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Abstract

We develop structure-preserving reduced basis methods for a large class of nondissipative problems
by resorting to their formulation as Hamiltonian dynamical systems. With this perspective, the phase
space is naturally endowed with a Poisson manifold structure which encodes the physical properties,
symmetries, and conservation laws of the dynamics. The goal is to design reduced basis methods
for the general state-dependent degenerate Poisson structure based on a two-step approach. First,
via a local approximation of the Poisson tensor, we split the Hamiltonian dynamics into an “almost
symplectic” part and the trivial evolution of the Casimir invariants. Second, canonically symplectic
reduced basis techniques are applied to the nontrivial component of the dynamics, preserving the
local Poisson tensor kernel exactly. The global Poisson structure and the conservation properties of
the phase flow are retained by the reduced model in the constant-valued case and up to errors in the
Poisson tensor approximation in the state-dependent case. A priori error estimates for the solution of
the reduced system are established. A set of numerical simulations is presented to corroborate the
theoretical findings.

Keywords. Hamiltonian dynamics, Poisson manifolds, symplectic structure, invariants of motion,
structure-preserving schemes, reduced basis methods (RBM).
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1 Introduction
During the last decade there has been substantial developments of model order reduction techniques to
efficiently solve parameterized differential equations in computationally intensive scenarios such as real-
time and many-query problems. Reduced basis methods (RBM) aim at reducing the computational effort
by replacing the original high-dimensional problems with models of significantly reduced dimensionality
without compromising the overall accuracy. For time-dependent parametric problems, an approximation
space of low dimension, the so-called reduced space, is constructed from a collection of full-order solutions
at sampled values of time and parameters during a computationally intensive offline phase. The reduced
space is spanned by the modes associated with the “dominant” components of the dynamics. In the
online phase the reduced order model is then solved at a substantially reduced computational cost for
any parameter.

The development of reduced basis techniques for the efficient solution of differential equations is
well-established in the context of linear elliptic PDEs and dissipative systems. For time-dependent
nondissipative problems, which can often be modeled as a Hamiltonian system, model order reduction
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is less well understood. Indeed, stability becomes a major concern in this context as the stability
properties of the high-fidelity problem are not generally inherited by the reduced model, even when a
very accurate reduced space is used. Moreover, the phase space of Hamiltonian dynamics is endowed with
a differentiable Poisson manifold structure that underpins the physical properties of the system, such
as symmetries, families of conserved quantities, and invariants. In the most general case, the Poisson
structure is state-dependent, i.e. it changes over the phase space, and it is not full rank. This geometric
structure of the phase flow is in general destroyed during model order reduction, resulting in spurious
and unphysical artifacts which may trigger instabilities and generate qualitatively wrong solutions.

The literature on model order reduction for hyperbolic and conservative equations has recently seen
the development of methods which aim at preserving the geometric structure of dynamical systems.
In the context of nondissipative Hamiltonian problems Lall et al. [30] pioneered the use of a Galerkin
projection on the Euler–Lagrange equations to devise reduced order models which preserve Lagrangian
structures. A similar approach was pursued and improved in [12]. Dealing directly with the Hamiltonian
formulation, reduced basis methods preserving the canonical symplectic structure of dynamical systems
has been developed in [40] and [2].

To the best of our knowledge, none of the aforementioned works address the general case of degenerate
and/or state-dependent Poisson structures. A naïve extension of the available reduction techniques to
these cases is not possible as an orthogonal or symplectic projection of the full Hamiltonian model onto
the reduced space does not guarantee that the reduced flow is Hamiltonian with a Poisson phase space,
nor that the degeneracy of the structure is retained by the reduced model.

Our Contribution: Novelties and Outline. We consider parameterized finite-dimensional Hamilto-
nian dynamical systems of the form

$

&

%

Btupt, ηq “ JN puq dHN , for t ą t0,

upt0, ηq “ u0pηq.
(1.1)

Here the unknown u depends on time and on a set of parameters η P Λ where Λ Ă Rd is compact, with
d ě 1, d denotes the exterior derivative, HN is the Hamiltonian function, and JN puq is a finite-dimensional
operator encoding the Poisson manifold structure.

Many relevant models in mathematical physics can be written as Hamiltonian systems: to name a
few, in classical mechanics, the rigid body motion and related n-body problem, the harmonic oscillator,
the dynamical billiar, the Euler top equations, the Hénon–Heiles problem; in quantum dynamics, the
Heisenberg equation, the May–Leonard model and the Maxwell–Bloch equations; in population and
epidemics dynamics, the Lotka–Volterra model or the Kermack–McKendrick equations, etc..

The evolution equation (1.1) can also be thought of as the semi-discrete formulation ensuing from
the numerical approximation of partial differential equations that can be derived from action principles.
Examples of such problems include Maxwell’s equations, Schrödinger’s equation, Korteweg–de Vries and
the wave equation, compressible and incompressible Euler equations, Vlasov–Poisson and Vlasov–Maxwell
equations. Observe that, when dealing with Hamiltonian PDEs, we require a spatial discretization of the
aformentioned problems that is structure-preserving, in the sense of yielding a semi-discrete system of
the form (1.1). Although systematic approaches to discretize Hamiltonian PDEs with general Poisson
structures are still largely unavailable, this is a very active research area that has recently seen several
successful results like the GEMPIC method for plasma models [29], the finite element method proposed in
[38] for incompressible Euler equations in the Arnold formulation [3] and the Energy-Momentum-Entropy
method for finite strain thermoelastodynamics [8].

The relevance of nondissipative problems of the form (1.1) and the lack of reduced models that are
able to preserve the intrinsic structure of general Hamiltonian dynamics motivate this work. We propose
a novel reduced basis method for general parameterized Hamiltonian problems that ensures that the
reduced dynamics retain the Poisson structure of the local phase flow. Our method is based on two
steps. In the first step we perform locally, in each point of the phase space, a splitting of the Hamiltonian
dynamics into a canonically symplectic component and a trivial evolution of the invariants associated with
the kernel of the Poisson structure. The splitting of the dynamics is motivated by a result of Darboux
[20] which, roughly speaking, demonstrates the existence of local charts in which any Poisson structure
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has the canonical form. The rationale is that canonical Poisson structures are more amenable to model
order reduction since the nonlinearity has been removed from the structure and its kernel singled out. A
major issue in this step is that an analytic expression of the Darboux charts is in most cases unavailable.
Hence, standard approximations of the structure, even if local, are prone to destroy the Hamiltonian
nature of the dynamics. Failing to preserve the Poisson structure of the phase space, even by a small
error, may propagate uncontrollable instabilities along the dynamics and compromise the stability and
accuracy of the solution. To address this problem, we propose local approximations of the Darboux
charts by leveraging the linearization introduced by the timestepping. The “freezing” of the Poisson
structure at each stage of the temporal integration allows us to locally rewrite the original Hamiltonian
dynamics into canonical form. After having characterized the approximability properties of the split
dynamics, we perform a second step in which the canonical Hamiltonian dynamics is approximated in a
lower-dimensional manifold foliated by the Poisson tensor kernel and a reduced symplectic component.
For the latter we construct a symplectic reduced basis via algorithms adapted from [40, 2].

A theoretical foundation of the proposed method is presented: we derive convergence results for the
reduced basis algorithm, characterize the properties of the reduced dynamics in terms of invariants and
Lyapunov stability, and establish a priori error estimates with respect to the full model solution. We
show that the reduced dynamics resulting from our approach retains the Poisson structure of the phase
flow up to the local approximation error of the Darboux charts.

The remainder of the paper is organized as follows. In Section 2, the algebraic structure underlying
Hamiltonian systems on finite-dimensional Poisson manifolds is described. Section 3 pertains to degenerate
constant-valued parametric Poisson structures and provides preparatory results for the more challenging
case of state-dependent structures. In this simpler case, the manifold splitting is performed globally. We
show in Section 3.2.1 that the resulting reduced problem is Hamiltonian with a Poisson manifold structure
and inherits the physical properties of the high-fidelity model in terms of conservation of the Hamiltonian,
preservation of the Casimir invariants, and Lyapunov stability. In Section 3.3 the structure-preserving
reduced basis method is coupled to a symplectic DEIM for the efficient treatment of the nonlinear
terms. State space error bounds for the solution of the reduced system are established in terms of
the projection error into the reduced space. Next, Section 4 is devoted to the case of state-dependent
Poisson structures. In Section 4.1 we introduce the Poisson maps which locally approximate the Darboux
change of coordinates and recast the local discrete dynamics into the split form. The structure-preserving
properties of the resulting reduced dynamics are discussed in Section 4.2. A priori error estimates for the
fully discrete reduced problem are established in Section 4.3. In Section 5 a set of numerical experiments
is presented and conclusions are drawn in Section 6.

2 Dynamical Systems with Poisson Structure
In this Section we briefly describe the topological and algebraic structure underlying the phase space
of Hamiltonian dynamical systems (1.1), where, for the sake of better readability, we omit the explicit
dependency on the parameter η.

Definition 2.1 (Poisson Structure). Let VN be a finite N -dimensional smooth manifold. A Poisson
structure on VN is a bilinear operation t¨, ¨uN : C8pVN q ˆ C8pVN q Ñ C8pVN q, called a bracket, with
the following properties: for all F ,G, I P C8pVN q and u P VN ,

(i) Skew-symmetry: tF ,GuN puq “ ´tG,FuN puq.

(ii) Leibniz rule: tFG, IuN puq “ tF , IuN puqGpuq ` FpuqtG, IuN puq.

(iii) Jacobi identity: tF , tG, IuNuN puq ` tG, tI,FuNuN puq ` tI, tF ,GuNuN puq “ 0.

A manifold endowed with a Poisson structure is called a Poisson manifold.

The space C8pVN q of real-valued smooth functions over the Poisson manifold pVN , t¨, ¨uN q together
with the bracket t¨, ¨uN forms a Lie algebra [1, Proposition 3.3.17], called the Poisson algebra of VN .

By the bilinearity of t¨, ¨uN and the Leibniz rule, given an analytic function H P C8pVN q, the map
F P C8pVN q ÞÑ tF ,HuN P C8pVN q defines differentiation on the Poisson manifold VN . Hence, there
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exists a locally unique vector field XHpuq belonging to TuVN , the tangent space at VN in u, such that
LXHF “ tF ,HuN , where LX denotes the Lie derivative with respect to the velocity field X. The vector
XHpuq is called the Hamiltonian vector field of the function H P C8pVN q, and characterizes the dynamics
of the evolution problem (1.1), as explained in Section 2.1. The map H P C8pVN q ÞÑ XH P TVN is a
(anti)homomorphism between Lie algebras [34, Proposition 10.2.2].

If dH is the 1-form, defined by the exterior derivative of the function H P C8pVN q, its Hamiltonian
vector field XH can be obtained as the image of dH under the vector bundle morphism JN puq defined,
for any u P VN , as

JN puq : T˚VN ÝÑ TVN
dH ÞÝÑ XHpuq :“ JN puqdH.

(2.1)

The Poisson bracket t¨, ¨uN on VN can be expressed in terms of JN as

tF ,GuN puq “ xT˚VN dF ,JN puq dGyTVN , @F ,G P C8pVN q, @u P VN , (2.2)

where xT˚VN ¨, ¨yTVN denotes the duality pairing between the cotangent and the tangent bundle. The
application JN is a contravariant 2-tensor on the manifold VN , commonly referred to as the Poisson
tensor. The tensor JN is skew-symmetric with respect to the metric g on VN defined as gp∇F , ¨q :“

xT˚VN dF , ¨yTVN , and ∇ is the Riemannian gradient. Hence, in local coordinates, the Poisson bracket
reads

tF ,GuN puq “ ∇FpuqJJN puq∇Gpuq, @F ,G P C8pVN q, @u P VN .

In view of the relationship between the bracket t¨, ¨uN and the tensor JN , the Poisson manifold structure
on VN can be equivalently characterized as follows.

Lemma 2.2. Let VN be a finite N-dimensional smooth manifold and let JN be the vector bundle map
defined in (2.1). Then the bracket (2.2) is a Poisson structure as per Definition 2.1, if and only if JN is
skew-symmetric and satisfies the Jacobi identity

N
ÿ

`“1

ˆ

BpJN puqqi,j
Bu`

pJN puqq`,k `
BpJN puqqj,k

Bu`
pJN puqq`,i `

BpJN puqqk,i
Bu`

pJN puqq`,j
˙

“ 0, (2.3)

for all u P VN and i, j, k “ 1, . . . , N .

We say that the Poisson structure and the Poisson tensor are constant-valued if the morphism JN puq
defined in (2.1) is independent of u P VN . From (2.3), it immediately follows that any constant-valued
skew-adjoint operator gives a Poisson structure.

In general, the vector bundle map (2.1) is not an isomorphism: its rank at a given point u P VN
defines the rank of the Poisson manifold VN at u. By the skew-symmetry of the Poisson bracket, the
rank of a Poisson manifold is always an even (non-negative) integer. Moreover, if VN is not full rank then
its Poisson structure is said to be degenerate. Degeneracy of Poisson structures generates conservation
laws of the Hamiltonian dynamics on the phase space VN , cf. Definition 2.6.

The notion of rank characterizes symplectic manifolds as those Poisson manifolds which have maximal
global rank. Symplectic manifolds are endowed with a nondegenerate, closed 2-form ω, called a symplectic
structure. The Poisson bracket on the symplectic manifold pVN , ωq is defined as

tF ,GuN puq “ ωpXF , XGq :“ ωpJN puq dF ,JN puq dGq, @F ,G P C8pVN q, @u P VN .

