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Abstract

We develop structure-preserving reduced basis methods for a large class of problems by resorting
to their semi-discrete formulation as Hamiltonian dynamical systems. In this perspective, the phase
space is naturally endowed with a Poisson manifold structure which encodes the physical properties,
symmetries and conservation laws of the dynamics. We design reduced basis methods for the general
case of nonlinear state-dependent degenerate Poisson structures based on a two-step approach. First,
via a local approximation of the Poisson tensor we split the Hamiltonian dynamics into an “almost
symplectic” part and the trivial evolution of the Casimir invariants. Second, canonically symplectic
reduced basis techniques are applied to the nontrivial component of the dynamics, whereas the
local Poisson tensor kernel is preserved exactly. The global Poisson structure and the conservation
properties of the phase flow are retained by the reduced model in the constant-valued case and up
to errors in the Poisson tensor approximation in the state-dependent case. The proposed reduction
scheme is combined with a discrete empirical interpolation method (DEIM) to deal with nonlinear
Hamiltonian functionals and ensure a computationally competitive reduced model. A priori error
estimates for the solution of the reduced system are established. A set of numerical simulations is
presented to corroborate the theoretical findings.

Keywords. Hamiltonian dynamics, Poisson manifolds, symplectic structure, invariants of motion,
structure-preserving schemes, reduced basis methods (RBM).
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1 Introduction
During the last decade there has been substantial developments of model order reduction techniques
to efficiently solve parameterized partial differential equations in computationally intensive scenarios
such as real-time and many-query simulations. Reduced basis methods (RBM) aim at pruning the
computational effort by replacing the original high-dimensional problems with models of significantly
reduced dimensionality without compromising the overall accuracy. For time-dependent parametric
problems, an approximation space of low dimension, the so-called reduced space, is constructed from
a collection of full-order solutions at sampled values of time and parameters during a computationally
intensive offline phase. The reduced space is spanned by the modes associated with the dominant
components of the dynamics. In the online phase the reduced order model is then solved at a substantially
reduced computational cost for any parameter query.

The development and analysis of reduced basis techniques for the efficient solution of PDEs is
well-established in the context of linear elliptic and parabolic problems. For nonlinear and hyperbolic
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problems, model order reduction is less well understood. Available methods are the method of freezing
[46], Lax pairs [26] and dictionary-based approximations [30], L1-norm minimization techniques [1],
model reduction tracking discontinuities [50], the Gauss–Newton with approximated tensors (GNAT)
method [14], RBM for finite volume discretizations [31], with conservation properties [13]. Most of these
approaches are conceived to tackle ad hoc features of the problems considered, hence not striving to be
sufficiently general, let alone provide a sound strategy to preserve the structure intrinsic to the original
model.

Hamiltonian Formulation of Nonlinear and Hyperbolic Problems. The field theory formalism,
grounded in the mathematical description of physical quantities via integral action functionals, provides a
unified perspective encompassing partial differential equations of interest in a broad range of applications.
Examples of problems that can be derived from action principles include Maxwell’s equations [9],
Schrödinger’s equation, Korteweg–de Vries [42] and wave equations, compressible [37] and incompressible
[4] Euler equations, Vlasov–Poisson and Vlasov–Maxwell equations [43], etc. The action principle yields a
formulation of the constitutive equations as Hamiltonian systems whose phase space is naturally endowed
with a differentiable Poisson manifold structure. The algebraic structure of the phase space, which is
generally degenerate and nonlinearly state-dependent, underpins the physical properties of the system.
Most prominently, Poisson structures encode a family of conserved quantities, which by Noether’s theorem,
are related to symmetries of the Hamiltonian. In addition, the degeneracy of the Poisson brackets entails
the conservation of families of invariants.

The preservation, at the discrete level, of the algebraic and topological structure of physical problems
have received considerable attention during the last decades. Both in the context of spatial discretization
and temporal integration (with the so-called geometric numerical integrators), it has become apparent
that structure-preserving strategies can yield approximate solutions with superior stability and accuracy
properties. On the other hand, the geometric structure of continuous and discrete Hamiltonian systems
is in general thwarted during model order reduction, resulting in the onset of spurious and unphysical
artifacts which may trigger instabilities and qualitatively wrong solution behavior.

Recently, the promising performance of structure-preserving techniques have fostered the development
of reduced basis methods tantamount to geometric numerical integration and compatible spatial dis-
cretizations. In the context of nondissipative Hamiltonian dynamical systems Lall, Krysl, and Marsden
[34] pioneered the use of a Galerkin projection on the Euler–Lagrange equations to devise reduced order
models preserving Lagrangian structures. A similar approach was later pursued and improved in [15].
Dealing directly with the Hamiltonian formulation, reduced basis methods preserving the canonical
symplectic structure of dynamical systems were developed in [48], and [3]. A similar technique has been
adopted in [45] in the study of dynamical low-rank methods for the approximation of the stochastic wave
equation.

To the best of our knowledge, none of the aforementioned works address the case of degenerate and/or
state-dependent nonlinear Poisson structures. A naïve extension of the available structure-preserving
reduction techniques to these cases is hindered by the intrinsic nonlinearity and degeneracy of the
structure which, among others, fails to provide a pseudo-inner product and a path to endow the reduced
model with a Poisson phase flow.

Our Contribution: Novelties and Outline. In this work we develop and analyze structure-preserving
reduced basis methods for Hamiltonian dynamics with state-dependent and possibly degenerate Poisson
manifold structures. Pursuing a method of lines approach, we consider the ordinary differential equations
ensuing from a suitable spatial approximation of the Hamiltonian dynamics. The latter is assumed to be
structure-preserving in the sense of yielding a semi-discrete system of the form

du

dt
“ JN puq∇uHN puq, (1.1)

where the unknown u depends on time and possibly on a set of parameters, HN is the discrete system
Hamiltonian and JN puq is a finite-dimensional operator describing the Poisson manifold structure.

The gist of our method is to perform a local splitting of the Hamiltonian dynamics into a canonically
symplectic component and a trivial evolution of the invariants associated with the kernel of the Poisson
structure. The splitting of the dynamics is motivated by a result of Darboux [23] which, roughly speaking,
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demonstrates the existence of local charts in which any Poisson structure has the canonical form. The
rationale is that canonical Poisson structures are more amenable to model order reduction since the
nonlinearity has been removed from the structure and its kernel singled out. Since an analytic expression
of the Darboux charts is usually unavailable, we rely on piecewise approximations by leveraging the
local linearization introduced by the timestepping. The original dynamics is then approximated in a
lower-dimensional manifold, foliated by the Poisson tensor kernel and a reduced symplectic component.
The latter is derived via canonically symplectic reduced basis techniques adapted from [48, 3]. The
resulting reduced dynamics retains the Poisson structure of the phase flow up to the approximation error
of the Darboux charts.

The remainder of the paper is organized as follows. In Section 2, the algebraic structure underlying
Hamiltonian systems on finite-dimensional Poisson manifolds is described. Section 3 pertains the case of
degenerate constant-valued parametric Poisson structures for which the manifold splitting is performed
globally. The resulting reduced problem is Hamiltonian with a Poisson manifold structure and inherits the
physical properties of the high-fidelity model in terms of conservation of the Hamiltonian, preservation of
the Casimir invariants, and Lyapunov stability, as shown in Section 3.2.1. In Section 3.3 the structure-
preserving reduced basis method is coupled to a symplectic DEIM for the efficient treatment of the
nonlinear terms. State space error bounds for the solution of the reduced system in terms of the projection
error into the reduced space are presented in Section 3.3.1. Next, Section 4 is devoted to the more
challenging case of state-dependent nonlinear Poisson structures. The reduced model built upon piecewise
linear approximations of the Darboux charts is shown to be structure-preserving up to approximation
errors of the Darboux maps, Section 4.2. A priori error estimates for the fully discrete reduced problem
are established in Section 4.3 and in Section 4.3.1 when the nonlinear terms are approximated via a
DEIM strategy. In Section 5 a set of numerical experiments is presented and conclusions are drawn in
Section 6.

2 Dynamical Systems with Poisson Structure
In this Section we briefly describe the topological and algebraic structure underlying the phase space of
Hamiltonian dynamical systems of the form (1.1).

Definition 2.1 (Poisson Structure). Let VN be a finite N -dimensional smooth manifold. A Poisson
structure on VN is a bilinear operation t¨, ¨uN : C8pVN q ˆ C8pVN q Ñ C8pVN q, called a bracket, with
the following properties: for all F ,G, I P C8pVN q and u P VN ,

(i) Skew-symmetry: tF ,GuN puq “ ´tG,FuN puq.

(ii) Leibniz rule: tFG, IuN puq “ tF , IuN puqGpuq ` FpuqtG, IuN puq.

(iii) Jacobi identity: tF , tG, IuNuN puq ` tG, tI,FuNuN puq ` tI, tF ,GuNuN puq “ 0.

A manifold endowed with a Poisson structure is called a Poisson manifold.

The space C8pVN q of real-valued smooth functions over the Poisson manifold pVN , t¨, ¨uN q together
with the bracket t¨, ¨uN forms a Lie algebra [2, Proposition 3.3.17], called the Poisson algebra of VN .

Owing to the bilinearity of t¨, ¨uN and the Leibniz rule, given an analytic function H P C8pVN q, the
map F P C8pVN q ÞÑ tF ,HuN P C8pVN q defines a differentiation on the Poisson manifold VN . Hence,
there exists a locally unique vector field XHpuq P TuVN such that LXHF “ tF ,HuN , where LX denotes
the Lie derivative with respect to the velocity field X. The vector XHpuq is called the Hamiltonian vector
field of the functional H P C8pVN q, and characterizes the dynamics of the evolution problem (1.1), as
explained in the forthcoming Section 2.1. The map H P C8pVN q ÞÑ XH P TVN is a (anti)homomorphism
between Lie algebras [39, Proposition 10.2.2].

If dH is the 1-form given by the exterior derivative of the functional H P C8pVN q, its Hamiltonian
vector field XH can be obtained as the image of dH under the vector bundle morphism JN puq defined,
for any u P VN , as

JN puq : T˚VN ÝÑ TVN
dH ÞÝÑ XHpuq :“ JN puqdH.

(2.1)
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The Poisson bracket can be expressed in terms of JN as

tF ,GuN puq “ xT˚VN dF ,JN puq dGyTVN , @F ,G P C8pVN q, @u P VN , (2.2)

where xT˚VN ¨, ¨yTVN denotes the duality pairing between the cotangent and the tangent bundle. The
application JN is a contravariant 2-tensor on the manifold VN , commonly referred to as Poisson
tensor. The tensor JN is skew-symmetric with respect to the metric g on VN defined as gp∇F , ¨q :“

xT˚VN dF , ¨yTVN , and ∇ is the Riemannian gradient. Hence, in local coordinates, the Poisson bracket
reads

tF ,GuN puq “ ∇uFpuqJJN puq∇uGpuq, @F ,G P C8pVN q, @u P VN .

In view of the relationship between the bracket t¨, ¨uN and the tensor JN , the Poisson manifold structure
on VN can be equivalently characterized as follows.

Lemma 2.2. Let VN be a finite N-dimensional smooth manifold and let JN be the vector bundle map
defined in (2.1). Then the bracket (2.2) is a Poisson structure as per Definition 2.1, if and only if JN is
skew-symmetric and satisfies the Jacobi identity

N
ÿ

`“1

ˆ

BpJN puqqi,j
Bu`

pJN puqq`,k `
BpJN puqqj,k

Bu`
pJN puqq`,i `

BpJN puqqk,i
Bu`

pJN puqq`,j
˙

“ 0, (2.3)

for all u P VN and i, j, k “ 1, . . . , N .

It immediately follows that any constant-valued, skew-adjoint operator gives a Poisson structure.
In general, the vector bundle map (2.1) is not an isomorphism: its rank at a given point u P VN

defines the rank of the Poisson manifold VN at u. By the skew-symmetry of the Poisson bracket, the
rank of a Poisson manifold is always an even (non-negative) integer. Moreover, if VN is not full rank then
its Poisson structure is said to be degenerate. Degeneracy of Poisson structures generates conservation
laws of the Hamiltonian dynamics on the phase space VN , cf. Definition 2.6.

The notion of rank characterizes symplectic manifolds as the Poisson manifolds which have maximal
global rank. Symplectic manifolds are endowed with a nondegenerate, closed 2-form ω, called symplectic
structure. The Poisson bracket on the symplectic manifold pVN , ωq is defined as

tF ,GuN puq “ ωpXF , XGq :“ ωpJN puq dF ,JN puq dGq, @F ,G P C8pVN q, @u P VN .

Since ω is nondegenerate, the map ω5XH
: Y P TVN ÞÑ ωpXH, Y q “ piXHωqpY q is injective (iX denotes

the contraction by X), and the Hamiltonian vector field XH of the functional H P C8pVN q satisfies
dH “ iXHω.

2.1 Hamiltonian Dynamics
The Hamiltonian vector field XH characterizes the evolution problem (1.1), whose dynamics preserves
the Poisson structure of the phase space.

Applications between Poisson manifolds, consistent with the structure in the sense of preserving the
bracket, are called Poisson maps.

Definition 2.3 (Poisson Map). Let pVN , t¨, ¨uN q and pVn, t¨, ¨unq be Poisson manifolds of finite dimension
N and n respectively, with n ď N . A smooth application Ψ : pVN , t¨, ¨uN q Ñ pVn, t¨, ¨unq is called a
Poisson map if

pΨ˚tF ,Gunqpuq “ tΨ˚F ,Ψ˚GuN puq, @F ,G P C8pVnq, @u P VN .

A vector field XH on a manifold VN determines a phase flow, namely a one-parameter group of
diffeomorphisms Φt

XH
: VN Ñ VN satisfying dtΦt

XH
puq “ XHpΦ

t
XH
puqq for all t P T and u P VN , with

Φ0
XH
puq “ u. The flow map Φt

XH
of a vector field XH P TVN is Hamiltonian if Φt

XH
is a Poisson map

(on its domain). The reverse is also true.
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Proposition 2.4 ([39, Proposition 10.2.3]). Let pVN , t¨, ¨uN q be a Poisson manifold and H P C8pVN q.
Then, the map ΦtX : VN Ñ VN satisfies

d

dt
pF ˝ ΦtXq “ tF ,HuN ˝ ΦtX , @F P C8pVN q,

if and only if it is the flow of XH.

