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Abstract

We develop structure-preserving reduced basis methods for a large class of problems by resorting
to their semi-discrete formulation as Hamiltonian dynamical systems. In this perspective, the phase
space is naturally endowed with a Poisson manifold structure which encodes the physical properties,
symmetries and conservation laws of the dynamics. We design reduced basis methods for the general
case of nonlinear state-dependent degenerate Poisson structures based on a two-step approach. First,
via a local approximation of the Poisson tensor we split the Hamiltonian dynamics into an “almost
symplectic” part and the trivial evolution of the Casimir invariants. Second, canonically symplectic
reduced basis techniques are applied to the nontrivial component of the dynamics, whereas the
local Poisson tensor kernel is preserved exactly. The global Poisson structure and the conservation
properties of the phase flow are retained by the reduced model in the constant-valued case and up
to errors in the Poisson tensor approximation in the state-dependent case. The proposed reduction
scheme is combined with a discrete empirical interpolation method (DEIM) to deal with nonlinear
Hamiltonian functionals and ensure a computationally competitive reduced model. A priori error
estimates for the solution of the reduced system are established. A set of numerical simulations is
presented to corroborate the theoretical findings.

Keywords. Hamiltonian dynamics, Poisson manifolds, symplectic structure, invariants of motion,
structure-preserving schemes, reduced basis methods (RBM).
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1 Introduction

During the last decade there has been substantial developments of model order reduction techniques
to efficiently solve parameterized partial differential equations in computationally intensive scenarios
such as real-time and many-query simulations. Reduced basis methods (RBM) aim at pruning the
computational effort by replacing the original high-dimensional problems with models of significantly
reduced dimensionality without compromising the overall accuracy. For time-dependent parametric
problems, an approximation space of low dimension, the so-called reduced space, is constructed from
a collection of full-order solutions at sampled values of time and parameters during a computationally
intensive offline phase. The reduced space is spanned by the modes associated with the dominant
components of the dynamics. In the online phase the reduced order model is then solved at a substantially
reduced computational cost for any parameter query.

The development and analysis of reduced basis techniques for the efficient solution of PDEs is
well-established in the context of linear elliptic and parabolic problems. For nonlinear and hyperbolic
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problems, model order reduction is less well understood. Available methods are the method of freezing
[46], Lax pairs [26] and dictionary-based approximations [30], L'-norm minimization techniques [1],
model reduction tracking discontinuities [50], the Gauss—Newton with approximated tensors (GNAT)
method [14], RBM for finite volume discretizations [31], with conservation properties [13]. Most of these
approaches are conceived to tackle ad hoc features of the problems considered, hence not striving to be
sufficiently general, let alone provide a sound strategy to preserve the structure intrinsic to the original
model.

Hamiltonian Formulation of Nonlinear and Hyperbolic Problems. The field theory formalism,
grounded in the mathematical description of physical quantities via integral action functionals, provides a
unified perspective encompassing partial differential equations of interest in a broad range of applications.
Examples of problems that can be derived from action principles include Maxwell’s equations [9],
Schrédinger’s equation, Korteweg—de Vries [42] and wave equations, compressible [37] and incompressible
[4] Euler equations, Vlasov—Poisson and Vlasov—Maxwell equations [43], etc. The action principle yields a
formulation of the constitutive equations as Hamiltonian systems whose phase space is naturally endowed
with a differentiable Poisson manifold structure. The algebraic structure of the phase space, which is
generally degenerate and nonlinearly state-dependent, underpins the physical properties of the system.
Most prominently, Poisson structures encode a family of conserved quantities, which by Noether’s theorem,
are related to symmetries of the Hamiltonian. In addition, the degeneracy of the Poisson brackets entails
the conservation of families of invariants.

The preservation, at the discrete level, of the algebraic and topological structure of physical problems
have received considerable attention during the last decades. Both in the context of spatial discretization
and temporal integration (with the so-called geometric numerical integrators), it has become apparent
that structure-preserving strategies can yield approximate solutions with superior stability and accuracy
properties. On the other hand, the geometric structure of continuous and discrete Hamiltonian systems
is in general thwarted during model order reduction, resulting in the onset of spurious and unphysical
artifacts which may trigger instabilities and qualitatively wrong solution behavior.

Recently, the promising performance of structure-preserving techniques have fostered the development
of reduced basis methods tantamount to geometric numerical integration and compatible spatial dis-
cretizations. In the context of nondissipative Hamiltonian dynamical systems Lall, Krysl, and Marsden
[34] pioneered the use of a Galerkin projection on the Euler-Lagrange equations to devise reduced order
models preserving Lagrangian structures. A similar approach was later pursued and improved in [15].
Dealing directly with the Hamiltonian formulation, reduced basis methods preserving the canonical
symplectic structure of dynamical systems were developed in [48], and [3]. A similar technique has been
adopted in [45] in the study of dynamical low-rank methods for the approximation of the stochastic wave
equation.

To the best of our knowledge, none of the aforementioned works address the case of degenerate and/or
state-dependent nonlinear Poisson structures. A naive extension of the available structure-preserving
reduction techniques to these cases is hindered by the intrinsic nonlinearity and degeneracy of the
structure which, among others, fails to provide a pseudo-inner product and a path to endow the reduced
model with a Poisson phase flow.

Our Contribution: Novelties and Outline. In this work we develop and analyze structure-preserving
reduced basis methods for Hamiltonian dynamics with state-dependent and possibly degenerate Poisson
manifold structures. Pursuing a method of lines approach, we consider the ordinary differential equations
ensuing from a suitable spatial approximation of the Hamiltonian dynamics. The latter is assumed to be
structure-preserving in the sense of yielding a semi-discrete system of the form

du _ IN(u) Vi Hy (u), (1.1)

dt
where the unknown u depends on time and possibly on a set of parameters, Hy is the discrete system
Hamiltonian and Jy(u) is a finite-dimensional operator describing the Poisson manifold structure.
The gist of our method is to perform a local splitting of the Hamiltonian dynamics into a canonically
symplectic component and a trivial evolution of the invariants associated with the kernel of the Poisson
structure. The splitting of the dynamics is motivated by a result of Darboux 23| which, roughly speaking,



demonstrates the existence of local charts in which any Poisson structure has the canonical form. The
rationale is that canonical Poisson structures are more amenable to model order reduction since the
nonlinearity has been removed from the structure and its kernel singled out. Since an analytic expression
of the Darboux charts is usually unavailable, we rely on piecewise approximations by leveraging the
local linearization introduced by the timestepping. The original dynamics is then approximated in a
lower-dimensional manifold, foliated by the Poisson tensor kernel and a reduced symplectic component.
The latter is derived via canonically symplectic reduced basis techniques adapted from [48, 3]. The
resulting reduced dynamics retains the Poisson structure of the phase flow up to the approximation error
of the Darboux charts.

The remainder of the paper is organized as follows. In Section 2, the algebraic structure underlying
Hamiltonian systems on finite-dimensional Poisson manifolds is described. Section 3 pertains the case of
degenerate constant-valued parametric Poisson structures for which the manifold splitting is performed
globally. The resulting reduced problem is Hamiltonian with a Poisson manifold structure and inherits the
physical properties of the high-fidelity model in terms of conservation of the Hamiltonian, preservation of
the Casimir invariants, and Lyapunov stability, as shown in Section 3.2.1. In Section 3.3 the structure-
preserving reduced basis method is coupled to a symplectic DEIM for the efficient treatment of the
nonlinear terms. State space error bounds for the solution of the reduced system in terms of the projection
error into the reduced space are presented in Section 3.3.1. Next, Section 4 is devoted to the more
challenging case of state-dependent nonlinear Poisson structures. The reduced model built upon piecewise
linear approximations of the Darboux charts is shown to be structure-preserving up to approximation
errors of the Darboux maps, Section 4.2. A priori error estimates for the fully discrete reduced problem
are established in Section 4.3 and in Section 4.3.1 when the nonlinear terms are approximated via a
DEIM strategy. In Section 5 a set of numerical experiments is presented and conclusions are drawn in
Section 6.

2 Dynamical Systems with Poisson Structure

In this Section we briefly describe the topological and algebraic structure underlying the phase space of
Hamiltonian dynamical systems of the form (1.1).

Definition 2.1 (Poisson Structure). Let Vx be a finite N-dimensional smooth manifold. A Poisson
structure on Vy is a bilinear operation {-, -}y : C®(Vn) x C*(Vn) — C®(Vn), called a bracket, with
the following properties: for all 7,G,7 € C*(Vy) and u € Vy,

(i) Skew-symmetry: {F,G}n(u) = —{G, Fyn (u).
(ii) Leibniz rule: {FG, T}y (u) = {F,T}n(w)G(w) + F(w){G, T}n (u).
(iii) Jacobi identity: {F,{G,Z}n}n(u) + {G,{Z, Fin}n(u) + {Z,{F,G}n}n(u) = 0.
A manifold endowed with a Poisson structure is called a Poisson manifold.

The space C*(Vy) of real-valued smooth functions over the Poisson manifold (Vy, {-, -} n) together
with the bracket {-, -}y forms a Lie algebra [2, Proposition 3.3.17], called the Poisson algebra of Vy.

Owing to the bilinearity of {-,-} y and the Leibniz rule, given an analytic function H € C*(Vy), the
map F € C*(Vn) — {F,H}n € C*(Vn) defines a differentiation on the Poisson manifold Vy. Hence,
there exists a locally unique vector field X4 (u) € T,,Vn such that Lx, F = {F,H}n, where Lx denotes
the Lie derivative with respect to the velocity field X. The vector Xy (u) is called the Hamiltonian vector
field of the functional H € C*(Vy ), and characterizes the dynamics of the evolution problem (1.1), as
explained in the forthcoming Section 2.1. The map H € C*(Vn) — Xy € TVy is a (anti)homomorphism
between Lie algebras [39, Proposition 10.2.2].

If dH is the 1-form given by the exterior derivative of the functional H € C*(Vy), its Hamiltonian
vector field Xy; can be obtained as the image of d{ under the vector bundle morphism Jy(u) defined,
for any u € Vy, as

jN(u) : T*VN — TVN



The Poisson bracket can be expressed in terms of Jy as
{F,Gin(u) = T*Vy (dF, jN(u)dg>TVNv VF,Ge C*(Vn), YueVy, (2.2)

where gy, {*,") ry, denotes the duality pairing between the cotangent and the tangent bundle. The
application Jy is a contravariant 2-tensor on the manifold Vy, commonly referred to as Poisson
tensor. The tensor Jy is skew-symmetric with respect to the metric g on Vy defined as g(V.F,-) :=
THVy (dF, ->TVN7 and V is the Riemannian gradient. Hence, in local coordinates, the Poisson bracket
reads

{]:’ g}N(u) = VUI(U)TJN(U)vug(U), VJ:, Ge COO(VN), YueVy.

In view of the relationship between the bracket {-, -}y and the tensor Jy, the Poisson manifold structure
on Vy can be equivalently characterized as follows.

Lemma 2.2. Let Vy be a finite N-dimensional smooth manifold and let Jy be the vector bundle map
defined in (2.1). Then the bracket (2.2) is a Poisson structure as per Definition 2.1, if and only if Ty is
skew-symmetric and satisfies the Jacobi identity

(o, u))i
Z((N()),

aUg

A(IN(w)) .k

(9Ug

A(IN (u))k.i
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forallue VN and i,j,k=1,...,N.

It immediately follows that any constant-valued, skew-adjoint operator gives a Poisson structure.

In general, the vector bundle map (2.1) is not an isomorphism: its rank at a given point u € Vy
defines the rank of the Poisson manifold Vi at u. By the skew-symmetry of the Poisson bracket, the
rank of a Poisson manifold is always an even (non-negative) integer. Moreover, if Vy is not full rank then
its Poisson structure is said to be degenerate. Degeneracy of Poisson structures generates conservation
laws of the Hamiltonian dynamics on the phase space Vy, ¢f. Definition 2.6.

The notion of rank characterizes symplectic manifolds as the Poisson manifolds which have maximal
global rank. Symplectic manifolds are endowed with a nondegenerate, closed 2-form w, called symplectic
structure. The Poisson bracket on the symplectic manifold (Vy,w) is defined as

{F,Gin(u) = w(XF, Xg) := w(In(u)dF, In(u) dG), VF,Ge C*(Vy), Yue Vy.

Since w is nondegenerate, the map wg(H Y e TVN — w(Xy,Y) = (ix,w)(Y) is injective (ix denotes
the contraction by X), and the Hamiltonian vector field X4 of the functional H € C*(Vy) satisfies
dH = iXHw.

2.1 Hamiltonian Dynamics

The Hamiltonian vector field X3, characterizes the evolution problem (1.1), whose dynamics preserves
the Poisson structure of the phase space.