Since ω is nondegenerate, the map ω5XH
: Y P TVN ÞÑ ωpXH, Y q “ piXHωqpY q is injective (iX denotes the

contraction by X), and the Hamiltonian vector field XH of the function H P C8pVN q satisfies dH “ iXHω.

2.1 Hamiltonian Dynamics
The Hamiltonian vector field XH characterizes the evolution problem (1.1), whose dynamics preserves
the Poisson structure of the phase space.

Applications between Poisson manifolds, consistent with the structure in the sense of preserving the
bracket, are called Poisson maps.
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Definition 2.3 (Poisson Map). Let pVN , t¨, ¨uN q and pVn, t¨, ¨unq be two Poisson manifolds of finite
dimension N and n respectively, with n ď N . A smooth application Ψ : pVN , t¨, ¨uN q Ñ pVn, t¨, ¨unq is
called a Poisson map if

pΨ˚tF ,Gunqpuq “ tΨ˚F ,Ψ˚GuN puq, @F ,G P C8pVnq, @u P VN .

A vector field XH on a manifold VN determines a phase flow, namely a one-parameter group of
diffeomorphisms Φt

XH
: VN Ñ VN satisfying dtΦt

XH
puq “ XHpΦ

t
XH
puqq for all t P T and u P VN , with

Φ0
XH
puq “ u. The flow map ΦtXH

of a vector field XH P TVN is Hamiltonian if ΦtXH
is a Poisson map on

its domain. The reverse is also true.

Proposition 2.4 ([34, Proposition 10.2.3]). Let pVN , t¨, ¨uN q be a Poisson manifold and H P C8pVN q.
Then, the map ΦtX : VN Ñ VN satisfies

d

dt
pF ˝ ΦtXq “ tF ,HuN ˝ ΦtX , @F P C8pVN q,

if and only if it is the flow of XH.

In addition to possessing a Poisson phase flow, Hamiltonian dynamics is characterized by the existence
of differential invariants, and symmetry-related conservation laws.

Definition 2.5 (Invariants of Motion). A function I P C8pVN q is an invariant of motion of the dynamical
system (1.1) with flow map ΦtXHN

, andXHN
:“ JNdHN , if tI,HNuN puq “ 0 for all u P VN . Consequently,

I is constant along the orbits of XHN
.

The Hamiltonian function (if time-independent) is an invariant of motion. A particular subset of
the invariants of motion of a dynamical system is given by the Casimir invariants, i.e. functions on VN
which t¨, ¨uN -commute with every other functions in C8pVN q.

Definition 2.6 (Casimir Invariants). If g is a Lie algebra with Lie product t¨, ¨u, the centralizer of a subset
S of g is defined as CgpSq :“ tC P g : tC,Fu “ 0 for all F P Su. The centralizer Cgpgq of the Lie algebra
itself is called the center of g and its elements are called Casimir functions.

The Casimir invariants of the Poisson manifold VN form the center of the Lie algebra C8pVN q. Hence
they are independent of the dynamics and only depend on the Poisson structure of the manifold, in
particular its degeneracy. We are interested in Hamiltonian systems characterized by globally conserved
quantities, such as energy, angular momentum, vorticity, etc. Hence, we assume that VN is a regular
Poisson manifold, namely rankpJN puqq “ 2R, for all u P VN , with R P N, 2R ď N .

Reduced basis methods for dynamical systems, designed with the goal of preserving the algebraic
and geometric structure of the phase flow, need to rely on time integrators which preserve the Poisson
structure of the phase space. While the literature on canonically symplectic temporal integrators is vast,
for the case of Poisson systems with non-constant structure, general structure-preserving methods are
largely unavailable, cf. e.g. [27] for a comprehensive discussion of the topic. The study of geometric
numerical integrators for general Poisson structure is, however, an active area of research. There exist
Poisson temporal integrators tailored to specific differential equations: an example is provided by the
symplectic Euler method and partitioned Lobatto IIIA-IIIB method which preserve the Poisson structure
of the Volterra lattice equation and the Ablowitz-Ladik discrete formulation of the nonlinear Schrödinger
equation. Since the study of geometric numerical integrators is outside of the scope of the present work,
we assume henceforth the availability of a Poisson solver for the dynamical system (1.1).

2.2 Canonical Form of Poisson Structures
In the theory of Hamiltonian systems of classical mechanics, canonical forms on cotangent bundles are of
great relevance. Resorting to a coordinate system, canonical symplectic structures can be characterized
as in the following result.
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Proposition 2.7 ([1, Proposition 3.3.21]). Let pV2R, ωq be a symplectic manifold and pU,ψq a cotangent
coordinate chart ψpuq “ pq1puq, . . . , qRpuq, p1puq, . . . , pRpuqq, for all u P U . Then pU,ψq is a symplectic
canonical chart if and only if tqi, qju “ tpi, pju “ 0, and tqi, pju “ δi,j on U for all i, j “ 1, . . . , R, where
t¨, ¨u is the Poisson bracket on pV2R, ωq.

Every finite-dimensional symplectic manifold admits local coordinates in which the local symplectic
form is canonical. This result is known as Darboux’s theorem [20].

Theorem 2.8. Let V2R be a finite 2R-dimensional symplectic manifold. For each u P V2R there exists a
chart pBu,Ψuq in which a nondegenerate closed 2-form is locally isomorphic to the canonical form. The
manifold V2R can be covered by such charts.

Note that this result can be extended to the infinite-dimensional case only under special assumptions
and in general not if the symplectic structure ω on the manifold is only weakly nondegenerate, i.e. the
map ω5X is injective but not necessarily onto. We refer to [42, 33, 39] for further details on the topic.

To derive the canonical form of Poisson structures one has to first deal with the kernel of the vector
bundle map. Every Poisson manifold can be foliated by injectively immersed submanifolds corresponding
to the equivalence classes under the following relation: two points on a Poisson manifold belong to the
same class if there exists a piecewise smooth curve joining them and comprising segments of integral
curves of Hamiltonian vector fields.

Definition 2.9 (Manifold Foliation). Let VN be an N -dimensional manifold. A foliation F of class Cp and
of dimension q on VN is a decomposition of VN into disjoint connected subsets F “ tfαuα, called the
leaves of the foliation, with the following property: each point of VN has a neighborhood B and a system
of Cp coordinates B Ñ z :“ pzs, zcq P Rq ˆ RN´q such that for each leaf fα, the components of B X fα
are described by the equations pzcq1 “ constant, . . ., pzcqN´q “ constant.

The embedding of each symplectic leaf in a Poisson manifold is an injective Poisson map, and the
phase flow of a Hamiltonian vector field preserves the symplectic structures on the leaves.

The combination of Darboux’s theorem with the foliation properties of Poisson manifolds (cf. also
the symplectic stratification theory [4, Chapter 2]) provides a way to bring degenerate Poisson structures
into canonical form.

Theorem 2.10 (Lie-Weinstein Splitting Theorem [31, 43]). Let pVN , t¨, ¨uN q be an N -dimensional Poisson
manifold. For each u P VN there exists a neighborhood Bu Ă VN of u, in which the rank of VN is
equal to 2R, and an isomorphism Ψu : Bu Ñ S ˆN 1 where S “ ΨspBuq is a symplectic manifold and
N “ ΨcpBuq is a Poisson manifold whose rank vanishes at Ψcpuq. The factors S and N are unique
up to local isomorphisms. Moreover, there exist local coordinates tq1, . . . , qR, p1, . . . , pR, c

1, . . . , cN´2Ru

which are canonical, i.e. tqi, qjuN “ tpi, pjuN “ tqi, ckuN “ tpi, ckuN “ 0, and tqi, pjuN “ δi,j for all
i, j “ 1, . . . , R and k “ 1, . . . , N ´ 2R.

On the neighborhood Bu, the coordinates tckuN´2R
k“1 correspond to the Casimir invariants, whereas

tpqi, pjqu
R
i,j“1 are the symplectic canonical coordinates, sometimes referred to as Clebsch variables [16].

In the canonical coordinates, the vector bundle map (2.1) takes the form

J c
N :“

¨

˚

˚

˚

˝

Id

´ Id

0

˛

‹

‹

‹

‚

: T˚VR ˆ T˚VR ˆ T˚VN´2R ÝÑ TVN , (2.4)

where Id and 0 denote the identity and zero map, respectively.
There are many advantages for using canonical coordinates, see e.g. [39]. Most prominently, the

possibility of bringing the Poisson tensor into constant-valued form and isolate its kernel. The design of
the structure-preserving reduced basis methods for (1.1), proposed in this work, hinges upon canonical
forms obtained via exact or approximate Darboux maps, cf. Sections 3.1 and 4.1.

1The Cartesian product of two Poisson manifolds is endowed with a Poisson structure given by the Poisson map property
of the projection on each factor, and by requiring that the pullbacks of the Poisson algebras on each factor form commuting
subalgebras of the Poisson algebra of the Cartesian product.
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2.3 Construction of Global Darboux’s Map
On finite-dimensional Poisson manifolds VN , endowed with a constant-valued Poisson structure JN , the
Darboux map from Theorem 2.8 is global. An analytic expression for the Darboux map can be derived
by reverting to well-known results on matrix decompositions.

Proposition 2.11. Every skew-symmetric matrix M P RN,N with rankpMq “ 2R ă N admits a decompo-
sition of the form

M “ UJ c
NU

J, (2.5)

where U P RN,N is invertible (but not orthogonal in general), and J c
N P RN,N is the matrix representation

of the Poisson tensor in canonical form, namely

J c
N :“

¨

˝

J c
2R 02R,q

0q,2R 0q

˛

‚, J c
2R :“

¨

˝

0R IR

´IR 0R

˛

‚,

where q :“ N ´ 2R is the dimension of the null space of M , 0R P RR,R and IR P RR,R denote the zero
and the identity matrix, respectively.

The factorization (2.5) is unique up to transformations in the symplectic group Spp2R,Rq.

Proof. We propose a constructive proof in three steps: The implementation on the numerical experiments
of Section 5 will mimic the arguments.
Step 1. Every skew-symmetric square matrix can be brought into canonical form by a unitary congruence
transformation, i.e. there exists Q P RN,N orthogonal such that M “ QSQJ. The so-called Youla form
S [46] is formed by blocks along the main diagonal, each 2ˆ 2 block formed by the complex part of a
conjugate pair of complex eigenvalues of M , t˘iδjuRj“1, δj ą 0, and zeros for j ą R. The proof of this
result can be found in [46, Corollary 2] or [23, Theorem 2].

The Youla decomposition in not unique: the factor S can be fixed by computing a decomposition for
a given ordering of the eigenvalues of M , see e.g. [10]. However, the orthogonal matrix Q is not unique.
Step 2. The block diagonal matrix S P RN,N can be further decomposed as S “ pD pS pD where the matrix
pD is diagonal with diagonal equal to p

?
δ1,
?
δ1, . . . ,

?
δR,
?
δR, 0, . . . , 0q, while each element of pS P RN,N

is the sign of the corresponding element of S, i.e. the upper left block pS2R P R2R,2R of S is formed by R
blocks along the main diagonal, each 2ˆ 2 block containing ˘1 as off-diagonal elements. Combining the
first two steps, one has M “ Q pD pS pDQJ.
Step 3. As a last step, we construct a permutation matrix such that pS2R is similar to J c

2R. Let
pP2R P R2R,2R be the perfect shuffle permutation matrix in R2R, i.e.

pP2R :“ r e1 | e3 | . . . | e2R´1 | e2 | e4 | . . . | e2R s ,

where ej is the j-th canonical column vector in R2R. Then pS2R “ pP2RJ c
2R

pPJ2R, and we have that
M “ Q pD pPJ c

N
pPJ pDQJ, where pP P RN,N is the zero extension of pP2R.

Since we seek a transformation that brings M into canonical form and is invertible, we introduce the
modified matrices

D :“

¨

˝

pD2R 02R,q

0q,2R Iq

˛

‚, P :“

¨

˝

pP2R 02R,q

0q,2R Iq

˛

‚. (2.6)

The matrices D and P are invertible, and the extension of pP2R by the identity Iq makes P into
an orthogonal matrix. With the modified matrices P and D, the decomposition still holds, namely
M “ QDPJ c

NP
JDQJ. The conclusion (2.5) follows by setting U “ QDP .

It can be easily verified that the factorization is not unique: if Y P RN,N satisfies Y J c
NY

J “ J c
N and

it is nonsingular, then (2.5) holds with UY in lieu of U .
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3 Constant-Valued Degenerate Poisson Structures
Although the major challenge in developing reduced basis methods for general Hamiltonian systems
manifests itself in the presence of non-constant Poisson tensors, tackling at first the degeneracy of
the structure first, paves the way to the general case. Therefore, in this Section we develop reduced
basis methods for parametric Hamiltonian systems on Poisson manifolds with a constant-valued Poisson
structure. In the general non-constant case, treated in Section 4, the approach developed and studied
here becomes important locally.

To fix the notation, VN is assumed to be an N -dimensional Poisson manifold with bracket t¨, ¨uN
and constant-valued tensor JN with rankpJN q “ 2R. Moreover, VN is regarded as a submanifold of RN
equipped with the standard Euclidean metric whose induced norm is denoted henceforth by }¨}.

3.1 Splitting of Poisson Dynamics
We recast the dynamical system (1.1) using a suitable coordinate system on VN as follows. Let T :“ pt0, T s
be a temporal interval and let VN be an N -dimensional Poisson manifold with Poisson tensor JN puq.
For each η P Λ, we consider the initial value problem: For u0pηq P VN , find up¨, ηq P C1pT ,VN q such that

$

&

%

Btupt, ηq “ JN∇HN pupt, ηq; ηq, for t P T ,

upt0, ηq “ u0pηq.
(3.1)

To ensure well-posedness of (3.1), we assume that, for any η P Λ, ∇HN is Lipschitz continuous in u in
the }¨}-norm, uniformly in t P T .