With the definitions introduced hitherto, we can recast the dynamical system (1.1) as a Hamiltonian
initial value problem as follows. Let T :“ pt0, T s be a temporal interval and let VN be an N -dimensional
Poisson manifold with Poisson tensor JN puq. For u0 P VN , find u P C1pT ,VN q such that

$

&

%

dtuptq “ JN puptqq∇uHN puptqq, for t P T ,

upt0q “ u0,
(2.4)

where HN P C
8pVN q is the Hamiltonian functional.

We can regard VN as a submanifold of RN equipped with the standard Euclidean metric whose
induced norm is denoted henceforth by }¨}. Local well-posedness of (2.4) is guaranteed by assuming that
the operator F pt, uptqq :“ XHN puq is Lipschitz continuous in u uniformly in t P T in the }¨}-norm, in the
spirit of Picard-Lindelöf result.

In addition to possessing a Poisson phase flow, Hamiltonian dynamics is characterized by the existence
of differential invariants, and symmetry-related conservation laws.

Definition 2.5 (Invariants of Motion). A functional I P C8pVN q is an invariant of motion of the dynamical
system (2.4) with flow map ΦtXHN

, if tI,HNuN puq “ 0 for all u P VN . Consequently, I is constant along
the orbits of XHN

.

The Hamiltonian functional (if time-independent) is an invariant of motion. A particular subset of
the invariants of motion of a dynamical system is given by the Casimir invariants, functionals on VN
which t¨, ¨uN -commute with every other functionals in C8pVN q.

Definition 2.6 (Casimir Invariants). If g is a Lie algebra with Lie product t¨, ¨u, the centralizer of a subset
S of g is defined as CgpSq :“ tC P g : tC,Fu “ 0 for all F P Su. The centralizer Cgpgq of the Lie algebra
itself is called the center of g and its elements are called Casimir functions.

The Casimir invariants of the Poisson manifold VN form the center of the Lie algebra C8pVN q. Hence
they are independent of the dynamics and only depend on the Poisson structure of the manifold, in
particular its degeneracy. The number of Casimir invariants without functional relations among them,
called independent Casimir invariants, is equal to the rank of the Lie algebra.

Henceforth, we assume that VN is a regular Poisson manifold, namely rankpJN puqq “ 2R, for all
u P VN , with R P N, 2R ď N . We denote with q :“ N ´2R the dimension of the center of the Lie algebra,
i.e. the number of independent Casimir invariants of pVN ,JN puqq. Considering only regular Poisson
manifolds is not restrictive, since the Hamiltonian systems we are interested in ensue from problems
characterized by globally conserved quantities, such as energy, angular momentum, vorticity, etc.

2.2 Canonical Form of Poisson Structures
In the theory of Hamiltonian systems of classical mechanics, canonical forms on cotangent bundles are
of great relevance. On an even dimensional manifold, a symplectic structure is given by the canonical
symplectic 2-form defined as the exterior derivative of the tautological 1-form, see e.g. [12, Section 2.3].
Resorting to a coordinate system, the canonical structure on a symplectic manifold can be characterized
as in the following result.

Proposition 2.7 ([2, Proposition 3.3.21]). Let pV2R, ωq be a symplectic manifold and pU,ψq a cotangent
coordinate chart ψpuq “ pq1puq, . . . , qRpuq, p1puq, . . . , pRpuqq, for all u P U . Then pU,ψq is a symplectic
canonical chart if and only if tqi, qju “ tpi, pju “ 0, and tqi, pju “ δi,j on U for all i, j “ 1, . . . , R, where
t¨, ¨u is the Poisson bracket on pV2R, ωq.
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Every finite-dimensional symplectic manifold admits local coordinates in which the local symplectic
form is canonical. This result is known as Darboux’s theorem [23].

Theorem 2.8. Let V2R be a finite 2R-dimensional symplectic manifold. For each u P V2R there exists a
chart pBu,Ψuq in which a nondegenerate closed 2-form is locally isomorphic to the canonical form. The
manifold V2R can be covered by such charts.

Note that this result can be extended to the infinite-dimensional case only under special assumptions
and in general not if the symplectic structure ω on the manifold is only weakly nondegenerate, i.e. the
map ω5X is injective but not necessarily onto. We refer to [51, 38, 47] for further details on the topic.

In order to derive the canonical form of Poisson structures one has to first deal with the kernel of
the vector bundle map. Every Poisson manifold can be foliated by injectively immersed submanifolds
corresponding to the equivalence classes under the following relation: two points on a Poisson manifold
belong to the same class if there exists a piecewise smooth curve joining them consisting of segments of
integral curves of Hamiltonian vector fields.

Definition 2.9 (Manifold Foliation). Let VN be an N -dimensional manifold. A foliation F of class Cp and
of dimension q on VN is a decomposition of VN into disjoint connected subsets F “ tfαuα, called the
leaves of the foliation, with the following property: each point of VN has a neighborhood B and a system
of Cp coordinates B Ñ z :“ pzs, zcq P Rq ˆ RN´q such that for each leaf fα, the components of B X fα
are described by the equations pzcq1 “ constant, . . ., pzcqN´q “ constant.

The embedding of each symplectic leaf in a Poisson manifold is an injective Poisson map, and the
phase flow of a Hamiltonian vector field preserves the symplectic structures on the leaves.

The combination of Darboux’s theorem with the foliation properties of Poisson manifolds (cf. also
the symplectic stratification theory [5, Chapter 2]) provides a way to bring degenerate Poisson structures
into canonical form.

Theorem 2.10 (Lie-Weinstein Splitting Theorem [35, 52]). Let pVN , t¨, ¨uN q be an N -dimensional Poisson
manifold. For each u P VN there exists a neighborhood Bu Ă VN of u, in which the rank of VN is
equal to 2R, and an isomorphism Ψu : Bu Ñ S ˆN 1 where S “ ΨspBuq is a symplectic manifold and
N “ ΨcpBuq is a Poisson manifold whose rank vanishes at Ψcpuq. The factors S and N are unique
up to local isomorphisms. Moreover, there exist local coordinates tq1, . . . , qR, p1, . . . , pR, c

1, . . . , cN´2Ru

which are canonical, i.e. tqi, qjuN “ tpi, pjuN “ tqi, ckuN “ tpi, ckuN “ 0, and tqi, pjuN “ δi,j for all
i, j “ 1, . . . , R and k “ 1, . . . , N ´ 2R.

On the neighborhood Bu, the coordinates tckuk correspond to the Casimir invariants, whereas
tpqi, piqui are the symplectic canonical coordinates, sometimes referred to as Clebsch variables [19]. In
the canonical coordinates, the vector bundle map (2.1) takes the form

J c
N :“

¨

˚

˚

˚

˝

Id

´ Id

0

˛

‹

‹

‹

‚

: T˚VR ˆ T˚VR ˆ T˚VN´2R ÝÑ TVN ,

where Id and 0 denote the identity and zero map, respectively.
There are many advantages for using canonical coordinates, see e.g. [47], most prominently, the

possibility of bringing the Poisson tensor into constant-valued form and isolate its kernel. The design of
our structure-preserving reduced basis methods for (2.4) hinges upon canonical forms obtained via exact
or approximate Darboux maps, cf. Sections 3.1 and 4.1.

1The Cartesian product of two Poisson manifolds is endowed with a Poisson structure given by the Poisson map property
of the projection on each factor, and by requiring that the pullbacks of the Poisson algebras on each factor form commuting
subalgebras of the Poisson algebra of the Cartesian product.
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2.3 Construction of Global Darboux’s Map
On finite-dimensional Poisson manifolds VN , endowed with a constant-valued Poisson structure JN , the
Darboux map from Theorem 2.8 is global. An analytic expression for the Darboux map can be derived
by reverting to well-known results on matrix decompositions.

Proposition 2.11. Every skew-symmetric matrix M P RN,N with rankpMq “ 2R ă N admits a decompo-
sition of the form

M “ UJ c
NU

J, (2.5)

where U P RN,N is invertible (but not orthogonal in general), and J c
N P RN,N is the matrix representation

of the Poisson tensor in canonical form, namely

J c
N :“

¨

˝

J c
2R 02R,q

0q,2R 0q

˛

‚, J c
2R :“

¨

˝

0R IR

´IR 0R

˛

‚,

where q :“ N ´ 2R is the dimension of the null space of M , 0R P RR,R and IR P RR,R denote the zero
and the identity matrix, respectively.

The factorization (2.5) is unique up to transformations in the symplectic group Spp2R,Rq.

Proof. We propose a constructive proof by steps: The implementation on the numerical experiments of
Section 5 will mimic this argument.
Step 1. Every skew-symmetric square matrix can be brought into canonical form by a unitary congruence
transformation, namely there exists Q P RN,N orthogonal such that M “ QSQJ. The so-called Youla
form S [55] is formed by blocks along the main diagonal, each 2ˆ 2 block formed by the complex part of
a conjugate pair of complex eigenvalues of M , t˘iδjuRj“1, δj ą 0, and zeros for j ą R. The proof of this
result can be found in [55, Corollary 2] or [25, Theorem 2].

The Youla decomposition in not unique: the factor S can be fixed by computing a decomposition for
a given ordering of the eigenvalues of M , see e.g. [10]. However, the orthogonal matrix Q is not unique.
Step 2. The block diagonal matrix S P RN,N can be further decomposed as S “ pD pS pD where the matrix
pD is diagonal with diagonal equal to p

?
δ1,
?
δ1, . . . ,

?
δR,
?
δR, 0, . . . , 0q, while each element of pS P RN,N

is the sign of the corresponding element of S, i.e. the upper left block pS2R P R2R,2R of S is formed by R
blocks along the main diagonal, each 2ˆ 2 block containing ˘1 as off-diagonal elements. Combining the
first two steps, one has M “ Q pD pS pDQJ.
Step 3. As a last step, we construct a permutation matrix such that pS2R is similar to J c

2R. Let
pP2R P R2R,2R be the perfect shuffle permutation matrix in R2R, namely

pP2R :“ r e1 | e3 | . . . | e2R´1 | e2 | e4 | . . . | e2R s ,

where ej is the j-th canonical column vector in R2R. Then pS2R “ pP2RJ c
2R

pPJ2R, and we have that
M “ Q pD pPJ c

N
pPJ pDQJ, where pP P RN,N is the zero extension of pP2R.

Since we would like the transformation that bringsM into canonical form to be invertible, we introduce
the modified matrices

D :“

¨

˝

pD2R 02R,q

0q,2R Iq

˛

‚, P :“

¨

˝

pP2R 02R,q

0q,2R Iq

˛

‚. (2.6)

The matrices D and P are invertible, and the extension of pP2R by the identity Iq makes P into
an orthogonal matrix. With the modified matrices P and D, the decomposition still holds, namely
M “ QDPJ c

NP
JDQJ. The conclusion (2.5) follows by setting U “ QDP .

It can be easily verified that the factorization is not unique: if Y P RN,N satisfies Y J c
NY

J “ J c
N and

it is nonsingular, then (2.5) holds with UY in lieu of U .
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2.4 Geometric Temporal Discretizations
Reduced basis methods for dynamical systems, designed with the aim to preserve the algebraic and
geometric structure of the phase flow, cannot leave out of considerations the importance of relying on
structure-preserving time integrators.

Definition 2.12. Let Φt
h : pVN ,JN puqq Ñ pVN ,JN puqq be the discrete flow map associated with a

temporal approximation of problem (2.4) with initial condition u0 P pVN ,JN puqq. A numerical time
discretization u1 “ Φthpu0q is a JN puq-Poisson integrator if the discrete flow map Φth is a Poisson map
and preserves the Casimir invariants. If the manifold is symplectic then the time integrator associated
with Φth is symplectic if Φth is a symplectomorphism.

While the literature on canonically symplectic numerical schemes is vast, for the case of Poisson systems
with non-constant nonlinear structure, general structure-preserving integrators are largely unavailable,
cf. e.g. [32] for a comprehensive treatise on the topic. However, since the study of geometric numerical
integrators is outside of the scope of the present work, we assume the availability of a Poisson solver for
the dynamical system (2.4).

3 Constant-Valued Degenerate Poisson Structures
In the present Section we develop reduced basis methods for parametric Hamiltonian systems on Poisson
manifolds with a constant-valued Poisson structure. To fix the notation VN is assumed to be an N -
dimensional Poisson manifold with bracket t¨, ¨uN and constant-valued tensor JN with rankpJN q “ 2R.
Moreover, VN is endowed with a vector space structure given by the `2-norm }¨}.

3.1 Splitting of Poisson Dynamics
Let Λ Ă Rd, with d ě 1, be a compact set of possible parameters. For each µ P Λ, we consider the initial
value problem: For u0pµq P VN , find up¨, µq P C1pT ,VN q such that

$

&

%

Btupt, µq “ JN∇uHN pupt, µq;µq, for t P T ,

upt0, µq “ u0pµq.
(3.1)

To ensure well-posedness of (3.1), we assume that, for any µ P Λ, ∇HN is Lipschitz continuous in u
uniformly in t P T in the `2-norm.

As a first step towards the development of reduced basis methods for (3.1), we perform a global
splitting of the Poisson manifold pVN ,JN q as describe in Section 2.2, namely

Ψ : VN ÝÑ V2R ˆN ,

where V2R “ ΨspVN q is a symplectic manifold of dimension 2R and N “ ΨcpVN q is a submanifold whose
dimension equals q, the number of independent Casimir invariants of t¨, ¨uN . The map Ψ exists, is linear
and bijective in view of Proposition 2.11, and satisfies ΨJNΨJ “ J c

N . The splitting preserves the Poisson
structure of VN .

Proposition 3.1. Let t¨, ¨ucN : C8pVN q ˆ C8pVN q Ñ C8pVN q be the bracket defined by tF ,GucN puq :“
∇uFpuqJJ c

N∇uGpuq, for all F ,G P C8pVN q and u P VN . The manifold pVN , t¨, ¨ucN q is Poisson.
Moreover, the map Ψ : pVN , t¨, ¨uN q ÝÑ pVN , t¨, ¨ucN q and its inverse are Poisson.

Proof. It can be easily verified that the operator J c
N satisfies the assumptions of Lemma 2.2 and therefore

it is a Poisson structure.
To prove that the map Ψ : pVN , t¨, ¨uN q ÝÑ pVN , t¨, ¨ucN q is Poisson we need to show that pΨ˚tF ,GucN qpuq “

tΨ˚F ,Ψ˚GuN puq, for all u P VN and F ,G P C8pVN q. Let z :“ Ψu, then

tΨ˚F ,Ψ˚GuN puq “ ∇upΨ
˚FqpuqJJN∇upΨ

˚Gqpuq “ pΨ˚∇uFqpuqJJN pΨ˚∇uGqpuq
“ p∇zFqpΨuqJΨJNΨJp∇zGqpΨuq “ p∇zFqpΨuqJJ c

N p∇zGqpΨuq
“ tF ,GucN pΨuq.
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An analogous reasoning shows that ppΨ´1q˚tF ,GuN qpuq “ tpΨ´1q˚F , pΨ´1q˚GucN puq for all u P VN and
F ,G P C8pVN q.

