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Abstract
Solar energy offers a great potential for integration with industrial processes, which conventionally

rely on fossil fuels to provide energy [1]. The seasonal, daily, and regional dependence of solar energy

alongside the scarcity of space or financial resources in many territories constitute great challenges.

These may be overcome by efficient solar energy use through optimal integration methods. Such

methods should address multiple aspects including accurate solar technology models and identifi-

cation of the "true" process requirements. Beyond that, optimal design of the integrated systems

and quantification of the added value of solar integration, particularly with regard to competing

technologies, is crucial. This thesis explores this multi-dimensional problem formulation through

elaboration of methodologies tailored to the low-temperature processing industries.

The intricacies behind this goal are addressed in four main chapters. (a) Chapter 2 examines options

for solar technology modeling in view of industrial integration. A design approach is developed

which allows estimation of solar system performance at sufficient precision and constrained compu-

tational effort. (b) In Chapter 3, a comprehensive method is proposed which addresses simultaneous

optimization of the process heat recovery, the conventional utilities, and the renewable utility system

(including thermal storage) using ε-constrained parametric optimization. (c) The promising results

from the third chapter motivate a more thorough analysis of industrial heat pump systems, which

is addressed in Chapter 4 presenting a novel generic heat pump superstructure-based synthesis

method for industrial applications based on mathematical programming. (d) The subsequent two

chapters address generalization of the derived methods to estimate potentials of relevant technolo-

gies at national and international scale from the perspective of multiple stakeholders. The derived

method generates a database of solutions by applying generalized optimization techniques.

The proposed methods are applied to the dairy industry and results reveal that solar energy should

be considered as part of a series of efficiency measures. It is shown that in many cases heat pumping

or mechanical vapor re-compression lead to more efficient and less costly solutions, which may be

extended with solar thermal energy or complimented with solar electricity.

Keywords

solar thermal collectors; high concentration photovoltaic and thermal system (HCPVT); photovoltaic

panels; industrial refrigeration; mathematical programming; heat pump superstructure; dairy

industry; waste heat recovery and reuse;
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Zusammenfassung
Die Integration von Solarenergie in industrielle Prozesse, die normalerweise mit fossilen Brennstof-

fen versorgt werden, hat grosses Potential. Doch die saisonale, tägliche und regionale Abhängigkeit

von Sonnenstrahlung zusammen mit einer Knappheit an Platz und finanziellen Mitteln stellen

in vielen Gebieten grosse Herausforderungen dar. Mit effizienter Solarenergienutzung durch opti-

male Integrationsmethoden können diese jedoch überwunden werden. Solche Methoden sollten

verschiedene Blickpunkte berücksichtigen einschliesslich akkurater Modelierung der Solartechnolo-

gien und Identifizierung des wahren Prozesswärmebedarfs. Darüber hinaus muss das integrierte

System optimal geplant und der Mehrwert der Solarenergie gegenüber anderen Technologien genau

bestimmt werden. Diese Doktorarbeit beschäftigt mit dieser mehrdimensionalen Problemstellung

indem Methoden, die besonders auf Niedertemperatur-Prozesse ausgerichtet sind, in vier Kapiteln

entwickelt werden.

(a) Im ersten Kapitel werden verschiedene Möglichkeiten für Modellierung von Solartechnologien

vor dem Hintergrund der Prozessintegration diskutiert. Der entwickelte Ansatz erlaubt es den Ertrag

von Solaranlagen mit minimalem Rechenaufwand und genügender Präzision zu bestimmen. (b) Im

zweiten Kapitel wird eine umfassende Methode vorgestellt, die eine gleichzeitige Optimierung der

Wärmerückgewinnung, Wärmepumpen und des erneuerbaren Energiesystems (mit thermischen

Speichern) unter Verwendung von ε-Bedingungen ermöglicht. (c) Die Ergebnisse des zweiten Ka-

pitels motivieren eine genauere Analyse von industriellen Wärmepumpen, worauf die im dritten

Kapitel vorgestellte neuartige Methode zur generischen Wärmepumpensynthese abzielt. (d) Die

letzten beiden Kapitel dienen der Verallgemeinerung der entwickelten Methoden, um internationale

Potentiale für die relevanten Technologien aus der Perspektive von verschiedenen Akteuren zu

bestimmen. Die Methode entwickelt Lösungen durch verallgemeinerte Optimierungsverfahren.

Die vorgestellten Methoden werden in der Milchindustrie angewendet und die Ergebnisse decken

einen Zusammenhang zwischen solarer Energieintegration und einer Reihe anderer Effizienzmass-

nahmen auf. Die Ergebnisse zeigen, dass in vielen Fällen Wärmepumpen oder Dampfverdichtung

zu effizienteren Systemen mit niedrigeren Kosten führen, was mit solarthermischen Technologien

erweitert oder mit solarelektrischen Systemen komplementiert werden kann.

Schlüsselwörter

solarthermische Kollektoren ; hochkonzentrierte photovoltaisch und thermische Systeme ; photovol-

taische Kollektoren ; industrielle Wärmepumpen ; mathematische Programmierung ; Milchindustrie ;

Restwärmeverwertung und -nutzung;
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Ėr energetic consumption of resource r [kW]

Q̇ st thermal flow during charge and discharge of storage unit st [kJ/period]
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Introduction
"Solar energy is the last energy resource that isn’t owned yet - nobody taxes the sun yet."

Bonnie Raitt

Overview

• What are the advantages and challenges of solar energy?

• Motivation and scope of the work.

• Contributions and novelty of this thesis.

• Thesis structure overview.

• Notations and conventions.

Solar energy is free of charge, carbon neutral1, and it is the largest energy resource on the planet

[1, 7, 8]. The solar radiation reaching Earth’s surface within 90 minutes would suffice to fulfill our

population’s entire yearly energy demand2, if it could be fully converted and stored. Figure 1 shows

the yearly incoming solar radiation on the earth surface in comparison to other (fossil and renewable)

primary energy resources available on the planet based on two different origins [1, 7]. Even though

the estimation of the potential of all resources (especially wind, uranium, and geothermal) is not

consistently estimated, the exhaustive solar potential generally agreed upon [1, 7, 8] is clearly

highlighted.

In tandem with an extensive potential, there are also great challenges to face. The greatest challenge

is the intermittent availability of solar energy which exhibits large temporal (daily and seasonal) and

spatial variations. Furthermore, solar energy is dilute: The maximum horizontal solar irradiance

measurable at the Earth’s surface during solar noon and clear sky conditions approximates 1000

W/m2[10]. In comparison, fueling a car transfers 20 MJ of energy (in the form of fuel) per second of

refueling3. This power requirement is equivalent to the amount of solar radiation which insolates

on a clear day (at noon) a surface area spanning three football fields4.

The aforementioned challenges highlight the need for efficient solar energy conversion routes and

adequate tools to derive these.

1 Life-cycle emissions from conversion equipment are neglected in this statement.
2 Incoming yearly radiation 3.19×109 PJ [1], TPES of the population (2015) 5.71×105 PJ [9].
3 Car fueling requires 20 MJ/s of diesel with diesel energy density 35.8 MJ/l [11], refueling pump flow rate 35l/min [12].
4 Surface of 20×103 m2, with solar energy to fuel conversion efficiency assumed to be 100% for this comparison.
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Introduction

Figure 1 – Global availability of fossil reserves, and renewable energy supplied to Earth’s surface
within a year. [left] Philibert [1], original from Craig et al. [8]; [right] European Photovoltaic Industry
Association (EPIA) [7].

In the past, solar energy has been widely associated with electrical power generation [13]. More

recently, applications and research have been extended to such domains as urban energy systems

[14, 15], production of solar fuel [1, 16, 17], and industrial process heat applications [13, 18]. The

latter being of great interest, since industrial sites is often positioned at the periphery of urban

centers where cost of land is comparatively small.

Solar heat for industrial processes (SHIP), or more generally referred to as solar energy for industrial

processes (SEIP) is an emerging field which is driven by the high carbon footprint of industrial

processes [13]. Employment of solar installations in industry are estimated to grow continuously

over the coming decades. Currently, SEIP installations account for less than 0.1% of total industrial

energy requirements5 indicating the immense opportunities for improvement. To identify the

barriers and enablers for more wide-spread use of solar energy in the industry is the general goal of

this thesis.

This chapter serves as an introduction to the goal, motivation, and contributions of this thesis.

The focus and goal of this thesis is presented in the following section before providing a general

state-of-the-art review of relevant work and the identified gaps in this field. This is followed by the

detailed outline of the thesis together with the main contributions of each chapter. The final part of

this chapter addresses notations and conventions used throughout this thesis.

Focus and goal of this thesis

The specific goal of this thesis is the development of methods that aid in planning, design, and

potential assessment of solar-assisted industrial processes to ultimately achieve cost-effective

emission reductions in the industrial sector.

Industrial energy requirements can be generally distinguished between thermal and electrical

5OECD total industry requirement (2015) 7.92 ×105 ktoe, geothermal/solar etc. 4.53 ×102 ktoe [19].
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demands. Thermal demands usually need to be produced on site6 and adequately fit to the process

temperature levels, while electrical demands can be balanced through the electricity network. Due

to these characteristics, a more detailed analysis of thermal process requirements is conducted in

this thesis. Nevertheless, it is assured that all energy and material balances (including electricity

and natural gas) are closed at all times within each problem formulation presented in this thesis.

For illustration, the methods are applied to an industrial case study from a low-temperature industry.

The choice is motivated in the context and motivation section (Section 1.1). Integration measures

are presented and discussed to investigate the inherent trade-offs between specific technology

options. In particular, the competition and synergy of solar technologies with compression heat

pump options is studied. The environmental benefits of the renewable options in comparison to

conventional measures, such as improved heat recovery and heat pump systems is carefully weighed

and rigorous methods for such analysis are derived.

It has to be noted that the goal of this work is not a complete analysis of all available solar and

heat pump energy conversion routes, but rather a validation of the developed methodologies with

adequate case studies and an in-depth analysis of some specific technologies. The motivation for

the choice of the solar and heat pump equipment is provided in Sections 1.2 and 1.3.

State-of-the-art: methods for SEIP applications

A large body of work has been conducted on various aspects of integration of solar energy with

industrial processes. A detailed state-of-the-art analysis of the specific field addressed in each

chapter of the thesis will be provided at the introduction to the respective chapter. The following

paragraphs provide a general overview of the topics relevant to SEIP and the identified gaps that

motivate the work conducted in this thesis.

Solar modeling and design

Solar collector and field performance modeling in the wider context of SEIP encompasses a wide

range of topics which are introduced in some key points below.

Solar collector modeling Quantification of incoming solar radiation (direct and diffuse) on in-

clined surfaces as well as identification of the angle of incidence and its influence on collector

performance have been subject to numerous studies, especially prior to the 1980s [18, 20–26]. The

steady-state performance estimation of solar (non-concentrating) thermal systems (STs) carried out

by Hottel and Whillier [27] and transient modeling by Klein et al. [28] are still the most applied meth-

ods today [18] and led to the development of the widely-used proprietary software Transient System

Simulation Tool [2] (TRNSYS). Modeling of photovoltaic modules (PVs) has focused on derivation

of the operating cell temperature which is the main factor influencing PV performance [26, 29, 30].

6Industrial symbiosis and district heating can avoid on site production of thermal energy requirements.
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Concentrated solar energy (CSE) performance was originally derived from Monte-Carlo ray-tracing

[16, 31, 32]; however, static (empirical) correlations have been developed based on polynomial

functions [33, 34], typically of Hottel and Whillier-type [18].

Solar field modeling and system design A central research focus in SEIP applications is adequate

performance estimation and design7 of the solar collector field. The methods presented in this

section focus on the solar system while the industrial process is modeled simply as a constant or

intermittent load. Interactions between the solar systems and process were disregarded.

Dynamic modeling provides the most detailed insights to solar (thermal) systems and their transient

behavior and was regularly applied to analyze a fixed design [31, 35, 36]. However, computational

burden is high and evaluating enough design points to identify favorable configurations, let alone

application of more rigorous optimization strategies, often exceeds the computational capacity.

Silva et al. [33] presented a rare example in which a transient collector field and storage model was

optimized with respect to thermodynamic and economic (thermo-economic) objectives using a

memetic genetic algorithm (GA) (though the collector performance is approximated with polynomial

regression).

To overcome computational limitations, a large number of studies presented correlations (mostly

based on regression of results from transient analysis) to estimate annual [37–39] or monthly [40–42]

solar system performance. These were then used to derive optimal designs using analytical [43] and

brute-forcing [44] methods, or mathematical programming (GA) [39]. The most applied brute-force

method is the φ-f-chart method [40, 41], providing the monthly solar fraction of a SHIP system

based on solar collector area, storage fraction, and constant industrial load. It is also available as

a proprietary software [45]8. Another approach is presented by Kulkarni et al. [46, 47], who based

their design strategy on one annual average day. Further contributions include collector tilt angle

optimization [48, 49], and field design optimization (with respect to shading, losses etc.) [31, 50–53],

and optimal temperature control [54], which are not the focus of this thesis.

Synthesis Summarizing, it can be seen that static or dynamic solar system performance estima-

tion at hourly or minutely timescales are well explored, however, are rarely employed for optimal

design purposes due to the computational effort. Monthly or annual regression models provide

good estimates at reduced computational cost; however, the derived correlations are limited in

applicability to the range of operating conditions and control strategies they were designed for.

The f-chart method, for example, was derived from solar water and air heating systems with stor-

age (double-pass) and a constant load profile, assuming a pre-set control strategy and specific

storage sizes [44]. Apart from few exceptions, rigorous design strategies employing mathematical

programming are not commonly applied in the literature discussed here.

7Design refers here to the sizing and layout of the solar collector field.
8 The regression functions were derived from various TRNSYS simulations.
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"Integration" of solar energy with industrial processes

"Integration" is highlighted in the title of this subsection, since it is a fuzzy notion which was

interpreted broadly in scientific literature. Three types of integration studies were identified and are

depicted in Figure 2.

Solar systems analysis for industrial process applications (SP) The first type, "SP", has been

addressed in the previous section and refers to studies which focused on modeling and design

of solar systems considering a constant or intermittent industrial load, with little focus on the

interactions between the solar system, process and potential process improvement measures.

Solar system and industrial process analysis (SP-A) The second type, "SP-A", refers to studies

which analyzed the solar and process system as a whole, addressing not only solar modeling, but

also identification of the relevant process or utility streams suited to solar integration [55–58], heat

exchanger network design [55, 58], and/or technical constraints related to this integration [36].

Alteration in the process design or process improvement measures were not considered.

Solar system and industrial process integration and optimization (SP-I) The third type, "SP-I",

refers to studies which considered the solar and process as a whole and, additionally, addressed

process improvement measures including internal heat recovery through pinch analysis (PA), and

possibly competing technologies. Schnitzer et al. [59] and Atkins et al. [60] analyzed the thermody-

namic and environmental (thermo-environmental) benefits of solar heat integration in the dairy

industry, considering PA to identify the target solar temperatures for a fixed number of collectors. A

complete utility integration, such as by modeling refrigeration of the sub-ambient streams, was not

considered. Integration of a mechanical vapor re-compression (MVR) system was considered in the

study presented by Eiholzer et al. [61], though the refrigeration of the sub-ambient process streams

and the condenser hot stream were not modeled, which were in direct competition to the solar heat

at 60°C. The solar sizing was based on brute-force generation of design points, though the time

horizon and meteorological data were not specified. Perry et al. [62] presented a general approach

of integrating renewable energy to industrial clusters with aid of total site analysis (TSA) but without

elaborating on the specific design and modeling approach. Varbanov and Klemeš [63] extended the

Figure 2 – Focus in literature on "integration" of solar energy with industrial processes.
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approach presented by Perry et al. [62] to account for time-slices and storage, focusing on graphical

derivation of the utility system. Bühler et al. [64] presented a rigorous nonlinear programming (NLP)

approach using particle swarm optimization (PSO) and pattern search to identify the optimal solar

collector and storage sizes considering one year of hourly meteorological data. The sub-ambient

process side and refrigeration was not included. Mian [65] proposed a solar sizing and heat ex-

changer network (HEN) design method for the high-temperature hydrothermal gasification based

on four average seasonal days considering co-generation formulated as a mixed integer nonlinear

programming (MINLP) problem.

Synthesis In summary, analysis of solar energy integration in industrial processes led to derivation

of three types of studies. The most comprehensive type of studies "SP-I" considered the solar

and process system as a whole, addressed process improvement measures including internal heat

recovery through PA, and in rare cases, competing technologies.

A research gap was identified which pertains to comprehensive methods which provide rigorous

sizing of the solar system and consider competing technologies. Particularly relevant technologies

such as heat pumping, refrigeration, and MVR have been disregarded. This is especially relevant

in one of the target industry for these methods: the dairy industry. Recurrently, the concept of

formulating average/typical days was presented, though verification of the selection of typical days

and effect on the sizing has not been addressed.

Extrapolation of solar potential

Solar potential studies form a body of work which aims at identification of the total energetic

potential for solar installations in specific sectors or industries at a regional, national, or global level.

As depicted in Figure 3, these studies are generally distinguished between bottom-up and top-down

approaches.

Classical top-down approaches are presented by Brown et al. [66], Beath [67], and Lauterbach et al.

[68], in which the total energy demands of different industrial sectors at the national level were

estimated, categorized by temperature levels, and matched with solar technologies. Some go as far

Figure 3 – Bottom-up, top-down approaches for solar potential studies.
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as identifying industrial clusters in specific regions and matching those with the annual irradiation

[66, 67]. Sharma et al. [69–71] presented a more detailed methodology in which the plants associated

with certain sectors were individually identified and classified by their hot utility type (boiler or

co-generation). The solar systems were then sized by plant capacity and the annual CO2 emission

mitigation potentials were derived.

A bottom-up approach was presented by Calderoni et al. [72] presenting three textile plants and

estimating the economic feasibility of solar integration. The solar modeling approach was unfortu-

nately not specified. Meyers et al. [73] compared ST systems for a fixed process load to PV systems

combined with resistance heating, which is an exergetically inefficient way to provide heating. Based

on a regression model, the results were extrapolated to various meteorological conditions to derive

the turn-key cost based on assumed current and future specific project investment costs.

Synthesis Top-down and bottom-up approaches for solar potential estimation were presented.

Top-down approaches provide powerful tools to identify relevant regions, industrial sectors, and

possibly political measures to increase profitability of carbon emission reduction measures. However,

the results are coarse and some options may be completely overlooked. Bottom-up approaches can

also provide estimations for profitability of carbon emission reduction measures, though usually for

specific sectors and regions. The studies presented in the literature either focus on the solar system

or on the industrial process but do not consider them in a combined framework.

A gap was identified for a bottom-up rigorous approach which considers both the process and solar

system, as well as a wider set of utilities and integration options, to identify relationships between

energy prices and utility selection at a national or international level.

Synthesis and scope

The gaps in this state-of-the-art analysis can be summarized in three main points.

1. A lack of rigorous solar design methods is identified which provide precision at reasonable

computational cost.

2. A lack for comprehensive integration methods, especially in the low-temperature sectors

considering competing technologies, process improvements, and rigorous solar design.

3. A gap for bottom-up potential analyses which comprehensively address solar and process

analysis, competing technologies, and allow extrapolation of results to the (inter)national

level in a systematic manner.

Based on the identified gaps, this thesis addresses development of methods for solar energy for

industrial processes (SEIP) (including electrical and thermal technologies) with focus on the low tem-

perature sectors, considering competing technologies specifically heat pumps (HPs), refrigeration,

and mechanical vapor re-compression (MVR).
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Contribution and outline of the thesis

The chapters are presented below with the associated contributions alongside four central research

questions. The main contributions are found in Chapters 3 to 6.

Context of the thesis (Chapter 1): Chapter 1 provides the wider context of the topics discussed in

this thesis. It motivates the case study selection and technologies studied, and introduces concepts

and nomenclature used throughout the work.

How can solar system design be accurately and rigorously addressed?

Solar modeling and design (Chapter 2): A rigorous solar system modeling and design approach is

presented which allows to estimate collector and storage performance at sufficient precision and

constrains the computational effort. The model performance is compared to dynamic results from

TRNSYS. A clustering algorithm [74] is applied to select typical operating periods and results are

compared for different sets of periods. The chapter addresses the gaps identified in point (1) in the

synthesis and scope section. It contributes by adaptation of the multi-period mixed integer linear

programming (MILP) approach from Maréchal and Kalitventzeff [75] to SEIP applications.

What problem formulation is required for a comprehensive design method for solar-assisted

low-temperature processes?

Comprehensive integration method (Chapter 3): A comprehensive method is proposed which

addresses simultaneous optimization of the process heat recovery, the conventional utilities, and the

renewable utility system (including thermal storage) using ε-constrained parametric optimization.

The method, tailored for the low-temperature industry, is based on multi-period utility targeting,

including process heat recovery through pinch analysis (PA) and re-use through heat pumping,

and identifies the optimal design and operation of the utility and storage system. The proposed

methodology is illustrated on the basis of a dairy plant for which the different utility technologies are

compared and evaluated based on economic and environmental criteria. This chapter addresses the

shortcomings mentioned in point (2). The main contribution is the development of a comprehensive

approach for solving the problem.

How can design of an optimal industrial heat pump system be conducted?

Generic heat pump superstructure synthesis and integration method (Chapter 4): Based on the

promising results from Chapter 3, a novel, generic heat pump synthesis method for industrial

applications is presented. The superstructure-based approach is solved with a decomposition

solution strategy based on mathematical programming. Heat pump features are incorporated in a

comprehensive way while considering technical limitations and providing a solution set to allow
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expert-based decision-making at the final stage. The main contributions are found in the com-

prehensive superstructure, addressing fluid selection, component sizing, heat exchanger network

(HEN) cost estimations, operating condition selection, and technical constraints.

How can the results be extrapolated to a wider scope?

Extrapolating impact: environomic potential (Chapter 5 and 6): A method for estimating the en-

vironmental and economic (environomic) potential of various emission reduction measures and

technologies in industrial process applications is derived, generalizing the methodologies devel-

oped in the previous chapters. This includes generalized optimization techniques and generation

of a publicly available database9 of solutions based on a wide range of possible economic and

environmental conditions. By fixing the conditions (e.g. considering a particular country), the

optimal solutions for these conditions can be drawn from the database. This allows identification

of environmental and economic (environomic)ally optimal solutions in different countries and

under different political boundary conditions, and hence, brings a twofold advantage: (1) process

engineers can use the results from the generic plants to conduct pre-feasibility assessment, (2)

policy-makers and equipment manufacturers can identify favorable conditions for installation of

the technologies under scrutiny. The method is applied to a modularized dairy plant considering

heat pumping and co-generation utilities, and generalized conclusions are drawn.

In a subsequent step, the methodology is extended to include solar utilities. The results from Chap-

ter 3 are used for deriving a correlation to predict the annual solar collector and storage performance

under optimal control. The chapter addresses the shortcomings mentioned in point (3). The method,

though simple in application, displays a contribution to the field of potential analysis, offering a

novel, detail-oriented, bottom-up approach.

A graphical overview of the presented chapters is depicted in Figure 4.

Figure 4 – Graphical overview of thesis structure.

9 The data can be accessed via an on-line parallel coordinate [76] decision-making platform.
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Terminology, conventions

Mathematical conventions

The conventions in the equations presented throughout the thesis are that scalar decision variables

are represented by italics, scalar parameters by roman text, vectors are always represented in bold

(italic for variables, roman for parameters), and sets are represented in roman bold Uppercase.

Cost conversion and currencies

The equipment cost estimation follows common literature conventions as originally presented by

Guthrie [77], expanded by Ulrich [78], and summarized by Turton et al. [79].

Bare module cost The bare module cost (also here referred to as installed cost) describes the

direct and indirect expenses related to the unit including: material, construction, freight, taxes, and

installation. Thereby the purchase price of the unit is corrected with various factors accounting

for the material (if not carbon steel CS), operating pressures, piping, and the installation. These

factors can be summarized in the bare module factor, FBM [-]. In this work, all cost functions, C w ,

of technology w as well as their linearized cost factors, IVw
1 and IVw

2 , refer to their bare module

(installed) costs.

Effect of time: inflation Cost functions which date back to a reference year before the current year

are corrected with cost indexes, CI, to account for inflation. Thereby, the out-dated cost function

is multiplied with the fraction between the current and the reference cost index, as depicted in

Equation 1. Common indexes used in chemical engineering practice and in this thesis are the

Chemical Engineering Plant Cost Index [4] (CEPCI) and the Marshall and Swift Index [6] (MSI).

C w = CI

CIref
·C w ,ref (1)

Currencies and conversion The cost functions used throughout the thesis are represented in

different units depending on the context of the study. The studies conducted in Europe are based on

Euros [e] (Chapter 3), while international studies with extra-European references are conducted

in US Dollars [$] (Chapter 4-6). Since most chapters are based on published work, the currencies

were not altered in this thesis so as to retain consistency with the publications. Most cost indexes

are valid for US Dollars only. Therefore, if an original cost functions was provided in Euros (and was

needed in US Dollars), it was converted to Dollars with the currency conversion rate of the reference

year and subsequently updated.
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1Context and motivation
Overview

• Quantification and characterization of process energy requirements

• Classification of solar energy conversion technologies and identification of relevant ones

• Introduction to and identification of relevant heat pumping technologies

• Role of pinch analysis and implications for heat pumping and solar energy

This chapter provides a wider context of the topics discussed in this thesis. It motivates the choice

of the analyzed case study and technologies, and introduces concepts and nomenclature used

throughout the work.

1.1 Energy requirements in industry

Analysis of energy intensity in industry aids in identifying the most impacting industries and,

therewith, candidates for emission reduction measures. As shown in Figure 1.1a, the most energy-

consumptive industrial sectors in Switzerland (CH) are identified as the chemical (22%), mineral

(12%), food (12%), paper (10%), and metal (8%) industry. While the absolute demand is important,

temperature levels of the thermal requirements have a great influence on the feasibility of solar

process heat applications.

Figure 1.1b shows the estimated thermal requirements and related temperature levels of these

sectors from a study in Germany (DE). It reveals that the overall thermal demand of the food, textile,

and paper sector is well below 300 °C, which constitutes a good match with the operating ranges

of most solar thermal systems [13, 18, 68]. The other sectors each display heat requirements above

1000 °C and, hence, are seen to have less potential for solar integration [68].

The dairy industry in CH represents about 15% of the food sector1, and is identified as an ideal

candidate for the application of the methodologies derived in this thesis, due to its favorable

temperature ranges (below 150 °C) and potentially large impact.

11



Chapter 1. Context and motivation
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12.10%

Textiles, 2.7, 
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8.94%
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(a) CH industrial sector energy consumption (PJ/y)
(2010) [82].
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(b) Temperature distribution of thermal requirements in DE
industrial sectors (2009) adapted from Lauterbach et al. [68]a,
HW - hot water, SH - space heating.

Figure 1.1 – Industrial thermal energy requirements and respective temperature levels.
a Sectors form [68] were consolidated to match sectors depicted in Figure 1.11.1a; food: 12,12 (NACE Rev. 2 Code), textiles: 13-15, paper: 17,18, chemicals: 20,22, minerals: 23,

metal products: 25, electronics: 27, machinery: 28-30.

1.2 Solar energy conversion

Figure 1.2 provides a summary of common solar energy conversion routes excluding natural con-

version pathways such as photosynthesis or wind current generation. Three main products are

identified: electricity, fuel, and heat. The conversion systems are differentiated between active and

passive.

Passive systems describe structural elements or modifications (windows, walls, etc.) in buildings

which are designed with the purpose of specifically harvesting solar energy, for example, as a heat

source during cold seasons and rejecting heat during hot ones [1]. One example is provided by

Čongradac et al. [49] who presented an algorithm for automatic control of window blinders based on

the incident solar radiation. Agricultural greenhouses are possibly the oldest passive solar systems.

Active systems can be divided into non-concentrating and concentrating systems, while concen-

trating systems can be further distinguished between self-tracking and active tracking technologies.

Concentrating technologies rely on redirection of the incoming light through reflectors (mirrors)

or refractors (lenses) to increase the energy density in the focus thereby leading to reduced ther-

mal losses due to reduced collector surface area [26]. This leads to increased temperatures in the

receiver, which is advantageous in thermal systems to achieve higher operating temperatures, either

for high-temperature industrial process use, or for thermo-mechanical (solar Rankine cycles) or

thermo-chemical (solar gasification) applications, inducing higher conversion efficiencies. Re-

ducing the active area allows utilization of higher efficiency receivers at similar investment cost,

therefore motivating the use of concentrating photovoltaic systems (CPVs). CPVs require active

cooling, which enables co-generation of heat and electricity.

1 Raw milk treated in CH: 3.49 ×106 t (2015) [80], average energy requirement of raw milk treatment to various products:
0.9 GJ/t [81].
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Figure 1.2 – Solar energy conversion routes tree diagram [10, 15, 17, 18, 26, 83, 84], excluding natural routes such as photosynthesis during
biomass growth or wind current. (Framed) high concentrating technologies can solely harvest the direct portion of the incoming solar
irradiance (DNI), while the other can harvest also the diffuse part of the irradiance (GHI). Conversion efficiencies given as ranges of yearly
averages. (*) Photo-electro-chemical devices at experimental stage [17], efficiency given as fraction between thermodynamic potential, current
density and irradiance, (**) thermo-chemical conversion at pilot stage [85], efficiency given by exergy efficiency of solar to electricity [83].
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Chapter 1. Context and motivation

With increasing concentration ratios (> 10 [15, 18]), technologies require active tracking and cannot

accept the diffuse fraction of solar irradiance. These concentrating systems are framed in Figure 1.2

and their efficiencies are usually expressed with respect to the direct normal irradiation (DNI), while

non- and low-concentrating systems accept both types of solar irradiance (diffuse and direct) and

their efficiency is reported with respect to the global horizontal irradiation (GHI).

Figure A.1 (in Appendix A.1) depicts the global yearly availability of the DNI and GHI indicating that

the GHI varies between 900 and 2700 kWh/m2y in different regions, while the DNI ranges from

600 to more than 3000 kWh/m2y. Concentrated solar energy (CSE) is usually installed in regions

with DNI above 2000 kWh/m2y, while non-concentrating solar technologies are considered even for

regions with a GHI of 1000 kWh/m2y [73].

Since most heat demand in the dairy industry is below 130 °C [81], the focus in this thesis

is placed on low-temperature solar (non-concentrating) thermal systems (STs). Photovoltaic

modules (PVs) are also investigated for fulfilling the electricity requirements of the system.

Specifically, (non-concentrating) photovoltaic and thermal systems (PVTs) are not modeled

assuming that a combination of photovoltaic module (PV) and solar (non-concentrating) ther-

mal system (ST) could represent this type of system. In addition, a novel high concentration

photovoltaic and thermal system (HCPVT) system [86–88] which co-generates electricity and

low-temperature heat (<100 °C) is also compared to ST and PV. Other solar systems produces

either higher temperature heat, or fuels, which is not the focus of this thesis.

1.3 Industrial heat pumping

Heat pumping has gained increasing attention during the past decades, not only for household

applications but also for improving energy efficiency of industrial processes through waste heat

recovery and valorization at elevated temperatures [89, 90].

However, analysis of the most cited publications during the past decades related to the keywords

waste heat recovery shows different results. Figure 1.3 illustrates the distribution of the most cited

publications within the last 10 years having average citations greater than or equal to five per year,

resulting in 158 publications. Results show that research in the field of (industrial) waste heat recovery

is largely dominated by organic Rankine cycles (ORC) [91, 92] and thermoelectric devices [93]. This

may stem from a fully explored state-of-the-art of industrial heat pumps; however, the marginal

penetration of industrial heat pump systems (apart from basic refrigeration and air-conditioning)

[90, 94] contradicts this notion. The main barriers for broad usage in industry were identified as

lack of knowledge and of comprehensive heat pump integration methods to provide improvement

potentials [90, 94]. Figure 1.4 depicts a technology tree of heat pump concepts distinguished between

open and closed systems, and further between sorption and mechanically driven systems.
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1.4. Heat recovery potential in a process: pinch analysis

This work addresses open- and closed-cycle, mechanically driven heat pumps with a focus on latent,

single fluid systems, the reasoning for this is introduced in Section 1.4. Improving industrial resource

efficiency through heat pumping is achieved by recovering waste heat at low temperature levels and

returning it at higher temperatures as useful heat to the process. The temperature lift is achieved

through mechanical compression of a working fluid which requires electricity. Before the concept

of heat pumping in industrial processes can be discussed at greater depth, the concept of "waste

heat" must be introduced, and with it, pinch analysis (PA).

1.4 Heat recovery potential in a process: pinch analysis

Pinch analysis is a methodology developed in the 1970s by Linnhoff and Flower [97, 98] and exten-

sively discussed by Kemp [99], which allows estimation of the maximum energy recovery potential

of industrial processes. This requires decomposition of an industrial site into its thermodynamic

requirements. The result is a set of hot (net cooling requirement) and cold (net heating requirement)

thermal streams.

The second principle of thermodynamics states that heat can only flow from a source at higher

temperature to a sink at lower temperature. Ensuring thermodynamic feasibility, the heat cascade2 is

derived which allows estimation of the maximum energy recovery potential of an industrial process

and the temperature ranges in which external heating and cooling are required.

1.4.1 Minimum approach temperatureΔTmin

An ideal heat exchanger is an adiabatic device in which a hot stream transfers heat to a cold stream

at lower temperatures as depicted in Figure 1.5. The second law of thermodynamics dictates that a

temperature gradient between the hot and the cold stream is required to provide a driving force for

heat to flow.

From the principles of pinch analysis (PA), a minimum approach temperature,ΔTmin, defines the

point in a heat exchanger where the hot and the cold streams exhibit the smallest temperature

difference. The position ofΔTmin depends on the inclination of the temperature-enthalpy profiles

of the hot and cold streams, which are proportional to the inverse product of heat capacity and

mass flowrate (mcp). The optimal minimum temperature difference is conventionally found by

optimization which considers the balance between operating and investment cost for heat exchang-

ers. A smaller approach temperature reduces the operating cost due to higher heat recovery while

increasing investment cost related to larger heat exchange area.

In general practice, engineering estimate values of the minimum approach temperature difference

are assumed and to ensure thermodynamic feasibility, the hot (cold) streams are shifted downwards

(upwards) by half of this difference, resulting in what are referred to as corrected temperatures.

2 The heat cascade refers to the theoretical concept of successively transferring thermal energy from high to low
temperature levels within a process.
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Process engineering and optimization (21), 1879
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Figure 1.3 – Web of science [95], key words: waste heat recovery, top cited papers of last 10 years (≥ 5
citations/year), accessed 11.08.2017.

Figure 1.4 – Heat pumping technology tree diagram, adapted and extended based on Nellissen and
Wolf [96].

Figure 1.5 – Temperature enthalpy profile of a counter current heat exchanger to illustrate theΔTmin.
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1.4. Heat recovery potential in a process: pinch analysis

1.4.2 Graphical representation, pinch point, and pinch rules

An example of a hot composite curve (CC) generated from the process thermal requirements is

illustrated in Figure 1.6 (b). It is constructed by vectorial addition of all individual hot stream

contributions (shown in Figure 1.6 (a)) in each temperature interval. The cold CC is constructed

likewise. The hot and cold process CCs represent the process total heating and cooling demand. The

vertical overlap between the two curves marks the maximum possible heat recovery potential of the

industrial process.

The grand composite curve (GCC), depicted in Figure 1.7 (b), is derived by subtraction of the thermal

load of the cold from the hot CC in each temperature interval. The GCC monitors the net heating

and cooling loads and their temperature levels under the assumption of maximum heat recovery or

minimum energy requirement (MER). The pinch point is marked by the impingement of the GCC on

the temperature axis. Above, the process exhibits a net heating requirement (heat sink), and below, a

net cooling requirement (heat source).

The distance from the temperature axis at the highest and lowest temperature represents the

Figure 1.6 – (a) Individual hot streams, (b) hot CC in temperature enthalpy diagram [99].

Figure 1.7 – (a) Hot and cold CCs, (b) GCC in temperature enthalpy diagram.
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Chapter 1. Context and motivation

minimum hot (MERhot) and cold (MERcold) energy requirements, respectively.

The pinch point or pinch temperature induces three thermodynamics-based, so-called, pinch

rules [97, 98]:

1. Hot utilities should only be installed at temperatures above the pinch (point),

2. Cold utilities should only be placed below the pinch (point), and

3. No heat exchange should occur across the pinch (point).

Violating any of these rules results in an increase of the utility requirements and, hence, a reduction

of the process exergy efficiency. In the context of pinch analysis, "waste heat" is referred to as the

heat available below the process pinch point which represents the process’ net cooling demand.

1.4.3 Implications for solar energy for industrial processes (SEIP)

Solar thermal systems constitute classic hot utilities. The pinch rules presented in Section 1.4 clearly

state that a hot utility is only beneficial to the process energy requirements if it is installed above

the pinch temperature. This leaves a simple design guideline for solar heat for industrial processes

(SHIP) applications. The pinch rules do not leave any guidelines for other solar energy systems

which provide electricity or fuel.

1.4.4 Implications for industrial heat pumps

This section addresses mechanically driven heat pumps (HPs) due to their widespread application

[94]; however, it should be noted that sorption systems present different and interesting integration

options but are not within the scope of this work.

Townsend and Linnhoff [100] derived the theoretical foundation for optimal placement of heat

pumps in an industrial process based on pinch analysis: heat pumps should always be placed

across the process pinch point if energy savings are desired. In essence, energy savings are achieved

by recovering waste heat from below the pinch and, after upgrading it through application of

mechanical work, to supply it back to the process above the pinch temperature, which is hence

referred to as waste heat valorization or re-use.

There is one crucial factor which influences the efficiency of heat pump cycles: the required temper-

ature lift and thus the compression ratio. In the context of industrial waste heat valorization, the

temperature lift is directly linked to the "sharpness" of the pinch, meaning the shape of the process

grand composite curve close to the pinch point.

Figure 1.8 shows the temperature enthalpy diagrams of processes (A) and (B). Process (A) has sharp

pinch point with a small temperature lift. While process (B) shows a smooth pinch point with

heating and cooling requirements spanning over a range of temperatures. Integration of different

mechanical heat pump systems are illustrated, starting from a single-stage, single fluid (inverted
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1.4. Heat recovery potential in a process: pinch analysis

Figure 1.8 – Heat pump integration to process GCC. (A) GCC with "sharp" pinch point & single-
stage heat pump (HP), (B) "smooth" pinch point & single-stage HP, (1B) "smooth" pinch point &
multi-stage HP, (2B) mixture HP, (3B) inverse Brayton HP.

Rankine cycle) heat pump in Figure 1.8 (A) and (B). If a high temperature lift is required as illustrated

in Figure 1.8 (B), the efficiency of standard (single-stage, single fluid) heat pump cycles is drastically

compromised.

Three options to overcome this issue are discussed in the literature which are depicted in Figure 1.8

(1B-3B).

(1B) Multi-stage or cascaded heat pump cycles based on latent heat release/ consumption in

condenser/ evaporator with multi-stage compression and/or expansion [101–104], potentially

a cascade of cycles

(2B) Zeotropic mixture cycles based on latent heat release of mixtures where the difference in

fluid boiling points is expressed in a temperature glide and liquid/ vapor composition shift

during evaporation and condensation [105, 106]

(3B) Inverse Brayton cycle heat pumps based on sensible heat release and consumption in the

condenser and evaporator, respectively [107]

Single fluid (inverse Rankine) heat pumps can satisfy constant temperature thermal requirements

(single-stage) as well as continuous temperature ranges with help of multi-stage cycles at a rea-

sonable coefficient of performance (COP) (above 2). In generating a temperature glide, zeotropic

mixtures [105, 106] or heat pumps relying on the inverse Brayton cycle [107] may be advantageous

for demands spanning wide temperature ranges, but less flexible relative to constant temperature

requirements.

This thesis focuses on mechanically driven, single fluid, multi stage (inverse Rankine) heat

pumps (depicted in the first three diagrams in Figure 1.8 (A-B-1B)), due to their operational

flexibility, wide-spread application, and the technical realization being mostly dependent on

mature technologies [94].
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Chapter 1. Context and motivation

1.4.5 The use of PA throughout the thesis

The principles of PA are considered throughout the thesis. Therefore, a heat cascade formulation

from the literature [75] is adopted which is presented in Equations 2.14-2.15 of Chapter 2. The

formulation realizes heat recovery assessment in the process by imposing the second law of thermo-

dynamics to assure that heat is only transferred from higher to lower temperatures. This formulation

is the foundation of all methods developed in the main chapters (3-6) of the thesis, which are solved

with optimization techniques aiming at minimizing the total system cost.

It has to be noted that the pinch rules presented in Section 1.4.2, are thermodynamically driven,

while the objective functions of most optimization problems presented in the thesis are economically

driven, which may lead to solutions that do not comply with the pinch rules. Whenever the utility

temperature levels are, however, manually selected (as presented in Chapter 3) the pinch rules are

respected.

1.5 Integrated solar and heat pump systems

Before discussing the implications of PA on combined solar and heat pump placement in industrial

processes, a conceptual comparison between ST, PV, and HP systems is conducted. The sun-to-

thermal efficiency3 is presented in Figure 1.9 for two types of flat plate ST collectors (high- and low-

efficiency) and heat pumping driven by co-generation and two different PV systems. These are

further compared to PV with resistance heating.
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G , [18](Eq. 76); HP based on COP with exergy efficiency as specified.ΔT =T−Ta, Ta = 20 °C.

Figure 1.9 – Comparison of overall sun-to-heat conversion efficiencya, ST, PV and heat pump or
resistance heatingb.

It is observed that increasing temperature increment yields the best performance with high-efficiency

flat plate collectors. However, it should be noted that the applied efficiency correlation of Hottel and

Whillier [27]-type does not include an incidence angle modification (due to the sun inclination),

3 For HP with co-generation: natural gas-to-thermal efficiency.
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1.5. Integrated solar and heat pump systems

Figure 1.10 – Solar and heat pump integration into process GCC. (A) & single-stage HP, (B) ST, (C)
synergetic ST and HP, (D) complementary ST and HP, (E) ST.

which, if applied, would yield lower average efficiencies. Heat pumping with co-generation generates

similar (gas-to-thermal) efficiencies as the flat plate collectors even for a high temperature incre-

ments. High efficiency PV with an exergetically well designed HP (e.g. with liquid subcooling before

expansion) shows better efficiencies than the resistance heating case even for high temperature lifts.

The above presented analysis provides indications for the advantages of the different heating systems

not considering integration with an industrial process. Figure 1.10 depicts different options for

beneficial integration of solar thermal systems and heat pumping in an industrial process. Beneficial

refers to reducing the hot and/or cold conventional utility (boiler and cooling water) consumption.

Figure 1.10 (A) and (B,E) show the classical integration of a heat pump across the process pinch

temperature and a solar thermal system providing heat above the pinch, respectively. Two options

of combined solar and heat pump integration are shown in Figure 1.10 (C) and (D). Figure 1.10 (C)

presents an example of synergistic integration of both solar and heat pump systems. Providing solar

heat below the pinch to the self-sufficient pocket allows for a larger installation of the heat pump

and a drastic reduction in hot and cold utility requirements. Figure 1.10 (D) presents an example of

complementary installation of solar and heat pump system, where the solar energy satisfies the heat

requirement that is not provided by the heat pump.

This analysis exemplifies the need for systematic integration methods, in providing beneficial solu-

tions which do not necessarily comply with the classical pinch rules (section 1.4). Comprehensive

derivation of a range of options for a multitude of different process profiles cannot be manually

achieved which necessitates the use and derivation of systematic, mathematical programming

approaches presented in this thesis.
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2Solar modeling and design

Overview

• Presentation of solar technologies and respective modeling approaches

• Introduction to typical period clustering and testing

• Introduction of multi-period MILP sizing method

This chapter is a summary of the work presented in Wallerand et al. [110], Wallerand

et al. [111], and Selviaridis et al. [112]

This chapter aims at introducing the solar modeling and sizing approach applied in this thesis.

The goal of this chapter is to derive models for estimation of collector and storage performance

at sufficient precision while constraining the computational effort. The model performance is

compared to transient results (TRNSYS). A clustering algorithm [74] is applied to select typical

operating periods and several sets of typical days are compared. The sensitivity of the optimal sizing

towards the typical days selection is, further, analyzed.

After a state-of-the-art analysis, the different (static, dynamic) modeling approaches are presented,

followed by an introduction to the typical periods selection selection algorithm. In the subsequent

section, the system design and integration method considered in this work is discussed. In the

results and discussion section, the solar modeling approaches are compared to transient results and

the typical period selection criteria are elaborated.

2.1 State-of-the-art

The studies discussed in this section are compared in various aspects in Table 2.1. The solar modeling

and design approaches have already been discussed in the introduction of this thesis. Here, a few

further a points are highlighted, which were not mentioned before in order to increase conciseness.
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Chapter 2. Solar modeling and design

2.1.1 Solar collector modeling

Early work by Liu and Jordan [20], Perez et al.[21, 22] and others [18, 23–26] dealt with proper

assessment of incident direct and diffuse radiation on (inclined) surfaces.

This development went in parallel with the derivation of models for performance estimation of solar

(non-concentrating) thermal systems (STs) at steady-state by Hottel and Whillier [27] and by Klein

et al. [28] considering transience. The Hottel and Whillier equations augmented by incidence angle

modifiers [18, 26] are still the basis for performance calculation of solar thermal systems (ST and

CST) today.

2.1.2 Design of solar systems

This section addresses solar system design in the context of solar energy for industrial processes

(SEIP). As derived in the introduction section, three levels for solar integration to industrial processes

are treated in the literature ranging from solar systems analysis for industrial process applications

(SP) with focus on the solar system to studies addressing solar system and industrial process inte-

gration and optimization (SP-I). The literature presented in this section is focused on the aspects

of solar modeling and design with weaker focus on the industrial processes. Studies from any of

the three categories (SP, SP-A, SP-I) are hence considered as long as the solar design is treated in a

systematic manner.

As mentioned before, dynamic modeling provides the most detailed insights to solar (thermal)

systems and their transient behavior and was regularly applied to analyze a fixed design [31, 35,

36]. However, computational burden is high and evaluating enough design points to identify

favorable configurations, let alone application of more rigorous optimization strategies, often

exceeds the computational capacity. To overcome computational limitations, a large number of

studies presented correlations (mostly based on regression of results from transient analysis) to

estimate annual [37–39] or monthly [40–42] solar system performance.

Not based on dynamic modeling, however, based on a typical meteorological year (TMY) of hourly

data, Ashouri et al. [113] presented a mixed integer linear programming (MILP) approach for optimal

design and operation in urban districts. The computational effort is low, since integration with

an industrial process and its heat recovery system is not treated. Also Bühler et al. [64] presented

an nonlinear programming (NLP) approach using particle swarm optimization (PSO) and pattern

search to identify the optimal solar collector and storage sizing and operation considering a TMY

of hourly meteorological data. The model is sequentially solved, identifying the relevant heat

exchangers (HEXs) prior to sizing the solar system. The sub-ambient process side and refrigeration

was not included.

Another approach was presented by Kulkarni et al.[46, 47] as well as Quijera et al. [114, 115], who

based their conceptual design strategy on one annual average day.
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Table 2.1 – State-of-the-art summary of solar modeling and design studies for SEIP applications.

Author Year Foc Appr Obj Vars Siz. Ec. Solar modeling Proc. m. SC Process Description.
M dT Tool Stor. PA HEN

Hottel and Whillier [27] 1955 S M TP T, IRR F X S hour MEB X X X ST - Commonly used approximation of ST performance.
Liu and Jordan [20] 1960 S M TP IRR F X S - MEB X X X various - Determination of diffuse radiation on a horizontal surface.
Collares-Pereira and Rabl [23, 24] 1979 S M TP T, IRR B X S hour MEB X X X ST - Long term performance modelling of solar collector output.
Suehrcke and McCormick [25] 1988 S M TP air mass F X S inst. MEB X X X ST - Method for instantaneous determination of diffuse fraction.
Dudley et al. [34] 1995 S E TP T, IRR PR X D sec R,MEA X X X acrshortptc - Experimental results of PTC and polyn. regression.
Weinstock and Appelbaum [50] 2004 S D TP FD M-SQP(NLP) X S hour Matlab X X X FP,PV - NLP model of stationary field shading & optimal configuration.
Skoplaki and Palyvos [29] 2009 S R TP IRR F X S hour - X X X PV - Review of correlations for PV cell temperature derivation.
Talebizadeh et al. [48] 2011 S D TP FD M-GA (NLP) X S hour MEB X X X ST - Use of genetic algorithm for tilt and azimuth angle optimization for

maximal energy efficiency, considering static equations of [116].
Tiwari et al. [30] 2011 S R TP T,IRR F X S hour - X X X PV - Review of PV modeling, efficiencies and cost.
Yadav and Chandel [117] 2013 S R TP FD - X - - - X X X ST - Review of tilt angle optimization studies, methods, and correlations.
Klein et al. [118], [28] 1975 SP M TP - F X D hour,min.TRNSYS X X X various generic Work presenting the dynamic modeling tool TRNSYS.
Beckman et al. [40, 41, 119] 1977 SP D,M TP C,S,L B X D month φf-Chart X X X various generic Modeling approach based on fitting functions from TRNSYS results.
Clark [120] 1982 SP A E cost F X S year MEB - X X acrshortptc - Break-even cost analysis of parabolic troughs in US.
Gordon and Rabl [37],[38] 1982 SP D,M E C R X S year,

reg(hour)
MEB X X X FP textile Optimal collector sizing based on economic analytical optimization,

based on polyn. regression of hourly static calculations [38].
Duffie and Mitchell [119] 1983 SP M,E TP C,S,L F X S month f-Chart X X X ST - Testing of f-chart method with performance measurements.
Collares-Pereira et al. [43] 1984 SP D E C,S A X S year MEB X X X various generic Analytical storage and collector sizing method (incl. weekend storage).
Suehrcke and McCormick [42] 1992 SP D,M,E TP C,L F X S month MEB X X X ST - Yearly fraction estimation method considering a bi-modal control

strategy validated with experiments.
Kalogirou [35] 2003 SP A TP - F X D hour TRNSYS X X X ST - Comparison of the performance of various flat plate collectors for SHIP

applications in Cyprus.
Kalogirou [39] 2004 SP D,M E C,S M-GA (NLP) X D year ANN,GA X X X various food Train ANN from TRNSYS data, use GA to optimize fitted functions.
Kalogirou et al. [121] 2007 SP A TP - F X D hour TRNSYS X X X PV/T - Economic and energetic comparison between various PV/T systems.
Kulkarni et al. [46],[47] 2009 SP D,M E C,S B X S hour,

av. d.
DSM X X X various milk

past.
Design space method for solar collector and storage sizing, however,
based on an average day.