As a first step towards the development of reduced basis methods for (3.1), we perform a global
splitting of the Poisson manifold pVN ,JN q, following Section 2.2, as

Ψ : VN ÝÑ V2R ˆN ,

where V2R “ ΨspVN q is a symplectic manifold of dimension 2R and N “ ΨcpVN q is a submanifold whose
dimension equals q, the number of independent Casimir invariants of t¨, ¨uN . The map Ψ exists, is linear
and bijective in view of Proposition 2.11, and satisfies ΨJNΨJ “ J c

N . The splitting preserves the Poisson
structure of VN .

Proposition 3.1. Let t¨, ¨ucN : C8pVN q ˆ C8pVN q Ñ C8pVN q be the bracket defined by tF ,GucN puq :“
∇FpuqJJ c

N∇Gpuq, for all F ,G P C8pVN q and u P VN . The manifold pVN , t¨, ¨ucN q is Poisson. Moreover,
the map Ψ : pVN , t¨, ¨uN q ÝÑ pVN , t¨, ¨ucN q and its inverse are Poisson.

Proof. It can be easily verified that the operator J c
N satisfies the assumptions of Lemma 2.2 and therefore

it is a Poisson structure.
To prove that the map Ψ : pVN , t¨, ¨uN q ÝÑ pVN , t¨, ¨ucN q is Poisson we need to show that pΨ˚tF ,GucN qpuq “

tΨ˚F ,Ψ˚GuN puq, for all u P VN and F ,G P C8pVN q. Let z :“ Ψu, then

tΨ˚F ,Ψ˚GuN puq “ ∇pΨ˚FqpuqJJN∇pΨ˚Gqpuq “ pΨ˚∇FqpuqJJN pΨ˚∇Gqpuq
“ p∇FqpΨuqJΨJNΨJp∇GqpΨuq “ p∇FqpΨuqJJ c

N p∇GqpΨuq
“ tF ,GucN pΨuq.

An analogous reasoning shows that ppΨ´1q˚tF ,GuN qpuq “ tpΨ´1q˚F , pΨ´1q˚GucN puq for all u P VN and
F ,G P C8pVN q.

The dynamics ΦtXHN
can then be decoupled into the dynamics on the symplectic leaf and the trivial

dynamics of the Casimir invariants, i.e. (3.1) can be recast in canonical form as: Find zp¨, ηq P C1pT ,VN q
such that

$

&

%

Btzpt, ηq “ J c
N∇Hc

N pzpt, ηq; ηq, for t P T ,

zpt0, ηq “ Ψu0pηq,
(3.2)
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where Hc
N :“ pΨ´1q˚HN for every η P Λ and the canonical Poisson tensor J c

N (2.4).
Since Ψ is linear and bijective, Proposition 3.1 implies that Ψ is a Poisson isomorphism: for any t P T

and any fixed parameter η P Λ, zpt, ηq is a solution to (3.2) if and only if zpt, ηq “ Ψupt, ηq, where upt, ηq
is a solution of (3.1).

Moreover, since Poisson maps preserve the Poisson bracket, the invariants of ΦtXHN
are in one-to-one

correspondence with the invariants of ΦtXHc
N

.

Corollary 3.2. For any fixed parameter η P Λ, let Φt
XHN

and Φt
XHc

N

be the flow maps associated with

(3.1) and (3.2), respectively. The function I P C8pVN q is an invariant of motion of ΦtXHN
if and only

if pΨ´1q˚I P C8pVN q is an invariant of Φt
XHc

N

. Conversely, I P C8pVN q is an invariant of motion of

ΦtXHc
N

if and only if Ψ˚I P C8pVN q is an invariant of ΦtXHN
.

Note that all independent Casimir invariants of a constant-valued degenerate Poisson tensor are linear.
Indeed the Casimir invariants of t¨, ¨ucN are the functions tIm : z P VN ÞÑ zm :“ pΨcuqmu

q
m“1. In view

of Proposition 3.1 and Corollary 3.2, the functions tΨ˚Imum are Casimir invariants of t¨, ¨uN and since
Ψ is linear, they are linear in u.

3.2 Reduced Basis Methods Preserving Poisson Structures
By exploiting the splitting of the dynamics, introduced in Section 3.1, we seek a structure-preserving
symplectic model order reduction on the symplectic manifold V2R, while leaving unchanged the submanifold
N associated with the center of the Lie algebra C8pVN q.

The reduced basis solution is the linear combination of a suitably chosen finite collection of solution
trajectories, computed from the high-fidelity model in canonical form, to provide an optimal decomposition
in the sense of representing the dominant components of the dynamics. This is done via a weak greedy
strategy, discussed in Section 3.2.2. The reduced basis functions are constructed to span an n-dimensional
vector space Vn, for n ! N , with the following properties:

• Vn is a manifold endowed with the canonical Poisson structure t¨, ¨ucn .

• The rank of the canonical Poisson tensor J c
n on Vn, rankpJ c

nq “: 2r, satisfies n´ 2r “ q, namely
the dimension of the center of the Lie algebras C8pVN q and C8pVnq coincides.

To compute the evolution of the coefficients of the expansion in the reduced basis we rely on a Galerkin
projection of the original dynamical system (3.1). This ensures that the expansion coefficients are uniquely
determined by the basis. To preserve the Poisson structure, the projection is constructed to be symplectic
on the symplectic leaf of VN and to preserve the kernel of the Poisson tensor JN .

Let π` : VN Ñ Vn be a surjective map which is assumed to be linear. Since π` is surjective there
exists a linear map π : Vn Ñ VN such that π` ˝ π : Vn Ñ Impπq Ă VN Ñ Vn is the identity on Vn.

Lemma 3.3. The map π` : pVN , t¨, ¨ucN q Ñ pVn, t¨, ¨ucnq is Poisson if and only if

π`J c
Nπ

J
` “ J c

n .

Proof. We need to show that the pullback of π` preserves the Poisson bracket, namely that pπ˚`tF ,Gucnqpuq “
tπ˚`F , π˚`GucN puq, for all u P VN and F ,G P C8pVnq. Let y :“ π`u. Rewriting the bracket using the
canonical vector bundle map J c

N , results in

tπ˚`F , π˚`GucN puq “ ∇pπ˚`FqpuqJJ c
N∇pπ˚`Gqpuq “ pπ˚`∇FqpuqJJ c

N pπ
˚
`∇Gqpuq

“ p∇Fqpπ`uqJπ`J c
Nπ

J
`p∇Gqpπ`uq “ tF ,Gucnpπ`uq,

where the last equality holds if and only if π`J c
Nπ

J
` “ J c

n .

Following the splitting approach, described in Section 3.1, the map π` can be constructed as

π` : V2R ˆN ÝÑ V2r ˆN , π` “ πs` ˆ Id ,

where πs` is taken to be a surjective `2-orthogonal symplectic application, i.e. πs`J c
2Rpπ

s
`q
J “ J c

2r.
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Remark 3.4. The map π cannot be a Poisson map between the regular Poisson manifolds pVn, t¨, ¨ucnq and
pVN , t¨, ¨ucN q. Indeed, if that was the case, by a simple counting argument rankpJ c

N q ď mintrankpJ c
nq, rankpπqu,

which cannot hold under the assumption r ! R.

Definition 3.5. The Poisson projection onto Impπsq ˆ N Ă VN is defined as the map P “ Ps ˆ Id :
V2R ˆN Ñ Impπq ˆN such that, for any zs P pV2R,J c

2Rq,

ωpPszs ´ zs, ξq “ 0, @ ξ P Impπsq,

where ω is the canonical symplectic 2-form on the symplectic vector space pV2R,J c
2Rq.

Note that, if the Poisson tensor is not constant, i.e. JN “ JN puq, then π`JN puqπJ` is still skew-
symmetric for every u P VN , but it may not satisfy the Jacobi identity (2.3), in which case π` fails to
provide a reduced Poisson structure.

The reduced problem is derived via the Poisson projection P :“ π ˝ π` onto Impπq Ă VN of the
canonical Poisson dynamical system (3.2), namely for t P T and η P Λ, the approximation zrbpt, ηq « zpt, ηq
satisfies

Btzrbpt, ηq “ PpJ c
N∇zHN pΨ

´1zrbpt, ηq; ηqq, zrbpt0, ηq “ z0pηq.

For zrbpt, ηq “ πypt, ηq, the function y satisfies
$

&

%

Btypt, ηq “ J c
n∇Hnpypt, ηq; ηq, for t P T ,

ypt0, ηq “ π`Ψu0pηq,
(3.3)

on the n-dimensional Poisson manifold Vn, where Hn :“ π˚Hc
N . Problem (3.3) is a dynamical system in

canonical Poisson form on the manifold pVn,J c
nq. The assumption on the Lipschitz continuity of ∇HN

ensures that ∇Hn is also Lipschitz continuous with constant }Ψ´1}2LηδH, where LηδH is the Lipschitz
constant of ∇HN for parameter η P Λ. This guarantees the well-posedness of the reduced problem (3.3).

3.2.1 Stability and Conservation Properties of the Reduced Problem

By construction, the Hamiltonian Hn P C
8pVnq of the reduced systems is obtained by pullback from the

Hamiltonian Hc
N P C

8pVN q, namely Hn “ π˚Hc
N , for all η P Λ. This has the important consequence

that, for any fixed η P Λ, whenever HN is a Lyapunov function with equilibria tueue [1, Chapter 3 p.
207], then Hc

N is a Lyapunov function with equilibria tΨueue, and the reduced dynamics preserve the
Lyapunov stable equilibria tΨueue contained in Impπq. Indeed it can be shown that Hn is a Lyapunov
function with equilibria given by the image of the equilibria of the canonical Poisson system under π`.

Concerning the preservation of the invariants of motion of ΦtXHc
N

after the reduction, we introduce
the following concepts.

Definition 3.6. The model order reduction described by P “ π ˝ π` is said to be invariant-preserving if
the Hamiltonian of the high-fidelity canonical problem (3.2) satisfies Hc

N P Impπ˚`q, for all η P Λ.
A weaker condition is that the error in the Hamiltonian vanishes only along solution trajectories: the

model order reduction is said to be Hamiltonian-preserving if

∆Hc
N pP, ηq :“ |Hc

N pzpt, ηq; ηq ´Hc
N pπypt, ηq; ηq| “ 0, @ t P T , η P Λ,

with z solution of (3.2) and y solution of the reduced problem (3.3).

If the model order reduction is invariant-preserving then Hc
N “ π˚`Hn, since π˚` is injective.

Note that since the map π˚` acts as the identity on the center of the Lie algebra C8pVN q, which
is therefore not affected by the reduction, the Casimir invariants of the bracket t¨, ¨uN are exactly
conserved in the reduced problem. Moreover, the Poisson map π` provides a Hamiltonian-preserving
model reduction.

Proposition 3.7. For any η P Λ fixed, let z P C1pT , pVN ,J c
N qq be a solution of the high-fidelity model

(3.2) and y P C1pT , pVn,J c
nqq be a solution of the reduced model (3.3). Then the reduced basis method

given by P “ π ˝ π` is Hamiltonian-preserving in the sense of Definition 3.6.
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Proof. Since the Hamiltonian is an invariant of motion, it holds

∆Hc
N pP, ηq “ |Hc

N pzpt, ηq; ηq ´Hnpypt, ηq; ηq| “ |Hc
N pz0pηq; ηq ´Hnpy0pηq; ηq|

“ |Hc
N pz0pηq; ηq ´ pπ

˚
`Hnqpz0pηq; ηq|,

for z and y being solutions of (3.2) and (3.3), respectively, with z0pηq :“ Ψu0pηq. This implies that the
reduced model is Hamiltonian-preserving if z0pηq P Impπq for all η P Λ.

Let η P Λ be fixed. Introducing the shifted variable zppt; ηq :“ zpt; ηq ´ z0pηq P VN for all t P T , the
high-fidelity canonical problem (3.2) can be cast as

$

&

%

Btz
ppt, ηq “ J c

N∇Hc,p
N pz

ppt, ηq; ηq, for t P T ,

zppt0; ηq “ 0,
(3.4)

where Hc,p
N pz

ppt; ηq; ηq :“ Hc
N pz

ppt; ηq ` z0pηq; ηq for all t P T . Let us apply the splitting of the dynamics
and the J c

N -Poisson reduced basis method, described in the previous Sections, to (3.4): The resulting
reduced basis method is Hamiltonian-preserving for every parameter, i.e., ∆Hc,p

N pP, ηq “ 0 for all η P Λ.
This follows from the fact that the initial condition zppt0; ηq “ 0 P Impπq for all η P Λ since the map
π is linear. Note that the invariants of motion tIpmum, associated with the Hamiltonian vector field of
Hc,p
N , are in one-to-one correspondence with the invariants tImum of Hc

N via Ipmpzq “ Impz ´ z0q for all
z P VN .

With the exception of the Hamiltonian, even if I P C8pVN q is an invariant of motion of the canonical
Poisson system (3.2), π˚I P C8pVnq is not necessarily an invariant of the system (3.3) in pVn, t¨, ¨ucnq,
since π is not a Poisson map. However, if the reduced model is invariant-preserving, it is possible to
characterize the invariants of motion of the high-fidelity model belonging to Impπ˚`q in terms of the
invariants of the reduced dynamical system.

Lemma 3.8. Let η P Λ be fixed. Assume that the model order reduction is invariant-preserving, i.e.
Hc
N p¨, ηq P Impπ˚`q. Then, I P C8pVnq is an invariant of Φt

XHn
if and only if π˚`I P C8pVN q is an

invariant of ΦtXHc
N

in Impπ˚`q Ă C8pVN q.

