,
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we can write:

logQτ (Xi) =− EQτ−1
¬Xi

[
1[Ai = j] · ||Xi −Xj ||22

2σ2

]
+ const (C.9)

=−
∑
j

αijEQτ−1
¬Xi

[
||Xi −Xj ||22

2σ2

]
+ const (C.10)

=−
∑
j

αij
1

2σ2
EQτ−1
¬Xi

[
XT
i Xi − 2XT

i Xj + XT
j Xj

]
+ const (C.11)

≈− (
∑
j

αij)
1

2σ2
X2
i +

(
∑

j αijµ
τ−1
j )T

σ2
Xi + const (C.12)

=(− 1

2σ2
)XT

i Xi +
1

σ2
(
∑
j

αijµ
τ−1
j )TXi + const , (C.13)

where the approximation in Eq. C.12 comes from the fact that we substitute Xj with
µτ−1j , for j : j = i.

Note that, since Qτ (Xi) is in exponential family and is also Gaussian with parameters
µτi , σ

2, we can always represent its log-PDF as follows:

logQτ (Xi) = (− 1

2σ2
)XT

i Xi +
1

σ2
µTi Xi + const. (C.14)

Given Eq. C.13 and Eq. C.14, we can simply match the first and the second moments,
and get the following update for the variational parameters of Q(Xi):

µτi =
∑
j

αijµ
τ−1
j . (C.15)

As mentioned in the Chapter 5, in practice we run inference for a fixed number of
iterations T , starting from initial µ0 which we set to the dense proposals obtained from
our fully-convolutional detection network, and use the following smoothed updates for
µτ :

µτi = λµτ−1i + (1− λ)
∑
j

αijµ
τ−1
j , (C.16)

where λ is a damping parameter, which we keep fixed, although ultimately one can
interpret it as a step-size, as discussed in Chapter 4, and use more powerful first-order
optimization schemes, such as ADAM [81].

In practice, we observe that the estimates of the variational parameters converge within
10-100 iterations, depending on the choice of σ. We leave the formal analysis of the
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convergence properties of our approach as future work. Note that, the standard mean-field
proofs do not strictly apply because we update all parameters in parallel, and the existing
proofs for parallel updates, such as that in Appendix B, are derived for discrete random
fields.
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In this appendix, we provide additional results for the Compositional VAE. The repre-
sentations that our model learns naturally decomposes geometry into meaningful level
of detail. This allows us to do detail transfer: i.e. transfer either high-frequency detail
(Figure D.1), such as beards or wrinkles, while keeping the identity and general expression;
or low-frequency detail (Figure D.2), such as the general expressions, while keeping
the smaller skin deformations. Note that, these images are produced purely by doing
interpolation in the learned latent space, without any manually specified geometrical
priors.
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Figure D.1: Transferring high frequency detail. We visualize the change of shapes when
interpolating high frequency details while keeping low frequeoncy details fixed. The
leftmost and rightmost columns are the two original meshes.
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Figure D.2: Transferring low frequency detail. We visualize the change of shapes when
interpolating low frequency detail while keeping high frequency details fixed. The leftmost
and rightmost columns are the two original meshes.
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