Silva et al. [31] 2013 SP M,E TP FD F X D hour TRNSYS,
Modelica

X X X acrshortptc generic Dynamic modeling including ray tracing of parabolic troughs for in-
dustrial process heat applications.

Silva et al. [33] 2014 SP D TEP FD,S M-GA (NLP) X D VST R,Modelica X X X acrshortptc generic Memetic GA applied to optimize various design variables in CSE plants
with fixed process load. Collector performance polynomially fitted.

Baniassadi et al. [122] 2016 SP D TP SF R X S year MEB X (X) X HF generic R-curve method to add renewables to a co-generation system.
Meyers et al. [73] 2018 SP M,Pb E C B X D,S year,

reg(hour)
R,TRNSYS X X X various - Method for cost comparison between solar thermal and photovoltaics

via resistance heating based on regression model.
Ashouri et al. [113] 2013 SU D,O E C,control M-BC(MILP) X S hour MEB X X X ST,PV urban Optimal design and control of urban district for a TMY.
Fazlollahi et al. [123, 124] 2014 SU D,O TEP C,control M-

GA(MINLP)
X S hour MEB X X X ST,PV urban Multi-period MINLP design of urban energy systems (based on de-

composition strategy [125]) based on typical days.
Quijera et al. [114, 115] 2011 SP-I D TP SF C X S hour MEB X X X ETC various Solar system design based on desired solar fraction and av. annual day.
Mian [65] 2016 SP-I D,O TEP C,control,

HEX
M-PGSCOM
(MINLP)

X S hour,
av. d.

MEB X X X CSE,PV fuel Multi-period HEN design and solar sizing based on four av. seasonal
days applied to hydrothermal gasification.

Bühler et al. [64] 2016 SP-I D,O E HEX, C M-PSO
(MINLP)

X S hour MEB X X X FP dairy Process integration, HEN synthesis and solar sizing (sequentially
solved) in a dairy case study (considering process hot side).

Focus: Solar (S), Solar integration to urban system (SU), SP, SP-A, SP-I based on notation presented in the introduction Section, Figure 2
Approach: Design (D), operation (O), modeling (M), analysis (A), potential (P), review (R), empirical (E)
Objective: Thermodynamic principles (TP), economic (E), thermo-economic (TEP), technical (T)
Variables: temperature (T), collector area (C), storage size (S), load (L), irradiation (IRR), field design (FD), solar fraction (SF), location (LOC)
Sizing: Fixed (F), brute forcing (variation of parameters, identification of maxima) (B), mathematical programming (M - genetic algorithm (GA) - sequential quadratic programming (SQP) - branch and cut (BC)), conceptual methods (C), R-curve analysis
(R), analytical (A), polynomial regression (PR)
Economic (Ec.): economics considered in study (X,X)
Modeling (M): (Quasi-) static (S), dynamic (D)
Time discretization (dT): instantaneous (ins.), variable time step (VST); horizon: unless stated differently: yearly analysis; unless specified differently (the discretization is usually applied to the scope of one year)
Tool: Mass and energy balances (MEB), design space method (DSM), regression (R), measurements (MEA)
heat exchanger network (HEN): X- full HEN design (analysis), (X) - focus on identification of relevant HEX for solar integration, X - no specific HEN design
Solar collector types (SC): Evacuated tube collectors (ETC), flat plate (FP), power tower heliostat field (HF), parabolic trough (PTC), flat plate photovoltaic and thermal systems (PVT), compound parabolic concentrator (CPC)
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Mian [65] used four seasonal average days for their design method using a multi-period mixed integer

nonlinear programming (MINLP) approach (with a sequential solution strategy) to design the solar

system and HEN. Typical days (periods) were addressed in a rigorous manner by Domínguez-Muñoz

et al. [126] for combined heat and power (CHP) applications, and Fazlollahi et al. [123] and Rager

[127] for ST integration to urban energy systems. The methods applied rely on k-medoids or k-means

clustering [74] to agglomerate meteorological or energetic data into smaller sets demonstrating that

data clustering reduces the computational effort while maintaining a desired accuracy. Domínguez-

Muñoz et al. [126] did not consider solar technologies, while Fazlollahi et al. [123] did not focus

on the solar system accuracy and neither on the aspect of components sizing, addressing optimal

operation instead.

2.1.3 Discussion and contribution

The state-of-the-art analysis can be summarized in a few main points.

1. Extensive work has been conducted to model (static and dynamic) solar performance accu-

rately at hourly or minutely timescales.

2. Solar design were often applied with aid of monthly or annual regression models, which are

limited in their applicability especially considering the storage system.

3. Rigorous design with mathematical programming has been applied in a yearly scope (TMY) of

hourly time steps, if integration with the process side is not simultaneously addressed.

4. Rigorous, simultaneous solar system and industrial process design requires a reduced time

horizon often resolved with typical or average days.

5. Clustering techniques for typical period selection were applied, but not comparatively studied

at detail.

This chapter addresses points (3) and (4), by proposing a solar system and storage modeling ap-

proach which allows to estimate collector and storage performance at sufficient precision and

constrains the computational effort. The model performance is compared to transient results from

Transient System Simulation Tool [2] (TRNSYS). A clustering algorithm [74] is applied to select typical

operating periods, and selection of the correct number of periods was derived. The contributions in

this chapter are the adaptation of the multi-period MILP approach from Maréchal and Kalitventzeff

[75] for SEIP applications and the comparative analysis of the typical period selection.

2.2 Problem statement

The goal of the research presented in this chapter can be summarized as depicted below.
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Problem statement

Given

• solar collector technology

• meteorological data

Determine

• governing performance equations as a trade-off between accuracy and computational

effort

• typical days

• rigorous design approach in the context of solar process integration

2.3 Modeling

2.3.1 Solar technologies

As derived in Section 1.2, the focus in this work is placed on non-concentrating, low-temperature

ST and photovoltaic module (PV) systems. A novel high concentration photovoltaic and thermal

system (HCPVT) system [86–88] co-generating electricity and low-temperature heat (<100 °C) is also

compared to traditional technologies. In the subsequent sections the static performance equations

of the three solar systems are presented.

2.3.1.1 Solar irradiation on inclined surfaces

Global horizontal radiation The global solar radiation incident on a horizontal plane is composed

partly of direct and partly of diffuse radiation reflected from the ground, clouds and the atmosphere.

As mentioned in the meteorological data section, a common measurement provided by weather

stations around the globe is the global horizontal irradiation (GHI, gh, [W/m2]) as well as the direct

normal irradiation (DNI, bn, [W/m2]) or beam radiation. The global horizontal irradiation (GHI) is

derived from the diffuse and the direct radiation incident on a plane [128].

gh = dh +bh

= dh +bn ·cos(θs)
(2.1)

Where dh [W/m2] is the diffuse horizontal and bh [W/m2] is the direct horizontal radiation, θs [°] is

the solar zenith angle indicated in Figure 2.1 (in grey) as the angle between the earth surface normal

(zenith, z) and the sun.

Global radiation on inclined surface The global radiation present on an inclined surface, i, is

derived from the solar beam on the slope and the present diffuse radiation. The direct beam on an

inclined surface is calculated by the product of the direct horizontal radiation and the cosine of the
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Figure 2.1 – Angles of the sun towards earth normal and inclined surface.

incidence angle between beam and slope. Calculation of the diffuse component on a slope is not

trivial since the diffuse sky radiation is anisotropic meaning that it is not uniformly distributed over

the hemisphere. Perez et al. [21, 22] offer correlations for modeling the anisotropic component of the

diffuse radiation. In order to keep the problem at reasonable complexity the isotropic diffuse model

proposed by Lui and Jordan [129], reprinted in Duffie and Beckman [26], is used in this work. It is

divided into three components: the beam, isotropic diffuse, and global radiation diffusely reflected

from the ground (Eq. 2.15.1 Duffie and Beckman [26]).

gi = bn ·cos(λis)︸ ︷︷ ︸
bi

+dh ·
(

1+cos(θi)

2

)
︸ ︷︷ ︸

di

+gh · ρg ·
(

1−cos(θi)

2

)
︸ ︷︷ ︸

ggr,i

= bi +di +ggr,i

(2.2)

Where bi [W/m2] is the direct beam, di [W/m2] is the sky diffuse and ggr,i [W/m2] is the ground

reflected diffuse radiation present on the surface i, θi [°] is the slope inclination angle. The ground

reflectivity, ρg [-], is fixed at 0.154 as given by Ineichen et al. [130].

Under the assumption that the solar angles are known, the incidence angle of the solar beam with

respect to an inclined surface, λis [°], can be calculated (Eq. 1.6.3 Duffie and Beckman [26]) as

follows.

cos(λis) = cos(θs) ·cos(θi)+ sin(θs) · sin(θi) ·cos
(
γs −γi

)
= sin(αs) ·cos(θi)+cos(αs) · sin(θi) ·cos

(
γs −γi

) (2.3)

Where θs [°] is the solar zenith angle (vector), θi [°] surface inclination angle, γs [°] is the solar

azimuth angle (vector), and γi [°] is the surface, i, azimuth angle.
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2.3.1.2 Solar (non-concentrating) thermal system (ST): flat plate thermal collector (FP)

The efficiency of solar thermal collectors at steady state conditions is commonly described by a

quadratic performance curve that depends on the operating temperature, Tm
FP = 0.5·(Tin

FP +Tout
FP

)
[°C],

the incoming radiation intensity during that period, gi,p [W/m2], the ambient temperature during

period p, Ta,p [°C], the conversion factor, η0
FP [-], and two experimental parameters accounting for

convection and radiation heat losses, a1
FP [W/Km2] and a2

FP [W/K2m2].

The general conversion factor, η0 [-], is defined by the absorber material, thickness, and heat transfer

fluid flow characteristics. The first experimental coefficient is usually related to the collector convec-

tive heat losses, and the latter is influenced by the collector re-radiation losses. The temperature

dependent efficiency Equation 2.4 is then written as follows (Duffie and Beckman [26] Eq. 6.17.7,

[60]).

ηth
FP

,p = ηFP
0 −aFP

1 · TFP
m −Ta,p

gi,p
−aFP

2 ·gi,p ·
(

TFP
m −Ta,p

gi,p

)2

∀p ∈ P (2.4)

The formula accounts for a reduction in efficiency for operating temperatures higher than the

ambient (due to thermal losses) and for reduction in efficiency due to reduced radiation intensities

at normal incidence. However, since panels are installed at a fixed position, an incidence angle

modifier, fIAM [-], is introduced in order to account for optical losses related to the angle of the

incident radiation. By definition, it is set to one at 0 ° incidence and is usually provided at 50 °. In

order to find other data points a cosine law is traditionally suggested (e.g. 6.17.10 [26] also in ASHRAE

93-2003), which however cannot be evaluated for angles close to 90 °. Therefore an Ambrosetti-type

equation [131] is used here which can be evaluated up to 90 °.

fIAM
FP (λ) = 1− tana

(
λ

2

)
(2.5)

Where the coefficient a is usually derived from known data at a certain inclination (e.g. 50 °); For

beam radiation, the incidence angle, λ [°], is equivalent to the solar angle of incidence on the

slope, λis [°]. For the diffuse and ground reflected component, the incidence angle is found from

Equation 2.6 based on the slope inclination angle, θi
FP [°], (Duffie and Beckman [26], Figure 5.4.1, Eq.

5.4.1, 5.4.2).

λid = 90−0.5788 ·θi
FP +0.002693 · (θi

FP
)2

λigr = 59.7−0.1388 ·θi
FP +0.001497 · (θi

FP
)2 (2.6)
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With this, the time-dependent thermal energy production, Q̇FP
p [kW], of the solar flat plate collectors

FP can be formulated.

Q̇FP
p = ηth

FP
,p · fFP

field ·
(
bi,p · fFP

IAM,ib,p +di,p · fFP
IAM,id +ggr,i,p · fFP

IAM,ir

)
·AFP ∀p ∈ P (2.7)

Where each type of radiation (direct beam, bp,i [W/m2], sky diffuse, dp,i [W/m2], ground reflected

diffuse, gp,gr,i [W/m2]) is multiplied with the respective incidence angle modifier from Equation 2.5

and Equation 2.6, the collector area, AFP [m2], the thermal field loss factor, ffield
FP [-], and the efficiency

from Equation 2.4.

2.3.1.3 Photovoltaic module (PV)

As mentioned before, the two main parameters influencing the PV performance is the cell tempera-

ture and the irradiation intensity. The cell temperature can be determined by correlations found in

the literature (Eq. 23.3.4 Duffie and Beckman [26]).

Tc,p
PV = Ta,p +

gi,p

gNOCT
· 9.5

5.7+3.8 ·va,p
·
[

1− η
PV
el

(τα)

]
· (TNOCT

PV −Ta,NOCT
) ∀p ∈ P (2.8)

where Ta,p [°C] is the (time dependent) ambient temperature during period p, va,p [m/s] is the

ambient wind speed during period p, and gi,p is the global incident radiation on an inclined sur-

face during period p (see 2.3.1.1). The irradiation, gNOCT, of 800 W/m2 and ambient temperature ,

Ta,NOCT, of 20 °C during nominal cell operating temperature (NOCT) conditions are pre-set parame-

ters. The nominal cell operating temperature, TNOCT
PV [°C], is a parameter measured and provided

by the module manufacturer. The ambient temperature and wind speed are provided from the

meteorological data described in Section 3.2.3.2.

A factor accounting for the influence of the incident radiation intensity is calculated by linear

interpolation between the standard testing conditions (STC), defined at a radiation, gSTC, of 1000

W/m2 and a cell temperature, TSTC, of 25 °C, and the certified indication at g200 200 W/m2.

fg,p
PV = f200 +

(
gi,p −g200

)
· 1− f200

gSTC −g200
∀p ∈ P (2.9)

The time-dependent electricity production ĖPV
p [kW] is then written according to the following (Eq.
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23.2.16 [26]).

ĖPV
p = ηel

PV · fPV
gen · fg,p

PV · [1− fPV
T · (Tc,p

PV −TSTC
)] ·gi,p ·APV ∀p ∈ P (2.10)

where APV [m2] is the module area, ηel
PV [-] is the module reference electrical efficiency, fT

PV [-] is the

temperature reduction factor, fgen
PV [-] is the generator electrical conversion efficiency factor.

2.3.1.4 Photovoltaic and thermal (HCPVT)

The high concentration photovoltaic and thermal system (HCPVT) system is novel technology under

development by Airlight Energy Holding SA [86, 87, 132]. It consists of a multi-facet concentrating

dish (reaching concentrations up to 2000).

High concentration devices only convert direct beam radiation. In the focal point, a multi-cell

receiver is placed, which is equipped with PV cells, efficiently cooled by a micro-channel cooling

system. A secondary concentrator is placed around the receiver which also needs to be cooled.

Thermal energy is harvested from the micro-channel (primary cooling), and the secondary con-

centrator (secondary cooling). Due to the high concentration ratio, and based on the results from

dynamic modeling [112], the efficiency is assumed to be independent of the incident radiation

intensity and due to the two axis tracking the angle of incidence is always zero. The time-dependent

electricity, ĖHCPVT
p [kW], and thermal energy production, Q̇HCPVT

p [kW], is formulated according to

the following.

ĖHCPVT
p = fHCPVT

gen ·ηHCPVT
el ·bn,p ·AHCPVT ∀p ∈ P

Q̇HCPVT
p = QHCPVT

prim,p

∣∣∣THCPVT
out,prim

THCPVT
in,prim

+ QHCPVT
sec,p

∣∣∣THCPVT
out,sec

THCPVT
out,prim

= fHCPVT
field ·

(
η

HCPVT
th, prim +ηHCPVT

th, sec

)
·bn,p ·AHCPVT ∀p ∈ P

(2.11)

where bp,n is the direct beam normal radiation in period p and ηel
HCPVT is the PV electrical conversion

efficiency, and fHCPVT
field is the thermal field loss factor. The primary efficiency, ηHCPVT

th,prim [-], stems

from the PV cell cooling while the secondary efficiency, ηHCPVT
th,sec [-], is derived from the cooling of

the secondary concentrators positioned immediately prior to the receiver. The PV cell cooling is

constrained by the cell temperature which should not exceed 100°C; and assuming a minimum

temperature difference in the heat exchanger of ΔTmin of 5K, the cooling stream cannot reach

temperatures higher than 95°C. The secondary cooling, contrary to the restriction imposed for the

primary PV cooling, can reach any temperature. Therefore, two thermal streams are produced which

are between the three temperatures THCPVT
in,prim, THCPVT

out,prim, and THCPVT
out,sec .
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2.3.2 Meteorological data clustering

2.3.2.1 Meteorological data

Due to the non-surprising difficulty of predicting future weather data, a common approach is the

use of weather data from a typical meteorological year (TMY) [133]1. A TMY is derived based on

hourly historical data from a minimum period of ten years, in which each monthly profile is selected

from an individual year selected by statistical indicators.

Weather data of locations which do not possess historical measurements are usually interpolated.

The interpolation of weather data obviously leads to errors which cannot be avoided. In tandem with

planning solar installations, reliable meteorological data should hence be acquired. Meteonorm7.0

[134] and SolarGIS [135] are standard (proprietary) softwares, which provide such (interpolated)

data. Most transient modeling tools provide TMY data [2, 136]. If higher data resolution is desired

(e.g. minute-by-minute) Meteonorm7.0 applies noise on the hourly averages. The meteorological

data usually contained in a TMY are: direct normal irradiation (DNI), global horizontal irradiation

(GHI), dry bulb temperature, humidity ratio, wind velocity, and the solar angles. Throughout this

work, an hourly and minutely TMY [134] for the city of Sion, Switzerland (CH), is considered.

2.3.2.2 Typical periods selection

The MILP presented in the subsequent section relies on typical operating periods. This section

presents a strategy for selecting those periods in a systematic manner.

k-means or k-medoids clustering is usually applied when robustness to outliers is required, or

when the mean or median do not have a clear meaning. Weather data for optimal design of solar

systems naturally falls into both categories. k-medoids clustering was selected since the resulting

set is always a subset of the original data. A Matlab [137] function, which is based on the widely

employed partitioning around medoids (PAM) algorithm [74], was used in order to reduce the

problem size from 8760 points of hourly weather data to below 500 points. In Appendix B.3 the data

and parameters are described in more detail. Following the indications of Domínguez-Muñoz et al.

[126], the typical days were built from n clusters with and without 2 extreme days.

If extreme days are desired, then they are removed from the data set in advance and the clustering is

applied on the remaining data. For clustering, three weather data were chosen which influence the

solar performance the most: direct normal irradiation (DNI), GHI, and the ambient temperature.

Since the DNI fluctuates the most on an hourly, daily, and monthly basis with a high influence on the

solar output, it was chosen as the main reference for determination of the performance indicators.

Also the extreme days were determined based on the DNI.

1 There are various developments related to TMYs, which are distinguished by TMY, TMY-2, TMY-3

32



2.4. System design and integration

The procedure for finding the optimal number of clusters is divided into three steps:

1. Data normalization: The data are scaled such that all values are represented between zero

and one [0,1]. Additionally, they are sub-divided into 365 data knots, each containing 24 hours

of data.

2. k-medoids clustering: Data clustering is performed, increasing the number of clusters after

each iteration until the stopping criterion is met. Since the clustering is a heuristic approach,

for each number of clusters a set of iterations is conducted, and only the best ones are kept for

further analysis.

3. Stopping criterion: The mean squared error of the normalized load duration curve (LDC) of

the DNI is used as stopping criterion, as it is found that the LDC is best representing the data

characteristics.

mELDC2 =

8760∑
t=1

(
LDCoriginal (t )−LDCtypical days (t )

)2

8760
(2.12)

2.4 System design and integration

The solar sizing approach was based on utility targeting constraints [138, 139] which are commonly

used for optimization of industrial process heat recovery and utility systems considering pinch

analysis (PA). The rigorous MILP formulation can be extended to address multi-period problems [75].

This forms an excellent basis for a comprehensive approach which addresses optimal integration of

solar energy in industrial processes. In the following paragraphs, the targeting constraints, which will

be the basis for most of the developments presented in this thesis, are described in detail together

with the modeling of the solar utilities.

2.4.1 Objective function

The objective function can be adapted to the respective needs. It needs to be formulated from linear

dependencies of the decision variables in order to remain in the linear domain. Below, an exemplary

objective function (as used in Chapter 3) is presented. Scalar decision variables are represented by

italic letters and parameters by standard text; vectors and sets are represented in bold. In this case,

the objective is the minimization of the total annualized cost (TAC, depicted in Equation 2.13) which

is composed of the operating cost of each utility technology w during period p and the annualized

investment that is found with aid of the maximum size of each technology.

min
y w

p , f w
p ,y w , f w

∑
p∈P

( ∑
w∈W

OPw
1,p · y w

p +OPw
2,p · f w

p

)
· ∆tp ·occp︸ ︷︷ ︸

Operating cost

+ ∑
w∈W

(
IVw

1 · y w + IVw
2 · f w )

︸ ︷︷ ︸
Investment cost

(2.13)
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Where
P set of periods {1,2,3, ...,np }
W set of utility technologies w
f w

p ∈ R+ continuous variable for sizing technology w during period p
y w

p ∈ {0,1} binary variable related to existence of technology w during p
f w maximum size of technology w
y w overall existence of technology w
OPw

1,p [e/h] fixed operating cost for using the technology w during period p

OPw
2,p [e/h] proportional operating cost for using technology w during period p and is scaled with the multiplication factor

IVw
1 [e/y] annualized, actualized fixed cost related to the investment of technology w

IVw
2 [e/y] annualized, actualized proportional cost related to the investment of technology w
Δtp [h] operating time of period p
occp [1/y] the occurrence of period p

2.4.2 Constraints

Heat cascade constraints The second law of thermodynamics states that heat can only flow from

a source at higher temperature to a sink at colder temperature and is expressed in the heat cascade

constraints in Equation 2.14-2.15. These constraints ensure maximum heat recovery in the system,

which refers back to the principles of PA presented in Section 1.4.

∑
w∈W

fw
p · Q̇

w
p,k +

∑
s∈S

Q̇
s
p,k + Ṙp,k+1 − Ṙp,k = 0 ∀ p ∈ P,k ∈ K (2.14)

Where
P set of time periods {1,2,3, ...,np}
K set of temperature intervals {1,2,3, ...,nk}
S set of process streams
Q̇

w
p,k [kW] reference heat release or demand of a utility technology w during period p in the temperature interval k

Q̇
s
p,k [kW] heat release or demand of process stream s during period p in the temperature interval k

Ṙp,k [kW] residual heat of temperature interval k −1 that is cascaded to interval k during period p

Thermodynamic feasibility The thermodynamic feasibility ensures a closed energy balance, as

shown in Equation 2.15.

Ṙp,k ≥ 0, Ṙp,1 = 0, Ṙp,nk+1 = 0 ∀ p ∈ P,k ∈ K (2.15)

Existence of a technology The maximum size of operation and existence of technology w is given

by Equation 2.16.

f w − f w
p ≥ 0 ∀w ∈ W, p ∈ P

y w − y w
p ≥ 0 ∀w ∈ W, p ∈ P

fw,min · y w
p ≤ uw

p ≤ fw,max · y w
p ∀w ∈ W, p ∈ P

(2.16)
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where fw,min [-] is the minimum size parameter of technology w and fw,max [-] is the maximum size

parameter of technology w .

Electricity balance The electricity balance in Equation 2.17 is closed by considering the electricity

input and output of all utility technologies w .

∑
w∈W

fw
p · Ė

w = 0 ∀ p ∈ P (2.17)

Where Ė
w

is the reference electricity consumption (positive) or production (negative) of a utility

technology w during period p.

Natural gas balance The natural gas balance in Equation 2.18 is closed by considering the natural

gas input and output of all utility technologies w .

∑
w∈W

fw
p · Q̇ng

w = 0 ∀ p ∈ P (2.18)

Where Q̇ng
w is the reference natural gas thermal input (positive) or output (negative) of utility

technology w during period p.

Solar equation An additional equation for the solar utilities is introduced, since their utilization

(multiplication factor), which is equivalent to the installed capacity of collectors or panels, cannot

vary over different time steps. Here the intention is not to waste solar energy and, therefore, always

to operate the solar field at full capacity rather than actively shading parts of the collector field or

defocussing the trackers if less capacity is needed. Hence, the multiplication factor in period p

needs to be equal to the maximum multiplication factor. This implies that if the solar system is

delivering more heat than the amount needed by the process, cooling water will be consumed to

evacuate the surplus heat.

f w s − f w s
p = 0 ∀w s ∈ Ws ⊂ W, p ∈ P (2.19)

Where Ws is the set of solar utility technologies which is a subset (⊂) of the set of all utility tech-

nologies W. The solar radiation input and therefore the output does change with time, but that is

accounted for in the constant solar heat release Q̇
w s
p,k [kW] of solar technology w s during period p

in temperature interval k. The solar heat release is defined in Equation 2.7 for flat plate thermal

collectors (FPs), in Equation 2.10 for PVs, and in Equation 2.11 for HCPVTs.
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Thermal storage constraints The thermal storage model presented by Becker [140] was adapted

to fulfill the imposed requirements of accuracy and reasonable computational effort. The model

of Becker [140] assumes several isothermal tanks which are connected, and between which mass

is transferred when the storage is charged or discharged. A higher number of isothermal storage

tanks may increase the discretization and with that the precision, however preliminary results have

shown that this occurs at high computational costs. Therefore, the mass storage presented by Moret

et al. [141] was further developed to represent a thermal storage tank assuming a fully stratified tank

between two temperature levels and proportional losses. The respective constraints are presented

in Equation 2.20 - 2.24.

The energy balance of the storage is formulated in Equation 2.20.

f st
p =

 f st
p−1 · fst

loss +
(

f st ,i n
p − f st ,out

p

)
·Δtp , p ∈ P\{1}

f st
|P| · fst

loss +
(

f st ,i n
p − f st ,out

p

)
·Δtp , p = 1

∀st ∈ STO (2.20)

Where f st
p [-] is the sizing factor during period p of storage unit st , f st ,i n

p [-] is the inlet unit sizing

factor during period p of storage unit st , f st ,out
p [-] is the outlet unit sizing factor during period p of

storage unit st , fst
loss [-] is the loss factor of storage unit st , f st

|P| is the sizing factor at the end of the

set of periods |P|, andΔtp [h] is the operating time of period p. The cyclic constraint depicted in

Equation 2.21 ensures that the storage content is the same at the end of each cycle.

f st
|P| = f st

ω ∀ω=Ω · l , l ∈ {1,2, ..., |P|/Ω }∀st ∈ STO (2.21)

WhereΩ is the storage cycle length (in number of periods) and is usually 24 periods and l is the cycle

index. The charging constraint depicted in Equation 2.22 ensures that storage charge and discharge

do not happen at the same time.

y st ,i n
p + y st ,out

p ≤ 1 ∀st ∈ STO (2.22)

Where y st ,i n
p [-] is the inlet unit existence during period p of storage unit st , {0,1} and y st ,out

p [-] is the

outlet unit existence during period p of storage unit st , {0,1}. The heat which is transferred to the

storage tank, Q̇ st [kJ/period], during the charge and discharge mode is depicted in Equation 2.23.

Q̇ st ,i n/out = f st ,i n/out
p ·cst

p · V̇
ref,st ·ρst · (Tst

h −Tst
c

) ∀st ∈ STO (2.23)
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Where cst
p [kJ/kgK] is the specific heat capacity of fluid in storage unit st , V̇

ref,st
[m3/period] is the

reference volume flow rate of storage unit st , ρst [kg/m3] is the density of fluid in storage unit st ,

Tst
h [°C] is the hot temperature of storage of storage unit st , and Tst

c [°C] is the cold temperature of

storage of storage unit st . The volume of storage material, V st
p [m3], which is at hot temperature of

storage of storage unit st , Tst
h , is given by Equation 2.24.

V st
p = f st

p ·Vref,st ∀st ∈ STO (2.24)

Where Vref,st is the reference size of the storage, which is equal to 1 m3.

Computational environment The overall thermo-economic model is solved in Lua-based plat-

form OSMOSE developed at École Polytechnique Fédérale de Lausanne in Switzerland [142, 143]. In

the Lua-based platform, the MILP problem is converted to A Mathematical Programming Language

[3] (AMPL) and then solved by IBM ILOG CPLEX Optimization Studio [5] (CPLEX).

2.5 Results and discussion

2.5.1 Solar technologies

2.5.1.1 Flat plate thermal collectors (FPs)

Flat plate thermal collectors (FPs) were modeled based on hourly static equations. The full list of

equations is presented in Section 2.3.1.2. For comparison a TRNSYS model was created to quantify

the difference between the static and transient performance estimation. The TRNSYS model relied

on standard components, the collector was modeled with a Type 539, the pump with a Type 3b,

the temperature was controlled through flow regulation with a Type 22, as depicted in Figure 2.2.

The irradiation on the slope was estimated with a newly made component based on the Lui and

Jordan [129] approach presented in Section 2.3.1.1. Table B.4 in Appendix B.2.3.2 shows the input

data of the FP collector considered in this section and in Section 3.3. The average efficiency found

by the TRNSYS model was 16.8%, while the static, hourly model yielded 17.1%, resulting in a 3 %

error. It has to be noted that this efficiency is very low, which is related to the fact that the collector

is operated at temperatures at the upper limit of its feasible range. The solar collector catalog [109]

presented similar yearly estimations for the city of Sion. This shows on the one hand, that the

modeling equations were correctly chosen, however, the collector type, or technology may in future

work be reconsidered. Other non-concentrating options are evacuated tube collector (ETC) which

yield higher efficiencies, at higher costs. In Chapter 3, the here presented collector is studied, while

in Chapter 6 more efficient collector technologies are assumed.
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Figure 2.2 – TRNSYS flowchart of flat plate collector model.

2.5.1.2 Photovoltaic modules (PVs)

The photovoltaic modules (PVs) were modeled based on hourly static equations with the assumption

that the transient behavior is negligible. A full description of the parameters used to model the

photovoltaic modules (PVs) is presented in Table B.5 in Appendix B.2.3.3.

Figure B.3 shows the conversion efficiency from the global horizontal irradiance (GHI) gp,i in each

period p to the electricity produced in the photovoltaic modules ηPV
p,tot = EPV

p /(gi,p ·APV), where EPV
p is

the electrical production of a PV module in period p. As discussed previously, the GHI only covers the

fraction of the solar radiation that hits the earth at a perpendicular angle. This allows the conversion

efficiency (if it is described in this manner) to exceed the rated efficiency of the PV modules (e.g. on

day 1), since the inclined modules may capture more of the inclined sun rays than the GHI takes

into account. The assessment also changes if shadowing was taken into account, though this was

not considered as a factor in this study. The winter days (1, 4, and 9) show due to this peculiarity and

due to lower ambient temperatures the highest efficiencies. In agreement with the observation from

the plate collectors, it can be seen that higher inclinations are favored in winter days while lower

inclination angles perform better during summer days. The highest overall efficiency was found for

the lowest inclination angle of 30° with an average of 18.5 %. Such efficiencies may only be reached
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for high performance PV modules such as the ones assumed. More detailed modeling, considering

shading and conversion losses, will most likely show lower performance values.

2.5.1.3 High concentration photovoltaic and thermal system (HCPVT)

The high concentration photovoltaic and thermal system (HCPVT) system is novel technology under

development by Airlight Energy Holding SA [86, 87, 132]. It consists of a multi-facet concentrating

dish (reaching concentrations up to 2000), which focuses solar energy on a multi-cell receiver

covered with highly efficient photovoltaic cells. The multi-cell receiver requires constant cooling, so

that the photovoltaic cells do not overheat.

Since the HCPVT is still under development, no standard component in TRNSYS could be found

to adequately model the transient behavior. Therefore, a dynamic model was created in C++ and

linked to TRNSYS. A detailed description of the dynamic model can be found in Refs. [110, 144].

The main challenge was modeling the thermal mass of the multi-cell receiver component, as well

as managing the flow control, such that the cell temperature never exceeds 100 °C. A comparison

between transient and static model was conducted and it was shown that the error between static

and dynamic model was approximately 5%, meaning that the static model slightly overestimated

the solar production. Therefore, the parameters used in this thesis (depicted in Table B.6), were

adapted to show lower efficiencies than in Wallerand et al. [110]. The details of the static model and

the parameters assumed are presented in Appendix B.2.3.4.

2.5.2 System design: Sensitivity to data clustering

The clustering algorithm was applied to the data set of Sion (CH) and different numbers of typical

days (clusters) were selected, as shown in Table 2.2. Several quality indicators are depicted for the

various cluster sizes, including the mean error of the load duration curve (mELDC) presented by

Fazlollahi et al. [123], as well as the deviation from the load duration curve of the average (CDC)

[123], and the profile deviation (profile) [123], and the newly derived mean squared error of the load

duration curve (mELDC2), presented in Equation 2.12.

The typical periods were applied to the case study presented in Chapter 3, and the results are shown

in Table 2.2. What can be observed is that with increasing number of clusters in the typical periods,

the resolution time increases. It can be further seen that the optimal collector size, together with

the storage and objective function converge to similar numbers for increased number of clusters. It

can be concluded that four clusters or less, as used by many studies (in the form of seasonal days),

are absolutely insufficient for optimally sizing the system. Interestingly, eight typical days with two

extreme days show lower resolution time than eight days without extreme days. It turns out that

the CDC is not a good indicator, since the difference in the CDC between six and eight clusters was

comparatively small (0.5%), even though the results are significantly different (6% difference in

collector size). Likewise conclusions can be drawn for the profile deviation. Both the mELDC and
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Table 2.2 – Different numbers of typical days and influence on results of MILP case study presented
in Chapter 3. Indicators with respect to DNI.

Number of clusters 4 6 8 8+2a 20

mELDC 0.013025 0.010251 0.0071645 0.0070295 0.005558
mELDC2 6.147×10−4 3.989×10−4 1.65×10−4 1.627×10−4 9.717×10−5

CDC 0.71387 0.49138 0.49282 0.46184 0.30262
Profile 1.0595 0.78829 0.78368 0.73987 0.57291

Resolution time [s] 56.5036 665.781 1370.73 682.021 3416.75
Collector size [-] 73.9372 46.7654 43.8621 43.5626 43.5819
Storage size [-] 1182.46 781.398 646.696 654.462 724.065
Objective [$/y] 732219 478813 448042 432347 450952

a Eight typical days and two extreme days (selected based on DNI)

the mELDC2 show a higher sensitivity to the higher number of clusters which is in agreement with

the results precision, and are, therefore, both recommended as quality indicators.

For the underlying study, eight typical days with two extreme days were selected, due to the reduced

resolution time and the sufficient accuracy compared to 20 clusters. The collector efficiency was

compared to the previous results and yielded consistent results. The limit was identified based on

the last non-acceptable number of days to be 3.5×10−4 (below six typical days). In future studies, it

is recommended to always test the results of the clustering on the real model, as not to improperly

identify the numbers of clusters.

2.6 Conclusions

How can solar system design be accurately and rigorously addressed?

This chapter served as an introduction to the approach considered for modeling the solar tech-

nologies evaluated in this thesis. Static hourly performance equations were presented for flat plate

thermal collectors (FPs), photovoltaic modules (PVs), and a high concentration photovoltaic and

thermal system (HCPVT). A rigorous MILP solar system modeling and design approach was pre-

sented which allows estimation of collector and storage performance at sufficient precision and

limited computational effort. The static performance models were compared to dynamic results

from TRNSYS. It was found that hourly static collector performance estimations remain within a 5%

error margin compared to the TRNSYS results.

A clustering algorithm was applied to select typical operating periods, and selection of the correct

number of periods was derived. Comparison of the typical period selection revealed that especially

when addressing storage operation and sizing, adequate period selection is crucial. Application

of a clustering approach reduced the resolution time successfully while guarding the accuracy for

sufficient numbers of clusters. For low cluster numbers a deviation of the results was revealed,

highlighting a need to proper investigation of the clustering results. Eight periods with two extreme

days were selected as the best trade-off between accuracy and computational effort for the Swiss

weather data of the city of Sion treated as a case study in this thesis.

40



3Comprehensive integration method

Overview

• Method to simultaneously optimize the conventional and renewable utility system

• Based on ε-constrained parametric optimization

• Multi-period utility targeting, including process heat recovery through pinch analysis (PA)

• Identification of the optimal design and operation of the solar utility and storage system

• The preliminary version of a heat pump superstructure (HPS) shows great potential thus

motivating more thorough analysis (as conducted in Chapter 4)

This chapter is based on Wallerand et al. [111].

Implementation of solar energy in industrial processes is constrained by several obstacles. Identi-

fication of the best point of integration is not trivial and should comply with the process specific

thermodynamic and technical constraints related to e.g. the heat exchange equipment [145, 146].

One important point which is often neglected is that integration of more efficient or less emitting

heating sources (such as solar thermal) should always be compared to other process optimization

measures. Process integration is a first step in capitalizing the maximum heat recovery potential

together with retrofitting of the heat exchanger network. Beyond this, further measures are possible

such as optimization of the operating points of the available utility equipment (e.g. the temperatures

of the refrigeration system), mechanical vapor re-compression (MVR), or integration of closed cycle

heat pumps (HPs) especially in the low-temperature industry. Therefore, it is advisable to use proper

tools for comparison of various emission and cost reduction measures, including refrigeration cycles,

heat pumping, and various heat sources which is the goal of this chapter.

After a state-of-the-art analysis of current synthesis methods, this chapter presents the applied

methodology, followed by application of the method to the case study of a Swiss dairy, which is

discussed in the results and discussion section.
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3.1 State-of-the-art

The studies discussed in this section are compared in various aspects in Table 3.1. As derived in

the introduction section, three levels for solar integration to industrial processes are treated in

the literature (SP, SP-A, SP-I). The literature presented in this section is focused on studies which

address integration between solar energy and industrial processes considering the entire system,

meaning the process as well as the solar side.

3.1.1 Solar design and system integration

"SP-A" refers to studies which analyzed the solar and process system as a whole, addressing not

only solar modeling, but also identification of the relevant process or utility streams suited to solar

integration [55–58], heat exchanger network design [55, 58], and/or technical constraints related to

this integration [36]. Alterations in the process design or process improvement measures were not

considered.

"SP-I" refers to studies which considered the solar and process as a whole and, additionally, ad-

dressed process improvement measures including internal heat recovery through pinch analysis

(PA), and possibly competing technologies. Schnitzer et al. [59] and Atkins et al. [60] analyzed the

thermodynamic and environmental (thermo-environmental) benefits of solar heat integration in

the dairy industry, considering PA to identify the target solar temperatures for a fixed number of

collectors. A complete utility integration, such as by modeling refrigeration of the sub-ambient

streams, was not considered. Quijera et al. [114, 115] analyzed a solar-assisted heat pump integration

to a fish tinning process with aid of the time-average approach disregarding the obvious integration

of mechanical vapor re-compression (MVR), and thereby missing a major process improvement

opportunity.

Integration of a MVR system was considered in the study presented by Eiholzer et al. [61], though the

refrigeration of the sub-ambient process streams and the condenser hot stream were not considered,

which are in direct competition with the solar heat at 60°C. The solar sizing was based on brute-force

generation of design points, though the time horizon and meteorological data were not specified.

Perry et al. [62] presented a general approach of integrating renewable energy to industrial clusters

with aid of total site analysis (TSA) but without elaborating on the specific design and modeling

approach. Varbanov and Klemeš [63] extended the approach presented by [62] to account for

time-slices and storage, focusing on graphical derivation of the utility system.

Bühler et al. [64] presented a rigorous nonlinear programming (NLP) approach using particle swarm

optimization (PSO) and pattern search to identify the optimal solar collector and storage sizes

considering one year of hourly meteorological data. The sub-ambient process side and refrigeration

was not included.
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Table 3.1 – State-of-the-art summary of solar modeling and integration studies for solar energy for industrial processes (SEIP) applications.

Author Year Foc Appr Obj Vars Siz. Econ. Solar modeling Proc. m. SC P Uti. Description
M dT Tool Stor. PA HEN

Niemann et al. [55] 1997 SP-A A,D E C C X S hour MEB X X X CPC,
ET

AHP AHP Analysis of solar-driven AHP for ice making, sizing based on typical
monthly days and baseline production volume.

Schweiger et al. [56] 2000 SP-A Pb,D TP C,T B X S year MEB X X X various various - Potential analysis and design of SHIP in ES and PT through steam produc-
tion and integration with conventional utility system.

Calderoni et al. [72] 2012 SP-A A,Pb E - F X S - - X X X PT textile - Economic feasibility study of solar-assisted process plants in Tunisia.
Lauterbach et al. [68] 2012 SP-A Pt TP L C X S - - X X X various various - Top-down analysis of industrial heat demand, temperature ranges in

Germany.
Pietruschka et al. [57] 2012 SP-A D TP C,control C X S year - X X X various various - Preliminary design of multiple SHIP installations based on desired capac-

ity and presentation of online monitoring/control.
Schmitt et al. [58, 147] 2012 SP-A D T HEX C X - - - X X X various various - Analysis of integration options for solar process heat at the HEX technical

design level.
Lauterbach et al. [36] 2014 SP-A A TP control F X D - TRNSYS X X X FP brewery - Analysis of operational system faults with respect to model.
Müller et al. [148] 2014 SP-A Pb TP FD,L C X S year MEB X X X various food - Methodology to estimate the potential for solar heat in the liq. food

industry, based on available area, and temperature levels.
Sharma et al. [69, 70] 2016 SP-A Pt,D TP SF C X S year MEB X X X PT paper Co-

gen.
Potential analysis of solar heat for paper industry in India, considering
solar sizing (by capacity), location, and co-generation.

Sharma et al. [71] 2017 SP-A Pt,D TP SF C X S year MEB X X X PT dairy Potential analysis of solar heat for dairy industry in India, considering
solar sizing (by capacity) and locations of plants.

Schnitzer et al. [59] 2007 SP-I A E - F X S year - - X X FP dairy - Analysis of environmental and economic potential for solar integration to
an Austrian dairy (without process sub-ambient side).

Perry et al. [62] 2008 SP-I D TP - C X S year EMINENT[149]X X X PV [150] various TSA with EMINENT tool for urban industrial clusters design.
Varbanov and Klemeš [63] 2011 SP-I D TP C,S C X S - - X X X various generic various TSA with time slices to conceptually design renewable utility systems for

urban industrial clusters.
Atkins et al. [60] 2010 SP-I A TP T F X S hour MEB X X X ET dairy - Solar collector size is fixed, analysis of outlet temperature on efficiency in

4 scenarios.
Quijera et al. [114, 115] 2011 SP-I D TP SF C X S hour MEB X X X ETC dairy - Sizing solar system for desired solar fraction in dairy plant (process hot

side), based on annual av. day.
Quijera et al. [151] 2013 SP-I D E SF C X S year MEB X X X ETC fish HP Analysis of solar-assisted heat pump integration to fish tinning process

disregarding the obvious integration of MVR, time av. approach.
Quijera and Labidi [152] 2013 SP-I D TP SF C X S year MEB X X X ETC dairy - Exergoeconomic analysis of solar integration to dairy process (process

hot side), time av. approach.
Baniassadi et al. [153] 2015 SP-I D TP HEX B,C X D min EnergyPlusX X (X) FP distillation- Solar fraction targeting, main goal: identify appropriate HEX.
Bühler et al. [64] 2016 SP-I D E HEX, C M-PSO

(MINLP)
X S hour MEB X X X FP dairy - Process integration, HEN synthesis and solar sizing (sequentially solved)

in a dairy case study (considering process hot side).
Mian [65] 2016 SP-I D E C,control,

HEX
M-PGSCOM
(MINLP)

X S hour MEB X X X CSE,PV fuel various Multi-period HEN design and solar sizing based on four av. seasonal days
applied to hydrothermal gasification.

Eiholzer et al. [61] 2017 SP-I D E C,S B X S month MEB X X X ST brewery MVR Multi-period and time-average analysis of brewery with solar integration
disregarding heat pump integration/refrigeration.

Baniassadi et al. [154] 2018 SP-I A,D TP HEX B,C X S hour MEB X X X FP generic[99]- Identification of "best" HEX for varying collector number.
Becker [140] 2012 P D TEP - M-GA(MINLP) X S hour MEB X X X - dairy HP,MVR Design of industrial heat pump systems with MINLP (bi-level approach).

Focus: Solar (S), Solar integration to urban system (SU), SP, SP-A, SP-I based on notation presented in the introduction Section, Figure 2
Approach: Design (D), operation (O), modeling (M), analysis (A), potential (P), review (R), empirical (E)
Objective: Thermodynamic principles (TP), economic (E), thermo-economic (TEP), technical (T)
Variables: temperature (T), collector area (C), storage size (S), load (L), irradiation (IRR), field design (FD), solar fraction (SF), location (LOC)
Sizing: Fixed (F), brute forcing (variation of parameters, identification of maxima) (B), mathematical programming (M - genetic algorithm (GA) - sequential quadratic programming (SQP) - branch and cut (BC)), conceptual methods (C), R-curve analysis
(R), analytical (A), polynomial regression (PR)
Economic (Ec.): economics considered in study (X,X)
Modeling (M): (Quasi-) static (S), dynamic (D)
Time discretization (dT): instantaneous (ins.), variable time step (VST); horizon: unless stated differently: yearly analysis; unless specified differently (the discretization is usually applied to the scope of one year)
Tool: Mass and energy balances (MEB), design space method (DSM), regression (R), measurements (MEA)
heat exchanger network (HEN): X- full HEN design (analysis), (X) - focus on identification of relevant HEX for solar integration, X - no specific HEN design
Solar collector types (SC): Evacuated tube collectors (ETC), flat plate (FP), power tower heliostat field (HF), parabolic trough (PTC), flat plate photovoltaic and thermal systems (PVT), compound parabolic concentrator (CPC)
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Mian [65] proposed a solar sizing and heat exchanger network design method for the high-temperature

hydrothermal gasification based on four average seasonal days considering co-generation using a

bi-level solution strategy to solve the mixed integer nonlinear programming (MINLP) problem. Ba-

niassadi et al. [154] most recently presented a conceptual method based on previous work [122, 153]

for identification of good heat exchangers for variable collector area.

In all cases presented in the SP-I category the importance of process integration and pinch analysis

for solar utility integration was considered. However, the time-variance of solar radiation and the

related effect on the solar system performance as well as the influence of storage was often simplified

or even neglected during the design phase. Furthermore, other process optimization techniques

such as heat pumping were completely or partially disregarded. A full utility integration (including

the cold process side and refrigeration, as well as MVR) was seldom conducted.

3.1.2 Industrial heat pumping

Heat pump systems (including refrigeration) allow valorization of low-temperature waste heat

and thereby improve the process energy efficiency. Optimization of industrial heat pumps has

been addressed by various authors. Shelton and Grossmann [101, 102] proposed a mixed integer

linear programming (MILP) model for optimization of flexible heat pump superstructures which

complies with the general process integration methodology presented by Papoulias and Grossmann

[138, 139, 155]. They define all possible connections of refrigeration stages with the drawback of

high complexity for problems with many temperature levels. Other authors based their formulation

in the linear domain [103, 156–158]. More recent work dealt with exergy analysis of heat pumps and

Mixed Integer Nonlinear Programming (MINLP) [159, 160]. None of these works have dealt with

solar utility integration.

Optimization of a refrigeration and heat pump system for a dairy plant has been investigated by

Becker et al. [140, 161] without the presentation of a flexible superstructure containing a variable

number of stages, mixing, and various temperature levels.

3.1.3 Discussion and contribution

The state-of-the-art analysis can be summarized in three main points.

1. Comprehensive utility integration is seldom performed in solar integration studies.

2. The competing role of heat pumping in low temperature applications is neglected.

3. Comprehensive methods which provide rigorous sizing of the solar system and considering

competing technologies are not presented for low temperature processes.

To overcome the identified gaps, a comprehensive method is proposed which addresses simultane-

ous optimization of the process heat recovery, the conventional utilities (including heat pumping),
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and the renewable utility system (including thermal storage) using ε-constrained parametric opti-

mization. The method is based on multi-period utility targeting, including process heat recovery

through PA and re-use through heat pumping, and identifies the optimal design and operation of

the utility and storage system. The innovative aspects are summarized in the following points:

• A multi-period mixed integer linear programming (MILP) approach is chosen, which has

been applied by other authors [75, 124, 162], but is extended to account for the specific

characteristics of solar utilities and contains ε-constraints.

• A novel heat pump superstructure is applied for optimal design of multiple stage heat pump

cycles.

• The meteorological data is clustered based on common clustering algorithms [74] by propos-

ing a new performance indicator, being the mean squared error of the load duration curve

(mELDC2)

• Solar performance calculations are based on verified state-of-the-art correlations and data

from independent testing facilities and producers.

This chapter bases on the mathematical models introduced in Chapter 2.

3.2 Methodology

3.2.1 Problem statement

The goal of the research presented in this chapter can be summarized as depicted below.

Problem statement

Given

• (low temperature) industrial process thermal and material demands

• meteorological data

• set of utility technologies, including solar utilities and heat pumps

Determine

• optimal utility design and scheduling including

– solar collector area and storage sizes and operating schedules

– heat pump size and operating conditions

3.2.2 Overview

A sketch of the applied methodology is presented in Figure 3.1. The work is employed in a computa-

tional framework which is based on the Lua [163] programming language. It is separated into three

main steps: (A) data collection, (B) system resolution, and (C) performance calculation.
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Figure 3.1 – Methodology proposed in Chapter 3.

(A) Data collection During the data collection phase, utility and process data are gathered, the

energy and mass balances are formulated, and the thermodynamic models are developed. In a

preliminary step the meteorological data are clustered to form a set of typical days such that the

problem size can be reduced from a typical meteorological year (TMY) composed of 8760 hours to a

much smaller set (of a few hundred hours). This part of the procedure is presented in Section 3.2.3.

(B) System resolution The system resolution aims at targeting different utility designs by solving

the multi-period MILP for minimum total annual cost subject to the heat cascade constraints. The

general formulation of the multi-period MILP can be found in Section 3.2.4. During the multi-

period MILP a single-objective optimization is performed with the objective of minimizing the total

annual cost. To compare the different scenarios under equal boundary conditions, an ε-constraint

is introduced to limit the CO2 equivalent emissions for a set of values.

(C) Performance calculation Since the results of step (B) are based on linearized equations, it is

necessary to recalculate some indicators that are more realistically described by non-linear relations

such as the investment cost. Other performance indicators such Carnot efficiency are derived during

this step. The respective equations are presented in Section 3.2.5.

(*) Scenario definition & parameter selection Different utility scenarios are studied by activating

or deactivating the respective integer variables. These scenarios are evaluated based both on cost

and emissions for a continuous process operation and a daytime only scheme. The different cases

are presented in Section 3.3.1.