Proof. Let pI P C8pVN qXImpπ˚`q be an invariant of (3.2), and pI “ π˚`I. Since π˚` is injective I P C8pVnq
is unique. We seek to show that the function I is an invariant of (3.3), i.e., tI,Hnucnpyq “ 0 for all
y P Vn. By the surjectivity of π`, there exists at least one z P VN such that y “ π`z. Since π` is a
Poisson map, it holds

tI,Hnucnpyq “ tI,Hnucnpπ`zq “ pπ
˚
`tI,Hnucnqpzq “ tπ

˚
`I, π˚`HnuN pzq “ tpI, π˚`HnuN pzq.

The result follows from the fact that Hc
N “ π˚`Hn by assumption.

For the reverse implication, assume that I P C8pVnq is such that tI,Hnucnpyq “ 0 for all y P Vn. Let
Dpπ`q be the preimage of π` in VN . An analogous reasoning yields,

0 “ tI,Hnucnpπ`zq “ pπ
˚
`tI,Hnucnqpzq “ tπ

˚
`I, π˚`HnuN pzq, @z P Dpπ`q.

Hence, π˚`I is an invariant of (3.1) in Impπ˚`q Ă C8pVN q.

3.2.2 Reduced Basis Generation via Symplectic Greedy Algorithm

Following a standard reduced basis approach, we build a set of reduced basis functions from a set of
high-fidelity solutions, called snapshots. Here, however, we need to explore the symplectic part of the
solution manifold in the split form. We define the set of solutions of the dynamical system (3.1) as
U :“ tupt, ηq “ ΦtXHN p¨,ηq

pu0pηqq P pVN ,JN q : t P T , η P Λu.
Let us consider a time discretization Φth,η of (3.1) on the uniform partition of T into M P N elements,

given by Th :“
Ť

jPΥh
Tj , with Tj :“ ptj , tj`1s and Υh :“ r0,Mq X N. Let Λh be a finite subset of the
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parameter set Λ and let Υh :“ r0,M s X N. Now, consider the following sets of solution trajectories,
obtained at sample time instants and parameters:

UN :“ tujpηq :“ Φt
j

h,ηpu0pηqq, j P Υh, η P Λhu, sampled solution set of (3.1);

ZN :“ ΨpUN q “ tzjpηq :“ Ψujpηq, j P Υh, η P Λhu, sampled solution set of (3.2);

Zs
N :“ ΨspUN q “ tΨsu

jpηq, j P Υh, η P Λhu, symplectic component of ZN .

(3.5)

As explained previously, the model order reduction is applied only to the canonical symplectic leaf
pV2R,J c

2Rq of VN . Hence, the reduced basis functions are generated from the snapshots in Zs
N to form

an `2-orthogonal and canonically J c
2R-symplectic set.

Definition 3.9 (Orthosymplectic Basis). Let pV2R, ωq be a 2R-dimensional symplectic vector space and let
ω be the canonical symplectic form. Then the set of vectors teiu2Ri“1 is said to be orthosymplectic in V2R if

ωpei, ejq “ pJ c
2Rqi,j , and pei, ejq “ δi,j , @i, j “ 1 . . . , 2R, (3.6)

where p¨, ¨q is the Euclidean inner product and J c
2R is the canonical symplectic tensor on V2R.

A subspace of a symplectic vector space pV2R, ωq is called Lagrangian if it coincides with its symplectic
complement in V2R. Since any basis of a Lagrangian subspace of a symplectic vector space pV2R, ωq can be
extended to a symplectic basis in pV2R, ωq, every symplectic vector space admits an orthosymplectic basis.
Numerical algorithms to build a canonically symplectic reduced basis include the POD-like strategies
developed in [40] (cotangent lift, complex SVD, and nonlinear programming) and the symplectic greedy
of [2] which couples a weak greedy strategy to select the snapshots to a symplectic Gram–Schmidt [41]
procedure to enforce (3.6). Here we opt for a greedy strategy since it gives us larger leeway in the choice
of the orthosymplectic reduced basis when compared to a symplectic POD strategy [40].

The greedy approach consists of building a sequence of nested symplectic manifolds V2k Ă V2r and an
orthogonal J c

2k-symplectic basis by minimizing, at each iteration k, the projection error }Zs
N ´ P2kZs

N }

and enforcing the constraints πs`J c
2Rpπ

s
`q
J “ J c

2r, and πs`pπs`qJ “ Id . In this way the reduced space
provides a good approximation of the sampled solution manifold Zs

N , whereas the constraints ensure that
the dynamics in the lower dimensional space has the canonical orthosymplectic Hamiltonian structure
(3.3). For the sake of completeness we report in Algorithm 1 the pseudoalgorithm for the weak greedy
approach, adapted from [2, Algorithm 2].

Algorithm 1 Symplectic Greedy. Input: tZs
N , z0, η1, tolγ , tolδu. Output: π2j .

1: Set j “ 1.
2: Given the initial condition z0, and η1 take e1 “ z0pη1q{}z0pη1q} and π2j

“ re1, pJ c
2Rq

Je1s.
3: Compute the pseudoinverse π2j

` “ pJ c
2jq
Jπ2jJ c

2R.
4: Compute the error in the symplecticity δ2j “ }pπ2j

q
JJ c

2R π
2j
´ J c

2j}8.
5: Initialize the maximum projection error γmax

2j “ 1.
6: while j ă R, and γmax

2j ą tolγ , and δ2j ă tolδ do
7: Compute the projection error of all snapshots γ2jpzq “ }z ´ π2jπ2j

` z}, for all z P Zs
N .

8: Select the new basis element z˚pη˚q “ argmaxzPZs
N
γ2jpzq.

9: Update the maximum projection error γmax
2j “ γ2jpz

˚
pη˚qq.

10: Apply symplectic Gram–Schmidt to z˚pη˚q and normalize ej`1 “ z˚pη˚q{}z
˚
pη˚q}.

11: j “ j ` 1.
12: Update the matrix π2j

“ re1, . . . , ej , pJ c
2Rq

Je1, . . . , pJ c
2Rq

Jejs.
13: Compute the pseudoinverse π2j

` “ pJ c
2jq
Jπ2j J c

2R.
14: Update the error in the symplecticity δ2j “ }pπ2j

q
JJ c

2R π
2j
´ J c

2j}8.
15: end while

Remark 3.10 (A posteriori error estimates). A posteriori error estimates are crucial in reduced basis
methods to certify the accuracy of the reduced basis approximation online, and for rigorous and efficient
error control in the offline greedy sampling procedure, to allow exploration of much larger subsets of the



13

parameter domain. In the context of dynamical systems, a posteriori error estimators obtained via adjoint
problems or via time integration of residual relations are known to exhibit poor long time behavior, in
particular for hyperbolic or singularly perturbed problems [44]. Although we acknowledge the importance
of efficient and reliable a posteriori error indicators, especially in a greedy approach, in this work we are
mainly concerned with the structure-preserving properties of the reduced basis method.

The approximability properties of the solution sets (3.5) by linear subspaces of lower dimension n
can be expressed by the Kolmogorov width [28]. The Kolmogorov n-width of a compact subset UN of
pVN , }¨}q is defined as

dnpUN q :“ inf
WnĂVN

dimWn“n

sup
uPUN

inf
wPWn

}u´ w}. (3.7)

We can bound the Kolmogorov width of the solution set of the canonical problem (3.2) in terms of the
Kolmogorov width of UN , independently of the sampling of the temporal and parameter spaces. This is
expressed in the following Lemma.

Lemma 3.11. Let UN and ZN be the sampled solution sets introduced in (3.5). The Kolmogorov n-width
of the solution set ZN of the dynamical system (3.2) satisfies

dnpZN q ď
1

min1ďjďN

a

|λjpJN q|
dnpUN q,

where tλj P CuNj“1 are the eigenvalues of the constant-valued Poisson tensor JN .

Proof. Let Ψ : pVN , }¨},JN q ÝÑ pVN , }¨},J c
N q be the Darboux map associated with the Poisson tensor

JN , cf. Proposition 2.11. Since Ψ is a linear bijection between finite-dimensional vector spaces, is
bounded. Therefore the Kolmogorov n-width of ΨpUN q can be bounded as

dnpΨpUN qq ď }Ψ} dnpUN q,

where }¨} denotes the operator 2-norm. Let U P RN,N be the matrix representation of the linear map
Ψ´1. From Proposition 2.11, Ψ is the composition of linear maps: U´1 “ pQDP q´1 where Q P RN,N
is orthogonal, D P RN,N is diagonal and P P RN,N is the extension of a permutation matrix by the
identity. Hence, it can be inferred that }U´1} ď }D´1} “ maxt1,max1ďjďN 1{

a

|λjpJN q|u, where
tλj P CuNj“1 are the eigenvalues of the Poisson structure JN . Note that each eigenvalue λj is of the form
λj “ ˘iδj with δj ě 0. Since the modified matrix D in (2.6) is an arbitrary nonsingular extension of the
matrix pD2R, one could in principle extend pD2R by pminj

a

δjq Iq. The resulting D is nonsingular and
}D´1} “ 1{min1ďjďN

a

|λjpJN q|.

Proposition 3.12 (Convergence of the Weak Symplectic Greedy Algorithm). Let UN and ZN be the sampled
solution sets introduced in (3.5). Assume that UN has Kolmogorov n-width dnpUN q. Then, the reduced
space Vn “ V2r ˆN , with V2r constructed via Algorithm 1, satisfies

}z ´ Pz} ď C 3r`1pr ` 1q

min1ďjďN

a

|λjpJN q|
dnpUN q, @ z P ZN ,

where C ą 0 is a constant independent of n, r and N .

Proof. The convergence estimates for the weak greedy algorithm, derived in [11] and adapted to the
symplectic case in [2, Section 4.1.3], result in

}zs ´ Pszs} ď C3r`1pr ` 1q d2rpZs
N q, @ zs P Zs

N .

Let us define the Kolmogorov n-width of ZN , restricted to subspaces of Vn of the form V2r ˆN , as

xdnpZN q :“ inf
xWnĂVN

dimWn“n

sup
zPZN

inf
wPWn

}z ´ w},

where xWn :“ tw P Vn : w “ pws,Ψcuq, ws P V2r, u P VNu. If d2rpZs
N q denotes the Kolmogorov 2r-width

(3.7) of the symplectic component of the solution set ZN , it holds d2rpZs
N q “

xdnpZN q ď dnpZN q. The
definition of the Poisson projection from Definition 3.5 together with Lemma 3.11 yields the conclusion.
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Note that, depending on the decay of the Kolmogorov width, sharper convergence estimates can be
derived [9].

3.3 A Priori Convergence Estimates with DEIM
For projection-based reduced order models, empirical interpolation methods [7] and provide well-
established techniques to evaluate nonlinear terms at a computational cost proportional to the dimension
of the reduced problem.

Consider problem (3.2) in canonical form, for a fixed value of the parameter η P Λ. Assume that the
Hamiltonian vector field MN pzq :“ ∇Hc

N pz; ηq is nonlinear in z. The discrete empirical interpolation
method (DEIM) [14] consists in approximating MN via its oblique projection onto a low-dimensional
space, obtained by sampling MN at m ! N interpolation points, namely

MN pzq « UpPJUq´1PJMN pzq, @ z P VN ,

where U P RN,m is the DEIM basis and P P RN,m is the DEIM interpolation points matrix. Coupling a
DEIM approximation with the reduced basis scheme of Section 3.2, yields zpt; ηq « πypt; ηq satisfying

Btypt; ηq “ J c
nπ`MN pπyq « J c

nπ`UpP
JUq´1PJMN pπyq. (3.8)

This evolution problem is Hamiltonian, and hence the reduced method structure-preserving, if and
only if the term Mnpyq :“ π`UpP

JUq´1PJMN pπyq can be written as the gradient of a function on
Vn. In addition, (3.8) corresponds to the reduced Hamiltonian system derived from (3.2) if and only if
Mnpyq “ ∇Hnpy; ηq. This does not seem easy to achieve, if the DEIM basis U is chosen arbitrarily. In
[2, Section 4.2] the authors suggest to take UJ “ π`. Unfortunately, even in this case the reduced system
is no longer Hamiltonian, unless MN pπy; ηq belongs to Impπq for all y P Vn. In practice, this implies
that by constructing a sufficiently large reduced basis π which also includes snapshots of the nonlinear
terms, the reduced dynamics possesses asymptotically (in n) a Hamiltonian structure.

We are not aware of any hyper-reduction method able to exactly preserve the Hamiltonian phase
space structure during model reduction. Although the efficient treatment of the nonlinear terms is a
very important aspect of model order reduction, it seems that the development of structure-preserving
hyper-reduction techniques requires a thorough analysis, that is beyond the current work.

In this Section, we perform an a priori convergence analysis of the reduced basis method, developed
in Section 3.2, including a DEIM approximation of the nonlinear term with UJ “ π`, while being aware
of the aforementioned limitation of this choice in terms of Hamiltonian structure preservation.

To this end, we assume that the dynamical system (3.1) can be written as ∇HN pu; ηq “ LNu`MN puq,
where LN denotes a linear operator and MN a nonlinear operator on VN (the dependence of LN and
MN on η is omitted for the sake of readability). Then (3.1) can be recast as

Btupt, ηq “ JNLNu` JNMN puq, upt0, ηq “ u0pηq. (3.9)

Analogously, we can rewrite the canonical problem (3.2) as zpt0, ηq “ Ψu0pηq and

Btzpt, ηq “ J c
N∇zHN pΨ

´1zpt, ηq; ηq “ J c
NLcNzpt, ηq ` J c

NMc
N pzpt, ηqq,

where LcN :“ Ψ´JLNΨ´1 and Mc
N pzq :“ Ψ´JMN pΨ

´1zq. The reduced problem (3.3) becomes

Btypt, ηq “ π`J c
NΨ´JLNΨ´1πypt, ηq ` π`J c

NΨ´JMN pΨ
´1πypt, ηqq,

“ J c
nLnypt, ηq ` J c

nπ
JΨ´JMN pΨ

´1πypt, ηqq,

where Ln :“ πJΨ´JLNΨ´1π, and ypt0, ηq “ π`z0pηq. Adopting a DEIM strategy with UJ “ π` we
approximate the nonlinear term as

Ψ´JMN pΨ
´1πyq « πJ`pP

JπJ`q
´1PJΨ´JMN pΨ

´1πyq.