The dynamics ΦtXHN
can then be decoupled into the dynamics on the symplectic leaf and the trivial

dynamics of the Casimir invariants. More in details, the system (3.1) can be recast in canonical form as:
Find zp¨, µq P C1pT ,VN q such that

$

&

%

Btzpt, µq “ J c
N∇zHc

N pzpt, µq;µq, for t P T ,

zpt0, µq “ Ψu0pµq,
(3.2)

where Hc
N :“ pΨ´1q˚HN for every µ P Λ.

Since Ψ is linear and bijective, Proposition 3.1 entails that Ψ is a Poisson isomorphism: for any t P T
and any fixed parameter µ P Λ, zpt, µq is a solution of (3.2) if and only if zpt, µq “ Ψupt, µq, where upt, µq
is a solution of (3.1).

Moreover, since Poisson maps preserve the Poisson bracket, the invariants of ΦtXHN
are in one-to-one

correspondence with the invariants of ΦtXHc
N

.

Corollary 3.2. For any fixed parameter µ P Λ, let Φt
XHN

and Φt
XHc

N

be the flow maps associated with

(3.1) and (3.2), respectively. The functional I P C8pVN q is an invariant of motion of ΦtXHN
if and only

if pΨ´1q˚I P C8pVN q is an invariant of Φt
XHc

N

. Conversely, I P C8pVN q is an invariant of motion of

ΦtXHc
N

if and only if Ψ˚I P C8pVN q is an invariant of ΦtXHN
.

Note that all independent Casimir invariants of a constant-valued degenerate Poisson tensor are linear.
Indeed the Casimir invariants of t¨, ¨ucN are the functionals tIm : z P VN ÞÑ zm :“ pΨcuqmu

q
m“1. In view

of Proposition 3.1 and Corollary 3.2, the functionals tΨ˚Imum are Casimir invariants of t¨, ¨uN and since
Ψ is linear, they are linear in u.

3.2 Reduced Basis Methods Preserving Poisson Structures
Exploiting the splitting of the dynamics introduced in Section 3.1, we seek a structure-preserving symplectic
model order reduction on the symplectic manifold V2R, while leaving unchanged the submanifold N
associated with the center of the Lie algebra C8pVN q.

The reduced basis solution is the linear combination of a suitably chosen finite collection of solution
trajectories computed from the high-fidelity model in canonical form, to provide an optimal decomposition
in the sense of representing the dominant components of the dynamics. This is done via a weak greedy
strategy, discussed in Section 3.2.2. The reduced basis functions are constructed to span an n-dimensional
space Vn, for n ! N , with the following properties:

• Vn is a manifold endowed with the canonical Poisson structure t¨, ¨ucn .

• The rank of the canonical Poisson tensor J c
n on Vn, rankpJ c

nq “: 2r, satisfies n´ 2r “ q, namely
the dimension of the center of the Lie algebras C8pVN q and C8pVnq coincides.

• Vn has a vector space structure given by the `2-norm.

To compute the evolution of the coefficients of the expansion in the reduced basis we rely on a Galerkin
projection of the original dynamical system (2.4). This ensures that the expansion coefficients are uniquely
determined by the basis. To preserve the Poisson structure, the projection is constructed to be symplectic
on the symplectic leaf of VN and to preserve the kernel of the Poisson tensor JN .

Let π` : VN Ñ Vn be a surjective map which is assumed to be linear. Since π` is surjective there
exists a linear map π : Vn Ñ VN such that π` ˝ π : Vn Ñ Impπq Ă VN Ñ Vn is the identity on Vn.

Lemma 3.3. The map π` : pVN , t¨, ¨ucN q Ñ pVn, t¨, ¨ucnq is Poisson if and only if

π`J c
Nπ

J
` “ J c

n .
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Proof. We need to show that the pullback of π` preserves the Poisson bracket, namely that pπ˚`tF ,Gucnqpuq “
tπ˚`F , π˚`GucN puq, for all u P VN and F ,G P C8pVnq. Let y :“ π`u, rewriting the bracket using the
canonical vector bundle map J c

N , results in

tπ˚`F , π˚`GucN puq “ ∇upπ
˚
`FqpuqJJ c

N∇upπ
˚
`Gqpuq “ pπ˚`∇uFqpuqJJ c

N pπ
˚
`∇uGqpuq

“ p∇yFqpπ`uqJπ`J c
Nπ

J
`p∇yGqpπ`uq “ tF ,Gucnpπ`uq,

where the last equality holds if and only if π`J c
Nπ

J
` “ J c

n .

Following the splitting approach described in Section 3.1, the map π` can be constructed as

π` : V2R ˆN ÝÑ V2r ˆN , π` “ πs` ˆ Id ,

where πs` is taken to be a surjective `2-orthogonal symplectic application, i.e. πs`J c
2Rpπ

s
`q
J “ J c

2r.

Remark 3.4. The map π cannot be a Poisson map between the regular Poisson manifolds pVn, t¨, ¨ucnq and
pVN , t¨, ¨ucN q. Indeed, if that was the case, by a simple counting argument rankpJ c

N q ď mintrankpJ c
nq, rankpπqu,

which cannot hold under the assumption r ! R.

Definition 3.5. The Poisson projection onto Impπsq ˆ N Ă VN is defined as the map P “ Ps ˆ Id :
V2R ˆN Ñ Impπq ˆN such that, for any zs P pV2R,J c

2Rq,

ωpPszs ´ zs, ξq “ 0, @ ξ P Impπsq,

where ω is the canonical symplectic 2-form on the symplectic vector space pV2R,J c
2Rq.

The reduced problem is derived via the Poisson projection P :“ π ˝ π` onto Impπq Ă VN of the
canonical Poisson dynamical system (3.2), namely for t P T and µ P Λ,

Btzrbpt, µq “ PpJ c
N∇zHN pΨ

´1zrbpt, µq;µqq, zrbpt0, µq “ z0pµq.

On the n-dimensional Poisson manifold Vn, the function ypt, µq “ π`zrbpt, µq satisfies
$

&

%

Btypt, µq “ J c
n∇yHnpypt, µq;µq, for t P T ,

ypt0, µq “ π`Ψu0pµq,
(3.3)

where Hn :“ π˚Hc
N . Problem (3.3) is a dynamical system in canonical Poisson form on the manifold

pVn,J c
nq. The assumption on the Lipschitz continuity of ∇HN ensures that ∇Hn is also Lipschitz

continuous with constant }Ψ´1}2LµδH, where LµδH is the Lipschitz constant of ∇HN for parameter µ P Λ.
This guarantees the well-posedness of the reduced problem (3.3).

Remark 3.6. In principle, instead of relying on an orthogonal Poisson map π`, one can envision π`
to be only `2-orthogonal. In this case π`JNπJ` is constant-valued and skew-symmetric since JN is
skew-symmetric, hence it generates a Poisson bracket on Vn. A Galerkin projection of the original Poisson
dynamics yields a reduced Poisson system in noncanonical form. Using Proposition 2.11 one can bring
such a system into canonical form via a bijective global change of coordinates. However, if JN “ JN puq
this reasoning fails since π`JN puqπJ` is still skew-symmetric for every u P VN , but it may not satisfy the
Jacobi identity (2.3).

3.2.1 Stability and Conservation Properties of the Reduced Problem

By construction, the Hamiltonian Hn P C
8pVnq of the reduced systems is obtained by pullback from the

Hamiltonian Hc
N P C

8pVN q, namely Hn “ π˚Hc
N , for all µ P Λ. This has the important consequence

that, for any fixed µ P Λ, whenever HN is a Lyapunov function with equilibria tueue [2, Chapter 3 p.
207], then Hc

N is a Lyapunov function with equilibria tΨueue, and the reduced dynamics preserve the
Lyapunov stable equilibria tΨueue contained in Impπq. Indeed it can be shown that Hn is Lyapunov
function with equilibria given by the image of the equilibria of the canonical Poisson system under π`.

Concerning the preservation of the invariants of motion of ΦtXHc
N

after the reduction, we introduce
the following concepts.
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Definition 3.7. The model order reduction described by P “ π ˝ π` is said to be invariant-preserving if
the Hamiltonian of the high-fidelity canonical problem (3.2) satisfies Hc

N P Impπ˚`q, for all µ P Λ.
A weaker condition is that the error in the Hamiltonian vanishes only along solution trajectories: the

model order reduction is said to be Hamiltonian-preserving if

∆Hc
N pP, µq :“ |Hc

N pzpt, µq;µq ´Hc
N pπypt, µq;µq| “ 0, @ t P T , µ P Λ,

with z solution of (3.2) and y solution of the reduced problem (3.3).

If the model order reduction is invariant-preserving then Hc
N “ π˚`Hn, since π˚` is injective.

Note that since the map π˚` acts as the identity on the center of the Lie algebra C8pVN q, which
is therefore not affected by the reduction, the Casimir invariants of the bracket t¨, ¨uN are exactly
conserved in the reduced problem. Moreover, the Poisson map π` provides a Hamiltonian-preserving
model reduction.

Proposition 3.8. For any µ P Λ fixed, let z P C1pT , pVN ,J c
N qq be a solution of the high-fidelity model

(3.2) and y P C1pT , pVn,J c
nqq be a solution of the reduced model (3.3). Then the reduced basis method

given by P “ π ˝ π` is Hamiltonian-preserving in the sense of Definition 3.7.

Proof. Since the Hamiltonian is an invariant of motion, it holds

∆Hc
N pP, µq “ |Hc

N pzpt, µq;µq ´Hnpypt, µq;µq| “ |Hc
N pz0pµq;µq ´Hnpy0pµq;µq|

“ |Hc
N pz0pµq;µq ´ pπ

˚
`Hnqpz0pµq;µq|,

for z and y being solutions of (3.2) and (3.3), respectively, with z0pµq :“ Ψu0pµq. This implies that the
reduced model is Hamiltonian-preserving if z0pµq P Impπq for all µ P Λ.

Let µ P Λ be fixed. Introducing the shifted variable zppt;µq :“ zpt;µq ´ z0pµq P VN for all t P T , the
high-fidelity canonical problem (3.2) can be cast as

$

&

%

Btz
ppt, µq “ J c

N∇zHc,p
N pz

ppt, µq;µq, for t P T ,

zppt0;µq “ 0,
(3.4)

where Hc,p
N pz

ppt;µq;µq :“ Hc
N pz

ppt;µq` z0pµq;µq for all t P T . Let us apply the splitting of the dynamics
and the J c

N -Poisson reduced basis method, described in the previous Sections, to (3.4): The resulting
reduced basis method is Hamiltonian-preserving for every parameter, i.e. ∆Hc,p

N pP, µq “ 0 for all µ P Λ.
This follows from the fact that the initial condition zppt0;µq “ 0 P Impπq for all µ P Λ since the map
π is linear. Note that the invariants of motion tIpmum, associated with the Hamiltonian vector field of
Hc,p
N , are in one-to-one correspondence with the invariants tImum of Hc

N via Ipmpzq “ Impz ´ z0q for all
z P VN .

With the exception of the Hamiltonian, even if I P C8pVN q is an invariant of motion of the canonical
Poisson system (3.2), π˚I P C8pVnq is not necessarily an invariant of the system (3.3) in pVn, t¨, ¨ucnq,
since π is not a Poisson map. However, if the reduced model is invariant-preserving, it is possible to
characterize the invariants of motion of the high-fidelity model belonging to Impπ˚`q in terms of the
invariants of the reduced dynamical system.

Lemma 3.9. Let µ P Λ be fixed. Assume that the model order reduction is invariant-preserving, namely
Hc
N p¨, µq P Impπ˚`q. Then, I P C8pVnq is an invariant of Φt

XHn
if and only if π˚`I P C8pVN q is an

invariant of ΦtXHc
N

in Impπ˚`q Ă C8pVN q.

Proof. Let pI P C8pVN q X Impπ˚`q be an invariant of (3.2), and pI “ π˚`I. Since π˚` is injective such
I P C8pVnq is unique. We seek to show that the functional I is an invariant of (3.3), i.e. tI,Hnucnpyq “ 0
for all y P Vn. By the surjectivity of π`, there exists at least one z P VN such that y “ π`z. Since π` is
a Poisson map, it holds

tI,Hnucnpyq “ tI,Hnucnpπ`zq “ pπ
˚
`tI,Hnucnqpzq “ tπ

˚
`I, π˚`HnuN pzq “ tpI, π˚`HnuN pzq.
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The result follows from the fact that Hc
N “ π˚`Hn by assumption.

For the reverse implication, assume that I P C8pVnq is such that tI,Hnucnpyq “ 0 for all y P Vn. Let
Dpπ`q be the preimage of π` in VN . An analogous reasoning yields,

0 “ tI,Hnucnpπ`zq “ pπ
˚
`tI,Hnucnqpzq “ tπ

˚
`I, π˚`HnuN pzq, @z P Dpπ`q.

Hence π˚`I is an invariant of (3.1) in Impπ˚`q Ă C8pVN q.

3.2.2 Reduced Basis Generation via Symplectic Greedy Algorithm

As in a standard reduced basis approach, we build the set of reduced basis functions from a set of sampled
high-fidelity solutions, called snapshots. Let us define the set of solutions of the dynamical system (3.1)
as U :“ tupt, µq “ ΦtXHN p¨,µq

pu0pµqq P pVN ,JN q : t P T , µ P Λu.
Let us consider a time discretization Φth,µ of (3.1) on the uniform partition of T into M P N elements

given by Th :“
Ť

jPΥh
Tj , with Tj :“ ptj , tj`1s and Υh :“ r0,Mq X N. Let Λh be a finite subset of the

parameter set Λ and let Υh :“ r0,M s X N. Consider the following sets of solution trajectories, obtained
at sample time instants and parameters:

UN :“ tujpµq :“ Φt
j

h,µpu0pµqq, j P Υh, µ P Λhu, sampled solution set of (3.1);

ZN :“ ΨpUN q “ tzjpµq :“ Ψujpµq, j P Υh, µ P Λhu, sampled solution set of (3.2);

Zs
N :“ ΨspUN q “ tΨsu

jpµq, j P Υh, µ P Λhu, symplectic component of ZN .

