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We study the linear spatiotemporal stability of an infinite row of equal point vortices
under symmetric confinement between parallel walls. These rows of vortices serve to
model the secondary instability leading to the merging of consecutive (Kelvin-Helmholtz)
vortices in free shear layers, allowing us to study how confinement limits the growth of
shear layers through vortex pairings. Using a geometric construction akin to a Legendre
transform on the dispersion relation, we compute the growth rate of the instability in
different reference frames as a function of the frame velocity with respect to the vortices.
This approach is verified and complemented with numerical computations of the linear
impulse response, fully characterizing the absolute/convective nature of the instability.
Similar to results by Healey on the primary instability of parallel tanh profiles [J. Fluid
Mech. 623, 241 (2009)], we observe a range of confinement in which absolute instability
is promoted. For a parallel shear layer with prescribed confinement and mixing length, the
threshold for absolute/convective instability of the secondary pairing instability depends on
the separation distance between consecutive vortices, which is physically determined by
the wavelength selected by the previous (primary or pairing) instability. In the presence of
counterflow and moderate to weak confinement, small (large) wavelength of the vortex row
leads to absolute (convective) instability. While absolute secondary instabilities in spatially
developing flows have been previously related to an abrupt transition to a complex behavior,
this secondary pairing instability regenerates the flow with an increased wavelength,
eventually leading to a convectively unstable row of vortices. We argue that since the
primary instability remains active for large wavelengths, a spatially developing shear layer
can directly saturate on the wavelength of such a convectively unstable row, by-passing
the smaller wavelengths of absolute secondary instability. This provides a wavelength
selection mechanism, according to which the distance between consecutive vortices should
be sufficiently large in comparison with the channel width in order for the row of vortices
to persist. We argue that the proposed wavelength selection criteria can serve as a guideline
for experimentally obtaining plane shear layers with counterflow, which has remained an
experimental challenge.
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I. INTRODUCTION

Free shear or mixing layers form when two volumes of fluid traveling parallel to each other
at different speeds are put in contact. They appear in a large variety of natural and technological
contexts. In addition, they constitute a basic building block for understanding other flows such as
wakes, jets, or separation regions, since they provide the most basic example of shear flow instability:
the instability of an inflection point in the velocity profile violating Rayleigh’s criterion for stability
of inviscid plane flow [1]. Known as Kelvin-Helmholtz (KH) instability, it leads to the roll-up of the
vorticity of the shear layer into a row of consecutive vortices of the same sign [2,3], the KH vortices,
often referred to as billows or rollers.

A large body of work has been dedicated to the instabilities of mixing layers, which can be broadly
divided into studies concerned with (i) the primary instability of the parallel or weakly nonparallel
flow fields [4–7] and (ii) secondary instabilities of the already formed KH vortices [8–11], which
form later in time or further downstream. The term “secondary instabilities” refers, in general,
to instabilities of a certain flow (or state) that is itself the result of another instability, the “primary
instability” of a simpler base flow. Therefore, the existence and properties of any secondary instability
are greatly determined by the specific development of the primary instability. In the present case of
free shear layers, several analyses of primary (i) and secondary (ii) instabilities have also included
the effects of varying fluid properties like density or viscosity, but we will only consider the case of
homogeneous shear layers in which the two flow streams are composed of the same fluid.

A. Spatiotemporal instabilities

In this context, the main aspect of the primary instability (i) that has remained a subject of research
during the past few decades is its spatiotemporal properties [5–7]. This sprung from the seminal
recognition by Huerre and Monkewitz [5] of the importance of the distinction between absolute and
convective instabilities [12], previously developed in plasma physics [13]. This distinction arises in
the theory of spatiotemporal instabilities, which provides a synthesis of temporal and spatial stability
analyses previously in use for spatially extended shear flows. Temporal stability analyses, which
consider a real wave number k and a complex frequency ω in the dispersion relation, are more suitable
for problems of initial value type, while open flows with an inlet condition or a harmonic forcing are
better treated with a spatial analysis considering real ω and complex k [14]. Accordingly, temporal
analyses predict growth rates in time for perturbations which are periodic in space, while spatial
analyses provide growth rates in space for harmonic fluctuations with an amplitude that is constant
in time. In the more general spatiotemporal stability analyses, the dispersion relation is considered
with both ω and k complex. The growth rate on any particular reference frame can be determined
from the dispersion relation ω(k) evaluated at the absolute wave number k0, which satisfies the key
property of zero group velocity dω

dk
|k0 = 0 in that reference frame. A temporal instability (i.e., real

k with positive growth rate) will then be absolute (respectively, convective) if the absolute growth
rate given by the imaginary part of ω(k0) is positive (resp., negative) in the selected reference frame,
usually the one singled out by boundary conditions or forcing. We note that, for spatially developing
flows, these linear analyses rely on a local approximation in which the flow is assumed parallel
and infinite at each streamwise station; this approximation can serve as the zeroth order of a global
approximation including nonparallel effects and comprising the full domain. In this context, a region
of local absolute instability can explain the appearance of a linearly unstable global mode [12].

An important insight in spatiotemporal stability analyses is that local spatial stability (real ω and
complex k) is directly applicable only when the instability is convective [5], since the linearized
response to a constant disturbance diverges in time at positions where the instability is absolute [14].
The consequences can be dramatic for spatial flows, i.e., flows consistent with a long time limit. When
absolutely unstable, these flows generally display self-excited oscillations that are fairly insensitive
to weak or relatively moderate extrinsic disturbances. This self-sustained intrinsic behavior cannot be
captured within a purely local and linear approach. Consideration of nonparallel and nonlinear effects
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is required; in the weakly nonlinear realm, this behavior can be understood as the nonlinear saturation
of a linearly unstable spatially extended mode, while in the weakly nonparallel framework, it can be
interpreted as a nonlinear front between linear instability waves and fully nonlinear wave solutions
[15]. Convectively unstable flows, on the contrary, are highly sensitive to external disturbances
(forcing or noise) which are constantly and selectively amplified while advected through the domain.
This was early recognized in simulations of the complex Ginzburg-Landau model by Deissler [16],
who coined term “noise-sustained structures.” Since convectively unstable flows generally possess a
range of amplified frequencies, they behave like a bandpass amplifier displaying a broad spectrum of
disturbances [12,14]. In the case of free shear layers, the absolute/convective instability calculation
by Huerre and Monkewitz [5] gave an excellent prediction of the experimentally observed transition
threshold from a bandpass noise amplifier to a self-sustained peaked oscillator as the counterflow
is increased [17], that is, as the mean velocity of the two streams is reduced while maintaining the
same amount of shear.