Applications between Poisson manifolds, consistent with the structure in the sense of preserving the
bracket, are called Poisson maps.

Definition 2.3 (Poisson Map). Let (Vn, {-,-}n) and (Vy, {-,-}n) be Poisson manifolds of finite dimension
N and n respectively, with n < N. A smooth application ¥ : (Vn,{-,-}n) = Vn, {-, }n) is called a
Poisson map if

(U{F,G}n)(u) = {T*F, 0*Gin(u), VF,GeCP(V,), Vue Vy.

A vector field X3 on a manifold Vy determines a phase flow, namely a one-parameter group of
diffeomorphisms ®% : Vy — Vy satisfying d;®% (u) = X3 (%, (u)) for all t € T and u € Vy, with
®%,,(u) = u. The flow map ®%  of a vector field X4 € TVy is Hamiltonian if ®%_ is a Poisson map
(on its domain). The reverse is also true.



Proposition 2.4 ([39, Proposition 10.2.3]). Let (Vn,{:,}n) be a Poisson manifold and H € C*(Vy).
Then, the map ®% : Vy — Vn satisfies

qa
dt
if and only if it is the flow of Xy .

(Fodl) = {F, H}nod, VF e C*®Vn),

With the definitions introduced hitherto, we can recast the dynamical system (1.1) as a Hamiltonian
initial value problem as follows. Let T := (t9, 7] be a temporal interval and let V be an N-dimensional
Poisson manifold with Poisson tensor Jy(u). For ug € Vy, find u € C*(T, Vy) such that

dyu(t) = In(u(t)) Vo Hy (u(t)), for teT,

(2.4)
u(t0> = Ug,

where Hy € C*(Vy) is the Hamiltonian functional.

We can regard Vy as a submanifold of R equipped with the standard Euclidean metric whose
induced norm is denoted henceforth by |-|. Local well-posedness of (2.4) is guaranteed by assuming that
the operator F'(t,u(t)) := Xy, (u) is Lipschitz continuous in u uniformly in ¢ € 7 in the |-|-norm, in the
spirit of Picard-Lindel6f result.

In addition to possessing a Poisson phase flow, Hamiltonian dynamics is characterized by the existence
of differential invariants, and symmetry-related conservation laws.

Definition 2.5 (Invariants of Motion). A functional Z € C*(Vy) is an invariant of motion of the dynamical
system (2.4) with flow map (I).tXHN’ if {Z,Hn}n(u) =0 for all u € Vy. Consequently, Z is constant along
the orbits of Xy, .

The Hamiltonian functional (if time-independent) is an invariant of motion. A particular subset of
the invariants of motion of a dynamical system is given by the Casimir invariants, functionals on Vy
which {-, -} y-commute with every other functionals in C®(Vy).

Definition 2.6 (Casimir Invariants). If g is a Lie algebra with Lie product {-,-}, the centralizer of a subset
S of g is defined as C4(S) := {Ceg: {C,F} = 0for all F € S}. The centralizer C4(g) of the Lie algebra
itself is called the center of g and its elements are called Casimir functions.

The Casimir invariants of the Poisson manifold Vy form the center of the Lie algebra C*(Vy ). Hence
they are independent of the dynamics and only depend on the Poisson structure of the manifold, in
particular its degeneracy. The number of Casimir invariants without functional relations among them,
called independent Casimir invariants, is equal to the rank of the Lie algebra.

Henceforth, we assume that Vy is a regular Poisson manifold, namely rank(Jx(u)) = 2R, for all
u € Vy, with Re N, 2R < N. We denote with ¢ := N — 2R the dimension of the center of the Lie algebra,
i.e. the number of independent Casimir invariants of (Vy, Jn(u)). Considering only regular Poisson
manifolds is not restrictive, since the Hamiltonian systems we are interested in ensue from problems
characterized by globally conserved quantities, such as energy, angular momentum, vorticity, etc.

2.2 Canonical Form of Poisson Structures

In the theory of Hamiltonian systems of classical mechanics, canonical forms on cotangent bundles are
of great relevance. On an even dimensional manifold, a symplectic structure is given by the canonical
symplectic 2-form defined as the exterior derivative of the tautological 1-form, see e.g. [12, Section 2.3].
Resorting to a coordinate system, the canonical structure on a symplectic manifold can be characterized
as in the following result.

Proposition 2.7 ([2, Proposition 3.3.21]). Let (Vag,w) be a symplectic manifold and (U, ) a cotangent
coordinate chart ¥(u) = (¢*(u),...,q%w),p1(u),...,pr(u)), for allue U. Then (U,v) is a symplectic
canonical chart if and only if {¢*, ¢’} = {pi,p;j} =0, and {¢*,p;} = 6;j on U for alli,j =1,..., R, where
{-,-} is the Poisson bracket on (Var,w).



Every finite-dimensional symplectic manifold admits local coordinates in which the local symplectic
form is canonical. This result is known as Darboux’s theorem [23].

Theorem 2.8. Let Vi be a finite 2R-dimensional symplectic manifold. For each u € Vogr there exists a
chart (B, ¥,) in which a nondegenerate closed 2-form is locally isomorphic to the canonical form. The
manifold Vor can be covered by such charts.

Note that this result can be extended to the infinite-dimensional case only under special assumptions
and in general not if the symplectic structure w on the manifold is only weakly nondegenerate, i.e. the
map wg( is injective but not necessarily onto. We refer to [51, 38, 47| for further details on the topic.

In order to derive the canonical form of Poisson structures one has to first deal with the kernel of
the vector bundle map. Every Poisson manifold can be foliated by injectively immersed submanifolds
corresponding to the equivalence classes under the following relation: two points on a Poisson manifold
belong to the same class if there exists a piecewise smooth curve joining them consisting of segments of
integral curves of Hamiltonian vector fields.

Definition 2.9 (Manifold Foliation). Let Vy be an N-dimensional manifold. A foliation F of class CP and
of dimension ¢ on Vy is a decomposition of Vy into disjoint connected subsets F = {f,},, called the
leaves of the foliation, with the following property: each point of Vy has a neighborhood B and a system
of CP coordinates B — z := (z,,2.) € R? x RN~4 such that for each leaf f,, the components of B n f,
are described by the equations (z.)1 = constant, ..., (z.)n_q = constant.

The embedding of each symplectic leaf in a Poisson manifold is an injective Poisson map, and the
phase flow of a Hamiltonian vector field preserves the symplectic structures on the leaves.

The combination of Darboux’s theorem with the foliation properties of Poisson manifolds (cf. also
the symplectic stratification theory [5, Chapter 2|) provides a way to bring degenerate Poisson structures
into canonical form.

Theorem 2.10 (Lie-Weinstein Splitting Theorem [35, 52]). Let (W, {-,-}n) be an N-dimensional Poisson
manifold. For each u € Vy there exists a neighborhood B, < Vy of u, in which the rank of Vn is
equal to 2R, and an isomorphism W, : B, — 8 x Nt where S = W (B,) is a symplectic manifold and
N = U .(B,) is a Poisson manifold whose rank vanishes at W.(u). The factors S and N are unique
up to local isomorphisms. Moreover, there exist local coordinates {q*,...,q%,p1,...,pr,ct,...,cN 721}
which are canonical, i.e. {¢',¢"}n = {pi,pj}n = {¢",*}n = {pi,F}n =0, and {¢',p;j}n = & ; for all
i,j=1,...,Randk=1,...,N — 2R.

On the neighborhood B,, the coordinates {cF}; correspond to the Casimir invariants, whereas
{(¢",pi)}: are the symplectic canonical coordinates, sometimes referred to as Clebsch variables [19]. In
the canonical coordinates, the vector bundle map (2.1) takes the form

Id
j]% = | —1Id : T*VR X T*VR X T*VN_QR — TVnN,
0

where Id and 0 denote the identity and zero map, respectively.

There are many advantages for using canonical coordinates, see e.g. [47], most prominently, the
possibility of bringing the Poisson tensor into constant-valued form and isolate its kernel. The design of
our structure-preserving reduced basis methods for (2.4) hinges upon canonical forms obtained via exact
or approximate Darboux maps, c¢f. Sections 3.1 and 4.1.

IThe Cartesian product of two Poisson manifolds is endowed with a Poisson structure given by the Poisson map property
of the projection on each factor, and by requiring that the pullbacks of the Poisson algebras on each factor form commuting
subalgebras of the Poisson algebra of the Cartesian product.



2.3 Construction of Global Darboux’s Map

On finite-dimensional Poisson manifolds Vy, endowed with a constant-valued Poisson structure [Jy, the
Darboux map from Theorem 2.8 is global. An analytic expression for the Darboux map can be derived
by reverting to well-known results on matrix decompositions.

Proposition 2.11. Every skew-symmetric matriz M € RN>N with rank(M) = 2R < N admits a decompo-
sition of the form
M=UJLU", (2.5)

where U € RNN s invertible (but not orthogonal in general), and J§ € RNV is the matriz representation
of the Poisson tensor in canonical form, namely

. Jsn  O2mrq . Or Igr
IN = ) Tor = )

0611212 Oq —Ir Or

where ¢ := N — 2R is the dimension of the null space of M, Og € REE gnd I'p € R®E denote the zero
and the identity matriz, respectively.
The factorization (2.5) is unique up to transformations in the symplectic group Sp(2R,R).

Proof. We propose a constructive proof by steps: The implementation on the numerical experiments of
Section 5 will mimic this argument.
Step 1. Every skew-symmetric square matrix can be brought into canonical form by a unitary congruence
transformation, namely there exists Q € RM" orthogonal such that M = QSQT. The so-called Youla
form S [55] is formed by blocks along the main diagonal, each 2 x 2 block formed by the complex part of
a conjugate pair of complex eigenvalues of M, {+iJ; }] 1, 0; > 0, and zeros for j > R. The proof of this
result can be found in [55, Corollary 2] or [25 Theorem 2].

The Youla decomposition in not unique: the factor S can be fixed by computing a decomposition for
a given ordering of the eigenvalues of M, see e.g. [10]. However, the orthogonal matrix @ is not unique.
Step 2. The block diagonal matrix S € RN N can be further decomposed as S = DSD where the matrix
D is diagonal with diagonal equal to (v/81, /31, - .., v/, v/0r,0, . ,0), while each element of S e RN:N
is the sign of the corresponding element of 5, i.e. the upper left block SQR e R2R:2E of § is formed by R
blocks along the main diagonal, each 2 x 2 block containing £1 as off-diagonal elements. Combining the
first two steps, one has M = QDSDQT. R
Step 3. As a last step, we construct a permutation matrix such that Sopr is similar to J5z. Let
P, r € R21521 he the perfect shuffle permutation matrix in R%%, namely

ﬁgRZ= [61|€3| |€QR,1‘€2|€4| |62R],

where ej is the j-th canonical column vector in R*?. Then SQR = PQRJQRPQR, and we have that
M = QDPJ° PTDQT where P € RVN s the zero extension of P2R

Since we would like the transformation that brings M into canonical form to be invertible, we introduce
the modified matrices

Dor O Pr O
Do 2R U2Rgq ) p._ 2 D2Rq | (2.6)

0q,2R Iq Oq,2R Iq

The matrices D and P are invertible, and the extension of 1323 by the identity I, makes P into
an orthogonal matrix. With the modified matrices P and D, the decomposition still holds, namely
M = QDPJEPTDQT. The conclusion (2.5) follows by setting U = QDP.

It can be easily verified that the factorization is not unique: if Y € R™V:Y satisfies Y7, JS,YT = Jx5 and
it is nonsingular, then (2.5) holds with UY in lieu of U. O



2.4 Geometric Temporal Discretizations

Reduced basis methods for dynamical systems, designed with the aim to preserve the algebraic and
geometric structure of the phase flow, cannot leave out of considerations the importance of relying on
structure-preserving time integrators.

Definition 2.12. Let ®! : (Vn,In(u)) — (Vn,In(u)) be the discrete flow map associated with a
temporal approximation of problem (2.4) with initial condition ug € (Vn, In(¢)). A numerical time
discretization u; = @} (ug) is a Jn(u)-Poisson integrator if the discrete flow map ®! is a Poisson map
and preserves the Casimir invariants. If the manifold is symplectic then the time integrator associated
with @} is symplectic if ®} is a symplectomorphism.

While the literature on canonically symplectic numerical schemes is vast, for the case of Poisson systems
with non-constant nonlinear structure, general structure-preserving integrators are largely unavailable,
¢f. e.g. [32] for a comprehensive treatise on the topic. However, since the study of geometric numerical
integrators is outside of the scope of the present work, we assume the availability of a Poisson solver for
the dynamical system (2.4).