The reduced problem thus reads

Btypt, ηq “ J c
nLnypt, ηq ` J c

npP
JπJ`q

´1Mnpypt, ηqq, ypt0, ηq “ π`z0pηq, (3.10)
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where Mnpyq :“ PJΨ´JMN pΨ
´1πyq.

Taking the cue from the convergence analysis in [15], an a priori error estimate can be derived for
the state approximation error between the high-fidelity solution and the reduced solution obtained by
applying DEIM to the Poisson systems (3.1) and (3.3), respectively. We derive L2-error estimates in
both time and parameter space. Note that if no hyper-reduction technique is applied error estimates
analogous to the ones in Proposition 3.13 hold with C2pT, αpηqq ” 0 in (3.11).

Proposition 3.13. For any given η P Λ, let up¨, ηq P C1pT , pVN ,JN qq be the solution of (3.9) and let
urb :“ Ψ´1πy where yp¨, ηq P C1pT , pVn,J c

nqq is the solution of the reduced system (3.10). Assume that
for every η P Λ the nonlinear operator MN is Lipschitz continuous in the norm }¨} with constant LMpηq.
Then,

}u´ urb}
2
L2pT ˆΛ;VN q ď}Ψ

´1}C1pT, αpηqq}Ψu´ PΨu}2L2pTˆΛ;VN q

` }Ψ´1}2 C2pT, αpηqq}MN puq ´ π
J
`π`MN puq}

2
L2pT ˆΛ;VN q,

(3.11)

where αpηq :“ }Ψ´JLN pηqΨ´1} ` β}Ψ´1}2LMpηq, and β :“ }pPJπJ`q
´1}, ∆T :“ |T ´ t0| and

C1pT, αpηqq :“ 2∆T max
ηPΛ

pαpηqpe2αpηq∆T ´ 1q ` 1q, C2pT, αpηqq :“ 2∆T β2 max
ηPΛ

pαpηq´1pe2αpηq∆T ´ 1qq.

Proof. The error between the high-fidelity and the reduced solution can be bounded by the reduction
error associated with the dynamical system in canonical form. Indeed,

}u´ urb}
2
L2pT ˆΛ;VN q “

ˆ
Λ

ˆ
T
}Ψ´1pΨupt, ηq ´ πypt, ηqq} dt dη ď }Ψ´1}}z ´ πy}2L2pTˆΛ;VN q, (3.12)

where z is the solution of the high-fidelity model in canonical form (3.2) and y is the solution of the
reduced problem (3.3).

At each time t and η P Λ, let z ´ πy “ pz ´ Pzq ` pPz ´ πyq “: ep ` eh. If W :“ πJ`pP
JπJ`q

´1PJ,
then

Btehpt, ηq “ PBtzpt, ηq ´ πBtypt, ηq “ PJ c
N pLcNz `Mc

N pzq ´ LcNπy ´WMc
N pπyqq

“ PJ c
NLcNeh ` PJ c

NLcNep ` PJ c
N pMc

N pzq ´WMc
N pπyqq

“: Opηqeh `Qpt, ηq.

Using that pI ´W qπJ`π`Mc
N pzq “ 0, we bound Q as,

}Qpt, ηq} ď }LcNep} ` }pI ´W qMc
N pzq} ` }W pMc

N pzq ´Mc
N pπyqq}

ď }LcN }}ep} ` }pI ´W qpMc
N pzq ´ π

J
`π`Mc

N pzqq} ` }W pMc
N pzq ´Mc

N pπyqq}

ď }LcN }}ep} ` }I ´W }}w} ` }W }LMpηq}Ψ
´1}2p}ep} ` }eh}q.

where wpt, ηq :“Mc
N pzpt, ηqq ´ π

J
`π`Mc

N pzpt, ηqq. The error satisfies the evolution equation

Bt}eh} “
1

}eh}
pBteh, ehqV “

1

}eh}
pOeh, ehqV `

1

}eh}
pQpt, ηq, ehqV

ď }O}}eh} ` }Q} ď αpηq}eh} ` bpt, ηq,

(3.13)

where αpηq :“ }LcN } ` }W }LMpηq}Ψ
´1}2 and bpt, ηq :“ αpηq}eppt, ηq} ` β}wpt, ηq}, β :“ }I ´W }. Since

W is a projector β “ }I ´W } “ }W }: the norm of W is bounded [14, Lemma 3.2], and depends on the
DEIM selection of indices in P [14, Section 3.2]. From (3.13), Gronwall’s inequality [26] gives

}ehpt, ηq} ď }ehpt0, ηq} e
αpηqt `

ˆ t

t0

eαpηqpt´sqbps, ηq ds

ď

ˆˆ t

t0

e2αpηqpt´sq ds

˙1{2 ˆ

2

ˆ t

t0

αpηq
2
}epps, ηq}

2 ` β2}wps, ηq}2 ds

˙1{2

.
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Hence, for all t P T ,

}ehpt, ηq}
2 ď cpt, αpηqq

ˆ t

t0

pαpηq
2
}epps, ηq}

2 ` β2}wps, ηq}2q ds,

where cpt, αpηqq :“ 2αpηq
´1
pe2αpηqpt´t0q ´ 1q assuming αpηq ‰ 0, for all η P Λ. This implies that,

}z ´ πy}2L2pT ˆΛ;VN q ď

ˆ
Λ

ˆ T

t0

}eppt, ηq}
2 dt dη

`∆T
ˆ

Λ

cpT, αpηqq

ˆ T

t0

pα2pηq}eppt, ηq}
2 ` β2}wpt, ηq}2q dt dη

ď 2∆T β2

ˆ
Λ

αpηq
´1
pe2αpηq∆T ´ 1q}Mc

N pzp¨, ηqq ´ π
J
`π`Mc

N pzp¨, ηqq}
2
L2pT ;VN q dη

`

ˆ
Λ

p∆T αpηqpe2αpηq∆T ´ 1q ` 1q}zp¨, ηq ´ Pzp¨, ηq}2L2pT ;VN q dη

ď C1pT, αpηqq}z ´ Pz}2L2pT ˆΛ;VN q

` }Ψ´1}C2pT, αpηqq}MN pΨ
´1zq ´ πJ`π`MN pΨ

´1zq}2L2pTˆΛ;VN q.

The conclusion follows by combining this with (3.12).

A few observations are in order. The projection error appearing in the estimate of Proposition 3.13
can be written as

}z ´ Pz}2L2pT ˆΛ;VN q ď

ˇ

ˇ

ˇ

ˇ

}z ´ Pz}2L2pT ˆΛ;VN q ´
ÿ

jPΥh,iď7Λ

wj,i}zpt
j , ηiq ´ Pzptj , ηiq}2

ˇ

ˇ

ˇ

ˇ

`
ÿ

jPΥh,iď7Λ

wj,i}zpt
j , ηiq ´ Pzptj , ηiq}2.

The term in absolute value is a quadrature error (twj,iujPΥh,iď7Λ are quadrature weights), and depends
on the number and choice of the snapshots ZN , the smoothness of the integrand in the temporal
variable and in the parameter, etc. The second term is controlled by the greedy algorithm according to
Proposition 3.12.

The term }MN puq ´ π
J
`π`MN puq}

2
L2pT ˆΛ;VN q in (3.11) can be controlled during the assembling of

the reduced basis from the nonlinear snapshots tMN pu
jpηqqujPΥh,iď7Λ, see [14, 15, Section 2.1] and [2,

Section 4.2].
Finally, observe that the bound in (3.11) depends exponentially on the final time T . A linear

dependence on T can be obtained in special cases, e.g. when ∇HN is uniformly negative monotone or
when the linear part of (3.9) has a logarithmic norm ηpLN q :“ limhŒ0p} Id ` hLN } ´ 1q{h [19] bounded
by }pPJπJ`q´1}LM, as in [15, Sections 3 and 4].

4 State-Dependent Poisson Structures
The Hamiltonian formulation of many nondissipative problems possesses a Poisson structure which is
not only degenerate but also depends on the state variable. The most common non-constant Poisson
structures are linear on the dual of finite-dimensional Lie algebras, known as the Lie–Poisson structures.
The difficulty in dealing with such problems stems from the time dependence and nonlinearity intrinsic
to the manifold structure.

As for the constant-valued case, Darboux’s Theorem 2.8 suggests a change of coordinates to bring
the structure into a canonical form that is more amenable to discretization and model order reduction.
However, in the state-dependent case, the Darboux charts have a local nature and the corresponding
global change of coordinates is nonlinear. Hence, aside from very particular cases [32, 35], it is generally
non-trivial to derive such maps. In addition, resorting to approximation techniques requires particular



17

care. Indeed the use of too crude an approximation of the Poisson tensor, e.g., by expanding the state u
in a power series of a small parameter and then truncate the expansion of JN puq, destroys the underlying
Poisson structure since the Jacobi identity (2.3) generally fails to hold for the approximate tensor. In
the context of Hamiltonian perturbation theory, [37] advocates a near identity change of variables in
the neighborhood of a stable equilibrium to bring the Poisson tensor in constant form pointwise. This
approach is, however, limited to weakly nonlinear Hamiltonian systems which describe the dynamics near
equilibria, and introduces a local approximation of the Poisson structure by truncating the expansion of
the Poisson tensor.

We propose an entirely different approach that leverage the unavoidable approximation, introduced by
the temporal integrator, by performing a local approximation of the Darboux map in each discrete time
interval and subsequently derive a reduced basis method for the resulting, locally canonical, structure.

To keep the presentation focused, we next consider dynamical systems which do not depend on a
parameter, namely

$

&

%

dtuptq “ JN puptqq∇HN puptqq, for t P T ,

upt0q “ u0.
(4.1)

We comment on the extension of the results in the forthcoming Sections to the parameter-dependent case
in Section 4.4.

4.1 Local Approximation of Darboux’s Charts
We exploit the linearization, introduced by the timestepping, to derive local approximations of the Darboux
map Ψ, and construct a partition of VN along the solution trajectory, by using linear approximations of
the homomorphisms tΨuu from Theorem 2.10, on each temporal interval.

On the temporal mesh Th “
Ť

jPΥh
Tj the discretization of (4.1) yields: For u0 P VN , find tuj`1ujPΥh Ă

VN such that
$

&

%

uj`1 “ uj `∆tJN ppujq∇HN ppu
jq, for j P Υh,

u0 “ u0,
(4.2)

where puj P VN is determined by the temporal discretization, and can be a state or a combination of them.
Alternative discretizations of the Poisson tensor and the Hamiltonian can be considered. This choice
will affect the convergence estimates and the restriction of the time step in Theorem 4.7, but not the
approximation of the Darboux map nor the derivation of the reduced basis method.

For each j P Υh, let VN,j be an open subset of VN containing the states uj`1, uj , and puj associated
with the discrete problem (4.2).

Definition 4.1. On each submanifold VN,j , with j P Υh, the local approximation of the Darboux map Ψ
is defined to be a bijective linear function ψj`1{2 : VN,j Ñ VN,j that satisfies ψj`1{2JN ppujqψJj`1{2 “ J c

N

at the state(s) puj P Tj dictated by the temporal discretization (4.2). Each map ψj`1{2 provides the local
splitting ψj`1{2 : VN,j Ñ V2R ˆNj , where Nj is the approximation of the subspace associated with the
kernel of the Poisson tensor at puj .

We define transition maps between neighboring subsets as Tj : ψj´1{2pVN,j´1XVN,jq Ñ ψj`1{2pVN,j´1X

VN,jq, with Tj :“ ψj`1{2 ˝ ψ
´1
j´1{2 for j P Υhzt0u, and T0 :“ Id . A sketch of the approximate Darboux’s

charts is presented in Figure 1.

For any j P Υh fixed, the map ψj`1{2 is in general not Poisson on VN,j . However, provided the time
discretization (4.2) preserves the Casimir invariants, the collection of maps tψj`1{2ujPΥh preserves the
rank of the Poisson structure since dimNj “ q for all j P Υh.

With the local change of coordinates introduced by each ψj`1{2, we define zj`1 P V2R ˆ Nj as
zj`1 “ ψj`1{2u

j`1, where uj`1 P VN is solution of problem (4.2) in Tj . Then, it can be easily shown
that tzj`1ujPΥh satisfy

$

&

%

zj`1 “ Tjz
j `∆tJ c

N∇Hj
N ppz

jq, for j P Υh,

z0 “ ψ1{2u0,
(4.3)



18

VN,j VN,j´1

V2R ˆN

pVN ,JN puqq

ψj´1{2

uj´1

zj´1

uj

zjTj

ψ´1
j`1{2

uj`1

zj`1

Figure 1: Sketch of Darboux’s charts approximation on the Poisson manifold pVN ,JN puqq.

where pzj :“ ψj`1{2pu
j and Hj

N pzq :“ HN pψ
´1
j`1{2zq for all z P VN,j .

The fact that the approximation of the Darboux map is based on the linearization, introduced by the
timestepping, ensures that the Poisson structure is not jeopardized by recasting the discrete problem
(4.2) as (4.3). This implies that: I P C8pVN q is an invariant of the motion of Φt

XHN
if and only if

Ij :“ ψ˚j`1{2I P C
8pVN q is a (local) invariant of ΦtX

Hj
N

for all j P Υh.