(3.5)

As explained previously, the model order reduction is applied only to the canonical symplectic leaf
pV2R,J c

2Rq of VN . Hence, the reduced basis functions are generated from the snapshots in Zs
N to form

an `2-orthogonal and canonically J c
2R-symplectic set.

Definition 3.10 (Orthosymplectic Basis). Let pV2R, ωq be a 2R-dimensional symplectic vector space and
let ω be the canonical symplectic form. Then the set of vectors teiu2Ri“1 is said to be orthosymplectic in
V2R if

ωpei, ejq “ pJ c
2Rqi,j , and pei, ejq “ δi,j , @i, j “ 1 . . . , 2R, (3.6)

where p¨, ¨q is the Euclidean inner product and J c
2R is the canonical symplectic tensor on V2R.

A subspace of a symplectic vector space pV2R, ωq is called Lagrangian if it coincides with its symplectic
complement in V2R. As a consequence of the fact that any basis of a Lagrangian subspace of a symplectic
vector space pV2R, ωq can be extended to a symplectic basis in pV2R, ωq, every symplectic vector space
admits an orthosymplectic basis. Numerical algorithms to build a canonically symplectic reduced
basis include the POD-like strategies developed in [48] (cotangent lift, complex SVD, and nonlinear
programming) and the symplectic greedy of [3] which couples a weak greedy strategy to select the
snapshots to a symplectic Gram–Schmidt [49] procedure to enforce the constraints in (3.6). Here we opt
for a greedy strategy since it gives us larger leeway in the choice of the orthosymplectic reduced basis
when compared to a symplectic POD strategy [48].

The greedy approach consists of building a sequence of nested symplectic manifolds V2k Ă V2r and an
orthogonal J c

2k-symplectic basis by minimizing, at each iteration k, the projection error }Zs
N ´ P2kZs

N }

and enforcing the constraints πs`J c
2Rpπ

s
`q
J “ J c

2r, and πs`pπs`qJ “ Id . In this way the reduced space
provides a good approximation of the sampled solution manifold Zs

N , whereas the constraints ensure that
the dynamics in the lower dimensional space has the canonical orthosymplectic Hamiltonian structure
(3.3). For the sake of completeness we report in Algorithm 1 the pseudoalgorithm for the weak greedy
approach, adapted from [3, Algorithm 2].

Remark 3.11 (A posteriori error estimates). A posteriori error estimates are crucial in reduced basis
methods to certify the accuracy of the reduced basis approximation online, and for rigorous and efficient
error control in the greedy sampling procedure offline, to allow exploration of much larger subsets of the
parameter domain. In the context of dynamical systems, a posteriori error estimators obtained via adjoint
problems or via time integration of residual relations are known to exhibit poor long time behavior, in
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Algorithm 1 Symplectic Greedy. Input: tZs
N , z0, µ1, tolγ , tolδu. Output: π2j .

1: Set j “ 1.
2: Given the initial condition z0, and µ1 take e1 “ z0pµ1q{}z0pµ1q} and π2j

“ re1, pJ c
2Rq

Je1s.
3: Compute the pseudoinverse π2j

` “ pJ c
2jq
Jπ2jJ c

2R.
4: Compute the error in the symplecticity δ2j “ }pπ2j

q
JJ c

2R π
2j
´ J c

2j}8.
5: Initialize the maximum projection error γmax

2j “ 1.
6: while j ă R, and γmax

2j ą tolγ , and δ2j ă tolδ do
7: Compute the projection error of all snapshots γ2jpzq “ }z ´ π2jπ2j

` z}, for all z P Zs
N .

8: Select the new basis element z˚pµ˚q “ argmaxzPZs
N
γ2jpzq.

9: Update the maximum projection error γmax
2j “ γ2jpz

˚
pµ˚qq.

10: Apply symplectic Gram–Schmidt to z˚pµ˚q and normalize ej`1 “ z˚pµ˚q{}z
˚
pµ˚q}.

11: j “ j ` 1.
12: Update the matrix π2j

“ re1, . . . , ej , pJ c
2Rq

Je1, . . . , pJ c
2Rq

Jejs.
13: Compute the pseudoinverse π2j

` “ pJ c
2jq
Jπ2j J c

2R.
14: Update the error in the symplecticity δ2j “ }pπ2j

q
JJ c

2R π
2j
´ J c

2j}8.
15: end while

particular for hyperbolic or singularly perturbed problems [53]. Although we acknowledge the paramount
importance of efficient and reliable a posteriori error indicators, especially in a greedy approach, in this
work we are mainly concerned with the structure-preserving properties of the reduced basis method and
less with the efficiency or optimality of the algorithm. We therefore postpone the investigation of the
topic to a later time.

The approximability properties of the solution sets (3.5) by linear subspaces of lower dimension n
can be expressed by the Kolmogorov width [33]. The Kolmogorov n-width of a compact subset UN of
pVN , }¨}q is defined as

dnpUN q :“ inf
WnĂVN

dimWn“n

sup
uPUN

inf
wPWn

}u´ w}. (3.7)

We can bound the Kolmogorov width of the solution set of the canonical problem (3.2) in terms of the
Kolmogorov width of UN , independently of the sampling of the temporal and parameter spaces. This is
expressed in the following Lemma.

Lemma 3.12. Let UN and ZN be the sampled solution sets introduced in (3.5). The Kolmogorov n-width
of the solution set ZN of the dynamical system (3.2) satisfies

dnpZN q ď
1

min1ďjďN

a

|λjpJN q|
dnpUN q,

where tλj P CuNj“1 are the eigenvalues of the constant-valued Poisson tensor JN .

Proof. Let Ψ : pVN , }¨},JN q ÝÑ pVN , }¨},J c
N q be the Darboux map associated with the Poisson tensor

JN and derived as in Proposition 2.11. Since Ψ is a linear bijection between finite-dimensional vector
spaces, is bounded. Therefore the Kolmogorov n-width of ΨpUN q can be bounded as

dnpΨpUN qq ď }Ψ} dnpUN q,

where }¨} denotes the operator 2-norm. Let U P RN,N be the matrix representation of the linear map
Ψ´1. From Proposition 2.11, Ψ is the composition of linear maps: U´1 “ pQDP q´1 where Q P RN,N
is orthogonal, D P RN,N is diagonal and P P RN,N is the extension of a permutation matrix by the
identity. Hence, it can be inferred that }U´1} ď }D´1} “ maxt1,max1ďjďN 1{

a

|λjpJN q|u, where
tλj P CuNj“1 are the eigenvalues of the Poisson structure JN . Note that each eigenvalue λj is of the form
λj “ ˘iδj with δj ě 0. Since the modified matrix D in (2.6) is an arbitrary nonsingular extension of the
matrix pD2R, one could in principle extend pD2R by pminj

a

δjq Iq. The resulting D is nonsingular and
}D´1} “ 1{min1ďjďN

a

|λjpJN q|.
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Proposition 3.13 (Convergence of the Weak Symplectic Greedy Algorithm). Let UN and ZN be the sampled
solution sets introduced in (3.5). Assume that UN has Kolmogorov n-width dnpUN q. Then, the reduced
space Vn “ V2r ˆN , with V2r constructed via Algorithm 1, satisfies

}z ´ Pz} ď C 3r`1pr ` 1q

min1ďjďN

a

|λjpJN q|
dnpUN q, @ z P ZN ,

where C ą 0 is a constant independent of n, r and N .

Proof. The convergence estimates for the weak greedy algorithm, derived in [11] and adapted to the
symplectic case in [3, Section 4.1.3], result in

}zs ´ Pszs} ď C3r`1pr ` 1q d2rpZs
N q, @ zs P Zs

N .

Let us define the Kolmogorov n-width of ZN restricted to subspaces of Vn of the form V2r ˆN as,

xdnpZN q :“ inf
xWnĂVN

dimWn“n

sup
zPZN

inf
wPWn

}z ´ w},

where xWn :“ tw P Vn : w “ pws,Ψcuq, ws P V2r, u P VNu. If d2rpZs
N q denotes the Kolmogorov 2r-width

(3.7) of the symplectic component of the solution set ZN , it holds d2rpZs
N q “

xdnpZN q ď dnpZN q. The
definition of the Poisson projection from Definition 3.5 together with Lemma 3.12 yields the conclusion.

Note that, depending on the decay of the Kolmogorov width, sharper convergence estimates can be
derived following [8].

3.3 Discrete Empirical Interpolation for Poisson Dynamics
In the context of projection-based reduced order models, the discrete empirical interpolation methods
introduced in [17] provide a well-established technique to evaluate nonlinear terms at a computational
cost proportional to the dimension n of the reduced problem.

Let the parameter µ P Λ be fixed. Let us assume that the dynamical system (3.1) can be written by
separating a linear and a nonlinear part, namely let ∇uHN pu;µq “ LNu`MN puq, where LN denotes a
linear operator and MN a nonlinear operator on VN , (the dependence of LN and MN on µ is omitted
for the sake of readability). Then (3.1) can be recast as

Btupt, µq “ JNLNu` JNMN puq, upt0, µq “ u0pµq. (3.8)

Analogously, we can rewrite the canonical problem (3.2) as zpt0, µq “ Ψu0pµq and

Btzpt, µq “ J c
N∇zHN pΨ

´1zpt, µq;µq “ J c
NLcNzpt, µq ` J c

NMc
N pzpt, µqq,

where LcN :“ Ψ´JLNΨ´1 andMc
N pzq :“ Ψ´JMN pΨ

´1zq. The reduced problem (3.3) becomes ypt0, µq “
π`z0pµq,

Btypt, µq “ π`J c
NΨ´JLNΨ´1πypt, µq ` π`J c

NΨ´JMN pΨ
´1πypt, µqq,

“ J c
nLnypt, µq ` J c

nπ
JΨ´JMN pΨ

´1πypt, µqq,

where Ln :“ πJΨ´JLNΨ´1π. Adopting a DEIM strategy we approximate the nonlinear term as
MN puq « UpPJUq´1PJMN puq for all u P VN as in [17, Eq. 3.5]. Analogously to the a symplectic
DEIM approach [3, Section 4.2] we take UJ “ π` so that

Ψ´JMN pΨ
´1πyq « πJ`pP

JπJ`q
´1PJΨ´JMN pΨ

´1πyq.

The reduced problem in the SDEIM formulation thus reads

Btypt, µq “ J c
nLnypt, µq ` J c

npP
JπJ`q

´1Mnpypt, µqq, ypt0, µq “ π`z0pµq, (3.9)

where Mnpyq :“ PJΨ´JMN pΨ
´1πyq.
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3.3.1 A Priori Error Estimates for Symplectic RBM with DEIM

Taking the cue from the convergence analysis in [18], an a priori error estimate can be derived for the state
approximation error between the high-fidelity solution and the reduced solution obtained by applying the
symplectic DEIM to the Poisson systems (3.1) and (3.3), respectively.

We derive L2-error estimates in both time and parameter space.

Proposition 3.14. For any given µ P Λ, let up¨, µq P C1pT , pVN ,JN qq be the solution of (3.8) and let
urb :“ Ψ´1πy where yp¨, µq P C1pT , pVn,J c

nqq is the solution of the reduced system (3.9). Assume that
for every µ P Λ the nonlinear operator MN is Lipschitz continuous in the norm }¨} with constant LMpµq.
Then,

}u´ urb}
2
L2pT ˆΛ;VN q ď}Ψ

´1}C1pT, αpµqq}Ψu´ PΨu}2L2pT ˆΛ;VN q

` }Ψ´1}2 C2pT, αpµqq}MN puq ´ π
J
`π`MN puq}

2
L2pT ˆΛ;VN q,

(3.10)

where αpµq :“ }Ψ´JLN pµqΨ´1} ` β}Ψ´1}2LMpµq, and β :“ }pPJπJ`q
´1}, ∆T :“ |T ´ t0| and

C1pT, αpµqq :“ 2∆T max
µPΛ

pαpµqpe2αpµq∆T ´ 1q` 1q, C2pT, αpµqq :“ 2∆T β2 max
µPΛ

pαpµq´1pe2αpµq∆T ´ 1qq.

Proof. The error between the high-fidelity and reduced solution can be bounded by the reduction error
associated with the dynamical systems in canonical form. Indeed,

}u´ urb}
2
L2pT ˆΛ;VN q “

ˆ
Λ

ˆ
T
}Ψ´1pΨupt, µq ´ πypt, µqq} dt dµ ď }Ψ´1}}z ´ πy}2L2pT ˆΛ;VN q, (3.11)

where z is the solution of the high-fidelity model in canonical form (3.2) and y is the solution of the
reduced problem (3.3).

At each time t and µ P Λ, let z´πy “ pz´Pzq`pPz´πyq “: ep`eh. Then, ifW :“ πJ`pP
JπJ`q

´1PJ,

Btehpt, µq “ PBtzpt, µq ´ πBtypt, µq “ PJ c
N pLcNz `Mc

N pzq ´ LcNπy ´WMc
N pπyqq

“ PJ c
NLcNeh ` PJ c

NLcNep ` PJ c
N pMc

N pzq ´WMc
N pπyqq

“: Opµqeh `Qpt, µq.