3 Constant-Valued Degenerate Poisson Structures

In the present Section we develop reduced basis methods for parametric Hamiltonian systems on Poisson
manifolds with a constant-valued Poisson structure. To fix the notation Vy is assumed to be an N-
dimensional Poisson manifold with bracket {-,-}x and constant-valued tensor Jy with rank(Jy) = 2R.
Moreover, Vy is endowed with a vector space structure given by the £2-norm |-|.

3.1 Splitting of Poisson Dynamics

Let A « R?, with d > 1, be a compact set of possible parameters. For each i € A, we consider the initial
value problem: For ug(u) € Vy, find u(-, u) € C*(T,Vy) such that

Opu(t, ) = InViuHn (u(t, p); 1), for teT,
u(to, p) = uo(p)-

(3.1)

To ensure well-posedness of (3.1), we assume that, for any u € A, VHy is Lipschitz continuous in u
uniformly in ¢ € 7 in the ¢?-norm.

As a first step towards the development of reduced basis methods for (3.1), we perform a global
splitting of the Poisson manifold (Vy, Jn) as describe in Section 2.2, namely

\I/:VN—>V2R><N,

where Vo = U;(Vy) is a symplectic manifold of dimension 2R and N' = ¥.(Vy) is a submanifold whose
dimension equals ¢, the number of independent Casimir invariants of {-,-} . The map ¥ exists, is linear
and bijective in view of Proposition 2.11, and satisfies ¥ Jx¥ T = J§. The splitting preserves the Poisson
structure of Vy.

Proposition 3.1. Let {-,-}.n : C*(Vn) x C*(Vy) — C*(Vy) be the bracket defined by {F,G}en(u) :=
VuF ()T TGVWG(u), for all F,.G € C*(Vy) and u € Vy. The manifold (Vy,{:, }en) is Poisson.
Moreover, the map ¥ : (Vn,{-,-}n) — (Vn, {", }en) and its inverse are Poisson.

Proof. It can be easily verified that the operator J5 satisfies the assumptions of Lemma 2.2 and therefore
it is a Poisson structure.
To prove that the map ¥ : (W, {-,-}n) — (Vn, {-, - }en) is Poisson we need to show that (¥*{F,G}.n)(u) =
{U*F U*G}n(u), for all ue Vy and F,G € C*®(Vy). Let 2z := W u, then
{U*F, U* G (u) = Vo (U F) () InVu(T*G) (u) = (T*VuF) (1) "IN (T*VG) (u)
= (V.F)(0u) " WINTT(V.G)(Pu) = (V. F)(Vu) T (V:G)(Pu)
— {F, Gon (V).



An analogous reasoning shows that ((=1)*{F,G}n)(u) = {(¥1)*F, (T~1)*G}.n(u) for all u € Vyy and
F,GeC®(Vn). O

The dynamics (I)tXHN can then be decoupled into the dynamics on the symplectic leaf and the trivial

dynamics of the Casimir invariants. More in details, the system (3.1) can be recast in canonical form as:
Find z(-, u) € C*(T,Vy) such that

Oez(t, ) = TGV MG (2(t, 1) ), for teT,

(3.2)
z(to, ) = Wuo(p),
where H§, := (U71)*H v for every p e A.

Since W is linear and bijective, Proposition 3.1 entails that ¥ is a Poisson isomorphism: for any ¢ € T
and any fixed parameter u € A, z(t, 1) is a solution of (3.2) if and only if 2(¢, u) = Yu(t, u), where u(t, )
is a solution of (3.1).

Moreover, since Poisson maps preserve the Poisson bracket, the invariants of ‘I%(HN are in one-to-one

correspondence with the invariants of <I)tXHC .
N

Corollary 3.2. For any fized parameter p € A, let @&HN and @fxﬂc be the flow maps associated with
N
(3.1) and (3.2), respectively. The functional T € C*(Vy) is an invariant of motion of q)tXHN if and only
if (W~H*T e C*(Vy) is an invariant of (I)g(w . Conversely, T € C*(Vy) is an invariant of motion of
N

fI)tXHC if and only if V*Z € C*(Vy) is an invariant of fI)tXHN
N

Note that all independent Casimir invariants of a constant-valued degenerate Poisson tensor are linear.
Indeed the Casimir invariants of {-,-}.n are the functionals {Z,, : z € Vy > 2z, := (Vo) }L, ;. In view
of Proposition 3.1 and Corollary 3.2, the functionals {¥*Z,,},, are Casimir invariants of {-, -}y and since
WU is linear, they are linear in w.

3.2 Reduced Basis Methods Preserving Poisson Structures

Exploiting the splitting of the dynamics introduced in Section 3.1, we seek a structure-preserving symplectic
model order reduction on the symplectic manifold Vg, while leaving unchanged the submanifold A
associated with the center of the Lie algebra C* (V).

The reduced basis solution is the linear combination of a suitably chosen finite collection of solution
trajectories computed from the high-fidelity model in canonical form, to provide an optimal decomposition
in the sense of representing the dominant components of the dynamics. This is done via a weak greedy
strategy, discussed in Section 3.2.2. The reduced basis functions are constructed to span an n-dimensional
space V,,, for n « N, with the following properties:

e V), is a manifold endowed with the canonical Poisson structure {-, -}, .

e The rank of the canonical Poisson tensor J on V,, rank(JS) =: 2r, satisfies n — 2r = ¢, namely
the dimension of the center of the Lie algebras C®(Vy) and C*(V,,) coincides.

e V), has a vector space structure given by the /?-norm.

To compute the evolution of the coefficients of the expansion in the reduced basis we rely on a Galerkin
projection of the original dynamical system (2.4). This ensures that the expansion coeflicients are uniquely
determined by the basis. To preserve the Poisson structure, the projection is constructed to be symplectic
on the symplectic leaf of Vy and to preserve the kernel of the Poisson tensor Jy.

Let 7y : Vy — V, be a surjective map which is assumed to be linear. Since 7, is surjective there
exists a linear map 7 : V,, — Vy such that 7 o7 : V, —» Im(7) € Vy — V), is the identity on V,.

Lemma 3.3. The map 7+ : (VN {-,}en) = (Vn, {", -}en) is Poisson if and only if

c, T c
T INT = T
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Proof. We need to show that the pullback of m preserves the Poisson bracket, namely that (7% {F,G}cn)(u) =
{mi F, 1% G}en(u), for all w € Vy and F,G € C*(V,,). Let y := mu, rewriting the bracket using the
canonical vector bundle map J5;, results in

(T3 F, 75 G en (u) = Vau(r F) (u) " TZVu(71G) (u) = (73 VuF) () ' TR (75 VuG) (1)
= (VyF) () " T [ (VyG) () = {F, Ghen (i),
where the last equality holds if and only if 7, 7 ﬁ,wl =Jg. O
Following the splitting approach described in Section 3.1, the map 7, can be constructed as
T Vop X N — Vo, x N, T =7 x Id,
where 73 is taken to be a surjective ¢>-orthogonal symplectic application, i.e. 75 J5z(73)" = J5,.

Remark 3.4. The map 7 cannot be a Poisson map between the regular Poisson manifolds (V,, {, -}cn) and
(Vn, {-; -}en)- Indeed, if that was the case, by a simple counting argument rank(75) < min{rank(7?), rank(m)},
which cannot hold under the assumption r « R.

Definition 3.5. The Poisson projection onto Im(m%) x N/ < Vy is defined as the map P = Py x Id :
Vaor x N — Im(7) x N such that, for any zs € (Vagr, J5z).

w(Pszs — 25,&) =0, V¢ e Im(7%),
where w is the canonical symplectic 2-form on the symplectic vector space (Var, J55)-

The reduced problem is derived via the Poisson projection P := m o w; onto Im(w) < Vy of the
canonical Poisson dynamical system (3.2), namely for t € T and p € A,

Oezmb(t, 1) = PIRVHN (T 2 (t, )i ), 2w (to, 1) = 2%(n).

On the n-dimensional Poisson manifold V,,, the function y(t, u) = 742, (¢, p) satisfies

owy(t, p) = TV yHa(y(t, p); 1), for teT,
y(to, p) = 74 Yuo(p),

(3.3)

where H,, := 7*H$,. Problem (3.3) is a dynamical system in canonical Poisson form on the manifold
(Vn, JS). The assumption on the Lipschitz continuity of VHy ensures that V7, is also Lipschitz
continuous with constant |~ |2LL, , where L%, is the Lipschitz constant of VHy for parameter p € A.
This guarantees the well-posedness of the reduced problem (3.3).

Remark 3.6. In principle, instead of relying on an orthogonal Poisson map 7., one can envision
to be only 42—orthogonal. In this case 747, NWI is constant-valued and skew-symmetric since Jy is
skew-symmetric, hence it generates a Poisson bracket on V,,. A Galerkin projection of the original Poisson
dynamics yields a reduced Poisson system in noncanonical form. Using Proposition 2.11 one can bring
such a system into canonical form via a bijective global change of coordinates. However, if Ty = Jn(u)
this reasoning fails since 74 Jn (u)m] is still skew-symmetric for every u € Vi, but it may not satisfy the
Jacobi identity (2.3).

3.2.1 Stability and Conservation Properties of the Reduced Problem

By construction, the Hamiltonian H,, € C®(V,,) of the reduced systems is obtained by pullback from the
Hamiltonian H$, € C*(Vy), namely H,, = 7*H$;, for all 4 € A. This has the important consequence
that, for any fixed p € A, whenever Hy is a Lyapunov function with equilibria {u.}. [2, Chapter 3 p.
207], then H$; is a Lyapunov function with equilibria {¥u.}., and the reduced dynamics preserve the
Lyapunov stable equilibria {Pu,}. contained in Im(7). Indeed it can be shown that #,, is Lyapunov
function with equilibria given by the image of the equilibria of the canonical Poisson system under 7.

Concerning the preservation of the invariants of motion of @}H% after the reduction, we introduce

the following concepts.
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Definition 3.7. The model order reduction described by P = m o w is said to be invariant-preserving if
the Hamiltonian of the high-fidelity canonical problem (3.2) satisfies H$; € Im(7%), for all e A.

A weaker condition is that the error in the Hamiltonian vanishes only along solution trajectories: the
model order reduction is said to be Hamiltonian-preserving if

AHY (P, p) i= My (2t p); ) = Hiy (my(t, p); )| = 0, VEeT, ped,
with z solution of (3.2) and y solution of the reduced problem (3.3).

If the model order reduction is invariant-preserving then H$, = 7% #,,, since 7% is injective.

Note that since the map 7% acts as the identity on the center of the Lie algebra C*(Vy), which
is therefore not affected by the reduction, the Casimir invariants of the bracket {-, -}y are exactly
conserved in the reduced problem. Moreover, the Poisson map m, provides a Hamiltonian-preserving
model reduction.

Proposition 3.8. For any p € A fizved, let z € CH(T,(Vn, %)) be a solution of the high-fidelity model
(3.2) and y € CH(T,(Va, TS)) be a solution of the reduced model (3.3). Then the reduced basis method
giwven by P = wowy is Hamiltonian-preserving in the sense of Definition 3.7.

Proof. Since the Hamiltonian is an invariant of motion, it holds

AHN (P, ) = [Hi (2(t, ); 1) — Ha (y(t, 1); )| = [Hy (z0(10); 1) — Hon(yo (1) )]
= [Hiv (z0(p); 1) — (75 Hn) (20(1); )],

for z and y being solutions of (3.2) and (3.3), respectively, with zo(p) := Wug(u). This implies that the
reduced model is Hamiltonian-preserving if zo(x) € Im(w) for all € A.

Let € A be fixed. Introducing the shifted variable 2P(¢; u) := 2(¢; 1) — 20(p) € Vv for all t € T, the
high-fidelity canonical problem (3.2) can be cast as

0P (t, 1) = TRVHY (2P (8 p)yp),  for teT,

(3.4)
2P (to; ) = 0,

where HYP (2P (t; p); p) = HS (2P (¢ ) + zo(p); ) for all ¢ € T. Let us apply the splitting of the dynamics
and the J§-Poisson reduced basis method, described in the previous Sections, to (3.4): The resulting
reduced basis method is Hamiltonian-preserving for every parameter, i.e. AHY (P, ) =0 for all € A.
This follows from the fact that the initial condition zP(to; ) = 0 € Im(7) for all x4 € A since the map
7 is linear. Note that the invariants of motion {Z7%,},,, associated with the Hamiltonian vector field of
HYP, are in one-to-one correspondence with the invariants {Z,,},, of HS, via ZE,(z) = Z,,,(z — 2¢) for all
z e VN. O

With the exception of the Hamiltonian, even if Z € C*(Vy) is an invariant of motion of the canonical
Poisson system (3.2), 7*¥Z € C®(V,,) is not necessarily an invariant of the system (3.3) in (V,, {, }en),
since 7 is not a Poisson map. However, if the reduced model is invariant-preserving, it is possible to
characterize the invariants of motion of the high-fidelity model belonging to Im(7*) in terms of the
invariants of the reduced dynamical system.