Corollary 4.2. The Hamiltonian function HN of (4.2) is preserved if and only if (4.3) is locally
Hamiltonian-preserving i.e. Hj

N pz
j`1q “ Hj

N pTjz
jq for every j P Υh. This holds true for any invariant

of motion of ΦtXHN
.

Proof. Let tzjujPΥh be numerical solutions of (4.3) in each interval Tj . By construction, it holds that
Hj
N pz

j`1q “ HN pψ
´1
j`1{2z

j`1q “ HN pu
j`1q. If (4.3) is locally Hamiltonian-preserving, using the definition

of transition maps and the local conservation properties, we recover

Hj
N pz

j`1q “ Hj
N pTjz

jq “ HN pψ
´1
j`1{2Tjz

jq “ HN pψ
´1
j`1{2ψj`1{2ψ

´1
j´1{2z

jq “ Hj´1
N pzjq

“ Hj´1
N pTj´1z

j´1q “ . . . “ H0
N pz

1q “ H0
N pT0z

0q “ HN pu0q.

Conversely, if (4.2) is (globally) Hamiltonian preserving, then HN pu0q “ . . . “ HN pu
jq “ HN pu

j`1q for
all j P Υh. The conclusion follows from HN pu

jq “ HN pψ
´1
j´1{2z

jq “ HN pψ
´1
j`1{2Tjz

jq.

The global evolution equation for z is not J c
N -Poisson, due to the transition between neighboring

intervals, notwithstanding that (4.3) is canonically J c
N -Poisson on each time interval Tj . Furthermore, the

initial condition Tjzj on each Tj does not in general belong to the canonical Poisson manifold pVN,j ,J c
N q.

Likewise the solution zj`1 of (4.3) on Tj in general does not belong to pVN,j ,J c
N q, i.e., the splitting of the

dynamics is clearly not exact. One might consider a “correction” of the initial condition Tjzj to reduce
the distance between pVN,j ,J c

N q and the space where the local dynamics is taking place. However, this
could introduce an error in the approximation of the solution of the original problem (4.2) and, more
importantly, a loss in the preservation of the original Poisson structure JN puq, in view of Corollary 4.2.
We therefore do not consider this option. This consideration is supported by the observation that the
global evolution of z cannot “drift away” from the canonical Poisson manifold pVN,j ,J c

N q provided each
ψj`1{2 is a sufficiently accurate approximation of the Darboux map Ψ on the whole interval Tj . Indeed,
the distance, measured in the }¨}-norm, of the solution of (4.3) in Tj from the canonical Poisson manifold
pVN ,J c

N q is bounded by }ψj`1{2u
j`1 ´Ψpuj`1q}. This error is local, independent of the dynamics and
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of the space-time discretization, and only depends on the approximation properties of each ψj`1{2, which
are clearly problem-dependent, but controllable.

4.2 Reduced Basis Methods for State-Dependent Structures
To develop reduced basis methods for the discrete dynamical system (4.2) we can now apply a local
reduction approach, similar to that in Section 3.2.

As a lower dimensional space we construct an n-dimensional Poisson manifold, n ! N , endowed with
the canonical J c

n-Poisson bracket such that n ´ rankpJ c
nq “ q and the dimension of the null space of

JN puq is conserved in the model order reduction. Analogous to the splitting approach in Section 3.1,
this is achieved through a global linear surjective map π` such that, for every j P Υh,

π` : V2R ˆNj ÝÑ V2r ˆNj , π` “ πs` ˆ Id ,

where πs` is taken to be an `2-orthogonal symplectic application, i.e., πs`J c
2Rpπ

s
`q
J “ J c

2r.
The map π` : pVN , t¨, ¨ucN q Ñ pVn, t¨, ¨ucnq is Poisson since π`J c

Nπ
J
` “ J c

n . However, since the set of
solution snapshots does not possess a global Poisson structure, the low-dimensional space Vn is recovered
as a linear subspace of VN .

Lemma 4.3. The map P “ π ˝ π` : VN Ñ Impπq Ă VN is `2-orthogonal and it is a projection.

Proof. A straightforward application of the properties of π and of its pseudoinverse π`, yields the result.
Using π` ˝ π “ Id and the surjectivity of π` results in P ˝ P “ P.

The `2-orthogonality of P follows from the fact that, by construction, the pseudoinverse πs` and the
adjoint of πs coincide.

The orthogonality of P guarantees the inclusion of Vn “ Impπq in VN , and hence the approximation
properties of the reduced solution, while the symplecticity of πs` ensures that the nontrivial phase flow is
a symplectomorphism and that the local kernel tNjujPΥh is preserved.

The reduced problem is derived from the canonical Poisson dynamical systems (4.3) by a local Poisson
projection onto ImpπqXVN,j Ă VN . On the n-dimensional Poisson manifold Vn, the fully discrete problem
reads: For u0 P VN , find tyj`1ujPΥh Ă Vn such that

$

&

%

yj`1 “ τjy
j `∆tJ c

n∇Hj
nppy

jq, for j P Υh,

y0 “ π`ψ1{2u0,
(4.4)

where pzj « πpyj , Hj
npyq :“ HN pψ

´1
j`1{2πyq for all y P Vn, and the reduced transition maps τj are defined

as τj :“ π` ˝Tj ˝π for all j P Υhzt0u, with τ0 :“ Id . A sufficient condition for the well-posedness of (4.4)
is that ∇HN is Lipschitz continuous, where HN is the Hamiltonian of the high-fidelity problem (4.2).

Problem (4.4) can be seen as the temporal discretization of an evolution equation which is canonically
J c
n-Poisson on each time interval Tj . Indeed yj`1 P Vn is the numerical approximation of the solution of

$

&

%

dty “ J c
n∇Hj

npyq, for t P Tj ,

y0 “ τjy
j ,

(4.5)

where yj P Vn is the numerical solution of (4.4) at time tj . The reduced phase flow is no longer globally
Poisson: the Hamiltonian HN of the high-fidelity problem (4.1) is conserved up to the approximation
error of the local Darboux map.

Proposition 4.4. Let u0 be the initial condition of the dynamical system (4.1). For j P Υh fixed, let
urbpt

j`1q be the time-continuous solution of the reduced problem given by urbpt
j`1q “ ψ´1

j`1{2πypt
j`1q

where yptq is the solution of (4.5) at time t P Th. If the Hamiltonian HN of (4.1) is Lipschitz continuous
with constant LH then

ˇ

ˇHN purbpt
j`1qq ´HN pu0q

ˇ

ˇ ď LH

j
ÿ

k“1

}ψ´1
k`1{2}}ψk´1{2}}Tk ´ Id }}urbpt

kq}.
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Proof. Let yptkq P Vn be the solution of the reduced system (4.5) at time tk P Th. Since the system
is locally J c

N -Poisson, the Hamiltonian is an invariant of the local motion, namely Hk
npypt

k`1qq “

HN pψ
´1
k`1{2πypt

k`1qq “ Hk
npτkypt

kqq. However, the global Hamiltonian HN is not preserved at the
interface between intervals. Indeed,

ˇ

ˇHk
npτkypt

kqq ´Hk´1
n pyptkqq

ˇ

ˇ “

ˇ

ˇ

ˇ
HN pψ

´1
k`1{2πτkypt

kqq ´HN pψ
´1
k´1{2πypt

kqq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
HN pψ

´1
k`1{2PTkπypt

kqq ´HN pψ
´1
k´1{2πypt

kqq

ˇ

ˇ

ˇ
.

If Tkπyptkq P Impπq for all k P Υh, then ψ´1
k`1{2PTkπypt

kq “ ψ´1
k´1{2T

´1
k PTkπyptkq “ ψ´1

k´1{2πypt
kq, and,

hence, the Hamiltonian would be preserved.
Under the assumption that the Hamiltonian HN is Lipschitz continuous with constant LH it holds,

ˇ

ˇHk
npτkypt

kqq ´Hk´1
n pyptkqq

ˇ

ˇ ď LH}ψ
´1
k`1{2PTkπypt

kq ´ ψ´1
k´1{2πypt

kq}

“ LH}ψ
´1
k`1{2PpTk ´ Id qπyptkq ´ ψ´1

k`1{2pTk ´ Id qPπyptkq}

ď LH}ψ
´1
k`1{2}}ψk´1{2}}Tk ´ Id }}urbpt

kq}.

Hence, the error in the conservation of the Hamiltonian at time tj can be bounded as

ˇ

ˇHN purbpt
jqq ´HN pu0q

ˇ

ˇ “
ˇ

ˇHj´1
n pyptjqq ´HN pu0q

ˇ

ˇ ď

j´1
ÿ

k“1

ˇ

ˇHk
npypt

k`1qq ´Hk´1
n pyptkqq

ˇ

ˇ

ď

j´1
ÿ

k“1

ˇ

ˇHk
npτkypt

kqq ´Hk´1
n pyptkqq

ˇ

ˇ

ď LH

j´1
ÿ

k“1

}ψ´1
k`1{2}}ψk´1{2}}Tk ´ Id }}urbpt

kq}.

Observe that if the approximate maps tψj`1{2ujPΥh are constructed to be continuous at the interface
between temporal intervals, i.e., such that, for any j P Υh, ψj´1{2u

j “ ψj`1{2u
j , where uj is solution of

(4.2), then the evolution problems (4.3) and (4.4) are globally canonically Poisson, τjyj “ yj in (4.4),
and the preservation of the Hamiltonian is exact.

Since, by construction, the map π` acts as the identity on Nj for all j P Υh, the approximation of the
center of the Lie algebra C8pVN q is not affected by the reduction. This means that the error made in
the conservation of the Casimir invariants of the bracket t¨, ¨uN is only attributable to the approximation
of the Darboux charts.

Concerning the stability properties of the problem, since the Poisson system (4.1) and its canonical
form, obtained through Darboux’s map, are in one-to-one correspondence, ue is a Lyapunov stable
equilibrium of (4.1) if and only if Ψpueq is a Lyapunov stable equilibrium of the corresponding canonical
system. When resorting to the local approximation of Ψ, as introduced in Definition 4.1, Lyapunov stable
equilibria are preserved by the discrete problem since, by construction, ψ´1

j´1{2z
j “ uj for all j P Υh with

uj as the numerical solution of (4.2) and zj as the numerical solution of (4.3) in Tj´1. Note that the
property of preserving the Lyapunov equilibria at the discrete level depends on the temporal solver, see
e.g. [25] and references therein.

Furthermore, if Ψ˚HN is a Lyapunov function, a reasoning analogous to the one of Section 3.2.1
allows to show that the global reduced system associated with the exact Darboux map preserves the
Lyapunov stable equilibria belonging to Impπq. However, assuming ue P VN,j´1, the reduced state
ye :“ π`ψj´1{2ue « π`Ψpueq is generally not an equilibrium of (4.4). Ideally one would want to have
that }ψ´1

j´1{2πy
j ´ ue} is uniformly bounded for all j P Υh, where yj is the numerical solution of (4.4) in

Tj´1. It holds

}ψ´1
j´1{2πy

j ´ ue} “ }ψ
´1
j´1{2πy

j ´Ψ´1pπyeq} ď }ψ
´1
j´1{2pπy

j ´ πyeq} ` }ψ
´1
j´1{2πye ´Ψ´1pπyeq}

ď }ψ´1
j´1{2}}y

j ´ ye} ` }ψ
´1
j´1{2πye ´Ψ´1pπyeq}.
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The second term is the approximation error of the Darboux map, while the term }yj ´ ye} can be bounded
by the approximation error associated with solving the reduced problem (4.4) instead of the reduced
system obtained from the exact Darboux map Ψ. Although the reduced solution is not guaranteed to
belong to an arbitrary small neighborhood of ue, the term }yj ´ ye} does not depend on the reduction
but only on the approximation properties of the Darboux map.

4.2.1 Convergence of the Weak Symplectic Greedy Algorithm

For the derivation of the reduced basis, we rely on the weak greedy algorithm, described in Section 3.2.2,
with the following modifications. Let Φt

h,N be the discrete flow map associated with the temporal
discretization of the high-fidelity problem (4.2). A set of snapshots UN “ tuj “ Φtj

h,N pu
0q, j P Υhu

is computed together with the linear approximation maps tψj`1{2ujPΥh . The image of each snapshot
under the corresponding ψj`1{2 supplies the solution of the local system (4.3) in every time interval. By
extracting the symplectic part and excluding the contribution of the Casimir invariants, we define

Zs
N :“ tψsj`1{2u

j`1, j P Υhu Y tψ
s
1{2u0u, (4.6)

where ψsj`1{2pVN,jq “ V2R is a 2R-dimensional subspace of VN . We finally build an orthogonal J c
2R-

symplectic reduced basis from Zs
N via Algorithm 1 and the Poisson projection P :“ π ˝ π` from πs and

πs`.

Theorem 4.5 (Convergence of the Weak Symplectic Greedy Algorithm). Let Φth,cN be the discrete flow map
associated with (4.3). Assume that the solution set ZN :“ tzj “ Φtj

h,cN pz
0q, j P Υhu has Kolmogorov

n-width dnpZN q. Then, the reduced space Vn “ V2rˆN , with V2r obtained via the symplectic weak greedy
Algorithm 1, satisfies

}z ´ Pz} ď C3r`1pr ` 1qdnpZN q, @ z P ZN ,

where the finite constant C ą 0 is independent of n, r and N .