The transition observed in Ref. [17] gave the first direct experimental confirmation of the
fundamental role of the absolute/convective nature in the spectral signature of instabilities in open
flows. More recently, Healey [6] demonstrated that a moderate amount of confinement in the shearing
direction promotes the absolute nature of the instability, without however providing any experimental
evidence. But as remarked previously by Juniper [18,19], a similar destabilizing effect of confinement
is present in jets and wakes, for which there are indeed experimental indications of such an effect
(see Ref. [18], and references therein). Unsurprisingly, these flows are all stabilized for sufficiently
strong confinement.

B. Vortex pairing instability in free-shear layers

In free shear layers, studies of secondary instabilities (ii) have uncovered several physical
mechanisms, such as for instance the elliptic and hyperbolic instabilities, which break the translational
invariance in the spanwise direction through three-dimensional (3D) instabilities [9–11]. A seminal
contribution here is the study of Pierrehumbert and Widnall [9] focused on the 3D stability of
Stuart vortices [20]. These vortices are given by a one-parameter family of two-dimensional (2D)
solutions to the Euler equations proposed to represent a periodic array of 2D vortices separating two
counterflows, with a parameter ρ ∈ [0,1] measuring the dimensionless vortex core size. The solution
for ρ = 1 consists of a periodic row of infinitely concentrated point vortices, while ρ = 0 corresponds
to the hyperbolic-tangent parallel velocity profile. While 3D instabilities are determinant in the route
to turbulence that leads to disorder and mixing at small scales [10], at large scales (larger than the KH
billows) the flow remains 2D and to a great extent organized, even in highly turbulent cases [2,21].
We focus our attention here on these large scales, in particular, on the 2D pairing instability associated
with the growth of the first subharmonic [22]. Eventually, this instability, which is a particular type
of secondary instability, saturates and leads to the merger of primary vortices into larger vortices
with twice the initial spacing [8].

Since it leads to a similar row of vortices as that from which it develops, this secondary instability
can then repeat itself in a sequence of successive instabilities. These subsequent instabilities could
be thought of as “tertiary,” “quaternary,” and so on, but we will refer to them simply as the secondary
vortex pairing instability or 2VPI for short. The successive occurrences of the 2VPI can develop
in time or in space depending on whether the experimental setting is temporal or spatial. The first
case is the temporal shear layer, as in numerical simulations [23] and tilt-tank experiments [24],
in which there is usually no mean advection and each (numerical or physical) experiment is a
one-time transient. The second case, that of spatial mixing layers, is the most thoroughly studied
experimentally [3], most often as coflowing mixing layers. These experiments can in principle last for
an arbitrarily large amount of time, during which subsequent instabilities succeed one after another
in different and more or less stationary regions of space. In this context, the pairing instability was
described by Winant and Browand [8] as the key mechanism of spatial growth for turbulent mixing
layers, receiving subsequently a great deal of attention [3,21]. In the absence of forcing, Winant and
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Browand report a large variability on the pairing locations and observed up to four pairings [8]. In
experiments on an axisymmetric air jet at Re = 50 000 with an applied periodic forcing, Kibens [25]
identified a sequence of three successive vortex-pairing events at well fixed downstream locations.
These examples [8,25] show precisely the large variability and high receptivity to forcing that are now
well understood as the footprint of the bandpass noise-amplifier behavior of convective instabilities
described above. It is interesting to note that the previously mentioned [17] experimental confirmation
of a transition from a bandpass noise amplifier to a self-sustained peaked oscillator with increasing
counterflow was achieved on a spatial axisymmetric air jet. An earlier attempt at generating a spatial
mixing layer with counterflow failed, resulting instead in a flow with a totally different configuration
consisting roughly in a single stagnation point with hyperbolic streamlines [26]. A planar mixing
layer with counterflow was achieved much later with a more elaborate confining geometry [27].

C. Absolute/convective secondary instabilities

As stated above, the distinction between absolute and convective instabilities has been found
determinant in the behavior of many unstable open flows [12,15], but the vast majority of studies have
focused on its effect on primary instabilities. The absolute/convective nature of secondary instabilities
have in general received far less attention, although they can grow not only in time but also in space,
just as primary instabilities. In the words of Huerre [28], “primary and secondary instabilities arising
in fluid flows need not have the same absolute/convective character.” Some absolute/convective
analyses of secondary instabilities include those of the Ekhaus and zigzag instabilities [29], the
subharmonic instability of a periodic array of vortex rings [30], or the von Karman street of alternating
point vortices [31]. There are no major difficulties when the secondary instability is convective.
Indeed, causality implies that a temporal sequence of instabilities can translate into a spatial one if the
instabilities are convective [32]. In this case, the secondary instability may develop downstream on the
saturated state without affecting its precursor, the primary instability upstream. We have previously
shown [31] that this is the case for the Kármán street of point vortices [33] modeling vortex shedding
phenomena: The well-known (secondary) instability [22] was shown to be strongly convective when
applied to wakes [31], thus reconciling the intrinsic instability of Kármán’s point-vortex model
with ubiquitous observations of vortex shedding behind obstacles. It has been recently confirmed
experimentally [34] that this instability can be also stabilized by strong confinement, even in the
absence of mean advection.

The situation is considerably more complex if the secondary instability is absolute. From a certain
perspective this can be seen as somewhat paradoxical, since an instability propagating upstream
would disrupt its (primary) precursor [32]. This situation has been studied by Chomaz and coworkers
[29,32,35], who have proposed that it constitutes a possible scenario for abrupt transition [15,36].
According to Chomaz et al.’s description, if the secondary instability is already absolute when the
primary instability transitions from convective to absolute, perturbations in the lee of the primary
front never fade away and are likely to yield a complex, disordered behavior. An example of this was
observed by Couairon and Chomaz in a complex Ginzburg-Landau model [35], in which the system
presented aperiodic behavior when the primary nonlinear wave was subject to absolute secondary
instability. Moreover, in the words of his review [15], p. 385, this “one-step scenario to disorder,
involving a global mode made of a wave already absolutely unstable to secondary instability at the
global threshold, may also explain the abrupt transition to turbulence observed in the rotating disk.”
Chomaz then refers to theoretical and experimental studies by Lingwood, showing that turbulence
in rotating disk flow occurs close to where the flow becomes absolutely unstable [37,38], and work
by Pier, showing that there is an absolute secondary instability in this flow and proposing it as the
mechanism of direct transition [39]. Recent investigations [40–42] yield support to this scenario,
although the secondary instability is not the subharmonic one predicted by Pier [39] and its nature
is not yet clear. In any case, the outcome of an absolute secondary instability cannot be predicted a
priori; it should be studied on a case-by-case basis with consideration of global and nonlinear effects.
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D. The present work