Lemma 3.9. Let p e A be fizred. Assume that the model order reduction is invariant-preserving, namely
HG (i) € Im(n%). Then, T € C*(V,) is an invariant of (I)&’m if and only if 7T € C*(Vn) is an
invariant of % . inIm(r}) = C*(Vy).
N
Proof. Let T € C*(Vn) n Im(7%) be an invariant of (3.2), and 7= miZ. Since ¥ is injective such
T € C*(V,) is unique. We seek to show that the functional Z is an invariant of (3.3), i.e. {Z, Hn}en(y) =0
for all y € V,,. By the surjectivity of 7, there exists at least one z € Vy such that y = 7, z. Since 7 is
a Poisson map, it holds

{I, H?L}cn(y) = {I, Hn}cn(”-&-z) = (773‘_{1, Hn}cn)(z) = {W-T-Iv Wian}N(Z) = {f, W-THH}N(Z)-
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The result follows from the fact that H$ = 7% H,, by assumption.
For the reverse implication, assume that Z € C®(V,,) is such that {Z,H,}en(y) = 0 for all y € V,,. Let
D(m,) be the preimage of 74 in Vy. An analogous reasoning yields,

0= (T, Hu}en(ms2) = (AT, Huen)(2) = (PET, 78 Mo} (2), Wz € D(my).

Hence 7%7 is an invariant of (3.1) in Im(7%) < C*(Vy). O

3.2.2 Reduced Basis Generation via Symplectic Greedy Algorithm

As in a standard reduced basis approach, we build the set of reduced basis functions from a set of sampled
high-fidelity solutions, called snapshots. Let us define the set of solutions of the dynamical system (3.1)
as U := {u(t, p) = P} (uo(n)) € Wn,IN): t€T, peA}.

Xain (op

Let us consider a tiIIAIIE() él)iscretization <I>§L7 ., of (3.1) on the uniform partition of 7 into M € N elements
given by T, := UjeTh T;, with T, := (¢/,#/*1] and T, := [0, M) n N. Let Aj, be a finite subset of the
parameter set A and let T, := [0, M] n N. Consider the following sets of solution trajectories, obtained
at sample time instants and parameters:

Uy = {u! (p) := (I)ﬁ#(uo(u)), jeTh, pe A}, sampled solution set of (3.1);
Zn = U(Uy) = {2/ (n) := VI (), j € Th, p€ Ap}, sampled solution set of (3.2); (3.5)
Z3 =V (Uy) = {VuI (), j € Th, pe Ay}, symplectic component of Zy.

As explained previously, the model order reduction is applied only to the canonical symplectic leaf
(Var, J5g) of V. Hence, the reduced basis functions are generated from the snapshots in Z3; to form
an ¢*-orthogonal and canonically J5p-symplectic set.

Definition 3.10 (Orthosymplectic Basis). Let (Vagr,w) be a 2R-dimensional symplectic vector space and
let w be the canonical symplectic form. Then the set of vectors {e;}75 is said to be orthosymplectic in
Var if

w(ei, ej) = (jQCR)iJ‘ 5 and (ei, ej) = (51'7]' s VZ,] =1... 5 2R, (36)

where (-,-) is the Euclidean inner product and J5j is the canonical symplectic tensor on Vap.

A subspace of a symplectic vector space (Var,w) is called Lagrangian if it coincides with its symplectic
complement in Voi. As a consequence of the fact that any basis of a Lagrangian subspace of a symplectic
vector space (Vag,w) can be extended to a symplectic basis in (Vag,w), every symplectic vector space
admits an orthosymplectic basis. Numerical algorithms to build a canonically symplectic reduced
basis include the POD-like strategies developed in [48] (cotangent lift, complex SVD, and nonlinear
programming) and the symplectic greedy of [3] which couples a weak greedy strategy to select the
snapshots to a symplectic Gram—Schmidt [49] procedure to enforce the constraints in (3.6). Here we opt
for a greedy strategy since it gives us larger leeway in the choice of the orthosymplectic reduced basis
when compared to a symplectic POD strategy [48].

The greedy approach consists of building a sequence of nested symplectic manifolds Vo, < V5, and an
orthogonal 75, -symplectic basis by minimizing, at each iteration k, the projection error |23 — P Z3%|
and enforcing the constraints 75 J5p(75) " = J5., and 75 (75)" = Id. In this way the reduced space
provides a good approximation of the sampled solution manifold Z3;, whereas the constraints ensure that
the dynamics in the lower dimensional space has the canonical orthosymplectic Hamiltonian structure
(3.3). For the sake of completeness we report in Algorithm 1 the pseudoalgorithm for the weak greedy
approach, adapted from [3, Algorithm 2].

Remark 3.11 (A posteriori error estimates). A posteriori error estimates are crucial in reduced basis
methods to certify the accuracy of the reduced basis approximation online, and for rigorous and efficient
error control in the greedy sampling procedure offline, to allow exploration of much larger subsets of the
parameter domain. In the context of dynamical systems, a posteriori error estimators obtained via adjoint
problems or via time integration of residual relations are known to exhibit poor long time behavior, in
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Algorithm 1 Symplectic Greedy. Input: {Z%, 2o, i1, toly, tols}. Output: 7.

1: Set j = 1.

2: Given the initial condition zo, and p1 take e; = zo(u1)/|z0(p1)| and 7% = [e1, (T5r)  e1].
3: Compute the pseudoinverse Wij = (JQCj)Tan Tsr-

4: Compute the error in the symplecticity d2; = |(7°7) T T5pr 727 — T5|o-

5: Initialize the maximum projection error v3;** = 1.

6: while j < R, and 3;"* > tol,, and d2; < tols do

7 Compute the projection error of all snapshots y2;(2) = |z — 7% 7% 2|, for all z € Z.
8: Select the new basis element z*(uy) = argmax_.czs 72 (2).

9: Update the maximum projection error v5;™ = a5 (2™* (ux))-
10: Apply symplectic Gram—Schmidt to 2* (%) and normalize ej11 = 2™ (ux)/|2* (us)]|.
11: j=j+1.
12: Update the matrix 727 = [e1,...,e;, (Jsr) €1, .., (Tsr) €.
13: Compute the pseudoinverse Wij = (J5;) 7% Tsg.
14: Update the error in the symplecticity d2; = |(7) " Tsr 77 — T5; -

15: end while

particular for hyperbolic or singularly perturbed problems [53]. Although we acknowledge the paramount
importance of efficient and reliable a posteriori error indicators, especially in a greedy approach, in this
work we are mainly concerned with the structure-preserving properties of the reduced basis method and
less with the efficiency or optimality of the algorithm. We therefore postpone the investigation of the
topic to a later time.

The approximability properties of the solution sets (3.5) by linear subspaces of lower dimension n
can be expressed by the Kolmogorov width [33]. The Kolmogorov n-width of a compact subset Uy of
(Vn, |-]l) is defined as

do(Un):= inf  sup inf |u—w]|. (3.7)
dimnV([:/VQn uen weWn

We can bound the Kolmogorov width of the solution set of the canonical problem (3.2) in terms of the
Kolmogorov width of Uy, independently of the sampling of the temporal and parameter spaces. This is
expressed in the following Lemma.

Lemma 3.12. Let Uy and Zn be the sampled solution sets introduced in (3.5). The Kolmogorov n-width
of the solution set Zn of the dynamical system (3.2) satisfies

1
miny<;<n /A (Tw)]

where {\; € (C};V:l are the eigenvalues of the constant-valued Poisson tensor Jn.

Proof. Let ¥ : (Vn, ||, InN) — (VN ||, T§) be the Darboux map associated with the Poisson tensor
Jn and derived as in Proposition 2.11. Since WV is a linear bijection between finite-dimensional vector
spaces, is bounded. Therefore the Kolmogorov n-width of ¥ (i) can be bounded as

dn (¥ (UN)) < V] dn(Un),

where || denotes the operator 2-norm. Let U € RY*" be the matrix representation of the linear map
U~1. From Proposition 2.11, ¥ is the composition of linear maps: U~! = (QDP)~! where Q € RNV
is orthogonal, D € R™¥" is diagonal and P € RV is the extension of a permutation matrix by the
identity. Hence, it can be inferred that [U~!| < |[D™'| = max{l, maxi<j<n 1/4/|\;(In)[}, where
{A\j e (C};V: 1 are the eigenvalues of the Poisson structure Jn. Note that each eigenvalue ); is of the form
Aj = +id; with d; > 0. Since the modified matrix D in (2.6) is an arbitrary nonsingular extension of the
matrix ﬁg R, one could in principle extend ﬁg r by (min; \/a) I,. The resulting D is nonsingular and

D7 = 1/mini<j<n /12 (Tw)- O
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Proposition 3.13 (Convergence of the Weak Symplectic Greedy Algorithm). Let Uy and Zy be the sampled
solution sets introduced in (3.5). Assume that Uy has Kolmogorov n-width d,(Un). Then, the reduced
space Vy, = Va, X N, with Va, constructed via Algorithm 1, satisfies

C37’+1(r + ]_)
mini<j<n /| A (In)]

where C' > 0 is a constant independent of n, r and N.

|z =Pz <

dn(Z/lN), VZEZN,

Proof. The convergence estimates for the weak greedy algorithm, derived in [11] and adapted to the
symplectic case in [3, Section 4.1.3], result in

|25 — Pszs|| < C3 L (r 4+ 1) doy (Z5), Yz € 25

Let us define the Kolmogorov n-width of Zx restricted to subspaces of V,, of the form V,, x N as,

—

dp(Zn):= _inf  sup inf [z —w],
WnCVN 2€ZN weW,
dim W, =n

where I//I\/n ={weV,: w=(ws,¥ou), ws € Var, ue Vy}. If dy,.(Z%) denotes the Kolmogorov 2r-width
(3.7) of the symplectic component of the solution set Zp, it holds do,(Z%) = dn(Zn) < dn(Zn). The
definition of the Poisson projection from Definition 3.5 together with Lemma 3.12 yields the conclusion. [

Note that, depending on the decay of the Kolmogorov width, sharper convergence estimates can be
derived following [8].

3.3 Discrete Empirical Interpolation for Poisson Dynamics

In the context of projection-based reduced order models, the discrete empirical interpolation methods
introduced in [17] provide a well-established technique to evaluate nonlinear terms at a computational
cost, proportional to the dimension n of the reduced problem.

Let the parameter p € A be fixed. Let us assume that the dynamical system (3.1) can be written by
separating a linear and a nonlinear part, namely let V, Hy (u; p) = Lyu + My (u), where L denotes a
linear operator and My a nonlinear operator on Vy, (the dependence of Ly and My on p is omitted
for the sake of readability). Then (3.1) can be recast as

dru(t, p) = INLnu+ INMy(u),  ulto, 1) = uo(p). (3.8)
Analogously, we can rewrite the canonical problem (3.2) as z(tg, ) = Pug(p) and
duz(t, 1) = TRVHN (U 2t w)i 1) = TN LY 2(E ) + TRMY (2(8, 1),

where £ := U~ T Ly U~ and M$,(2) := ¥~ T My (¥~ 12). The reduced problem (3.3) becomes y(to, ) =
7T+ZO(/“‘L)7

Oey(t, ) = mp TR LW my(t p) + 1 TR T M (W ry (¢, ),
Tyt p) + Tiim "0 T My (O my(t, 1),
where £, := 7" U~ TLyU 7. Adopting a DEIM strategy we approximate the nonlinear term as
My (u) ~ UPTU)TPT My (u) for all uw € Vy as in [17, Eq. 3.5]. Analogously to the a symplectic
DEIM approach [3, Section 4.2] we take U' = 7, so that

T T My (U ry) ~ L (PTa]) PP T T My (0 ry).
The reduced problem in the SDEIM formulation thus reads
Oey(t, 1) = T Lay(t, ) + T (PTal) T Maly(t, 1), y(to, i) = m420(p), (3.9)

where M,,(y) := PTU~T My (¥~ 17y).
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3.3.1 A Priori Error Estimates for Symplectic RBM with DEIM

Taking the cue from the convergence analysis in [18], an a priori error estimate can be derived for the state
approximation error between the high-fidelity solution and the reduced solution obtained by applying the
symplectic DEIM to the Poisson systems (3.1) and (3.3), respectively.

We derive L?-error estimates in both time and parameter space.