Using the fact that pI ´W qπJ`π`Mc
N pzq “ 0, we can bound Q as,

}Qpt, µq} ď }LcNep} ` }pI ´W qMc
N pzq} ` }W pMc

N pzq ´Mc
N pπyqq}

ď }LcN }}ep} ` }pI ´W qpMc
N pzq ´ π

J
`π`Mc

N pzqq} ` }W pMc
N pzq ´Mc

N pπyqq}

ď }LcN }}ep} ` }I ´W }}w} ` }W }LMpµq}Ψ
´1}2p}ep} ` }eh}q.

where wpt, µq :“Mc
N pzpt, µqq ´ π

J
`π`Mc

N pzpt, µqq. The error satisfies the evolution equation

Bt}eh} “
1

}eh}
pBteh, ehqV “

1

}eh}
pOeh, ehqV `

1

}eh}
pQpt, µq, ehqV

ď }O}}eh} ` }Q} ď αpµq}eh} ` bpt, µq,

(3.12)

where αpµq :“ }LcN }` }W }LMpµq}Ψ
´1}2 and bpt, µq :“ αpµq}eppt, µq}`β}wpt, µq}, β :“ }I ´W }. Since

W is a projector β “ }I ´W } “ }W }: the norm of W is bounded [17, Lemma 3.2], and depends on the
DEIM selection of indices in P [17, Section 3.2]. From (3.12), Gronwall’s inequality [29] gives

}ehpt, µq} ď }ehpt0, µq} e
αpµqt `

ˆ t

t0

eαpµqpt´sqbps, µq ds

ď

ˆˆ t

t0

e2αpµqpt´sq ds

˙1{2 ˆ

2

ˆ t

t0

αpµq
2
}epps, µq}

2 ` β2}wps, µq}2 ds

˙1{2

.
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Hence, for all t P T ,

}ehpt, µq}
2 ď cpt, αpµqq

ˆ t

t0

pαpµq
2
}epps, µq}

2 ` β2}wps, µq}2q ds,

where cpt, αpµqq :“ 2αpµq
´1
pe2αpµqpt´t0q ´ 1q assuming αpµq ‰ 0, for all µ P Λ. This implies that,

}z ´ πy}2L2pT ˆΛ;VN q ď

ˆ
Λ

ˆ T

t0

}eppt, µq}
2 dt dµ

`∆T
ˆ

Λ

cpT, αpµqq

ˆ T

t0

pα2pµq}eppt, µq}
2 ` β2}wpt, µq}2q dt dµ

ď 2∆T β2

ˆ
Λ

αpµq
´1
pe2αpµq∆T ´ 1q}Mc

N pzp¨, µqq ´ π
J
`π`Mc

N pzp¨, µqq}
2
L2pT ;VN q dµ

`

ˆ
Λ

p∆T αpµqpe2αpµq∆T ´ 1q ` 1q}zp¨, µq ´ Pzp¨, µq}2L2pT ;VN q dµ

ď C1pT, αpµqq}z ´ Pz}2L2pT ˆΛ;VN q

` }Ψ´1}C2pT, αpµqq}MN pΨ
´1zq ´ πJ`π`MN pΨ

´1zq}2L2pTˆΛ;VN q.

The conclusion follows by combining the above estimate with (3.11).

A few observations are in order. The projection error appearing in the estimate of Proposition 3.14
can be written as

}z ´ Pz}2L2pT ˆΛ;VN q ď

ˇ

ˇ

ˇ

ˇ

}z ´ Pz}2L2pT ˆΛ;VN q ´
ÿ

jPΥh,iď7Λ

wj,i}zpt
j , µiq ´ Pzptj , µiq}2

ˇ

ˇ

ˇ

ˇ

`
ÿ

jPΥh,iď7Λ

wj,i}zpt
j , µiq ´ Pzptj , µiq}2.

The term in absolute value is a quadrature error (twj,iujPΥh,iď7Λ are quadrature weights), and depends
on the number and choice of the snapshots ZN , the smoothness of the integrand in the temporal
variable and in the parameter, etc. The second term is controlled by the greedy algorithm according to
Proposition 3.13.

The term }MN puq ´ π
J
`π`MN puq}

2
L2pT ˆΛ;VN q in (3.10) can be controlled during the assembling of

the reduced basis from the nonlinear snapshots tMN pu
jpµqqujPΥh,iď7Λ, see [17, 18, Section 2.1] and [3,

Section 4.2].
Finally, observe that the bound in (3.10) depends exponentially on the final time T . A linear

dependence on T can be obtained in special cases, for example when ∇HN is uniformly negative
monotone or when the linear part of (3.8) has a logarithmic norm µpLN q :“ limhŒ0p} Id ` hLN } ´ 1q{h
[22] bounded by }pPJπJ`q´1}LM, as in [18, Sections 3 and 4].

4 State-Dependent Poisson Structures
The Hamiltonian formulation of most problems in fluid and plasma physics possesses a Poisson structure
which is not only degenerate but depends on the state variable. The difficulty in dealing with such
problems stems from the time dependence and nonlinearity intrinsic to the manifold structure.

As for the constant-valued case, Darboux’s Theorem 2.8 suggests a change of coordinates to bring the
structure into a canonical form more amenable to discretization and model order reduction. However, in
the state-dependent case, the Darboux charts have a local nature and the corresponding global change
of coordinates is nonlinear. For these reasons, aside from very particular cases [36, 40], it is generally
non-trivial to derive such nonlinear maps.

On the other hand, resorting to approximation techniques requires particular care. Indeed the use of
too crude an approximation of the Poisson tensor, e.g. by expanding the state u in a power series of a
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small parameter and then truncate the expansion of JN puq, destroys the underlying Poisson structure
since the Jacobi identity (2.3) generally fails to hold for the approximate tensor. In the context of
Hamiltonian perturbation theory, the authors of [44] advocate a near identity change of variables in
the neighborhood of a stable equilibrium to bring the Poisson tensor in constant form pointwise. This
approach is, however, limited to weakly nonlinear Hamiltonian systems describing the dynamics near
equilibria, and introduces a local approximation of the Poisson structure by truncating the expansion of
the Poisson tensor.

We propose to perform a piecewise linear approximation of the Darboux map in each discrete time
interval and subsequently derive a reduced basis method for the resulting, locally canonical, structure.

To keep the presentation focused, we next consider dynamical systems which do not depend on a
parameter. We further comment on the extension of the results obtained in the forthcoming Sections to
the parameter-dependent case in Section 4.4.

4.1 Linear Approximation of Darboux’s Charts
We exploit the linearization introduced by the timestepping to derive piecewise linear approximations of
the Darboux map Ψ, and construct a locally finite cover of VN along the solution trajectory, using time
intervals and linear approximations of the homomorphisms tΨuu, from Theorem 2.10, on each interval.

Let us define the submanifolds VN,j :“ tuptq P VN : t P Tj “ ptj , tj`1su Ă VN , associated with the
temporal mesh Th “

Ť

jPΥh
Tj . Time discretization of (2.4) yields: For u0 P VN , find tuj`1ujPΥh Ă VN

such that
$

&

%

uj`1 “ uj `∆tJN ppujq∇uHN ppu
jq, for j P Υh,

u0 “ u0,
(4.1)

where puj P VN,j is determined by the temporal discretization of choice, and can be a state or a combination
of them. Alternative discretizations of the Poisson tensor and of the Hamiltonian can be considered.
This choice will affect the convergence estimates and the restriction of the time step in Theorem 4.8 and
Theorem 4.9, but not the approximation of the Darboux map, nor the derivation of the reduced basis
method.

Definition 4.1. On each submanifold VN,j , with j P Υh, the local approximation of the Darboux map Ψ
is defined to be the linear function ψj`1{2 : VN,j Ñ VN,j , which satisfies ψj`1{2JN ppujqψJj`1{2 “ J c

N at
the state(s) puj P Tj dictated by the temporal discretization (4.1). Each map ψj`1{2 provides the local
splitting ψj`1{2 : VN,j Ñ V2R ˆNj , with ψsj`1{2pVN,jq “ V2R being a 2R-dimensional subspace of VN
and ψcj`1{2pVN,jq “ Nj the approximation of the subspace associated with the kernel of the Poisson
tensor at puj .

Let VN,j :“ tuptq P VN : t P Tju for all j P Υh. Transition maps between neighboring intervals are
Tj : ψj´1{2pVN,j´1 X VN,jq ÝÑ ψj`1{2pVN,j´1 X VN,jq, defined as Tj :“ ψj`1{2 ˝ ψ

´1
j´1{2, for j P Υhzt0u

with T0 :“ Id . A sketch of the approximated Darboux’s charts is presented in Figure 1.

We denote ψ : VN Ñ VN as the global map collecting the linear functions ψj`1{2 on each VN,j , j P Υh.
For any j P Υh fixed, the map ψj`1{2 is in general not Poisson on VN,j . However, provided the time
discretization (4.1) preserves the Casimir invariants (see Definition 2.12), the map ψ preserves the rank
of the Poisson structure since dimNj “ q for all j P Υh.

With the local change of coordinates introduced by ψ : VN Ñ VN , we can recast the fully discrete
problem (4.1) as: For u0 P VN , find tzj`1ujPΥh Ă VN such that

$

&

%

zj`1 “ Tjz
j `∆tJ c

N∇zHj
N ppz

jq, for j P Υh,

z0 “ ψ1{2u0,
(4.2)

where pzj :“ ψj`1{2pu
j and Hj

N pzq :“ HN pψ
´1
j`1{2zq for all z P VN,j .

The fact that the approximation of the Darboux map is based on the linearization, introduced by the
timestepping, ensures that the Poisson structure is not jeopardized by recasting the discrete problem
(4.1) as (4.2).
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VN

pVN ,JN puqq

Tj´1

ψj´1{2

Tj

ψj`1{2

Tj “ ψj`1{2 ˝ ψ
´1
j´1{2

Figure 1: Sketch of Darboux’s charts approximation on the Poisson manifold pVN ,JN puqq.

Proposition 4.2. The discrete problem (4.2) is well-posed. Moreover, let Φt
h be the discrete flow map

associated with the time discretization (4.1) of (2.4) on Th. Let Φth,cN be the discrete flow map associated
with the discrete system (4.2). Then ψ´1

M´1{2 ˝ ΦTh,cN ˝ ψ1{2 “ ΦTh .

Proof. It is enough to show that, for every j P Υh, the following diagram

uj P VN,j
Φh

ÝÝÝÝÑ uj`1 P VN,j

ψj`1{2

§

§

đ

İ

§

§

ψ´1
j`1{2

zj P VN,j
Φh,cN
ÝÝÝÝÑ zj`1 P VN,j

commutes. Here Φh and ΦcN,h denote one step of the temporal integrators Φth and ΦtcN,h, respectively.
Without loss of generality we can show the commutativity property on the first time interval T1. By
construction, if u1 is a numerical solution of (4.1) in T1, i.e. u1 “ Φhpu0q, then ψ1{2u

1 is a numerical
solution of (4.2), guaranteeing the existence of solutions to (4.2). Conversely, let z1 be a numerical
solution of (4.2) in T1, i.e. z1 “ Φh,cN pz

0q “ Φh,cN pψ1{2u
0q. From (4.2) we have

ψ´1
1{2z

1 “ ψ´1
1{2T0z

0 `∆t ψ´1
1{2J

c
N∇zHN pψ

´1
1{2pz

0q

“ ψ´1
1{2z

0 `∆t ψ´1
1{2J

c
Nψ

´J

1{2∇ψ´1
1{2
zHN pψ

´1
1{2pz

0q

“ u0 `∆tJN ppuq∇uHN ppu
0q,

provided pz0 “ ψ1{2pu
0. This implies that ψ´1

1{2z
1 “ u1 :“ Φhpu0q, ensuring that the solution of (4.2)

in T1 is unique. Furthermore, applying a similar reasoning to any given interval Tj , j P Υh, we have
Φh “ ψ´1

j`1{2 ˝ Φh,cN ˝ ψj`1{2. Hence,

ΦTh “ ψ´1
M´1{2 ˝ Φh,cN ˝ TM´1 ˝ Φh,cN ˝ TM´2 ˝ . . . ˝ T1 ˝ Φh,cN ˝ ψ1{2.

This result implies that: I P C8pVN q is an invariant of the motion of Φt
XHN

if and only if Ij :“

ψ˚j`1{2I P C
8pVN q is a (local) invariant of ΦtX

Hj
N

for all j P Υh.
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Corollary 4.3. The Hamiltonian functional HN of (4.1) is preserved if and only if (4.2) is locally
Hamiltonian-preserving i.e. Hj

N pz
j`1q “ Hj

N pTjz
jq for every j P Υh. This holds true for any invariant

of motion of ΦtXHN
.

Proof. Let tzjujPΥh be numerical solutions of (4.2) in each interval Tj . In view of Proposition 4.2, it
holds Hj

N pz
j`1q “ HN pψ

´1
j`1{2z

j`1q “ HN pu
j`1q. If (4.2) is locally Hamiltonian-preserving, using the

definition of transition maps and the local conservation properties, we recover

Hj
N pz

j`1q “ Hj
N pTjz

jq “ HN pψ
´1
j`1{2Tjz

jq “ HN pψ
´1
j`1{2ψj`1{2ψ

´1
j´1{2z

jq “ Hj´1
N pzjq

“ Hj´1
N pTj´1z

j´1q “ . . . “ H0
N pz

1q “ H0
N pT0z

0q “ HN pu0q.

Conversely, if (4.1) is (globally) Hamiltonian preserving, then HN pu0q “ . . . “ HN pu
jq “ HN pu

j`1q for
all j P Υh. The conclusion follows from HN pu

jq “ HN pψ
´1
j´1{2z

jq “ HN pψ
´1
j`1{2Tjz

jq.

The global evolution equation for z is not J c
N -Poisson, due to the transition between neighboring

intervals, notwithstanding that (4.2) is canonically J c
N -Poisson on each time interval Tj . Furthermore, the

initial condition Tjzj on each Tj does not in general belong to the canonical Poisson manifold pVN,j ,J c
N q.

Likewise the solution zj`1 of (4.2) on Tj in general does not belong to pVN,j ,J c
N q, i.e. the splitting of the

dynamics is clearly not exact. One might consider a “correction” of the initial condition Tjzj to reduce
the distance between pVN,j ,J c

N q and the space where the local dynamics is taking place. However, this
might introduce an error in the approximation of the solution of the original problem (4.1) and, more
importantly, a loss in the preservation of the original Poisson structure JN puq, in view of Proposition 4.2
and Corollary 4.3. We therefore discard this option. This consideration is supported by the observation
that the global evolution of z cannot “drift away” from the canonical Poisson manifold pVN,j ,J c

N q provided
each ψj`1{2 is a sufficiently accurate approximation of the Darboux map Ψ on the whole interval Tj .
Indeed, in view of Proposition 4.2, the distance (induced by the }¨}-norm) of the solution of (4.2) in
Tj from the canonical Poisson manifold pVN ,J c

N q is bounded by }ψj`1{2u
j`1 ´Ψpuj`1q}. This error

is local, independent of the dynamics and of the space-time discretization, and only depends on the
approximation properties of each ψj`1{2, which are clearly problem-dependent, but controllable.

4.2 Reduced Basis Methods for State-Dependent Structures
To develop reduced basis methods for the discrete dynamical system (4.1) we can now apply a local
reduction approach, similar to that in Section 3.2. We have built an approximate cover of the high-
dimensional Poisson manifold pVN ,JN puqq «

Ť

jPΥh
pVN,j ,JN ppujqq and generated the local splittings

ψj`1{2 : VN,j Ñ V2R ˆNj via the piecewise linear approximations of the Darboux map.
As a lower dimensional space we construct an n-dimensional Poisson manifold, n ! N , endowed with

the canonical J c
n-Poisson bracket such that n ´ rankpJ c

nq “ q and the dimension of the null space of
JN puq is conserved in the model order reduction. Analogously to the splitting approach described in
Section 3.1, this is achieved through a global linear surjective map π` such that, for every j P Υh,

π` : V2R ˆNj ÝÑ V2r ˆNj , π` “ πs` ˆ Id ,

where πs` is taken to be an `2-orthogonal symplectic application, i.e. πs`J c
2Rpπ

s
`q
J “ J c

2r.
The map π` : pVN , t¨, ¨ucN q Ñ pVn, t¨, ¨ucnq is Poisson since π`J c

Nπ
J
` “ J c

n . However, since the set of
solution snapshots does not possess a global Poisson structure, the low-dimensional space Vn is recovered
as a linear subspace of VN , with the latter considered as a normed vector space, being the structure
t¨, ¨ucN constant-valued.