Returning to free shear layers, Brancher and Chomaz [32] have indeed shown that the 2VPI is more
prompt to become absolute than the primary instability. More precisely, they have determined the
absolute/convective nature of the subharmonic pairing instability of a row of finite-size corotating
vortices, viewed as the saturation of the primary Kelvin-Helmhotz instability. For that purpose,
they used the family of Stuart vortices and performed a spatiotemporal stability analysis through
the numerical calculation of the linearized impulse response, thereby generalizing the temporal
stability analysis of Ref. [9]. They found that the backflow needed to trigger absolute instability
was monotonically decreasing when the vortex concentration was increasing. In particular, the
secondary pairing instability was found already absolutely unstable for backflows for which the
primary instability was still convective. According to Chomaz [15], p. 384, “these results on the
pairing instability explain why the 2D Global mode in the parallel mixing layer computed [in Ref. 36]
is irregular at threshold, with pairings occurring randomly.” We will come back to this quotation
and argue that a different interpretation is also possible in this case. In particular, the effects of
confinement have not been explored, and as the spacing between consecutive vortices increases,
these should eventually become important. The near self-similarity of the sequential process of
mixing layer growth through vortex pairings is most naturally broken by the external length-scale
imposed by confinement. As we shall see, consideration of confinement provides a mechanism for
wavelength selection in spatially developing shear layers with counterflow.

In the present work, we study the effect of confinement on the absolute/convective nature of the
2VPI. To that end, we model the row of KH vortices resulting from the primary instability with a
periodic row of point vortices, which in the absence of confinement has a single length scale and is
therefore self-similar. In Sec. II, we describe our model and formulate the linear stability problem,
yielding the relevant dispersion relation. Since the subharmonic instability of the confined row of
point vortices can be (and is) studied independently of the primary instability in shear layers, we refer
to it as the subharmonic pairing instability, or SPI, and leave the acronym 2VPI for making explicit
reference to the secondary instability relevant to free shear layers. We compute the growth rate of
the SPI in different reference frames in Sec. III. For this, we develop in Sec. III A a geometrical
method consisting essentially of a Legendre transformation that effectively switches the dependence
on the imaginary part of the complex wave number by a dependence on the propagation velocity
of a moving frame. A more challenging application of this method is given for the Kármán street
of point vortices in Appendix A. In Sec. IV, we compare the spatiotemporal properties of the SPI
with corresponding results for a parallel tanh profile [6] and discuss the possible implications of our
results, including a wavelength selection mechanism that provides a criteria for the admissibility of
plane shear layers (in the form of vortex rows) with counterflow. We summarize and conclude in
Sec. V.

II. PROBLEM FORMULATION

A. Governing equations

We consider the system shown in Fig. 1, composed of an infinite row of point vortices of circulation
� symmetrically enclosed between two horizontal confining walls. The distance between consecutive
vortices is a and that between the two walls is d. The confinement is imposed by assigning to each
vortex an infinite series of image vortices above and below the walls. This gives rise to a doubly
infinite array of vortices situated at coordinates (ma,nd) and of strength (−1)n�, where m,n ∈ Z
and n = 0 corresponds to the physical vortices.

This array of vortices corresponds to a static equilibrium configuration since the velocity induced
on any of the physical vortices by all other vortices is zero. When we apply a perturbation (xm,ym)
to the positions of the physical vortices, the coordinates of the vortices become (ma + xm,nd +
(−1)nym), wherein all the image vortices are duly tied to their corresponding physical vortex. Without
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FIG. 1. Confined single row of point vortices.

loss of generality, the equations of motion of the m = 0 physical vortex are

dx0

dt
= −a2ω0

∞∑
m=−∞

∞∑
n=−∞

′′
(−1)n

y0 − nd − (−1)nym

r2
m,n

, (1a)

dy0

dt
= a2ω0

∞∑
m=−∞

∞∑
n=−∞

′′
(−1)n

x0 − ma − xm

r2
m,n

, (1b)

where

r2
m,n = [nd + (−1)nym − y0]2 + (ma + xm − x0)2 (2)

is the squared distance between the m = 0 physical vortex and the (m,n) vortex, and ω0 = �/(2πa2).
The double prime on the summation sign means that n = 0 is excluded when m = 0. In the following,
all quantities are nondimensionalized with the length a and the characteristic time 1/ω0. The system
is entirely specified by a single parameter, the confinement ratio q = d/a.

Assuming infinitesimal perturbations, Eqs. (1) can be linearized about the equilibrium configu-
ration to yield

dx0

dt
= − π2

2q2
y0 −

∞∑
m=−∞

′ ∞∑
n=−∞

n2q2 − m2

(n2q2 + m2)2
[ym − (−1)ny0], (3a)

dy0

dt
=

∞∑
m=−∞

′ ∞∑
n=−∞

(−1)n
−n2q2 + m2

(n2q2 + m2)2
(xm − x0), (3b)

where the prime on the summation sign means m = 0 is excluded. The series of images of the m = 0
vortex yields the first term in Eq. (3a). Summing the series over n in the software MATHEMATICA
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gives

dx0

dt
= π2

q2

∞∑
m=−∞

′
Cmym − π2

q2

[
1

2
+

∞∑
m=−∞

′
Dm

]
y0, (4a)

dy0

dt
= π2

q2

∞∑
m=−∞

′
Dm(xm − x0), (4b)

where

Cm = csch2

(
mπ

q

)
(5a)

and

Dm = 1

4

[
csch2

(
mπ

2q

)
+ sech2

(
mπ

2q

)]
. (5b)

These equations, defined here for the m = 0 vortex, apply to each vortex m and define the infinite
set of linear equations governing the evolution of infinitesimal perturbations to the confined single
row of point vortices.

B. Dispersion relation and temporal stability

Let us now look for solutions to the perturbation Eqs. (4) of the form[
xm

ym

]
=

[
α

β

]
ei(km−ωt), (6)

where k and ω are the wave number and frequency, respectively. When we introduce (6) into (4), the
governing equations are reduced to two coupled equations for α and β[

iω A

B iω

][
α

β

]
=

[
0

0

]
, (7)

where the coefficients A and B are given by

A = π2

q2

[ ∞∑
m=−∞

′
Cmeikm − 1

2
−

∞∑
m=−∞

′
Dm

]
, (8a)

B = π2

q2

∞∑
m=−∞

′
Dm(eikm − 1), (8b)

with Cm and Dm defined in Eqs. (5). The existence of nontrivial solutions to Eq. (7) requires the
determinant of the matrix to be zero, imposing the dispersion relation

ω = ±i
√

AB. (9)

The temporal stability of the confined single row of vortices is determined by assigning a real
value to the perturbation wave number k and evaluating the growth rate of the perturbation, given by
the imaginary part of ω. We restrict ourselves to values of k between 0 and π since disturbances of
wave number 2π − k are equivalent to the complex conjugate of disturbances of wave number k.