Proposition 3.14. For any given p € A, let u(-,u) € CH(T,(Vn, In)) be the solution of (3.8) and let
uph := U lmy where y(-, u) € CHT, (Vn, JS)) is the solution of the reduced system (3.9). Assume that
for every p € A the nonlinear operator My is Lipschitz continuous in the norm ||| with constant L a(p).
Then,

lu — urbH%Z(TxA;VN) < ||‘I’_1H Ci(T, o)) [ W — 7D‘I’u||2L2(TxA;vN)

. (3.10)
+ [ UTH? Co(T, () M () = Lm0 My ()2 (75 vy

where a(u) = [T Ly (00| + B8 2Lag(p), and 8:= |(PTx]) "], AT := [T — to| and

Co(T, () = 28T max(a(u) (2T =1) +1), - Co(T, a(p)) i= 28T A% max(a(u) ! (22T —1)).

Proof. The error between the high-fidelity and reduced solution can be bounded by the reduction error
associated with the dynamical systems in canonical form. Indeed,

=l g = [ [ 1070t ) = m(t ) s < P = a0

where z is the solution of the high-fidelity model in canonical form (3.2) and y is the solution of the
reduced problem (3.3).
At each time ¢t and p € A, let z—7my = (2 —Pz)+(Pz—my) =: ey +ep. Then, if W=7 (PTr])"1PT,

Oen(t, ) = Porz(t, p) — mory(t, p) = PIN (L2 + My (2) — Lymy = WM (7))

= PINLyen + PINLyep + PIN(Miy(2) = WM (my))
=: O(u)en + Q(t, ).

Using the fact that (I — W)m 7 M5 (z) = 0, we can bound Q as,

1t W < I£xep| + (I = WM (2)] + [W(ME (2) — M (7))
< L5 lllep] + (1 = WM (2) = mimye M ()] + [W (MG (2) — MK (y))]
< |

1L lepll + 17 = Wlwl + [WILaa ) 197 (lep ] + llenl)-
where w(t, p) := M% (2(t, ) — 717 MG (2(t, ). The error satisfies the evolution equation

1 1 1
a - a , = — O 5 + Q t7 ’
t”eh“ He}L”( £ €R)V ‘ ”( €, 1)V ”eh”( (1) eh)V (3.12)

\eh
< [Olllen] + |2l < a(p)|en] + b(t, 1),

where a(p) := | L5 + [ W Lad () [€ > and b(t, 1) := a(p)ep(t, )| + Blw(t, p)l, B := |T — W|. Since
W is a projector § = |I — W| = |W|: the norm of W is bounded [17, Lemma 3.2], and depends on the
DEIM selection of indices in P [17, Section 3.2]. From (3.12), Gronwall’s inequality [29] gives

t
len(t, )] < len (to, )] 0" + / W35, 1) d

to

t 1/2 t 1/2
< ([ o) (2 a@llee0R + Pl plas)

to tO
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Hence, for all t € T,
i 2
len(t, m)]* < C(f,a(u))/ () llep(s, w1 + Bw(s, w)|*) ds,

to

where ¢(t, a(p)) = 2a(p) " (€2 (E~t0) _ 1) assuming a(p) # 0, for all 4 € A. This implies that,
T
= mulscrenmay < [ [ lepttnl?
0

T
+ATAdnam»/‘m%mwAumW+ﬁwwmuw%wm¢

to

< 2AT62/A04(M)_1(62(1(“)AT — DMK (2, 1) = mlme MK (20, 1) T2 7y dH

+ /A(AToz(u)(em(“)AT = 1)+ )20, 1) = Pz )2 (1n) At
< T, a(@) |z = Pzl Te(rxawm)
+ [T Co (T, () M (81 2) = T L My (U7 2) [ (7w -
The conclusion follows by combining the above estimate with (3.11). O

A few observations are in order. The projection error appearing in the estimate of Proposition 3.14
can be written as

l2 = P2lTerunny) < |12 = Pelieeraamny — 2, wiall2(ts ) = Pa(t, )|
JET h,i<HA
+ 0wl ) = Pa(t, )|
jETh,,’L‘SﬁA

The term in absolute value is a quadrature error ({wj,i};c¥, ;<4a are quadrature weights), and depends
on the number and choice of the snapshots Zpy, the smoothness of the integrand in the temporal
variable and in the parameter, etc. The second term is controlled by the greedy algorithm according to
Proposition 3.13.

The term |[Mpy(u) — 7717T+MN(U)H%2(TxA;VN) in (3.10) can be controlled during the assembling of
the reduced basis from the nonlinear snapshots {MN(uj(u))}jETwsﬁA, see [17, 18, Section 2.1] and [3,
Section 4.2].

Finally, observe that the bound in (3.10) depends exponentially on the final time T. A linear
dependence on T can be obtained in special cases, for example when VHy is uniformly negative
monotone or when the linear part of (3.8) has a logarithmic norm p(Ly) = limpo(||Id + ALx| — 1)/R
[22] bounded by |(PTw])™|L, as in [18, Sections 3 and 4].

4 State-Dependent Poisson Structures

The Hamiltonian formulation of most problems in fluid and plasma physics possesses a Poisson structure
which is not only degenerate but depends on the state variable. The difficulty in dealing with such
problems stems from the time dependence and nonlinearity intrinsic to the manifold structure.

As for the constant-valued case, Darboux’s Theorem 2.8 suggests a change of coordinates to bring the
structure into a canonical form more amenable to discretization and model order reduction. However, in
the state-dependent case, the Darboux charts have a local nature and the corresponding global change
of coordinates is nonlinear. For these reasons, aside from very particular cases [36, 40], it is generally
non-trivial to derive such nonlinear maps.

On the other hand, resorting to approximation techniques requires particular care. Indeed the use of
too crude an approximation of the Poisson tensor, e.g. by expanding the state u in a power series of a
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small parameter and then truncate the expansion of Jy(u), destroys the underlying Poisson structure
since the Jacobi identity (2.3) generally fails to hold for the approximate tensor. In the context of
Hamiltonian perturbation theory, the authors of [44] advocate a near identity change of variables in
the neighborhood of a stable equilibrium to bring the Poisson tensor in constant form pointwise. This
approach is, however, limited to weakly nonlinear Hamiltonian systems describing the dynamics near
equilibria, and introduces a local approximation of the Poisson structure by truncating the expansion of
the Poisson tensor.

We propose to perform a piecewise linear approximation of the Darboux map in each discrete time
interval and subsequently derive a reduced basis method for the resulting, locally canonical, structure.

To keep the presentation focused, we next consider dynamical systems which do not depend on a
parameter. We further comment on the extension of the results obtained in the forthcoming Sections to
the parameter-dependent case in Section 4.4.

4.1 Linear Approximation of Darboux’s Charts

We exploit the linearization introduced by the timestepping to derive piecewise linear approximations of
the Darboux map ¥, and construct a locally finite cover of Vy along the solution trajectory, using time
intervals and linear approximations of the homomorphisms {¥,}, from Theorem 2.10, on each interval.
Let us define the submanifolds Vy ; := {u(t) € Vy : t € T; = (¢/,t/T1]} < Vy, associated with the
temporal mesh 7j, = {J .y, 7;- Time discretization of (2.4) yields: For ug € Vy, find {v/*'}jex, < Vy
such that
witt =uj+AtJN(ﬂj)VuHN(ﬂj), for jETh,

i (4.1)

u- = uo,
where @/ € Vn,; is determined by the temporal discretization of choice, and can be a state or a combination
of them. Alternative discretizations of the Poisson tensor and of the Hamiltonian can be considered.
This choice will affect the convergence estimates and the restriction of the time step in Theorem 4.8 and
Theorem 4.9, but not the approximation of the Darboux map, nor the derivation of the reduced basis
method.

Definition 4.1. On each submanifold Vy ;, with j € T}, the local approximation of the_ Darboux map ¥
is defined to be the linear function v;,1/2 : VN ; — Vi, which satisfies ¢j+1/2jN(aJ)¢jTH/2 = J§ at
the state(s) u’ € 7; dictated by the temporal discretization (4.1). Each map 1);1/, provides the local
splitting v 41/2 : Vn,j = Var x Nj, with ;+1/2(VN7]-) = Vs being a 2R-dimensional subspace of Vy
and 1/J§ +1/2 (VN,j) = N the approximation of the subspace associated with the kernel of the Poisson
tensor at u’. o

Let Vn; := {u(t) € Vn : t € T;} for all j € Tj. Transition maps between neighboring intervals are
Tj : ij_l/Q(VNJ,l @ VNJ‘) — ’(/Jj+1/2(VN’j,1 @ VN)]‘), defined as Tj = wj+1/2 o 1&;}1/2, for j € Th\{O}
with Ty := Id. A sketch of the approximated Darboux’s charts is presented in Figure 1.

We denote ¢ : Vv — Vi as the global map collecting the linear functions ¢/, on each Vy ;, j € Tp,.
For any j € T}, fixed, the map ;. is in general not Poisson on Vy ;. However, provided the time
discretization (4.1) preserves the Casimir invariants (see Definition 2.12), the map 1) preserves the rank
of the Poisson structure since dim N = ¢ for all j € T,

With the local change of coordinates introduced by ¥ : Vy — Vy, we can recast the fully discrete
problem (4.1) as: For ug € Vi, find {z7*'};cy,  Vy such that

A= Ty + At TGV HN(F),  for je Ty, (4.2)

20 = ¢1/2u07

where 27 1= 1p;, 1587 and Hy(2) 1= Hn ( j_+11/22) for all z € Vy ;.
The fact that the approximation of the Darboux map is based on the linearization, introduced by the

timestepping, ensures that the Poisson structure is not jeopardized by recasting the discrete problem
(4.1) as (4.2).
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(YN, In(u))

Figure 1: Sketch of Darboux’s charts approximation on the Poisson manifold (Vi , Jn (u)).

Proposition 4.2. The discrete problem (4.2) is well-posed. Moreover, let ®! be the discrete flow map
associated with the time discretization (4.1) of (2.4) on Tp,. Let @} . be the discrete flow map associated

with the discrete system (4.2). Then 7721;/[1_1/2 0@ yotys=F.
Proof. 1t is enough to show that, for every j € T}, the following diagram

ul € VNJ " u3+1 € VN,J‘

wj-%—l/ZJ T’pj_juz

q:'h,cN

Zj € VN,J‘ Zj+1 € VNJ

commutes. Here ®;, and ®.n,;, denote one step of the temporal integrators ®} and @ N.n» Tespectively.
Without loss of generality we can show the commutativity property on the first time interval 7;. By
construction, if u' is a numerical solution of (4.1) in 7y, i.e. u' = ®p(ug), then ¥y pu’ is a numerical
solution of (4.2), guaranteeing the existence of solutions to (4.2). Conversely, let z! be a numerical
solution of (4.2) in Ty, ie. 2t = ®p cn(2Y) = B en (¥1)2u’). From (4.2) we have

Vine = U1pT02" + At YL TRV HN (9752°)
= U2’ + Aty TRy Vyms Hv (1 2)
=u’ + At In(Q)V Hy (@°),

provided 20 = 1/)1/21?0. This implies that 7,/}1_/1221 = u! := ®,(up), ensuring that the solution of (4.2)
in 7; is unique. Furthermore, applying a similar reasoning to any given interval 7T;, j € T}, we have
(I)h = ;_:1/2 o (I)h,cN o ’l/)jJrl/Q. Hence,

(I)T = 1/}17/11_1/2 o (I)h,cN e} TM_1 9] (I)h,cN o TM_2 ©...0 T1 o (I)h,cN e} 1/)1/2.
O
This result implies that: Z € C®(Vy) is an invariant of the motion of @}HN if and only if Z7 :=

U711 L € C*(Vy) is a (local) invariant of ‘I)tXu{V for all j € Ty,
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Corollary 4.3. The Hamiltonian functional Hy of (4.1) is preserved if and only if (4.2) is locally
Hamiltonian-preserving i.e. HA (z911) = H (T;27) for every j € Yy. This holds true for any invariant
of motion of @&HN

Proof. Let {27} T

holds H, (27+1) = H( j_+11/2zj+1) = Hy(uw/T1). If (4.2) is locally Hamiltonian-preserving, using the
definition of transition maps and the local conservation properties, we recover

be numerical solutions of (4.2) in each interval 7;. In view of Proposition 4.2, it

HA(ZH) = HN(T32) = Hn ()} nT520) = H (W) pien ety p?)) = H ' (27)

= Hy (Tj1277Y) = o= HY(2) = HX (T02°) = M (uo).
Conversely, if (4.1) is (globally) Hamiltonian preserving, then Hy (ug) = ... = Hy(uw/) = Hy(uw/ 1) for
all j € Tj,. The conclusion follows from Hx(u’) = HN(wjill/zzj) = HN(wjjrll/Zszj). O

The global evolution equation for z is not Jy-Poisson, due to the transition between neighboring
intervals, notwithstanding that (4.2) is canonically Jg§-Poisson on each time interval 7;. Furthermore, the
initial condition T;jz7 on each 7; does not in general belong to the canonical Poisson manifold (Vi j, 7).
Likewise the solution 27! of (4.2) on 7; in general does not belong to (Vy ;, J5 ), i-e. the splitting of the
dynamics is clearly not exact. One might consider a “correction” of the initial condition T};2? to reduce
the distance between (Vv ;, Jx5) and the space where the local dynamics is taking place. However, this
might introduce an error in the approximation of the solution of the original problem (4.1) and, more
importantly, a loss in the preservation of the original Poisson structure Jy (u), in view of Proposition 4.2
and Corollary 4.3. We therefore discard this option. This consideration is supported by the observation
that the global evolution of z cannot “drift away” from the canonical Poisson manifold (Vx ;, J§) provided
each 1;, /5 is a sufficiently accurate approximation of the Darboux map ¥ on the whole interval 7;.
Indeed, in view of Proposition 4.2, the distance (induced by the ||-|-norm) of the solution of (4.2) in
7, from the canonical Poisson manifold (Vy,Jg) is bounded by [¢;1u/™ — ¥(u/*1)|. This error
is local, independent of the dynamics and of the space-time discretization, and only depends on the
approximation properties of each 1, /5, which are clearly problem-dependent, but controllable.