Lemma 4.4. The map P “ π ˝ π` : VN Ñ Impπq Ă VN is `2-orthogonal and it is a projection.

Proof. A straightforward application of the properties of π and of its pseudoinverse π`, yields the result.
Using π` ˝ π “ Id and the surjectivity of π` results in P ˝ P “ P.

The `2-orthogonality of P simply follows from the fact that, by construction, the pseudoinverse πs`
and the adjoint of πs coincide.
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The orthogonality of P guarantees the inclusion of Vn “ Impπq in VN , and hence the approximation
properties of the reduced solution, while the symplecticity of πs` ensures that the nontrivial phase flow is
a symplectomorphism and that the local kernel tNjuj is preserved.

The reduced problem is derived from the canonical Poisson dynamical systems (4.2) by a local Poisson
projection onto ImpπqXVN,j Ă VN . On the n-dimensional Poisson manifold Vn, the fully discrete problem
reads: For u0 P VN , find tyj`1ujPΥh Ă Vn such that

$

&

%

yj`1 “ τjy
j `∆tJ c

n∇yHj
nppy

jq, for j P Υh,

y0 “ π`ψ1{2u0,
(4.3)

where Hj
npyq :“ HN pψ

´1
j`1{2πyq for all y P Vn, and the reduced transition maps τj are defined as

τj :“ π` ˝ Tj ˝ π for all j P Υhzt0u, and τ0 :“ Id . A sufficient condition for the well-posedness of (4.3) is
that ∇HN is Lipschitz continuous, where HN is the Hamiltonian of the high-fidelity problem (4.1).

Problem (4.3) can be seen as the temporal discretization of an evolution equation which is canonically
J c
n-Poisson on each time interval Tj . Indeed yj`1 P Vn is the numerical approximation of the solution of

$

&

%

dty “ J c
n∇yHj

npyq, for t P Tj ,

y0 “ τjypt
jq,

(4.4)

where yptjq P Vn is the numerical solution at time tj . The reduced phase flow is no longer globally
Poisson: the Hamiltonian HN of the high-fidelity problem (2.4) is conserved up to approximation error
of the local Darboux map.

Proposition 4.5. Let u0 be the initial condition of the dynamical system (2.4). For j P Υh fixed, let
urbpt

j`1q be the time-continuous solution of the reduced problem given by urbpt
j`1q “ ψ´1

j`1{2πypt
j`1q

where yptq is the solution of (4.4) at time t P Th. If the Hamiltonian HN of (2.4) is Lipschitz continuous
with constant LH then

ˇ

ˇHN purbpt
j`1qq ´HN pu0q

ˇ

ˇ ď LH

j
ÿ

k“1

}ψ´1
k`1{2}}ψk´1{2}}Tk ´ Id }}urbpt

kq}.

Proof. Let yptkq P Vn be the solution of the reduced system (4.4) at time tk P Th. Since the system
is locally J c

N -Poisson, the Hamiltonian is an invariant of the local motion, namely Hk
npypt

k`1qq “

HN pψ
´1
k`1{2πypt

k`1qq “ Hk
npτkypt

kqq. However, the global Hamiltonian HN is not preserved at the
interface between intervals. Indeed,

ˇ

ˇHk
npτkypt

kqq ´Hk´1
n pyptkqq

ˇ

ˇ “

ˇ

ˇ

ˇ
HN pψ

´1
k`1{2πτkypt

kqq ´HN pψ
´1
k´1{2πypt

kqq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
HN pψ

´1
k`1{2PTkπypt

kqq ´HN pψ
´1
k´1{2πypt

kqq

ˇ

ˇ

ˇ
.

If Tkπyptkq P Impπq for all k P Υh, then ψ´1
k`1{2PTkπypt

kq “ ψ´1
k´1{2T

´1
k PTkπyptkq “ ψ´1

k´1{2πypt
kq, and,

hence, the Hamiltonian would be conserved.
Under the assumption that the Hamiltonian HN is Lipschitz continuous with constant LH it holds,

ˇ

ˇHk
npτkypt

kqq ´Hk´1
n pyptkqq

ˇ

ˇ ď LH}ψ
´1
k`1{2PTkπypt

kq ´ ψ´1
k´1{2πypt

kq}

“ LH}ψ
´1
k`1{2PpTk ´ Id qπyptkq ´ ψ´1

k`1{2pTk ´ Id qPπyptkq}

ď LH}ψ
´1
k`1{2}}ψk´1{2}}Tk ´ Id }}urbpt

kq}.
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Hence, the error in the conservation of the Hamiltonian at time tj can be bounded as

ˇ

ˇHN purbpt
jqq ´HN pu0q

ˇ

ˇ “
ˇ

ˇHj´1
n pyptjqq ´HN pu0q

ˇ

ˇ ď

j´1
ÿ

k“1

ˇ

ˇHk
npypt

k`1qq ´Hk´1
n pyptkqq

ˇ

ˇ

ď

j´1
ÿ

k“1

ˇ

ˇHk
npτkypt

kqq ´Hk´1
n pyptkqq

ˇ

ˇ

ď LH

j´1
ÿ

k“1

}ψ´1
k`1{2}}ψk´1{2}}Tk ´ Id }}urbpt

kq}.

Since, by construction, the map π` acts as the identity on Nj for all j P Υh, the approximation of the
center of the Lie algebra C8pVN q, given by spantpψuqm, m “ 1, . . . , qu, is not affected by the reduction.
This means that the error made in the conservation of the Casimir invariants of the bracket t¨, ¨uN is
only attributable to the approximation of the Darboux charts.

Concerning the stability properties of the problem, since the Poisson system (2.4) and its canonical
form obtained through Darboux’s map are in one-to-one correspondence, ue is Lyapunov stable equilibrium
of (2.4) if and only if Ψpueq is Lyapunov stable equilibrium of the corresponding canonical system. When
resorting to the piecewise linear approximation of Ψ, as introduced in Definition 4.1, Lyapunov stable
equilibria are preserved by the discrete problem since, by Proposition 4.2, ψ´1

j´1{2z
j “ uj for all j P Υh

with uj numerical solution of (4.1) and zj numerical solution of (4.2) in Tj´1. Note that the property of
preserving the Lyapunov equilibria at the discrete level depends on the temporal solver, see e.g. [28] and
references therein.

Furthermore, if Ψ˚HN is Lyapunov function, a reasoning analogous to the one of Section 3.2.1 allows
to show that the global reduced system associated with the exact Darboux map preserves the Lyapunov
stable equilibria belonging to Impπq. However, ye :“ π`ψue « π`Ψpueq is generally not an equilibrium of
(4.3). Ideally one would want to have that }ψ´1

j´1{2πy
j ´ ue} is uniformly bounded for all j P Υh, where

yj is the numerical solution of (4.3) in Tj´1. It holds

}ψ´1
j´1{2πy

j ´ ue} “ }ψ
´1
j´1{2πy

j ´Ψ´1pπyeq} ď }ψ
´1
j´1{2pπy

j ´ πyeq} ` }ψ
´1
j´1{2πye ´Ψ´1pπyeq}

ď }ψ´1
j´1{2}}y

j ´ ye} ` }ψ
´1
j´1{2πye ´Ψ´1pπyeq}.

The second term is the approximation error of the Darboux map, while the term }yj ´ ye} can be bounded
by the approximation error associated with solving as reduced problem (4.3) instead of the reduced
system obtained from the exact Darboux map Ψ. Although the reduced solution is not guaranteed to
belong to an arbitrary small neighborhood of ue, the term }yj ´ ye} does not depend on the reduction
but only on the approximation properties of the Darboux map.

4.2.1 Convergence of the Weak Symplectic Greedy Algorithm

For the derivation of the reduced basis, we rely on the weak greedy algorithm, described in Section 3.2.2,
with the following modifications. A set of snapshots UN “ tuj “ Φtj

h,N pu
0q, j P Υhu is computed from

the high-fidelity problem (4.1) (with discrete flow map Φt
h,N ) together with the linear approximation

maps tψj`1{2ujPΥh . The image of each snapshot under the corresponding ψj`1{2 supplies the solution
of the local system (4.2) in every time interval. By extracting the symplectic part and excluding the
contribution of the Casimir invariants, we define

Zs
N :“ tψsj`1{2u

j`1, j P Υhu Y tψ
s
1{2u0u. (4.5)

We finally build an orthogonal J c
2R-symplectic reduced basis from Zs

N via Algorithm 1 and the Poisson
projection P :“ π ˝ π` from πs and πs`.
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Theorem 4.6 (Convergence of the Weak Symplectic Greedy Algorithm). Let Φth,cN be the discrete flow map
associated with (4.2). Assume that the solution set ZN :“ tzj “ Φtj

h,cN pz
0q, j P Υhu has Kolmogorov

n-width dnpZN q. Then, the reduced space Vn “ V2r ˆN , with V2r derived via the symplectic weak greedy
Algorithm 1, satisfies

}z ´ Pz} ď C3r`1pr ` 1qdnpZN q, @ z P ZN ,

where the finite constant C ą 0 is independent of n, r and N .

Proof. Let Zs
N be the set (4.5) containing the symplectic part of the solution trajectory at time instants

ttjujPΥh . The greedy Algorithm 1 iteratively generates a hierarchy of subspaces of V2R such that the
projection Ps is `2-orthogonal, see Lemma 4.4. In the context of an orthogonal reduced basis generation
via a greedy strategy we can revert to the a priori convergence estimates derived in [11] and [8]. The
argument proposed here is a straightforward modification of the proof presented in [11, Section 2] by
taking into account the form of the orthosymplectic reduced basis (Definition 3.10), and it is therefore
relegated to Appendix A.

Remark 4.7. We are making the tacit assumption that the Kolmogorov n-width of the solution set ZN
has a sufficiently fast decay. Unlike the constant case, see Section 3.2.2 and Lemma 3.12, the Kolmogorov
width of the solution set ZN associated with the system (4.2) cannot easily be bounded by the Kolmogorov
width of the solution set of the original system (4.1). That would require stronger conditions on the global
nonlinear Darboux map Ψ, see e.g. [20], which are generally not guaranteed by Darboux’s Theorem 2.8.

4.3 A Priori Convergence Estimates for the Reduced Solution
For state-dependent Poisson structures we perform model order reduction in a local perspective. We
therefore derive a priori estimates for the error between the high-fidelity solution and the reduced solution
for the fully discrete system in each temporal interval. The total error at a given time is controlled by
the projection error at all the previous time steps.

Note that the error of the reduced solution is computed with respect to the solution of the fully
discrete high-fidelity system and not with respect to the exact solution of (2.4). Hence the estimate (4.6)
does not include the approximation error ensuing from the temporal discretization.

Theorem 4.8. Let j P Υh be fixed. Let uj`1 be the numerical solution of (4.1) at time tj`1 and let uj`1
rb

be the numerical solution of the reduced problem, obtained as uj`1
rb “ ψ´1

j`1{2πy
j`1, where yj`1 is the

solution of (4.3) at time tj`1. Assume that ∇HN is Lipschitz continuous in the }¨}-norm with constant
LδH. If the numerical discretization of the Hamiltonian in (4.1) is (semi-)implicit, and the time step ∆t
satisfies

∆t LδHC1}ψ
´1
j`1{2}

2 ă 1, for all j P Υh,

where the finite constant C1 ą 0 depends only on the discretization of the Hamiltonian, then,

}uj`1 ´ uj`1
rb } ď

}ψ´1
j`1{2}

1´∆t LδHC1}ψ
´1
j`1{2}

2

ˆ

}zj`1 ´ Pzj`1} `

j
ÿ

k“1

γkβk}z
k ´ Pzk}

˙

. (4.6)

Here zk “ ψk´1{2u
k, βk :“ }Tk ´ Id } `∆t LδHC2}ψ

´1
k`1{2}

2, the constant C2 ą 0 depends only on the
discretization of the Hamiltonian, and

γk :“

$

’

&

’

%

1`
j
ř

m“k`1

βm, if k ď j ´ 1,

1, if k “ j.

Proof. Let us split the error at time tj , for j P Υh, as

ej :“ zj ´ πyj “ pzj ´ Pzjq ` pPzj ´ πyjq “: ejp ` e
j
h.
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Subtracting problem (4.2) and the reduced problem (4.3), the approximation error ej`1
h at time tj`1 can

be written as,

ej`1
h “ Pzj`1 ´ πyj`1

“ ejh ` PpTj ´ Id qzj ` πyj ´ PTjπyj `∆tPJ c
N p∇zHj

N ppz
jq ´∇πyHj

N pπpy
jqq

“ p Id ` PpTj ´ Id qqejh ` PpTj ´ Id qejp `∆tPJ c
N p∇zHj

N ppz
jq ´∇πyHj

N pπpy
jqq.

The total error at time tj`1 is bounded as,

}ej`1} ď }ej`1
p } ` }ej`1

h }

ď } Id ` PpTj ´ Id q}}ejh} ` }PpTj ´ Id q}}ejp} `∆t }Rj} ` }e
j`1
p }

ď p1` }Tj ´ Id }q}ejh} ` }Tj ´ Id }}ejp} `∆t }Rj} ` }e
j`1
p },

(4.7)

where Rj :“ PJ c
N p∇zHj

N ppz
jq ´∇πyHj

N pπpy
jqq. Since ∇HN is Lipschitz continuous by assumption, using

the definition of the local Hamiltonian Hj
N :“ pψ´1

j`1{2q
˚HN , the term Rj satisfies

}Rj} ď }∇zHj
N ppz

jq ´∇πyHj
N pπpy

jq} ď LδH}ψ
´1
j`1{2}

2}pzj ´ πpyj}

ď LδHC1}ψ
´1
j`1{2}

2}ej`1} ` LδHC2}ψ
´1
j`1{2}

2}ej},
(4.8)

where the finite non-negative constants C1 and C2 depend only on the temporal discretization of (4.1)
(e.g. for the implicit Euler scheme C1 “ 1 and C2 “ 0, for the implicit midpoint rule C1 “ C2 “ 1{2,
etc.). Hence, the total error at time tj`1 satisfies

}ej`1} ď∆t LδHC1}ψ
´1
j`1{2}

2}ej`1} ` p1` αj `∆t LδHC2}ψ
´1
j`1{2}

2q}ejh}

` pαj `∆t LδHC2}ψ
´1
j`1{2}

2q}ejp} ` }e
j`1
p }.

where αj :“ }Tj ´ Id }. Under the condition that the time step ∆t satisfies ∆t LδHC1}ψ
´1
j`1{2}

2 ă 1 for
all j P Υh, the total error at time tj`1 is controlled by the projection error ekp at all previous time steps
k ď j ` 1; thereby,

}ej`1} ď
1

1´∆t LδHC1}ψ
´1
j`1{2}

2

ˆ j
ÿ

k“1

βk}e
k
p} ` }e

j`1
p } `

j´1
ÿ

k“1

ˆ j
ÿ

m“k`1

βm

˙

βk}e
k
p}

˙

,

where βm :“ αm `∆t LδHC2}ψ
´1
m`1{2}

2.
The conclusion follows from the fact that uj ´ ujrb “ ψ´1

j´1{2e
j , owing to Proposition 4.2.