In Fig. 2(a), we plot the growth rate ωi versus the wave number k, for different values of the
confinement ratio q. In all cases, the growth rate has a maximum at k = π which corresponds to
the SPI [8,22]. While the growth rate decreases with the confinement ratio q, the instability is not
totally suppressed. Indeed, the product AB is always a positive real number. Thus, the two solutions
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FIG. 2. Temporal dispersion relation. (a) Growth rate ωi vs wave number k for different confinement ratios.
(b) Its value at k = π vs confinement ratio q.

for ω are purely imaginary complex conjugates and the confined single row of vortices is temporally
unstable for all finite values of q. This implies that the SPI is present regardless of how far apart along
the channel are consecutive vortices, which is somewhat surprising, However, a simple analysis of
the dispersion relation shows that the growth rate of the instability quickly goes to zero as q → 0. For
small q, each of the series coefficients Cm and Dm [defined in Eqs. (5)] goes to zero exponentially
and the series is dominated by the very first terms. Truncating the series while leaving the first two
dominant terms with k dependence gives the dispersion relation as

ωi ∼ ±π2

q2
exp

(
− π

2q

)√
2(1 − cos k)(1 + 8e−π/q) + 4 sin2(k) e−π/q, (10)

when q → 0, showing that the growth rate ωi is exponentially small for strong confinement. As
shown in the dashed lines of Fig. 2(a), Eq. (10) matches very well the temporal dispersion relation
for a confinement ratio as large as q = 0.8, which is already quite close to the dispersion relation of
the unconfined case q = ∞.

The unconfined limit is attained remarkably fast, as can be seen from the maximum growth rate
ωi(k = π ) as a function of q shown in Fig. 2(b). The maximum ωi for q = 1.2, at the end of the
plotted range in Fig. 2(b), is almost the same as the ωi(k = π ) of the unconfined limit q = ∞ shown
in Fig. 2(a). In the unconfined limit, the hyperbolic-cosecant terms [Eqs. (5)] diverge as q2/m2 when
q → ∞. Keeping these leading terms compensates the q2 in the denominator of A and B [Eqs. (8)]
and one recovers the unconfined dispersion relation given by Saffman [22]

ωi = ±k

2
(2π − k), (11)

valid in the limit q = ∞. Keeping extra terms gives either vanishing or divergent contributions.
Thus, we have not been able to obtain a correction of this dispersion relation in the case of weak
confinement. This is probably related to how quickly the confined dispersion relation approaches
that of the unconfined case.

III. SPATIOTEMPORAL STABILITY

In practice, the absolute or convective (A/C) nature of an instability is determined in two different
ways: finding the absolute growth rate from the complex dispersion relation [12] and from a
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numerically computed impulse response [32,43]. Whereas the computation from the numerical
impulse response involve simulations in sufficiently large domains and for sufficiently large times, it
readily provides the perturbation growth rate in different reference frames. The determination of the
A/C character of an instability in a given frame is generally more efficient from the dispersion relation,
but computing the growth rate in different reference frames usually involves the recomputation of
the dispersion relation for each particular frame. This needs not to be the case, since the complex
dispersion relation encodes the stability properties in all frames. Indeed, a change of reference frame
in the dispersion relation corresponds to a simple Doppler shift. In the following, we present a simple
but general geometric construction, akin to a Legendre transform, which allows us to retrieve the
growth rate of an instability in different reference frames from the dispersion relation computed on
a single frame.

A. Growth rate in different reference frames from the dispersion relation

In the laboratory reference frame (at rest), the absolute growth rate is given by

σ = ωi(k0), (12)

where k0 is the absolute wave number that satisfies the zero group velocity condition

dω

dk
(k0) = 0 (13)

and the pinch point criterion [13,14]. If we consider now a reference frame moving at a velocity v,

the dispersion relation in the new frame is given by a Doppler shift

ωv(k) = ω(k) − vk, (14)

where ω is the the dispersion relation in the rest frame.
In the moving frame, the absolute wave number kv

0 = kv
0r + ikv

0i satisfying the zero group velocity
condition is now given by

dωv

dk

(
kv

0

) = 0, (15)

or equivalently from Eq. (14)

dω

dk

(
kv

0

) = v, (16)

stating that the zero group velocity in the moving frame corresponds to a group velocity v in the
laboratory frame [14]. The growth rate in the reference frame moving with velocity v is then given
as in Eq. (12) by

σ (v) = ωv
i

(
kv

0

) = ωi

(
kv

0

) − vkv
0i . (17)

Thus, σ (v) is usually obtained by calculating the Doppler-shifted dispersion relation ωv separately
for given values of v, then using (15) to obtain kv

0 , and finally the left equality in Eq. (17) to find the
growth rates σ (v) relating to these values of v.

We now present an alternative method for obtaining the growth rate σ directly as a function of
v. Assuming that ω(k) is an analytic function of k, condition Eq. (16) can be written in terms of the
imaginary part of ω and its derivatives as

∂ωi

∂ki

(
kv

0

) = v, (18a)

∂ωi

∂kr

(
kv

0

) = 0. (18b)
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FIG. 3. (a) Isocontours of ωi in the complex k plane, calculated from the dispersion relation (9) for q = 0.8.
The solid red line represents the locus of absolute wave numbers defined by (19). (b) Geometrical construction
to determine the growth rate σ (v) from ωi(kv

0r (ki),ki). The kv
0i pertaining to a particular v is given by (18a), and

the corresponding growth rate is obtained from (17). The dashed line on the left side of the plot shows the ωi

given by approximation (10), with the diamond indicating the inflection point determining the validity limit of
the approximation (see text).

Imposing condition (18b), which is independent of v, determines the locus of absolute wave
numbers

K0 =
{
kv

0 = kv
0r + ikv

0i :
dω

dk

(
kv

0

) = v

}
, (19)

which is a (one-dimensional) curve in the complex k plane that contains the union of absolute wave
numbers in any moving frame.