3.2.3 Data collection & clustering (A)

This step includes utility and process data gathering, meteorological data clustering, energy and

mass balances formulation, and thermodynamic model development.
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3.2.3.1 Process and utility modeling

A flowsheet of the process case study and proposed utility system is presented in Figure 3.2. The

units marked in black (boiler, and ammonia refrigeration cycle) are the utilities in place. Units

indicated with an asterisk (*) are newly added in this study (mainly the heat pump superstructure

and solar utilities).

Process The analyzed dairy plant is modeled as a retrofit problem, it transforms raw milk into

concentrated milk, pasteurized milk and cream, yogurt, and dessert. Due to various outputs, specific

heat requirements will always be provided with respect to the raw milk inlet of 10 kg/s. The process

requires heating (up to 98 °C) and cooling (down to 4 °C), which in the original plant is provided

by a boiler and an ammonia refrigeration cycle. Heating is conveyed through steam and cooling

through a water glycol mixture (from the refrigeration) or cooling water. The original process energy

requirements are 2.1 MWth of heat and 167 kWel of electricity (from the refrigeration cycle).

Figure 3.3 depicts the process composite curves. The three evaporation stages of the concentrated

milk production create a clear process pinch point at 59 °C. The highest temperature heat require-

ment is slightly below 100 °C. The hot minimum energy requirement (MERhot) is 1.6 MWth and the

Figure 3.2 – Dairy process flowsheet including utility system. Marked in black are the utilities that
are currently in place. Units marked with asterisk (*) are newly added in this thesis.
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MERcold lies at 0.8 MWth. Through process integration (maximum heat recovery) the hot utility

requirement can be reduced by 24% (compared to 2.1 MWth).

The plant is positioned in Switzerland and the process heat requirements are taken as constant

during its operation. This could eventually be refined by considering shifted operation schedules

of different units throughout a working day, but is currently not considered. A full list of process

streams is provided in B.4. The dairy plant was originally modeled by Becker et al. [140, 161],

who proposed options for reduction of CO2-emissions with mechanical vapor re-compression and

heating with a co-generation engine. In this study, the referenced work is expanded by evaluation of

a flexible heat pump superstructure comprising various pressure levels which allows to optimize the

refrigeration system, in addition to analysis of the potential for time-variant solar utility integration.

Two process operating schedules are investigated:

• daytime only operation (7h/day, 2625h/year),Δ

• continuous (8760h/year), O

Boiler (BOI) It is assumed that the boiler is already installed in the industrial retrofit problem.

Therefore, there is no capital cost associated with the use of the boiler. The boiler is activated in

all scenarios as back-up hot utility. It relies on natural gas combustion and therefore generates

CO2-emissions when in operation. Part-load performance is neglected. All respective modeling

equations and input data are specified in Appendix B.2.2.2.

Flat plate thermal collectors (FPs) Single glazing flat plate thermal collectors are modeled ac-

cording to available performance data of independent testing facilities (such as the Institut für

Figure 3.3 – Hot and cold composite curves (CCs) and grand composite curve (GCC) of dairy process
reproduced from Becker [140] for raw milk inlet of 10 kg/s.
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Solartechnik, (SPF) [164]) with solar keymark [165] status. The provided test parameters comply

with the European norm for efficiency measurements of thermal collectors EN-12975. Flat plate

thermal collectors produce heat up to approximately 130°C. However, efficiency decreases with

higher operating temperatures due to heat losses.

Therefore, the operating temperature range is fit to the dairy process demand which is between 80

and 105°C. The collector working fluid is a water glycol mixture. The efficiency is further dependent

on the intensity of the incoming radiation and its direction. All respective performance equations

are presented in Section 2.3.1.2. The input data for the considered collector is shown in Table B.4 in

Appendix B.2.3.2.

Photovoltaic modules (PVs) High efficiency mono-crystalline photovoltaic modules were con-

sidered during the calculation. The modeled energetic output was based on certified producer

data (IEC 61215, IEC 61730,[166] taken from the 10th year of operation. The two main parameters

influencing the PV performance are the cell temperature (dependent on the ambient temperature,

the incident radiation, and the wind speed) and the irradiation intensity. All relevant performance

equations are presented in Section 2.3.1.3. The input data for the considered collector is shown in

Table B.5 in Appendix B.2.3.3.

High concentration photovoltaic and thermal system (HCPVT) The high concentration photo-

voltaic and thermal system is a concentrating dish (with concentrations of up to 2000 at the focal

point) with two axis tracking of the sun which is mounted on a tower. Electricity is generated

with photovoltaic cells in the receiver positioned in the focal point. Highly efficient cooling pre-

vents receiver and photovoltaic cell overheating and provides useful heat around 100°C. Thereby

the exergetic losses of the photovoltaic conversion are recovered. High concentration devices

can only convert direct beam radiation. Performance indicators are retrieved from producer data

[32, 86, 112, 132]. All modeling equations are depicted in Section 2.3.1.4. All respective performance

equations are presented in Section 2.3.1.4. The input data for the considered collector is shown in

Table B.6 in Appendix B.2.3.4.

Thermal storage tank (S) The thermal storage mass and energy balances are formulated based

on the assumption of sensible heat storage at different temperature levels modeled as one tank

operating between two temperatures. An intra-cyclic constraint is introduced, which ensures that

the storage is always at initial conditions at the end of each day. Furthermore, it is defined (in

agreement with a storage tank with two outlets) that the fluid leaving the storage tank is always at the

lowest temperature (bottom) during charge periods or highest temperature (top) during discharge

periods. More information on the considered storage tank can be found in Section 2.4.2 and in

Appendix B.2.3.5.

Limitations The performance of the three respective solar systems is modeled for one piece of

equipment. Industrial applications require large collector fields and, therefore, a constant loss factor
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is introduced in this work to account for thermal and transmission losses in the field. This factor, in

reality, scales with the field size and follows certain power laws. Additionally, the impact of shading

on the overall output is non-negligible especially for the tracking systems considering the space

is usually limited which is not accounted for either. It is planned to explore the validity of these

simplifications by further in-depth analysis in future work.

Heat pump superstructure (REF, MVR, HPS) A superstructure is employed which permits in-

vestigation of possible combinations between different heat pump components: compressors,

evaporators, condensers, and presaturators [167].

For selecting the optimal heat pump structure, a set of pressure levels must be defined. The active

levels are selected during the system resolution with help of integer variables. The choices are

only constrained by the fact that the highest pressure level must be a condenser and the lowest

level needs to be an evaporator. Since the pressures and respective temperature levels are chosen

in advance, the sizing of the components can be formulated by linear constraints as part of the

MILP. Figure 3.4(a) presents a temperature entropy diagram to illustrate the problem definition,

formulating all generic heat pump cycles once the pressure levels are selected. Figure 3.4(b) shows

a flow chart of the superstructure. Connections between all pressure levels are defined as well as

potential presaturation, evaporation, and condensation units on every level.

This permits the generation of all possible single and multi-stage cycles between a predefined set

of pressure levels. The one-stage refrigeration cycle in place, the vapor re-compression system

as well as the improved multi-stage heat pump cycle are modeled with this superstructure. The

performance equations as well as all investigated specifications are presented in Appendix B.2.2.3.

Figure 3.4 – Heat pump superstructure model. (a) Ammonia liquid-vapor saturation curve with
isobars (marked in gray in descending order) and potential heat pump cycles (isentropic compressor
efficiency ηisentropic = 1), (b) flowchart of heat pump superstructure.
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Figure 3.5 – Load duration curve of DNI in Sion, Switzerland (CH), of original data and 8 typical plus
2 extreme days. In background yearly distribution of DNI of original and typical days.

3.2.3.2 Meteorological data clustering

Meteorological data Weather data including the solar angles (azimuth and elevation), wind speed,

ambient temperature, and global horizontal (GHI) and direct normal (DNI) irradiance of hourly time

resolution is retrieved from a commercial software (Meteonorm 7.0 [134]). The analysis is carried

out for the Swiss city of Sion, having comparably high yearly solar irradiance (global horizontal

irradiation (GHI) 1430, direct normal irradiation (DNI) 1690 kWh/m2) relative to the rest of the

country (1200 kWh/m2) due to a favorable micro-climate.

Data clustering Figure 3.5 presents the results from the clustering algorithm presented in Chapter

2.3.2.2. The load duration curve of the DNI is displayed for the original data and the typical days. In

the background, the hourly data is displayed showing that high values can also be reached during

winter. This is particular for the DNI as it is not reduced by cosine losses in contrast to the GHI. The

mELDC2 is below the limit of 3.5×10−4 (as derived in Section 2.3.2.2) and is also visibly acceptable.

In the upper right corner the resulting typical days and their occurrence are illustrated. The two

extreme days are represented only once. It can be seen that there are few days with very low DNI.

3.2.4 System resolution (B)

This section presents the optimization problem formulation and the respective constraints. The

sets presented in the following Section 3.2.4.1 are specified in this case study in the following

manner. The set of utility technologies W refers to Section 3.2.3.1. W = {boiler (BOI), refrigeration

(REF), mechanical vapor re-compression (MVR),heat pump superstructure (HPS), flat plate thermal

collectors (FPs), photovoltaic modules (PVs), high concentration photovoltaic and thermal system

(HCPVT), thermal storage (STO), cooling water (CW), electricity grid (GRID)}. The set of periods P
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stems from Section 3.2.3.2.

3.2.4.1 MILP utility targeting formulation

The problem is formulated as a multi-period MILP that solves the heat cascade and finds optimal

utility integration [75, 138, 139, 155].

Objective function The problem objective is the minimization of the total annualized costs (TAC)

is depicted in Equation 3.1. It is composed of the yearly operating expenses (opex) of each utility

technology w during period p and the annualized capital expenses (capex) that is found with aid of

the maximum size of each technology w.

min
y w

p , f w
p ,y w , f w

∑
p∈P

( ∑
w∈W

OPw
1,p · y w

p +OPw
2,p · f w

p

)
· ∆tp ·occp︸ ︷︷ ︸

Operating cost

+ ∑
w∈W

(
IVw

1 · y w + IVw
2 · f w )

︸ ︷︷ ︸
Investment cost

(3.1)

Where

P set of periods {1,2,3, ...,np }
W set of utility technologies w
f w

p ∈ R+ continuous variable for sizing technology w during period p
y w

p ∈ {0,1} binary variable related to existence of technology w during p
f w maximum size of technology w
y w overall existence of technology w
OPw

1,p [e/h] fixed operating cost for using the technology w during period p

OPw
2,p [e/h] proportional operating cost for using technology w during period p and is scaled with the multiplication factor

IVw
1 [e/y] annualized, actualized fixed cost related to the investment of technology w

IVw
2 [e/y] annualized, actualized proportional cost related to the investment of technology w
Δtp [h] operating time of period p
occp [1/y] the occurrence of period p

All respective general constraints related to the solar and conventional utilities are derived in

Section 2.4.

3.2.4.2 ε-constraint

As mentioned, an ε-constraint was added to the MILP which constrains the CO2-equivalent emis-

sions of the system. The total CO2-equivalent emissions depicted in Equation 3.2 are found by taking

into account emissions from natural gas consumption and the electricity grid. Life cycle assessment

of the associated technologies is not considered. The positive impact on the grid created by selling

solar electricity was as well disregarded.

CO2,tot =
∑
p∈P

(
CO2,el · ĖGRID · f GRID,in

p +CO2,ng · Q̇ng
BOI · f BOI

p

)
·∆tp ·occp (3.2)

Where CO2,el [kgCO2eq/kWhel] are the life cycle emissions related to buying electricity from the
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Swiss grid and CO2,ng [kgCO2eq/kWhng] are the life cycle emissions from natural gas burning, ĖGRID

[kW] is the reference electricity supply of the grid utility, f GRID,in
p [-] is the multiplication factor of

the incoming grid utility in period p, f BOI
p [-] is the multiplication factor of the boiler in period p,

and Q̇ng
BOI [kW] is the reference natural gas consumption in the boiler.

The ε-constraint ensures that the total emissions do not exceed ε, which is specified as a fraction of

the reference emissions and which is incrementally changed in this work (between 95 and 60% of

the reference emissions).

CO2,tot

COref
2,tot

≤ ε (3.3)

3.2.5 Performance calculation (C)

After the optimization step the non-linear functions, such as the investment cost are recalculated as

well as other performance indicators depicted below. The necessary parameters are presented in

Table 3.2.

Operating cost During the MILP optimization step, the buying price of electricity is set to the

market price displayed in Table 3.2, while the selling price is set to a very small negative number.

This serves as a protection against oversizing the photovoltaic systems not to become pure electricity

exporters due to potentially high profits from selling electricity. The solar utilities should be sized

with the ε-constraint on the emissions.

In the performance calculation step, the operating cost are recalculated with adequate numbers. It

is assumed that the solar utilities do not have operating costs. Therefore, the total operating costs

are composed of the electricity bought from or sold to the grid and the natural gas consumption in

the boiler. The selling price of electricity is set to 80% of the buying price to represent the current

market situation more realistically. The yearly operating expenses (opex), C opex [e/y], are a function

Table 3.2 – Data related to emissions, primary energy consumption and operating cost in Switzerland
(CH).

Parameter Symbol Unit Value Source
Ambient temperature Ta [K] 298 [-]
Interest rate i [-] 0.05 [-]
Equipment lifetime n [y] 20 [-]
Maintenance cost fraction of total investment m [1/y] 0.05 [-]
Cost of buying electricity OPel

2,p [e/kWh] 0.142 [168]

Cost of buying natural gas OPng
2,p [e/kWh] 0.081 [168]

Emissions electricity CO2,el [kgCO2eq/kWh] 0.11257 [169]
Emissions natural gas CO2,ng [kgCO2eq/kWh] 0.20196 [169]
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of the resource prices and their annual net requirements (natural gas and electricity).

C opex =
P∑

p=1

(
OPel

2,p · ĖGRID ·
(

f GRID,in
p −0.8 · f GRID,out

p

)
+OPng

2,p · Q̇ng
BOI · f BOI

p

)
·∆tp ·occp (3.4)

Where OPel
2,p [e/kWhel] is the electricity cost, OPng

2,p [e/kWhng] is the natural gas price during period

p, Ė
GRID

[kW] is the reference grid electricity inlet/outlet, Q̇ng
BOI [kW] is the reference natural gas

consumption of the boiler, f GRID,in
p [-] is the multiplication factor of the incoming grid utility in

period p, f GRID,out
p [-] is the multiplication factor of the outgoing grid utility in period p, The natural

gas and electricity prices are depicted in Table 3.2.

Investment cost The investment cost of the units in-place (the boiler and standard refrigeration

cycle) are not considered. Other investment cost functions can be found in B.2.2. All cost data are

actualized with the Marshall and Swift index [6]. The total investment cost, C I NV [e], is calculated

as a function of the maximum sizes of each utility technology w over all periods p.

Total annual cost The total annualized costs (TAC), C T AC [e/y], is derived from yearly operating

expenses (opex), C opex [e/y], the annualized capital expenses (capex), where τ= i·(1+i)n

(1+i)n−1 [1/y] is the

investment cost annualization factor, and the maintenance cost, which is a fraction m [1/y] of the

total investment, see Table 3.2.

C T AC =C opex +C I NV · (τ+m) (3.5)

Note Calculating the maintenance cost as a fraction of the investment cost constitutes a neglect of

the running costs of the utilities in place. Their investment cost and with that their maintenance

cost is in this way assumed to be zero. This displays a simplification which, however, generates

conservative utility integration results in underestimating the total cost of the current status quo of

the plant.

Carnot factor The Carnot factor permits re-scaling the temperature levels on the standard com-

posite curve. This has two advantages: firstly, the representation is more compact since the y-axis

will always be between -1 and 1 (equivalent to a temperature range of [-124,∞] °C) which makes

visualization of the process easier; and secondly, the factor is proportional to the exergetic potential

of a temperature level and therefore exergetic losses between sources and sinks can be visualized.

ηCarnot = 1− Ta

T
(3.6)

Where Ta [K] is the ambient temperature and T [K] is the temperature of the stream.
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3.3 Results and discussion

3.3.1 Scenario definition

A set of cases is analyzed in order to gain a proper understanding of the different options for

energy efficiency improvement and emissions reduction of the studied dairy plant. In Table 3.3, all

utility technologies and investigated cases are presented. The Original case refers to the current

energy consumption of the plant without process integration (no maximum heat recovery) based

on the utilities in place (boiler, one-stage ammonia based refrigeration cycle, and cooling water);

the Reference case is based on the Original case, however, considering process integration with

maximum heat recuperation. Subsequently, mechanical vapor re-compression around the process

pinch (1. MVR) and a heat pump superstructure (2. heat pump superstructure (HPS)) improving the

refrigeration cycle are proposed. The MVR was similarly proposed by Becker [140]. The subsequent

cases including different solar scenarios and the heat pump superstructure display an extension to

the previous analysis.

3.3.2 Daytime operation of the process (Δ)

Throughout this section, daytime only operation is investigated. Due to fewer operating hours and

with that lower operating costs less space for investment decisions is left.

3.3.2.1 Reference scenario and heat pump integration

In this Subsection, the Reference case and efficiency improvements related to heat pump integration

are investigated. Therefore, a mechanical vapor re-compression (1. MVR), and a multi-stage heat

pump superstructure (2. HPS) are subsequently added to the Reference case which consists of the

process demands considering heat recovery and the utilities in place (as described in Section 3.3.1).

Figure 3.6 depicts the integrated Carnot factor enthalpy profiles of the dairy process and respective

Table 3.3 – Investigated utility integration scenarios, first four cases: non-renewable utilities, next
four: solar utilities. The grid (GRID) and cooling water (CW, Appendix B.2.2.1) utility technologies
are present in all cases. Detailed models can be found in: App. B.2.2.2 - boiler (BOI), App. B.2.2.3 -
heat pumping (REF, MVR& HPS), Section 2.3.1.2 - FP, Section 2.3.1.4 - HCPVT, Section 2.3.1.3 - PV.

Case Heat Boiler Ref- Vapor Heat pump Solar Solar Solar
recovery (BOI) rigeration re-comp. superstructure flat plate concentrated PV

(PA) (REF) (MVR) (HPS) (FP) (HCPVT) (PV)
Original X X
Reference X X X
1. MVR X X X X
2. HPS X X X X X
2.1. FP X X X X X X
2.2. PV X X X X X X
2.3. PV&FP X X X X X X X
2.4. HCPVT X X X X X X
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three utility systems. The process curve is a rescaled version of the GCC presented in Figure 3.3 and

represents the net heating and cooling demands of the dairy process considering maximum heat

recovery. The active utilities for each case, which are responsible for closing the energy balance,

were selected and sized during the utility targeting step (in Section 3.2.4.1) by minimizing the total

annual costs. The three investigated utility systems are depicted in this integrated Carnot factor

enthalpy diagram as an envelope to the process GCC (thus ensuring energy conservation). Figure 3.7

and Table 3.4 provide an illustration and the resulting data of the discussed scenarios, respectively.

Reference case The utility envelope (black, Figure 3.6) of the Reference case shows at a high tem-

perature plateau (T ≈1000°C, ηCarnot = 0.77) the radiative heat release of the boiler (BOI) and down

to 50°C the convective heat release of its combustion gases. At 30°C (ηCarnot = 0.02) the condensation

level of the refrigeration system (REF) in place is visible. Cooling water (CW) is consumed at 15°C

(ηCarnot =−0.03) to remove the waste heat from the condensation of the refrigeration systems as well

as part of the medium temperature waste heat from the process. The energy balance is closed with

the evaporation level of the refrigeration cycle which provides refrigeration at -2°C (ηCarnot =−0.1).

The exergy losses between the utility system and the process GCC are represented by the area

between the two curves. Especially between the boiler producing heat at very high temperatures,

but also in the lower temperature range between the process self-sufficient pocket and the utility

system drastic exergy losses are visible. This becomes increasingly clear when looking at the cooling

water which is used for final cooling of the evaporation stage of the refrigeration cycle and partial

cooling of the steam from the concentrated milk production which summed up to a cooling water

consumption of 23.6 kWh/t of raw material (see Table 3.4).

The total annual costs, TAC, between the Original case and the Reference case were reduced from

5.9 to 4.3e/t of raw material if only the reduction in heating and cooling needs are considered and it

reduced to 5.1e/t of raw material, if the estimated capital investment of the retrofit heat exchanger

network (HEN) analysis are considered.

1. MVR Introducing a mechanical vapor re-compression unit (1. MVR) elevates the pressure of the

steam exiting the milk evaporation unit to produce useful heat above the process pinch. In Figure

3.6, this can be seen by two horizontal lines surrounding the process pinch (T={56,76}°C, ηCarnot =
{0.1,0.15}). What has to be noted is that by reusing the steam released in the milk production,

the self-sufficient pocket is provided with less heat, meaning that the process can no longer be

self-sufficient in the lower temperature range. This is, however, compensated by the evaporation

stage of the refrigeration cycle which provides useful heat (at elevated condensation levels of 35°C)

to the process in this scenario. Exergetic losses were thus drastically diminished, as well as the

cooling water (from 23.6 to 7.8 kWh/t of raw material, Table 3.4) and the natural gas consumption

(from 47.9 to 28.1 kWh/t of raw material). The electricity usage was slightly increased (from 2.6 to 4.6

kWh/t of raw material) which permits the calculation of the incremental coefficient of performance
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Figure 3.6 – Integrated composite curves (ICCs) of the dairy process and respective utility system.
[Reference] case with utilities in place, compared to case [1. MVR] with additional mechanical vapor
re-compression around 67°C, and [2. HPS] with additional heat pump superstructure between -2,
15, 30, and 50°C.
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Figure 3.7 – Illustration of the conversion cycles involved in the respective scenarios.

Table 3.4 – Utility integration scenarios as described in Section 3.3.1. Costs and energy specific
consumption data (referred to ton of raw material. (*) total annualized costs (TAC) neglecting HEN
retrofit cost estimation

Original Reference 1. MVR 2. HPS
Operating costs C opex [e/t] 5.9 4.3 2.9 2.6
Natural gas cons. Q̇ng [kWh/t] 64.6 47.9 28.1 24.3

Electricity cons. Ė
GRID

[kWh/t] 4.6 2.6 4.6 4.8
Compressor size ĖCOMP [kW] 167.0 94.7 111.8 55.2 87.5 65.1 10.4 9.7
Cold coeff. of performance COPc [-] 5.7 4.8 11.6 4.8 11.6 11.0 11.0
Cooling water cons. Q̇CW [kWh/t] n.a. 23.6 7.8 4.5
Compressor cap. exp. C COMP [e/t] 0 0 0.190 0 0.221 0.042 0.040
Heat exchang. area AHE N [m2] 826 1032 1161
Number of HEX N HE N

min [-] 48 64 85
HEN capital cost est. C HE N [e/t] 0.9 1.2 1.5
TAC w/o HEN C T AC ∗ [e/t] 5.9 4.3 3.1 3.0
Total annual costs C T AC [e/t] 5.9 5.1 4.3 4.4
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COP=∆Q̇ng/∆ĖGRID = 9.9 [-]. Where Q̇ng and ĖGRID are the natural gas and electricity consumption

respectively (as reported in Table 3.4). On top of this improvement in efficiency, the total annual

cost dropped from 5.1 in the Reference case to 4.3e/t of raw material due to drastic reductions in

the operating costs.

The elevation of the condensation level (from 30 to 35 °C) is an engineering choice which was

motivated by the fact that the size of the mechanical vapor re-compression unit is constrained by

how much heat could be delivered to the process from the evaporation stage of the refrigeration

cycle. By elevating this temperature and considering de-superheating of the superheated vapor

exiting the compressor (at slightly elevated temperature) more use of vapor re-compression could

be made and a higher incremental COP was be achieved. However, there is a limit to increasing the

upper pressure of an existing compressor.

2. HPS Therefore, a heat pump superstructure (2. HPS) is introduced to explore further installation

of heat pumps with respect to the total annual costs. Adding the heat pump superstructure provides

various options for single-and multi stage cycles between -2 and 50 °C (in 2 °C intervals) to the system

resolution. With this, a new utility system configuration was found consisting of the refrigeration

cycle in place, the mechanical vapor re-compression unit, and two new heat pump cycles between

-2 and 15 °C and between 30 and 50 °C. In Figure 3.6 it can be seen that this lead to a higher use of the

mechanical vapor re-compression unit, because more heat could be provided to the process by the

heat pumps. And this imposed a further decrease in the boiler consumption and, consequentially,

a reduction of the exergy losses in the system. The total annual costs not considering the HEN

costs (disregarded in the MILP) were reduced as well. However, considering the estimated capital

expenses for the HEN, the TAC slightly increased from 4.3 to 4.4e/t of raw material. The cooling

water consumption was further decreased from 7.8 to 4.5 kWh/t of raw material; and the electricity

consumption was only slightly increased from 4.6 to 4.8 kWh/t. This originated from the use of a

lower temperature refrigeration cycle (-2 to 15 °C) with a higher COPc of 11, which resulted in a

reduction of the consumption of the refrigeration in place (COPc 4.8). Thereby the incremental COP

was further improved to 24.2 [-] with respect to the previous scenario (1. MVR).

Summary What can be concluded from here is that more complex systems (in terms of heat

pumping) offer higher potential from the energetic point of view. And more complex systems require

more complex tools (as illustrated with integration of the heat pump superstructure). However,

there is always a trade-off between efficiency improvements accompanied by potential operating

cost reduction and increase of the complexity of the system and therewith the heat exchanger

network. The presented results indicate the strong potential of such installations and enunciates

the importance of investigating selected case studies in further detail.

In the next section, the relation between efficiency improvements (through heat pumping) on solar

sizing is presented and general guidelines are provided.
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3.3.2.2 Heat pump & solar integration

Process schedule Figure 3.8 depicts the process operating scheme and solar GHI and DNI radi-

ation during the typical periods. The winter days are marked by DNI levels exceeding the GHI,

meaning that the sun elevation is not very high. The starting hours of the process operation was

set to 8:00 o’clock in the morning lasting between 7 and 8 hours per day in order to form 2625

operating hours per year. This is a design choice attempting to overlap process operation with the

sunshine hours. Observing the overlap between solar radiation and process operation, it becomes

clear that there are several instances in which the overlap would be more aligned with the solar

insolation if the process starting time was shifted to later in the morning. However, knowing that

many manufacturing schedules traditionally start at earlier hours, 8:00 o’clock was the accepted

trade-off.

In the daytime operation, the option of storage is not considered. As seen in Figure 3.8, the main

lack of solar energy occurs in the early morning hours. It is difficult to store thermal energy over

night and thus it was unreasonable to consider storage of solar energy for these periods of low solar

productivity.

ε-constraint optimization The results from the ε-constraint optimization can be seen in Figure

3.9. The two heat pump cases (1. MVR 6.2 & 2. HPS 5.5 kg CO2-eq/t) were determined without

ε-constraint as described in Section 3.3.2.1. Among these, the best scenario in terms of emissions

was chosen as reference for the solar integration (2. HPS). For integration of the solar components

the ε-constraint was gradually set to a fraction of these reference emissions (between 95 and 60%)

while minimizing the total system cost. In this way a Pareto type curve was produced (Figure 3.9 (a))

between the annualized investment cost and the specific emissions. As expected, with decreasing

emissions the annualized investment costs increased. The solar cases are presented with error bars

Figure 3.8 – Process operation scheme and solar radiation during typical periods. (GHI: global
horizontal irradiation, DNI: direct normal irradiation.)
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(the data of which can be found in Sections 2.3.1.3, 2.3.1.2, 2.3.1.4). Especially for the HCPVT system

which is the most novel technology with the most volatile prices, this is a reasonable assumption.

Under the current input data, the solar cases performed very similarly in terms of investment

cost. The total annual cost in Figure 3.9 (b) include besides the investment cost also the operating

expenses. This leads to a different distribution of the data points. In terms of total annual cost, both

heat pumping scenarios and most solar options were profitable with respect to the Reference case

(of the utilities in place). The relative emission reductions amounted to 27% (between Original and

Reference scenario) due to heat recuperation, 38% due to mechanical vapor re-compression (from

Reference to 1. MVR), and 12% due to improved refrigeration (from 1. MVR to 2. HPS). The solar

scenarios further decreased the emissions by 5-40% (ε =95-60%) with respect to the 2. HPS scenario.

It can be observed that some solar technologies potentially resulted in higher emission reductions

than others. With PV modules the least reductions were achieved since they could not replace the

boiler natural gas consumption; however, their advantage is the ability to sell overproduction to

the grid. Still, up to 20% emission reduction was be achieved integrating solar PV. The reduction

is achieved by replacing the incoming electricity from the grid with green electricity. The HCPVT

Figure 3.9 – Results from ε-constraint optimization of different solar options for daytime only
process operation. (a) Annualized capital expenses (capex) versus carbon dioxide (CO2)-equivalent
emissions, (b) TAC versus CO2 emissions, (c) detailed cost analysis of various cases.
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system and combined FP and PV can reach the highest emission reductions at reasonable cost. At

specific CO2 reductions of 3.8 kg CO2-equivalent/ton of raw material, which is equivalent to 70% of

the best heat pump only (reference) case, the TAC of all solar systems overlap, which indicates that

this establishes an appropriate balance between operating, investment cost and energy waste.

The uncertainty related to the solar investment cost is indicated on Figure 3.9, but not the uncer-

tainty related to the heat exchanger area cost estimation. This is a rough estimation with errors

varying between 20 and 40%; therefore, grand conclusions should not be drawn when considering a

difference in TAC between 10 and 20%.

Figure 3.9 (c) illustrates the associated total costs of the different scenarios. The operating cost

are predominant in the Reference case, which explains the fact that the total cost of the solar

scenarios did not drastically increase. This is attributed to a shift from operating expenses to specific

investment cost.

A break even CO2 tax was calculated with respect to the case with lowest TAC (1. MVR). If the

respective tax was applied all cases would exhibit the same costs as scenario 1. MVR. The tax lied

between 100 and 300e/ton CO2-equivalent which is slightly higher than the current prices, but in

the same order of magnitude.

Figure 3.10 (a) depicts the optimal active solar area for different CO2-equivalent emissions (ε∈
[60%,95%]) of all studied solar collector types. It can be observed that the required solar area

increased with decreasing CO2-equivalent emissions. The relationship between emission reduction

and active solar area does not follow a linear regression, but rather flattens out, especially for HCPVT

and PV (and the lowest three FP data points) systems. This is attributed to the interconnectivity

of the system, where higher solar thermal production has an influence also the utilization of the

heat pumps and mechanical vapor re-compression and therewith on the electricity inflicted CO2-

equivalent emissions. And vice versa, the solar electricity production directly affects the utilization

of the heat pumps which influences the boiler consumption.

The HCPVT system required the smallest active area in comparison to the other solar technologies.

This stems from the high total conversion efficiency. It has to be noted though that due to two axis

tracking and the danger of shading, the actual required land area may be increased by a factor of 2.

Figure 3.10 (b) shows the integrated Carnot factor enthalpy profiles of the dairy process and respec-

tive utility systems. Flat plate collectors (scenario 2.1 FP) at 80% emissions with respect to the 2. HPS

case (at 4.3 kg CO2-equivalent/ton of raw material) are shown at solar noon during different typical

days. The optimization results show that in comparison to the 2. HPS scenario, a different heat

pump configuration was chosen: instead of two heat pumps (30 to 50 °C and -2 to 15 °C) a two stage

heat pump between -2, 15, and 50 with flash gas removal and inter-cooling at 30 °C was selected

during the MILP. In the curve, this can be traced with help of the missing evaporation plateau at 30°C
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which is present in case 2 .HPS. The higher operational cost due the higher electricity consumption

were compensated by reduced natural gas consumption and apparently higher flexibility towards

solar variations. This supports again the advantage of the holistic approach that takes into account

the complete system for the complete operating range. It is further visible that the solar thermal

production drastically contributed to reducing the exergetic losses between process and utility

system, as it produces heat at temperatures much closer to the actual requirements.

Figure 3.11 shows a graphical representation of the multi-period results of case 2.1 FP at 80%

emissions with respect to case 2. HPS. In (a) the hot utility streams heat load and meteorological

input data are shown, illustrating that the solar flat plate collector output (filled area) reduces the

boiler consumption. The solar output follows the available global radiation drawn in gray. In Figure

3.11 (b) the respective ICCs are shown for multiple periods. Close investigation shows the pattern

Figure 3.10 – (a) Optimal active solar area, from ε-constraint optimization (ε between 95 and 60%),
(b) ICCs of the dairy process and respective utility system. Conventional utility [reference, 1. MVR, 2.
HPS] and solar integration of Case 2.1 FP at 80% emissions with respect to the reference and 4.3 kg
CO2-equivalent/ton of raw material during different typical days.

Figure 3.11 – Solar integration, Case 2.1 FP∆ at 80% emissions with respect to 2. HPS case i.e. 4.3 kg
CO2-equivalent/ton of raw material, multi-period MILP results: (a) hot utility streams heat load vs
time, (b) multi-period ICCs of the dairy process and respective utility system.
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of the solar output from Figure 3.11 (a) in the high temperature plane of the boiler in the curves

in Figure 3.11 (b). This is related to the much lower operating temperatures of the solar system

compared to the boiler and the related drop on the temperature axis.

It should be noted that the required boiler output changes drastically over time when solar heat is

present. This might have an influence on the overall efficiency of the energy conversion if part load

performance of the boiler is modeled in more detail, which was not considered here.

In conclusion, it can be stated that there is high economic and environmental potential for this type

of industrial dairy plants for heat pump and solar integration. Results may be extrapolated to other

low temperature food processing plants especially when operated in the underlying temperature

range. Integration of both types of systems, solar and heat pumping should always be investigated

with a holistic approach. For further steps, it is crucial to investigate the heat exchanger network

design to explore technical feasibility of integrated systems.

3.3.3 Continuous process operation (O)

Throughout this section, continuous process operation is investigated. Due to a higher number of

operating hours (8760 vs 2625h) and with that increased operating costs more space for investment

decisions is potentially available.

Figure 3.12 shows the results from the ε-constraint optimization. It can be observed that the raw

material specific annualized investment cost were lower than the cost for the daytime only operation.

This is explained by the higher operating hours and thus increased yearly raw material consumption.

This increase had no influence on the specific operating cost which scale linearly with the raw

material consumption. But the estimated HEN area and compressor sizes remains unchanged

compared to daytime only operation and, therefore, the specific capital cost estimations decrease

for a higher yearly raw material consumption. This leads to lower TAC of the 2. HPS scenario in

comparison to 1. MVR and daytime operation.

This decrease in relative specific investment costs also showed improvements for the flat plate

thermal collectors (FPs) and photovoltaic modules (PVs) at low emission reductions (ε= 95%), which

in this case are both profitable with respect to the best non-solar case (2. HPS). The PV system

could not reach higher emission reductions than 95%, because batteries are not considered and

the positive impact from a renewable source to the grid is not counted. With increasing emission

reductions the solar size and cost increased and the flat plate scenarios’ TAC reached slightly above

best non-solar case. The HCPVT exhibited the smallest specific TAC of all solar options as the

overproduced electricity could be sold and therefore the operating costs decrease.

The option of storage was only chosen by the optimizer for emission reductions below and including

80% (FP) and 70% (HCPVT), respectively. This is attributed to the additional investment cost imposed
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by the storage. Therefore, if the emission goals could be achieved without storage, the storage was

not selected. The storage volume of the FP cases amounted to 182 m3 (80%) which resulted in an

investment cost of about 5% of the investment cost for the solar collectors, and for the HCPVT to 80

m3 (70%) which corresponded to 3% of the solar investment cost.

Figure 3.13 (a) depicts the optimal active solar area for different CO2-equivalent emissions (ε∈
[70%,95%]) of all studied solar collector types. Similarly to the daytime only operation, it can be

observed that the required solar area increased with decreasing CO2-equivalent emissions. This

was, however, not the case between the FP 80 and 75% emission reductions. Referring to Figure

3.12 (c), it becomes clear that the improvement in emission reductions was achieved by an increase

in operating cost and compressor investment cost, rather than an increase in solar collector area.

This solution together with the 70% FP&PV case should be excluded from further conclusions as

they lead to an extreme oversizing of the heat pump system without thermodynamic needs in order

fulfill the ε-constraint. This could be prevented by choosing more carefully the variable bounds for

the heat pump cycles. As seen in the case of daytime only operation, it can be seen that the HCPVT

system required the smallest active area in comparison to the other solar technologies for strong

emission reductions due to high efficiency and high uptime.

Figure 3.13 (b) shows the ICCs of the dairy process and respective utility systems. The HCPVT system

(scenario 2.1 HCPVT) at 70% emissions with respect to the 2. HPS case (at 3.8 kg CO2-equivalent/ton

of raw material) are shown at solar noon and evening during two typical days. The same heat pump

configuration as for the daytime operation scheme was chosen by the optimizer: instead of two

heat pumps (30 to 50 °C and -2 to 15 °C, 2. HPS) a two stage heat pump between -2, 15, and 50 with

flash gas removal and inter-cooling at 30°C. During noon at day 1, there was not enough solar heat

available to cover the process demand completely which is why the boiler was required to back-up.

On day 7 at solar noon, the HCPVT produced heat which was not required by the process. As a result,

the storage system was filled which can be seen by the little nose in the curve. This permits to store

the surplus of heat in the thermal storage unit, which can then be released in the evening when solar

heat is not available. This can be seen on the third curve, where the storage system provides the low

temperature heat for the process and the HCPVT system is not active any more. The behavior of

the storage system, boiler, and solar dish is further illustrated in Figure B.5 (in Appendix B.2.3.5)

indicating a prolongation of the solar operation between 1-4 hours (at ε=70%).

It has to be noted that with the HCPVT the boiler is always active to provide high temperature heat

that cannot be provided by the HCPVT due to a process utility pinch. Limiting the operating range

of the boiler between the maximum and a minimum at 80% of the maximum would make a study of

the storage system even more interesting and put aside the question of part load performance of the

boiler, but this was not considered in the work.
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3.3. Results and discussion

Figure 3.12 – Results of ε-constraint optimization of different solar options for continuous process op-
eration. (a) Capex versus CO2-equivalent emissions, (b) TAC versus CO2 emissions, (c) detailed cost
analysis of various cases. White-shaded cases: extreme end of ε-constraint with slightly unrealistic
results, such as oversizing of refrigeration system.

Figure 3.13 – (a) Optimal active solar area, from ε-constraint optimization (ε between 95 and 70%),
(b) ICCs of the dairy process and respective utility system. Conventional utilities [Reference, 1. MVR,
2. HPS] and solar integration of Case 2.4 HCPVTO at 70% emissions with respect to the reference i.e.
3.8 kg CO2-equivalent/ton of raw material during different typical days.
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3.4 Conclusions

What problem formulation is required for a comprehensive design method for solar-assisted

low-temperature processes?

A comprehensive method was proposed which addressed simultaneous optimization of the process

heat recovery, the conventional utilities, and the renewable utility system (including thermal storage)

using ε-constrained parametric optimization. The method, tailored for the low-temperature industry,

is based on multi-period utility targeting, including process heat recovery through PA and re-use

through heat pumping, and identifies the optimal design and operation of the utility and storage

system. The proposed methodology was demonstrated on the basis of a Swiss dairy plant where

different solar components were compared and evaluated based on economic and environmental

criteria. The methodology permitted to derive cost optimal solar field, heat pump, and thermal

storage tank sizing as well as optimal operation of the system during all operating periods at selected

emission levels.

Optimization of heat recovery, heat pump, and mechanical vapor re-compression placement showed

reduced exergy destruction and total costs at increased energy efficiency in the system. Integration of

a MVR brought emission reductions of ≈38% at 15% reduced TAC, while adding a HPS to study more

complex refrigeration systems decreased CO2 emissions by 12% at comparable TAC. The preliminary

version of a heat pump superstructure (HPS), which was used to model the MVR, refrigeration cycle,

and the HPS proved to be flexible in handling various heat pump types, and indicates great potential

thus motivating more thorough analysis (as conducted in Chapter 4).

Three solar systems were investigated for daytime only and continuous operation of the dairy

process: photovoltaic modules (PVs), flat plate thermal collectors (FPs), and a high concentration

photovoltaic and thermal system (HCPVT). One major conclusion was that integration of solar

energy can contribute to reduce the environmental impact and exergetic losses of the process at

beneficial total costs. Solar energy was, however, only selected by the thermo-economic optimization

algorithm in combination with an optimized system comprising heat recuperation, mechanical

vapor re-compression, and heat pumping. This supports the choice of a comprehensive approach.

For continuous operation of the process, the reduction in specific emissions was not as significant as

for daytime only operation. Due to the capital cost of the thermal storage system, it was only chosen

by the optimization for high emission reductions requirements. Photovoltaic panel integration

offered the least emission reduction potential (up to 20% reduction in daytime only operation

with respect to the best non-solar case). However, installation is simple, independent, and if

overproduced, can be exported to the grid. In comparison, the HCPVT system, had high potential

with very high efficiencies bringing emission reductions easily up to 40% (daytime only) at uncertain

cost and shading losses. The low cost, very low efficiency flat plate collectors offered a simple

solution providing more reliability of the system performance capital cost expenses with emission

reductions of up to 30% (daytime only).
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4Generic heat pump superstructure
Overview

• A comprehensive MINLP superstructure synthesis method for industrial heat pumps

• Optimization of heat pump design, operating conditions, and integration with the process

and utility system

• The superstructure includes sub-cooling, multi-stage phase-changes, presaturators, HEN

cost estimation and fluid selection

• Multi-objective bi-level solution strategy allowing augmentation by expert judgment

• Benchmarking with three literature case studies shows improvements by 5–30%

This chapter is based on Wallerand et al. [170]

Heat pumping has gained increasing attention during the past decades not only for household appli-

cations but also for improving energy efficiency of industrial processes through waste heat recovery

and valorization at elevated temperatures [89, 90]. As demonstrated in Chapter 1.3 (Figure 1.3),

research in the field of industrial waste heat recovery is largely dominated by organic rankine cycle

(ORC) applications and thermoelectric devices. This may stem from a fully explored state-of-the-art

of industrial heat pumps and integration methods; however, the marginal penetration of industrial

heat pump systems (apart from basic refrigeration and air-conditioning) [90, 94] contradicts this

notion. The main barriers for broad usage in industry were identified as lack of knowledge and of

comprehensive heat pump integration methods to provide improvement potentials [90, 94]. This

chapter mainly covers single fluid, mechanically driven systems due to their advanced technological

development and operative flexibility (as discussed in Sections 1.3 and 1.4.4).

After a state-of-the-art analysis of current synthesis methods, this chapter presents a novel heat

pump superstructure with a bi-level solution strategy in the methodology section, followed by

application of the method to various literature cases in the results and discussion section.
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4.1 State-of-the-art

The focus of this chapter lies on synthesis methods for mechanically driven heat pump integration

with industrial processes. Since these techniques rely on modeling state-of-the-art heat pump

technologies, a short review of available heat pump features was conducted. Chua et al. [90] and

most recently Arpagaus et al. [104] presented comprehensive literature reviews on advances in

mechanically driven (multi-temperature) heat pump systems. The most recurring features relevant

for large-scale modeling of industrial heat pumps were identified and are presented in Table 4.1.

These include multi-stage compression and expansion, ejectors, cascaded cycles, gas-cooling,

subcooling, economizers, and presaturators. Other developments, which impose different system

architectures (desiccant cooling [90]) or more refined equipment modeling (scroll and oil-free

compressors [90, 104, 171, 172]) are not discussed in this chapter.

Table 4.2 provides an overview of the studies introducing synthesis methods discussed in this

section. In the presented approaches, it is differentiated between conceptual methods which are

based on expert judgment, heuristic rules, or graphical analysis; and mathematical methods, which

rely of mathematical programming to perform systematic optimization. This chapter presents a

contribution to the latter which is thus discussed at greater length.

4.1.1 Conceptual methods

Conceptual, or insight-based, methods are not limited by the problem size and therefore always lead

to a solution though global optimality will seldom be reached. As early as 1974, Barnés and King

[173] and later Cheng and Mah [174] proposed methods based on a set of heuristic rules, dynamic

programming, and expert judgment for synthesis of industrial heat pump systems.

In 1978, a milestone was achieved, when Linnhoff and Flower [97] proposed a method now com-

monly known as pinch analysis (PA) [99] which, for the first time, allowed systematic analysis

of a process net thermodynamic requirements and maximum heat recovery potential. This led

Townsend and Linnhoff [100] to derive the theoretical foundation for ideal placement of heat engines

and heat pumps based on the principles of PA. They concluded that system improvement from a

thermodynamic standpoint can only be achieved if heat pumps are placed across the process pinch

temperature (1.4.2).

Industrial capital budgeting, however, is seldom based upon thermodynamic objectives. Other

drivers play a major role including economic and environmental concerns as well as technical

constraints. Therefore, subsequent researchers added thermo-economic principles and technical

constraints into their decision process as shown e.g. by Ranade [175] with a trade-off formula

between the temperature lift and heat exchanger cost in total site analysis (TSA) (see Table 4.2).
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Table 4.1 – Heat pump features considered in this work as identified by Chua et al. [90] and Arpagaus
et al. [104].

Feature Description Feature Description
(A)
Multi-stage
compres-
sion
[104, 176–
178]

Provide higher coefficient of performance
(COP) through intermediate vapor cool-
ing while imposing challenges for direct
vapor injection (multi-stage compressor)
or lubrification management (multiple
single-stage compressors)

(B)
Multi-stage
expansion
(inter-
cooling)
[179, 180]

Offers lower technical complexity and
higher performance through cooling at
intermediate pressure level (with aid of
several expansion valves for a single-stage
compressor)

(C)
Cascaded
cycles [181]

Enable coverage of wider temperatures
ranges due to the possibility of working
fluids switching with applications in nat-
ural gas liquefaction or other cryogenic
processes, or waste heat recovery with a
strong temperature lift

(D)
Gas-cooling
[182]

Allows to recover heat from the super-
heated vapor at the compressor outlet
(e.g. in a separate heat exchanger), and
therefore generates a multi-temperature
profile at a single pressure level at higher
capital expenses

(E)
Economizer
[182]

Permits to preheat the saturated vapor be-
fore entering a compressor by mixing with
superheated vapor at the same pressure
level

(F)
Subcooling
[178, 180,
181]

Subcooling before expansion improves
the performance of heat pumps, however,
possibly at the cost of additional heat ex-
changer installation

(G) Presatu-
rators
(flash-
drums) [178,
182, 183]

Enable to saturate superheated vapor and
to remove flash gas between expansion
stages which improves the coefficient of
performance in multiple ways

(H) Ejectors
[104, 180,
183–185]

Allow compression of a low pressure fluid
through the expansion of a high pressure
fluid (principle of suction) at low mainte-
nance and capital expenses. Ejectors were
not considered in this work, but are men-
tioned due to their promising characteris-
tics

4.1.2 Mathematical methods

Mathematical methods ensure identification of an ideal point with regard the selected objective(s);

however, convergence of optimization techniques becomes increasingly difficult with growing

problem size. Therefore, many studies considered a reduced solution space, such as discretized

temperature levels, simplified heat pump cycles, disregarding PA principles, or preselecting working

fluids. The studies presenting mathematical methods are analyzed in the following paragraphs

based on selected characteristics.

Temperature level selection In the literature, temperature level (used here interchangeably with

pressure level) selection was handled in two ways. The primary approach relies on predefined or

discretized temperature levels among which compressor units are activated using integer variables.

The first comprehensive methodology for optimal industrial heat pump design based on discrete

temperature levels was presented by Shelton and Grossmann [101, 102] in the form of a mixed

integer linear programming (MILP) superstructure. Many subsequent authors used discretized

temperature levels (as depicted in Table 4.2), resulting in a diminished solution space and therefore

increasing the risk of identifying a sub-optimal solution. Fewer authors presented methods with

continuous temperature levels as part of the decision variables, which renders the problem structure

nonlinear as presented e.g. by Colmenares and Seider [186].

Pinch analysis The principles of PA were considered in most methodologies listed in Table 4.2.

Few authors presented algorithms neglecting PA, which reduced the problem size at the cost of

disregarding the heat recovery system and its dependencies.
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Table 4.2 – State-of-the-art summary of synthesis methods for heat pump design and integration with industrial processes.