Proof. Let Zs
N be the set (4.6) containing the symplectic part of the solution trajectory at time instants

ttjujPΥh . Algorithm 1 iteratively generates a hierarchy of subspaces of V2R such that the projection
Ps is `2-orthogonal, see Lemma 4.3. In the context of an orthogonal reduced basis generation via a
greedy strategy we can revert to the a priori convergence estimates derived in [11] and [9]. The argument
proposed here is a straightforward modification of the proof presented in [11, Section 2] by taking into
account the form of the orthosymplectic reduced basis (Definition 3.9), and it is therefore relegated to
Appendix A.

Remark 4.6. We are making the tacit assumption that the Kolmogorov n-width of the solution set ZN
has a sufficiently fast decay. Unlike the constant case, see Section 3.2.2 and Lemma 3.11, the Kolmogorov
width of the solution set ZN associated with the system (4.3) cannot easily be bounded by the Kolmogorov
width of the solution set of the original system (4.2). That would require stronger conditions on the
global Darboux map Ψ, see e.g. [17], which are generally not guaranteed by Darboux’s Theorem 2.8.

4.3 A Priori Convergence Estimates for the Reduced Solution
For state-dependent Poisson structures we perform model order reduction in a local perspective. We
therefore derive a priori estimates for the error between the high-fidelity solution and the reduced solution
for the fully discrete system in each temporal interval. The total error at a given time is controlled by
the projection error at all the previous time steps.

Note that the error of the reduced solution is computed with respect to the solution of the fully
discrete high-fidelity system and not with respect to the exact solution of (4.1). Hence the estimate (4.7)
does not include the approximation error ensuing from the temporal discretization.

Theorem 4.7. Let j P Υh be fixed. Let uj`1 be the numerical solution of (4.2) at time tj`1 and let uj`1
rb

be the numerical solution of the reduced problem, obtained as uj`1
rb “ ψ´1

j`1{2πy
j`1, where yj`1 is the

solution of (4.4) at time tj`1. Assume that ∇HN is Lipschitz continuous in the }¨}-norm with constant
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LδH. If the numerical discretization of the Hamiltonian in (4.2) is (semi-)implicit, and the time step ∆t
satisfies

∆t LδHC1}ψ
´1
j`1{2}

2 ă 1, for all j P Υh,

where the finite constant C1 ą 0 depends only on the discretization of the Hamiltonian, then,

}uj`1 ´ uj`1
rb } ď

}ψ´1
j`1{2}

1´∆t LδHC1}ψ
´1
j`1{2}

2

ˆ

}zj`1 ´ Pzj`1} `

j
ÿ

k“1

γkβk}z
k ´ Pzk}

˙

. (4.7)

Here zk “ ψk´1{2u
k, βk :“ }Tk ´ Id } `∆t LδHC2}ψ

´1
k`1{2}

2, the constant C2 ą 0 depends only on the
discretization of the Hamiltonian, and

γk :“

$

’

&

’

%

1`
j
ř

m“k`1

βm, if k ď j ´ 1,

1, if k “ j.

Proof. Let us split the error at time tj , for j P Υh, as

ej :“ zj ´ πyj “ pzj ´ Pzjq ` pPzj ´ πyjq “: ejp ` e
j
h.

Subtracting the reduced problem (4.4) from problem (4.3), the approximation error ej`1
h at time tj`1

can be written as,

ej`1
h “ Pzj`1 ´ πyj`1

“ ejh ` PpTj ´ Id qzj ` πyj ´ PTjπyj `∆tPJ c
N p∇Hj

N ppz
jq ´∇Hj

N pπpy
jqq

“ p Id ` PpTj ´ Id qqejh ` PpTj ´ Id qejp `∆tPJ c
N p∇Hj

N ppz
jq ´∇Hj

N pπpy
jqq.

The total error at time tj`1 is bounded as,

}ej`1} ď }ej`1
p } ` }ej`1

h }

ď } Id ` PpTj ´ Id q}}ejh} ` }PpTj ´ Id q}}ejp} `∆t }Rj} ` }e
j`1
p }

ď p1` }Tj ´ Id }q}ejh} ` }Tj ´ Id }}ejp} `∆t }Rj} ` }e
j`1
p },

(4.8)

where Rj :“ PJ c
N p∇Hj

N ppz
jq ´∇Hj

N pπpy
jqq. Since ∇HN is Lipschitz continuous by assumption, using

the definition of the local Hamiltonian Hj
N :“ pψ´1

j`1{2q
˚HN , Rj satisfies

}Rj} ď }∇Hj
N ppz

jq ´∇Hj
N pπpy

jq} ď LδH}ψ
´1
j`1{2}

2}pzj ´ πpyj}

ď LδHC1}ψ
´1
j`1{2}

2}ej`1} ` LδHC2}ψ
´1
j`1{2}

2}ej},
(4.9)

where the finite non-negative constants C1 and C2 depend only on the temporal discretization of (4.2)
(e.g. for the implicit Euler scheme C1 “ 1 and C2 “ 0, for the implicit midpoint rule C1 “ C2 “ 1{2,
etc.). Hence, the total error at time tj`1 satisfies

}ej`1} ď∆t LδHC1}ψ
´1
j`1{2}

2}ej`1} ` p1` αj `∆t LδHC2}ψ
´1
j`1{2}

2q}ejh}

` pαj `∆t LδHC2}ψ
´1
j`1{2}

2q}ejp} ` }e
j`1
p }.

where αj :“ }Tj ´ Id }. Under the condition that the time step ∆t satisfies ∆t LδHC1}ψ
´1
j`1{2}

2 ă 1 for
all j P Υh, the total error at time tj`1 is controlled by the projection error ekp at all previous time steps
k ď j ` 1; i.e.,

}ej`1} ď
1

1´∆t LδHC1}ψ
´1
j`1{2}

2

ˆ j
ÿ

k“1

βk}e
k
p} ` }e

j`1
p } `

j´1
ÿ

k“1

ˆ j
ÿ

m“k`1

βm

˙

βk}e
k
p}

˙

,

where βm :“ αm `∆t LδHC2}ψ
´1
m`1{2}

2.
The conclusion follows from the fact that uj ´ ujrb “ ψ´1

j´1{2e
j .
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Observe that, except for the evaluation of the nonlinear terms, the local reduced basis technique,
described in the previous sections, does not incur a computational cost proportional to N during the
online phase since the evaluation of the reduced transition maps tτjuj can be performed offline.

4.4 Parametric State-Dependent Poisson Structures
If we consider a parametric dynamical system similar to (3.1) but with state-dependent Poisson structure,
we can extend the derivation and analysis of the reduced basis method described in the previous Sections.
The main obstacle relates to the fact that the resolution of the dynamical system in the low-dimensional
space (4.4) requires the knowledge of the Darboux map approximations tψj`1{2uj . These will inevitably
depend on the parameter where the Poisson tensor is evaluated. Only the linear maps tψj`1{2pηquj
associated with the parameters η P Λh Ă Λ will be computed in the offline phase. Therefore a way to
approximate each ψj`1{2 at any given parameter η P Λ is indispensable.

5 Numerical Experiments
To validate the theoretical results of the previous Sections we perform a set of numerical tests. For lack
of Poisson integrators for general structures, we consider ad hoc test cases for which such integrators are
available. The rationale is that we seek to assess the performances of the structure-preserving reduced
basis method in the absence of pollution from the temporal discretization.

In the forthcoming numerical simulations, if not otherwise specified, we will use a Newton’s method
as the nonlinear solver for implicit temporal discretizations. We fix the Newton tolerance to 10´10

and the maximum number of nonlinear iterations to 50. In the symplectic greedy Algorithm 1, we
consider a stabilized version of the symplectic Gram–Schmidt and a symplectic Gram–Schmidt with full
reorthogonalization [24] to deal with cases where the snapshots matrix is ill conditioned.

5.1 Numerical Experiments for Constant-Valued Degenerate Structures
As example of constant-valued degenerate Poisson structure we consider the Korteweg–de Vries (KdV)
equation. KdV type problems are nonlinear hyperbolic equations which describe the propagation of
waves in nonlinear dispersive media. The KdV equation in the one-dimensional spatial domain Ω and
time interval T reads: Find upt, xq : T ˆ Ω Ñ R such that

Btu` αu Bxu` η B
3
xxxu “ 0, α, η P R. (5.1)

The dispersive third order term provides a regularization yielding smooth solutions for smooth initial
conditions. The numerical treatment of (5.1) for small values of η, the so-called dispersion limit, is
particularly challenging, and for η “ 0, Burgers’ equation is recovered.

The KdV equation is a completely integrable system, i.e. it has as an infinite set of invariants, and
possesses a bi-Hamiltonian structure: The formulation with a degenerate constant-valued Poisson tensor
reads

Btu “ J δHpuq, with Hpuq “
ˆ

Ω

ˆ

α

6
u3 ´

η

2
pBxuq

2

˙

dx, J “ Bx,

and where δ denotes a functional derivative. Let us consider a uniform partition of the interval Ω “ ra, bs,
a, b P R with periodic boundary conditions, into N´1 elements, and let ∆x “ |b´a|{pN´1q. The Poisson
tensor J is discretized using centered finite differences, whereas the Hamiltonian H is approximated
using the trapezoidal rule and forward finite differences for the first order spatial derivative, as in [5, Eq.
(2)]. With a small abuse of notation, u denotes henceforth the semi-discrete solution. If uk is the nodal
value of u at the k-th mesh node, then

HN puq “ ∆x
N
ÿ

k“1

ˆ

α

6
u3
k ´

η

2

ˆ

uk`1 ´ uk
∆x

˙2 ˙

, (5.2)
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and pJNuqk “ uk`1 ´ uk´1, for k “ 1, . . . , N with uN`k “ u1`k, u0 “ uN´1 by periodicity. The Poisson
tensor JN has rankpJN q “ 2R, with 2R “ N ´ 1 if N odd, 2R “ N ´ 2 if N even. The corresponding
Casimir invariants are

C1puq “
N
ÿ

k“1

uk, C2puq “
N
ÿ

k“1

pu2k ´ u2k`1q. (5.3)

Note that, if N is odd, then C2puq ” 0 and C1 is the only Casimir invariant of the Poisson system.
Time discretization based on the fully implicit midpoint rule on Th “

Ť

jPΥh
ptj , tj`1s yields

uj`1 ´ uj “
∆t

2∆x
JN∇HN pu

j`1{2q, u0 “ Πhu0, j P Υh, (5.4)

where uj`1{2 :“ puj`1 ` ujq{2 and Πh is the nodal interpolation. The implicit midpoint rule provides a
Poisson integrator for any constant-valued Poisson tensor. However, it does not preserve the discrete
Hamiltonian (5.2) exactly.

As an alternative scheme, we consider the Average Vector Field (AVF) integration [36], which is
second order accurate, preserves the Hamiltonian exactly [18, Theorem 3.1], but it is not a Poisson
integrator [13]. For j P Υh, the fully discrete scheme reads

uj`1 ´ uj “
α

6

∆t

2∆x
JN

ˆ

pujq2 ` ujuj`1 ` puj`1q2
˙

`
η

2∆x3
JNFhpuj`1{2q, (5.5)

with u0 “ Πhu0 and where pFhpuqqk :“ puk`1 ´ 2uk ` uk´1q{2, for k “ 1, . . . , N .

5.1.1 KdV: Long Time Stability of Double Soliton Interaction

To assess the stability of the reduced basis algorithm, we run a numerical test simulating solitons
interaction over long time. Let us consider the KdV problem (5.1), with fixed parameters α “ 6 and
η “ 1, in the domain Ω “ r´20, 20s and temporal interval T “ p0, 100s. Let the initial condition be
the periodic function u0pxq “ 6 sech2

pxq, x P Ω. The spatial discretization of the high-fidelity problem
relies on the finite difference scheme (5.2) with N “ 1000 mesh nodes. We compare the results obtained
with the midpoint rule (5.4) as timestepping and the AVF scheme (5.5), both with uniform time step
∆t “ 10´3. We select Ms “ 10000 snapshots from the high-fidelity solution and run the symplectic
greedy Algorithm 1 with tolerances tolσ “ 10´5 and tolδ “ 10´12. The algorithm reaches convergence
with 2r “ 328 for the AVF timestepping and 2r “ 330 for the midpoint rule. The need of a sufficiently
large reduced space is typical of problems exhibiting propagation phenomena and is associated with a
slowly decaying Kolmogorov n-width [21].

The high-fidelity solution and the reduced solution at final time are shown in Figure 2 (left), where
the subscripts a and m refer to the AVF scheme and midpoint rule, respectively. The reduced solutions
do not present spurious oscillations, not even over long time, and exhibit a qualitatively correct behavior
in terms of phase and amplitude of the solitons, as it can be checked by comparing with [6, Example 5.2].
The solution obtained with the midpoint rule is slightly shifted with respect to the solution of the AVF
scheme. This is a typical effect of numerical dispersion: the shape of the solitons is preserved but the
solution is subject to a phase shift so that the solitons are wrongly located.

The error of the reduced numerical solution with respect to the high-fidelity is reported in Figure 2
(right), where both the original problem (3.1) and its canonical formulation (3.2) are considered. Figure 3
reports the error of the Hamiltonian and of the Casimir invariants (5.3) over time. The AVF scheme (left)
ensures almost exact preservation of the Hamiltonian and of the Casimir invariants when the canonical
system is solved. For the original high-fidelity model, the Hamiltonian is conserved up to the Newton
solver tolerance. The midpoint rule (Figure 3 right) preserves the linear Casimir invariants but not the
(cubic) Hamiltonian, as expected.