The locus K0 of absolute wave numbers of the dispersion relation Eq. (9) is shown as the solid
red line in Fig. 3(a), together with the contour levels of ωi(k) for q = 0.8. Because of the symmetry
of the perturbations around k = π , condition (18b) is satisfied for kr = π and K0 involves different
values of ki with kr constant. It will be usually possible to parametrize K0 in terms of ki, although
it can also happen that K0 contains multiple values of kr for some interval of ki, as shown in the
example of Appendix A. In either case, the imaginary part of the frequency can be expressed from
the dispersion relation as a (possibly multivalued) function of ki as ωi(kv

0r (ki),ki). Note that when
restricted to kv ∈ K0, it follows from Eq. (18b) that

dωi = ∂ωi

∂ki

dki, (20)

so that the imaginary frequency ωi varies through the variation of ki only and not through kv
0r . Thus,

it is natural to view ωi(kv
0r ,k

v
0i) as a one-variable function and ki as the independent variable. We can

now rewrite the growth rate in Eq. (17) as

σ (v) = ωi

(
kv

0r (ki),ki

) − vki, (21)

where v = ∂ωi

∂ki
. Equation (21) is in the form of a Legendre transform exchanging ωi by the growth

rate σ and ki by its conjugate variable v. As shown in Fig. 3(b), it corresponds to a simple geometrical
construction to determine kv

0i and the growth rate σ for the corresponding v. The solid curve shows
ωi(kr = π,ki) from the dispersion relation (9) for q = 0.8, and the straight line represents kiv for a
given v, i.e., the second term in Eq. (21). Condition (18a) corresponds to choosing kv

0i as the ki for
which the ωi curve is parallel to this line. The growth rate along the spatiotemporal ray x/t = v is
then given by Eq. (17) as the vertical distance between ωi and the straight line, evaluated at kv

0i .
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FIG. 4. (a) Growth rate σ (v) of the impulse response wave packet along spatiotemporal rays x/t = v for a
confinement ratio q = 0.8. The streamwise extent of the wave packet is given by the leading- and trailing-edge
velocities v±

g such that σ (v±
g ) = 0. Results from imposing the transformation (21) to the exact (solid line) and

approximate (dashed line) dispersion relations and from numerical simulations of the impulse response (circles).
(b) Magnitude of the leading- and trailing-edge velocities |v±

g | of the impulse response wave packet versus the
confinement ratio q. Results from the analytical dispersion relation with the graphical method (solid line) are
compared with those from numerical simulations of the impulse response (circles). As q increases, |v±

g | quickly
approaches the theoretical value of π for the unconfined single row of point vortices [44].

The solid line in Fig. 4(a) shows σ (v) resulting from the application of this technique to
the dispersion relation (9) for the case q = 0.8. Because of the upstream-downstream symmetry
of the system, ωi and σ (v) are even respectively in ki and v. Also shown in Fig. 4(a), in the dashed
line, is the corresponding growth rate obtained from the dispersion relation (10) asymptotically valid
in the limit of strong confinement. The agreement for the plotted values is very good. However,
the approximate curve of σ (v) does not extend to larger values of |v| because the corresponding
ωi(kv

0 (ki)) presents an inflection point corresponding to a maximum of | ∂ωi

∂ki
|, shown with a diamond

in the left side of Fig. 3(b). Beyond this point, the approximation given by Eq. (10) is meaningless.
For large times, the spatiotemporal region of growth of an initial impulse localized at (x,t) = (0,0)

is given by the spatiotemporal rays x/t of leading- and trailing-edge velocities v±
g = x/t such that

σ (v±
g ) = 0. Note that applying this marginal stability condition σ (v±

g ) = 0 in Eq. (21), one recovers
the Dee and Langer [45] and van Saarlos [46] condition vg = dω/dk = ωi/ki for the linearly selected
velocity of front propagation.

The magnitude of the leading- and trailing-edge velocities |v±
g | is reported in Fig. 4(b) for a

range of confinement ratios. The solid and dashed lines show the values obtained from the full
dispersion relation (9) and from its strong confinement approximation (10), respectively. In the
strong confinement limit, this propagation velocity decreases rapidly when q � 0.6, a trend which
is quantitatively well captured by the approximated dispersion relation (10) (dashed line). This
approximation works well until q = 0.69, after which the approximation loses validity before the
the marginal stability criterion is satisfied. For slightly larger confinement ratios, the full dispersion
relation (9) (solid line) reveals that |v±

g | reaches a maximum of |v±
g | = 3.243 around q = 0.78.

Remarkably, this value is larger than that of the unconfined case [44], which is given by |v±
g | = π

and represented by the horizontal dotted line in Fig. 4(b). This increase in the propagation velocity
of the instability is a destabilizing effect of confinement analogous to that found for parallel flows,
as we will discuss in detail below in Sec. IV A. Past this maximum in |v±

g |, a small decrease can
be observed before the evaluation fails because of the divergence of the series in the dispersion
relation (9). Indeed, the terms of the series grow exponentially with m when |ki | > π/q, rendering
the evaluation impossible through a direct summation for values of q greater than 0.9. Therefore, in
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order to complete the curve, we turn in the next section to a different approach that relies on direct
numerical simulations of the impulse response.

B. Growth rates from the numerically computed impulse response

The asymptotic properties of the impulse response wave packet can also be retrieved from a
numerical simulation of the response of the system to a localized initial perturbation [32,43]. This
method was recently implemented for the secondary instability of the confined Kármán street [31],
using a point vortex model closely related to the system presently under study. Hence we adopt a
similar approach and compute the time evolution of the single row of vortices through direct time
integration of the linearized perturbation equations (4). We use a finite number of physical vortices
and simulate the infinite series in the perturbation equations through additional virtual vortices that
are slaved to the physical ones (for additional details, see Ref. [31]). The equations of motion (4)
are then applied to the physical vortices, taking into account the velocities induced by the virtual
vortices, and are advanced in time with an explicit Euler scheme. This procedure is implemented
in MATLAB with a nondimensional time step 
t = 0.1, M = 201 physical vortices, and 6M virtual
vortices. The simulation is initialized with a small vertical displacement of the center physical vortex
and the total integration time is 20. The localized initial perturbation generates a growing wave packet
whose amplitude is defined as

A(x,t) =
√

xm(t)2 + ym(t)2, (22)

where m = round(x). The growth rate observed along spatiotemporal rays x/t = vg emerging from
the initial location of the perturbation can be evaluated from the amplitude at two distinct time instants
t1 and t2 via

σ (vg) = 1

t2 − t1
ln

[
A(vgt2,t2)

√
t2

A(vgt1,t1)
√

t1

]
. (23)

A simulation with confinement ratio q = 0.8 is first performed and the growth rate of the resulting
wave packet is shown in circles in Fig. 4(a). The excellent agreement obtained between the numerical
growth rate and that from the analytical dispersion relation validates the accuracy of the numerical
method. We now carry out simulations of the impulse response for a range of confinement ratios and
retrieve the leading- and trailing-edge velocity magnitude |v±

g | in each case. The results are displayed
in circles in Fig. 4(b) and again compare extremely well with the velocities obtained previously from
the analytical dispersion relation. The range for q is no longer limited at 0.9 and we can compute
how the curve of v±

g quickly approaches the theoretical value of π that is readily obtained from the
dispersion relation (11) for the unconfined single row of point vortices. This value was originally
derived as an academic exercise by Huerre [44] and was previously reported in Ref. [32].