4.2 Reduced Basis Methods for State-Dependent Structures

To develop reduced basis methods for the discrete dynamical system (4.1) we can now apply a local
reduction approach, similar to that in Section 3.2. We have built an approximate cover of the high-
dimensional Poisson manifold (Vn,In(u)) & Ujer, (Wn,j: T, ~(@7)) and generated the local splittings
Yiy172 1 VN — Var X N via the piecewise linear approximations of the Darboux map.

As a lower dimensional space we construct an n-dimensional Poisson manifold, n « N, endowed with
the canonical J¢-Poisson bracket such that n — rank(7¢) = ¢ and the dimension of the null space of
Jn(u) is conserved in the model order reduction. Analogously to the splitting approach described in
Section 3.1, this is achieved through a global linear surjective map w4 such that, for every j € Ty,

T4 2 Vorp X Nj —> Vo, x N, =75 x 1d,

where 77 is taken to be an £2-orthogonal symplectic application, i.e. WiJfR(wi)T =T

The map 7+ : (Vn, {+,-}en) = (Vn, {+, }en) is Poisson since 7, J$nl = J¢. However, since the set of
solution snapshots does not possess a global Poisson structure, the low-dimensional space V,, is recovered
as a linear subspace of Vy, with the latter considered as a normed vector space, being the structure
{-,}en constant-valued.

Lemma 4.4. The map P = womy : Vy — Im(w) < Vy is £2-orthogonal and it is a projection.

Proof. A straightforward application of the properties of 7 and of its pseudoinverse 7, yields the result.
Using 7, om = Id and the surjectivity of 7, results in Po P = P.

The ¢?-orthogonality of P simply follows from the fact that, by construction, the pseudoinverse 75
and the adjoint of 7 coincide. O
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The orthogonality of P guarantees the inclusion of V,, = Im(7) in Vy, and hence the approximation
properties of the reduced solution, while the symplecticity of 73 ensures that the nontrivial phase flow is
a symplectomorphism and that the local kernel {\}; is preserved.

The reduced problem is derived from the canonical Poisson dynamical systems (4.2) by a local Poisson
projection onto Im(w) nVy ; € V. On the n-dimensional Poisson manifold V,, the fully discrete problem
reads: For ug € Vy, find {yj‘*l}je«rh c V,, such that

v =y ALTEV M), for e T, s

y° = my1hy jpu,

where HI (y) = HN(lﬁjlll /zwy) for all y € V,, and the reduced transition maps 7; are defined as

7; = mpoTjom for all j € T\{0}, and 79 := Id. A sufficient condition for the well-posedness of (4.3) is

that VH is Lipschitz continuous, where Hy is the Hamiltonian of the high-fidelity problem (4.1).
Problem (4.3) can be seen as the temporal discretization of an evolution equation which is canonically

J-Poisson on each time interval 7;. Indeed y’ +1 ey, is the numerical approximation of the solution of

dyy = TV, Hi (y), for teTj,

. (4.4)
y° = Ty(t?),

where y(t/) € V, is the numerical solution at time #/. The reduced phase flow is no longer globally
Poisson: the Hamiltonian Hy of the high-fidelity problem (2.4) is conserved up to approximation error
of the local Darboux map.

Proposition 4.5. Let ug be the initial condition of the dynamical system (2.4). For j € Ty, fized, let
U (2 1) be the time-continuous solution of the reduced problem given by um,(tVT1) = wjlll/zﬂ'y(t”l)
where y(t) is the solution of (4.4) at time t € Tp,. If the Hamiltonian Hy of (2.4) is Lipschitz continuous
with constant Ly then

i
M (s (771) = Hv (o) < Lo D [ty olll9n—1/2 0| T — 1|y (%))
k=1

Proof. Let y(t*) € V,, be the solution of the reduced system (4.4) at time t* € 7;,. Since the system
is locally Jg-Poisson, the Hamiltonian is an invariant of the local motion, namely HE (y(t*+1)) =
’HN(ib];ll/wa(tkH)) = HE(mpy(t*)). However, the global Hamiltonian Hy is not preserved at the
interface between intervals. Indeed,

[ (riy(£)) = HE ()] = [P (0L ommien(8)) = Hov (i oy (29))|
= [y Ly PTimy(#) = Hov (oo ()|
If Ty (t*) € Im(n) for all k € Yy, then 1/)1;11/277Tk77y(tk) = @b;El/QT,;lPTkwy(tk) = wgfl/wa(tk), and,

hence, the Hamiltonian would be conserved.
Under the assumption that the Hamiltonian H is Lipschitz continuous with constant L4, it holds,

M0 (ey (1)) = Ho 7 (W(t*)] < Lol o PTamy(t) — oty pmy(E)]
= L5ty o P(Tx = 1d)my(t*) — vy o (Th — 1d)Pry(th)]
< Loty {y ol 1121 Thc = 1d s, (7))
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Hence, the error in the conservation of the Hamiltonian at time ¢/ can be bounded as

j—1

[Hv (s (87)) = Hav (wo)| = [HE (y(#)) = Hav(uo)| < D [Hi(w(t* 1) = Ha ™' (y(h)]
k=1

ji'ﬂkq%ytk )]

j—1

< Lo ) 5ty ol k12T = Td | e, (£9)])-
k=1

O

Since, by construction, the map 7 acts as the identity on N for all j € T}, the approximation of the
center of the Lie algebra C*(Vy), given by span{()u).,, m = 1,...,q}, is not affected by the reduction.
This means that the error made in the conservation of the Casimir invariants of the bracket {-, -}y is
only attributable to the approximation of the Darboux charts.

Concerning the stability properties of the problem, since the Poisson system (2.4) and its canonical
form obtained through Darboux’s map are in one-to-one correspondence, u. is Lyapunov stable equilibrium
of (2.4) if and only if U(u,) is Lyapunov stable equilibrium of the corresponding canonical system. When
resorting to the piecewise linear approximation of ¥, as introduced in Definition 4.1, Lyapunov stable
equilibria are preserved by the discrete problem since, by Proposition 4.2, wj’_ll /sz = forall je Y,
with w7 numerical solution of (4.1) and 27 numerical solution of (4.2) in 7;_1. Note that the property of
preserving the Lyapunov equilibria at the discrete level depends on the temporal solver, see e.g. [28] and
references therein.

Furthermore, if U*H y is Lyapunov function, a reasoning analogous to the one of Section 3.2.1 allows
to show that the global reduced system associated with the exact Darboux map preserves the Lyapunov
stable equilibria belonging to Im(x). However, ye =Ty PUe A w1+ U (u.) is generally not an equilibrium of
(4.3). Ideally one would want to have that ||w 1Y — | is uniformly bounded for all j € T}, where
vy’ is the numerical solution of (4.3) in 7;_1. It holds

‘|1r/);_11/277yj - ueH = Hd);_ll/g?fyj - \Ilil(ﬂ'ye)” < “w;_ll/g(ﬂyj - 7rye)” + ||¢;_11/27Tye - \Pil(ﬂ-ye)H
<ol — el + 157 e — 0 ()

The second term is the approximation error of the Darboux map, while the term |y’ — y.| can be bounded
by the approximation error associated with solving as reduced problem (4.3) instead of the reduced
system obtained from the exact Darboux map ¥. Although the reduced solution is not guaranteed to
belong to an arbitrary small neighborhood of 1., the term ||y’ — y.| does not depend on the reduction
but only on the approximation properties of the Darboux map.

4.2.1 Convergence of the Weak Symplectic Greedy Algorithm

For the derivation of the reduced basis, we rely on the weak greedy algorithm, described in Section 3.2.2,
with the following modifications. A set of snapshots Uy = {u’ = CIJZJ) ~(u0), j € T} is computed from
the high-fidelity problem (4.1) (with discrete flow map ®j y) together with the linear approximation
maps {1j11/2}jer,. The image of each snapshot under the corresponding 1; 1/, supplies the solution
of the local system (4.2) in every time interval. By extracting the symplectic part and excluding the
contribution of the Casimir invariants, we define

Z]if = {w;+1/2uj+l’ .7 € Th} Y {wf/QUO} (45)

We finally build an orthogonal J5z-symplectic reduced basis from Z3; via Algorithm 1 and the Poisson
projection P := m o7y from 7% and 7.



22

Theorem 4.6 (Convergence of the Weak Symplectic Greedy Algorithm). Let @fth be the discrete flow map

associated with (4.2). Assume that the solution set Zy := {2/ = <I>ZJ’CN(20), j € T} has Kolmogorov
n-width d,(Zxn). Then, the reduced space Vy, = Va, x N, with Vo, derived via the symplectic weak greedy
Algorithm 1, satisfies

|z —Pz| < C3" T (r + 1)d.(ZNn), VzeZ2n,

where the finite constant C' > 0 is independent of n, r and N.

Proof. Let Z3, be the set (4.5) containing the symplectic part of the solution trajectory at time instants
{t1} T The greedy Algorithm 1 iteratively generates a hierarchy of subspaces of Vap such that the
projection Py is £2-orthogonal, see Lemma 4.4. In the context of an orthogonal reduced basis generation
via a greedy strategy we can revert to the a priori convergence estimates derived in [11] and [8]. The
argument proposed here is a straightforward modification of the proof presented in [11, Section 2] by
taking into account the form of the orthosymplectic reduced basis (Definition 3.10), and it is therefore
relegated to Appendix A. O

Remark 4.7. We are making the tacit assumption that the Kolmogorov n-width of the solution set Zx
has a sufficiently fast decay. Unlike the constant case, see Section 3.2.2 and Lemma 3.12, the Kolmogorov
width of the solution set Zy associated with the system (4.2) cannot easily be bounded by the Kolmogorov
width of the solution set of the original system (4.1). That would require stronger conditions on the global
nonlinear Darboux map ¥, see e.g. [20], which are generally not guaranteed by Darboux’s Theorem 2.8.

4.3 A Priori Convergence Estimates for the Reduced Solution

For state-dependent Poisson structures we perform model order reduction in a local perspective. We
therefore derive a priori estimates for the error between the high-fidelity solution and the reduced solution
for the fully discrete system in each temporal interval. The total error at a given time is controlled by
the projection error at all the previous time steps.

Note that the error of the reduced solution is computed with respect to the solution of the fully
discrete high-fidelity system and not with respect to the exact solution of (2.4). Hence the estimate (4.6)
does not include the approximation error ensuing from the temporal discretization.