Authors Year Focus Method PA Property Temp. Detail Objective Cycle features Fluid
Conc. Math. calc. discret. (A) (B) (C) (D) (E) (F) (G) T Selection

Current work HP TC MINLP X CP 0.5 K 3 opex, capex X X X X X X X S X Integers
Yang et al. [187, 188] 2017 HP MINLP X - contin. 3 power X X X X X X X S
Zhang et al. [189] 2016 AHP MINLP - contin. 1 TAC X G
Oluleye et al. [190] 2016 HP/AHP/HE/AHT TP X HYSYS 10 K 2 fuel X S X TP
Oluleye et al. [191] 2016 HP/AHP/HE/AHT MILP X HYSYS 10 K 2 TAC X S X Binary
Dinh et al. [192] 2015 HP MILP X PR fixed 3 power X X X X S (X) Flowrates
Kamalinejad et al. [160] 2015 HP MINLP X RP contin. 3 TAC X X X X X X S (X) Flowrates
Liu et al. [193] 2014 HP TP X - fixed 3 power X X X S X TP
Khan and Lee [194] 2013 HP NLP X PR contin. 3 power 4(∗) M (X) Composition
Hackl and Harvey [195] 2013 HP TP X simple fixed 1 - X G
Becker [140, 196] 2012 HP MINLP X Belsim contin. 2 opex,capex X X X S X Binary
Zhang and Xu [159] 2011 HP TC MINLP X - fixed 3 exergy X X X X X X S (X) Flowrates
Hasan et al. [197] 2009 HP MINLP simple contin. 3 power X X X S/M (X) Flowrates
Nogal et al. [106] 2008 HP MINLP X HYSYS contin. 3 capex/power X X X X M (X) Composition
Aspelund et al. [198] 2007 HP TP HYSYS, SRK fixed 3 exergy X X X X S X TP
Bagajewicz and Barbaro [199] 2003 HP NLP X simple contin. 1 opex X G
Holiastos and Manousiouthakis [156] 2002 HE/HP LP X simple fixed 1 TAC X G
Vaidyaraman and Maranas [105] 2002 HP NLP X SRK contin. 3 power X X X M (X) Composition
Maréchal and Kalitventzeff [157] 2001 HP TC MILP X Belsim fixed 3 exergy X X X S X Binary
Vaidyaraman and Maranas [103] 1999 HP MILP X [200] 1- 8 K 3 TAC X X X X S X Binary
Kauf [201] 1999 HP TP - contin. 2 COP S
Wallin and Berntsson [202] 1993 HP/AHP/AHT TEP X generic fixed 1 TAC G
Linnhoff and Dhole [203] 1992 HP TP X simple fixed 3 power X X X S
Swaney [204] 1989 HE/HP LP X simple fixed 3 TAC X X X S
Colmenares and Seider [186] 1989 HE/HP NLP X PR contin. 2 TAC X S X Flowrates
Ranade [175] 1988 HP EP X simple contin. 1 TAC G
Colmenares and Seider [205] 1987 HE/HP NLP X PR fixed 2 TAC X S X Flowrates
Shelton and Grossmann [101] 1986 HP LP X [206] 1 K 3 TAC X X X S
Shelton and Grossmann [102] 1986 HP MILP X [206] 10 K 3 TAC X X X S
Townsend and Linnhoff [100] 1983 HE/HP TP X Tabl. fixed 2 exergy S
Cheng and Mah [174] 1980 HP HR SRK contin. 3 TAC X X X X X X S X TP
Barnés and King [173] 1974 HP HR MIP SRK contin. 3 TAC X X X X X X S

(*) Fixed four stages in optimization study
Focus: HP - compression heat pumps, HE - heat engines, AHP - absorption heat pumps, AHT - absorption heat transformers
Conceptual methods: TP - Thermodynamic principles, TC - Technical constraints, EP - Economic principles, HR - Heuristic rules, TEP - Thermo-economic principles;
PA: pinch analysis [99, 207]
Property calculation: CP - CoolProp [208], RP - Refprop [209], SRK - Soave-Redlich-Kwong [210] equation of state, HYSYS - Aspen HYSYS software [211], simple - simplified estimations, PR - Peng-Robinson [212], Belsim - Belsim Vali software [213]
Detail: Level of detail in modeling: 1 - general modeling based on thermodynamic estimations for a generic fluid, 2 - modeling of simplified (single-stage) cycles for specific fluids, 3- full detail modeling of (multi-stage) heat pumps with advanced
features for different fluids
Objective: TAC (min), fuel - primary fuel consumption (min), exergy - exergy losses (min), opex (min), capex (min), power - compression power (max)
Cycle features: (A) Multi-stage compression, (B) multi-stage expansion, (C) cascaded cycles, (D) gas cooling, (E) Economizer (preheating before compression), (F) sub-cooling, (G) presaturators
Fluid: T (types): S - single component fluid, M - fluid mixture, G - generic fluid; Selection: TP: thermodynamic principles
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Heat pump features In modeling heat pump features, three approaches addressing different levels

of detail were observed in the literature. In the first group (1), heat pump performance was modeled

based on general thermodynamic principles [107, 156, 175, 189, 195, 199]. It aids in estimating

potentials for improvements reachable with heat pump integration but lacks specification of real

fluids or system design. Works contained in the second group (2) modeled basic single-stage heat

pump cycles based on real fluids assuming that superposition of simple cycles could represent

more complex systems [100, 140, 186, 190, 201, 205, 214, 215]. This leads to underestimation of

performance and thus sub-optimal solutions could be generated. The third group (3) contains

work presenting rigorous heat pump models including technical features from Table 4.1. Most of

these included multi-stage compression and pre-saturation [101, 102, 158, 197, 203], while some

additionally considered liquid sub-cooling, preheating before compression, or gas-cooling [105,

159, 173, 174], and very few authors examined multi-stage expansion including Vaidyaraman and

Maranas [105], Nogal et al. [106], Liu et al. [193], Aspelund et al. [198, 198]. No previous work has

comprehensively included all identified heat pump features.

Objective function Apart from the work of Becker et al. [140], the studies discussed here have

presented mathematical approaches for single-objective optimization of industrial heat pump

systems with objectives such as minimizing exergy losses [159, 195] or total cost [101, 102, 160,

186] . In praxis, decision-making is based on many factors and it is thus difficult to obtain the

global solution from single-objective optimization. Therefore, it is advantageous to derive multiple

solutions such that the final decision can be based on several criteria including expert judgment,

which could be facilitated by multi-objective optimization.

Fluid selection Fluid selection has not been considered extensively in heat pumping literature.

Some authors have compared different working fluids based on thermodynamic principles, such

as Oluleye et al. [215], while others mainly derive the optimal mass flow rates or composition from

preselected fluids, including Kamalinejad et al. [160]. Few researchers have integrated fluid selection

into the optimization in the form of integer, binary, or continuous variables such as Vaidyaraman and

Maranas [103], Becker [140], or Colmenares and Seider [205]. The candidate fluids were principally

selected based on fluid critical properties and triple point.

4.1.3 Discussion and contribution

The discussion of studies presenting conceptual and mathematical methods for optimal heat pump

design and integration with industrial processes is summarized as follows.

1. Conceptual methods provide important insight to problems but cannot assess solution opti-

mality. The advantage is, however, that technical infeasibilities and practical constraints can

be considered without facing computational problems.

2. Mathematical methods may experience convergence issues for large scale problems due to
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increasing complexity. Therefore, many studies considered a reduced solution space.

3. Few studies provide a combination of conceptual and mathematical approaches, which can

harvest the advantages of both methods, e.g. through introduction of technical constraints, or

multi-solution generation.

4. The potential impact of heat pumping for industrial waste heat recovery is not clearly commu-

nicated.

This chapter addresses the gaps denoted (2) and (3) by presenting a novel comprehensive superstruc-

ture synthesis method which is solved using mathematical programming for optimal integration

of industrial heat pump systems. Preliminary versions of this heat pump superstructure (HPS) as

presented in the previous Chapter, and in [111, 167] were generalized and extended to incorporate

temperature level and fluid selection, heat exchanger network (HEN) cost estimation, technical con-

straints and a comprehensive list of heat pump features. A multi-objective decomposition solution

strategy allows convergence for large problems and provides multiple solutions for expert judgment

adapted to the diverse criteria relevant in industry. This strategy addresses the shortcomings of

previous work and provides a clear design method based on a comprehensive superstructure and

mathematical programming.

4.2 Methodology

4.2.1 Problem statement

This method aims at providing a utility target and preliminary design of the heat pump system as

the basis for detailed design considering dynamic behavior in a subsequent step (not treated here).

The problem statement is depicted below.

Problem statement

Given

• industrial process thermal and material demands

• set of candidate utility technologies, including potential heat pumps with operating

ranges

Determine

• optimal utility system design

• optimal design of the heat pump system including:

– specification of technologies

– features

– working fluid

– operating conditions (temperatures, pressures, etc.)

72



4.2. Methodology

4.2.2 Superstructure synthesis

A flowsheet and a temperature entropy diagram of the novel heat pump superstructure (HPS) are

depicted in Figure 4.1. It illustrates the various potential pathways and features considered in the

superstructure. Some features are represented in sample cycles.

The superstructure is equipped with a condenser and evaporator at the highest and lowest pressure

levels, respectively. The intermediate levels additionally contain a presaturator, a post-compression

gas-cooler, a subcooling heat exchanger, and a superheater. Compressors and valves are made avail-

able between all pressure levels. Superheated vapor exiting the compressor can be de-superheated

in a heat exchanger (gas-cooler) and condensed (represented by one heat exchanger), and/or sent

to a presaturator which saturates the fluid and separates it into its phases. Two-phase flow leaving

the expansion valves can be evaporated (and potentially superheated by mixing or heat exchange)

and then compressed or mixed with condensate with options of inter-cooling and/or subcooling

before expansion.

4.2.3 Mathematical formulation

The statement above corresponds to a non-convex Mixed Integer Nonlinear Programming (MINLP)

problem. The integer variables relate to activation of different technology options while nonlinear-

ities mainly arise from capital cost correlations and the intrinsic nonlinearity of thermodynamic

property correlations. Therefore, a decomposition strategy [125] is applied as presented in Figure 4.2

which incorporates the nonlinearities at the master level solving the linear problem at the slave

Figure 4.1 – Flowsheet and temperature-entropy diagram of the HPS with sample cycles.
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i=1

Convergence check

1. Problem statement

Non-linear variables: x
Linear variables: y
Objective function: obj = f (x,y)
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based on input from master 
level xi

Process integrationi=i+1

Results evaluation
obj, x, y
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Figure 4.2 – Method proposed in Chapter 4 based on decomposition strategy solving mixed integer
nonlinear programming (MINLP) superstructure implemented in Lua OSMOSE platform [125, 143].

level. The variables present in the nonlinear constraints are set at the master level and thus act as

parameters for the slave optimization. At the slave level, the linear problem is solved and the deci-

sion variables contained in the linear constraints and the linear objective function are transferred

to a post-computational analysis where the nonlinear capital cost correlations and objectives are

calculated. Based on the objective function values, a convergence check is performed and a new

iteration is initiated at the master level.

The main assumptions considered in the heat pump superstructure are:

• the thermodynamic behavior is at steady-state

• heat losses and pressure drops in piping and the components are negligible

• the outlet of a condenser is either saturated or subcooled

• the outlet of an evaporator is either saturated or superheated

• isenthalpic expansion in the valves

• the minimum approach temperature difference is fixed for every stream (and follows the

indications from the literature cases)

4.2.3.1 Master level

At the master level, a black box optimization is performed where the variables present in the nonlin-

ear constraints are the decision variables. These are mainly the heat pump saturation temperature

levels (Ti ), the fluid (d), the subcooling, gas cooling, and compressor preheating temperature dif-

ferences (∆Ti ,SC , ∆Ti ,DSH , ∆Ti ,PRE ), and all thermodynamic properties derived from these. An

additional variable is introduced in order to vary the weight (ξ) of the two components in the objec-

tive function at the slave level (see Section 4.2.3.2 - objective function). The properties are retrieved

from the open-source database CoolProp [208]. The variables and objective functions at the master

level are found in Table 4.3.

Black-box multi-objective nonlinear optimization is performed by Dakota [216] using a multi-

objective genetic algorithm (MOGA) [217] which allows analysis of a wide solution space. The

specifications used are presented in Appendix C.1.1.
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Objective function Different objective functions are of interest when optimizing industrial heat

pumps such as the exergy efficiency, coefficient of performance (COP), environmental impact, or

cost. Based on the literature cases considered in the results and discussion section, the objectives of

the multi-objective optimization were based on economic criteria, i.e. annualized capital expenses

(capex) and yearly operating expenses (opex) as shown in Equation 4.1.

min
Ti ,∆Ti ,DSH,∆Ti ,SC,∆Ti ,PRE,d ,ξ

{
C opex ,C capex}

(4.1)

The capex (depicted in Equation 4.4) consists of the investment costs of all technologies w and the

HEN cost estimation calculated using Equation 4.3. The HEN area is estimated as suggested by

Townsend and Linnhoff [99, 218] based on vertical intervals in the composite curves. HEN design

based on mathematical principles, as well as optimization of the minimum approach temperature

(ΔTmin) was not performed in this work, but could be added to the solution strategy.

Link to slave level The utility and heat pump technology sizing is performed at the slave level.

The results from the slave optimization serve as input to calculate the master level objective func-

tions. These are the maximum size ( f w ) and existence (y w ) of each technology w influencing the

equipment investment and heat exchanger network cost estimation.

4.2.3.2 Slave level

The HPS is embedded in the utility targeting problem of Maréchal and Kalitventzeff [75] where

the optimal utility system for an industrial process is found based on the thermal and material

needs considering maximum heat recovery. This means that all elements of the heat pump, namely

condensers, evaporators, compressors, presaturators (flash-drums) and gas-coolers, are present as

utility technologies in the targeting approach. The main variables at the slave level are the size and

existence of each utility technology, including all heat pump elements. The size of each technology

is decided by optimization based on the objective function while remaining subject to physical and

thermodynamic laws.

To ensure mass and energy conservation within the heat pump, additional constraints are added

at all saturated liquid, vapor, and superheated vapor points. Since the saturation temperature and

respective pressure levels as well as the subcooling and superheated properties are set at the master

level, component sizing is linearly dependent on the state properties. Therefore, the problem can be

described as a multi-period Mixed Integer Linear Programming (MILP) problem which is solved

using commercial software based on AMPL [3] with CPLEX [5]. The specifications are presented in

Appendix C.1.2.

Table 4.4 depicts the objective function and variables at the slave level. The utility targeting con-

straints are described in further detail in Section 2.4. The heat pump parameters for utility targeting
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Table 4.3 – Variables and objective function at master level.

Description Symbols Equation

Objectives

Yearly operating expenses
(opex) [$/y]

Copex from slave level, see Table 4.4

Total investment cost [$] CINV

∑
w∈W

C w (
f w,y w )+C HEN (4.2)

W set of utility technologies w
f w maximum size of technology w
yw existence of technology w
C w investment cost function of technology w , see Appendix C.3.1

Heat exchanger network
cost (*) [$]

C HE N max
p

{[
c1 +c2 ·

(
AHE N

tot ,p

N HE N
mi n,p

)c3]
·N HE N

mi n,p

}
(4.3)

AHE N
tot ,p = ∑

k∈K

1

∆Tlog,k
·
∑

c∈C

Q̇c
p,k

αc + ∑
h∈H

Q̇h
p,k

αh

(∗)

K set of temperature intervals {1,2,3, ...,nk}
H,C set of hot, cold process and utility streams
∆Tlog,k [K] logarithmic mean temperature difference

Q̇h,c
p,k fh,c

p · Q̇
h,c

[kW] contribution of hot h, cold stream c to temperature interval k in period p

α
h , αc [kW/m2K] hot, cold stream h, c heat transfer coefficient

AHE N
tot ,p [m2] total heat exchanger network area

N HE N
mi n,p [-] minimum number of heat exchanger units

c1 [$] fixed cost parameter
c2 [$/m2] scaling cost parameter
c3 [-] non-linear parameter

Annualized capital
expenses (capex) [$/y]

Ccapex C I NV · (τ+m) (4.4)

τ [1/y] i·(1+i)n

(1+i)n−1 investment cost annualization factor

m [1/y] maintenance cost as fraction of total investment

Total annualized costs
(TAC) [$/y]

CT AC C capex +C opex (4.5)

Variables

Temperature levels Ti [Tmin
i ,Tmax

i ], [K] saturation temperature levels
Subcooling ∆Ti ,SC [0,Tmax

i ,SC], [K] temperature difference between condensate and subcooling outlet
De-superheating ∆Ti ,DSH [0,Tmax

i ,DSH], [K] temperature difference in gas-cooling heat exchanger
Pre-heating ∆Ti ,PRE [0,Tmax

i ,PRE], [K] temperature difference for preheating before compression

Fluid index d {1,2, ...,nd} from set of fluids F
Weighting factor ξ [0,1], [-] for objective function of slave optimization

(*) Area estimation based on Townsend and Linnhoff [218] and Kemp [99]. The minimum number of heat exchangers (units) N HEN
mi n is estimated following the suggestion of

Linnhoff et al. [98] based on graph theory.

as well as mass and energy balances are found in Appendix C.3.1 and C.3.2.

Objective function The MILP problem is solved with commercial solvers [3, 5] based on branch

and cut methods for a single objective function. Investigation of a wide solution space regarding

both objectives from the master level leaves two options for consideration.

(a) Constraining one objective with a variable controlled from the master level and minimizing

the second objective or

(b) Defining a weighted sum of the two objectives (wC T AC ) where the weighting factor (ξ) is

controlled at the master level.
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Since alternative (a) generates more infeasible solutions and therefore leads to longer solution times,

option (b) was selected and is expressed in Equation 4.6.

min
f w

p , f w ,y w
p ,y w

{
wC T AC }

(4.6)

Heat cascade The MILP slave model is subject to heat cascade constraints [75] which ensure heat

transfer feasibility for maximum heat recovery. The set of equations are provided in Chapter 2.4

(Equation 2.14 - Equation 2.15).

Mass and energy balances All material and non-thermal energy requirements are described by a

set of constraints. These equality constraints ensure that material/energy consumption and con-

version are balanced within the system boundaries or compensated with help of the grid (utilities)

which factors into the operating cost, as described in more detail in Section 2.4.

Variables The variables present at the slave level are the existence (y w
p ) and sizing ( f w

p ) of each

of the utility technologies w during each period p and the maximum size considering the entire

operating range. Based on the objective function and thermodynamic input parameters selected

at the master level, optimal sizes and operating conditions of all utilities including the heat pump

technologies are derived within the optimization.

Heat pump specific constraints The general heat pump parameters such as the reference heat

load of the evaporator and condenser and the reference electricity consumption of the compressors

are presented in Appendix C.3.1. These enter into the targeting constraints and are sized based on

the process thermal requirements minimizing the objective function. Enforcing energy and mass

conservation within the HPS requires additional constraints to be introduced. These are illustrated

in further detail in Appendix C.3.2.

Mass and energy conservation are introduced at three different points on each pressure level, namely:

the superheated vapor point after compression, the de-superheated or saturated vapor point before

compression or condensation, and the saturated or subcooled liquid point after condensation or

before evaporation. Since these points are fixed at the master level, all equations can be formulated

with purely linear dependencies. Mass balances at all three points ensure that the working fluid

mass flow rate is conserved throughout the heat pump system. Energy balance equations ensure

that mixing (e.g. of two compressor outlets at the same pressure level) do not violate the energy

conservation law. Superheated vapor mass and energy balances are introduced to study the effect of

sensible heat recovery from the vapor (gas-cooling). This can either be achieved by installation of a

separate heat exchanger (gas-cooler) or by accounting for sensible heat release in the condenser

unit. Both options are separately modeled in this superstructure but does not have a major impact

on the heat exchanger network cost estimation (since gas cooling in both cases imposes higher
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investment). The de-superheating temperature difference (∆Ti ,DSH ) selected at the master level can

be understood as the temperature from which sensible heat release is considered. This temperature

difference does not influence the energy balance but by manipulating the inlet temperature of

the de-superheating, HEN solutions which require stream splitting can be avoided, which has an

influence on the heat cascade. If it is set to zero, gas-cooling is neglected and the sensible heat

contained in the superheated vapor is considered as if it was available only at saturation temperature

levels.

Apart from energy and mass conservation, technical constraints can be considered as introduced

below.

Number of heat pump stages The maximum number of stages of a heat pump cycle consisting of

one fluid can be restricted as shown in Equation 4.7.

nl∑
i=2

i−1∑
j=1

y g ,COMP i→ j
p ≤ nmax

g ∀g ∈ G (4.7)

Where

G set of heat pumps with one working fluid
L set of saturation temperature levels {1,2,3,..nl}
y g ,comp i→ j overall existence of compressor between level i and j of heat pump g
nmax

g maximum number of heat pump stages of heat pump g

Compression ratio and minimum pressure Compressors with compression ratios or with pres-

sure levels outside the bounds cannot be activated. This is depicted in Equation 4.8, which forces

the existence of compressor "COMP i → j " to zero, if one of the criteria is met.

{
y g ,COMP i→ j

p = 0

∣∣∣∣ pg , j

pg ,i
> CRmax

g ∨ pg , j

pg ,i
< CRmin

g ∨pg ,i < pmin
}

∀i , j ∈ L | j < i , g ∈ G (4.8)

Where

pg ,k [bar] saturation pressure level of heat pump g at saturation temperature level k

CRmin, max
g [bar/bar] minimum, maximum accepted compression ratio of heat pump g

pmin [bar] minimum accepted saturation pressure level

Heat exchanger size A minimum size for heat exchangers is introduced in the form of a soft

constraint. Thereby, a fixed penalty cost (IVq
1 ) is added to the heat pump units containing thermal
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streams as shown in Equation 4.9.

Cfix = a ·
(

Qmin

U ·A ·∆T

)b

IVq
1 = Cfix

∀h ∈ Hg , g ∈ G (4.9)

Where

Hg set of thermal heat pump units {condensers, evaporators, presaturators, gas-coolers} in heat pump g
U [kW/m2K] overall heat transfer coefficient
A [m2] reference heat exchange area
Qmin [kW] minimum heat exchanger size
ΔT [K] log mean temperature difference in the heat exchangers
a,b [$,-] cost parameters

4.2.4 Fluid selection

Presuming fluid selection from known fluids and sub-critical operation, there are two options for

conducting a fluid selection in the presented method.

(a) the list of candidate fluids is added to the slave level, in which every unit (condenser, evapo-

rator, compressors, etc.) is reproduced as many times as there are fluids; the fluids are then

activated using binary variables connected to the existence of each unit (yw ), or

(b) an integer variable referencing the fluid is added to the master level

The advantage of selection at the slave level, (a), is that cascaded cycles with different fluids can

be designed and convergence of the decomposition strategy is reached after fewer iterations (due

to fewer variables at the master level). The disadvantage is that the slave problem size increases

proportionally with the number of fluids which impacts the MILP resolution time significantly. Both

options were applied in this study depending on the respective problem statement (which will be

indicated).

4.3 Results and discussion

This section is divided into three parts. In the benchmarking analysis, three case studies presenting

optimal heat pump designs for industrial processes from the literature were selected. The literature

results were reproduced with the heat pump superstructure (HPS) to validate its flexibility. During

the optimization study, the multi-objective bi-level approach presented in the methodology is

applied to the three literature cases, and compared to the previous solutions from the literature. In

an extended analysis, one literature case is expanded to consider fluid selection, technical boundary

conditions, and HEN cost estimations better representing the reality of industrial problems.
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Table 4.4 – Variables and objective function at slave level.

Description Symbols Equation

Objectives

Weighted total
annualized costs (TAC)
[$/y]

wCT AC ξ ·C capex + (
1−ξ) ·C opex (4.10)

ξ weighting parameter controlled from master level

Yearly operating
expenses (opex) [$/y]

Copex

∑
p∈P

( ∑
w∈W

OPw
1,p · y w

p +OPw
2,p · f w

p

)
·∆tp ·occp (4.11)

Sizing constraint fw,min · y w
p ≤ f w

p ≤ fw,max · y w
p ∀p ∈ P, w ∈ W

P set of time periods p {1,2,3, ...,np}
W set of utility technologies
f w

p continuous variable for sizing technology w during period p
y w

p binary variable related to existence of technology w during p
OPw

1,p [$/h] fixed operating cost in period p

OPw
2,p [$/h] proportional operating cost in period p

∆tp [h] operating time during period p
occp [1/y] occurrence of period p

Annualized capital
expenses (capex) [$/y]

Ccapex

∑
w∈W

IVw
1 · y w + IVw

2 · f w (4.12)

f w maximum size of technology w
y w overall existence of technology w
IVw

1 [$/y] fixed cost related to the annualized, linearized investment of technology w
IVw

2 [$/y] proportional cost related to the annualized, linearized investment of technology w

Variables

Multiplication factor f w
p [fw,min, fw,max], [-] sizing factor of technology w during period p

Use factor y w
p {0,1}, [-] existence of technology w in period p

Maximum multiplication
factor

f w ≥ fw
p ∀p ∈ P maximum size of technology w

Overall use factor y w ≥ yw
p ∀p ∈ P overall existence of technology w

4.3.1 Benchmarking analysis

The selection of the benchmark cases was based on their recurrence in the literature, even though

not many cases were treated repeatedly, and the diversity in their characteristics. Suitable cases

could not be identified in the most recent literature due to insufficient data provision in terms of

process stream data, cost functions, or detailed heat pump configurations. The selected cases were

each treated in several publications.

(a) Case E2 was selected because it was treated in two consecutive studies by Shelton and Gross-

mann [101, 102] and due to its heating and cooling requirements which span over a continuous

temperature range as shown in Figure 4.3 (a). This case provides exploration potential of a

multi-temperature, multi-stage heat pump system which crosses the pinch located at -8°C.

(b) An ethylene plant separation train [219] discussed by Colmenares and Seider [186] was chosen

due to the refrigeration needs at extremely low temperatures (-115°C) as shown in Figure 4.3

(b). The pinch point is located at approximately 130 °C, which leaves little room for a heat
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pump crossing the pinch. Vaidyaraman and Maranas [103] discussed a slightly modified

version of the same problem (differentΔTmin) with higher total cost, which is not treated here.

(c) A Cold Tray distillation sequence presented by Colmenares and Seider [205] and later studied

by Swaney [204] was selected to revisit the original solution which disregarded an obvious

improvement of heat pumping across the process pinch (≈ 60 °C). Figure 4.3 (c) shows the

process temperature enthalpy profile indicating the process thermal demands and pinch

point. Swaney [204] considered a solution with heat pumping across the process pinch for

this case study, however with modified input data (isentropic compressor efficiency of 0.8)

and is, therefore, not considered here.

The literature optimal cases were reproduced by adding constraints at the slave level of the HPS to

force the resulting heat pump layout to contain the same features and operating conditions as those

presented in the literature. This was achieved by pre-selecting temperature levels and fixing the

active compressor stages and fluids. In this way, the HPS flexibility was tested and reference values for

later comparison were calculated, given that most literature studies used different thermodynamic

property calculations.

An analysis of the original and the reproduced data (referred to as Reference since they serve for

later comparison) is presented in Table 4.5. The results are compared based on the total annualized

costs (TAC) which was the objective function in the literature. It was observed that the results from

literature cases E2 and Cold Tray could be reproduced with a negligible difference (below +/-1%) in

each of the categories including the TAC. The slight difference in results is explained by different

property calculation methods. Reproduction of the Ethylene case generated around 23% higher

electricity consumption which resulted in 22% higher TAC. The thermodynamic conditions are

Figure 4.3 – Grand composite curves (GCCs) (temperature enthalpy profiles) from process thermal
streams of three benchmark cases, reproduced from (a) Shelton and Grossmann [102], (b) Lincoff
et al. [219], (c) Colmenares and Seider [205], respectively.
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Table 4.5 – Comparison of original data and data reproduced (Reference) in this work with the HPS.
A detailed description of the parameters is presented in Appendix C.2.1.

E2 Ethylene Cold Tray
Original [101] Reference Δ Original [186] Reference Δ Original [205] Reference Δ

Opex
Cooling water $/y 0 0 - 23’950 25’020 4.5% 29’950 29’930 -0.1%
Steam $/y 10’440 10’460 0.2% - - - 287’100 287’090 0.0%
Electricity $/y 27’370 27’620 0.9% 266’080 327’580 23.1% 97’260 96’370 -0.9%

Capex
Compressors $/y 54’370 54’710 0.6% 188’990 230’810 22.1% 56’880 56’380 -0.9%

TAC $/y 92’180 92’790 0.7% 479’020 583’410 21.8% 471’190 469’770 -0.3%

quite extreme (very low temperature) and thus advanced property estimations are necessary. The

literature case consists of five cascaded heat pump cycles over a wide temperature range. Even small

underestimation or overestimation of the electricity consumption in the lower cycles is therefore

cascaded over the entire range. This, in combination with the property estimation methods, could

explain the discrepancy.

4.3.2 Optimization

In this section, the generic HPS and multi-objective solution strategy were applied to the three

literature cases. Parameters of the master level optimization are presented in Appendix C.1.1. The

MOGA algorithm was terminated after 105 function evaluations if the convergence criterion of 0.1

percent change in the non-dominated frontier was not reached. Multi-objective optimization was

carried out with regard to the two competing objectives being the opex and capex. The saturation

temperature levels and sub-cooling temperature differences (only in case E2) were the variables at

the master level. Due to the more or less constant temperature requirements in the Ethylene and

Cold Tray case studies, liquid subcooling and gas-cooling were not considered here. However, for

these two cases, fluid selection was considered following the data from the literature [186, 205]. To

investigate the potential for cascaded cycles, the set of candidate fluids was added at the slave level.

Input data and variable boundaries to the different cases are presented in Appendix C.2.1. Figures

4.4 (a),4.5 (a),4.6 (a) show the results from the multi-objective optimization. The minimum TAC

point of each case was selected and compared to the Reference case in an integrated temperature

enthalpy diagram in Figures 4.4 (b),4.5 (b),4.6 (b) in addition to the flowcharts in Figure 4.7. The

three cases are each discussed in the next paragraphs.

Temperature ranges, E2 The multi-objective results in Figure 4.4 (a) exhibit a pattern of diagonal

lines with interstitial gaps. These lines can be explained by the differing numbers of compressors. A

trade-off is constituted between a reduction of opex by multi-stage compression, and an increase in

capex related to a higher number of compressors with their associated variable and fixed investment

costs. The number of compressors for solutions in the non-dominated frontier between opex and

capex ranges from three to six. Minimum TAC was achieved with four compressors in contrast to
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Figure 4.4 – E2. (a) Multi-objective results, (b) utility integrated composite curves (ICCs) (Carnot
factor enthalpy profiles) of Reference and min(HPS). Termination: 100k iterations (961 generations);
last 50 000 iterations displayed.

Figure 4.5 – Ethylene. (a) Multi-objective results, (b) utility ICCs. Termination: 118 generations; all
2’852 iterations displayed.

Figure 4.6 – Cold Tray. (a) Multi-objective results, (b) utility ICCs. Termination: 100k iterations (229
generations); last 50’000 iterations displayed.
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the six suggested in the Reference. One additional advantage of this multi-objective optimization

approach is also that sub-optimal solutions with lower system complexity can be identified. The

best solution with three compressors e.g. bears similar TAC (<+1%) as the overall minimum cost

solution with four compressors and may therefore be a better solution from the practical perspective.

The HPS allows for a comprehensive analysis of heat pump features and operating conditions.

The proposed minimum TAC solution consists of a heat pump with inter-cooling, subcooling, and

gas-cooling heat exchangers as depicted in Figure 4.4 (b) and Figure 4.7 (a) which contribute to

achieving similar performance (in terms of opex) at reduced compressor fixed costs capex compared

to the Reference. This leads to a potential overall 5% reduction in TAC as displayed in Table 4.6.

Cascaded cycles, Ethylene separation train Results from the multi-objective optimization in

Figure 4.5 (a) show that the two objective functions, opex and capex, are not conflicting. Two main

reasons were identified: (1) Due to the elevated process pinch point at 130°C, a pinch-crossing

heat pump (as presented in case E2) is not feasible, thus there is no trade-off between (higher)

compressor investment (capex) and (lower) hot utility requirements (opex); (2) The fixed investment

costs of the compressors are distinctly smaller than the proportional costs which translates to the

heat pump capex depending primarily on the electricity consumption (opex). Thus all objectives

point in the same direction, which would make a Single Objective Genetic Algorithm (SOGA) [217]

more appropriate. Running SOGA led to an equivalent result. The minimum point reveals an

approximate 30% reduction in the TAC compared to the Reference (shown in Table 4.6) driven by

the drastically diminished electricity consumption. As illustrated in Figure 4.5 (b) and Figure 4.7

(b), the power consumption was reduced due to a decrease in number of refrigerant switches from

four to one, which avoided the minimum temperature difference (ΔTmin = 10 K) in the switching

heat exchangers. Inter-cooling at three levels (174.5 K, 189.5 K, 208.5 K) additionally improved the

refrigerator performance leading to an improvement of the COP from 1.8 to 2.6. Due to the constraint

on the compression ratio (unlike in the original) to be below 10, which may still be extremely high,

the compressor is changed at 180.5 K. This leads to a more complicated, however, beneficial flow

management to saturate the superheated compressor outlet.

Process pinch point, Cold Tray distillation Results from the multi-objective optimization in

Figure 4.6 (a) indicate a pattern of diagonal lines with gaps in between. Unlike case E2 this is

unrelated to the number of compressors in the system, which are mostly at their maximum (five)

due to low compressor fix cost. However, it can be observed that the cooling water consumption

correlates with the formation of lines. At highest opex, the largest amount of cooling water is

consumed. It is used to cool the process and the refrigeration cycle as reported in the Reference

displayed in Figure 4.6 (b) and Figure 4.7 (c). By adding a heat pump around the process pinch, the

cooling water and hot utility consumptions were drastically reduced. The increase in capex is off-set

by a larger decrease in opex leading to a maximum reduction of 27% in TAC in the best point, as

depicted in Table 4.6. The HPS minimum TAC solution consists of two separate (ammonia based)
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246

Figure 4.7 – Flowchart of min(HPS) solutions heat pump designs (a) E2, (b) Ethylene, (c) Cold Tray
of benchmark analysis.

Table 4.6 – Optimization results. Data shown as Reference was generated with HPS based on the
respective literature input data (Section 4.3.1).

E2 Ethylene Cold Tray
Reference min(HPS) Reference min(HPS) Reference min(HPS)

Opex
Cooling water $/y 0 0 25,020 23,150 29,930 4,810
Steam $/y 10,460 10,370 0 0 287,090 39,310
Electricity $/y 27,620 28,040 327,580 223,340 96,370 189,900

Capex
No. of compressors # 6 4 5 5 3 5
Compressors $/y 54,710 49,630 230,810 159,140 56,380 109,220

TAC $/y 92,790 88,050 583,410 405,630 469,770 343,230
Improvement % 0 5.1% 0% 30.5% 0% 26.9%
COPrefrigeration - 4.4 4.3 1.8 2.6 5.3 5.8
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heat pump systems, one satisfying the refrigeration needs (three compressors), and one across

the process pinch (see Figure 4.7 (c) and Figure 4.6 (b), two compressors). With the refrigeration

configuration a lower cost, higher COP solution could be derived compared to the reference case

which consists of two separate heat pump cycles (R-22 (two compressors) and ammonia). The utility

ICCs in Figure 4.6 (b) show that the HPS solution with the pinch heat pump not only reduces cost,

but also exergy losses (proportional to the area between the curves) of the system.

Synthesis In conclusion, the HPS can represent a wide range of heat pump features and cycle

architectures, while at the same time providing improved solutions to different literature optimal

cases. This is attributed to a wider range of heat pump features considered and variable temperature

level selection. As demonstrated, the level of complexity, variety of heat pump features considered,

and technical constraints added depends on the choice of the user, which makes the superstructure

flexible to handle. The solution strategy allows to generate a set of non-dominated solutions which

enable the user to perform further analysis, thereby gaining deeper insight to the problem, and to

apply other selection criteria. The literature cases discussed in this section serve for benchmarking

the underlying approach, however, important criteria are neglected, such as HEN costs, compres-

sor isentropic efficiencies, ”real” utilities, and technical constraints thus generating ”theoretical”

solutions. In the Section 4.3.3, an extended version of the presented case E2 is, therefore, discussed.

4.3.3 Extended analysis

The heat pump system for the extended case E2 was optimized with respect to opex and capex

assuming an isentropic compressor efficiency of 70%, a maximum compression ratio of 8 [bar/bar]

in each compressor, and HEN cost estimation functions from the literature (section 4.2.3.1, Table

4.3). All input data is reported in Appendix C.2.2.

4.3.3.1 Fluid selection

The choice of fluids considered for the extended case E2 was based on the critical temperature

(Tcr i t ≥ 40°C), the boiling point (Tboi l ≤−33°C), and the global warming potential (GWP ≤ 4·103).

The fluid investment cost was not considered in this analysis. An interactive parallel coordinate

visualization tool developed by Kermani et al. [220] was used to facilitate the fluid screening step

which led to ten relevant fluids (see results in Figure 4.8a and Figure C.2). Both fluid selection

methods described in Section 4.2.4 were applied and compared during this analysis. To ensure

reasonable propagation of the MOGA algorithm during fluid selection at the slave level, a time limit

of 600 seconds was imposed for the MILP solver. If the limit is reached, the solver returns the best

integer solution at that point even if it is above the specified optimality gap. Nevertheless, a total of

25,000 MOGA iterations required higher computational time than 100,000 iterations with master

level fluid selection.

Figure 4.8b shows the non-dominated frontiers of the different fluids generated over all MOGA
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(a) Vapor-liquid saturation curves of selected fluids in
temperature entropy diagram.

(b) Top: Selection at master level; 100k iterations, 211k sec.
Bottom: Selection at slave level; 25k iterations, 890k sec.

Figure 4.8 – (a) Fluid set and (b) multi-objective optimization results. In black: multi-fluid solution.
R407c is not present, due to a Coolprop [208] problem with this fluid.

iterations by both fluid selection methods. The results from the slave level selection (after intense

computational effort) are dominated by the frontier of the master level selection, and it is thus

concluded that if not necessary (e.g. for studying cascaded cycles) this method should be avoided.

In the master level selection, propane dominates the other fluids over the entire range of solutions.

This outcome was reproduced multiple times by rerunning MOGA with different seeds. Since the

MOGA algorithm is aimed at improving the global non-dominated frontier, the frontier of propane

yields a good approximation of the global Pareto frontier for this case. The minimum TAC solution

generated a total reduction of approximately 9.5%. This solution consists of three compressors

between -33 and 41.5°C with propane as working fluid (see Figure C.3).

To study the dominance of propane over the other fluids, the minimum TAC solution was investigated

more closely. Therefore, the fraction ∆Q̇ref(T2)/∆ĖCOMP,2→1 between evaporation enthalpy and

compressor power amidst the two saturation temperature levels T1 and T2 of the first compressor was

calculated for all fluids. Figure 4.9 shows the fraction versus the slope of the entropy vapor saturation

curve ∆s/∆T=(sv (T1)-sv (T2))/(T1-T2). Figure 4.9a reveals that the compression work correlates with

the slope ∆s/∆T. Propane is among the fluids which show the most isentropic behavior (∆s/∆T ≈0)

which leads to lower compression work and therefore a higher fraction ∆Q̇/∆Ė. When calculating

the fraction based on the enthalpy of a complete evaporation (as done in Figure 4.9a), propane is

outperformed by r404a and r507a. In a real system, however, irreversibilities related to the expansion

work will prevent complete evaporation. Accounting also for those irreversibilities, as shown in
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(a) Complete evaporation. (b) Incomplete evaporation, considering isenthalpic expan-
sion from the level above (8°C with 5K subcooling).

Figure 4.9 – Performance of compressor between saturation levels T1 (32.5°C) and T2 (-17°C).

Figure 4.9b, propane yields the highest fraction ∆Q̇/∆Ė hence exhibiting ideal thermodynamic

properties in this temperature range.

Comparing the sequence of fluid frontiers (from Figure 4.8b, top) to the thermodynamic perfor-

mance (Figure 4.9b) indicates a close agreement between thermodynamic and economic perfor-

mance, which will be further investigated. The closest competitors to propane were: propylene,

r161, r404a, r410a, and r507a. Ammonia and hydrogen sulfide generated higher cost solutions, still

strongly outperforming r41. All solutions (except r41) outperform the solution presented by the

reference case updated with equivalent input data.

The dominance of propane over the entire solution space agrees with other reports indicating

superior performance in that temperature range [221]. Further fluid selection criteria could include

safety factors (such as flammability or toxicity), fluid cost, ozone layer depletion potential (ODP),

global warming potential (GWP) and heat transfer characteristics. Each of these criteria would favor

different refrigerants and thus the filtering of potential solutions should be completed carefully to

find the best solution for a given case.

4.3.3.2 COP, cycle complexity and HEN costs

Figure 4.10 illustrates the final non-dominated frontier of the results from the master level fluid

selection including several properties of these solutions. The (cold) COP increases with decreasing

opex, thus, reduced electricity consumption at increased number of compressors; the difference

between the lowest (2.9) COP and highest (3.3) is achieved through a higher number of compression

stages, increased subcooling and gas-cooling. The highest reduction in TAC (-9.5%) was achieved
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with opex of 49.9 k$ (from Figure 4.8b, top). It can be further noted that the entire frontier spans a

relatively small range of operating costs. This is attributed to the simple problem formulation of this

benchmark case.

In Figure 4.10, the expected inverse relationship between opex and HEN costs is clearly visible

which is impacted by two main factors. The first factor relates to activation of gas-cooling. Since the

heat transfer coefficients of gases are distinctly lower than those of condensing fluids, recuperation

of sensible heat contained in superheated vapor requires more heat exchange area and therefore

increases the HEN costs. The second factor increasing HEN cost is related to a higher number of

compression stages, which implies installation of more heat exchangers; thus, influencing both

opex and capex. It is also observed that the amount of subcooling increases in tandem with the

COP thus providing another option for improving operational efficiency with increased investment.

Subcooling was activated in the minimum TAC solution which indicates that its advantageous

characteristics should not be overlooked in cycle design. In contrast to non-extended case E2,

gas-cooling was not activated in the minimum TAC solution, which was attributed to an unfavorable

relation between performance benefits and additional HEN cost.

A HEN design of the reference and minimum TAC case was conducted (as shown in Appendix C.2.2,

Figure C.4). The optimal solution requires one more heat exchanger than the reference case which is

mildly penalized by the HEN cost function thereby being outweighed by the benefits of the reduced

opex. The HEN cost estimation from the area targeting compares satisfactorily to the actual design

with an overestimation between 8-11% (optimal case design: 53.6, estimation: 57.8 k$/y; reference

case design: 52.8, estimation: 58.8 k$/y). Likewise compares the total estimated area and the
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Figure 4.10 – Overall non-dominated frontier of MOGA results from master level fluid selection.
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minimum number of heat exchangers.

4.4 Conclusions

How can design of an optimal industrial heat pump system be conducted?

This study has presented a mathematical approach for optimal design of industrial heat pumps

spanning a wide variable solution space. The method provides a framework for deriving utility

targets, including optimal heat pump component sizes and operating conditions. This provides

a basis for detailed system design in a subsequent step to account for dynamics and off-design

operation.

The novel superstructure-based synthesis method is embedded in a computational framework and

is solved in a decomposition approach. A comprehensive list of heat pump features are taken into

account while technical limitations are considered and a set of solutions is provided which allows

for expert-based decision making and further in-depth analysis of the solutions.

For benchmarking, the method was compared to a set of literature cases generating between 5 and

30% cost improvements to the optimal solutions reported. An extended version of one case was

presented considering fluid selection, HEN cost estimations, and technical constraints within the

problem formulation.

The extended case highlighted a trade-off between energy efficiency and system complexity ex-

pressed by the increase of heat exchanger network costs with the number of compression stages,

level of gas-cooling and subcooling which all improve the COP. This is especially evident when

comparing the solutions with 3 and 5 compression stages causing an increase of the COP from

2.9 to 3.1 at 3% increase in TAC. Subcooling was activated in the minimum TAC solution which

indicates that its advantageous characteristics should not be overlooked in cycle design. In contrast

to non-extended case E2, gas-cooling was not activated in the minimum TAC solution, which was

attributed to an unfavorable relation between performance benefits and additional HEN cost.

Fluid selection was successfully performed indicating that propane is the most favorable fluid both

in economic and thermodynamic terms in this temperature range. The HPS proves to be flexible for

different requirements serving in a variety of cases. It has to be noted that a comprehensive analysis

of an industrial process should always comprise optimization of the entire utility network, including

the hot utilities. This was neglected in this work to be in accordance with the literature input data.

In subsequent analysis, the trade-off with other utility technologies should be considered. Future

work should also include supercritical cycles, refined fluid and component selection strategies, as

well as consideration of off-design performance in multi-time problems.
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5Generalization (A): heat pumping and

co-generation
Overview

• Derivation of a methodology for environmental and economic (environomic) potential

estimation of technologies in industrial sectors, regions, and countries

• Generalization of methodologies derived in previous chapters

• Applied to heat pumping and co-generation in the overall dairy industry

• Presentation of on-line parallel coordinates decision making tool

• Method addresses multiple stake-holders ranging from policy makers to plant operators

and technology manufacturers

This chapter is based on Wallerand et al. [222]

Having derived methods for optimal solution generation of specific cases, in specific countries,

under specific conditions in the previous chapters, this chapter addresses the question of how these

methods could be generalized and extended to a wider scope. Therefore, method for estimating the

general environmental and economic (environomic) potential of various technologies in industrial

processes with application of optimization techniques is derived, generalizing the methodologies

derived in the previous chapters. This includes derivation of a publicly available database1 of

solutions based on a wide range of possible economic and environmental conditions.

In agreement with the literature [89, 90], Chapters 3 and 4 demonstrate that heat pumping can be

considered as a major contributor for improving energy efficiency and reducing the environmental

impact of industrial processes through waste heat recovery and reuse [89, 90] in low temperature

1 The data can be accessed via an on-line parallel coordinate [76] decision-making platform.
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sectors. However, analysis of recent publications in the field of waste heat recovery in Section 1.3

reveals that heat pumping is considered far less frequently than other heat recovery technologies

such as organic Rankine cycles. A general skepticism towards heat pump technologies among

process engineers was reported by several sources [94, 223]. This was assumed to be driven by a lack

of knowledge of the heat pump potential and integration methods and a perceived threat of having

to compromise the process’ operational flexibility [94, 224]. It is further noted that current methods

require extensive on-site analysis, which are often unrealized due to economic or time constraints.

Proper assessment and clear communication of energetic and economic saving potentials are

indispensable for achieving a turning point and, therefore, encouraging more efficient operations

through better use of energy resources. Thorough understanding of process operation and optimal

heat pump placement is the basis for such analysis.

After a state-of-the-art analysis, a novel methodology for heat pump potential estimation in in-

dustrial processes is presented. It considers detailed heat pump modeling and a wide range of

input parameters for a generic plant, thus enabling a pre-feasibility assessment. For illustration, the

method is applied to the dairy industry in the results and discussion section.

5.1 State-of-the-art

Table 5.1 presents a summary of the relevant literature on synthesis methods and potential studies

for heat pump integration in industrial processes. The literature is split between design studies

addressing heat pump design for specific processes, and potential studies which estimate the

technological potential in specific industries.

5.1.1 Design studies

In the past decades, multiple efforts were made to develop methods addressing optimal design

and integration of heat pumps in industrial processes. A general distinction is commonly observed

between conceptual and mathematical methods. Conceptual methods rely on heuristics to generate

good-practice solutions, while mathematical methods are more likely to generate optimal or near-

optimal solutions based on mathematical programming and are hence discussed in more detail.

Mathematical methods are often based on linear and nonlinear problem formulations within

the domain of optimization. Linear problems can be solved by exact methods, which guarantee

optimality in the final result (if terminating in a reasonable time). Nonlinear problems typically

consider different aspects of the problem in more detail and allow investigation of an extended

solution space; however, solving the problem is a more difficult procedure and optimality is not

guaranteed.

In the late 1970s, Linnhoff and Flower [97] developed an important conceptual method aimed at

structurally analyzing a process’ heat recovery potential nowadays known as pinch analysis (PA)

[99, 207].
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Table 5.1 – State-of-the-art summary of synthesis methods and potential studies for heat pump integration with industrial processes.

Citation Year Topic Opt. HR Market Model Integration Par. Synthesis
CU HU

Current work D,Pb MINLP X X ME X X X Bottom-up potential analysis based on optimization of detailed heat pump features for the dairy
industry.

Potential studies
Wilk et al. [225] 2017 D,Pb X X X COP X X X Analysis of different industrial processes and the benefits related to installation of heat pumps

based on flow sheet software.
Brückner et al. [226] 2015 D,Pt X X X COP X X X Economic potential for compression and absorption heat pumps and heat transformers in

different industrial sectors (in Europe) based on estimated heat demands.
Wolf et al. [227] 2014 Pt X X X COP X X X Potential estimation in industrial sectors in the German context by analysis based on the tem-

perature ranges.
Seck et al. [228] 2013 Pb LP X X COP X X X "Bottom-up" technical (TIMES) model used to estimate the potential for heat pumping in the

French food and beverage sector.
Design studies
Wallerand et al.
[111, 167, 170]

2018 D MINLP X X ME X X X Bi-level superstructure including various features which were not considered by other studies
such as multi-stage expansion, fluid selection and heat exchanger network (HEN) cost estimation
and multi-criteria decision making.

Yang et al. [187, 188] 2017 D MINLP X X ME X X X Comprehensive superstructure considering temperature level selection and component sizing.
Oluleye et al. [191, 215] 2016 D,Pb MILP X X COP X X X Method for heat engine, mechanical and absorption heat pump and transformer design based

on coefficient of performance (COP) fitting functions.
Kamalinejad et al. [160] 2015 D MINLP X X ME X X X Two-step approach considering various heat pump features.
Becker [140, 196] 2012 D MINLP X X ME X X X Bi-level decomposition strategy [125] with simple heat pump cycles solved for continuous

temperature levels.
Zhang and Xu [159] 2011 D MINLP X X ME X X X Approach for energy optimal synthesis of cascaded heat pump cycles considering multiple heat

pump features in a retrofit problem with fixed temperature levels
Maréchal and
Kalitventzeff [157]

2001 D MILP X X ME X X X Method based on technology database and expert system

Vaidyaraman and
Maranas [103]

1999 D MILP X X ME X X X Extended superstructure [101] with economizers and working fluid selection.

Swaney [204] 1989 D LP X X COP X X X Heat engine and heat pump integration based on a transportation array.
Colmenares and Seider
[205]

1987 D NLP X X ME X X X Design of superpositioned simple (one-stage) heat pump cycles (and engines)

Shelton and Grossmann
[101, 102]

1986 D MILP X X ME X X X Superstructure-based approach, considering multi-stage heat pumping with flash-gas removal.

Townsend and Linnhoff
[100]

1983 D conceptual X X ME X X X Demonstration that exergetically optimal placed heat pumps need to cross the process pinch
temperature.

Topic: D - design methods; P - potential studies (t: top-down, b: bottom-up).
Opt. - optimization approach: conceptual; mathematical - mixed integer nonlinear programming (MINLP), mixed integer linear programming (MILP), nonlinear programming (NLP), linear programming (LP).
HR: heat recovery in the process is considered, e.g. through PA.
Market: economic model considering market competition between technologies.
Model - heat pump modeling: ME - based on mass and energy balances; COP: based on Carnot factor efficiencies.
Integration: HU - integration of heat pump as hot utility; CU - integration of heat pump as cold utility
Par. - parameter variation: variation of input parameters.93
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Based on these principles, Townsend and Linnhoff [100] demonstrated that optimally-placed heat

pumps need to cross the process pinch temperature to improve the overall energy and exergy

efficiency. In this way, they highlighted the need to investigate the thermodynamic requirements of

the entire system. Most subsequent studies integrated the principles of PA in their methods. Noted

contributions to mathematical methods are presented in Table 5.1.

The methods described in the studies presented in this section allow detailed analysis of a process’

heat recovery potentials and optimal industrial heat pump and refrigeration placement including

the ideal operating conditions. The results are obtained with aid of rigorous mathematical, or

conceptual methods based on economic, energetic, and environmental criteria considering detailed

technical features of the heat pump cycles. Unfortunately, generalization of the obtained results

cannot be conducted due to the dependence on the highly case specific problem input data.

5.1.2 Potential studies

Estimation of the general potential for heat pumping in various industrial sectors was not treated

frequently in the literature. Seck et al. [228] and Wilk et al. [225] presented analyses of different

industrial processes and the benefits related to installation of heat pumps considering the hot and

cold side of the heat pump, modeling them based on the Carnot efficiency. The potential in these

bottom-up approaches is extrapolated assuming that the analyzed processes are representative of

the respective industry. Other studies [226, 227] addressed the problem from a top-down perspective,

estimating the total industrial waste heat potential and the thermal requirements including the

temperature levels, which allowed derivation of the total potential heat pump capacity in certain

industrial sectors in specific countries or regions.