4.3.1 Discrete Empirical Interpolation for State-Dependent Structures

For state-dependent Poisson structures we can apply a discrete empirical interpolation strategy to the
nonlinear terms of the fully discrete dynamical system (4.3). The reasoning proceeds similarly to that
of Section 3.3 but is carried out locally, on each time interval. Observe that, except for the evaluation
of the nonlinear terms, the local reduced basis technique, described in the previous sections, does not
incur a computational cost proportional to N during the online phase since the evaluation of the reduced
transition maps tτjuj can be performed offline.

Let us assume that the evolution problem (2.4) can be written by separating its linear and nonlinear
parts, i.e. we write ∇uHN ppu

jq “ LNpuj `MN ppu
jq, where LN denotes a linear operator and MN a

nonlinear one. Analogously, the gradient of the Hamiltonian in the local discrete canonical formulation
(4.2) can be expressed as

∇zHj
N ppz

jq “ ψ´Jj`1{2LNψ
´1
j`1{2pz

j ` ψ´Jj`1{2MN pψ
´1
j`1{2pz

jq “: LjNpz
j `Mj

N ppz
jq.

The reduced problem (4.3) then becomes

yj`1 “ τjy
j `∆tJ c

nπ
JpLjNπpy

j `Mj
N pπpy

jqq “ τjy
j `∆tJ c

npLjnpyj ` πJM
j
N pπpy

jqq,
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where Ljnpyj :“ πJψ´Jj`1{2LNψ
´1
j`1{2πpy

j . Adopting a symplectic DEIM strategy we approximate the
nonlinear term as Mj

N pπpy
jq « πJ`pP

JπJ`q
´1PJMjpπpyjq so that, for Mj

nppy
jq :“ PJMj

N pπpy
jq, the

discrete reduced problem reads
$

&

%

yj`1 “ τjy
j `∆tJ c

npLjnpyj ` pPJπJ`q´1Mj
nppy

jqq, for j P Υh,

y0 “ π`ψ1{2u0.
(4.9)

Similarly to Theorem 4.8, the approximation error can be bounded by the projection error of the previous
time intervals and terms involving the nonlinear part, can be controlled during the construction of the
reduced basis from the nonlinear snapshots tMN ppu

jqujPΥh . Observations similar to the remarks made at
the end of Section 3.3.1 apply.

Theorem 4.9. Let j P Υh be fixed. Let uj`1 be the numerical solution of (4.1) at time tj`1 and let
uj`1

rb be the numerical solution of the reduced problem, obtained as uj`1
rb “ ψ´1

j`1{2πy
j`1 where yj`1 is

the solution of (4.9) at time tj`1. Assume that the nonlinear operator MN is Lipschitz continuous with
constant LM. If the numerical temporal discretization of (4.1) is (semi-)implicit, and the time step ∆t
satisfies the condition

∆t C1p}LjN } ` }W }}ψ
´1
j`1{2}

2LMq ă 1, for all j P Υh,

where W :“ πJ`pP
JπJ`q

´1PJ, and C1 ą 0 depends only on the discretization of the Hamiltonian, then,
the approximation error satisfies

}uj`1 ´ uj`1
rb } ď Cj

ˆ

}zj`1 ´ Pzj`1} `

j
ÿ

k“1

γkβk}z
k ´ Pzk} ` }W }}Mj

nppz
jq ´ πJ`π`Mj

nppz
jq}

˙

.

Here zk “ ψk´1{2u
k, pzj is determined by the temporal discretization (4.2), and

Cj :“
}ψ´1

j`1{2}

1´∆t C1p}LjN } ` }W }}ψ
´1
j`1{2}

2LMq
.

The coefficients are defined as βk :“ }Tk ´ Id } `∆t C2p}LkN } ` }W }}ψ
´1
k`1{2}

2LMq, where the constant
C2 ą 0 depends only on the discretization of the Hamiltonian, and

γk :“

$

’

&

’

%

1`
j
ř

m“k`1

βm, if k ď j ´ 1,

1, if k “ j.

Proof. We proceed analogously to the proof of Theorem 4.8. The only difference is in the bound of the
term Rj :“ PJ c

N p∇zHj
N ppz

jq ´∇πyHj
N pπpy

jqq. Here, taking into account the DEIM approximation of the
nonlinear term MN , it holds

Rj “ PJ c
N pL

j
Npz

j `Mj
N ppz

jqq ´ πJ c
npLjnpyj ` pPJπJ`q´1Mj

nppy
jqq

“ PJ c
N pL

j
Npz

j `Mj
N ppz

jqq ´ πJ c
npπ

JLjNπpy
j ` πJWMj

N pπpy
jqq

“ PJ c
NLjN ppz

j ´ πpyjq ` PJ c
N pM

j
N ppz

jq ´WMj
N pπpy

jqq,

since πJ c
nπ
J “ PJ c

N , and where W :“ πJ`pP
JπJ`q

´1PJ. In this case, using the fact that p Id ´
W qπJ`π`M

j
N ppz

jq “ 0, the bound for Rj , analogous to (4.8) reads,

}Rj} ď }PJ c
NLjN }}pz

j ´ πpyj} ` }PJ c
N p Id ´W qM

j
N ppz

jq} ` }PJ c
NW pM

j
N ppz

jq ´Mj
N pπpy

jqq}

ď }PJ c
NLjN }}pz

j ´ πpyj} ` }PJ c
N p Id ´W qpM

j
N ppz

jq ´ πJ`π`M
j
N ppz

jqq}

` }PJ c
NW pM

j
N ppz

jq ´Mj
N pπpy

jqq}

ď p}LjN } ` }W }}ψ
´1
j`1{2}

2LMq}pz
j ´ πpyj} ` } Id ´W }}Mj

N ppz
jq ´ πJ`π`M

j
N ppz

jq},
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where LM is the Lipschitz constant of MN . Similar to (4.8) we recover

}Rj} ď C1Kj}e
j`1} ` C2Kj}e

j} ` }W }}Mj
N ppz

jq ´ πJ`π`M
j
N ppz

jq},

where Kj :“ }LjN } ` }W }}ψ
´1
j`1{2}

2LM, and the finite non-negative constants C1 and C2 depend only on
the numerical temporal discretization of (4.1). Hence, proceeding as in (4.7), the total error at time tj`1

can be bounded as,

}ej`1} ď
1

1´∆t C1Kj

ˆ j
ÿ

k“1

βk}e
k
p} ` }e

j`1
p } `

j´1
ÿ

k“1

ˆ j
ÿ

m“k`1

βm

˙

βk}e
k
p}

` }W }}Mj
N ppz

jq ´ πJ`π`M
j
N ppz

jq}

˙

,

where βm :“ αm `∆t C2Km “ αm `∆t C2p}LmN } ` }W }}ψ
´1
m`1{2}

2LMq.
The conclusion follows from the fact that uj ´ ujrb “ ψ´1

j´1{2e
j , by Proposition 4.2.

4.4 Parametric State-Dependent Poisson Structures
If we consider a parametric dynamical system similar to (3.1) but with state-dependent Poisson structure,
we can extend the derivation and analysis of the reduced basis method described in the previous Sections.
The main obstacle relates to the fact that the resolution of the dynamical system in the low-dimensional
space (4.3) requires the knowledge of the Darboux map approximations tψj`1{2uj . These will inevitably
depend on the parameter where the Poisson tensor is evaluated. Only the linear maps tψj`1{2pµquj
associated with the parameters µ P Λh Ă Λ will be computed in the offline phase. Therefore a way
to approximate each ψj`1{2 at any given parameter µ P Λ is indispensable. A way to perform such
approximation at a computational cost proportional to the size of the low dimensional problem is to apply
e.g. an empirical interpolation technique on ψj`1{2pµq for all µ P ΛzΛh. However, such approximation
will in general affect the preservation of the Poisson structure by introducing a, pointwise in µ, error in
the structure splitting of Proposition 4.2.

5 Numerical Experiments
To validate the theoretical results of the previous Sections we perform a set of one-dimensional numerical
simulations. For want of Poisson integrators for general structures, we consider ad hoc test cases
for which such integrators are available. The rationale is that we seek to assess the performances of
the structure-preserving reduced basis method in the absence of pollution coming from the temporal
discretization.

In the forthcoming numerical simulations, if not otherwise specified, we will use Newton iteration
as a nonlinear solver for implicit temporal discretizations. We fix the Newton tolerance to 10´10

and the maximum number of nonlinear iterations to 50. In the symplectic greedy Algorithm 1, we
consider a stabilized version of the symplectic Gram–Schmidt and a symplectic Gram–Schmidt with full
reorthogonalization [27] to deal with cases where the snapshots matrix might be ill conditioned.

5.1 Numerical Experiments for Constant-Valued Degenerate Structures
As example of constant-valued degenerate Poisson structure we consider the Korteweg–de Vries (KdV)
equation. KdV type problems are nonlinear hyperbolic equations describing the propagation of waves
in nonlinear dispersive media. The KdV equation in the one-dimensional spatial domain Ω and time
interval T reads: Find upt, xq : T ˆ Ω Ñ R such that

Bu

Bt
` αu

Bu

Bx
` µ

B3u

Bx3
“ 0, α, µ P R. (5.1)
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The dispersive third order term provides a regularization yielding smooth solutions for smooth initial
conditions. The numerical treatment of (5.1) for small values of µ, the so-called dispersion limit, is
particularly challenging, and for µ “ 0, Burgers’ equation is recovered.

The KdV equation is a completely integrable system, i.e. it has as an infinite set of invariants, and
possesses a bi-Hamiltonian structure: The formulation with degenerate constant-valued Poisson tensor
reads

Bu

Bt
“ J δHpuq, with Hpuq “

ˆ
Ω

ˆ

α

6
u3 ´

µ

2
pBxuq

2

˙

dx, J “ Bx,

and where δ denotes a functional derivative. Let us consider a uniform partition of the interval Ω “ ra, bs,
a, b P R with periodic boundary conditions, into N´1 elements, and let ∆x “ |b´a|{pN´1q. The Poisson
tensor J is discretized using centered finite differences, whereas the Hamiltonian H is approximated
using the trapezoidal rule and forward finite differences for the first order spatial derivative, as in [6,
Equation (2)]. With a small abuse of notation, u denotes henceforth the semi-discrete solution (after
spatial discretization). If uk is the nodal value of u at the k-th mesh node, then

HN puq “ ∆x
N
ÿ

k“1

ˆ

α

6
u3
k ´

µ

2

ˆ

uk`1 ´ uk
∆x

˙2 ˙

, (5.2)

and pJNuqk “ uk`1 ´ uk´1, for k “ 1, . . . , N with uN`k “ u1`k, u0 “ uN´1 by periodicity. The Poisson
tensor JN has rankpJN q “ 2R, with 2R “ N ´ 1 if N odd, 2R “ N ´ 2 if N even. The corresponding
Casimir invariants are

C1puq “
N
ÿ

k“1

uk, C2puq “
N
ÿ

k“1

pu2k ´ u2k`1q. (5.3)

Note that, if N is odd, then C2puq ” 0 and C1 is the only Casimir invariant of the Poisson system.
Time discretization using the fully implicit midpoint rule on Th “

Ť

jPΥh
ptj , tj`1s yields

uj`1 ´ uj “
∆t

2∆x
JN∇HN pu

j`1{2q, u0 “ Πhu0, j P Υh, (5.4)

where uj`1{2 :“ puj`1 ` ujq{2 and Πh is the nodal projection. The implicit midpoint rule provides a
Poisson integrator for any constant-valued Poisson tensor. However, it does not preserve the discrete
Hamiltonian (5.2) exactly.

As an alternative scheme, we consider the Average Vector Field (AVF) integration [41], which is
second order accurate, preserves the Hamiltonian exactly [21, Theorem 3.1], but it is not a Poisson
integrator [16]. For j P Υh, the fully discrete scheme reads

uj`1 ´ uj “
α

6

∆t

2∆x
JN

ˆ

puj`1q2 ` ujuj`1 ` puj`1q2
˙

`
µ

2∆x3
JNFhpuj`1{2q, (5.5)

with u0 “ Πhu0 and where pFhpuqqk :“ puk`1 ´ 2uk ` uk´1q{2, for k “ 1, . . . , N .

5.1.1 KdV: Long Time Stability of Double Soliton Interaction

In order to assess the stability of the reduced basis algorithm, we run a numerical test simulating solitons
interaction over long time. Let us consider the KdV problem (5.1), with fixed parameters α “ 6 and
µ “ 1, in the domain Ω “ r´20, 20s and temporal interval T “ p0, 500s. Let the initial condition be
the periodic function u0pxq “ 6 sech2

pxq, x P Ω. The spatial discretization of the high-fidelity problem
relies on the finite difference scheme (5.2) with N “ 1000 mesh nodes. We compare the results obtained
with the midpoint rule (5.4) as timestepping and the AVF scheme (5.5), both with uniform time step
∆t “ 10´3. We select Ms “ 10000 snapshots from the high-fidelity solution and run the symplectic
greedy Algorithm 1 with tolerances tolσ “ 10´5 and tolδ “ 10´12. The algorithm reaches convergence
with 2r “ 328 for the AVF timestepping and 2r “ 330 for the midpoint rule. The need of a sufficiently
large reduced space is typical of problems exhibiting propagation phenomena.