IV. SIGNIFICANCE FOR FREE SHEAR LAYERS

As mentioned in the introduction, a row of vortices results from the saturation of the primary
instability of a free shear layer [1]. In this context, the SPI of the point vortex model studied in the
previous section can be regarded as a model of the 2VPI of the mixing layer. However, since primary
and secondary instabilities do not necessarily have the same absolute/convective character, they may
be affected differently by confinement; this will have implications for the development of the shear
layer. In the present section, we address what are these possible implications. We begin by comparing
the spatiotemporal properties of the primary instability and the SPI.

A. Comparison with the primary instability of a tanh profile

Healey [6] considered the inviscid instability of a confined plane mixing layer profile of the form

U (y) = 1 + R tanh
y

2
, (24)

053901-12



ABSOLUTE/CONVECTIVE SECONDARY INSTABILITIES …

0 5 10 15 20 25 30 35 40
h

0.9

1

1.1

1.2

1.3

1.4

R

tanh profile
row of vortices 2 4 6

0.9

1

1.1

1.2

1.3

1.4

4.2 π

4.3 π

4.1 π

4.8 π

4.7 π

4.5 π

4.6 π

4.4 π

absolute

12 π

4π

24 π20 π

8π

16 π

convective

FIG. 5. Spatiotemporal behavior of the tanh profile (24) and the row of point vortices. Domains of absolute
and convective primary instability (tanh profile) are separated by the critical velocity ratio Rc1 (solid line), while
in the gray region it is stable. Domains of absolute and convective instability of the SPI, separated by the critical
velocity ratio Rc2,λ, are shown for different values of the intervortex spacing λ = 4π,8π,12π,16π, . . . ,44π

(dotted lines). In both cases, values of R greater (lower) than the reported critical value lead to absolute
(convective) instability. The Rc2,λ determine the critical velocity ratio of the 2VPI to the right of R̄2C (dashed
line), below which the 2VPI is always convective. The inset shows a close-up around R̄2C including various
intersecting Rc2,λ (solid lines). Results for the primary instability are from Healey [6].

where U is the base flow velocity in the x direction, y is the cross-stream direction, and R =
(U ∗

1 − U ∗
2 )/(U ∗

1 + U ∗
2 ) is a velocity ratio with U ∗

1 and U ∗
2 the dimensional velocities far above

and below the mixing layer. Velocities are nondimensionalized with the average advection velocity
Ū ∗ = (U ∗

1 + U ∗
2 )/2, and lengths are nondimensionalized with the shear layer thickness δ. Symmetric

confinement by horizontal parallel plates is enforced by free slip boundary conditions at y = ±h.

Note that 2hδ = d. In this setting, Healey showed that confinement has a stabilizing effect on the
temporal stability of the mixing layer but can increase the region of absolute instability in a certain
range of h. The critical velocity ratio Rc1 (c and 1 for “critical” and “primary”) that separates regions
of absolute and convective instability obtained by Healey for the tanh profile Eq. (24) is shown by
the solid line in the (h,R) plane in Fig. 5. For the strong confinement shown in the shaded region of
Fig. 5, the primary instability is no longer present.

Returning to our model of point vortices, the increase of |v±
g | with increasing confinement observed

in Fig. 4(b) indicates a similar destabilizing effect of confinement on the secondary instability of the
mixing layer. In order to compare quantitatively the convective/absolute behavior of this SPI with the
primary instability results from Fig. 5, we need to relate dimensional quantities in our point vortex
model with their mixing layer counterparts. If the single row of vortices emerges out of the saturating
mixing layer, we can equate the circulation per unit length of both systems to get

�

a
= −(U ∗

1 − U ∗
2 ). (25)

Placing ourselves in the laboratory frame, in which the vortices are advected at the mean velocity of
the mixing layer Ū ∗, the dimensional front velocities of an impulse response wave packet in the row
of vortices is

v±∗
f = Ū ∗ + v±∗

g = Ū ∗ − �

2πa
v±

g , (26)
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where v−
f,g < v+

f,g, the v±∗
g are the dimensional leading- and trailing-edge velocities of the impulse

wave packet in the reference frame of the vortices, and v±
g are their nondimensional counterparts

displayed in Fig. 4(b). We now nondimensionalize (26) with Ū ∗ and make use of (25) to obtain

v±
f = 1 + U ∗

1 − U ∗
2

2πŪ ∗ v±
g = 1 + R

π
v±

g . (27)

The row of vortices becomes convectively unstable in the laboratory frame when v−
f turns positive.

This allows us to formulate a critical velocity ratio for the SPI, Rc2, above which the single row of
point vortices undergoes convective to absolute transition

Rc2 = π

|v−
g | . (28)

Finally, in order to compare Rc1 with Rc2, we need to relate lengths from the point vortex model
to those in the mixing layer. Having in mind that we aim at modeling the 2VPI, it appears at first
reasonable to equate the dimensional intervortex spacing a with the wavelength of the temporally
most unstable primary perturbation of the mixing layer. However, this would amount to prescribing a
unique wavelength selection to the primary instability, whereas in real mixing layers the wavelength
selection is a complex dynamical process involving various factors. For now, we leave a as an
arbitrary parameter, considering first the SPI of a general row of vortices independently of how it
was formed.

We relate the aspect ratio q of our model to the length scale of the mixing layer through the
distance between the confining plates at y = ±h as

q = d

a
= 2δh

a
= 2h

λ
, (29)

where the intervortex spacing is now given by λ = a/δ. For any given vortex separation distance
λ, one can combine (28) and (29) with the data from Fig. 4(b), which determines a family of
critical velocity ratios Rc2,λ(h) that separate regions of absolute and convective vortex pairing
instability in the (h,R) plane. Critical curves Rc2,λ for different values of the intervortex spacing
λ = 4π,8π,12π,16π, . . . ,44π are plotted in dotted lines in Fig. 5. A remarkable aspect of these
Rc2,λ curves is the possibility of absolute instability with R < 1, that is, without counterflow. This
promoted absolute instability takes place around h ≈ λ/2.5.

According to the results plotted in Fig. 5, all possible combinations between absolute or convective
instability for the tanh profile and the SPI are in principle possible for different values of λ,R, and
h. For example, if (h,R) = (15,1.3) and λ = 24π, depicted in blue, the (primary) instability of the
tanh profile is absolute while the (would-be secondary) SPI is convective. Since we are interested
in the SPI as a model for the 2VPI, we refer to this situation as 1A2C. If we then change the R and
λ values to R = 1.2 and λ = 12π, depicted in red, we would have the opposite situation in which
the tanh profile instability is convective and the SPI is absolute (1C2A). The remaining possibilities
1A2A (both instabilities absolute) and 1C2C (both convective) are present in the (h,R) plane.