The presented publications are a foundation for further in-depth analysis highlighting the general

potential of heat pumps in certain industrial sectors. Most bottom-up approaches consider the hot

and cold side integration of a heat pump into the industrial process; one addresses the heat recovery

potential within the process. Heat pumps are typically modeled based on the Carnot efficiency.

This circumvents detailed conclusions with recommendations for experimentalists, equipment

developers or process operators while only providing policy-makers with coarse estimations of

potentials.

5.1.3 Discussion and contribution

The state-of-the-art analysis can be summarized in three main points.

1. Design studies provide complex (multi-stage) heat pump models and results for specific case

studies. Generalization of the obtained results has limited impact due to dependence on

case-specific input data.

2. Potential studies provide estimations of heat pump potentials in various industrial sectors.

The heat pump modeling and industrial process analysis is conducted in a coarse manner
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aiming at deriving overall capacities and temperature levels rather than detailed designs.

3. No studies effectively combine potential estimations with detailed modeling and optimization

techniques thus offering a comprehensive bottom-up approach for technological potential

estimation.

This chapter attempts to close the gaps mentioned in (1-3) by proposing a method for estimating

the general environomic potential of heat pumps in industrial processes with improved fidelity and

application of optimization techniques. The method includes generation of a publicly available

database of optimal solutions (which are based on a reduced input parameter set) via general-

ized multi-objective optimization. Based on user-selected input criteria, case-specific solutions

are drawn from the database and investigated. The data can be accessed via an on-line parallel

coordinates decision-making platform. The publicly-available results may be used to conduct a

pre-feasibility study in a plant, and in general, to identify potentials from the side of policy-makers

or equipment developers. The proposed method may be applied to a variety of technologies and pro-

cesses and is illustrated in this chapter on potential estimation of heat pumping and co-generation in

the general dairy industry based on analysis of various typical plants. Optimal design is achieved with

a heat pump superstructure (HPS) including a wide range of technological features [111, 167, 170]

and a comprehensive integration method.

5.2 Methodology

5.2.1 Problem statement

The methodology derived and the results obtained may be used to address a variety of research

questions, some of which are depicted below.

Problem statement

Given

(A) certain industry/process, a geographical region

(B) specific technology (feature)

Determine

(A) • economically viable emission reduction measures

• key political drivers to enable emission reduction goals

• favorable technologies and system designs which contribute to emission reduc-

tion goals

(B) • target industry/process

• key geographical region

which provide economically/environmentally viable options for integration of the

technology
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5.2.2 Overview

A classical deterministic utility design optimization problem, as discussed in Section 5.1.1, is de-

picted in Figure 5.1. The required input parameters can be grouped into two categories. Imposed

parameters (Π) are given by the boundary conditions of the problem, such as the geographical

location of the plant which determines energy prices, interest rates, electricity mix emissions, etc.,

while decision influenced parameters (ΠD) depend on the decisions (D) of the plant manager e.g.

(operating time, production volumes). With aid of these input parameters, a (multi-objective) opti-

mization problem can be formulated and solved. The computational burden of this approach is

quite high, especially considering that the solution is only valid for the specific case considered.

To overcome this limitation, this work presents a methodology in which the computationally expen-

sive optimization problem is solved once, independent from most input parameters. Thereupon,

the solutions are stored in a database from which a quasi-infinite number of scenarios with varying

input conditions can be derived.

The method is depicted in Figure 5.2. During the comprehensive solution space generation, the

problem scope is defined including the fixed and free parameters, followed by solution generation

and pruning to identify the relevant solutions which are added to the database of good solutions.

Once this step has been carried out, the database can be accessed on demand to generate the desired

output which is referred to as results retrieval.

Parallels may be drawn with classic approaches for dealing with uncertainty of input parameters.

Robust optimization addresses uncertainty in mixed integer linear programming (MILP) problems

[229]. The most commonly used approach for mixed integer nonlinear programming (MINLP) prob-

lems is stochastic programming [230] and accounting for parameter variation in post-computational

analysis [231]. The former requires intense computational effort, while the latter approach only

allows recalculation of the objective function, not accounting for the fact that different input param-

eters yield different solutions.

Figure 5.1 – Standard deterministic multi-objective optimization problem statement.
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Figure 5.2 – Method proposed in Chapter 5.

5.2.3 Comprehensive solution space generation

5.2.3.1 Scope definition

The goal in most optimization approaches for industrial processes is the derivation of more efficient

or less emitting solutions at minimum cost. The scope definition aims at defining the objectives

and input parameters required to formulate the optimization problem. The procedure is illustrated

for the case of minimizing the total annualized costs (TAC) and emissions, though it can be applied

for any problem. Formulating the problem correctly requires understanding of the influence of the

different input parameters on the desired output. The input parameters required to model the TAC

and emissions of a particular process are classified into four categories:

1. Economic inputs

(a) Economic parameters influencing the yearly operating expenses (opex) are the cost of

all incoming material and energy streams, as well as yearly operating time.

(b) The annualized capital expenses (capex) are dependent on the equipment cost func-

tions, the interest rate, and the fraction of maintenance cost (related to the initial invest-

ment).

2. Utility-specific inputs The performances (efficiency, fuel consumption and technical con-

straints) of the utility technologies influence the opex and are determined by input parameters.

3. Process-specific inputs The process configuration and its heat recovery potential have a

major influence on the system cost and emissions, and are therefore treated as an input.

4. Environmental parameters of process conversion steps and the impact of the incoming

material streams allows for a simplified quantification of the process’ environmental impact.
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Figure 5.3 – Relations between input data and desired output, imposed parameters (Π), decision (D)
influenced parameters (ΠD).

The goal is to identify which input parameters need to be fixed to effectively generate a large solution

space; hence, the relations of all influential parameters on the TAC and emissions are shown in

Figure 5.3.

The figure highlights that choosing TAC and emissions as objective functions would require fixing

the entire input parameter set. The main variables describing the system are the utility sizes

which directly influence the resource consumption and utility investment. It follows that selecting

the resource consumption and utility investment as objectives leads to a full description of the

system; however, with dependence on less than half the input parameters compared to the TAC

and yearly emissions. In this way, the optimization problem can be formulated independently of

most location-dependent, volatile, or uncertain input parameters as depicted in Figure 5.3. Of the

parameters which require fixing (the product specific requirements, utility specific fuel consumption

and efficiency), most are weakly dependent on specific conditions such as the location of the plant

and thus can be fixed without the same concerns.

The utility specific investment cost has the least clarity among input parameters to be fixed, since

it is subject to a certain level of variation in different countries [232] (± 30% for machinery and

equipment in Europe). However, the parameters fixed during the optimization problem can easily be

adapted during the results retrieval phase. Additionally, the interest rate and fraction of maintenance

cost per year are not fixed, so that the overall investment cost is further re-adjusted during the results

retrieval.
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5.2.3.2 Solution generation

As derived during the scope definition, a multi-objective optimization is carried out with the objec-

tives being the resource consumption and utility investment cost. The problem is formulated as

an MINLP which is solved by decomposing the problem into an nonlinear programming (NLP) at

the master level and MILP at the slave level as shown in Figure 5.4 and discussed by Wallerand et al.

[170] and Weber et al. [125], which is described in more detail below.

Master level The master level optimization is conducted with a multi-objective genetic algorithm

(MOGA) [217] implemented in Dakota [216]. The objectives at the master level, total investment

cost and resource consumption, are depicted in Equation 5.1.

min
Ti ,∆Ti ,DSH ,∆Ti ,SC ,∆Ti ,PRE ,d i ,ξ,εr

{
C I NV , Ėr

} ∀r ∈ R (5.1)

Where R is the set of resources {electricity, natural gas}, and Ėr [kW] is the resource consumption.

The total investment costs are derived from the investment cost, Cw , of each utility equipment w ∈
W, and the HEN cost estimation, C HEN as shown in Equation 5.2.

C I NV = ∑
w∈W

C w +C HEN (5.2)

The decision variables at the master level, including the minimum heat recovery approach tempera-

ture difference of the process streams, the HPS features, as well as the equipment cost functions of

the specific problem are discussed in the application section.

Slave level At the slave level, the multi-period utility targeting problem from Maréchal and

Kalitventzeff [75] is solved for several utility technologies including the heat pump superstruc-

ture presented by Wallerand et al. [170]. It should be noted that the underlying problem does not

necessarily require a multi-period formulation (and in the applied case study, the number of periods

i=1

Convergence check

1. Problem formulation
Non-linear variables: x
Linear variables: y
Objective function: obj = {f1 (x,y),
f2 (x,y), ... , fn (x,y)}

Scope definition

i=i+1

Solution pruning

2. Master level

Non-linear re-computation

3. Slave level

Input data generation
AMPL language

Single-obj. MILP resolution
solvers: CPLEX, Gurobi 

obji

xi

yi, linear obji

Nonlinear variable 
selection Dakota: GA

fitness
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infinity ∞

f1

f2

f3

(*) Results
Multi-dimensional, non-
dominated surface of 
solutions

{obji, xi, yi}

 (*)

Figure 5.4 – Generalized multi-objective optimization strategy.
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is set to 1); however, the problem framework is presented as such to be generalizable. Commercial

software based on AMPL [3] with CPLEX [5] is used to formulate and solve the multi-period MILP

problem. The MILP is formulated and solved as a single-objective optimization problem. To span

the entire objective solution space given by the master level, two options are considered in this

study.

ε-constraint The first option addresses the problem by minimizing one of the objectives while the

others are constrained (ε-constraint) with a variable from the master level. As shown in Equation 5.3-

5.6, the utility investment cost, C I NV
slave , is minimized while the consumption of resource r , f r

p , is

restricted.

min
f w

p , f w ,y w
p ,y w

{
C I NV

slave

}
(5.3)

Due to the linearity of the MILP, the utility investment cost at the slave level depicted in Equa-

tion 5.4 is derived from linearized cost functions based on the maximum size and existence of each

equipment w .

C I NV
slave =

∑
w∈W

(
IVw

1 · y w + IVw
2 · f w )

(5.4)

Where IVw
1 [$] and IVw

2 [$] are the fixed and proportional cost of equipment w , respectively. The

main variables at the slave level are the sizing factor, f w
p ∈ [fw,max, fw,min], and existence, yw

p ∈ {0,1},

of each technology w during period p as well as their maximum size, f w , and existence, y w . In

Equation 5.5, the sizing constraints are depicted.

f w − f w
p ≥ 0, y w − y w

p ≥ 0, fw,min · y w
p ≤ f w

p ≤ fw,max · y w
p ∀p ∈ P, w ∈ W (5.5)

The remaining objectives from the master level are restricted with an ε-constraint depicted in

Equation 5.6.

f r
p ≤ εr ∀r ∈ R, p ∈ P (5.6)

where f r
p [-] is the grid sizing factor of resource r during period p and εr [-] is the grid unit resource

limit fixed at the master level.
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Weighted sum of objectives The second option is to define a weighted sum of all objectives,

wC T AC , where the weighting factors are controlled from the master level. The objective in this case

is shown in Equation 5.7.

min
f w

p , f w ,y w
p ,y w

{
wC T AC }

(5.7)

The weighted total annual cost (wT AC ) are defined in Equation 5.8 based on the annualized capital

expenses (capex), C capex [$/y]2, the yearly operating expenses (opex), C opex [$/y], the total weighting

factor, ξ [-], and the resource prices (weights), OP2,p
r [$/kWh].

wC T AC = ξ ·C capex
slave + (1−ξ) ·C opex

= ξ ·τ ·C I NV
slave + (1−ξ) ·

∑
p∈P

∑
r∈R

[
OP2,p

r · f r
p

]
·Δtp ·occp

(5.8)

WhereΔtp [h] is the operating time, and occp [1/y] is the occurrence of period p.

The advantage of the ε-constraint method is full control over exploration of the solution space

while more infeasible scenarios or unnecessary solutions may be generated. The weighted sum of

objectives does not allow direct control over exploration of the solution space; however, it encounters

infeasibility less frequently.

5.2.3.3 Solution pruning

Solution pruning is introduced at this stage to reduce the set of solutions so that only the most

relevant ones are stored in the database. The first step towards solution space reduction happens

during solution generation, where results are slightly rounded so as to reduce the total number

of solutions by combining those which are very similar in several objectives and typically exhibit

marginal differences in the values of continuous decision variables. During the solution pruning,

the relevant solutions are identified by sampling the free input parameters (ΠFree within their

specified ranges) and storing the minimum TAC solutions as shown in Figure 5.53. Several sampling

algorithms were applied to the generated solutions. Each led to similar results (see Appendix D.2.1)

and thus, Matlab [137] intrinsic Latin hypercube sampling [233] was selected as the method for

further use in this work.

2 The slave capex C
capex
slave [$/y] are derived from the slave total total investment C I NV

slave [$], and the annualization factor

τ= i·(1+i)n

(1+i)n−1 [1/y], with i [1/y] being the interest rate and n [y] the equipment lifetime.
3 The entire set of minimum TAC solutions, instead of only the non-dominated solutions (with respect to TAC and

emissions) are stored; As demonstrated in the following sections, lower payback times can be achieved in the dominated
region.

101



Chapter 5. Generalization (A): heat pumping and co-generation

Figure 5.5 – Flowsheet of the pruning step.

If all minimum TAC solutions from each sample are selected, a reduction with respect to the original

population of approximately 25% was observed by applying the pruning technique. Accounting for

the occurrence of each solution during the sampling, and selecting only the 99% most recurring

solutions generates a reduction up to 60% with respect to the original population while keeping the

diversity in the solution space, which is the recommended approach for future studies.

5.2.4 Results retrieval

Results retrieval is the subsequent step once the comprehensive solution space generation has

been finalized. It contains all activities involving analysis, documentation, and investigation of

the solutions stored in the database. Based on selected input parameters and the desired output,

solutions are retrieved from the database and investigated by various key performance indicators

(KPI), which are elaborated in Table 5.2, including the total system cost and emissions, exergy

efficiency, and payback time. As indicated in Figure 5.2, extended analysis of the set of minimum

TAC solutions in various forms, including interactive parallel coordinate plots [76], is presented in

detail in the results section and demonstrates the gain for multiple stakeholders. This provides an

example for assessing and drawing conclusions from the methods to support decisions from various

perspectives.

5.3 Application

This section introduces the industrial case study of with all related data. Since the methodology is

applied to the dairy industry, a modular dairy plant is presented, followed by the scope definition

of the underlying problem. The detailed problem statement of the solution generation is further

elaborated.

5.3.1 Modular dairy plant

The modular dairy plant presented here is based on industrial data from Becker[140, 161, 196],

which was already presented in Chapter 3, and data from the reference document for best available

techniques in the food, drink and milk industry [81]. Figure 5.6 depicts the pathways for conversion

of raw milk into milk-based products as derived by Kantor et al. [234]. Based on European production
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Table 5.2 – Key performance indicators (KPI) calculated during post-computational analysis.

Description Symbols Equation

Total annualized costs
(TAC) [$/y]

C T AC C capex +C opex =C I NV ·τ+C opex (5.9)

τ [1/y] i·(1+i)n

(1+i)n−1 investment cost annualization factor, i [-/y] interest rate, n lifetime [y]

C I NV [$] total investment cost, see Equation 5.2

Total emissions [t CO2

eq/y]
ĖCO2

∑
r∈R

∑
p∈P

CO2
r · Ėr · f r

p ·∆tp ·occp (5.10)

P set of time periods {1,2,3, ...,np}
f r

p [-] grid sizing factor of resource r during period p
Ė

r
[kW] reference (thermal, electrical) power of grid resource unit r

CO2
r [kgCO2eq/kWh] specific emissions of resource r

∆tp [h] operating time of period p
occp [1/y] occurrence of period p

System exergy efficiency
[%]

ηexergy

The exergy efficiency of the system is derived by the process exergy requirements and
production, respectively, as well as the resource exergy import and export.∑

p∈P

( ∑
s∈Srequired

Ė
s
ex +

∑
r∈Rexport

Ėex,r,p

)
·∆tp ·occp

∑
p∈P

( ∑
s∈Sproduced

Ė
s
ex +

∑
r∈Rimport

Ėex,r,p

)
·∆tp ·occp

(5.11)

The exergy production within the process stems from the hot streams above and the cold
streams below the ambient temperature (Ta=15 °C), respectively.∑

s∈Sproduced

Ė
s
ex =

∑
c∈C|Tlog,c≤Ta

Q̇
c
p ·

(
1− Tlog,c

Ta

)
+ ∑

h∈H|Tlog,h≥Ta

Q̇
h
p ·

(
1− Ta

Tlog,h

)

The exergy requirement within the process stems from the cold streams above and the
hot streams below the ambient temperature (Ta), respectively.∑

s∈Srequired

Ė
s
ex =

∑
c∈C|Tlog,c≥Ta

Q̇
c
p ·

(
1− Ta

Tlog,c

)
+ ∑

h∈H|Tlog,h≤Ta

Q̇
h
p ·

(
1− Tlog,h

Ta

)
S set of process streams
H,C ⊂ S set of hot, cold process streams
R ⊂ W set of imported/exported resources including {electricity, natural gas, etc.}
∆Tlog,s [K] logarithmic mean temperature difference of stream s
Q̇

s
p [kW] process stream s heat consumption/release

Ėex,r,p f r
p · Ėex,r [kW] exergy of each resource r during period p

Payback time [y] t pb
C I NV

Copex,ref −C opex
(5.12)

C I NV [$] total investment cost, as shown in Equation 5.1

Yearly operating expenses
(opex) [$/y]

C opex

∑
p∈P

( ∑
w∈W

OPw
1,p · y w

p +OPw
2,p · f w

p

)
·∆tp ·occp +m ·C I NV + ĖCO2 ·cCO2 (5.13)

W set of utility technologies
f w

p [-] continuous variable for sizing technology w during period p
y w

p [-] binary variable related to existence of technology w during p
OPw

1,p [$/h] fixed operating cost in period p

OPw
2,p [$/h] proportional operating cost in period p

cCO2 [$/t CO2 eq] CO2 taxes
m [1/y] maintenance cost as fraction of total investment

Investment discount [%] b I NV

Percentage of investment reduction (by subsidies or lower utility investment costs) re-
quired to achieve the desired payback time.

1− C I NV , desired

C I NV
= 1− tpb, desired · (Copex,ref − [

C opex −m ·C I NV
])

1+ tpb, desired ·m
· 1

C I NV
(5.14)

tpb, desired [y] desired payback time, set here to 2 years

Exergy discount [$/Δ%] bexer g y

Investment discount per exergy reduction (by subsidies) required to achieve the desired
payback time.

C I NV −C I NV , desired

ηexergy −ηref
exergy

(5.15)

COP of heat pumps [-] COP

∑
e∈EVAP|Ti n≤0∨≥40°C

Q̇e + ∑
c∈COND|Ti n≥40°C

Q̇c

∑
q∈COMP

Ė q
(5.16)

EVAP set of all evaporator units in heat pump
COND set of all condensation units in heat pump
COMP set of all compressor units in heat pump
Q̇e heat consumption by evaporator e
Q̇c heat release by condenser c
Ė co electricity consumption by compressor co 103
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volumes [235], the fabrication of fresh dairy products (such as butter, desserts and concentrated

milk) and the production of cheese were identified as the two main routes. The specific energy

requirement of cheese-making is considerably higher than that of fresh dairy products due to the

drying and exporting of whey as a co-product. A combination of cheese-making and fresh products

would, by inspection, lead to a design mainly dominated by the cheese making requirements and

is, hence, not considered. As shown by Kantor et al. [234], the dairy pathways can be decomposed

into functional subprocesses, so-called modules, and their specific thermal requirements (per unit

of product) can be extracted. Scaling these requirements with specified product mass flowrates or

ratios permits generation of a profile for any dairy plant.

In this manner, three different fresh dairy production plants were generated to study the heat pump

potential in this industry. Table 5.3 presents the respective data, which stem (1) from the actual plant

studied by Becker [140], (2) from the average production volumes of dairy goods in the European

Union [235], and (3) a combination of (1) and (2) without the concentrated milk production to

investigate plants with a lower pinch point temperature. Figure 5.7 displays the utility integrated

composite curves (ICCs) of the three plants, revealing the different net thermal requirements and

temperature ranges considering maximum heat recovery. As indicated in Figure 5.6, the process and

utility system are separately modeled so that heat exchange between the utilities and the process

is only allowed through energy carriers such as steam, water, or refrigerant. Figure 5.7 (d) shows

the utility heat cascade of the reference boiler at high temperature heating with high and medium

pressure steam. The curves of the utilities in place and the available energy carriers are shaped

by steam (medium pressure at ≈200°C, low pressure at ≈100°C) generated by a natural gas boiler,

cooling water (15-17 °C), and a two-stage refrigeration cycle (30,-3,-33°C, R161). The reference

resource (natural gas and electricity) consumption of these configurations is shown in Table 5.3.

Having assumed a minimum approach temperature,ΔTmin/2, of 5 K for all process streams (except

the milk evaporation/condensation streams), the energetic requirements of the modelled plant are

in good accordance with the actual plant from Becker [140]. Hence, it is assumed that this approach

temperature represents the actual level of heat recovery in the considered plants, and the derived

resource consumption of each case is treated as its reference.

5.3.2 Scope definition

The scope definition aims at formulating the problem and deriving the data for the solution genera-

tion. Table 5.4 shows the identified free and fixed parameters for the underlying problem. As shown

in Section 5.2.3.1, the fixed parameters are the utility- and HEN-specific (installed) investment cost,

fuel consumption, utility efficiencies, and process data. Data ranges are provided for the free input

parameters. It was assumed that the specific investment of the components already installed in the

plant (boiler and refrigeration cycle) were negligible. The potential utilities to be considered were

selected as a natural gas co-generation engine (COGEN), a mechanical vapor re-compression (MVR),
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Figure 5.6 – Flowsheet of the modular dairy plant. Utility and process data depicted in Appendix D.3.

Figure 5.7 – Dairy plants’ utility integrated composite curves (ICCs).

Table 5.3 – Product mass flow rates and reference resource consumption of examined dairy plants.

Name Plant (A) (B) (C1) (C2) (C3) (C4) Flow rate Flow name Mass fraction processing step Electricity Natural gas
- - - - - - kg/s outlet/inlet kW kW

Becker [140] 1 1 0 0.157 - 0.225 0.618 10 raw milk 238.8 2208.6
1.1 past. cream
1.40 past. milk
0.86 concentrated milk 1 [conc. milk]/2.33 [past. milk]
5.50 yogurt & dessert (*) 1 [yog. & dess.]/1 [past. milk]

EU-28 mix 2 1 0.69 0.25 0.25 0.18 0.32 10.00 raw milk 266.4 1852.6
0.341 past. cream 1/1
0.759 butter 1 [butter]/1 [past. cream]
2.23 past. milk 1/1
2.23 HT milk 1/1
0.69 concentrated milk 1/2.33
2.85 yogurt & dessert (*)

No concentration 3 1 0.3 0.2 0.25 0 0.55 10.00 raw milk 252.5 1424.8
0.77 past. cream 1/1
0.33 butter 1/1
1.78 past. milk 1/1
2.23 HT milk 1/1
4.90 yogurt& dessert (*) 1/1

(*) Assumption: 50/50 dessert / yogurt production
Original plant [140]: cheese 0%, butter 0%, cream 11 %, drinking milk 14%, milk powder 20%, fresh products 55%
European milk consumption [235], 2015: [cheese 36 % not considered], butter 29 %, cream 13 %, drinking milk 11%, milk powder 4%, fresh products 7%; Assumption: 50% of
drinking milk is UHT
No concentration: removal of the milk concentration unit
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and a heat pump superstructure (HPS). The HEN cost is estimated based on a retrofit assumption.

Correspondingly, the minimum number of connections, the minimum heat exchange area, and

the HEN cost were derived for the reference plant and for each new design. The investment cost

difference generates the estimate for the retrofit heat exchanger network (HEN). Thereby, it must

also be noted that if a new solution generates fewer connections (N ), or a smaller area (A), they

are set to the reference values. Applying this concept enforces that the HEN cost is always positive

or zero (and is with respect to the reference plant). Designs with higherΔTmin, meaning less heat

recovery and higher resource consumption will always be inferior to the reference case and, hence,

will be discarded.

Figure 5.8 shows available electricity and natural gas prices in OECD countries, commercial bank

lending rates, and emissions associated with grid electricity, which serve as indications for the free

parameter data ranges, and provide the basis for later analysis.
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Figure 5.8 – Resource prices (2017) [238][*], commercial bank lending rates (i) [239] (mostly 2015),
annualization factor (τ) based on Equation 5.9 (20 y. lifetime), low voltage electricity grid emissions
[240] (Reference year 2014, allocation, cut-off by classification, ICC 2013, GWP 100a). [*] Gas price
Japan [241] (2015).

5.3.3 Solution generation

All variables and objectives at both levels of the multi-objective optimization approach described

in Section 5.2.3.2 are depicted in Table 5.5. The general variables at the master level include the

minimum approach temperature difference of the process streams, and the variables controlling

the slave objective function as described by Equation 5.5-5.8. The heat pump superstructure (HPS)

specific variables at the master level are the saturation temperature levels, subcooling tempera-
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Table 5.4 – Free and fixed input parameter set to optimization problem.

Symbol Units Fix Free Sub-category Data values / data ranges

Economic data

Operating time Δtp h X [2000, 8000]
Resource prices cr $/kWh X Electricity [0.04, 0.30]

Natural gas [0.01, 0.10]
Interest rate i - X [0.03, 0.15]
CO2 taxes cCO2 $/tCO2 X [0, 100]
Maintenance frac. m %INV X [0.03, 0.1]

Utility data

Spec. installed
investment

C w $2016 X Compressors

Installed cost function from industrial data [140], updated with CEPCI
[4], converted to $ (1.33 $2010/e2010), installation factor (1.5), and
Ė COMP

el = f COMP · Ė
COMP
el ∈ [20, 500] kWel.

C COMP = 541.7

550.8
·1.33 ·1.5 ·1500 ·1600.1 · (Ė COMP

el

)0.9
(5.17)

Co-generation
engine

Installed cost function [140], updated with CEPCI [4], converted to $
(1.07 $1999/e1999), and Ė COGEN

el = f COGEN · Ė
COGEN
el ∈ [100, 600] kWel.

C COGEN = 541.7

390.6
·1.07 ·


−0.0391 · (Ė COGEN

el

)2

+850.89 · Ė COGEN
el

+306016

+125 · (Ė COGEN
el

)0.8

 (5.18)

Boiler in place C BOI = 0
Refrigeration in
place

C REF = 0

HEN cost
estimation

C HE N $2016 X General func-
tion

Installed cost function [236, 237] (CS-SS), updated with CEPCI [4],
total HEN area estimation A [m2] based on vertical intervals [99, 218],
minimum number of heat exchangers N [-] is estimated based on
graph theory [98].

C (A, N ) = 541.7

402
·
(
8500+409 ·

(
A

N

)0.85)
·N (5.19)

Investment of
specific design

Installed cost of HEN area is estimated as difference from the reference
plant theoretical investment cost, to approximate a retrofit design.

N∗ = max
(
N ref, N

)
A∗ = max

(
Aref, A

)
C HE N =C

(
A∗, N∗)−C

(
Aref, N ref

)
(5.20)

Efficiency η
w
r % X Compressors η

COMP
el = 60%el (min. [140], Table 4.1)

Co-generation
engine [140]

η
COGEN
el = 37.5%el

η
COGEN
th = 49.5%th

Boiler [140] η
BOI
th = 90%th

Lifetime n y X Equipment [10, 30]

Fuel consumption Ėr kW X General Ėr = Ė
w
r /ηr (5.21)

Exergy
consumption

Ėex,r kW X Electricity Ėex, el = 1.0 · Ėel (5.22)

Nat. gas Ėex, ng = 1.04 · Ėng (5.23)

Process data

Product fraction A,B,C1-4 - (X) three cases depicted in Table 5.3
Product spec.
requ.

Q̇
PROC

kJ/kg X Table D.7

Inlet mass flow
rate

mraw kg/s X raw milk inlet 10 kg/s

Environmental data

Resource
emissions

COr
2 kgCO2 /kWh X Electricity [0.1, 1.1]

Natural gas [0.15, 0.25], general assumption if not elsewise stated 0.24 kgCO2 /kWh
[169], 0.15 kgCO2 /kWh assuming partially biogas

Set of periods is p ∈ P = {1}
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ture difference, temperature difference below which gas-cooling can be considered, preheating

temperature difference (for dry fluids, which were not considered in this work), and three fluid

indices (to consider cascaded cycles). The slave variables and objective function were introduced

(in Section 5.2.3.2). A set of heat pump specific parameters were also introduced to constrain the

compression ratio, number of compressors per fluid cycle, and compressor size.

Table 5.5 – Variables and objective function of the problem.

Description Symbols Range Unit ε-constraint
weighted
sum of
objectives

Master level

Objective function f obj
master

{
C I NV , Ėr

}
,r ∈ R div. X X

General variables

Min. approach temp. diff. ∆Tmi n/2 {2,3,5} K X X
Max. consumption of resource r (Eq. 5.6) εr,max [0,1] - X X
TAC weighting fraction (Eq. 5.8) ξ {0.05,0.1,0.2,0.5,0.6,0.7,0.8,0.95,1} - X X
Electricity price (Eq. 5.8) cel {0.01,0.1,0.2,0.5,0.8,1,2,5}·cng $/kWh X X
Nat. gas price (Eq. 5.8) cng {0.06} $/kWh X X
Plant index x {1,2,3} - X X

Heat pump superstructure (HPS) specific variables

Saturation temperature Ti = Ti+1 + ∆Ti

∆T1 {5,5.5, ...,50} K X X
∆T2 {5,5.5, ...,50} K X X
∆T3 {5,5.5, ...,50} K X X
∆T4 {5,5.5, ...,50} K X X
T5 {−35,−34.5, ....50} °C X X

Subcooling temperature difference ∆T1,SC {0, 1,..., 30} K X X
∆T2,SC {0, 1,..., 30} K X X
∆T3,SC {0, 1,..., 30} K X X
∆T4,SC {0, 1,..., 30} K X X

Gas-cooling temperature difference ∆Ti ,DSH

{
Ti−1 −Ti , DSH == 1

0, else
K X X

De-superheating condition DSH {0,1} - X X
Preheating temperature difference ∆Ti ,PRE 0 K X X
Fluid index d1 {1,...,9} - X X

d2 {1,...,9} - X X
d3 {1,...,9} - X X

Fluid set F {NH3,H2S,PROPANE, X X
PROPYLENE,R161
R404A,R410A,R507A,R41}

Slave level

Objective function f obj
slave div. C I NV

slave wC T AC

Constraints (additional) Resource constraint f r
p ≤ f r,max ∀r ∈ R X X

Variables

Multiplication factor of techn. w during p f w
p [fw,max, fw,min] - X X

Use factor of techn. w , p yw
p {0,1} - X X

Maximum multiplication factor f w ≥ fw
p ∀p ∈ P - X X

Overall use factor yw ≥ yw
p ∀p ∈ P - X X

HPS parameters

Compressor isentropic efficiency ηisentropic 0.6 - X X
Minimum temperature difference ∆Tmin/2 2 K X X
Min/max compression ratio CPmin,max [1.2,7] bar/bar X X
Min/max valve differential pressure [0.5,18] bard X X
Min/max compressor power [10,500] kW X X
Maximum number of compressors per fluid d 2 - X X
Maximum number of compressors per HPS 4 - X X
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5.4 Results and discussion

5.4.1 Comprehensive solution space generation

5.4.1.1 Solution generation

The results from the multi-objective optimization problem introduced in Section 5.3.2 and 5.3.3, are

depicted as surfaces of non-dominated solutions in Figure 5.9 and Figure 5.10. The discontinuities

in the surface are created by the binary variables related to activation and deactivation of units.

It can be observed that the ε-constraint method shows a more uniform distribution of solutions

compared to the weighted sum of objectives method. This was attributed to the brute-force nature

of the constrained optimization. The weighted sum objective function method generated more

feasible points, though the position cannot be controlled to explore specific regions of the solution

space.

The resource plane4 reveals a non-dominated frontier between the natural gas and electricity con-

sumption. It marks the limit of the feasible solution space. Considering conventional technologies,

this line cannot be breached. Several solutions using the weighted objectives method are closer to

the infeasibility frontier, though at higher capital expenses. The original plant with its reference

consumption is marked at highest total resource consumption with zero capital cost. Every other

solution improves either the electricity or natural gas consumption. Determining the preferential

optimization approach requires a more detailed analysis to evaluate the homogeneity and frequency

of solution occurrence in the distribution of solutions as discussed in Section 5.2.3.3. Solution

pruning was thus applied on the solutions generated here.

4 The resource plane refers to the plane formed with the two types of resource consumption as axes, and hence spans
the natural gas and electricity consumption.

(a) Multi-objective optimization solutions plotted with respect to the
three objectives.
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(b) Three objectives projected on the two-
dimensional resource plane.

Figure 5.9 – ε-constraint case: results from multi-objective optimization of plant 2.
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(a) Three objectives in 3d.
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(b) Three objectives in resource plane.

Figure 5.10 – Weighted sum of objectives: results from multi-objective optimization of plant 2.

5.4.1.2 Solution pruning

For each sample of free input parameters, a different set of minimum TAC solutions with respect to

their emissions was found. To identify the most recurring solutions, the free parameters indicated in

Table 5.4 were sampled based on the proposed ranges and the minimum TAC indexes were stored.

Figure 5.11 shows the occurrence of all minimum TAC solutions selected during the sampling step.

Relatively few solutions are never selected and therefore discarded. The encircled points mark the

99% most recurrent solutions. On closer investigation of the sampling results, it can be observed

that a great number of solutions selected as minimum TAC points (even in the 99% most recurrent)

during the sampling of the constrained optimization are not present in the weighted results. The

solutions which are common to both approaches exhibited lower investment cost for the constrained

optimization. Hence, the ε-constraint optimization approach was selected for future applications.
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(a) ε-constraint.
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(b) Weighted sum of objectives

Figure 5.11 – Occurrence of minimum TAC solutions during the sampling of plant 2.
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The selected solutions are depicted in Figure 5.12 and Figure 5.13. Figure 5.12a displays the exergy

efficiency of the selected solutions (of plant 2) in the resource plane, highlighting that the exergy

efficiency of the solutions is strongly linked to the net electricity import. This was explained by

the high exergy value attributed to electricity, which neglects the generation process and hence

creating a small bias. This bias could be avoided by considering the electricity generation, though

this is highly dependent on the location of the plant and hence cannot be treated in the generalized

solutions generated in this work.

The utility selection of plants 2 and 3 are shown in Figures 5.12b and 5.12c, respectively. The solutions

without additional utility integration (apart from the utilities in place) are found at the upper right

of the cloud of solutions, at highest resource consumption. From there, heat pump (hp) integration

stretches toward higher net electricity consumption, while co-generation (cogen) towards lower

electricity consumption. It has to be noted that the heat pump designs which are derived from

the HPS, could be integrated at any temperature level (Table 5.5) by the optimizer. However, it can

be observed that for lower capex solutions, the heat pump was placed across the process pinch,

interacting with the milk concentration streams. The mechanical vapor re-compression (MVR) was

never observed in low capex (high resource consumption) solutions due to imposed sizing limits

which are related to the limited availability of process steam for MVR. In the case of plant 2, the

MVR was activated with higher electricity consumption. Since plant 3 does not have a concentrated

milk production unit, MVR was not activated. The lowest combined resource consumption was

achieved with co-generation, mechanical vapor re-compression, and heat pumping.

The characteristics of these selected solutions of plant 2 were further analyzed in Figure 5.13 with

respect to the exergy efficiency. Various trends can be observed. As expected the cooling water,

natural gas, and boiler consumption decreased, while the electricity consumption increased with

increasing exergy efficiency (dropping with the availability of co-generation, since co-generation

generates electricity). The co-generation engine, as stated before, increased initially and then

decreased with increasing exergy efficiency. Heat pumping was utilized with increasing exergy

(a) Exergy efficiency, plant 2. (b) Utilities, plant 2. (c) Utilities, plant 3.

Figure 5.12 – Exergy efficiency and utility selection of selected plants.
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Figure 5.13 – Pruned solution characteristics, plant 2.

efficiency, until MVR was activated, at which point it restarted from zero. It is interesting to note that

subcooling was always present when heat pumping was active. This indicates that sub-cooling is a

favorable feature considering the balance between cost and performance. Gas-cooling, in contrast,

was activated mainly in the high efficiency region which indicates that specific technologies need to

be considered for reaching especially efficient operation.

The fluid indexes which were mainly used in the heat pump were 1, 3 and 5, corresponding to

ammonia, propane and R161, respectively. Slight tendency toward higher indexes is observed with

increasing exergy efficiency, which appears to be related to the temperatures and performance of

the heat pumps.

Further, it can be observed that almost all solutions had aΔTmin/2=2K in the process heat exchang-

ers, meaning that the first step in terms of cost and energy efficiency was to increase heat recovery

in the process. These results are consistent with process integration principles. Assessing the eco-

nomic feasibility may not support the same solutions, as the cost estimation functions applied

may underestimate the real cost of a retrofit HEN, or that compressor costs may be overestimated5.

Independent from uncertainty related to the capex, a general discomfort of modifying the HEN was

observed across the industry. Therefore, plant 2 was re-assessed with fixedΔTmin/2=5K, in order to

compare the results. The data of all plants can be found in Appendix D.2.2.

5.4.2 Results retrieval

Once the database of solutions was created, various investigations could be conducted. Additional

interest in this approach stems from the fact that this analysis can be carried out from different

stakeholder perspectives.

5Feedback from the industry suggests that the compressor cost function overestimates especially large heat pumps,
due to the high exponential.
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5.4.2.1 Country analysis

As indicated in Figure 5.8, different countries are subject to a large range of resource prices, emissions

associated with grid electricity, and bank lending rates. The goal in this section was to identify

which political and operational boundary conditions were required to generate economically viable

emission reduction measures in the dairy industry in different countries. So-called utility maps were

created, which capture the best economically viable emission reduction measures based on different

boundary conditions (operating time, CO2 tax, electricity generation emissions). Economically

viable was defined here as a payback time below three years. The least emitting solution below this

payback time was selected. If no solution below three years payback time could be identified, the

reference (marked as 0) was assumed.

Heat recovery improvement Figure 5.14 depicts the solutions and respective cost distribution

and emissions of selected OECD countries of plant 2. The number indexes the solution id which can

be found in Table D.3, Figure D.7a, and Figure D.9. One immediate result was that countries with the

lowest resource prices (United States of America (US) and Canada (CA)) exhibited no economically

viable solution for operating times of 2500 hours per year. When adding a CO2 tax, it became

profitable in CA to invest in the first emission reduction measures.

Solution 2 and 142 (143) were similar to the reference utility configurations with different a minimum

approach temperature,ΔTmin/2, of 2K and 3K, respectively (143 - small difference in refrigeration

cycle). Solution 1 represented a single-stage MVR added across the process pinch point to recover

steam from the concentrated milk production (see Figure D.9). This can also be visualized in the

resource price plane in Figure 5.15. The utility map reveals that with introduction of the CO2 tax (20

$/tCO2 ), the line between reference and measures with no additional installed equipment moves

toward lower resource prices. For the context of dairy plants operating in the US, this indicated that

the CO2 tax considered here was insufficient to incentivize owners to invest in reducing emissions

given the imposed economic conditions. Increasing the operating time to 8000h led to a drastic

increase in economically viable measures in all countries. Higher yearly operating expenses (opex)

logically yielded decreased payback times (considering the same investment cost).

Overall, assuming 2500 operating hours, an average viable CO2 emission reduction of 21% across

the considered OECD countries could be achieved, which increased to 25% by adding a CO2 tax.

Higher operating hours logically incentivized investment in emission reductions; this is supported

by looking at the case with 8000 h/y of operation where 55% and 58% emission reductions could

be achieved in an economically viable manner without and with CO2 taxes, respectively. A further

improvement to 65% reduction was observed when assuming a CO2 tax and tax incentives for

the investor which amounted to 20% of the total investment. Co-generation became viable for

countries with high resource prices and high electricity grid emissions, due to its high efficiency

and comparatively low emissions. The background was plotted with an average grid emission
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Figure 5.14 – Cost data, CO2 equivalent emissions, plant 2. Five bars per country: (1) operating
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Figure 5.15 – Plant 2, utility maps with maintenance fraction 0.05, background: τ=0.08, 0.5
kgCO2 /kWhel.
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Figure 5.16 – Plant 2,ΔTmin/2=5K fixed HEN, utility maps with maintenance fraction 0.05, back-
ground: τ=0.08, 0.5 kgCO2 /kWhel.
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assumption of 0.5 kgCO2 /kWhel, which explains the difference for several countries.

Fixed heat exchanger network (HEN) These promising results were all achieved by increasing the

heat recovery in the process. Fixing theΔTmin/2 to 5K and thereby assuming that the process heat

recovery system cannot be altered (even though it might be economically feasible), and thereby

bounding the upper level of the exergy efficiency, leads to different results. Figure 5.16 depicts the

results for 8000 operating hours, since the lower operating times do not generate economically

feasible solutions (i.e payback times are above three years). This is linked to the fact that a reduction

in operating expenses cannot be achieved as "easily" (from an economical point of view) as by

decreasing the ΔTmin. With 8000 operating hours (Figure 5.16a), the first economically feasible

solutions were observed for natural gas prices above 0.025 $/kWh. By adding a CO2 tax, and

investment cost reduction, the economically viable utility lines were pushed toward low resource

prices. The ICCs of the economically viable solutions are shown in Figure D.10.

As mentioned before, plants with 2500 operating hours per year could not economically reduce CO2

emissions given the technologies available. Operation for 8000 h/y could economically reduce 20%

and 26% of the CO2 emissions without and with CO2 taxes, respectively, indicating that the CO2

taxes have higher impact on less efficient systems with high opex. A further decrease to 31% was

achieved by assuming a CO2 tax and incentives for the producer which amounted to 20% of the total

investment.

Synthesis Figure 5.17 depicts two solutions selected frequently during the countries’ analysis

with a fixed heat recovery network. Solution 21 consists of a MVR system and small heat pump

which provides heat to the self-sufficient pocket, so that the MVR can be used at higher capacity. A

co-generation system provided electricity, so that the net electricity requirement amounted to zero.

The utility ICC of this solution may be misleading since the engine heat release through cooling

water which accounts for more than half of the heat released by the engine is not visible since it was

directly transferred to the process. Table D.5 depicts the detailed data of that solution.

The heat pump did not create a utility pinch with the process grand composite curve (GCC) which

reduced the HEN cost. The COP of the MVR system added up to 11.2, which corresponded to a

second law efficiency of 58.2% due to the low temperature increment. The COP of the heat pump

(HP) according to Equation 5.16 was calculated to be 7.8, corresponding to a second law efficiency

of 57.2%. The overall exergy efficiency of the system was 36.9%.

Solution 27 comprises a MVR and a HP, which was operated from sub-ambient (replacing part of

the refrigeration cycle) to above the process pinch point. Subcooling at two points increases the

COP reaching 3.0 (which is equivalent to a high second law efficiency of 63.8% achieved through

extensive sub-cooling). The system overall exergy efficiency was 45.0%, due to a strongly reduced

natural gas consumption compared to solution 21 (see Table D.5).
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(a) Utility ICCs of process and utility cluster.

(b) HPS, sol. 21

(c) HPS, sol. 27

Figure 5.17 – Most occurring solution of ε-constrained objective of plant 2,ΔTmin/2=5K fixed HEN;
(b,c) T-h diagrams of HPS.

Several intermediate conclusions may be drawn from this analysis. Firstly, it was shown that the

selected solutions provided a wide range of system complexity, from improvement of the heat

recovery system, to single-stage MVR systems (with and without sub-cooling) and multi-stage HPS

systems (illustrated in Table D.5). A decision-making process was suggested which was based on

commonly accepted KPIs such as payback time and emissions.

Political incentives, such as CO2 taxes and tax breaks for investment in emission reduction measures

could increase the economically viable emission reductions from an average of 56% to 67% for an

average plant (including concentrated milk production Figure 5.14, Figure D.8a) in the investigated

OECD countries (assuming 8000 operating hours). In plants, which do not contain a concentrated

milk production unit the numbers were slightly lower (46% to 54%, Figure D.8c). If a fixed process

heat recovery network was considered, these numbers were distinctly lower (20% to 31%, Figure D.8b)

for the analyzed plant (with milk concentration unit), though the relative effect of political incentives

was drastically increased.

The analysis could be used by policy-makers aiming at understanding market drivers which lead to

less-emitting industry, or by equipment manufacturers aiming to identify their potential markets.

The following section addresses both these issues at more depth.

5.4.2.2 Decision-making platform

This section presents the decision-making platform and providing exemplary analysis from different

stakeholder perspectives. The platform is available on-line and contains the solutions of all plants

presented in the previous sections. It can be found in [242] and provides the minimum TAC points for

each range of emissions of each input parameter sample (depicted in the first seven bars) consisting
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Figure 5.18 – On-line decision making platform [242].

of resource prices, CO2 taxes, annuity6, operating time, resource emissions (electricity, natural gas7).

The different plants are marked in different colors and can be (de-)activated in the legend. Different

parameter samples can be selected with help of the sliders and the resulting data can be exported.

The next paragraph provides the motivation for selecting the minimum TAC points for their emis-

sions, and discusses the influence of political actions on the economic viability of the solutions. The

data shown in each of following paragraphs can be found in the decision making platform.

Political actions Figure 5.19 shows the influence of different political actions on the viability of

emission reduction measures. The minimum TAC solution for each emission reduction and the

respective payback time is depicted for plant 2 in three different countries with fixedΔTmin/2 of 5 K.

The lowest payback time was achieved in many cases at higher emissions than the lowest TAC. This

justifies why the entire range of minimum TAC solutions were taken into account, and not only the

non-dominated Pareto frontier between TAC and emissions. It could be observed that the payback

time for solutions close to the reference was quite low (due to low investment costs) and then

increased (with another potential decrease). Five different cases in three different countries were

investigated ranging from 2500 operating hours to 8000 h with CO2 taxes of 0, 20 (with and without

investment cost reduction of 20% through tax incentives), and 60 $/tCO2 . It could be observed that

political measures had less influence in Switzerland, which had the highest resource prices, than in

6The annuity [1/y] is defined as the sum of the annualization factor, τ, and the maintenance fraction, m.
7Two options were provided for natural gas: 100%mol fossil gas: 0.25 kgCO2 /kWh [169]; 40%mol biogas: 0.15 kgCO2 /kWh.
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Figure 5.19 – Minimum TAC solutions and respective payback time. Influence of political actions on
economically viable solutions, plant 2,ΔTmin/2=5K, 8000h.

the other countries. Political measures in Switzerland (CH) reduced the payback time by a maximum

of 1.5 years. This impact, however, may influence the success or failure of a project. For 8000 h, the

tax incentive of 20% of the total investment generated in general the lowest payback times followed

by 60 $/tCO2 especially for high emission reductions.

In the United States of America, where the resource prices are extremely low, the CO2 taxes (especially

60 $/tCO2 ) had a strong impact, meaning that the payback time was reduced by 5 to 10 years. This

could be easily explained by the fact that the CO2 tax can be understood as an absolute increase of

the resource prices8, and hence is equivalent to increasing the natural gas price in the US by 100%,

whereas in CH, the relative increase is only 20%.

In conclusion, CO2 taxes have distinctly higher impact in countries with low resource prices, while

to achieve a change in countries with high resource prices, tax breaks may be a good incentive.

Plant operators and heat pump manufacturers One goal of this work was to allow pre-feasibility

assessment based on the generated results, which is illustrated in this section. The solutions

discussed during the political actions, are further depicted in Figure 5.20 (without incentives for

8000 h). Negative values in the opex arise from the export of electricity. It can be seen that in CH, for

example, in a plant of type 2 one of the first emission and cost reduction measures is installation of a

co-generation engine, since the electricity prices were relatively high. For high emission reductions

in CH, the co-generation engine should be phased out in favor of investing in a more complex heat

pump system and, hence, in compressors due to the fact that the electricity grid emissions were very

low. These solutions also generated the lowest payback times which coincided with the minimum

TAC points. Therefore, from the perspective of plant operators and heat pump manufacturers, heat

pumps are worth considering for dairy plants (of type 2) in Switzerland, should be one conclusion

8For natural gas (0.24 kgCO2 /kWh): 20, 60 $/tCO2 leads to 0.005, 0.014 $/kWh; for electricity (assuming 0.5 kgCO2 /kWh):
0.01, 0.03 $/kWh
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Figure 5.20 – Detailed cost data versus CO2 equivalent emissions for min(TAC) points, plant 2, 0
$/tCO2 ,ΔTmin/2=5K, 8000h.
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Figure 5.21 – Boiler, co-generation engine and cooling water loads versus CO2 equivalent emissions
for min(TAC) points, plant 2, 0 $/tCO2 ,ΔTmin/2=5K, 8000h, solution id in black.
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drawn from this pre-feasibility assessment.

In Germany (DE) and the US, the highest emission reductions were actually achieved with co-

generation and heat pumping, due to the high electricity grid emissions. Interestingly, in both DE

and US, the minimum payback time did not coincide with the minimum TAC cost. The minimum

payback time was found close to the reference consumption suggesting a small heat pump (10

kWel) installation across the pinch point. It is arguable as to whether such a small installation is

worthwhile achieving a mere emission reduction of less than 5%. At lower emissions (60% compared

to reference) another low payback time can be observed (in both countries). As shown in Figure 5.22,

these solutions required installation of a MVR across the process pinch and of a co-generation engine.

Applying CO2 taxation at the level of 20 $/tCO2 would make these solutions more attractive (payback

time of 4 years in DE and 8 years in the US). The HEN cost of all solutions was comparatively small,

since the processΔTmin/2 was fixed to 5K, and only the utility integration needed to be accounted

for.

Figure 5.21 and Figure 5.22 illustrate the thermal, electrical power and exergy efficiency of various

equipment in these solutions. As noted previously, the exergy efficiency shows an inversely propor-

tional relationship with the cooling water consumption. Figure 5.22 reveals that gas-cooling was

present in various minimum-cost solutions and subcooling even more so. Due to the size limitation

of the MVR unit, heat pumping was the first unit to be activated together with the co-generation unit

(in CH). The refrigeration cycle (in place) was typically operated at its reference size, only high emis-

sion reduction solutions showed heat pumping interfering with the operation of the refrigeration

cycle to create better system efficiencies.

5.5 Conclusions

How can the results be extrapolated to a wider scope?

This chapter presented a methodology for the generation of a database of optimal utility solutions

for industrial processes, independent from the most volatile (cost related) input data. The method

was applied to heat pumping and co-generation in the dairy industry. A modular dairy plant was

presented and three dairy plant types were analyzed with environomic boundary conditions of

various OECD countries. The generated data was discussed at great length from the perspective

of multiple stakeholders. A parallel coordinate on-line decision-making platform was introduced

which grants access to the publicly-available database encompassing a detailed utility design of

each solution and performance data for various contextual parameters, which enabled a cost-free

pre-feasibility assessment of emission reduction measures.