5.1.2 KdV: Dispersion Limit

As a second test case, let us consider the KdV equation with varying parameter η and solve the problem
in the limit of small dispersion. Specifically, let α “ 1 and η P Λ :“ r10´6, 2s. The problem is set in the
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Figure 2: KdV double soliton interaction. Numerical solutions of the high-fidelity and reduced models at final
time (left) for AVF timestepping and midpoint rule. Error between the numerical solution of the reduced problem
and the high-fidelity solutions of the Poisson system in the original and canonical forms (right).
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Figure 3: KdV double soliton interaction. Error of the Hamiltonian and Casimir invariants over time. Temporal
discretization with AVF scheme (left) and midpoint rule (right).

domain Ω “ r0, 1s and in the time interval T “ p0, 1s with initial condition u0pxq “ 2` 1{2 sinp2πpx´ ηqq,
x P Ω, (a shifted variation of the test in [45, Section 4.6]). The spatial discretization relies on N “ 1600
mesh nodes, and for the temporal approximation we use the AVF scheme (5.5) with uniform time step
∆t “ 10´3. The kernel of the Poisson tensor has dimension q “ 2. We select Ms “ 500 snapshots
from the high-fidelity model, and Λh is obtained by taking 10 equidistant points in Λ. The reduced
basis algorithm uses the symplectic greedy Algorithm 1 with tolerances tolσ “ 10´5 and tolδ “ 10´12.
Convergence is reached at 2r “ 556.

The reduced solution for η “ 10´5 R Λh captures the train of soliton waves without unphysical
oscillations, as shown in Figure 4. The `2-error over time of the reduced numerical solution with respect
to the high-fidelity solution, obtained from the Poisson system in the non-canonical and canonical forms,
is reported in Figure 5 (left). Concerning the invariants of motion, the Hamiltonian of both (4.1) and
(3.3) is conserved up to the solver tolerance, Figure 5 (right).

5.2 Numerical Experiments for State-Dependent Structures
The multi-species generalized Lotka–Volterra problem provides an example of a Hamiltonian system
with a state-dependent degenerate Poisson structure. The Volterra lattice equation was introduced to
describe the interaction and evolution of populations of competing species. Additionally, it provides a
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Figure 4: KdV in the dispersion limit, η “ 10´5. Evolution of the solution (left) and solution at final time (right)
obtained with the AVF timestepping.
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Figure 5: KdV in the dispersion limit, η “ 10´5. Error between the high-fidelity solution and the reduced solution
(left). Relative error of the Hamiltonian and the Casimir invariants (right).

discretization of the KdV equation or of the Logistic equation and can be used to model nonlinear control
systems, lattice problems, etc. The generalized Lotka–Volterra model for N species reads

dtukptq “ ukptq

ˆ

bk `
N
ÿ

`“1

ak,`u`ptq

˙

, k “ 1, . . . , N, bk, ak,` P R,

where uk`N “ uk for all k, for periodic boundary conditions. Here we take the values of tbkuk and
tak,`uk,` such that

dtuk “ ukpuk`1 ´ uk´1q, k “ 1, . . . , N. (5.6)

The Lotka–Volterra system (5.6) possesses the invariants

Iqpuq “
N
ÿ

k“1

ˆ

1

2
u2
k ` ukuk`1

˙

, Icpuq “
N
ÿ

k“1

1

3
u3
k `

N
ÿ

k“1

ukuk`1puk ` uk`1 ` uk`2q,

and the Casimir

C1puq “
N
ÿ

k“1

logpukq.
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Furthermore, if the number N of species is even, the problem can be recast in a split form as follows. Let
qkptq “ u2k´1ptq and pkptq “ u2kptq for k “ 1, . . . , N{2 and t P T , then (5.6) is equivalent to

$

&

%

dtqk “ qkppk ´ pk´1q,

dtpk “ pkpqk`1 ´ qkq.

This is a Poisson system with Hamiltonian HN pq, pq “
řN{2
k“1pqk ` pkq, and a quadratic bracket corre-

sponding to the Poisson tensor

JN puq :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 q1p1 ´q1pM

´q1p1 0 q2p1

´q2p1 0 q2p2

´q2p2 0 q3p2

´q3p2 0 q3p3

. . . . . . . . .

´qMpM´1 0 qMpM

q1pM ´qMpM 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where M :“ N{2. The dimension of the null space is q “ 2 for all u P VN .
Concerning the temporal discretization of the Lotka–Volterra problem in Hamiltonian form, the

symplectic Euler method preserves the quadratic Poisson structure [22], and reads, for all k “ 1, . . . , N{2
and j P Υh,

$

&

%

qj`1
k “ qjk `∆t qjkpp

j`1
k ´ pj`1

k´1q,

pj`1
k “ pjk `∆t pj`1

k pqjk`1 ´ q
j
kq.

(5.7)

Let us consider a numerical simulation of problem (5.6) in the temporal interval T “ p0, 500s, with
initial condition ukpt “ 0q “ 1 ` sech2

pxkq{p2N
2q, where xk “ ´1 ` 2pk ´ 1q{N for k “ 1, . . . , N .

The high-fidelity model is obtained with N “ 1000 and the symplectic Euler discretization (5.7) with
∆t “ 10´2. In the generation of the orthosymplectic reduced basis, the symplectic greedy Algorithm 1 is
run with tolerances tolσ “ 10´5 and tolδ “ 10´12. The algorithm reaches convergence with 2r “ 210.

In Figure 6 are reported the `2-error of the high-fidelity and reduced basis solutions at every time step
(left), and the error of the Hamiltonian, the Casimir C1 and the invariants Iq, Ic over time (right). It can
be observed that the invariants of motion of the high-fidelity problem are preserved with a high accuracy,
similarly to [22, Figure 1]. The reduced solution produces larger, though still satisfactory, errors in the
conservation of the invariants which however do not grow in time.

As can be observed in the proposed numerical tests, the structure-preserving approach proposed in
this work provides robust and efficient reduced methods. However, in order to achieve sufficient accuracy,
the reduced models still require relatively large approximation spaces. This is not a limitation of the
method but can be ascribed to the local low-rank nature of nondissipative phenomena, like advection
and wave-type problems, characterized by slowly decaying Kolmogorov n-widths, as shown in [21] for
families of 1D transport equations.

6 Concluding Remarks
We have developed and analyzed reduced basis methods for dynamical Hamiltonian systems with a
state-dependent and degenerate Poisson structure. The proposed reduced basis techniques are based
on “freezing” the Poisson tensor in each temporal interval (or stage) associated with a given temporal
discretization, followed by a model order reduction of the symplectic component of the dynamics. We
have shown that the resulting reduced model retains the global Poisson structure and the conservation
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Figure 6: Lotka–Volterra lattice. Evolution of the `2-error of the high-fidelity and reduced basis solutions (left).
Error in the conservation of the Hamiltonian, the Casimir C1 and the invariants Iq, Ic over time (right).

properties of the phase flow up to errors in the approximation of the Darboux map, and enjoys good
approximation properties. Further work may target the study of optimal and efficient approximation of
the Darboux map, and the corresponding approximation properties in the presence of a set of parameters
in addition to time. The development of local-in-time reduced basis methods to more effectively deal
with the local low-rank nature of nondissipative phenomena will also be subject of future investigations.
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A Proof of Theorem 4.5
Following Algorithm 1, the reduced basis matrix is initialized as π2 “ re1, pJ c

2Rq
Je1s where e1 “ z0

s :“
ψs1{2u0. The projection onto spantπ2u is defined as P2 “ π2 ˝ π2

` with π2
` “ pJ c

2¨1q
Jπ2J c

2R. At the r-th
iteration, for r ě 1, the greedy algorithm selects the new basis element er`1 to satisfy

er`1 “ argmax
zPZsN

}z ´ P2rz},

so that V2pr`1q “ spante1, . . . , er`1, pJ c
2Rq

Je1, . . . , pJ c
2Rq

Jer`1u. The basis vectors are orthogonalized
with respect to the `2-norm as

ξ1 “ e1,

ξi “ ei ´ P2pi´1qei, ξr`i “ pJ c
2Rq

Jξi, i “ 2, . . . , r ` 1.

The projection P2r onto the symplectic manifold V2r can be written as

P2rz “
r
ÿ

i“1

pαipzqξi ` βipzqpJ c
2Rq

Jξiq, @ z P Zs
N .

With Zs
N being a subspace of the normed space pV2R, }¨}q, P2r is, in view of Lemma 4.3, an orthogonal

projection onto V2r. Hence, for each z P Zs
N , ξ` P V2r and ` ď r,

pP2rz, ξ`q “ pz,P2rξ`q “ pz, ξ`q “ α`pzq}ξ`}
2,

pP2rz, pJ c
2Rq

Jξ`q “ β`pzq}pJ c
2Rq

Jξ`}
2 “ β`pzq}ξ`}

2.
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Using the orthogonality properties of P2p`´1q, the fact that ξ`, pJ c
2Rq

Jξ` P V2` are `2-orthogonal to V2p`´1q

by construction, combined with the error criterion of the greedy Algorithm 1, results in

|α`pzq| “
|pz, ξ`q|

}ξ`}2
“
|pz ´ P2p`´1qz, ξ`q|

}ξ`}2
ď
}z ´ P2p`´1qz}

}e` ´ P2p`´1qe`}
ď 1,

|β`pzq| “
|pz, pJ c

2Rq
Jξ`q|

}pJ c
2Rq

Jξ`}2
“
|pz ´ P2p`´1qz, pJ c

2Rq
Jξ`q|

}pJ c
2Rq

Jξ`}2
ď
}z ´ P2p`´1qz}

}e` ´ P2p`´1qe`}
ď 1.

(A.1)

The elements of the orthogonal basis spanning V2pr`1q, selected by the greedy algorithm, can be expanded
as

ξi “
i
ÿ

j“1

pγijej ` δ
i
jpJ c

2Rq
Jejq, ξr`i “ pJ c

2Rq
Jξi.

for all i “ 2, . . . , r ` 1, where γii “ 1, δii “ 0 and for j ă i,

γij :“
i´1
ÿ

`“j

p´α`peiqγ
`
j ` βlpejqδ

`
jq, δij :“

i´1
ÿ

`“j

pα`peiqδ
`
j ´ βlpejqγ

`
jq.

Using (A.1), each coefficient can be bounded as |γij | ă 3i´j´1, |δij | ă 3i´j´1 if j ă i, so that

|γij | ď 3i´j , |δij | ď 3i´j , @ j ď i.

By definition of the Kolmogorov 2r-width, given λ ą 1, there exists a 2r-dimensional space W2r such that
the angle between Zs

N and W2r satisfies supzPZsN infwPW2r }z ´ w} ď λd2rpZs
N q. Hence, for the elements

of any subspace V` Ă Zs
N with ` ď r, there exist w`, v` P W2r such that }e` ´ w`} ď λd2rpZs

N q, and
}pJ c

2Rq
Je` ´ v`} ď λd2rpZs

N q. For i “ 1, . . . , r, we define the vectors

W2r Q ζi “
i
ÿ

j“1

pγijwj ` δ
i
jvjq, ζr`i “

i
ÿ

j“1

p´δijwj ` γ
i
jvjq. (A.2)

For i “ 1, . . . , 2r, they satisfy

}ξi ´ ζi} ď
i
ÿ

j“1

p|γij |}ej ´ wj} ` |δ
i
j |}pJ c

2Rq
Jej ´ vj}q,ď λd2rpZs

N q

i
ÿ

j“1

2 ¨ 3i´j ă 3iλd2rpZs
N q.

Let us consider the elements, defined in (A.2), where we add a further pair pζr`1, ζ2pr`1qq PW2r, defined
such that wr`1, vr`1 PW2r are the vectors for which }er`1 ´ wr`1} ď λd2rpZs

N q, and }pJ c
2Rq

Jer`1 ´ vr`1} ď

λd2rpZs
N q. Since such a family belongs to the 2r-dimensional space W2r by construction, the vec-

tors tζiu
2pr`1q
i“1 cannot be linearly independent: there exist tσiu

2pr`1q
i“1 Ă R such that }σ} “ 1 and

ř2pr`1q
i“1 σiζi “ 0. Hence,

›

›

›

›

r`1
ÿ

i“1

pσiξi ` σpr`1q`ipJ c
2Rq

Jξiq

›

›

›

›

“

›

›

›

›

2pr`1q
ÿ

i“1

σipξi ´ ζiq

›

›

›

›

ď λd2rpZN q
2pr`1q
ÿ

i“1

|σi|3
i

ď 3r`1
a

2pr ` 1qλd2rpZs
N q.

Let 1 ď j ď 2pr ` 1q be fixed. Define wj :“ σ´1
j

ř2pr`1q
i“1,i‰j σiξi. Note that pξj , wjq “ 0 since tξju

2pr`1q
j“1 is

orthogonal, which implies }ξj}2 ď }ξj}2 ` }wj}2 “ }ξj ` wj}2. Furthermore,

}ξj ` wj} ď

›

›

›

›

σ´1
j

2pr`1q
ÿ

i“1

σipξi ´ ζiq

›

›

›

›

ď |σ´1
j |

2pr`1q
ÿ

i“1

|σi|}ξi ´ ζi} ď 3r`1λd2rpZs
N q

a

2pr ` 1q|σ´1
j |.
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Since the choice of the index j is arbitrary, we select j such that |σj | ě p2pr ` 1qq´1{2, which is possible
by definition of tσiui. Hence, }ξj ` wj} ď 2 ¨ 3r`1pr` 1qλd2rpZN q. Therefore, the projection error of any
z P Zs

N can be bounded as

}z ´ P2rz} ď }z ´ P2pj´1qz} ď }ej ´ P2pj´1qej} “ }ξj} ď 2 ¨ 3r`1pr ` 1qλd2rpZs
N q.

With an argument analogous to the proof of Proposition 3.12, the conclusion follows from the fact that
d2rpZs

N q ď dnpZN q since, in each time interval, the subsets tNjuj are not affected by the reduction.
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