Theorem 4.8. Let j € Y), be fived. Let u?t! be the numerical solution of (4.1) at time '+ and let uf,jl

be the numerical solution of the reduced problem, obtained as ufgl = j_+11/2

solution of (4.3) at time /1. Assume that VHy is Lipschitz continuous in the |-|-norm with constant
Lsy. If the numerical discretization of the Hamiltonian in (4.1) is (semi-)implicit, and the time step At
satisfies

my L where 4t is the

Aumﬁw@ﬁpW<L for all j €Ty,

where the finite constant C7 > 0 depends only on the discretization of the Hamiltonian, then,

- : (i 4 , J
Wt — | < ity < AL Pt 4 2k — Pk > 4.6
L R VS A T EL L I 2wl =PA). 40

J

Here 2% = iy_1ppu”, By := |T), — Id| + At Lé%c2‘|¢;i1/2”2, the constant Cy > 0 depends only on the
discretization of the Hamiltonian, and

j
L+ X Bm ifk<j-1,
Vi 1= m=k+1
1 if k=37

Proof. Let us split the error at time ¢/, for j € T}, as

o= —myl = () = P) + (P2 —my)) =) + ¢,
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Subtracting problem (4.2) and the reduced problem (4.3), the approximation error eh L at time #/+1 can
be written as,

et = Pt it
= e}, + P(Tj — 1d)2) + 7y — PLjmy’ + At PTG (VHY (27) = Vay Hiy (757))
= (Id +P(T; — 1d))e], + P(Tj — Id)ed + At PTG (V. HN () = Vi Hiy (757)).
The total error at time 7! is bounded as,
le? M < et |+ g
< 1d +P(T; = 1d)|lej ]| + |P(Ty — 1d) e + At Ry + e (4.7)
< (LT = 1D e ] + 1T — 1d lef | + At R, | + e
where R; := PI5 (V. HA (37) — VayHAy (ng )). Since VHy is Lipschitz continuous by assumption, using
the definition of the local Hamiltonian H?}, := ( ]_+1/2)*HN’ the term R; satisfies
|R; | < IVHN(Z) = Vay Hiy (78| < Lowly )l 12 — 77
< LinCulv 7] o167 + LonCallyl ol * €],
where the finite non-negative constants C; and Cy depend only on the temporal discretization of (4.1)

(e.g. for the implicit Euler scheme C7 = 1 and Cy = 0, for the implicit midpoint rule C; = Cy = 1/2,
etc.). Hence, the total error at time t/*! satisfies

le” 1] < At LowCulloy ) o167 + (1 + o + At LanCallv; ), 1) e
+ (o + At Loy Coll oy} o [*)led | + lep ™.

where a; := |T; — Id|. Under the condition that the time step At satisfies At Ly C1|lvo7} o> < 1 for

. J +1/2H
all j € T}, the total error at time #/*! is controlled by the projection error e’; at all previous time steps
k < j + 1; thereby,

j—1 j

; 1

7 < T |2(25k|e’f+eﬂ+1+2( > o )Bulel]).
j+1/2

k=1 “m=k+1

where 3, := a,, + At L6H02||wm+1/2H2'

The conclusion follows from the fact that u/ — uib =t , owing to Proposition 4.2. U

Jj— 1/2e

4.3.1 Discrete Empirical Interpolation for State-Dependent Structures

For state-dependent Poisson structures we can apply a discrete empirical interpolation strategy to the
nonlinear terms of the fully discrete dynamical system (4.3). The reasoning proceeds similarly to that
of Section 3.3 but is carried out locally, on each time interval. Observe that, except for the evaluation
of the nonlinear terms, the local reduced basis technique, described in the previous sections, does not
incur a computational cost proportional to N during the online phase since the evaluation of the reduced
transition maps {7;}; can be performed offline.

Let us assume that the evolution problem (2.4) can be written by separating its linear and nonlinear
parts, i.e. we write V,Hy(4’) = Ly@' + My (@?), where Ly denotes a linear operator and My a
nonlinear one. Analogously, the gradient of the Hamiltonian in the local discrete canonical formulation
(4.2) can be expressed as

Ve Hj (27) = ¢]+1/2£N¢J+1/22 + ¢y+1/2MN(¢g+1/2 7) = £ T+ M NE).
The reduced problem (4.3) then becomes

Y =1y + At T (LT + My (7)) = Ty + At TE(LLG + 7T M (r))),
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where L1797 := 7TT’(/J;+T1 /QEijlll /27T§j . Adopting a symplectic DEIM strategy we approximate the
nonlinear term as M’ (7§7) ~ 71 (PT#])"'PTMI(x7) so that, for MJ(57) := PT M) (757), the
discrete reduced problem reads

P =T ML+ (PTRD)TMA@)), for e Y, o)
Y’ = T+ 1/2Uo-

Similarly to Theorem 4.8, the approximation error can be bounded by the projection error of the previous
time intervals and terms involving the nonlinear part, can be controlled during the construction of the
reduced basis from the nonlinear snapshots {Mx (@’)};er,. Observations similar to the remarks made at
the end of Section 3.3.1 apply.

Theorem 4.9. Let j € T, be fized. Let uI™t be the numerical solution of (4.1) at time t/* and let

ufbﬂ be the numerical solution of the reduced problem, obtained as uigrl = ;_:1/27Tyj+1 where y+t s
the solution of (4.9) at time /1. Assume that the nonlinear operator My is Lipschitz continuous with
constant L. If the numerical temporal discretization of (4.1) is (semi-)implicit, and the time step At

satisfies the condition
ALCHILN N+ IW 15 Y P La) <1, for all j € T,

where W := WI(PTWI)_lpT, and C1 > 0 depends only on the discretization of the Hamiltonian, then,
the approximation error satisfies

J

, . . , o o

[~y < € (llZ”1 =PI+ Y Bl — P+ W ML) - WIMM%(ZJ)I)-
k=1

Here zF = 1/Jk_1/2uk, 27 is determined by the temporal discretization (4.2), and

-1
) [ ol
1= ACy (A + W5 P L)

Cj:

The coefficients are defined as By, := [T, — Id| + At Co(| L% | + HWH||1/1,;+11/2H2LM), where the constant
Cs > 0 depends only on the discretization of the Hamiltonian, and

J
L+ X Bm ifk<j-1,
Yk = m=k+1

1, if k=
Proof. We proceed analogously to the proof of Theorem 4.8. The only difference is in the bound of the
term R; := PTG (V. HN(27) — VayHA (757)). Here, taking into account the DEIM approximation of the
nonlinear term My, it holds
Ry = PIG(ENE + MY (E) — T35 + (PTrD) ™ MA ()
= PIGLNE + MY(R7) — n TS (n Ly + 7 WMy (7))
= PIGLN(E —7) + PTG M () = WM (7)),
since 7Jr! = PJG, and where W := 7 (PT7])"!PT. In this case, using the fact that (Id —
W) lmy M2 (27) = 0, the bound for R;, analogous to (4.8) reads,
|R;| < IPTSLYINE — 7| + IPTR (14 — W)MY ()] + [PTZW (MY (Z7) = My (7)) |
<PIRLNINE — 7G| + PTG (1A = W) (MY (Z7) = mime My (2))]
+ [PIRW (M (Z) — My ()|
< (LN + WL o PLad]Z = 77 | + [ 1d = WMy (Z) — 7 lme My ()],
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where L is the Lipschitz constant of M. Similar to (4.8) we recover
|Rj| < CLE e + CoKle? | + [W [ My () — mlme My ()],

where K := | L] + ||WHH¢;+11/2||2LM7 and the finite non-negative constants C; and Cs depend only on

the numerical temporal discretization of (4.1). Hence, proceeding as in (4.7), the total error at time ¢/+1
can be bounded as,

_ 1 : LN (N
lef | < 1_&5%( D7 Bellesl + et + D] ( > Bm)ﬂkle’;l
k=1

k=1 m=k+1

+ WM () ~ WIMM?Q(?)I),

where Sy, := apy + At Co Ky = g + At Co(|LF ] + W9 o 1P Laa)-

The conclusion follows from the fact that u/ — uﬁb =1 e’, by Proposition 4.2. O

—1
j=1/2
4.4 Parametric State-Dependent Poisson Structures

If we consider a parametric dynamical system similar to (3.1) but with state-dependent Poisson structure,
we can extend the derivation and analysis of the reduced basis method described in the previous Sections.
The main obstacle relates to the fact that the resolution of the dynamical system in the low-dimensional
space (4.3) requires the knowledge of the Darboux map approximations {1;,1/2};. These will inevitably
depend on the parameter where the Poisson tensor is evaluated. Only the linear maps {t;11/2(1)};
associated with the parameters u € Ay < A will be computed in the offline phase. Therefore a way
to approximate each 1/, at any given parameter y € A is indispensable. A way to perform such
approximation at a computational cost proportional to the size of the low dimensional problem is to apply
e.g. an empirical interpolation technique on 9, /5(u) for all 4 € A\Ajy. However, such approximation
will in general affect the preservation of the Poisson structure by introducing a, pointwise in p, error in
the structure splitting of Proposition 4.2.

5 Numerical Experiments

To validate the theoretical results of the previous Sections we perform a set of one-dimensional numerical
simulations. For want of Poisson integrators for general structures, we consider ad hoc test cases
for which such integrators are available. The rationale is that we seek to assess the performances of
the structure-preserving reduced basis method in the absence of pollution coming from the temporal
discretization.

In the forthcoming numerical simulations, if not otherwise specified, we will use Newton iteration
as a nonlinear solver for implicit temporal discretizations. We fix the Newton tolerance to 10~'°
and the maximum number of nonlinear iterations to 50. In the symplectic greedy Algorithm 1, we
consider a stabilized version of the symplectic Gram—Schmidt and a symplectic Gram—Schmidt with full
reorthogonalization [27] to deal with cases where the snapshots matrix might be ill conditioned.

5.1 Numerical Experiments for Constant-Valued Degenerate Structures

As example of constant-valued degenerate Poisson structure we consider the Korteweg—de Vries (KdV)
equation. KdV type problems are nonlinear hyperbolic equations describing the propagation of waves
in nonlinear dispersive media. The KdV equation in the one-dimensional spatial domain 2 and time
interval 7 reads: Find u(t,z) : T x @ — R such that

ou ou 3u
a5 + au—— + pog = 0, a, i€ R. (5.1)
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The dispersive third order term provides a regularization yielding smooth solutions for smooth initial
conditions. The numerical treatment of (5.1) for small values of u, the so-called dispersion limit, is
particularly challenging, and for p = 0, Burgers’ equation is recovered.

The KdV equation is a completely integrable system, i.e. it has as an infinite set of invariants, and
possesses a bi-Hamiltonian structure: The formulation with degenerate constant-valued Poisson tensor
reads

M gom(),  with  H(u) — / <O‘u3 e (amu)“‘) de, T =0n

ot o \ 6 2
and where § denotes a functional derivative. Let us consider a uniform partition of the interval Q = [a, b],
a,b € R with periodic boundary conditions, into N —1 elements, and let Az = [b—a|/(N —1). The Poisson
tensor J is discretized using centered finite differences, whereas the Hamiltonian H is approximated
using the trapezoidal rule and forward finite differences for the first order spatial derivative, as in [6,
Equation (2)]. With a small abuse of notation, u denotes henceforth the semi-discrete solution (after
spatial discretization). If uy is the nodal value of u at the k-th mesh node, then

Hy(u) = Az i (‘guf‘,; - g (“’”Z;“’“f) (5.2)

k=1

and (Inu)g = ug41 — ug—1, for k= 1,... N with unr = w14k, up = uny—1 by periodicity. The Poisson
tensor Jy has rank(Jy) = 2R, with 2R = N — 1 if N odd, 2R = N — 2 if N even. The corresponding
Casimir invariants are

Ci(u) = Z Up, Co(u) = Z (u2k — Ugkt1)- (5.3)
k=1 k=1

Note that, if NV is odd, then C3(u) = 0 and C; is the only Casimir invariant of the Poisson system.
Time discretization using the fully implicit midpoint rule on 7, = ey, (t7,t711] yields

Wt —d = ﬁJNV'HN(ujJ“l/2), uw’ = pug, jeTh, (5.4)
2Ax
where u/*1/? := (w/*! + u7)/2 and IIj, is the nodal projection. The implicit midpoint rule provides a
Poisson integrator for any constant-valued Poisson tensor. However, it does not preserve the discrete
Hamiltonian (5.2) exactly.
As an alternative scheme, we consider the Average Vector Field (AVF) integration [41], which is
second order accurate, preserves the Hamiltonian exactly [21, Theorem 3.1], but it is not a Poisson
integrator [16]. For j € T}, the fully discrete scheme reads

: o a At ; o i j
Wl = 8 (Wt ) 4 R R, (59)

with u® = II,uo and where (Fp(u))x := (ups1 — 2up +ug_1)/2, for k=1,...,N.

5.1.1 KdV: Long Time Stability of Double Soliton Interaction

In order to assess the stability of the reduced basis algorithm, we run a numerical test simulating solitons
interaction over long time. Let us consider the KdV problem (5.1), with fixed parameters a = 6 and
p = 1, in the domain ©Q = [—20,20] and temporal interval 7 = (0,500]. Let the initial condition be
the periodic function ug(x) = GSechZ(x), x € . The spatial discretization of the high-fidelity problem
relies on the finite difference scheme (5.2) with N = 1000 mesh nodes. We compare the results obtained
with the midpoint rule (5.4) as timestepping and the AVF scheme (5.5), both with uniform time step
At = 1073, We select M, = 10000 snapshots from the high-fidelity solution and run the symplectic
greedy Algorithm 1 with tolerances tol, = 107° and tols = 10~'2. The algorithm reaches convergence
with 2r = 328 for the AVF timestepping and 2r = 330 for the midpoint rule. The need of a sufficiently
large reduced space is typical of problems exhibiting propagation phenomena.