The results indicated that heat pumping contributes to emission reductions and increases exergy

efficiency in the dairy industry, independent from location until a certain threshold. If emissions

120



5.5. Conclusions

must be reduced beyond that point, the CO2 equivalent emissions of the grid electricity in the

specified location have a great influence. The outcome of the optimization further indicated that

internal heat recovery should be the first step for efficiency and emissions reduction at lowest capex.

Restructuring the HEN of a plant may not be a practicable solution and thus plants with fixed HEN

were also investigated. It could be demonstrated that the operating time and energy resource prices

drastically influenced the economic viability of emission reduction measures. Political incentives,

such as CO2 taxes and tax breaks for investment in emission reduction measures could increase

the economically viable emission reductions from an OECD average of 20% to 26% and 31%, in the

least favorable case of a fixed process heat recovery network. These are equivalent to 30% and 55%

increase in viable emission reduction measures achieved through a CO2 tax of 20 $/tCO2 without

and with 20% tax breaks on the investment, respectively. It was found that CO2 taxes had distinctly

higher impact in countries with low resource prices, while to achieve a change in countries with

high resource prices, tax breaks might be a better incentive.

The methodology provides a wide range of applications and valuable insights for multiple stake-

holders. The main limitation of the presented approach is identified as the fixing of the equipment

investment cost, which are uncertain values and may have an influence on the utility selection. In

future work this may be addressed by re-calculating the investment cost with varying cost functions,

or using stochastic programming.
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6Generalization (B): addition of solar

utilities
Overview

• Extension of the methodology developed in Chapter 5 to include solar utilities

• Potential analysis of solar utilities, heat pumping, and co-generation in the overall dairy

industry

• Results allow determination of solar break-even costs

This chapter is based on Wallerand et al. [243]

Potential studies aim at identification of the total energetic, economic, and/or environmental

potential of certain technologies in specific sectors or industries, at a regional, national, or global

level. The derived results may be used by multiple stakeholders to generate policy strategies [72],

or to identify sectors and regions most viable for installation of certain technologies [67]. The

methodology derived in the previous chapter adds a further dimension to the available literature:

Through generation of a publicly available database of detailed solutions plant-operators are enabled

to conduct cost-free pre-feasibility assessment, while equipment manufacturers gain insights of the

potential of specific technological features in certain industries and under different environmental

and economic (environomic) conditions.

This chapter presents an extension to the methodology presented in Chapter 5 taking into account

solar utilities. The methodology presented in Chapter 5 is based on generalized multi-objective

optimization stripped of all location-dependent input parameters. Therefore, it is assumed that the

specific investment cost of conventional utilities does not depend on the location. This assumption

cannot be applied to solar utilities, since the required installed capacity needed to satisfy a fixed

constant load depends strongly on the location and its available yearly irradiation.

123
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After a state-of-the-art analysis of current potential analysis methods for solar energy for industrial

processes (SEIP) applications, this chapter presents an extension to the potential analysis presented

in Chapter 5, in the methodology section. For illustration, the method is applied to the dairy industry

in the results and discussion section.

6.1 State-of-the-art

The studies discussed in this section are compared in various points in Table 6.1. The potential

studies are distinguished between bottom-up and top-down approaches.

6.1.1 Top-down

Classical top-down approaches are presented by Brown et al. [66], Beath [67], and Lauterbach et al.

[68], in which the total energy demands of different industrial sectors at the national level were

estimated, categorized by temperature levels, and matched with solar technologies. Some went

as far as identifying industrial clusters in specific regions and matching those with the annual

irradiation [66, 67]. Sharma et al. [69, 70, 71] presented a more detailed methodology in which the

plants associated with certain sectors were individually identified, classified by their hot utility type

(boiler or co-generation). The solar systems were then sized by plant capacity and the annual CO2

emission mitigation potentials were derived.

6.1.2 Bottom-up

A bottom-up approach was published by Murray [244] who discussed the theoretical potential and

conceptual integration for highly concentrated solar thermal systems in the primary aluminum

industry concluding that integration would be difficult. A more applied study was introduced

by Schweiger et al. [56] who presented a potential analysis and design of solar heat for industrial

processes (SHIP) applications in Spain (ES) and Portugal (PT) through steam production and

integration with conventional utility systems based on selected examples. Calderoni et al. [72]

considered three textile plants and estimated the economic feasibility of solar integration and

the key drivers enabling economic viability. The solar modeling approach was unfortunately not

specified.

Müller et al. [148] derived a methodology to estimate the potential for solar heat integration in the

liq. food industry in general and in specific plants based on the available land area, the process

temperature levels, and an annual average of the specific solar production. Meyers et al. [73]

compared solar (non-concentrating) thermal system (ST) with photovoltaic module (PV) systems

combined with resistance heating for a fixed process load, which is an exergetically inefficient

way to provide heating. Based on a regression model, the results were extrapolated to various

meteorological conditions to derive the break-even cost based on current and future specific project

investment costs.
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Table 6.1 – State-of-the-art summary of potential estimation studies for SEIP applications.

Author Year Foc Appr Obj Vars Siz. Econ. Solar modeling Proc. m. SC Process Uti. Description.
M dT Tool Stor. PA HEN

Current work 2018 SP-I D,Pb E C M - GA X S year MEB (X) X X various dairy Co-gen.,
HP

Bottom-up optimization-based potential analysis for estimation of
solar, co-generation and HP in low-temp. industries.

Meyers et al. [73] 2018 SP M,Pb E C B X D,S year,
reg(hour)

R,
TRN-
SYS

X X X various - - Method for cost comparison between solar thermal and photovoltaics
via resistance heating based on regression model for (kWp/m2).

Brown et al. [66] 1980 SP-A Pt TP LOC,L C X S year MEB X X X PT various - End-use matching analysis of parabolic trough collectors with indus-
trial process heat.

Murray [244] 1999 SP-A Pb TP energy C X - - MEB - X X CSE) aluminum- Conceptual analysis of potentials for highly concentrating solar heat
in the primary aluminum industry.

Schweiger et al. [56] 2000 SP-A Pb,D TP C, T B X S year MEB X X X various various - Potential analysis and design of SHIP in ES and PT through steam
production and integration with conventional utility system.

Beath [67] 2012 SP-A Pt TP location,
load

C X S year MEB X X X various various - Top-down analysis of industrial heat demand, temperature ranges,
and location, matched with solar availability in Australia.

Calderoni et al. [72] 2012 SP-A A,Pb E - F X S - - X X X PT textile - Economic feasibility study of solar-assisted process plants in Tunisia.
Lauterbach et al. [68] 2012 SP-A Pt TP load C X S - - X X X various various - Top-down analysis of industrial heat demand, temperature ranges in

DE.
Müller et al. [148] 2014 SP-A Pb TP FD,L C X S year MEB X X X various food

(liq.)
- Methodology: how to estimate the potential for solar heat in the liq.

food industry, based on available area, and temperature levels.
Sharma et al. [69, 70] 2016 SP-A Pt,D TP SF C X S year MEB X X X PT paper Co-gen. Potential analysis of solar heat for paper industry in India, considering

solar sizing (by capacity), location, and co-generation.
Sharma et al. [71] 2017 SP-A Pt,D TP SF C X S year MEB X X X PT dairy Potential analysis of solar heat for dairy industry in India, considering

solar sizing (by capacity) and locations of plants.

Focus: Solar (S), Solar integration to urban system (SU), SP, SP-A, SP-I based on notation presented in the introduction Section, Figure 2
Approach: Design (D), modeling (M), analysis (A), potential (P), review (R ), empirical (E)
Objective: Thermodynamic principles (TP), economic (E), thermoeconomic (TEP), technical (T)
Variables: temperature (T), collector area (C), storage size (S), load (L), irradiation (IRR), field design (FD), solar fraction (SF), location (LOC)
Sizing: Fixed (F), brute forcing (variation of paramters, identification of maxima) (B), mathematical programming (M - genetic algorithm (GA) - sequential quadratic programming (SQP)), conceptual methods (C), R-curve analysis (R), analytical (A),
polynomial regression (PR)
Economic (Econ.): economics considered in study (X/X)
Modeling (M): (Quasi-) static (S), dynamic (D)
Time discretization (dT): instantaneous (ins.), variable time step (VST); horizon: unless stated differently: yearly analysis
Tool: Mass and energy balances (MEB), design space method (DSM), regression (R), measurements (MEA)
heat exchanger network (HEN): X- full HEN design (analysis), (X) - focus on identification of relevant HEX for solar integration, X - no specific HEN design
Solar collector types (SC): Evacuated tube collectors (ETC), flat plate (FP), power tower heliostat field (HF), parabolic trough (PTC), flat plate photovoltaic and thermal systems (PVT), compound parabolic concentrator (CPC)
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6.1.3 Discussion and contribution

The state-of-the-art analysis can be summarized in four main points.

1. Top-down approaches provide estimations of the general potential for solar energy in certain

industrial sectors and geographical regions. However, the results are coarse and some options

may be overlooked.

2. Bottom-up approaches aim at derivation of profitability of solar integration measures in

specific sectors. The studies presented in the literature either focus on the solar system or on

the industrial process, but do not consider them in a combined framework.

3. Current literature focuses on conceptual approaches. A lack of systematic potential studies

applying rigorous methods (such as mathematical programming) is found.

4. A gap is identified for a bottom-up approach which considers both the process and solar

system, as well as a wider set of utilities and integration options, to identify relationships

between energy prices and utility selection at a national or international level.

This work attempts to close the gaps mentioned in (3-4) by expanding a bottom-up method for

estimating the general environomic potential of conventional technologies (heat pumps and co-

generation) in industrial processes to consider solar technologies. This requires a complex post-

computational framework including parameter sampling.

The method includes enhancing the databased of solutions generated in Chapter 5 with various

solar technologies, identification of solar system break-even cost, and specific potential estimation.

Based on user-selected input criteria, case-specific solutions are drawn from the database and

investigated. The data would be accessible via an on-line parallel coordinates decision-making

platform (which is in planning). The presented method illustrates, how specific solar performance

models can be generalized to provide indication for industries in various countries.

6.2 Methodology

6.2.1 Problem statement

Since the method presented here is an extension to the method introduced in Chapter 5, the same

research questions can be formulated as depicted in Section 5.2.1. Additionally, the following

questions are derived.
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Problem statement

Given

(A) certain industry/process, a geographical region

(B) set of solar technologies

Determine

(A) technologies and costs

• solar technologies, which bring the highest emission reductions

• break-even cost of each solar technology

(B) economically viable emission reduction potential and measures

6.2.2 Derivation

As mentioned before, the methodology presented in Chapter 5 is based on generalized multi-

objective optimization stripped of all location-dependent input parameters. Therefore, it was

assumed that the specific investment cost of conventional utilities do not depend on the location.

This assumption cannot be applied to solar utilities for obvious reasons.

Therefore, another approach is suggested to account for solar utility contribution. If a correlation

between collector area and the solar fraction can be identified, multi-objective, multi-period specific

optimization can be avoided and the solar utilities contribution could solely be accounted for in

a post-computational step based on the desired solar fraction and performance solar parameters.

The solar fraction, fw s [-], is defined as the fraction of energy that the solar utilities provide to the

process compared to what the is the actual process (thermal or electrical) requirement, as shown in

Equation 6.1.

fw s = Ė
w s

Ė
PROC

(6.1)

The solar fraction can be defined instantaneously, or based on a maximum day. In this work, it refers

to the average solar contribution over the whole year, Ė
w s

[kW], with respect to the average process

requirement, Ė
PROC

[kW].

In order to study the optimal solar collector area for different solar fractions, the ε-contrained mixed

integer linear programming (MILP) model for flat plate collectors with thermal storage, presented

in Chapter 3, was run for various process operating hours and with different solar fractions. The

results are presented in Figure 6.1a. As expected, it can be observed that with increasing process

operating times, more solar collector area is required to satisfy the same fixed average contribution.

And it can further be observed that the required solar area seems to follow a linear relation with the

process operating time.
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Chapter 6. Generalization (B): addition of solar utilities

From this observation, an intuitive correlation presented in Equation 6.2 was derived and compared

to the results. The correlation links the required solar utility collector area, Aw s [m2], yearly efficiency,

η
w s [-], the yearly available solar radiation (GHI), gh [kWh/m2y], the constant process (thermal or

electrical) requirement, Ė
PROC

[kW], and the process operating time, ∆tPROC [h/y], with the solar

fraction, fw s [-].

fw s =

∑
p∈P

gh,p ·ηw s ·Aw s

Ė
PROC ·∆tPROC

(6.2)

The approximation of the collector area based on this correlation are shown in Figure 6.1a. A good

agreement between the approximated collector area and the results from the detailed parametric

optimization from Chapter 3 can be observed for solar fractions ranging from 0.1 to 0.3. The storage

cost of the individual solutions (for solar fraction of 0.3) remains below 10% of the collector costs.

When increasing the solar fraction to 0.4 and 0.5 as shown in Figure 6.1b, the approximation given

by Equation 6.2 drastically underestimates the solar collector area requirement derived by the

MILP model. The discrepancy is linked to the fact that the intuitive correlation relies on a yearly

average, therewith assuming a seasonal storage option. The MILP model, which relies on typical

days, considers only daily storage. This is further illustrated in Figure 6.2 and Figure 6.3. For a solar

fraction of 0.3, the storage in Figure 6.2 is mainly operated on days with high solar radiation, and the

cooling water consumption is only increased on two typical days (one being the extreme day with

occurrence 1). A forced solar fraction of 0.5 (Figure 6.3) results in a drastic increase of cooling water

consumption due to the cyclic constraint of the storage unit (chapter 2.4.2) and the accompanying

overproduction of the solar system.

Since a detailed model of seasonal storage is not available and the cost functions cannot be antici-

pated, it is recommended to use solar fractions below 0.4 for this type of problem.

The agreement between the intuitive correlation and the results from the multi-period MILP is

promising, especially since the correlation does not rely on fitted data. For wider application,

a cross-verification may be recommended, though. In this study, the results from the flat plate

thermal collectors (FPs) are assumed to be applicable also to the high concentration photovoltaic

and thermal system (HCPVT). Since, the photovoltaic modules (PVs) are operated without storage,

the intuitive correlation for PV is assumed without limits on the solar fraction.
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Figure 6.1 – Results from MILP in Chapter 3, flat plate collector area for different process operating
times.
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Figure 6.2 – Thermal utility operation for flat plate collector integration, from Chapter 3, non-stop
operation, solar fraction of 0.3.
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Figure 6.3 – Thermal utility operation for flat plate collector integration, from Chapter 3, non-stop
operation, solar fraction of 0.5.
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6.2.3 Approach

The analysis conducted in Section 6.2.2, forms the basis for the suggested approach. Figure 6.4

illustrates the method which aims at incorporating solar utilities into the database of solutions

presented in Chapter 5. Therefore, the solar fraction and utilities under scrutiny need to be selected.

With the selected solar fraction and utilities, the original database created in Chapter 5, is expanded.

Each point in the database is thereby replicated for each solar technology considered and its data is

re-calculated based on the selected solar fraction.

Photovoltaic module (PV) For installation of photovoltaic modules (PVs), the new net electricity

consumption from the grid, Ė
GRID
el

∗ [kWel], is derived by the old consumption and the solar fraction,

as depicted in Equation 6.3.

Ė
GRID
el

∗ = (
1− fw s) · Ė

GRID
el (6.3)

The constant solar contribution is given by Ė
w s
el = fw s · Ė

GRID
el [kWel].

Flat plate thermal collector (FP) Likewise, the installation of flat plate thermal collectors (FPs) is

treated, though the new natural gas consumption depends on hot utility w of the solution. Therefore,

the new natural gas consumption, Ė
GRID
ng , is derived by the old consumption, the solar fraction and

the hot utility thermal efficiency, as depicted in Equation 6.4.

Ė
GRID
ng

∗ = (
1− fw s) · Q̇

w
th

η
w
th

(6.4)

The constant solar contribution is given by Q̇
w s
th = fw s · Q̇

w
th [kWth].

High concentration photovoltaic and thermal system (HCPVT) The HCPVT co-generates ther-

mal and electrical power. Since the thermal storage imposes the highest constraints, the sizing is

conducted based on the thermal power, Q̇
w s
th = fw s · Q̇

w
th [kWth]. The new natural gas consumption,

Ė∗
ng, is derived by the old consumption, the solar fraction and the hot utility thermal efficiency, as

depicted in Equation 6.5 and Equation 6.6.

Ė
GRID
ng

∗ = (
1− fw s) · Q̇

w
th

η
w
th

(6.5)

Ė
GRID
el

∗ = Ė
GRID
el + Q̇

w s
th ·ηw s

el

η
w s
th

(6.6)
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Figure 6.4 – Methodology proposed in Chapter 6: Combined potential estimation method for solar
and conventional utilities.

The constant solar contribution is given by Q̇
w s
th = fw s · Q̇

w
th [kWth].

Co-generation If the thermal utilities replace part of the co-generation unit, the solution’s net

electricity demand needs to be adapted, as illustrated in Equation 6.7.

Ė
GRID
el

∗∗ = Ė
GRID
el

∗− fw s · Q̇
COGEN
th ·ηw s

el

η
w s
th

(6.7)

In this way the database of solutions is enlarged considering integration of solar energy by a fixed

solar fraction in each of the additional solutions. When results are retrieved from the database, the

specific solar collector cost [$/m2], the efficiency [-], and the irradiance of the location need to be

submitted, so that the location-dependent solar cost can be accurately estimated.

Break-even cost A second approach is applied, in which the break-even solar cost is determined

based on statistical analysis. Therefore, the data ranges of the free parameters presented in Chapter 5

are sampled (Latin hypercube [233]), and in each run the maximum feasible specific solar energy

cost [$/kWh] of each technology is determined, under the condition that 10% of the best total

annualized costs (TAC) solutions must incorporate the specified solar technology. The details are

presented in the results and discussion section.

131



Chapter 6. Generalization (B): addition of solar utilities

6.3 Results and discussion

The solutions of plant plant 2,ΔTmin/2=5K, were enhanced with solar utilities to study integration of

further emission reductions. The imposed solar fraction of the different technologies under scrutiny

is depicted in Table 6.2.

The enlarged set of solutions is depicted in Figure 6.5a in the resource plane1. The effect of the

respective technology on the set of solutions can be clearly identified. The integration of PV effectu-

ated a fractional reduction of net electricity consumption, therefore, distorting the points towards

the left. Integration of FP resulted in a distortion to the bottom, induced by reduced natural gas

consumption.

Figure 6.6 shows the total annualized costs (TAC) and total emissions of all solutions in the three

different countries, assuming the solar cost and efficiency values depicted in Table 6.2, the radiation

data of the individual countries as written in the caption of Figure 6.6, and electricity and natural

gas prices as depicted in Figure 5.8. As extensively discussed in Chapter 5, the respective minimum

TAC solutions were selected and are depicted in Figure 6.7. Negative values in the yearly operating

expenses (opex) arise from the export of electricity. The conclusions drawn from this analysis

confirm the conclusions derived in Chapter 3, indicating that under current solar system cost

metrics, solar systems should be installed as the last of multiple emission reduction measures. The

first option is heat recovery (not depicted here), followed by mechanical vapor re-compression

(MVR), and heat pump (HP) integration. Solar integration was only selected as additional measure

for emission reduction, after other options had been employed. With solar integration though

additional emission reductions by up to 20% could be achieved, reaching a total reduction of up to

80% compared to the reference in Switzerland (CH). It has to be noted, that integration of HCPVT

in Switzerland (CH), together with mechanical vapor re-compression (MVR) showed reduced TAC,

compared to the reference TAC -10%, which confirms the solutions presented in Chapter 3.

Table 6.3 provides the ranges of free parameters which were sampled. The statistical analysis was

conducted in order to derive the maximum viable solar cost, assuming uniformly distributed param-

eters. Of course, this assumption is more than simplified, but there was not sufficient data available

to derive more precise correlations. Figure 6.5b depicts the results of this analysis, indicating that the

maximum feasible cost ranges from 0.29 to 0.001 $/kWhlifetime prod.
2. The 90th percentile was used

to identify the maximum viable cost for each of the technologies, leading to 0.0098 $/kWhth, lifetime

for FP, 0.0392 $/kWhel for PV, 0.0098 $/kWhel+th for HCPVT, and 0.0294 $/kWhel+th for the combined

version of FP and PV. A difference was observed between the two co-generation cases (HCPVT and

FP+PV) due to different imposed solar fractions.

1 The resource plane refers to the plane formed with the two types of resource consumption as axes, and hence spans
the natural gas and electricity consumption.

2 The solar investment costs are derived in dollars per kWh of lifetime energy production, and the lifetime is assumed
to be 20y.
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Figure 6.5 – Database enhanced with solar data, results of statistical analysis, and break-even
collector cost.

Figure 6.6 – TAC versus emissions of solar enhanced database of plant 2, ΔTmin/2=5K, 2500 h, 0
$/tCO2 , solar performance data Table 6.2, global horizontal irradiation (GHI) of three locations
1400,1100,2000 kWh/m2/y (a,b,c) DNI 1500,1000,2500 (a,b,c).
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Figure 6.7 – Cost analysis of min(TAC) points of solar enhanced database of plant 2,ΔTmin/2=5K,
2500 h, 0 $/tCO2 .
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Table 6.2 – General solar data assumed, based on Philibert [1], Kalogirou [18], and Kalogirou and
Tripanagnostopoulos [121].

Solar system ηth [-] ηel [-] Cost [$/m2] fs [-]

Flat plate thermal collector (FP) 0.3 - 400 0.3
Photovoltaic module (PV) - 0.15 500 0.5
High concentration photovoltaic and thermal system (HCPVT) 0.5 (DNI) 0.25 (DNI) 400 0.3 (thermal)
FP + PV 0.3 0.15 400, 500 0.3, 0.5

Table 6.3 – Data ranges of free parameters as derived in Chapter 5.

Parameter Range Unit

Natural gas price [0.01, 0.1] $/kWh
Electricity price [0.04, 0.18] $/kWh
CO2 tax [0, 60] $/t CO2 eq.
Annuity factor (τ+ m) [0.08, 0.25] 1/y
Operating time [2000, 8000] h
El. grid CO2 eq. emissions [0.1, 1] t CO2/kWh
Nat. gas CO2 eq. emissions [0.15, 0.25] t CO2/kWh

Assuming these numbers as break-even costs, the area specific collector costs, could be derived

based on a chosen efficiency and a given annual irradiance, as shown in Figure 6.5c. It can be

observed that FP costs should in many cases not exceed 150 $/m2 (which is quite below current

market prices), while viable PV systems are be in the range of 100 to 300 $/m2 (closer to current

market prices), and cost of the HCPVT system should be between 200 and 500 $/m2 (below current

prices). These number will change, if different efficiencies are assumed.

When applying the break-even cost on the enhanced database of solutions, a change in results was

observed. Figure 6.8 and Figure 6.9 show the minimum TAC points for 2500 and 8000 operating

hours of plant 2, ΔTmin/2=5K, respectively. The results from with 2500h show installation of PV

in Switzerland (CH) and Germany (DE), which was replaced by FP, HCPVT and combined FP and

PV with increasing emission reductions. Interestingly, at 8000h operating hours, PV (in CH and

Germany (DE)) and HCPVT (in United States of America (US)) is replaced by a co-generation unit,

bringing the advantage of co-producing thermal and electrical power, constantly. Due to the high

investment cost of the co-generation unit, this option is only selected for operating hours.

Figure 6.10 depicts the thermal production of the units present in the minimum TAC solutions

(excluding the heat pump units). It can be shown that some of the solar installations generate

increased cooling water consumption, thereby suggesting lower exergy efficiencies, as seen for

United States of America (US) and Germany (DE) at around 50% emission reductions. This con-

firms that economic, and even environmental objectives, cannot verify that solar energy is used

in the exergetically optimal way. This could be avoided by choosing different objectives. However,

considering economic criteria at a certain point cannot be avoided.
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6.3. Results and discussion
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Figure 6.8 – Cost analysis of min(TAC) points of solar enhanced database of plant 2,ΔTmin/2=5K,
2500 h, 0 $/tCO2 , with break-even costs: FP: 0.0098 $/kWhth, lifetime, PV: 0.0392 $/kWhel, HCPVT
0.0098 $/kWhel+th, FP+PV 0.0294 $/kWhel+th.
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Figure 6.9 – Cost analysis of min(TAC) points of solar enhanced database of plant 2,ΔTmin/2=5K,
8000 h, 0 $/tCO2 , with break-even costs.
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Figure 6.10 – Thermal units of min(TAC) points of solar enhanced database of plant 2,ΔTmin/2=5K,
8000 h, 0 $/tCO2 , with break-even costs.
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Chapter 6. Generalization (B): addition of solar utilities

6.4 Conclusions

How can the results be extrapolated to a wider scope?

This chapter presents an extension to the methodology presented in Chapter 5 taking into account

solar utilities. The presented method illustrates, how specific solar performance models can be

generalized to provide indication for industries in various countries.

The method includes enhancing the databased of solutions generated in Chapter 5 with various

solar technologies, identification of solar system break-even cost, and specific potential estimation.

Based on user-selected input criteria, case-specific solutions were drawn from the database and

investigated. The data could be accessed via an on-line parallel coordinates decision-making

platform (which is in planning).

The method is based on an intuitive correlation derived from the model presented in Chapter 3,

which is employed to assess the annual solar collector and storage performance under optimal

control. Results indicated that ST only achieved economic viability for collector costs ranging from

below 100 $/m2 in areas of low solar radiation to 200 $/m2 in areas with higher incident insolation.

Similarly the cost for PV and HCPVT were derived. Results confirmed the conclusions derived in

Chapter 3 indicating that under current solar system cost metrics, solar systems would be installed

as the last of multiple emission reduction options, favoring heat recovery improvements, mechanical

vapor re-compression, and heat pumping in the first place. When analyzing the results assuming

break-even solar costs, solar systems became more profitable, however, this also promoted solutions

in which the solar energy was used inefficiently, which was manifested in a high cooling water

consumption. This could be avoided using different objectives such as the exergy efficiency.
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Conclusions

Overview

• Summary of the main results

• Significance of the work

• Recommendations and guidance

• Future perspectives

This thesis explored the multi-dimensional problem formulation of optimal solar integration in

industrial processes through elaboration of methodologies tailored to low-temperature processing

industries. The intricacies behind this goal were addressed in five main chapters. The main findings

and contributions are presented below, followed by recommendations and future perspectives.

Main results summary

Chapter 1 Chapter 1 provides the wider context of the topics discussed in this thesis. It motivates

the case study selection and technologies studied, and introduces concepts and nomenclature used

throughout the work.

Chapter 2 How can solar system design be accurately and rigorously addressed?

The second chapter presented a rigorous solar system modeling and design approach which al-

lows estimation of collector and storage performance at sufficient precision and limited computa-

tional effort. This development addressed shortcomings identified in the literature related to a lack

of rigorous solar design methods at sufficient precision. Comparison of the static collector model

with transient results yielded sufficient precision (<5 % deviation). Application of a clustering ap-

proach reduced the resolution time successfully while guarding the accuracy for sufficient numbers

of clusters. For low cluster numbers a deviation of the results was revealed, highlighting a need to

proper investigation of the clustering results.

Chapter 3 What problem formulation is required for a comprehensive design method for solar-

assisted low-temperature processes?
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In Chapter 3, a comprehensive method was proposed which addressed simultaneous optimization

of the process heat recovery, the conventional utilities, and the renewable utility system (including

thermal storage) using ε-constrained parametric optimization. The method, tailored for the low-

temperature industry, is based on multi-period utility targeting, including process heat recovery

through pinch analysis (PA) and re-use through heat pumping, and identifies the optimal design

and operation of the utility and storage systems. In the literature, utility integration and solar system

design has not been treated in a comprehensive manner for the low-temperature industries. The

proposed method was demonstrated on the basis of a dairy plant located in Switzerland (CH) where

different solar components were compared and evaluated based on economic and environmental

objectives.

The results demonstrated that the use of a comprehensive method is unavoidable, since the sizing

of all components was shown to be interrelated. Of particular interest was the fact that solar utility

integration was only economically viable in combination with integration of a mechanical vapor

re-compression system, which reduced the hot utility requirements. It could be shown that from an

economic, environmental, and exergetic point of view internal heat recovery was the most effective

measure, followed by mechanical vapor re-compression and improvements in the refrigeration

system. After these measures were in place, solar energy integration yielded economically feasible

solutions (15% reduction in total annualized costs (TAC)) reducing the overall emissions by up to

70%.

For continuous operation of the process, the reduction in specific emissions was not as significant

as for daytime only operation. Due to the capital cost of the thermal storage system, it was only

chosen by the optimization for high emission reductions requirements. Photovoltaic module (PV)

integration offered the least emission reduction potential (up to 20% reduction in daytime only

operation with respect to the best non-solar case). However, installation is simple, independent, and

if overproduced, could be exported to the electricity grid. In comparison, the high concentration

photovoltaic and thermal system (HCPVT) system, had high potential with very high efficiencies

bringing emission reductions easily up to 40% (daytime only) at uncertain cost and shading losses.

The low cost, very low efficiency flat plate thermal collector (FP) collectors offered a simple solution

providing more reliability of the system performance capital cost expenses with emission reductions

of up to 30% (daytime only).

Chapter 4 How can design of an optimal industrial heat pump system be conducted?

Results from Chapter 3 revealed that mechanical vapor re-compression, heat pumping and advanced

refrigeration cycles are key measures for process emission reductions and efficiency improvements

in low-temperature industries, which outperformed solar systems in terms of cost-effectiveness in

emission reductions. Therefore, Chapter 4 focused on the development of a comprehensive and

novel generic heat pump synthesis method for industrial applications.
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Main results summary

The superstructure-based approach was solved with mathematical programming, and addressed a

comprehensive list of heat pump features, while technical limitations were considered and a set of

solutions was generated which allowed for expert-based decision-making and further deep solution

analysis.

For benchmarking, the method was compared to a set of literature cases, generating between 5%

and 30% cost improvements compared to the optimal solutions reported. An extended version of

one case was presented considering fluid selection, heat exchanger network (HEN) cost estimations,

and technical constraints within the problem formulation. The extended case highlighted a trade-off

between energy efficiency and system complexity expressed by the increase of heat exchanger

network costs with the number of compression stages, level of gas-cooling and subcooling which

all improve the coefficient of performance (COP). This was especially evident when comparing

the solutions with 3 and 5 compression stages causing an increase of the COP from 2.9 to 3.1 at

3% increase in TAC. Subcooling was activated in the minimum TAC solution which indicated that

its advantageous characteristics should not be overlooked in cycle design. In contrast to the non-

extended case, gas-cooling was not activated in the minimum TAC solution, which was attributed to

an unfavorable relation between performance benefits and additional HEN cost. Fluid selection was

successfully performed indicating that propane is the most favorable fluid both in economic and

thermodynamic terms in this temperature range. The heat pump superstructure (HPS) proved to be

flexible for different requirements serving in a variety of cases.

Chapters 5 and 6 How can the results be extrapolated to a wider scope?

Having derived methods for optimal solution generation of specific cases, in specific countries,

under specific conditions in the previous chapters, Chapter 5 and Chapter 6 addressed the question

of how these methods could be generalized and results could be extended to a wider scope. There-

fore, a method for estimating the environomic potential of technologies in industrial process

applications was derived, which was based on generalized optimization techniques. This method

contributes to the state-of-the-art by offering a detailed bottom-up optimization-based approach

based on mathematical programming. Current bottom-up approaches lack rigorous methods, and

often rely on qualitative and (seldom) simple quantitative assessment.

The method was first derived for heat pump and co-generation equipment only, and later extended

to include solar utilities. Applied to the dairy industry, the method revealed a wide applicability

from evaluation of policy measures (CO2 taxes and tax incentives), to pre-feasibility assessment for

project planners. The on-line decision-support tool developed in the context of this work yielded

additional, realistic solutions to guide various stakeholders toward efficient solutions.

It could be demonstrated that the operating time and energy resource prices drastically influenced

the economic viability of emission reduction measures. Political incentives, such as CO2 taxes and

tax breaks for investment in emission reduction measures were found to increase the economically
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viable emission reductions from an OECD average of 20% to 26% and 31%, in the least favorable

case of a fixed process heat recovery network. These are equivalent to 30% and 55% increase in

viable emission reduction measures achieved through a CO2 tax of 20$/tCO2 without and with 20%

tax breaks on the investment, respectively. It was shown that CO2 taxes had distinctly higher impact

in countries with low resource prices, while to achieve a change in countries with high resource

prices, tax breaks might be a better incentive.

Integration of the solar utilities in Chapter 6 allowed derivation of break-even solar system costs,

which were found to range from below 200 $/m2 for FP, to 250 $/m2 and 450 $/m2 for PV and HCPVT,

respectively.

Results confirmed the conclusions derived in Chapter 3 indicating that under current solar system

and heat pump cost metrics, solar systems would be installed as the last of multiple emission

reduction options, favoring heat recovery improvements, mechanical vapor re-compression, and

heat pumping in the first place. When analyzing the results assuming break-even solar costs, solar

systems became more profitable, however, this also promoted solutions in which the solar energy

was used inefficiently, which was manifested in a high cooling water consumption. This could be

avoided using different objectives such as the exergy efficiency.

In summary Integration of solar energy in industrial processes is a wide field of research with

various applications, foci, and objectives. Dependent on the particular subject of study, different

tools should be applied, as demonstrated within this work. One main conclusion persists throughout

the course of this thesis: In order to quantify the added value of solar integration to industrial

processes, analysis of the entire utility network and process improvement measures (heat recovery)

need to be completed. The developed methods aim at providing guidance to reach optimal solutions

backed by metrics to justify their feasibility to decision makers.

Significance of the work

The benefit of models and explicitly optimization models can be argued. A true representation of

reality by a model is impossible to achieve, and optimization models, in particular, require additional

simplification due to computational limitations. This marks a trade-off between the accuracy of

the model and the computational effort. If the optimization model is drastically simplified, the

computational effort is low but the results may not be meaningful, since the model may not have

captured the actual system behavior and the main bottlenecks. If the model is too complex, the

computational effort can be so high that it does not allow to study a wide solution space and it is,

therefore, unlikely to find optimal points.

Chapter 2 addresses this issue briefly by comparing the modeled performance of solar technologies

with static hourly equations and with transient models, and in a further step the influence of

clustering on the precision. However, this trade-off is not the main focus of this thesis.
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Recommendations and guidance

Despite these shortcomings, (optimization) models are usually the only mean to derive quantitative

results, if there is a lack of measured data that could elsewise be used for statistical or artificially-

driven analysis. And if this notion is agreed upon, then the role of models is to provide quantitative

results backed up with metrics to aid decision makers. This is (best) achieved in several phases.

General, broader models can identify potentials in a first phase and more detailed, specific models

can aid in planning and execution during the next phases. This thesis has contributed to the first

phase by developing generic synthesis models that support pre-feasibility assessment, pre-design,

and potential estimation of solar energy involving efficiency improvement measures for the low-

temperature industry.

In the first three chapters (2, 3 and 4) this was achieved by the development of easy-to-use generic

methods and models that may be applied by other researchers. These methods aim at enabling

pre-feasibility assessment and pre-design of solar-assisted industry.

The second part of the thesis (Chapters 5 and 6) presented a general method for potential estimation

based on the models developed in the previous chapters. The method itself is a contribution which

can be generally applied, while also the results themselves may be used by process engineers or

decision makers to estimate and weigh up the potential of technologies and efficiency measures in

different global settings.

Recommendations and guidance

• Adapt level of detail to needs. Depending on what goal is pursued, adaption of discretization

and level of detail of the models is imperative. This was illustrated for the generalization

of the solar potential in Chapter 6. If detailed analysis of the optimal control strategy and

sizing is required, it is recommended to use detailed models as presented in Chapters 2 and 3.

However, if general cost estimation is required, a model of reduced complexity as presented in

Chapter 6 is sufficient.

• Comprehensiveness. Instead of focusing on modeling one single technology at high detail, it

is strongly advised to focus on a comprehensive consideration of technologies, which aids in

providing directions on follow-up detailed analysis. It was observed multiple times in literature

[59–61, 151], that the process cold/sub-ambient side together with the refrigeration system or

mechanical vapor re-compression (MVR) was disregarded. This leads to sub-optimal solar

integration and wasted energy.

• Choice of objective function. The choice of the objective function is crucial to the outcome of

the optimization. Economic objectives are uncertain and may not favor renewable resources.

Constraining the objective as performed in Chapter 3, or addressing thermodynamic and

environmental criteria permit assessment from a broader perspective.
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Future perspectives

The solar modeling and design strategy proposed in this work focused on the collector perfor-

mance. Several aspects were simplified which could be addressed in future work.

• Solar collector field losses were simplified with a constant loss factor. More refined models

should include:

– Pressure drop and pumping power

– Shading

– Thermal losses

• The cost and availability of land were not considered. They would increase the economic

model accuracy if data are known.

The Comprehensive integration method was tailored to the low-temperature processing industries,

adaptation and extension could include:

• Multi-objective, non-linear optimization which would aid in identifying optimal utility tem-

perature levels, though the problem size might drastically increase.

• Identification of additional utility technologies such as: steam network, high temperature/ab-

sorption heat pumps.

• A major issue is unwillingness of operators to change process heat recovery networks. The

method could, therefore, be adapted for total site analysis (TSA), or include fixed HENs in a

different way.

The heat pump superstructure addresses multiple feature, but could be extended to consider

• Equipment selection

• Super-critical fluids

• Mixed refrigerants

• Absorption systems

As mentioned previously, the generalization methodology provides numerous advantages, though

the main limitation of the presented approach is identified as:

• Currently, the equipment investment cost is fixed, which is an uncertain value and may have

an influence on the utility selection. In future work this may be addressed by re-calculating

the investment cost with varying cost functions, or using stochastic programming.
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AGeneral data

A.1 Introduction

The global availability of the direct normal irradiation (DNI) and global horizontal irradiation (GHI)

are depicted in Figure A.1.

Figure A.1 – Global availability of DNI and GHI [kWh/m2y] [135].
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BComprehensive integration method

(Chapter 3)

B.1 Additional results

Figure B.1 shows the primary energy, fuel, electricity, and CO2 emission savings of the non-stop

operation solutions. It can be seen that for all solutions the electricity savings are "negative",

meaning that more electricity is required due to the additional heat pump and MVR units. With

increasing solar installations, the emissions and natural gas consumption are continuously reduced.

The total annual cost and the primary energy savings are decreased with increasing solar system

sizes.

Figure B.1 – Primary energy, fuel, electricity, and CO2 emission savings of non-stop operation
solutions.
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Appendix B. Comprehensive integration method (Chapter 3)

B.2 Performance parameters and cost functions

B.2.1 Heat exchanger network (HEN) cost estimation

The heat exchanger area is estimated as presented by Kemp [99, 218, 245] (area targeting) based on

vertical intervals placed between the hot and cold composite curves. In each interval the approxi-

mate heat exchanger area is estimated based on the logarithmic mean temperature difference, the

hot and cold average heat transfer coefficients, and the heat transferred within the interval. The

total area AHE N
tot [m2] is found by the summing over all intervals. Estimation of the installed heat

exchanger capital expenses springs from the assumption that all heat exchangers are equal.

C HE N
p =

[
a+b ·

(
AHE N

tot ,p

N HE N
mi n,p

)c]
·N HE N

mi n,p (B.1)

The minimum number of heat exchangers (units) N HE N
mi n to be placed in each zone (between pinches)

is estimated following the suggestion of Linnhoff et al. [98] based on graph theory. The cost correla-

tions are taken from Taal et al. [236] reprinted from Hall et al. [237] and can be found in Table B.1 for

retrofit heat exchanger costs. The total cost is calculated for each period p ∈ P and the final installed

cost is then found as the maximum of all periods.

C HE N = max
p

(
C HE N

p

)
(B.2)

Table B.1 – Heat exchanger network (HEN) cost estimation parameters Hall et al. [237] reprinted by
Taal et al. [236](2.33) updated to 2015e, Carbon steel (CS)-CS heat exchangers.

Parameter Symbol Value Unit
Heat exchanger cost estimations HEN
Fixed parameter a 9’500 e
Scaling parameter b 460 e/m2

Non-linear parameter c 0.8 -

B.2.2 Non-renewable technologies

B.2.2.1 Cooling water (CW)

The cooling water is modeled by one cold stream between 15 (Tcw
in ) and 17 °C (Tcw

out). The operating

cost are negligible as the cooling water is assumed to origin from a river close by the plant. The

cooling thermal stream is formulated by the following relation, where cCW
p [kJ/kgK] is the specific
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heat capacity, and mcw, 1 kg/s, is the reference mass flow rate.

Q̇CW = ṁref,CW ·cCW
p · (TCW

out −TCW
in

)
(B.3)

B.2.2.2 Boiler (BOI)

The boiler heat release is modeled by three streams: air preheating, radiative and convective thermal

power from natural gas combustion. The total heat release is derived by a multiplication of the lower

heating value (LHV) with the reference fuel flow rate including the efficiency. Cooling down the

combustion gases from the adiabatic flame temperature to a pre-defined radiation temperature

defines the radiative component and is displayed as a hot stream at constant temperature (radiation

temperature). The convective component is defined as a hot stream between the radiation tempera-

ture and the exhaust gases outlet temperature. The air preheating is written as a cold stream from

ambient to preheating temperature. This practice has been published by Maréchal and Kalitventzeff

[246] and is applied in the same manner by Becker [140]. The heat release is illustrated below in

Equation B.4.

Q̇BOI =− Q̇pre

∣∣Tpreh

Ta
+ Q̇rad

∣∣
Trad

+ Q̇conv

∣∣Trad

Tout
(B.4)

The parameters are described in Table B.2. The boiler investment cost is set to zero, since it is already

in-place. The natural gas consumption (Equation B.5) is derived from the boiler useful heat release

based on a conversion fraction. The conversion fraction includes the thermal losses as well as the

part of the heat released in the combustion that is dispensed in the exhaust gases and therefore not

delivered to the process as useful heat.

Q̇ng
BOI = Q̇

BOI
/fBOI (B.5)

Table B.2 – Boiler (BOI) parameters, adapted from Becker [140].

Parameter Symbol Value Unit
Investment (in-place) IVBOI

2 0 e/kW
Adiabatic flame temperature Tf

ad 2768 °C
Radiation temperature Trad 1027 °C
Exhaust gases temperature Tout 120 °C
Air preheating temperature Tpreh 120 °C
Radiative heat load Q̇rad 28842 kW
Convective heat load Q̇conv 15031 kW
Air preheating load Q̇preh 1740 kW
Boiler conversion fraction fBOI 90 %
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B.2.2.3 Heat pump superstructure (HPS)

To ensure mass and energy conservation within the heat pump, linear constraints are defined at all

liquid, vapor and superheated vapor points. These constraint are added to the utility targeting con-

straints. These equations are further documented in [167]. The constraints and parameters entering

the mixed integer linear programming (MILP) are derived and depicted in Appendix C.3.1. The

non-linear bare module cost function for compressors COMP [ine, 2010, is not further actualized]

of each heat pump g is formulated after reference [247] reprinted by [140] where the installation

factor was assumed to be 1.5.

C COMP = 1.5 ·1500 ·1600.1 ·
(
Ė g ,COMP i→ j

)0.9
[e 2010] (B.6)

Where the maximum electricity consumption of compressor from level i → j of heat pump g ,

Ė g ,COMP i→ j [kW], is provided in Equation B.7 shown for any utility technology w .

Ė w = Ė
w · f w (B.7)

Where Ė w [kW] is the maximum (electrical) power consumption of utility technology w , Ė
w

[kW] is

the (electrical) power reference consumption of utility technology w , and f w [-] is the maximum

size of technology w . During the MILP problem resolution, the annualized compressor capital costs

as a function of the compressor power rating including the maintenance cost, IVg ,COMP
2 , was based

on a linear fitting function of Equation B.6.

Table B.3 – Heat pump parameters.

Parameter Symbol Value Unit
Heat pump superstructure (HPS)
Investment IVHPS

2 Eq. B.6
Temperatures THPS, COND i -2,10,15,20,25,30,35,40,45,50 °C
Isentropic compressor efficiency ηisentropic 0.76 -
Fluid Ammonia
Refrigeration in-place (REF)
Investment IVREF

2 0 e/kW
Condenser temperature TREF, CONDi 30 &35 °C
Evaporator temperature TREF, EVAP i -2 °C
Isentropic compressor efficiency ηisentropic 0.76 -
Fluid Ammonia
Vapor recompression as proposed by [140] (MVR)
Investment IVHP

2 Eq. B.6
Condenser temperature TREF, CONDi 76 °C
Evaporator temperature TREF, EVAP i 56 °C
Isentropic compressor efficiency ηisentropic 0.76 -
Fluid Water
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B.2.3 Solar technologies

The solar technologies and typical periods clustering are comprehensively discussed in Chapter 2.

B.2.3.1 Solar cost function

The proportional (installed) cost coefficient of a solar technology s is calculated as depicted in

Equation B.8.

IVs
2 = finst · IVw

A ·As (B.8)

B.2.3.2 Flat plate thermal collector (FP)

All parameters of the considered flat plate collectors can be found in Table B.4. Figure B.2 shows the

thermal conversion efficiency ηFP
p,tot = Q̇FP

p /(gh,p ·AFP) of the thermal energy production of a flat plate

collector Q̇FP
p in period p with respect to the global horizontal radiation gh,p in each period p. This

efficiency is comprised of not only the conductive and radiative thermal losses, but also the losses

caused by the non-perpendicular angle of incidence of the sun. Since the collectors are installed

in a fixed position, different angles of inclination need to be tested. The graph indicates clearly

that in some days (e.g. day number four and eight) collectors with 55° inclination outperform the

collectors with smaller inclination angles. This stems from the fact that on these (winter) days the

solar elevation angle is not very high (see Figure 3.5) and collectors installed at higher inclination

can capture more of the incoming radiation. On days in the middle of the summer (e.g. day number

seven and nine), the solar elevation angle is very high and therefore the collectors with the smallest

inclination angles exhibit the best performance. In the end, the total yearly performance is the most

Figure B.2 – Thermal conversion efficiency of flat plate (FP) solar thermal collectors as a function
of time for different inclination angles, input data presented in Table B.4, performance equations
shown in Section 2.3.1.2.
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important indicator which is displayed in Figure B.2 for all the inclination angles. It is weighted

by the relative occurrence of each typical period in the year. An inclination angle of 35° with an

average efficiency of about 25.3% exhibits the best performance and was therefore chosen for further

analysis. This efficiency is however biased, since it is calculated only when the collector produces

thermal energy. The overall production versus GHI efficiency yields 17.1%.

This average efficiency of the considered flat plate collectors is far below the theoretical maximum

of up to 60%. In this study a balance is struck between performance and capital investment. The

efficiency of single glazed flat plate thermal collectors drops with higher operating temperatures,

lower ambient temperatures, and the inclination of the sun. These insufficiencies are partly over-

come by better insulation or by changing the collector model (e.g. evacuated tube collectors). Both

of these options come at distinctly higher costs (factor 2 and higher [164]) and were, therefore, not

considered.

Table B.4 – Flat plate solar collector (FP) parameters, if no other indication, data taken for single
glazing flat plate collectors from Tehnomont [108] data tested by SPF [164] presented in Table B.4,
performance equations presented in Section 2.3.1.2.

Parameter Symbol Value Unit
Ground reflectivity ρg 0.154 -
Heat transfer fluid water glycol mix
Investment cost ([164],2012) IVFP

A 196 e/m2

Installation cost factor fFP
inst 1.5 -

Total investment {min,max} {200,600} e/m2

Collector area AFP 2.059 m2

Standard efficiency/ conversion factor η
FP
0 0.74 -

Efficiency coefficient 1 aFP
1 3.5940 W/m2K

Efficiency coefficient 2 aFP
2 0.00864 W/m2K2

Incidence angle modifier coefficient a 2.40 -
Fluid inlet temperature TFP

in 80 °C
Fluid outlet temperature TFP

out 105 °C
Slope Inclination (recommended: similar to latitude) θFP

i 35 °
Azimuth, shift towards south γ

FP
i 0 °

Thermal field loss factor fFP
field 0.97 -

B.2.3.3 Photovoltaic module (PV)

The photovoltaic modules (PVs) were modeled based on hourly static equations with the assumption

that the transient behavior is negligible. All parameters of the considered for the photovoltaic

modules can be found in Table B.5.

Figure B.3 shows the conversion efficiency from the global horizontal irradiance (GHI) gp,i in each

period p to the electricity produced in the photovoltaic modules ηPV
p,tot = EPV

p /(gi,p ·APV), where

EPV
p is the electrical production of a PV module in period p. As discussed previously, the GHI only

covers the fraction of the solar radiation that hits the earth at a perpendicular angle. This allows

the conversion efficiency (if it is described in this manner) to exceed the rated efficiency of the PV
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modules (e.g. on day 1), since the inclined modules may capture more of the inclined sun rays

than the GHI takes into account. The assessment also changes if shadowing is taken into account,

though this was not considered as a factor in this study. The winter days (1, 4, and 9) show due

to this peculiarity and due to lower ambient temperatures the highest efficiencies. In agreement

with the observation from the plate collectors, it can be seen that higher inclinations are favored in

winter days while lower inclination angles perform better during summer days. The highest overall

efficiency is found for the lowest inclination angle of 30° with an average of 18.5 %. Such efficiencies

may only be reached for high performance PV modules such as the ones assumed. More detailed

modeling, considering shading and conversion losses, will most likely show lower performance

values.
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Figure B.3 – Electrical conversion efficiency of photovoltaic modules (PVs) as a function of time for
different inclination angles, input data presented in Table B.5, performance equations presented in
Section 2.3.1.3.

B.2.3.4 High concentration photovoltaic and thermal system (HCPVT)

The high concentration photovoltaic and thermal system (HCPVT) were modeled based on hourly

static equations with the assumption that the transient behavior is negligible. All parameters of the

considered for the HCPVT can be found in Table B.6.

The HCPVT conversion efficiencies are not depicted here as they are assumed to be constant over

time independent from the irradiance and other potentially influencing factors such as the ambient

temperature (active cooling). A comparison between transient and static model was conducted and

the results are depicted in Figure B.4 [110]. The dish thermal efficiency is assumed to approximate

55%, and the electrical efficiency 25%. Constant electrical conversion losses and solar thermal losses

in the field were considered in this study. The average yearly overall efficiency of the HCPVT system

with respect to the DNI was found based on detailed dynamic models, averaging 25%el and 55%th

(total), respectively, which is extremely high and may be overestimated.
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Table B.5 – Photovoltaic module (PV) parameters, if no other indication, data taken from SunTech
[166]. nominal cell operating temperature (NOCT) are a set of conditions which are defined in order
to find the nominal cell operating temperature. Standard testing conditions (STC) are at 1000W/m2,
25°C cell temperature and air mass 1.5.