Let us now consider the possible sequence of instabilities in a mixing layer; i.e., we now view the
SPI as the 2VPI forming from the outcome of the primary instability of the shear layer. Given the
appropriate initial conditions or forcing, it is in principle conceivable that a vortex row be formed with
any intervortex spacing lying within the range of unstable wave numbers of the primary instability.
Thus, the relevant range of λ can be taken as given by the range of temporally unstable wave numbers
of the tanh profile. In the confined case, this unstable range is given by Healey [6] (see his Fig. 1) and
goes from k = 2π/λ = 0 up to an h-dependent critical wave number kc(h) which decreases with h

until it goes to zero at h ≈ 2.399. This yields the stable shaded region in Fig. 5. In Fig. 5, the plotted
Rc2,λ curves correspond to wave-number values k = 1/2,1/4,1/6, . . . ,1/22. Apart from k = 1/2,

which is the critical wave number kc in the unconfined case, these values are within the range of
temporally unstable wave numbers when h is not too small. Thus, their corresponding Rc2,λ curves
are potentially valid critical curves for the 2VPI of a tanh shear layer, unlike the λ = 4π curve since
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the wavelength issuing from the primary instability must be larger. The region of applicability to the
2VPI of the Rc2,λ family of critical curves (of the SPI) is limited by the dashed line of Fig. 5, which
translates to the present context the critical wavelength kc(h) of the tanh profile given by Healey [6].
We denote the corresponding function as R̄2C(h) since for R below its curve the secondary instability
is necessarily convective, as explained in detail in Appendix B.

B. Discussion

Above and to the right of R̄2C it is, depending on λ, still possible to have all combinations between
absolute and convective for the primary and secondary instabilities. Among these cases, the most
commonly observed in coflowing mixing layer experiments is 1C2C, for which the primary and a
number of 2VPIs succeed each other spatially in a facility-dependent way due to a high sensitivity to
incoming noise [3]. In this case, vortex merging events will increase the wavelength λ thus selecting
curves Rc2,λ which move successively to the right in Fig. 5 and the instability generally remains
convective.

The same situation for the secondary instability would occur in case 1A2C, except that the initial
wavelength λ0 of the vortex row would be robustly selected by the absolute primary instability. This
selected wavelength λ0 can be expected to correspond to the real part of the absolute wave number of
the primary instability k0, although nonlinear effects, strong forcing, or initial conditions could also
have an effect. Thus, it would be possible to define a unique critical curve Rc2,λ0 that would be valid
in the region 1A. However, this involves finding in the complex k plane the absolute wave number
of the tanh profile as a function of R and h, which goes beyond the scope of the present paper. We
leave instead λ as a free parameter and proceed to discuss the cases 1A2A and 1C2A wherein the
2VPI is absolute (2A).

The cases 2A fall in the relatively unexplored situation of an absolute secondary instability
and the outcome is not obvious. One possibility of this absolute 2VPI would be the scenario of
Chomaz [15,36], discussed in the introduction, of a sudden one-step transition to a complex behavior.
Examples discussed in Ref. [36] include the emergence of low-frequency oscillations of the saturated
nonlinear state of a complex Ginzburg-Landau model (on this model, see also Ref. [35]) and a mixing
layer. These are somewhat reminiscent of low-frequency modulations observed in 2D wakes [47] or
forced capillary jets [48], Sec. IV.B; the possible relation of these phenomena with absolute secondary
instabilities is an open question that requires a dedicated study of each particular case. In the case of
mixing layers, we can re-evaluate this scenario in the presence of confinement.

1. A tentative wavelength selection mechanism

Without resorting to a full study involving experiments or nonlinear simulations, it is possible to
analyze in some more detail the possible outcome of an absolute 2VPI. One important consideration
is that the nonlinear development of the instability leads to the merging of neighboring vortices. As
mentioned at the beginning of this discussion, vortex-merging events will increase the wavelength
λ while moving the relevant critical curve Rc2,λ to the right in Fig. 5. This can be better represented
in the (R,λ/h) plane of Fig. 6, in which the family Rc2,λ separating the regions of absolute and
convective instability for the SPI collapses into a single critical curve. Increasing λ due to vortex
merging translates then directly into moving upwards in the (R,λ/h) plane. Figure 6 shows that
every point in region 2A is located below region 2C. Thus, if an initial λ/h is such that the 2VPI
is absolute (2A), increasing λ through successive vortex pairings will eventually bring the system
into the convective region 2C, in which it will remain for the subsequent mergers that may occur.
An example of this process is depicted in Fig. 6, in which the initial λ/h is doubled twice while
undergoing two pairings before getting out of region 2A into 2C.

In a spatially developing shear layer, the process of finite successive pairings drawn in Fig. 6
is, however, more complex to interpret since it is intrinsically a transient phenomenon, leading
eventually to a convectively unstable row of vortices. Thus, an absolutely unstable row of vortices
could be observed but only at intermediate times. Indeed, the process of finite pairings could be
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FIG. 6. Tentative scenario for wavelength selection. If the ratio λ/h of intervortex spacing to midchannel
width is such that the secondary instability is absolute (2A), successive vortex pairings will increase λ and
eventually bring the system in the region where the secondary instability is convective (2C), in which it will
remain. According to this interpretation, a spatially developing mixing layer with counterflow (R > 1) can only
exhibit a row of vortices if λ/h is large enough to fall in the region 2C.

observed as depicted in Fig. 6 if the “initial wavelength” lies within the 2A region, resulting, for
example, from a sudden modification of the confinement. But the more relevant question concerns
the nature of the permanent regime in which a spatial shear layer settles in the long time limit.

In the long time limit, and after a complex sequence of spatiotemporal pairing events, one expects
that the 2VPI becomes convective. Indeed, this possible outcome is consistent with the fact that
the saturation of the 2VPI leads to a similar row with double the wavelength, which falls also in
the unstable range of the primary instability. Given the nature of its dispersion relation, any large
wavelength λ could be a result of the primary instability, regardless of how far apart the vortices are.
Thus, it should be possible for the primary instability to bypass the wavelengths that yield absolute
2VPI by spatially saturating directly on a wavelength which is large enough so that the 2VPI is
convective. In other words, it could be possible, at least in principle, to construct a global mode with
a spatial front connecting a parallel shear layer at the inlet with a row of vortices that are sufficiently
far apart to lie in the 2C region.