The high-fidelity solution and the reduced solution at final time are shown in Figure 2 (left), where
the subscripts a and m refer to the AVF scheme and midpoint rule, respectively. The reduced solutions
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do not present spurious oscillations, not even over long time, and exhibit a qualitatively correct behavior
in terms of phase and amplitude of the solitons, as it can be checked by comparing with [7, Example 5.2].
The solution obtained with the midpoint rule is slightly shifted with respect to the solution of the AVF
scheme. This is a typical effect of numerical dispersion: the shape of the solitons is preserved but the
solution is subject to a phase shift so that the solitons are wrongly located.

The error of the reduced numerical solution with respect to the high-fidelity one over time is reported in
Figure 2 (right), where both the original problem (3.1) and its canonical formulation (3.2) are considered.
Figure 3 reports the error of the Hamiltonian and of the Casimir invariants (5.3) over time. The AVF
scheme (left) ensures almost exact preservation of the Hamiltonian and of the Casimir invariants when
the canonical system is solved. For the original high-fidelity model, the Hamiltonian is conserved up to
the Newton solver tolerance. The midpoint rule (Figure 3 right) preserves the linear Casimir invariants
but not the (cubic) Hamiltonian, as expected.

un(t = 100), N = 1000
st — — wu(t = 100), n = 330 il 10 F

(£ = 100), N = 1000 | T
........ U (t = 100), n = 332

T TR

i

T
o

’44""»

—— |t — |
R e
9 20— U |
[0 20 — tam|

A . . . . . . . 10710 I . . .
-20 -15 -10 -5 0 5 10 15 20 0 20 40 60 80 100

Space Time
Figure 2: KdV double soliton interaction. Numerical solutions of the high-fidelity and reduced models at final
time (left) for AVF timestepping and midpoint rule. Error between the numerical solution of the reduced problem
and the high-fidelity solutions of the Poisson system in the original and canonical forms (right).
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Figure 3: KdV double soliton interaction. Error of the Hamiltonian and Casimir invariants over time. Temporal
discretization with AVF scheme (left) and midpoint rule (right).

5.1.2 KdV: Dispersion Limit

As a second test case, let us consider the KdV equation with varying parameter p and solve the problem
in the limit of small dispersion. Specifically, let & = 1 and pu € A := [107%,2]. The problem is set in the
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domain © = [0,1] and in the time interval 7 = (0, 1] with initial condition ug(x) = 2+ 1/2sin(27(x — p)),
x € Q, (a shifted variation of the test in [54, Section 4.6]). The spatial discretization relies on N = 1600
mesh nodes, and for the temporal approximation we use the AVF scheme (5.5) with uniform time step
At = 1073, The kernel of the Poisson tensor has dimension ¢ = 2. We select M, = 500 snapshots
from the high-fidelity model, and A} is obtained by taking 10 equidistant points in A. The reduced
basis algorithm uses the symplectic greedy Algorithm 1 with tolerances tol, = 107° and tols = 1072,
Convergence is reached at 2r = 556.

The reduced solution for 1 = 107° ¢ Aj captures the train of soliton waves without unphysical
oscillations, as shown in Figure 4. The ¢2-error over time of the reduced numerical solution with respect
to the high-fidelity solution, obtained from the Poisson system in the non-canonical and canonical forms,
is reported in Figure 5 (left). Concerning the invariants of motion, the Hamiltonian of both systems (2.4)
and (3.3) is conserved up to the solver tolerance, Figure 5 (right).

3.4

32 32+

28|
2671
24r

22

=TI

16 1 I I I
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Space Space

Figure 4: KdV in the dispersion limit, i = 107°. Evolution of the solution (left) and solution at final time (right)
obtained with the AVF timestepping.
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Figure 5: KdV in the dispersion limit, 4 = 1075, Error between the HiFi solution and the reduced solution (left).
Relative error of the Hamiltonian and of the Casimir invariants (right).

5.2 Numerical Experiments for State-Dependent Structures

The multi-species generalized Lotka—Volterra problem provides an example of Hamiltonian system with
state-dependent degenerate Poisson structure. The Volterra lattice equation was introduced to describe
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the interaction and evolution of populations of competing species. Additionally, it provides a discretization
of the KAV equation or of the Logistic equation and can be used to model nonlinear control systems,
lattice problems, etc. The generalized Lotka—Volterra model for N species reads

N
dyu(t) = up(t) (bk + 3] ak,zw(t)), k=1,...,N, by, ape€R,
=1

where ugn = uy for all k, if the boundary conditions are periodic. Here we take the values of {by} and
{ak,e}r,e yielding

dtuk :uk(ukﬂ —kal), k= 1,...,N. (56)
The Lotka—Volterra system (5.6) possesses the invariants
Ny Ny N
Zy(u) = Z <2ui + ukuk+1> , Zo(u) = Z gu% + 2 UgUg+1 (U + Ugt1 + Ukt2),
k=1 k=1 k=1

and the Casimir Ny
Ci(u) = Z log(ug).
k=1

Furthermore, if the number N of species is even, the problem can be recast in a splitted form as follows.
Let qi(t) = ugr—1(t) and pg(t) = ugk(t) for k =1,...,N/2 and t € T, then (5.6) is equivalent to

diqr = qr(pr — Pr—-1),
dipr = pr(qr+1 — qr)-

This is a Poisson system with Hamiltonian Hy (g, p) = Z,Ifﬁ (gx +pr), and quadratic bracket corresponding
to the Poisson tensor

0 Q1p1 —(1PN2
—q1p1 0 q2p1 0
In((q,p)) := —qkPk 0 dk+1DPk
—QkPk—1 0 qkPk
q1PN /2 —4N/2PN/2 0

The dimension of the null space is ¢ = 2 for all u € Vy.

Concerning the temporal discretization of the Lotka—Volterra problem in Hamiltonian form, the
symplectic Euler method preserves the quadratic Poisson structure [24], and reads, for all k = 1,..., N /2
and j € Ty,

Gt =g+ Atgl(p " - P, (5.7)
n =0+ At (gl — ).

Let us consider a numerical simulation of problem (5.6) in the domain = [—1,1] and temporal
interval 7 = (0,500], with initial condition ug(x) = 1 + sech®(z)/(2N?). The high-fidelity model is
obtained setting N = 1000 and using the symplectic Euler discretization (5.7) with At = 1072. In the
generation of the orthosymplectic reduced basis, the symplectic greedy Algorithm 1 is run with tolerances
tol, = 107 and tols = 1072, The algorithm reaches convergence with 2r = 210.

In Figure 6 are reported the £2-error of the high-fidelity and reduced basis solutions at every time step
(left), and the error of the Hamiltonian, the Casimir C; and the invariants Z,, Z. over time (right). It can
be observed that the invariants of motion of the high-fidelity problem are preserved with a high degree
of accuracy, similarly to [24, Figure 1]. The reduced solution produces larger, though still satisfactory,
errors in the conservation of the invariants which however do not grow in time.
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Figure 6: Lotka—Volterra lattice. Evolution of the £*-error of the high-fidelity and reduced basis solutions (left).
Error in the conservation of the Hamiltonian, the Casimir C; and the invariants Z;, Z. over time (right).

6 Concluding Remarks

We have developed and analyzed reduced basis methods for dynamical Hamiltonian systems possessing a
nonlinear state-dependent and degenerate Poisson structure. Relying on structure-preserving discretiza-
tions in space and time, the proposed reduced basis techniques are based on linear approximations of the
Poisson tensor in each temporal interval followed by a model order reduction of the symplectic component
of the dynamics. We have shown that the resulting reduced model retains the global Poisson structure
and the conservation properties of the phase flow up to errors in the approximation of the Darboux map,
it is efficient when coupled with DEIM techniques and enjoys good approximation properties. Further
work may target the study of optimal and efficient approximation of the Darboux map, and corresponding
approximation properties in the presence of a set of parameters in addition to time.

Acknowledgment. The work was partially supported by AFOSR under grant FA9550-17-1-9241.

A Proof of Theorem 4.6
0._

Following Algorithm 1, the reduced basis matrix is initialized as 2= [61, (T$r) Te1] where e = 20 :=
7 ptt0- The projection onto span{r?} is defined as Py = 72 o 2 with 72 = (J5,) " 72J5s. At the r-th
1terat10n for r = 1, the greedy algorithm selects the new basis element e, to satisfy

€41 = argmax |z — Pz,

2€Z3,
so that Vy(,41) = span{er, ..., erq1, (Tsp)Ter, ..., (TI$r) Ters1}. The basis vectors are orthogonalized
with respect to the ¢2-norm as
&1 = e,
& = i = Pai-)eis i = (Tsp) & i=2...r+1L

The projection Po, onto the symplectic manifold Vs, can be written as

T

Porz = Z(az(z)fz + 51‘(2')(\7;1%)-'—51')7 VzeZy.

i=1

With Z3% being a subspace of the normed space (Vag, |||), Par is an orthogonal projection onto Vs, in
view of Lemma 4.4. Hence, for each z € Z3;, § € Vo, and £ < 7,

(Parz,&) = (2, Parke) = (2,&0) = au(2)[&e?,
(Parz, (Tsr) &) = Be(2)|(Tsr) "&l” = Be(2) &>
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Using the orthogonality properties of Py(,_1), the fact that &, (T$r) "€ € Vo are £2-orthogonal to Va(e—1)
by construction, combined with the error criterion of the greedy Algorithm 1, results in

I(2,&)] (2 = Pap—1y2,&0)| - Iz = Pae—1)2

=Tl =Tl Tee=Pagoed o
1Be(2)| = (2, (T5r) €0 _ (2 = Pae—1y2: (Tsr) &) < |2 = Pae—1)2| -1 :
[(T5e) &el? AL e Pr el

The elements of the orthogonal basis spanning Vy(,4 1), selected by the greedy algorithm, can be expanded

as,
i

& = 2(’7;'6]' + 5§(~720R)T€j), rgi = (JZCR)T&.

j=1
foralli=2,...,r + 1, where ¢ = 1, §! = 0 and for j < 1,

i—1 i—1

Vi = Z(—ae(ez‘)’Yf + Bi(e;)d5), 85 = Z(ag(ei)éf — Bi(e;)5)-
=) =j
Using (A.1), each coefficient can be bounded as |y} < 3771, [d5] < 3" /71 if j < i, so that
il <377, |65 <377, Vi<

By definition of the Kolmogorov 2r-width, given A > 1, there exists a 2r-dimensional space W, such that
the angle between Z3 and Wa, satisfies sup.cz. infuews, |2 — w| < Adar(Z2%). Hence, for the elements
of any subspace Vy ¢ Z3; with ¢ < r, there exist wg, vy € Wh, such that |le, — we| < Ad2,(Z%), and

1(Tsr) Ter — ve|| < Aday(Z5,). Fori=1,...,r, we define the vectors
Wa 3G = Z('Y;'wj + 05v5), Gryi = Z(—CS;'U’J' +7jv5)- (A.2)
j=1 j=1

Fori=1,...,2r, they satisfy

& = Gl < X (jllles = wjll + 18511 (T5m) T es — vil), < Adan(2R) D 2377 < 3'Ad2r (23).
j=1 j=1

Let us consider the elements defined in (A.2) where we add a further pair (¢;41, (2(r4+1)) € Wa,, defined such
that wyy1, vr41 € Wa, are the vectors for which [ey11 — wry1| < Ad2r(2%,), and H(jQCR)TeTH — g1 <
Adar(Z3%). Since such a family belongs to the 2r-dimensional space Wa, by construction, the vectors
{Q}Z(TH) cannot be linearly independent: there exist {o;};_ (TH) < R such that ||o| = 1 and ZQ(TH) 0:C =
0. Hence,

r+1 2(r+1) 2(r+1) _
D0k + 0 4i(Tsp) &) = | Y oil& =G| < Mdar(Zn) ), ail3
=1 1=1 i=1

< 3"N/2(r + 1)Ador (25).

Let 1 < j < 2(r +1) be fixed. Define w; := 05" 7 Tr;] o;&i. Note that (&, w;) = 0 since {fj} (41 g

orthogonal, which implies [&;]? < [&]? + |w; H2 |€; + w;]?. Furthermore,

2(r+1) 2(r+1)
16 +wjll < oit D) o =G| <oyl Y, loillé = Gill < 37 Mder (Z3)V/2(r + 1o |
i=1 i=1
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Since the choice of the index j is arbitrary, we select j such that |o;| > (2(r + 1))~%/2, which is possible
by definition of {o;};. Hence, |§; + w;|| < 2-3""!(r + 1)Ad2,(Zn). Therefore, the projection error of any
z € Z§; can be bounded as

|2 = Parz| < [z = Pag—1yzl < llej = Panyes| = &1 < 2377 (r + 1)Ad2r (23).

With an argument analogous to the proof of Proposition 3.13, the conclusion follows from the fact that
dor(Z2%) < dn(Zn) since, in each time interval, the subsets {N}, are not affected by the reduction.
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