Parameter Symbol Value Unit
Investment cost [248] IVPV

A 260 e/m2

Installation cost factor fPV 1.5 -
Total investment {min,max} {300,800} e/m2

Maximum power ĖPV
,max 290 W

Module area APV 1.63 m2

Module electrical efficiency ηel
PV 0.178 -

Temperature reduction factor fPV
T 0.004 -/K

Efficiency reduction at g200 = 200W/m2 f200 0.98 -
standard testing conditions (STC) temperature TSTC 25 °C
STC radiation gSTC 1000 W/m2

Nominal Operating Cell Temperature TPV
NOCT 45 °C

NOCT radiation gNOCT 800 W/m2

NOCT ambient temperature Ta,NOCT 20 °C
NOCT wind speed va,NOCT 1 m/s
Inclination (around latitude) θPV

i 30 °
Azimuth, shift towards south γ

PV
i 0 °

Effective transmittance-absorptance product τα 0.9 -
Electrical conversion factor fPV

gen 0.95 -

Figure B.4 – Comparison of Transient System Simulation Tool [2] (TRNSYS) results and static model
for HCPVT [110], data shown in Table B.6, static performance equations presented in Section 2.3.1.4.

B.2.3.5 Storage

The storage is detailed in Section 2.4.2, where the thermal storage mass and energy balances are

formulated based on different temperature levels modeled as different interconnected tanks. The
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Table B.6 – High concentration photovoltaic and thermal system (HCPVT) parameters, data taken
from Airlight Energy Holding SA [132].

Parameter Symbol Value Unit
Heat transfer fluid water glycol mix
Investment cost IVHCPVT

A 700 e/m2

Dish area AHCPVT 40.05 m2

Installation cost factor fFP 1.5 -
Total investment {min,max} {500,1500} e/m2

Primary efficiency η
HCPVT
th,prim 0.5 -

Secondary efficiency η
HCPVT
th,sec 0.05 -

Electrical efficiency η
HCPVT
el 0.25 -

Fluid temperature primary in THCPVT
in,prim 85 °C

Fluid temperature primary out THCPVT
out,prim 92 °C

Fluid temperature secondary out THCPVT
out,sec 110 °C

Thermal field loss factor fHCPVT
field 0.9 -

Electrical conversion factor fHCPVT
gen 0.9 -

implementation relies on the mass storage presented by Moret et al. [141] which is expanded to

represent the thermal behavior.

Performance Figure B.5 illustrates the thermal storage filling in addition to the boiler and solar

dish behavior over a selected range of operating periods. The storage is charged when the availability

of the sun exceeds the process requirements (at around 80% of its total potential) and is consumed

with decreasing solar availability. It can be seen that the solar availability is increased by the storage

or in other words that the boiler utilization is reduced due to the emptying of the tank, which

indicates the advantage of the storage. For higher utilization of the storage, the ε-constraint would

have to be decreased.
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Figure B.5 – Thermal storage volume and temperature distribution for the FP collectors non-stop
operation of the industrial process, case 2.1. FPO at ε= 80% of the 2. HPS case.
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B.3 Weather data & clustering

Follwoing the indications of Domínguez-Muñoz et al. [126] the typical days are built from n clusters

with 2 extreme days. For clustering, 3 indicators are chosen which influence the solar performance

the most: DNI, GHI, and the ambient temperature. Since the DNI fluctuates the most on an hourly,

daily, and monthly basis with a high influence on the solar output, it is chosen as the main reference

for determination of the performance indicator. Also the extreme days are determined based on the

DNI, which means that one extreme day is found for the highest daily radiation and lowest solar

radiation. In Figure 3.5 in the upper corner the typical days and their occurrence are illustrated. The

two last days are extreme days which are represented only once. The operating time of one period is

one hour which leads to 240 operating periods.

Table B.7 displays the yearly average values and mean squared error of the six weather data attributes

of which only three are subject to the clustering. The yearly means of the three attributes that are

used for clustering are very close to the original data and thus the error of the first three indicators is

comparably small. Errors for the outside temperature and the wind speed, however, are distinctly

higher. This may be explained by stronger fluctuations throughout the year even though the ambient

temperature is used as input to the k-medoids clustering.

Table B.7 – Mean data and performance indicators of typical days compared to original.

Attribute Unit Meanoriginal Meantypical mELDC2 10−4

GHI [W/m2] 163.2 163.3 1.685
DNI [W/m2] 192.8 190.1 3.242
Elevation αs [°] 14.1 13.4 2.603
Azimuth γs [°] 44.4 45.2 5.592
Ta [°C] 10.7 10.5 51.321
va [m/s] 2.1 3.1 100.837
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B.4 Dairy process

The process streams as presented by Becker [140] are depicted in Table B.8. A detailed description of

the process model is provided in Appendix D.3.

Table B.8 – Hot and cold streams of the dairy process, reproduced from Becker [140].

Unit Name Tin Tout Q̇ ΔTmin/2 Remarks
[°C] [°C] [kW] [°C]

Regrigeration ref 6.0 4.0 76.0 2.0 refrigeration inlet milk
Pasteurization pasto1a 4.0 66.0 2356.0 2.0 preheating

pasto2a 66.0 86.0 676.4 2.0 pasteurization milk
pasto3a 86.0 4.0 2773.2 2.0 refrigeration milk
pasto4a 66.0 98.0 119.7 2.0 pasteurization cream
pasto5a 98.0 4.0 351.6 2.0 refrigeration cream

Concentration eva1 4.0 70.3 504.0 2.0 preheating
eva2 70.3 70.3 904.2 1.2 evaporation 1.effect
eva3 66.4 66.4 864.1 1.2 evaporation 2.effect
eva4 60.8 60.8 849.8 1.2 evaporation 3.effect
eva5 60.8 4.0 151.5 2.0 refrigeration concentrated milk
eva6 68.9 68.9 904.2 1.2 condensation 1.effect
eva7 65.9 65.9 864.1 1.2 condensation 2.effect
eva9 68.9 15.0 87.8 2.0 condensation 3.effect
eva10 65.9 15.0 80.8 2.0 cooling condensates 1.effect

Condensates cooling eva8 60.1 60.1 849.8 1.2 cooling condensates 2.effect
eva11 60.1 15.0 69.7 2.0 cooling condensates 3.effect

Yoghurt production yog1 4.0 94.0 1026.0 2.0 heating
yog2 94.0 10.0 957.6 2.0 cooling

Desert production des1 4.0 90.0 817.0 2.0 heating
des2 90.0 70.0 190.0 2.0 cooling

Hot water hw 15.0 55.0 167.2 2.0 hot water prodcution
Cleaning in place CIP1a 58.7 70.0 188.6 2.0 maintain temperature CIP1

CIP1b 65.0 15.0 104.5 2.0 recuperation waste heat CIP1
CIP2a 67.5 80.0 209.5 2.0 maintain temperature CIP2
CIP2b 75.0 15.0 125.4 2.0 recuperation waste heat CIP2

Fridge frig 5.0 5.0 300.0 2.0 maintain storage temperature
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CGeneric heat pump superstructure

(Chapter 4)

C.1 General

C.1.1 MOGA input parameters

All computations were conducted on a machine with 8-Core Xeon 2.4 GHz processor with 16.0 GB of

RAM. Table C.1 depicts the data used in the multi-objective genetic algorithm (MOGA [217]) from

the Dakota package [216]. Different parameters were used during different runs. Due to danger of

getting trapped in local minima, especially during the extended analysis (in Section 4.3.3) with fluid

selection at the master level, the mutation and crossover parameters were set more aggressively.

These parameters were selected based on a heuristic analysis tracking the propagation of the

non-dominated frontier. Figure C.1 shows the propagation of multi-objective genetic algorithm

(MOGA) and the dominance of each population over the previous indicating that a total of 105

evaluations achieve satisfying convergence for the master level fluid selection, as shown in Figure

C.1a. The dominance change of the slave level fluid selection displayed in Figure C.1b, however,

indicates that after 25,000 iterations, and significant computation time the MOGA has not reached

convergence. These results further support the conclusions derived in Section 4.3.3.1, that the

master level selection if more efficient.

Table C.1 – Input parameters for MOGA method [217].

Parameter Expression Value Comment

Initial population population_size 300, 500 initial set of individuals (section 4.3.2, 4.3.3)
Crossover type crossover_type ’shuffle_random’ (section 4.3.2) select one of each design var. of the parents for child

’multi_point_binary 2’ (section 4.3.3) bit switching at 2 pnts. in the binary encoded genome of two parents
Crossover rate crossover_rate 0.9 crossover rate of new generation
Mutation type mutation_type ’replace_uniform’, (section 4.3.2) randomly choosing variable and reassigning it to a random valid value

’bit_random’ (section 4.3.3) flips a randomly chosen bit in the string of randomly chosen variable
Mutation rate mutation_rate 0.1, 0.2 (section 4.3.2, 4.3.3)
Maximum iteration max_iterations 100, 200×103 maximum number of iteration unless convergence is reached (section 4.3.2, 4.3.3)
Convergence type convergence_type ’average_fitness_tracker’
Percent change percent_change 0.1 (default) percent change in non-dominated frontier
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(a) Master level fluid selection (105 evaluations)
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(b) Slave level fluid selection (2.5×104 evaluations)

Figure C.1 – Analysis of MOGA propagation of extended case E2.

C.1.2 MILP input parameters

The input parameters used for CPLEX [5] are displayed in Table C.2. The last three entries were

found based on the parameter tuning performed by CPLEX.

Table C.2 – Input parameters for CPLEX [5], AMPL [3].

Parameter Expression Value Comment

mipgap ’mipgap’ 0.001 relative difference between best integer and best bound
time ’time’ 300, 600 cpu time limit in seconds (all, selection at slave level)
flow cuts ’flowcuts’ 1 (agressive) use of flow cuts in solving MIPs
mir cuts ’mircuts’ 1 (moderate) generation of MIP rounding cuts
branch ’branch’ 1 branching direction for integer variables

C.2 Benchmark analysis

C.2.1 Benchmark cases

The thermal streams considered in the different benchmark cases are depicted in the original source

and were reproduced in Table C.3. The objective functions, variables, boundary conditions, and

input data to the respective optimization problems are displayed in Table C.4. The HEN costs were

disregarded during this optimization following the literature input data.

In case E2, gas-cooling was considered. It has to be noted that the temperature difference below

which gas-cooling was realized was not selected as a variable. It was set to the difference between

the temperature level i and the one above (i −1), yielding∆Ti ,DSH = Ti−1−Ti . The main effect of this

choice is ensuring that the generated solutions do not require splitting of the gas-cooling thermal

streams, in other words, they do not require several heat exchangers cooling gas at one compressor

outlet.
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Table C.3 – Streams data of the three benchmark cases.

(a) E2 [101] (b) Ethylene [186] (c) Cold Tray [205]

Stream name Tin Tout Q̇ α

K K kW/K kW/m2K

Process

H1 360 320 10 1
H2 320 250 10 1
C1 260 310 15 1
C2 300 360 10 1

Utilities K K

Water for cooling 300 310 0.56
Water for heating∗ 300 290 0.56
Steam 440 440 0.56

Stream name Tin Tout Q̇ α

K K kW kW/m2K

Process

H1 408 312 -1186 1
H2 375 312 -466 1
H3 375 312 -387 1
H4 375 312 -380 1
H5 375 290 -572 1
H6 269 260 -20 1
H7 168 158 -157 1
H8 258 256.8 -381 1
H9 313 313 -224 1
H10 307 307 -141 1
H11 234 234 -1081 1
H12 290 230 -451 1
C1 393 440 111 1
C2 277 302 174 1
C3 158 311 208 1
C4 346 360 516 1
C5 436 498 448 1
C6 315 358 133 1
C7 252 256 1120 1
C8 247 298 96 1

Utilities K K

Cooling water for cooling 297.1 300 0.56
Cooling water for heating∗ 297.1 294.2 0.56
Steam LP 411 411 1

Stream name Tin Tout Q̇ α

K K kW kW/m2K

Process

H1 -10.7 -10.7 -400.70 1
H2 -28.9 -28.9 -823.38 1
H3 51.5 51.5 -4285.30 1
C1 67.9 67.9 870.83 1
C2 -3 -3 758.94 1
C3 62.5 62.5 4229.65 1

Utilities K K

Cooling water for cooling 295 300 0.56
Cooling water for heating∗ 295 290 0.56
Steam 138 13882 1
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Table C.4 – Benchmark case data.

Description Symbols E2 Ethylene Cold Tray

Data Unit Reference min(HPS) Data Unit Reference min(HPS) Data Unit Reference min(HPS)

Master level

Objective function f obj
master

{
C opex ,C capex

}
$/y Table 4.6

{
C opex ,C capex

}
$/y Table 4.6

{
C opex ,C capex

}
$/y Table 4.6

HEN cost function C HE N 0 $/y 0 $/y 0 $/y

Compressor cost function C COMP as slave $/y Table 4.6 0.15 ·1,925 · (Ė COMP[kWel]
)0.963

[186] $/y Table 4.6 0.15 ·1,925 · (Ė COMP
)0.963

$/y Table 4.6

Variables

Saturation temperature T1 {300,300.5, ...,313} K 313 312.5 {310,310.5, ...,310} K 310, ammonia 310, ammonia {333,333.5, ...,353} K - 344
T2 {290,290.5, ...,310} K 300 298.5 {250,250.5, ...,290} K 307, r22 265.5, ammonia {323,323.5, ...,353} K - 338.5
T3 {280,280.5, ...,300} K 288 283 {230,230.5, ...,280} K 297, ammonia 246, ammonia {313,313.5, ...,343} K - 331
T4 {265,265.5, ...,285} K 277 272 {220,220.5, ...,260} K 266, r22 234, ethane {303,303.5, ...,333} K - 321.5
T5 {250,250.5, ...,270} K 254 254 {200,200.5, ...,240} K 256, r22 224, ammonia {293,293.5, ...,323} K 303, r22,ammonia 302
T6 {245,245.5, ...,265} K 247 248 {190,190.5, ...,230} K 256.8, propylene 205, ethane {283,283.5, ...,313} K 274, r22 298
T7 240 K 240 240 {170,170.5, ...,210} K 246.8, r22 189, ethane {273,273.5, ...,303} K - 273
T8 {160,160.5, ...,200} K 234, ethane 180.5, ethane {253,253.5, ...,283} K 259.5, ammonia 259.5
T9 {150,150.5, ...,190} K 224, propylene 172, ethane {243,243.5, ...,273} K 257
T10 148 K ethane ethane 241.3 K r22

Subcooling temperature difference ∆Ti ,SC 0 K 0 K
∆T1,SC {0, 1,..., 20} K 0 14
∆T2,SC {0, 1,..., 20} K 0 15
∆T3,SC {0, 1,..., 15} K 0 0
∆T4,SC {0, 1,..., 15} K 0 2
∆T5,SC {0, 1,..., 5} K 0 0
∆T6,SC {0, 1,..., 5} K 0 0

Gas-cooling temperature difference ∆Ti ,DSH Ti−1 −Ti K 0 as shown 0 K 0 K
Preheating temperature difference ∆Ti ,PRE 0 K 0 0 0 K 0 K
Fluid set F {ammonia} ammonia ammonia {ammonia, propylene, r22, {ammonia, r12, r22} ammonia

r13, ethane, ethylene}
Weighting factor ξ [0,1] - 0.5 0.47 [0,1] - 0.5 0.87 [0,1] - 0.5 0.74

Slave level

Objective function f obj
slave wT AC $/y wT AC $/y wT AC $/y

Parameters [101] Parameters [186] Parameters [205]

Compressor isentropic efficiency ηisentropic 1 - 1 - 1 -
Minimum temperature difference ∆Tmin 10 K 10 K 2.78 K
Set of periods P {1} - {1} - {1} -
Operating time of period ∆t1 1 y 1 y 1 y
Occurence of period occ1 1 1/y 1 1/y 1 1/y
Maximum compression ratio CPmax 10 bar/bar
Maximum number of compressors nmax 5 - 5 -

Yearly operating expenses (opex)

Steam production OPSTEAM
2 50.91 $/kW/y 0 $/kW/y 56.2866 $/kW/y

Electricity grid OPGRID
2 608.33 $/kW/y 336 $/kW/y 420 $/kW/y

Cooling water OPCW
2 15.97 $/kW/y 6.011 $/kW/y 6.011 $/kW/y

Annualized capital expenses (capex)

Compressor cost IVCOMP
1 2824.8 $/y 0.15 · 3,787.4 $/y 0.15 · 3,787.4 $/y

IVCOMP
2 831.67 $/kW/y 0.15 · 1,573 $/kW/y 0.15 · 1,573 $/kW/y

Heat exchanger cost parameters a,b 500, 0.8 $, - 500, 0.8 $, - 500, 0.8 $, -
U 1 kW/m2K 1 kW/m2K 1 kW/m2K
A 1 m2 1 m2 1 m2

Qmin 7 kW 100 kW 7 kW
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C.2.2 Extended case E2

The thermal streams considered in this case are depicted in Table C.3(a). Figure C.2a shows the

parallel coordinates information generated with the tool from Kermani et al. [220]. The global

warming potential (GWP) of most selected Hydrofluorocarbonss (HFCs) (r407c, r404a, r410a, r507a)

is above 1500 [249] compared to hydrogen sulfide and natural refrigerants (ammonia (r717), propane

(r290), propylene (r1270)) with GWP of below 10 [249, 250] and lower-impact HFCs such as r161 (12

[251]) and r41 (97 [252]). The objective functions, variables, boundary conditions, and input data

to the extended case E2 are displayed in Table C.5. Figure C.2b depicts the temperature entropy

diagram of the optimized HPS solution. Figure C.3a displays the integrated composite curves of

the extended case. In the reference case, cooling water is required to cool the highest condenser

level which is increased compared to the benchmark case due to the lower compressor isentropic

efficiency. Since the cooling water outlet temperature is above the condenser temperature, part of it

needs to be heated by the hot utility. Figure C.3b presents a flowsheet of the minimum TAC case.

The two HEN design of the reference and optimized case is shown in Figure C.4. It has to be noted

that the HPS solution requires one more heat exchangers which is mildly penalized by the HEN cost

function thereby being outweighed by the benefits of the reduced opex.

(a) Relevant data of selected fluids. Parallel coordinates
selection platform [220] (thermodynamic properties:
CoolProp [208] GWP data: [249–252]).

(b) Temperature entropy diagram of the minimum
TAC solution.

Figure C.2 – Set of selected fluids considered during multi-objective optimization.
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Figure C.3 – Extended case E2 minimum TAC solution.

Table C.5 – Optimization problem description: extended case E2.

Description Symbols Data Unit Reference min(HPS)

Master level

Objective function f obj
master

{
C OPE X ,CC APE X

}
$/y 56 005 49 944

132 608 121 840
Heat exchanger cost function (estimation) C HE N C HE N Table 4.3 $/y 58 800 57 800
HEN design $/y 52 800 53 600

c1 fitted [101] 0 $
c2 fitted [101] 500 $/y
c3 fitted [101] 0.8 -

Variables
Saturation temperature Ti = Ti+1 + ∆Ti

∆T1 {5,5.5, ...,40} K 13 9
∆T2 {5,5.5, ...,40} K 12 11.5
∆T3 {5,5.5, ...,40} K 11 13
∆T4 {5,5.5, ...,40} K 23 25
∆T5 {5,5.5, ...,40} K 7 8.5
∆T6 {5,5.5, ...,40} K 7 7.5
T7 240 K 240 240

Subcooling temperature difference
∆T1,SC {0, 1,..., 20} K 0 12
∆T2,SC {0, 1,..., 20} K 0 0
∆T3,SC {0, 1,..., 15} K 0 0
∆T4,SC {0, 1,..., 15} K 0 11
∆T5,SC {0, 1,..., 10} K 0 0
∆T6,SC {0, 1,..., 10} K 0 0

De-superheating temperature difference ∆Ti ,DSH Ti−1 −Ti K 0 as indicated
Preheating temperature difference ∆Ti ,PRE 0 K 0 0
Fluid set F {ammonia,r161,h2s,propane,propylene, ammonia propane

r407c,r404a,r410a,r507a,r41}
Weighting factor ξ [0,1] - 0.5 0.58

Slave level

Objective function f obj
slave wT AC $/y

Parameters

Compressor isentropic efficiency ηisentropic 0.7 -
Minimum temperature difference ∆Tmin 10 K
Set of periods P {1} -
Operating time of period ∆t1 1 y
Occurence of period occ1 1 1/y
Maximum compression ratio CPmax 8 bar/bar

Opex

Steam production OPSTEAM
2 50.91 $/kW/y

Electricity grid OPGRID
2 608.33 $/kW/y

Cooling water OPCW
2 15.97 $/kW/y

Capex

Compressor cost IVCOMP
1 2824.8 $/y

IVCOMP
2 831.67 $/kW/y
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C.3. Heat pump superstructure

(a) HEN design of extended reference case E2.

(b) HEN design of extended case E2 minimum TAC solution.

Figure C.4 – HEN design of extended case E2 with Aspen Energy Analyzer [253].

C.3 Heat pump superstructure

C.3.1 Heat pump parameters in targeting problem (MILP)

C.3.1.1 HPS parameters entering the utility targeting

In the following formulations, the heat and electricity consumption or production of the heat pump

utilities is described for a reference mass flow rate which is to say, a fixed size. These parameters

enter into the utility targeting constraints Equation 2.14-2.16 where they are multiplied with sizing

factors.

The heat release in a condenser (COND) at saturation temperature Ti of heat pump g for a reference

flow rate ṁref [kg/s] is composed of three parts: de-superheating from the preheating level Ti ,PRE

[K], condensation at the saturation temperature, and subcooling between saturation and subcooling
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temperature Ti ,SC [K]. As such, the heat release in a condenser is defined by Equation C.1.

Q̇
g ,COND i =−ṁref ·

(
[hPRE (Ti )−hV (Ti )]

Ti ,PRE

Ti
+ [hV (Ti )−hL (Ti )]Ti

+ [hL (Ti )−hSC (Ti )]Ti
Ti ,SC

)
=−ṁref · (∆hCOND (Ti )+∆hSC (Ti )+∆hPRE (Ti ))

(C.1)

Where Ti ,PRE is the preheating temperature before compression [K], hPRE is the enthalpy before

compression [kJ/kg], hV [kJ/kg] is the vapor and hL [kJ/kg] is the liquid saturation enthalpy.

The heat consumption of an evaporator (EVAP) at saturation temperature Ti of heat pump g is

composed of two parts: evaporation at the saturation temperature and superheating between

saturation and preheating temperature. As such, the heat consumption in an evaporator is defined

by Equation C.2.

Q̇
g ,EVAP i = ṁref ·

(
[hV (Ti )−hL (Ti )]Ti

+ [hPRE (Ti )−hV (Ti )]
Ti ,PRE

Ti

)
= ṁref · (∆hEVAP (Ti )+∆hPRE (Ti ))

(C.2)

The liquid side of the presaturator (PRESAT) also needs to be cooled down to the subcooling temper-

ature which is formulated similarly and shown by Equation C.3.

Q̇
g ,PRESAT i = ṁref · [hL (Ti )−hSC (Ti )]Ti

Ti ,SC (C.3)

Gas-cooling (GAS-COOL) to the compressor inlet temperature from the superheated vapor at the

compressor outlet can be achieved by mixing in the presaturator or in a heat exchanger as described

in Equation C.4.

Q̇
g ,GAS-COOL i = ṁref · [hDSH (Ti )−hPRE (Ti )]

Ti ,DSH

Ti ,PRE
(C.4)

Where hDSH is the enthalpy to which the superheated compressor outlets are mixed [kJ/kg], and

Ti ,DSH is the respective temperature [K].

The electricity consumption of a compressor depends on the isentropic efficiency and the enthalpies

of both pressure levels, formulated as Equation C.5.

Ė
g ,COMP i→ j = ṁref ·

[
hisentropic,i

(
T j

)−hV (Ti )

ηisentropic

]
(C.5)
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Where hisentropic,i (T j ) [kJ/kg] is the isentropic enthalpy after compression from saturated vapor at

temperature level Ti to (saturation) temperature level T j , and ηisentropic is the isentropic compressor

efficiency [-]. The HPS stream properties are depicted in Table C.6.

Table C.6 – Data of streams of the heat pump superstructure (HPS).

Unit Name Tin Tout |∆Q| α

K K kJ/kg kW/m2K

Condenser condensation Ti Ti hV (Ti )−hL (Ti ) 1.6
sub-cooling Ti Ti ,SC hL (Ti )−hSC (Ti ) 0.56
de-superheating Ti ,PRE Ti hPRE (Ti )−hV (Ti ) 0.06

Evaporator evaporation Ti Ti hV (Ti )−hL (Ti ) 3.6
preheating Ti Ti ,PRE ∆hPRE (Ti ) 0.06

Gas-cooler gas-cooling Ti ,DSH Ti ,PRE hDSH (Ti )−hPRE (Ti ) 0.06
Presaturator sub-cooling Ti Ti ,SC hL (Ti )−hSC (Ti ) 0.56

C.3.2 Heat pump specific constraints

In the following the heat pump specific linear equations at the slave level are introduced. The

respective units, streams and relations are depicted in Figure C.5.
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cond i
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gas-cool i
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1  presaturator 
2  condenser
3  mixer
4  evaporator
5  gas-cooling  
      (heat exchanger)
6   compressor
7  de-superheating 
      (mixing)

Legend

TiTi,SC

thermal stream

L liquid balance

VS superheated vapor

V saturated vapor 

mass stream

pressure level

Ti,DSH

Entropy [kJ/kgK]

T
 [

°C
]

Ti,PRE

Figure C.5 – Temperature-entropy diagram with mass and energy balances of the HPS.

Liquid mass balance The liquid mass balance at temperature level i can be at saturated or sub-

cooled conditions depending whether ∆Ti , SC > 0 (sub-cooled) or ∆Ti , SC = 0 (saturated). It is shown

in Equation C.6 of heat pump g and is composed of:

• the positive contribution from the potential condenser (COND) at level i

• the negative contribution from the potential evaporator (EVAP) at level i

• the positive contribution of the liquid fraction of all valves in combination with presaturators

(PRESAT) that end at level i

• the negative contribution from all valves that exit from level i
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• the negative contribution of the fraction of liquid that may be used to de-superheat the

compressor outlets (mix) at level i (MIX)

f g ,COND i
p − f g ,EVAP i

p +
i−1∑
j=1

(
1−xg , j→i

V

)
· f g ,PRESAT j→i

p −
nl∑

k=i+1
f g , PRESAT i→k
p − f g ,MIX i

p = 0

∀i ∈ L, g ∈ G, p ∈ P
(C.6)

Where

G set of heat pumps g consisting of one fluid d
L set of heat pump saturation temperature levels {1,2,3, ...,nl}

f g ,COND i
p condenser (COND) sizing factor of heat pump g (containing fluid f) during period p

f g ,EVAP i
p evaporator (EVAP) sizing factor of heat pump g during period p

f g ,MIX i
p mixer (MIX) sizing factor of heat pump g during period p

f g ,PRESAT j→i
p presaturator (PRESAT) after expansion from temperature level j → i sizing factor of heat pump g during period p

xg , j→i
V vapor fraction after expansion from temperature level j → i of heat pump g

hg ,i
SC [kJ/kg] enthalpy at subcooled or saturated temperature level Ti , SC = Ti −∆Ti , SC of heat pump g

Liquid energy balance The liquid energy balance in Equation C.7 is trivial because all streams

enter and exit at the same state of matter and temperature.(
f g ,COND i

p − f g ,EVAP i
p +

i−1∑
j=1

(
1−xg , j→i

V

)
· f g ,PRESAT j→i

p −
nl∑

k=i+1
f g ,PRESAT i→k
p − f g ,MIX i

p

)
·hg ,i

SC = 0

∀i ∈ L, g ∈ G, p ∈ P

(C.7)

Vapor mass balance The vapor mass balance at temperature level i can be at saturated or super-

heated conditions depending whether ∆Ti , PRE > 0 (superheated) or ∆Ti , PRE = 0 (saturated). It is

shown in Equation C.8 of heat pump g and is composed of:

• the positive contribution from the potential evaporator at level i

• the negative contribution from the potential condenser at level i

• the negative contribution from all compressors that exit from level i

• the potential incoming mass flow related to the potential gas-cooling (GAS-COOL) heat ex-

changer unit from the superheated mass balance at level i

• the potential positive contribution from a de-superheating (DE-SUP) through mixing unit at

level i

f g ,EVAP i
p − f g ,COND i

p −
i−1∑
j=1

f g ,COMP i→ j
p + f g ,DE-SUP i

p + f g ,GAS-COOL i
p = 0

∀i ∈ L, g ∈ G, p ∈ P
(C.8)

Where

The energy balance in this case is trivial, since all streams enter and exist at hg ,i
PRE [kJ/kg], the enthalpy
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C.3. Heat pump superstructure

f g ,COMP i→ j
p sizing factor of compressor from level i → j sizing factor of heat pump g during period p

f g ,DE-SUP i
p sizing factor of the de-superheating(DE-SUP) through mixing unit of heat pump g during period p

f g ,GAS-COOL i
p sizing factor of the gas-cooling (GAS-COOL) heat exchanger of heat pump g during period p

at preheated or saturated temperature level Ti ,PRE = Ti +∆Ti ,PRE of heat pump g . This balance is

not displayed here.

Superheated vapor mass balance The superheated vapor mass balance at temperature level i

is conducted at superheated conditions Ti ,DSH = Ti +∆Ti ,DSH. It is shown in Equation C.9 of heat

pump g and is composed of:

• the positive contributions of each compressor entering level i

• the positive contribution of the vapor fraction of all valves in combination with presaturators

that end at level i

• the negative contribution from the gas-cooling and de-superheating through mixing units at

level i

• and the positive contribution from the liquid mixing unit at level i

nl∑
k=i+1

f g ,COMP k→i
p +

i−1∑
j=1

xg , j→i
V · f g ,PRESAT j→i

p − f g ,GAS-COOL i
p − f g ,DE-SUP i

p + f g ,MIX i
p = 0

∀i ∈ L, g ∈ G, p ∈ P
(C.9)

Superheated vapor energy balance The energy balance given in Equation C.10 ensures that re-

gardless of which compressor is active, the starting point for de-superheating is always fixed. This

constraint ensures energy conservation and linearity in the problem formulation.

nl∑
k=i+1

f g ,COMP k→i
p ·hg ,COMP k→i

out − f g ,GAS-COOL i
p ·hg ,i

DSH − f g ,DE-SUP i
p ·hg ,i

PRE + f g ,MIX i
p ·hg ,i

SC = 0

∀i ∈ L, g ∈ G, p ∈ P
(C.10)

Where

hg ,i
PRE [kJ/kg] enthalpy at preheated or saturated temperature level Ti ,PRE = Ti +∆Ti , PRE of heat pump g

hg ,i
DSH [kJ/kg] superheated vapor enthalpy at point Ti ,DSH = Ti +∆Ti ,DSH

hg ,COMP k→i
out [kJ/kg] outlet enthalpy of compressor from level k to i
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DGeneralization (A) - heat pumping and

co-generation (Chapter 5)

D.1 General

D.1.1 MOGA input parameters

All computations were conducted on a machine with 8-Core Xeon 2.4 GHz processor with 16.0

GB of RAM. Table D.1 depicts the data used in the multi-objective genetic algorithm (MOGA [217])

from the Dakota package [216]. Different parameters were used during different runs. Due to

danger of getting trapped in local minima, especially during the extended analysis (in Section

4.3.3) with fluid selection at the master level, the mutation and crossover parameters were set more

aggressively. These parameters were selected based on a heuristic analysis tracking the propagation

of the non-dominated surface. Figure D.1 shows the propagation of MOGA and the dominance of

each population over the previous indicating that after generation 40 the weighted sum of objectives

does not propagate very much any more which could explain the dominance of ε-constraint. ε-

constraint propagates continuously until the stopping criterion (at 1.5×105 evaluations) is reached.

This might indicate that longer runtimes could generate improved solutions, however, reaching

already 40 hours of runtime, this option is currently neglected.

Table D.1 – Input parameters for MOGA method [217].

Parameter Expression Value Comment

Initial population population_size 500 initial set of individuals
Crossover type crossover_type ’shuffle_random’ select one of each design var of the parents for child (*)
Crossover rate crossover_rate 0.9 crossover rate of new generation
Mutation type mutation_type ’replace_uniform’, randomly choosing variable and reassigning it to a random valid value (*)
Mutation rate mutation_rate 0.1
Maximum iteration max_iterations 150e3 maximum number of iteration unless convergence is reached
Convergence type convergence_type ’average_fitness_tracker’
Percent change percent_change 0.1 (default) percent change in non-dominated frontier

(*) recommended for MOGA in the reference manual
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(a) ε-constraint.
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(b) Weighted sum of objectives

Figure D.1 – Analysis of MOGA propagation of plant x = 2.

D.1.2 MILP input parameters

The input parameters used for CPLEX [5] are displayed in Table D.2. The last three entries were

found based on the parameter tuning performed by CPLEX.

Table D.2 – Input parameters for CPLEX [5], AMPL [3].

Parameter Expression Value Comment

mipgap ’mipgap’ 0.005 relative difference between best integer and best bound
time ’time’ 300 cpu time limit in seconds
flow cuts ’flowcuts’ 1 (agressive) use of flow cuts in solving MIPs
mir cuts ’mircuts’ 1 (moderate) generation of MIP rounding cuts
branch ’branch’ 1 branching direction for integer variables

D.2 Additional results

D.2.1 Sampling in detail

The results from the sampling are depicted in Figure D.2 and Figure D.3. Figure D.2a compares the

number of evaluations and number of identified solutions (by deriving the non-dominated frontiers)

found with the different sampling algorithms. The sample size is set to 80,000 from which samples

with an electricity to natural gas price ratio of above 8 and below 1 are removed. The factorial

combination of the bounds (of the parameter ranges) is added to the sample size. Brute forcing

indicates manually selected parameter spacing (with different degree fineness) and evaluating

every combination of these. Naturally, the (finest grid) brute forcing requires the largest number of

evaluations as indicated in Figure D.2a. However, investigating the intersection of the Pareto points

identified by the different algorithms yields almost 100% overlap as shown in Figure D.2. Hence,
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D.2. Additional results

the Matlab [137] intrinsic latin hypercube sampling [233] is suggested and applied within the study.

Figure D.3 shows the histogram and cumulative sum of the occurrences of the different solutions

during the sampling process. If all Pareto solutions are selected, a reduction with respect to the

original of 1-239/239 = 0% is be achieved. If further reduction of the selected solutions is desired,

the histogram can be used as an indicator. It shows that 170, 121, and 95 solutions represent 99%,

95%, and 90% of the occurrences of the Pareto points thereby achieving a reduction of 29%, 49%,

and 60%.
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Figure D.2 – Selection of solutions with different sampling algorithms.
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Figure D.3 – Histogram and cumulative sum of occurrences.

D.2.2 Solution generation & pruning: remaining plants

The results from the multi-objective optimization problem with ε-constraint introduced in Sec-

tion 5.3.2 and 5.3.3, are depicted as surfaces of non-dominated solutions in Figure D.4 for the

remaining plants (plant 1, Figure D.4a; plant 2 with fixed HEN, Figure D.4b; plant 3, Figure D.4c).

The resource plane1 reveals a non-dominated frontier between the natural gas and electricity

consumption. The original plant with its reference consumption is marked at highest total resource

consumption with zero capital cost. Every other solution improves either the electricity or natural

1 The resource plane refers to the plane formed with the two types of resource consumption as axes, and hence spans
the natural gas and electricity consumption.
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gas consumption. As expected, it can be observed that the solutions of plant 2 with a fixed HEN,

ΔTmin/2=5K, in Figure D.4b are further away from the infeasible region as compared to Figure 5.9b.

Due to the fixed HEN and therewith no further possibility for process heat recovery, the resource

consumption cannot be as strongly reduced as for the case of process heat recovery.

The plants have different resource consumption ranges. While plant 1 in Figure D.4a shows the

highest natural gas consumption, the highest electricity consumption is shown in Figure D.4b. The

lowest resource consumption is displayed by plant 3 in Figure D.4c. These values are linked to the

plant requirements shown in Figure 5.7 and Table 5.3. Plant 1 has the highest hot minimum energy

requirement (MER), while plant 3 does not contain a concentrated milk production unit and has,

therefore, the lowest MER and resource consumption.
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(a) Plant 1.
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(b) Plant 2,ΔTmin/2=5K.
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(c) Plant 3.

Figure D.4 – Solution generation.

Figure D.5 shows the occurrence of all minimum TAC solutions selected during the sampling step of

the different plants: plant 1 (Figure D.5a), plant 2 with fixed HEN (Figure D.5b), plant 3 (Figure D.5c).

Relatively few solutions are never selected and therefore discarded. The encircled points mark the

99 percentile of the most recurrent solutions. A similarity between the patterns of selected solutions

is observed, indicating, that the solutions at the edges of the surface are the surface of solutions are

the most promising ones.
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(b) Plant 2,ΔTmin/2=5K.
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(c) Plant 3.

Figure D.5 – Solution pruning.
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D.2. Additional results

The characteristics of the selected solutions of the three plants were analyzed in Figure D.6 with

respect to the exergy efficiency. Similar trends can be observed for the three plants, as for the results

presented in Section 5.4.1.2. The cooling water, natural gas, and boiler consumption decreased,

while the electricity grid consumption increased with increasing exergy efficiency. The co-generation

engine increased initially and then decreased with increasing exergy efficiency. Heat pumping was

utilized with increasing exergy efficiency, until MVR was activated (for all except plant 3), at which

point it restarted from zero. The same observations as stated in Section 5.4.1.2 can be drawn

regarding subcooling, gas-cooling, and the fluid indexes.
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(b) Plant 2,ΔTmin/2=5K.
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(c) Plant 3.

Figure D.6 – Pruned solution characteristics.
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Appendix D. Generalization (A) - heat pumping and co-generation (Chapter 5)

D.2.3 Results retrieval: remaining plants

Figure D.8 depicts the solutions and respective cost distribution and emissions of selected OECD

countries of the three plants (plant 1, Figure D.8a; plant 2 with fixed HEN, Figure D.8b; plant 3,

Figure D.8c).

The number indexes the solution id which can be found in Table D.5, Table D.6, Figure D.7b, and

Figure D.10 for plant 2 with fixed HEN. As found in Section 5.4.2.1, it is visible that countries with

low resource prices (United States of America (US), Canada (CA), and Poland (PL)) exhibited more

seldom economically viable emission reductions measures for operating times of 2500 hours per

year. When adding a CO2 tax and increasing the operating hours, certain measures became more

often profitable.

It has to be noted that especially plant 2 with fixed HEN (Figure D.8b) generated fewer cost-viable

emission reduction solutions, due to the higher constraints on the heat and resource requirements.

And especially plant 1 produced almost exclusively cost-viable emission reduction measures. This

was attributed to the smaller range temperature thermal requirements of the plant, and with that

more options for heat recovery, heat pumping, and co-generation.

D.2.4 Database of solutions

Figure D.7 shows the indexes of the selected solutions of plant 2 (without and with fixed HEN)

on the resource plane. The solutions are represented in more detail in Appendix D.2.4.1 and Ap-

pendix D.2.4.2. The number indexes the solution id which can be found in Tables D.3-D.6.
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D.2. Additional results
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Figure D.8 – Cost data, CO2 equivalent emissions, plant 1. Five bars per country: (1) operating time
2500 h, tax 0 $/tCO2 , (2) 2500 h, 20 $/tCO2 ,(3) 8000 h, 0 $/tCO2 ,(4) 8000 h, 20 $/tCO2 , (5) 8000 h, 20
$/tCO2 , 20% investment reduction through tax incentives.

177



Appendix D. Generalization (A) - heat pumping and co-generation (Chapter 5)

D.2.4.1 Plant 2

This section contains a more detailed analysis of the database of solutions generated for plant 2. The

integrated composite curves (ICCs) of selected solutions from the country analysis are displayed

in Figure D.9. In Tables D.3-D.4, economical, energetic, and technical metrics of the solutions are

displayed.
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Figure D.9 – ICCs selected during data retrieval of plant 2.
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D.2. Additional results

Table D.3 – Database of solutions for plant 2 (I).

Id Cap.HEN Cap.Comp Cap.Cogen Nat. gas Net. elec. ΔTmin Qboi Qcogen Ecogen Eref Emvr Ehp stag. fluid subcool. gas-cool. Temp. levels COP Exerg. eff.
- k$ k$ k$ kW kW K kW kW kW kW kW kW - kW kW °C - %

1 217 161 0.0 900 228 2 810 0 0 180 48 0 0 - 0 0 - 0.0 46.4
2 112 0 0.0 1503 184 2 1353 0 0 184 0 0 0 - 0 0 - 0.0 35.8
3 345 411 940.1 1000 -73 2 0 495 375 174 64 64 1 R161 33 0 25.5,70,Δ12 4.4 53.4
4 430 564 845.0 800 3 2 0 396 300 121 56 127 1 R161 72 0 75.5,Δ13,1,48.5,Δ12 3.0 55.6
5 137 39 0.0 1373 190 2 1236 0 0 180 0 10 1 R161 24 0 Δ16,73,56,Δ2 23.4 37.7
6 233 205 0.0 850 227 2 765 0 0 167 50 10 1 R290 5 0 66.5,Δ1,Δ27,34.5,-7 4.7 47.7
7 122 39 0.0 1424 190 2 1282 0 0 180 0 10 1 R161 14 0 53.5,82.5,Δ17 13.2 36.9
8 199 150 0.0 943 229 2 848 0 0 184 45 0 0 - 0 0 - 0.0 45.3
9 444 531 0.0 300 350 2 270 0 0 180 61 109 1 R290 173 0 50.5,Δ21,26,79.5,Δ17 4.8 62.2
10 169 104 0.0 1150 210 2 1035 0 0 180 0 30 1 NH3 32 0 75,Δ17,55.5,Δ1 20.6 41.3

11 113 39 0.0 1474 189 2 1327 0 0 179 0 10 1 R161 10 0 77,Δ20,2 3.2 36.2
12 208 136 0.0 1000 220 2 900 0 0 180 0 40 1 NH3 31 0 Δ2,56.5,74.5,Δ9 21.5 44.2
13 266 165 748.0 1150 0 2 497 296 224 174 50 0 0 - 0 0 - 0.0 45.6
14 282 216 748.6 1100 0 2 451 297 224 160 54 10 1 R161 8 0 -7,Δ30,43.5 7.2 46.9
15 119 39 0.0 1416 194 2 1274 0 0 184 0 10 1 NH3 1 0 Δ2,54.5,79 14.8 37.0
16 362 399 925.5 969 -55 2 0 480 363 184 70 53 1 R161 65 0 Δ29,66,25.5 5.4 53.4
17 440 638 0.0 350 309 2 315 0 0 100 57 152 1 R161 137 0 77,Δ16,Δ29,45,0.5 3.3 61.7
18 134 39 0.0 1374 194 2 1237 0 0 184 0 10 1 NH3 24 0 Δ5,71.5,54.5,Δ20 22.3 37.7
19 162 86 0.0 1200 204 2 1080 0 0 180 0 24 1 NH3 14 0 56.5,74.5,Δ9 21.5 40.5
20 235 150 748.8 1212 0 2 551 297 225 180 45 0 0 - 0 0 - 0.0 44.2

21 187 133 0.0 1050 224 2 945 0 0 184 0 39 1 NH3 61 0 75,Δ9,55.5,Δ11 19.7 43.1
22 286 353 0.0 600 287 2 540 0 0 180 60 48 1 R161 57 0 26,Δ29,70 5.0 53.2
23 214 161 0.0 900 233 2 810 0 0 184 48 0 0 - 0 0 - 0.0 46.3
24 450 542 868.9 850 -30 2 0 421 318 114 56 118 1 R161 78 0 74,Δ7,Δ28,42,1 3.4 55.8
25 152 73 0.0 1250 204 2 1125 0 0 184 0 20 1 NH3 22 0 Δ4,56,74,Δ11 21.7 39.6
26 236 222 0.0 800 246 2 720 0 0 180 56 10 1 R161 13 0 Δ29,61.5,26 6.1 48.5
27 461 516 892.7 900 -50 2 0 446 337 122 56 109 1 R161 112 0 75.5,Δ22,Δ28,45,0.5 3.3 55.3
28 333 444 0.0 450 313 2 405 0 0 174 70 69 1 R290 110 32 25.5,Δ15,69,53,Δ22 5.4 57.5
29 582 638 589.1 271 282 2 0 134 102 174 62 147 1 R161 172 135 61.5,Δ26,26,82,Δ15 4.4 66.6
30 322 316 0.0 650 269 2 585 0 0 174 57 39 1 R290 57 0 26,69.5,Δ30 5.1 52.1

31 445 491 916.4 950 -70 2 0 471 356 130 57 98 1 R161 50 0 74,Δ2,Δ27,48,1 3.3 54.8
32 401 473 0.0 400 329 2 360 0 0 180 57 92 1 R161 83 0 26,75.5,Δ9,Δ17,58.5 4.6 58.8
33 138 66 0.0 1300 202 2 1170 0 0 184 0 18 1 NH3 26 0 Δ4,56,76.5,Δ19 19.7 38.7
34 324 429 892.7 900 -24 2 0 446 337 180 70 64 1 R161 53 26 Δ21,67,26 5.1 53.8
35 376 523 0.0 350 347 2 315 0 0 180 54 114 1 R161 81 0 26,51,Δ17,78.5 4.1 60.1
36 495 633 773.1 650 69 2 0 322 243 105 70 137 1 R161 75 105 1,70,Δ9,Δ21,46 3.4 58.8
37 223 110 724.6 1350 0 2 721 272 206 174 0 32 1 NH3 35 0 Δ4,56.5,74.5,Δ11 21.7 41.4
38 468 746 676.5 450 169 2 0 223 169 87 58 193 1 R290 124 116 75,Δ13,Δ14,48,1 3.1 63.2
39 318 248 0.0 750 250 2 675 0 0 177 53 21 1 R161 25 0 Δ29,65,24 5.3 49.8
40 234 128 732.3 1300 0 2 661 280 212 174 0 38 1 NH3 47 0 Δ4,56,75,Δ14 20.8 42.4

41 432 425 876.7 866 -13 2 0 429 325 180 70 62 1 R161 63 52 Δ28,66,26 5.4 54.2
42 757 792 627.8 350 207 2 0 173 131 70 60 209 1 R290 244 129 78.5,Δ26,Δ28,41,0.5 3.4 66.2
43 377 560 0.0 300 366 2 270 0 0 184 54 127 1 R161 91 0 80,Δ17,51,26 4.0 61.5
44 206 105 722.6 1400 0 2 769 270 204 174 0 30 1 NH3 47 0 75.5,Δ9,56,Δ11 19.8 40.4
45 204 82 713.3 1450 0 2 832 261 197 174 0 23 1 NH3 76 0 56,Δ26,Δ11,74 21.7 39.5
46 411 482 809.0 725 60 2 0 359 271 180 70 82 1 R161 81 70 Δ29,70,26 5.0 56.3
47 354 246 784.5 1050 0 2 339 334 252 180 53 20 1 R161 24 0 64.5,Δ28,26 5.6 48.1
48 194 64 706.0 1500 0 2 890 253 191 174 0 17 1 NH3 37 0 73.5,Δ12,56.5,Δ12 23.2 38.7
49 485 609 797.1 700 41 2 0 347 262 105 68 130 1 R161 120 100 Δ21,70,1,46,Δ30 3.5 57.9
50 277 293 0.0 700 267 2 630 0 0 180 52 36 1 R290 27 0 70,Δ14,26 4.4 50.7

51 218 200 0.0 850 243 2 765 0 0 184 49 10 1 NH3 4 0 24,45,Δ15,71 4.6 47.3
52 156 39 703.7 1622 0 2 1005 251 190 180 0 10 1 NH3 10 0 Δ4,56,77,Δ11 18.5 36.7
53 177 49 707.5 1550 0 2 932 255 193 180 0 13 1 NH3 18 0 72,Δ5,56.5,Δ9 24.6 37.8
54 341 447 873.9 861 2 2 0 426 322 184 70 70 1 R161 75 0 70,Δ26,26 4.9 53.6
55 340 430 0.0 600 269 2 540 0 0 135 61 73 1 R161 33 0 1,39.5,Δ26,68.5 2.6 53.7
56 295 393 0.0 550 306 2 495 0 0 184 65 57 1 R161 65 0 68.5,Δ29,24 4.9 54.2
57 144 0 690.8 1719 0 2 1115 238 180 180 0 0 0 - 0 0 - 0.0 35.3
58 398 701 724.9 550 129 2 0 272 206 103 70 162 1 R1270 125 121 47.5,Δ11,0.5,71.5,Δ22 3.1 60.5
59 472 591 821.1 750 28 2 0 372 281 118 69 123 1 R161 48 80 68.5,Δ9,Δ11,41.5,0.5 3.3 56.5
60 295 541 0.0 400 353 2 360 0 0 180 70 103 1 R161 60 86 Δ17,68,24 4.6 57.9

61 278 358 0.0 850 200 2 765 0 0 91 52 57 1 NH3 19 37 24,Δ12,1 0.7 48.3
62 255 159 719.5 1150 20 2 550 267 202 174 48 0 0 - 0 0 - 0.0 45.2
63 171 122 0.0 1100 220 2 990 0 0 184 0 36 1 NH3 42 0 Δ4,56.5,77,Δ14 19.3 42.1
64 438 552 0.0 450 290 2 405 0 0 112 59 119 1 R290 161 0 Δ24,75,Δ29,43.5,1 3.5 58.4
65 365 532 0.0 350 355 2 315 0 0 184 55 115 1 R161 65 0 80,Δ13,51,26 4.0 59.8
66 143 0 664.8 1695 20 2 1142 211 160 180 0 0 0 - 0 0 - 0.0 35.3
67 165 105 0.0 1150 214 2 1035 0 0 184 0 30 1 NH3 26 0 75,Δ13,55.5,Δ1 20.2 41.3
68 233 222 0.0 800 251 2 720 0 0 184 56 10 1 R161 13 0 Δ29,61.5,26 6.1 48.4
69 234 150 723.1 1188 20 2 578 271 205 180 45 0 0 - 0 0 - 0.0 44.3
70 149 39 703.7 1669 0 2 1047 251 190 180 0 10 1 R290 36 0 Δ29,52,84,Δ8 10.1 36.0
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Appendix D. Generalization (A) - heat pumping and co-generation (Chapter 5)

Table D.4 – Database of solutions for plant 2 (II).