The high-fidelity solution and the reduced solution at final time are shown in Figure 2 (left), where
the subscripts a and m refer to the AVF scheme and midpoint rule, respectively. The reduced solutions
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do not present spurious oscillations, not even over long time, and exhibit a qualitatively correct behavior
in terms of phase and amplitude of the solitons, as it can be checked by comparing with [7, Example 5.2].
The solution obtained with the midpoint rule is slightly shifted with respect to the solution of the AVF
scheme. This is a typical effect of numerical dispersion: the shape of the solitons is preserved but the
solution is subject to a phase shift so that the solitons are wrongly located.

The error of the reduced numerical solution with respect to the high-fidelity one over time is reported in
Figure 2 (right), where both the original problem (3.1) and its canonical formulation (3.2) are considered.
Figure 3 reports the error of the Hamiltonian and of the Casimir invariants (5.3) over time. The AVF
scheme (left) ensures almost exact preservation of the Hamiltonian and of the Casimir invariants when
the canonical system is solved. For the original high-fidelity model, the Hamiltonian is conserved up to
the Newton solver tolerance. The midpoint rule (Figure 3 right) preserves the linear Casimir invariants
but not the (cubic) Hamiltonian, as expected.
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Figure 2: KdV double soliton interaction. Numerical solutions of the high-fidelity and reduced models at final
time (left) for AVF timestepping and midpoint rule. Error between the numerical solution of the reduced problem
and the high-fidelity solutions of the Poisson system in the original and canonical forms (right).
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Figure 3: KdV double soliton interaction. Error of the Hamiltonian and Casimir invariants over time. Temporal
discretization with AVF scheme (left) and midpoint rule (right).

5.1.2 KdV: Dispersion Limit

As a second test case, let us consider the KdV equation with varying parameter µ and solve the problem
in the limit of small dispersion. Specifically, let α “ 1 and µ P Λ :“ r10´6, 2s. The problem is set in the
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domain Ω “ r0, 1s and in the time interval T “ p0, 1s with initial condition u0pxq “ 2`1{2 sinp2πpx´µqq,
x P Ω, (a shifted variation of the test in [54, Section 4.6]). The spatial discretization relies on N “ 1600
mesh nodes, and for the temporal approximation we use the AVF scheme (5.5) with uniform time step
∆t “ 10´3. The kernel of the Poisson tensor has dimension q “ 2. We select Ms “ 500 snapshots
from the high-fidelity model, and Λh is obtained by taking 10 equidistant points in Λ. The reduced
basis algorithm uses the symplectic greedy Algorithm 1 with tolerances tolσ “ 10´5 and tolδ “ 10´12.
Convergence is reached at 2r “ 556.

The reduced solution for µ “ 10´5 R Λh captures the train of soliton waves without unphysical
oscillations, as shown in Figure 4. The `2-error over time of the reduced numerical solution with respect
to the high-fidelity solution, obtained from the Poisson system in the non-canonical and canonical forms,
is reported in Figure 5 (left). Concerning the invariants of motion, the Hamiltonian of both systems (2.4)
and (3.3) is conserved up to the solver tolerance, Figure 5 (right).
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Figure 4: KdV in the dispersion limit, µ “ 10´5. Evolution of the solution (left) and solution at final time (right)
obtained with the AVF timestepping.
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Figure 5: KdV in the dispersion limit, µ “ 10´5. Error between the HiFi solution and the reduced solution (left).
Relative error of the Hamiltonian and of the Casimir invariants (right).

5.2 Numerical Experiments for State-Dependent Structures
The multi-species generalized Lotka–Volterra problem provides an example of Hamiltonian system with
state-dependent degenerate Poisson structure. The Volterra lattice equation was introduced to describe
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the interaction and evolution of populations of competing species. Additionally, it provides a discretization
of the KdV equation or of the Logistic equation and can be used to model nonlinear control systems,
lattice problems, etc. The generalized Lotka–Volterra model for N species reads

dtukptq “ ukptq

ˆ

bk `
N
ÿ

`“1

ak,`u`ptq

˙

, k “ 1, . . . , N, bk, ak,` P R,

where uk`N “ uk for all k, if the boundary conditions are periodic. Here we take the values of tbkuk and
tak,`uk,` yielding

dtuk “ ukpuk`1 ´ uk´1q, k “ 1, . . . , N. (5.6)
The Lotka–Volterra system (5.6) possesses the invariants

Iqpuq “
N
ÿ

k“1

ˆ

1

2
u2
k ` ukuk`1

˙

, Icpuq “
N
ÿ

k“1

1

3
u3
k `

N
ÿ

k“1

ukuk`1puk ` uk`1 ` uk`2q,

and the Casimir

C1puq “
N
ÿ

k“1

logpukq.

Furthermore, if the number N of species is even, the problem can be recast in a splitted form as follows.
Let qkptq “ u2k´1ptq and pkptq “ u2kptq for k “ 1, . . . , N{2 and t P T , then (5.6) is equivalent to

$

&

%

dtqk “ qkppk ´ pk´1q,

dtpk “ pkpqk`1 ´ qkq.

This is a Poisson system with HamiltonianHN pq, pq “
řN{2
k“1pqk`pkq, and quadratic bracket corresponding

to the Poisson tensor

JN ppq, pqq :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 q1p1 ´q1pN{2

´q1p1 0 q2p1 0

. . . . . .

´qkpk 0 qk`1pk

´qkpk´1 0 qkpk
. . . . . .

q1pN{2 ´qN{2pN{2 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The dimension of the null space is q “ 2 for all u P VN .
Concerning the temporal discretization of the Lotka–Volterra problem in Hamiltonian form, the

symplectic Euler method preserves the quadratic Poisson structure [24], and reads, for all k “ 1, . . . , N{2
and j P Υh,

$

&

%

qj`1
k “ qjk `∆t qjkpp

j`1
k ´ pj`1

k´1q,

pj`1
k “ pjk `∆t pj`1

k pqjk`1 ´ q
j
kq.

(5.7)

Let us consider a numerical simulation of problem (5.6) in the domain Ω “ r´1, 1s and temporal
interval T “ p0, 500s, with initial condition u0pxq “ 1 ` sech2

pxq{p2N2q. The high-fidelity model is
obtained setting N “ 1000 and using the symplectic Euler discretization (5.7) with ∆t “ 10´2. In the
generation of the orthosymplectic reduced basis, the symplectic greedy Algorithm 1 is run with tolerances
tolσ “ 10´5 and tolδ “ 10´12. The algorithm reaches convergence with 2r “ 210.

In Figure 6 are reported the `2-error of the high-fidelity and reduced basis solutions at every time step
(left), and the error of the Hamiltonian, the Casimir C1 and the invariants Iq, Ic over time (right). It can
be observed that the invariants of motion of the high-fidelity problem are preserved with a high degree
of accuracy, similarly to [24, Figure 1]. The reduced solution produces larger, though still satisfactory,
errors in the conservation of the invariants which however do not grow in time.
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Figure 6: Lotka–Volterra lattice. Evolution of the `2-error of the high-fidelity and reduced basis solutions (left).
Error in the conservation of the Hamiltonian, the Casimir C1 and the invariants Iq, Ic over time (right).

6 Concluding Remarks
We have developed and analyzed reduced basis methods for dynamical Hamiltonian systems possessing a
nonlinear state-dependent and degenerate Poisson structure. Relying on structure-preserving discretiza-
tions in space and time, the proposed reduced basis techniques are based on linear approximations of the
Poisson tensor in each temporal interval followed by a model order reduction of the symplectic component
of the dynamics. We have shown that the resulting reduced model retains the global Poisson structure
and the conservation properties of the phase flow up to errors in the approximation of the Darboux map,
it is efficient when coupled with DEIM techniques and enjoys good approximation properties. Further
work may target the study of optimal and efficient approximation of the Darboux map, and corresponding
approximation properties in the presence of a set of parameters in addition to time.

Acknowledgment. The work was partially supported by AFOSR under grant FA9550-17-1-9241.

A Proof of Theorem 4.6
Following Algorithm 1, the reduced basis matrix is initialized as π2 “ re1, pJ c

2Rq
Je1s where e1 “ z0

s :“
ψs1{2u0. The projection onto spantπ2u is defined as P2 “ π2 ˝ π2

` with π2
` “ pJ c

2¨1q
Jπ2J c

2R. At the r-th
iteration, for r ě 1, the greedy algorithm selects the new basis element er`1 to satisfy

er`1 “ argmax
zPZsN

}z ´ P2rz},

so that V2pr`1q “ spante1, . . . , er`1, pJ c
2Rq

Je1, . . . , pJ c
2Rq

Jer`1u. The basis vectors are orthogonalized
with respect to the `2-norm as

ξ1 “ e1,

ξi “ ei ´ P2pi´1qei, ξr`i “ pJ c
2Rq

Jξi, i “ 2, . . . , r ` 1.

The projection P2r onto the symplectic manifold V2r can be written as

P2rz “
r
ÿ

i“1

pαipzqξi ` βipzqpJ c
2Rq

Jξiq, @ z P Zs
N .

With Zs
N being a subspace of the normed space pV2R, }¨}q, P2r is an orthogonal projection onto V2r, in

view of Lemma 4.4. Hence, for each z P Zs
N , ξ` P V2r and ` ď r,

pP2rz, ξ`q “ pz,P2rξ`q “ pz, ξ`q “ α`pzq}ξ`}
2,

pP2rz, pJ c
2Rq

Jξ`q “ β`pzq}pJ c
2Rq

Jξ`}
2 “ β`pzq}ξ`}

2.
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Using the orthogonality properties of P2p`´1q, the fact that ξ`, pJ c
2Rq

Jξ` P V2` are `2-orthogonal to V2p`´1q

by construction, combined with the error criterion of the greedy Algorithm 1, results in

|α`pzq| “
|pz, ξ`q|

}ξ`}2
“
|pz ´ P2p`´1qz, ξ`q|

}ξ`}2
ď
}z ´ P2p`´1qz}

}e` ´ P2p`´1qe`}
ď 1,

|β`pzq| “
|pz, pJ c

2Rq
Jξ`q|

}pJ c
2Rq

Jξ`}2
“
|pz ´ P2p`´1qz, pJ c

2Rq
Jξ`q|

}pJ c
2Rq

Jξ`}2
ď
}z ´ P2p`´1qz}

}e` ´ P2p`´1qe`}
ď 1.

(A.1)

The elements of the orthogonal basis spanning V2pr`1q, selected by the greedy algorithm, can be expanded
as,

ξi “
i
ÿ

j“1

pγijej ` δ
i
jpJ c

2Rq
Jejq, ξr`i “ pJ c

2Rq
Jξi.

for all i “ 2, . . . , r ` 1, where γii “ 1, δii “ 0 and for j ă i,

γij :“
i´1
ÿ

`“j

p´α`peiqγ
`
j ` βlpejqδ

`
jq, δij :“

i´1
ÿ

`“j

pα`peiqδ
`
j ´ βlpejqγ

`
jq.

Using (A.1), each coefficient can be bounded as |γij | ă 3i´j´1, |δij | ă 3i´j´1 if j ă i, so that

|γij | ď 3i´j , |δij | ď 3i´j , @ j ď i.

By definition of the Kolmogorov 2r-width, given λ ą 1, there exists a 2r-dimensional space W2r such that
the angle between Zs

N and W2r satisfies supzPZsN infwPW2r
}z ´ w} ď λd2rpZs

N q. Hence, for the elements
of any subspace V` Ă Zs

N with ` ď r, there exist w`, v` P W2r such that }e` ´ w`} ď λd2rpZs
N q, and

}pJ c
2Rq

Je` ´ v`} ď λd2rpZs
N q. For i “ 1, . . . , r, we define the vectors

W2r Q ζi “
i
ÿ

j“1

pγijwj ` δ
i
jvjq, ζr`i “

i
ÿ

j“1

p´δijwj ` γ
i
jvjq. (A.2)

For i “ 1, . . . , 2r, they satisfy

}ξi ´ ζi} ď
i
ÿ

j“1

p|γij |}ej ´ wj} ` |δ
i
j |}pJ c

2Rq
Jej ´ vj}q,ď λd2rpZs

N q

i
ÿ

j“1

2 ¨ 3i´j ă 3iλd2rpZs
N q.

Let us consider the elements defined in (A.2) where we add a further pair pζr`1, ζ2pr`1qq PW2r, defined such
that wr`1, vr`1 PW2r are the vectors for which }er`1 ´ wr`1} ď λd2rpZs

N q, and }pJ c
2Rq

Jer`1 ´ vr`1} ď

λd2rpZs
N q. Since such a family belongs to the 2r-dimensional space W2r by construction, the vectors

tζiu
2pr`1q
i“1 cannot be linearly independent: there exist tσiu

2pr`1q
i“1 Ă R such that }σ} “ 1 and

ř2pr`1q
i“1 σiζi “

0. Hence,

›

›

›

›

r`1
ÿ

i“1

pσiξi ` σpr`1q`ipJ c
2Rq

Jξiq

›

›

›

›

“

›

›

›

›

2pr`1q
ÿ

i“1

σipξi ´ ζiq

›

›

›

›

ď λd2rpZN q
2pr`1q
ÿ

i“1

|σi|3
i

ď 3r`1
a

2pr ` 1qλd2rpZs
N q.

Let 1 ď j ď 2pr ` 1q be fixed. Define wj :“ σ´1
j

ř2pr`1q
i“1,i‰j σiξi. Note that pξj , wjq “ 0 since tξju

2pr`1q
j“1 is

orthogonal, which implies }ξj}2 ď }ξj}2 ` }wj}2 “ }ξj ` wj}2. Furthermore,

}ξj ` wj} ď

›

›

›

›

σ´1
j

2pr`1q
ÿ

i“1

σipξi ´ ζiq

›

›

›

›

ď |σ´1
j |

2pr`1q
ÿ

i“1

|σi|}ξi ´ ζi} ď 3r`1λd2rpZs
N q

a

2pr ` 1q|σ´1
j |.
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Since the choice of the index j is arbitrary, we select j such that |σj | ě p2pr ` 1qq´1{2, which is possible
by definition of tσiui. Hence, }ξj ` wj} ď 2 ¨ 3r`1pr` 1qλd2rpZN q. Therefore, the projection error of any
z P Zs

N can be bounded as

}z ´ P2rz} ď }z ´ P2pj´1qz} ď }ej ´ P2pj´1qej} “ }ξj} ď 2 ¨ 3r`1pr ` 1qλd2rpZs
N q.

With an argument analogous to the proof of Proposition 3.13, the conclusion follows from the fact that
d2rpZs

N q ď dnpZN q since, in each time interval, the subsets tNjuj are not affected by the reduction.
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