Id Cap.HEN Cap.Comp Cap.Cogen Nat. gas Net. elec. ΔTmin Qboi Qcogen Ecogen Eref Emvr Ehp stag. fluid subcool. gas-cool. Temp. levels COP Exerg. eff.
- k$ k$ k$ kW kW K kW kW kW kW kW kW - kW kW °C - %

71 236 310 0.0 900 200 2 810 0 0 107 48 45 1 NH3 15 0 Δ11,23,1 7.1 47.0
72 276 322 0.0 650 282 2 585 0 0 184 56 41 1 R161 47 0 Δ29,70,24 4.7 51.8
73 134 88 0.0 1503 160 2 1353 0 0 135 0 25 1 R290 16 0 Δ11,22.5,1 7.4 36.2
74 491 652 589.1 271 298 2 0 134 102 184 60 155 1 R161 110 149 67,Δ27,84,26 4.1 65.8
75 265 166 696.7 1100 40 2 548 244 184 174 50 0 0 - 0 0 - 0.0 45.9
76 283 353 0.0 600 292 2 540 0 0 184 60 48 1 R161 57 0 26,Δ29,70 5.0 53.0
77 396 475 831.8 772 40 2 0 383 289 180 68 82 1 R161 74 69 Δ28,70,24 4.7 55.3
78 366 292 796.1 1000 0 2 272 346 261 174 54 34 1 R161 40 0 24,68.5,Δ30 4.9 49.5
79 234 150 697.2 1164 40 2 604 244 185 180 45 0 0 - 0 0 - 0.0 44.4
80 484 595 652.2 400 228 2 0 198 150 184 58 135 1 R161 117 106 67,Δ29,26,81.5,Δ2 4.3 62.9

81 268 204 721.8 1100 20 2 501 269 204 164 50 10 1 R290 6 0 Δ11,71,27,Δ13,-7 4.5 46.4
82 321 655 652.2 400 245 2 0 198 150 180 70 145 1 R290 124 0 64.5,Δ29,26,93.5 4.0 62.2
83 272 290 0.0 700 271 2 630 0 0 184 52 35 1 R161 20 0 26,Δ13,70 4.5 50.6
84 288 227 745.2 1050 20 2 412 293 222 174 58 10 1 R161 11 0 Δ21,53.5,26 7.5 47.6
85 282 216 697.3 1050 40 2 501 244 185 160 54 10 1 R161 5 0 Δ19,41,-7 7.1 47.1
86 484 631 603.4 300 274 2 0 149 112 180 57 150 1 R161 146 137 26,79,Δ15,Δ17,62 4.3 65.5
87 265 166 645.0 1050 80 2 598 191 144 174 50 0 0 - 0 0 - 0.0 46.2
88 376 480 0.0 400 331 2 360 0 0 180 56 96 1 R161 38 0 75.5,Δ9,47.5,26 4.4 58.7
89 409 453 847.7 806 20 2 0 399 302 180 54 89 1 R161 53 0 26,49,Δ14,75.5 4.3 54.9
90 355 538 773.1 650 108 2 0 322 243 180 70 102 1 R1270 100 83 24,71,Δ5,Δ20,57 4.7 57.4

91 457 810 652.2 400 201 2 0 198 150 86 70 195 2 R161 207 0 49,Δ29,Δ17,95,1,70,Δ11 3.1 64.1
92 266 204 669.6 1050 60 2 553 216 163 163 50 10 1 R161 10 0 Δ17,-4.5,Δ23,68,18.5 5.1 46.7
93 217 102 695.5 1350 20 2 775 242 183 174 0 29 1 NH3 38 0 56.5,Δ4,Δ14,74.5 22.0 41.0
94 254 159 668.0 1100 60 2 601 214 162 174 48 0 0 - 0 0 - 0.0 45.5
95 277 208 659.5 1000 80 2 527 206 155 174 51 10 1 R161 12 0 26,66,Δ28 5.4 47.4
96 409 600 0.0 400 307 2 360 0 0 111 58 138 1 R290 94 0 74,Δ11,Δ14,45,1 3.2 59.7
97 253 166 589.1 1000 128 2 656 134 102 180 50 0 0 - 0 0 - 0.0 46.3
98 232 150 645.3 1116 80 2 657 191 145 180 45 0 0 - 0 0 - 0.0 44.7
99 341 516 797.1 700 86 2 0 347 262 184 70 94 1 R161 68 80 70,Δ22,24 4.5 56.3
100 143 0 638.8 1671 40 2 1168 185 140 180 0 0 0 - 0 0 - 0.0 35.4

101 273 217 589.1 950 129 2 611 134 102 166 54 10 1 R290 9 0 Δ27,49.5,-0.5 7.3 47.5
102 148 39 677.8 1650 20 2 1078 224 170 180 0 10 1 R290 20 0 87.5,Δ6,54.5,Δ13 9.2 36.0
103 389 333 0.0 700 248 2 630 0 0 147 55 46 1 R290 56 0 67.5,Δ18,Δ29,41.5,1 3.7 51.2
104 290 228 693.8 1000 60 2 463 241 182 174 58 10 1 R161 8 0 50,Δ13,25.5 8.0 47.9
105 435 372 0.0 550 288 2 495 0 0 174 58 56 1 R161 62 48 47,Δ11,26,71,Δ22 5.0 54.8
106 244 131 714.7 1250 20 2 649 262 198 180 0 39 1 NH3 90 0 56,Δ14,Δ14,74 22.0 43.0
107 170 39 677.8 1569 20 2 1005 224 170 180 0 10 1 R1270 46 0 70.5,Δ6,56,Δ13 23.7 37.2
108 202 93 691.7 1400 20 2 827 238 180 174 0 26 1 NH3 33 0 75,Δ9,56.5,Δ7 20.9 40.1
109 355 524 0.0 400 345 2 360 0 0 184 70 91 2 R290 161 0 96.5,Δ23,Δ28,68.5,24 4.5 58.2
110 444 663 749.0 600 91 2 0 297 225 96 59 160 1 R161 79 80 48,Δ27,1,74,Δ2 3.3 60.0

111 152 39 677.8 1612 20 2 1044 224 170 180 0 10 1 NH3 7 0 Δ5,56,Δ6,79.5 16.0 36.6
112 267 204 616.6 1000 100 2 606 162 123 163 50 10 1 R161 7 0 -7,Δ18,63.5,24.5,Δ20 5.3 47.0
113 142 0 612.8 1647 60 2 1195 158 120 180 0 0 0 - 0 0 - 0.0 35.5
114 192 53 675.8 1500 20 2 946 222 168 174 0 14 1 NH3 30 0 Δ11,56.5,72,Δ11 25.3 38.3
115 228 127 709.3 1300 20 2 704 256 194 177 0 37 1 NH3 75 0 54.5,Δ11,Δ17,74 20.5 42.0
116 277 262 0.0 750 262 2 675 0 0 184 52 26 1 R161 0 0 67,26 4.3 49.4
117 329 305 757.2 950 40 2 300 306 231 180 54 38 1 R161 42 0 24,70,Δ29 4.7 49.8
118 291 228 642.2 950 100 2 514 188 142 174 58 10 1 NH3 2 0 24,47,Δ5 8.1 48.2
119 193 75 688.2 1450 20 2 878 235 178 177 0 21 1 NH3 83 0 56.5,Δ28,Δ17,74.5 22.4 39.2
120 355 272 769.2 1000 20 2 322 318 240 180 54 27 1 R161 34 0 Δ30,67.5,26 5.3 49.0

121 394 773 676.5 450 180 2 0 223 169 94 70 185 2 R161 109 151 Δ14,48,72,Δ13,1 3.6 62.7
122 352 462 0.0 750 220 2 675 0 0 81 53 86 2 R161 40 0 23.5,Δ6,Δ24,65.5,0.5 1.3 50.6
123 334 324 739.5 900 60 2 288 287 217 180 57 41 1 R161 50 0 Δ30,70,26 5.0 50.7
124 227 150 589.1 1064 128 2 714 134 102 184 45 0 0 - 0 0 - 0.0 44.8
125 352 483 821.1 750 56 2 0 372 281 184 70 82 1 R161 78 55 70,Δ27,25.5 4.9 55.6
126 361 677 773.1 650 73 2 0 322 243 93 70 153 1 R161 134 116 42.5,Δ22,68.5,Δ25,1 3.5 58.7
127 233 150 671.3 1140 60 2 631 218 165 180 45 0 0 - 0 0 - 0.0 44.5
128 254 160 616.2 1050 100 2 651 162 122 174 48 0 0 - 0 0 - 0.0 45.7
129 141 236 0.0 1503 140 2 1353 0 0 66 0 74 1 R161 25 0 23.5,Δ7,0.5 6.7 36.5
130 219 294 0.0 943 200 2 848 0 0 112 45 43 1 R161 23 0 24,Δ11,1 6.9 46.0

131 380 553 0.0 450 300 2 405 0 0 122 59 119 1 R161 30 0 48,Δ15,1,74 3.1 58.0
132 452 541 760.0 623 120 2 0 309 233 180 57 116 1 R161 179 0 26,64.5,Δ29,Δ19,88.5 4.1 58.0
133 334 354 727.0 850 80 2 266 275 208 180 60 48 1 R161 54 0 26,Δ27,70 4.9 51.6
134 279 228 589.1 900 146 2 566 134 102 180 58 10 1 R161 4 0 49.5,Δ7,26 8.0 48.4
135 383 584 735.2 571 160 2 0 283 214 184 59 131 1 R161 83 0 65,Δ28,24,91 3.8 58.5
136 229 128 687.8 1250 40 2 699 234 177 180 0 38 1 NH3 32 0 56,Δ4,Δ7,74 21.2 42.6
137 583 644 639.1 373 246 2 0 185 140 174 61 151 1 R290 237 0 24,65,Δ28,Δ11,89.5 3.9 63.3
138 219 115 674.9 1300 40 2 768 221 167 174 0 33 1 NH3 41 0 Δ4,56.5,75.5,Δ14 20.8 41.6
139 151 39 622.0 1588 60 2 1125 168 127 177 0 10 1 R161 9 0 52,Δ11,84 11.1 36.3
140 155 39 651.8 1573 40 2 1056 198 150 180 0 10 1 NH3 6 0 76.5,Δ9,56,Δ1 18.8 36.9

141 333 354 675.0 800 120 2 318 221 167 180 60 48 1 R161 57 0 70,Δ29,26 5.0 51.9
142 55 0 0.0 1618 210 3 1456 0 0 210 0 0 0 - 0 0 - 0.0 33.6
143 59 0 0.0 1618 204 3 1456 0 0 204 0 0 0 - 0 0 - 0.0 33.7
144 90 57 0.0 1450 220 3 1305 0 0 204 0 15 1 NH3 14 0 53.5,74.5,Δ17 19.0 35.8
145 67 39 0.0 1513 220 3 1361 0 0 210 0 10 1 R161 4 0 Δ4,72,52.5 17.9 34.9
146 58 39 0.0 1570 220 3 1413 0 0 210 0 10 1 R290 0 0 76,38.5 4.3 34.1
147 128 150 0.0 1057 249 3 952 0 0 204 45 0 0 - 0 0 - 0.0 42.1
148 125 150 0.0 1057 255 3 952 0 0 210 45 0 0 - 0 0 - 0.0 41.9
149 137 164 0.0 1000 260 3 900 0 0 210 50 0 0 - 0 0 - 0.0 43.0
150 68 77 0.0 1450 231 3 1305 0 0 210 0 21 1 R161 31 0 53.5,82.5,Δ17 13.2 35.6

151 92 0 692.2 1835 20 3 1217 239 181 201 0 0 0 - 0 0 - 0.0 33.2
152 92 0 666.3 1811 40 3 1244 213 161 201 0 0 0 - 0 0 - 0.0 33.3
153 91 0 640.3 1787 60 3 1270 186 141 201 0 0 0 - 0 0 - 0.0 33.3
154 82 0 589.1 1740 109 3 1322 134 101 210 0 0 0 - 0 0 - 0.0 33.3
155 91 0 614.2 1763 80 3 1297 160 121 201 0 0 0 - 0 0 - 0.0 33.4
156 4 39 0.0 1797 276 5 1618 0 0 266 0 10 1 NH3 0 0 66.5,40.5 13.6 30.3
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D.2. Additional results

D.2.4.2 Plant 2,ΔTmin/2=5K

This section contains a more detailed analysis of the database of solutions generated for plant 2 with

fixed HEN. The ICCs of selected solutions from the country analysis are displayed in Figure D.10. In

Tables D.5-D.6, economical, energetic, and technical metrics of the solutions are displayed.

Analysis of the ICCs in Figure D.10 reveals that most selected economically viable solutions exhibit a

heat pump or mechanical vapor re-compression system across the process pinch.
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Figure D.10 – ICCs selected during data retrieval of plant 2,ΔTmin/2=5K.
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Appendix D. Generalization (A) - heat pumping and co-generation (Chapter 5)

Table D.5 – Database of solutions for plant 2,ΔTmin/2=5K (I).

Id Cap.HEN Cap.Comp Cap.Cogen Nat. gas Net. elec. ΔTmin Qboi Qcogen Ecogen Eref Emvr Ehp stag. fluid subcool. gas-cool. Temp. levels COP Exerg. eff.
- k$ k$ k$ kW kW K kW kW kW kW kW kW - kW kW °C - %

1 186 684 1081.4 1300 -52 5 0 644 487 207 51 177 1 R161 63 128 81,Δ17,47,3 2.8 43.7
2 61 207 0.0 1200 323 5 1080 0 0 262 51 10 1 R290 11 0 62.5,Δ30,8.5 4.0 37.5
3 0 39 0.0 1841 276 5 1657 0 0 266 0 10 1 R161 0 0 62,11 3.5 29.8
4 16 39 0.0 1712 276 5 1541 0 0 266 0 10 1 NH3 0 0 71.5,56.5 24.7 31.2
5 6 39 0.0 1775 276 5 1597 0 0 266 0 10 1 NH3 0 0 45.5,67.5 16.4 30.5
6 92 199 870.7 1600 0 5 671 423 320 262 48 10 1 NH3 0 0 49,8,64.5 3.5 36.1
7 1 39 0.0 1821 272 5 1639 0 0 262 0 10 1 R161 10 0 Δ16,77,7 3.4 30.1
8 347 587 1044.5 1221 0 5 0 605 457 266 55 136 1 R161 91 0 91.5,Δ28,70.5,25.5 3.8 42.9
9 41 84 0.0 1600 290 5 1440 0 0 266 0 24 1 NH3 0 26 54,74 18.3 32.4
10 236 719 1057.9 1250 -31 5 0 619 468 207 70 161 2 R161 152 0 3,Δ18,90.5,36.5,Δ15,Δ15,64.5 2.8 43.7

11 12 39 0.0 1841 270 5 1657 0 0 260 0 10 1 R161 8 0 62,Δ30,4.5 3.7 29.9
12 82 160 0.0 1250 315 5 1125 0 0 266 48 0 0 - 0 0 - 0.0 36.8
13 35 69 0.0 1650 285 5 1485 0 0 266 0 19 1 NH3 0 21 53.5,73.5 18.3 31.8
14 68 142 0.0 1400 309 5 1260 0 0 266 0 42 1 NH3 0 0 54,74 18.3 34.7
15 62 128 0.0 1450 304 5 1305 0 0 266 0 38 1 NH3 0 0 54,74 18.3 34.1
16 77 150 0.0 1292 311 5 1163 0 0 266 45 0 0 - 0 0 - 0.0 36.2
17 152 769 0.0 450 525 5 405 0 0 266 70 188 1 R290 111 0 88.5,Δ18,66.5,25.5 3.7 49.4
18 70 564 0.0 850 384 5 765 0 0 207 70 107 2 R161 82 0 68.5,Δ15,94.5,Δ12,3 3.1 42.9
19 97 140 0.0 1350 308 5 1215 0 0 266 0 42 1 NH3 5 0 Δ2,74.5,56.5 20.7 35.4
20 56 114 0.0 1500 299 5 1350 0 0 266 0 33 1 NH3 0 0 54,74 18.3 33.5

21 164 223 887.1 1550 0 5 596 440 333 266 56 10 1 NH3 0 0 49,25.5 7.8 36.9
22 122 150 859.9 1666 0 5 751 412 311 266 45 0 0 - 0 0 - 0.0 35.2
23 227 490 941.4 1350 0 5 313 497 376 221 67 88 1 R161 70 0 4,Δ30,70.5,35 3.2 40.3
24 217 650 0.0 700 410 5 630 0 0 195 56 158 1 R161 97 0 78,Δ15,Δ11,46,2 3.1 45.8
25 316 780 0.0 400 529 5 360 0 0 266 66 198 1 R161 98 0 88.5,Δ20,66.5,25.5 3.8 50.7
26 52 99 0.0 1550 295 5 1395 0 0 266 0 28 1 NH3 0 0 54.5,74.5 18.3 32.9
27 255 611 0.0 750 389 5 675 0 0 190 58 141 1 R290 160 0 1.5,35,Δ13,77.5,Δ12,Δ20,59.5 3.0 45.0
28 387 593 1022.1 1174 20 5 0 582 440 266 56 137 1 R161 126 112 25.5,68,Δ30,Δ5,90.5 3.9 43.5
29 187 565 0.0 800 389 5 720 0 0 207 58 124 1 R161 34 0 76.5,Δ16,48,3 3.2 43.9
30 240 509 0.0 850 369 5 765 0 0 207 54 108 1 R161 98 0 74,Δ15,Δ28,45.5,3 3.5 43.2

31 132 892 0.0 400 572 5 360 0 0 266 70 236 1 R290 137 0 66,Δ22,87.5,15 3.3 49.5
32 121 150 834.4 1642 20 5 777 385 291 266 45 0 0 - 0 0 - 0.0 35.2
33 340 711 0.0 450 503 5 405 0 0 266 62 174 1 R290 314 0 88.5,Δ15,Δ28,66.5,25.5 4.0 50.0
34 112 220 0.0 1250 300 5 1125 0 0 236 48 16 1 NH3 0 0 23.5,4.5 8.1 37.1
35 100 120 847.0 1850 0 5 941 398 301 266 0 35 1 NH3 0 0 53.5,74 17.8 32.7
36 108 133 852.5 1800 0 5 886 404 305 266 0 39 1 NH3 0 0 54.5,74.5 18.3 33.3
37 413 786 783.5 672 280 5 0 333 252 266 68 198 1 R290 315 173 25.5,65,Δ28,Δ15,93.5 3.9 49.8
38 108 537 883.0 1250 60 5 333 436 329 221 51 118 2 R161 115 0 4,Δ22,79,53 3.0 41.1
39 198 462 912.0 1350 20 5 368 466 352 227 70 75 1 R290 72 0 65,Δ30,4.5 3.5 40.0
40 96 215 852.4 1550 20 5 661 404 305 262 54 10 1 NH3 5 0 8.5,45.5,Δ22 5.3 36.6

41 116 95 811.5 1850 20 5 1008 362 273 266 0 27 1 NH3 9 0 Δ5,74,56 21.0 32.5
42 188 325 921.7 1500 0 5 485 476 360 262 59 40 1 R290 40 0 8,Δ29,64.5 3.8 37.7
43 114 156 862.3 1750 0 5 822 414 313 266 0 47 1 NH3 0 0 55,76 17.4 34.0
44 250 498 903.5 1300 20 5 339 457 346 207 52 107 1 R161 51 0 3,Δ17,75.5,23,43.5 3.0 40.9
45 486 698 904.4 925 140 5 0 458 346 266 59 161 2 R161 118 0 25.5,65.5,Δ28,95,Δ1,77 4.1 46.6
46 95 101 788.2 1850 40 5 1052 338 255 266 0 29 1 NH3 0 0 54.5,74.5 18.3 32.2
47 128 161 839.2 1600 20 5 731 390 295 266 49 0 0 - 0 0 - 0.0 35.8
48 185 762 0.0 600 440 5 540 0 0 190 54 196 2 R290 108 122 Δ8,76.5,1.5 3.0 47.5
49 91 199 820.0 1550 40 5 722 370 280 262 48 10 1 NH3 0 0 65,40.5,7.5 3.6 36.3
50 364 655 949.9 1021 100 5 0 506 382 266 59 156 1 R290 356 0 25.5,Δ21,94,65.5,Δ28 3.9 45.2

51 195 393 0.0 1000 349 5 900 0 0 227 57 64 1 R161 63 0 71.5,Δ28,Δ13,33.5,4.5 3.2 40.6
52 91 93 759.2 1850 60 5 1106 308 233 266 0 26 1 NH3 0 0 54.5,74.5 18.3 32.0
53 131 304 0.0 1200 300 5 1080 0 0 211 52 36 2 NH3 0 0 23.5,3,44 1.2 37.9
54 278 514 935.6 1300 0 5 279 491 371 207 54 110 1 R161 102 0 3,45.5,Δ30,Δ15,77.5 3.4 41.3
55 193 394 951.1 1450 0 5 384 507 383 262 65 57 1 R290 58 0 65,Δ30,8 3.8 38.5
56 117 223 0.0 1150 333 5 1035 0 0 266 56 10 1 NH3 0 0 25.5,48.5 8.0 38.2
57 533 884 733.1 567 340 5 0 281 212 266 63 223 2 R161 371 0 86,Δ18,101.5,Δ11,Δ20,57.5,24 3.7 51.1
58 86 89 732.0 1850 80 5 1157 280 212 266 0 25 1 NH3 0 0 74.5,53.5 17.4 31.8
59 343 833 749.0 600 326 5 0 297 225 266 59 226 1 R290 287 173 64.5,Δ16,24,89,Δ18 3.6 50.6
60 79 79 702.0 1850 100 5 1213 249 188 266 0 22 1 NH3 0 24 53.5,74 17.8 31.6

61 142 283 0.0 1150 320 5 1035 0 0 237 56 26 2 R161 14 0 46.5,Δ23,24,4 3.5 38.4
62 145 443 0.0 950 366 5 855 0 0 227 68 70 1 R290 66 0 65,Δ29,4.5 3.5 41.2
63 240 525 890.2 1250 40 5 320 443 335 207 57 112 1 R161 52 0 3,45.5,Δ28,75.5 3.4 41.5
64 114 107 816.4 1800 20 5 954 367 277 266 0 31 1 NH3 17 5 Δ9,74,56 21.5 33.1
65 90 199 768.9 1500 80 5 773 318 240 262 48 10 1 NH3 1 0 64.5,Δ4,39,8 3.4 36.5
66 217 711 0.0 650 427 5 585 0 0 190 60 178 1 R290 174 35 1.5,82.5,Δ17,Δ20,55 3.0 46.6
67 73 315 0.0 1100 357 5 990 0 0 262 70 26 1 R161 7 14 48,Δ9,7 4.6 38.6
68 120 150 808.9 1618 40 5 804 359 271 266 45 0 0 - 0 0 - 0.0 35.3
69 120 752 0.0 600 518 5 540 0 0 266 70 182 1 R290 103 0 95.5,18.5,65.5,Δ22 3.3 45.7
70 106 193 0.0 1292 300 5 1163 0 0 244 45 11 1 NH3 0 0 4.5,22.5 9.6 36.4

71 76 68 672.0 1850 120 5 1268 218 165 266 0 19 1 NH3 0 20 53.5,73.5 18.3 31.4
72 96 216 801.5 1500 60 5 712 351 266 262 54 10 1 NH3 0 0 Δ1,42,8.5 5.4 36.8
73 87 193 791.7 1550 60 5 775 341 258 262 46 10 1 NH3 0 0 40.5,7.5,65,Δ2 3.6 36.0
74 423 763 797.9 702 260 5 0 348 263 266 67 190 1 R290 311 174 65,Δ30,92.5,Δ16,25.5 4.0 49.5
75 122 444 0.0 900 405 5 810 0 0 266 70 69 1 R1270 56 51 22,63.5,Δ19 4.8 41.5
76 89 200 717.7 1450 120 5 823 265 200 262 49 10 1 NH3 0 0 36,7,64.5 3.3 36.6
77 237 741 868.9 850 196 5 0 421 318 266 70 178 1 R290 164 140 68,Δ30,25.5,90.5 4.0 47.1
78 72 60 642.8 1850 140 5 1322 189 143 266 0 16 1 NH3 0 18 54,74 18.3 31.1
79 86 193 740.5 1500 100 5 826 289 218 262 46 10 1 NH3 0 0 64.5,40,7 3.6 36.2
80 200 698 1057.9 1250 -29 5 0 619 468 207 58 174 1 R161 47 142 3,79.5,Δ16,52 3.0 43.6

81 459 701 1034.5 1200 -14 5 0 595 449 207 57 172 2 R161 137 107 3,48,Δ29,97.5,Δ1,Δ15,76.5 3.2 44.0
82 195 726 0.0 600 505 5 540 0 0 262 60 183 1 R161 84 0 87,Δ3,66.5,7,52,Δ20 3.1 46.0
83 100 117 794.9 1800 40 5 994 345 260 266 0 34 1 NH3 0 0 54,74 18.3 32.9
84 119 150 757.6 1570 80 5 857 306 231 266 45 0 0 - 0 0 - 0.0 35.4
85 88 201 666.1 1400 160 5 874 212 161 262 49 10 1 NH3 0 0 7.5,36.5,Δ1,64.5 3.3 36.8
86 202 603 0.0 750 404 5 675 0 0 207 57 140 1 R161 114 0 3,45.5,Δ28,Δ12,78.5 3.4 44.7
87 139 343 0.0 1050 366 5 945 0 0 262 60 44 1 R290 45 0 7,64.5,Δ30 3.7 39.4
88 95 109 766.0 1800 60 5 1048 315 238 266 0 32 1 NH3 0 35 54.5,74.5 18.3 32.6
89 374 830 0.0 550 447 5 495 0 0 172 50 225 2 R290 253 0 0,Δ3,87.5,79.5,Δ17,47.5,Δ20 5.2 48.7
90 68 53 614.0 1850 160 5 1376 159 120 266 0 14 1 NH3 0 15 52,72.5 17.8 30.9
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D.2. Additional results

Table D.6 – Database of solutions for plant 2,ΔTmin/2=5K (II).
Id Cap.HEN Cap.Comp Cap.Cogen Nat. gas Net. elec. ΔTmin Qboi Qcogen Ecogen Eref Emvr Ehp stag. fluid subcool. gas-cool. Temp. levels COP Exerg. eff.
- k$ k$ k$ kW kW K kW kW kW kW kW kW - kW kW °C - %

91 131 120 821.5 1750 20 5 899 372 281 266 0 35 1 NH3 22 38 74,Δ11,56 21.7 33.7
92 220 409 863.7 1350 40 5 460 416 314 227 56 71 1 R290 83 0 47,Δ15,Δ25,73,4.5 3.4 39.6
93 118 150 706.0 1522 120 5 910 253 191 266 45 0 0 - 0 0 - 0.0 35.6
94 90 104 738.1 1800 80 5 1100 286 216 266 0 30 1 NH3 0 33 53.5,74 17.8 32.4
95 85 194 689.1 1450 140 5 877 236 178 262 47 10 1 NH3 0 0 7,27,64.5,Δ2,59 3.3 36.4
96 177 293 0.0 1100 350 5 990 0 0 262 60 28 1 NH3 9 0 53,Δ16,8 4.3 38.8
97 294 890 916.4 950 128 5 0 471 356 190 70 225 2 R161 87 75 1.5,Δ23,93,46.5,68 2.8 46.3
98 108 216 750.4 1450 100 5 762 299 226 262 54 10 1 R161 19 0 8.5,Δ20,42,Δ19 5.9 36.9
99 182 700 0.0 650 494 5 585 0 0 262 63 169 1 R290 143 0 Δ3,88.5,65,Δ29,7.5 3.1 45.0
100 333 375 948.9 1400 0 5 343 505 382 266 66 49 1 R290 73 0 68,Δ30,25.5 5.2 39.4

101 399 992 0.0 450 486 5 405 0 0 154 45 287 2 R290 205 190 Δ28,48,79.5,Δ2,-2 5.2 50.5
102 251 1104 0.0 350 589 5 315 0 0 207 0 382 2 R161 251 347 Δ16,48,3,76.5 6.1 50.5
103 85 96 709.0 1800 100 5 1155 256 194 266 0 27 1 NH3 0 30 53.5,74 17.8 32.2
104 187 366 0.0 1050 347 5 945 0 0 235 70 42 1 R404A 46 29 Δ27,53,3 4.1 39.7
105 423 851 714.8 529 360 5 0 262 198 266 56 236 1 R161 215 238 89,Δ18,Δ16,64.5,24 3.6 51.7
106 395 652 963.8 1050 87 5 0 520 393 266 65 149 1 R290 203 113 25.5,59,Δ21,Δ15,91 4.0 44.8
107 87 201 614.4 1350 200 5 925 160 121 262 49 10 1 NH3 3 0 47.5,Δ22,65.5,7.5 3.7 37.0
108 127 385 0.0 1000 380 5 900 0 0 262 54 65 1 R161 0 0 7.5,41,73 3.3 40.0
109 128 432 0.0 950 397 5 855 0 0 262 58 77 1 R161 0 0 7.5,41,73 3.3 40.7
110 120 150 783.2 1594 60 5 830 332 251 266 45 0 0 - 0 0 - 0.0 35.4

111 104 473 760.2 1200 140 5 519 309 233 227 49 97 2 R161 48 0 74.5,Δ16,4.5 3.0 40.6
112 83 85 678.8 1800 120 5 1211 225 170 266 0 24 1 NH3 0 26 54.5,74.5 18.3 31.9
113 117 150 654.2 1474 160 5 963 200 151 266 45 0 0 - 0 0 - 0.0 35.7
114 65 39 589.1 1850 175 5 1421 134 102 266 0 10 1 NH3 0 0 54.5,71 22.3 30.8
115 194 611 827.5 1100 120 5 303 378 286 207 66 133 1 R290 97 78 3,35.5,73,Δ29 3.0 43.0
116 92 217 589.1 1300 224 5 926 134 102 262 54 10 1 NH3 2 1 7.5,41,Δ9 5.5 37.4
117 84 194 637.3 1400 180 5 927 183 138 262 47 10 1 NH3 3 0 49,Δ23,8,64.5 3.8 36.5
118 128 113 793.0 1750 40 5 953 343 259 266 0 33 1 NH3 25 0 Δ12,74,56 21.8 33.5
119 168 597 0.0 750 456 5 675 0 0 262 57 138 1 R161 0 0 8.5,41.5,80,63.5 3.2 43.6
120 79 131 0.0 1749 260 5 1574 0 0 224 0 36 2 NH3 12 0 70,Δ3,3,25,54,Δ9 6.5 31.0

121 132 577 0.0 800 448 5 720 0 0 262 66 121 1 NH3 0 45 7.5,48.5,73 3.2 42.7
122 248 802 0.0 550 463 5 495 0 0 195 55 212 2 R290 286 0 83,Δ22,88.5,Δ2,2 3.1 48.3
123 119 150 731.8 1546 100 5 883 280 211 266 45 0 0 - 0 0 - 0.0 35.5
124 124 107 765.1 1750 60 5 1005 314 237 266 0 31 1 NH3 19 0 Δ10,74,56 21.6 33.2
125 78 79 650.4 1800 140 5 1263 196 148 266 0 22 1 NH3 0 24 53.5,74 17.8 31.7
126 481 760 868.9 850 189 5 0 421 318 266 65 176 2 R161 154 0 25.5,59,Δ20,97.5,Δ10,79.5 4.0 47.3
127 396 627 987.4 1100 60 5 0 545 412 266 60 146 1 R161 51 126 25.5,44.5,87,Δ1,Δ12,65.5 3.9 44.3
128 634 855 987.4 1100 39 5 0 545 412 176 58 218 2 R290 281 55 -2,Δ14,93.5,39,Δ22,70,Δ10 4.2 44.7
129 239 554 827.0 1150 100 5 349 378 286 207 58 121 1 R161 33 0 49,Δ16,3,75.5 3.2 42.4
130 266 681 711.1 900 220 5 341 258 195 190 59 167 1 R290 179 27 54,Δ22,80,Δ19,1.5 3.1 45.3

131 183 631 0.0 700 469 5 630 0 0 262 60 147 1 R161 80 0 81,7.5,63,Δ30 3.3 44.4
132 200 684 0.0 650 488 5 585 0 0 262 62 164 1 R290 195 0 Δ12,85.5,62,Δ29,7 3.2 45.1
133 116 150 589.1 1414 210 5 1029 134 101 266 45 0 0 - 0 0 - 0.0 35.9
134 207 644 0.0 700 419 5 630 0 0 207 58 154 1 R290 155 0 3,48,Δ16,Δ19,80 3.1 45.5
135 316 656 589.1 800 305 5 476 134 102 190 57 160 1 R161 92 125 75,Δ12,Δ20,46.5,1.5 3.2 45.8
136 389 716 902.2 920 160 5 0 456 345 266 66 172 1 R290 142 150 25.5,70.5,Δ26,91 3.8 46.2
137 100 118 743.8 1750 80 5 1045 292 221 266 0 34 1 NH3 0 0 54.5,74.5 18.3 33.0
138 241 442 0.0 1150 300 5 1035 0 0 170 57 73 3 various 0 0 2,-6,23.5,45,23.5 2.5 38.7
139 253 619 806.8 1050 140 5 297 357 270 207 58 145 1 R161 84 0 3,50,Δ18,77.5,Δ9 3.2 43.7
140 98 465 782.0 1250 120 5 523 331 250 227 56 86 2 R161 22 0 4.5,79,61 3.0 40.0

141 74 71 621.0 1800 160 5 1318 166 126 266 0 20 1 NH3 0 21 53.5,74 17.8 31.5
142 118 150 680.1 1498 140 5 936 227 171 266 45 0 0 - 0 0 - 0.0 35.6
143 164 223 836.4 1500 40 5 646 387 293 266 57 10 1 NH3 0 0 45.5,25.5 9.2 37.1
144 97 110 714.8 1750 100 5 1099 262 198 266 0 32 1 NH3 0 0 54.5,74.5 18.3 32.8
145 240 573 886.1 1200 60 5 282 439 332 207 66 119 1 R161 59 43 3,46.5,Δ11,Δ12,73 3.2 42.1
146 261 486 0.0 1200 280 5 1080 0 0 132 52 95 2 R161 47 57 4.5,-2,Δ12,25.5 4.8 38.2
147 100 660 589.1 850 319 5 521 134 102 207 53 161 2 R290 161 0 3,85,Δ14,Δ15,68.5 2.8 44.3
148 423 772 852.8 816 220 5 0 404 306 266 0 259 2 R161 600 0 54.5,Δ20,25.5,Δ4,99,Δ18,75 7.9 47.4
149 185 597 0.0 750 415 5 675 0 0 221 59 136 1 R161 72 0 4,77,Δ30,62 3.2 44.5
150 149 565 0.0 1292 260 5 1163 0 0 76 45 139 1 NH3 11 0 Δ3,23.5,-2 5.8 37.0

151 242 592 589.1 900 286 5 566 134 102 195 58 134 1 R161 61 0 76.5,Δ28,48,2 3.3 43.9
152 179 405 0.0 1000 353 5 900 0 0 227 64 61 1 R161 45 0 65.5,Δ15,Δ16,33.5,4.5 3.2 40.5
153 140 134 776.2 1650 60 5 894 325 246 266 0 39 1 NH3 27 0 Δ11,74,56 21.7 34.6
154 249 516 783.5 1150 120 5 431 333 252 207 57 108 1 R161 41 0 74,Δ1,Δ20,45.5,3 3.4 42.0
155 112 86 679.2 1750 120 5 1165 226 171 266 0 24 1 NH3 18 0 74,Δ12,56 21.8 32.5
156 235 561 779.2 1100 140 5 394 328 248 207 58 123 1 R161 34 0 3,76.5,Δ16,49 3.2 42.6
157 245 553 724.0 1050 180 5 452 272 205 207 56 122 1 R161 38 0 3,48,Δ18,76,63.5 3.2 42.8
158 188 358 910.2 1450 20 5 462 464 351 262 52 58 1 R161 37 0 41,Δ22,73,7.5 3.3 38.2
159 137 130 800.4 1700 40 5 894 350 265 266 0 38 1 NH3 12 0 Δ5,74.5,56.5 21.0 34.2
160 307 623 837.3 1100 100 5 285 388 294 190 57 147 1 R290 197 0 1.5,Δ18,81.5,52,Δ14,Δ22,34 2.9 43.4

161 306 625 0.0 600 471 5 540 0 0 266 62 143 1 R161 92 0 87.5,Δ26,65.5,25.5 4.0 46.8
162 307 677 761.3 950 180 5 292 310 234 190 55 169 1 R161 94 120 59.5,Δ15,76,Δ14,35,1.5 2.9 45.1
163 71 60 589.1 1800 181 5 1376 134 102 266 0 16 1 NH3 0 18 53.5,73.5 18.3 31.3
164 275 518 835.8 1200 80 5 377 387 292 207 55 110 1 R161 88 0 3,45.5,Δ30,76.5,Δ10 3.4 41.7
165 281 788 589.1 700 332 5 386 134 102 172 53 208 2 R290 171 131 0,Δ19,79 4.9 47.6
166 249 622 705.4 950 220 5 396 252 191 207 56 148 1 R161 104 0 3,48,Δ16,Δ15,78 3.1 44.2
167 187 337 0.0 1292 280 5 1163 0 0 182 45 53 2 NH3 0 0 4.5,-2,23.5 3.6 36.7
168 103 80 650.6 1750 140 5 1218 197 149 266 0 22 1 NH3 14 25 Δ11,74,56 21.7 32.3
169 273 584 748.5 1050 160 5 406 297 224 195 65 124 1 R161 92 98 2,72,Δ11,Δ30,48.5 3.5 43.2
170 283 717 674.0 800 280 5 320 220 167 207 58 182 1 R161 105 147 77.5,Δ15,Δ16,49,3 3.1 46.4

171 182 738 0.0 650 446 5 585 0 0 207 52 187 2 R161 39 0 Δ1,92.5,3,76.5 2.8 46.1
172 255 667 0.0 1150 280 5 1035 0 0 74 55 151 3 various 19 0 4.5,24.5,Δ2,62,Δ10,-2,Δ2,24.5 4.8 39.1
173 293 651 671.0 900 240 5 415 217 164 190 56 159 1 R161 139 109 63.5,Δ22,78.5,Δ8,Δ21,35,1.5 2.9 44.9
174 222 483 887.6 1300 40 5 370 441 333 221 62 91 1 R161 50 0 45,Δ11,4,73,Δ12 3.3 40.5
175 195 488 839.1 1250 80 5 416 390 295 221 62 92 1 R161 71 0 4,73,Δ29,35 3.1 40.8
176 111 142 779.5 1700 60 5 933 329 248 266 0 42 1 NH3 0 0 54,74 18.3 33.9
177 117 150 628.1 1450 180 5 989 174 131 266 45 0 0 - 0 0 - 0.0 35.8
178 219 576 683.3 1000 220 5 482 230 174 207 57 129 1 R290 104 0 78,Δ4,Δ28,64,3 3.1 43.1
179 316 707 0.0 500 502 5 450 0 0 266 57 179 1 R161 193 0 64.5,Δ20,24,89,Δ13 3.7 48.6
180 132 122 720.0 1650 100 5 999 267 202 266 0 36 1 NH3 18 0 Δ8,74.5,56.5 21.4 34.0

181 102 126 721.5 1700 100 5 1041 269 203 266 0 37 1 NH3 0 41 54.5,74.5 18.3 33.4
182 114 329 0.0 1816 240 5 1635 0 0 137 0 103 2 R161 53 0 69.5,Δ15,-2,24.5,Δ2 6.0 30.5
183 107 134 750.6 1700 80 5 987 299 226 266 0 40 1 NH3 0 0 54.5,74.5 18.3 33.6
184 348 620 1009.0 1146 40 5 0 568 429 266 60 143 1 R161 96 0 92.5,Δ29,68,25.5 3.8 43.7
185 127 114 690.5 1650 120 5 1054 237 179 266 0 33 1 NH3 25 0 74,Δ12,56 21.8 33.8
186 186 290 881.8 1500 20 5 561 435 329 262 56 31 1 R290 33 0 8.5,Δ30,65 3.8 37.4
187 156 218 705.7 1400 140 5 801 253 191 266 55 10 1 NH3 0 0 54.5,25.5 6.4 37.1
188 243 561 624.2 950 260 5 547 170 128 207 55 127 1 R161 96 0 48,Δ16,3,78,Δ17 3.1 43.3
189 340 642 0.0 550 478 5 495 0 0 266 59 153 1 R161 156 0 25.5,63,Δ20,84,Δ11 4.0 47.9
190 283 590 648.9 950 240 5 501 195 147 195 57 135 1 R161 101 0 78.5,Δ10,Δ28,46,2 3.3 43.8

191 359 703 589.1 600 398 5 296 134 102 266 66 168 1 R161 123 0 25.5,66.5,Δ30,88 4.0 48.6
192 39 338 0.0 1837 240 5 1653 0 0 133 0 107 2 R1270 8 0 23.5,62.5,Δ25,-2 5.6 30.2
193 303 595 0.0 650 460 5 585 0 0 266 61 133 1 R161 90 0 66.5,Δ28,25.5,88.5 4.0 45.8
194 84 197 589.1 1350 218 5 971 134 102 262 48 10 1 R290 5 0 7.5,Δ15,64.5 3.4 36.7
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Appendix D. Generalization (A) - heat pumping and co-generation (Chapter 5)

D.3 Industrial case study

D.3.1 Dairy process

The process streams as discussed in [140] are depicted in Table D.7. The process was modeled

assuming constant, simultaneous operation of all units with a time average approach. As illustrated

in Figure 5.6, multiple products are (potentially) created from conversion of raw milk, namely yogurt

and dessert, pasteurized milk and cream, high temperature (long lasting) milk, and butter. Upon

arrival in the factory, the raw milk is cooled down to an operating temperature of 4 °C.

The first process step is pasteurization and centrifugation of the raw milk. This requires heating to

60 °C, centrifugation (consuming electricity), which results in a separation of milk and cream. The

milk is then further heated to 86 °C, while the cream is heated to 98 °C, resulting in pasteurized milk

and cream which are cooled again to 4 °C. The heating and cooling requirements of the individual

process steps (referred to as process streams) are estimated based on the specific heat capacity and

temperature levels. The specific heat capacity of (raw) milk was approximated to be 3.8 kJ/kgK, and

that of cream to be 3.4 kJ/kgK.

The pasteurized cream can be further converted to butter, which requires consecutive refrigeration

steps down to -25 °C. The specific heat capacity of butter is assumed to be 2.4 kJ/kgK.

The products are always modeled to reach operating conditions (4 °C) after the conversion steps

before being placed in the storage unit. The storage unit cooling requirements were modeled at

constant temperature and based on data provided by the process operators.

Pasteurized milk can be further converted to various products. Production of high temperature

(HT) milk requires heating to 135 °C and rapid cooling to ambient conditions. Fabrication of

yogurt and dessert requires addition of further ingredients and various heating, storing and cooling

steps. In agreement with process operators, both were modeled by assuming heating and cooling

requirements between 4 and 9̃0 °C. The dessert is packaged at 70 °C, during which the temperature

is assumed to drop to 50 °C. For all conversion processes mentioned above, milk properties are

assumed with a specific heat capacity of 3.8 kJ/kgK.

Concentrated milk is produced in a three stage evaporation process, at sub-atmospheric pressures

between 0.7 and 0.25 bar. Water thermodynamic properties were assumed for partial evaporation.

The vapor is assumed to be captured and subsequently condensed and cooled to ambient conditions

to harvest the latent and sensible heat.

The cleaning in place system requires make-up water at 80 °C.
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D.3. Industrial case study

Table D.7 – Hot and cold streams of the generalized dairy process, reproduced from Becker [140],
Stadler [254], and the EUROPEAN COMMISSION [81].

Unit Operation Stream Tin Tout Q̇ ΔTmin/2 α Remarks
[°C] [°C] [kJ/kg] [°C] [kW/K m2]

Centrifugation &
pasteurization
Reference:
[kgraw milk]

Inlet cooling ref 6.0 4.0 -7.60 ∆Tmi n 1.0 refrigeration inlet milk
Pasteurization pasto1a 4.0 66.0 235.6 ∆Tmi n 1.0 preheating

pasto2a 66.0 86.0 67.64 ∆Tmi n 1.0 pasteurization milk
pasto3a 86.0 4.0 -277.32 ∆Tmi n 1.0 refrigeration milk
pasto4a 66.0 98.0 11.97 ∆Tmi n 1.0 pasteurization cream
pasto5a 98.0 4.0 -35.16 ∆Tmi n 1.0 refrigeration cream

HT milk
Ref: [kgHT]

high temperature milk uht1 86.0 135.0 186.2 ∆Tmi n 1.0 ultra high temperature heating
uht2 135.0 86.0 -186.2 ∆Tmi n 1.0 rapid cooling

Concentration
Ref:
[kgconcentrated milk]

Concentration eva1 4.0 70.3 586.1 ∆Tmi n 1.0 preheating
eva2 70.3 70.3 1051.4 1.2 10.0 evaporation 1.effect
eva3 66.4 66.4 1004.77 1.2 10.0 evaporation 2.effect
eva4 60.8 60.8 988.14 1.2 10.0 evaporation 3.effect
eva5 60.8 4.0 -176.2 ∆Tmi n 1.00 refrigeration concentrated milk

Water residuals eva6 68.9 68.9 -1051.4 1.2 10.0 condensation 1.effect
eva7 65.9 65.9 -1004.8 1.2 10.0 condensation 2.effect
eva8 60.1 60.1 -988.1 1.2 10.0 condensation 3.effect

Condensates cooling eva9 68.9 15.0 -102.1 ∆Tmi n 1.0 cooling condensates 1.effect
eva10 65.9 15.0 -94.0 ∆Tmi n 1.0 cooling condensates 2.effect
eva11 60.1 15.0 -81.0 ∆Tmi n 1.0 cooling condensates 3.effect

Yogurt
Ref: [kgyogurt]

Yogurt production yog1 4.0 94.0 342 ∆Tmi n 1.0 heating
yog2 94.0 10.0 -319.2 ∆Tmi n 1.0 cooling

Dessert
Ref: [kgyogurt]

Dessert production des1 4.0 90.0 326.8 ∆Tmi n 1.0 heating
des2 90.0 70.0 -76.0 ∆Tmi n 1.0 cooling to filling temperature
des3 50 20 -152.0 20.0 1.0 cooling of filled cups

Cleaning in place
Ref: [kgraw milk]

Cleaning units CIP1a 58.7 70.0 18.86 ∆Tmi n 1.0 maintain temperature CIP1
CIP1b 65.0 15.0 -10.45 ∆Tmi n 1.0 recuperation waste heat CIP1
CIP2a 67.5 80.0 20.95 ∆Tmi n 1.0 maintain temperature CIP2
CIP2b 75.0 15.0 -12.54 ∆Tmi n 1.0 recuperation waste heat CIP2

Hot water hw 15.0 55.0 16.72 ∆Tmi n 1.0 hot water production
Fridge frig 5.0 5.0 -30.0 ∆Tmi n 1.0 maintain storage temperature

Butter
Ref: [kgbutter]

Butter production but1 4.0 20.0 117.50 ∆Tmi n 1.0 heating
but2 20.0 10.0 -73.4 ∆Tmi n 1.0 cooling
but3 10.0 7.0 -7.20 ∆Tmi n 1.0 refrigeration
but4 7.0 -21.0 -67.2 ∆Tmi n 1.0 refrigeration
but5 -21.0 -21.0 -60.0 ∆Tmi n 1.0 refrigeration
but6 -21.0 -25.0 -10.6 ∆Tmi n 1.0 refrigeration

Table D.8 – Utility thermal and resource stream data.

Unit Tin Tout Q̇ Ėr r ΔTmin/2 α fw,min fw,max OPw
1,p OPw

2,p Remarks

[°C] [°C] [kW] [kW] [K] [kW/K m2] [-] [-] [$/h] [$/h]

Boiler (BOI) 1027 1027 -288.418 25 0.06 0.6 1000 0 0 Radiative heat release
1027 120 -150.305 2 0.06 Convective heat release

487.47 ng Natural gas consumption

Co-generation
engine (COGEN)

470.5 120 -86.6 5 0.06 0.7 1000 0 0 Exhaust gases
87 79.9 -105.2 3 2 Engine cool. water

387.13 ng Natural gas consumption

Cooling water (CW) 15 17 1000 5 2.0 0 1000 0 0 Cooling water

Electricity (GRID,el
in)

-1000 el 0 1000 0 cel· 1000 Electricity grid buy

Electricity (GRID,el
out)

1000 el 0 1000 0 0 Electricity grid sell

Nat. gas (GRID,el) -1000 ng 0 1000 0 cng·1000 Nat. gas grid

Refrig., COND 1 30 30 -331.3 2.0 1.6 0 1000 0 0 Refrigeration condenser 1
Refrig., EVAP 2 -3 -3 383.358 2.0 1.6 0 1000 0 0 Refrigeration evaporator 2
Refrig., EVAP 3 -33 -33 420.076 2.0 3.6 0 1000 0 0 Refrigeration evaporator 3
Refrig., COMP 12 73.498 el 0.13606 13.606 0 0 Ref. compressor 2 → 1
Refrig., COMP 13 164.1928 el 0.0609 6.0904 0 0 Ref. compressor 3 → 1

Mechanical vapor
re-compression
(MVR)

74 74 -2516.97805 2 1.6 0 1000 0 0 Condensation MVR
56 56 2292.47685 2 3.6 0 1000 0 0 Evaporation MVR

224.5012 el 0.1822 0.31180 0 0 Compressor MVR
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Appendix D. Generalization (A) - heat pumping and co-generation (Chapter 5)

D.3.2 Utilities

Some of the utilities are discussed in Becker [140]. All utility data is depicted in Table D.8. Each

utility has at least one thermal and/or resource stream. Negative signs represent energy release,

while positive signs represent energy consumption. The utility parameters indicated in the table can

be found in the MILP parameters in the list of symbols.

Several compressor cost functions were compared and the one by Becker [140], which was based on

industrial projects from France, was found to be well aligned with other functions as depicted in

Figure D.11. For this, a bare module factor, FBM, of 2 was assumed based on experience from Becker

[140].

y = 0.3567x + 10.587
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Figure D.11 – Compressor cost functions, installed cost in $ [2016], updated with Chemical Engineer-
ing Plant Cost Index [4] (CEPCI); Turton et al. [79] (Bare module factor, FBM, of 2), Henchoz [255]
(FBM), Colmenares and Seider [205], Shelton and Grossmann [102] (annuity estimated to be 0.15
1/y), Becker [140] (Lin(Becker) refers to the linearization applied in Chapter 3), Turton et al. [79]
(FBM=2).
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