According to this scenario, the practical consequence of the region of absolute secondary
instability is to restrict the range of possible wavelengths present in the permanent state of a shear layer
with counterflow. According to this wavelength selection mechanism, a spatially developing mixing
layer reaching a permanent regime can only exhibit a row of vortices with wavelength λ if λ/h = 2/q

is large enough to fall in region 2C. This would imply that vortex rows in spatial mixing layers with
counterflow (R > 1) can only occur below a sufficiently small confinement ratio, q = 2h/λ, given
by twice the inverse of the critical line in Fig. 6, i.e., when the confinement is strong enough.

One consequence of this wavelength selection mechanism is the impossibility of having a spatial
row of vortices with zero mean flow, i.e., in the limit R = ∞; one may expect that this eventually
leads to the merger of all vortices into one large vortex. This ultimate merging process is related
to the fact that in the point-vortex model used in this work, the instability persists for arbitrarily
strong confinement. More realistic models are expected to relax this anomaly, as further explained
in the next section. More interestingly, another consequence is the impossibility of creating spatial
mixing layers with finite counterflow (R > 1) in the absence of confinement. Indeed, according to the
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critical curve of Fig. 6, for 1 < R < 1.3 the distance between consecutive vortices should be more
than about three to four times the distance from the center of the shear layer to the symmetrically
confining walls.

2. Shortcomings and applications

We close this discussion with some comments on the validity of this highly idealized, inviscid
point-vortex model to real viscous shear flows. Indeed, the model contains the minimal features
required to study the effects of confinement on the 2VPI and it is not expected to be quantitatively
valid. There are various aspects that should modify our results, notably viscosity and real vortices’
finite size. In the absence of confinement, these two effects are taken into account in the computations
of the SPI on Stuart vortices of Ref. [32]. Their computations with Re = 500 show that the critical
velocity ratio R decreases monotonically from its value for parallel flow as the vortex concentration
increases (see Fig. 4 in Ref. [32] or Fig. 12 in Ref. [36]). Following the same trend, one can expect
the family of critical curves Rc2,λ to move upwards in Fig. 5, but remaining below the primary
instability curve in the unconfined limit. Accordingly, the single wavelength selection curve in Fig. 6
would move to the right; this will be of relevance for the discussion below. Aside from the temporal
instability being present for arbitrarily strong confinement (as q → 0, see Sec. II B) and the potential
for absolute instability without counterflow (i.e., Rc2,λ < 1), every other qualitative aspect can be
expected to remain unchanged from these two effects.

Another important effect that is not taken into account in the present model is the no-slip condition
at the walls. These would generate boundary layers that can be seen as a source of vorticity that could
affect the whole flow, as occurs for the inverted Kármán street behind a confined obstacle [49]. In
view of the experimental possibility of generating plane shear layers with counterflow, the possibly
disrupting effect of boundary layers at the confining walls can be minimized with moving walls. In
this regard, moving walls are also likely to be important for driving the flow at different velocities
without generating a transverse pressure gradient. In fact, the inability to capture the effects of such
pressure gradients is another important shortcoming of our model. Nevertheless, point-vortex models
are a good first approximation for 2D vortex dynamics at large scales; these large scales are the least
affected by viscous effects, and they are indeed the ones involved in the 2VPI. Regarding the stability
of viscous shear flows, the pertinence of point-vortex models is further supported by our previous
results [31] on the spatiotemporal stability of the Kármán street, and by recent experiments [34]
showing the stabilizing effect of confinement on vortex streets. These experiments have validated
results from the 1920s [50] on the stability of streets of point vortices.

A transverse pressure gradient seems like a natural explanation of the failure in the attempt to
obtain a spatial mixing layer with counterflow by Humphrey and Li [26]. Our wavelength selection
mechanism provides an additional reason (or an alternative explanation) for why their experiment
could not result in a permanent regime with a counterflowing mixing layer, even if it had been
driven by moving walls instead of opposite pressure gradients. They [26] report observations with
the same flow rate in both directions, i.e., with zero mean flow, and they also note that “unequal flow
rate observations did not differ fundamentally from the results presented.” (p. 467) The reported
streamwise length of their free shear layer was 7.62 cm, only slightly larger than the distance of
5.08 cm to the confining walls. In fact, this is not enough to accommodate even a pair of vortices
that would not be absolutely unstable. Because of the different geometry, our results do not apply
to the experiments of Strykowski and collaborators [17,27]: The celebrated experiment of Ref. [17]
was on cylindrical jets, and subsequent experiments on plane mixing layers with counterflow use
asymmetric and nonparallel confining walls [27]. Interestingly, our results do suggest that it could be
possible to experimentally generate plane shear layers with counterflow, but for this to be achieved
the mixing layer needs to be sufficiently long in the streamwise direction with respect to the vertical
distance between the confining walls.

A dedicated study of this prediction would have to involve nonlinear simulations and experiments,
going beyond the scope of the present paper. However, in view of our proposed scenario, we can
reassess the mixing layer results presented by Chomaz [36] in support of the different scenario of a
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one-step transition to complex behavior. In his Fig. 8, Chomaz shows successive images of a shear
layer with R = 1.42 at Reynolds number 400 kept artificially parallel by a diffusion-canceling body
force and confined with freely slipping walls. The initially parallel shear layer is seen to develop KH
vortices, first at its downstream end and subsequently moving upstream. The details of the upstream
displacement of the emerging row of vortices cannot be ascertained from the images shown, but
vortex pairings are clearly present and the distance between consecutive vortices increases in time.
About the resulting flow, Chomaz notes that “the Global Mode for the mixing layer does not seem
to be stable” (p. 392) [36], and he describes it as displaying random pairings (in Refs. [15,36], see
the last quotation of the introduction). Based on the results for the absolute/convective instability of
Stuart vortices without confinement [32], Chomaz attributes this randomness to the alleged absolute
nature of the pairing instability, analogous to what was observed in the Ginzburg-Landau model
[35,36].

We can now provide a different interpretation of Chomaz’s results. Indeed, it is likely that this
transient process shown in Fig. 8 of Ref. [36] corresponds to the proposed process depicted in Fig. 6.
Chomaz’s numerical experiment with an initially parallel shear layer with counterflow seems, as in
a sudden modification of the confinement, like the kind of conditions leading to an absolute “initial
wavelength” in which one would expect to observe the occurrence of this transient process. The
parallel shear layer is first subject to the primary instability which, by the snapshot at time 300 of
Fig. 8 of Ref. [36], has developed into a row of vortices that is subsequently subject to pairing through
an absolute 2VPI. Vortex separation increases after pairing, and one can calculate the confinement
ratio from the final snapshot at time 500 of the figure. The separation λ between the closest pair
of vortices is then about four times the midwidth h of the channel. Considering the velocity ratio
R = 1.42 and the finite size of the vortices that, as discussed above, favors convective instability with
respect to point vortices (Fig. 4 of Ref. [32] or Fig. 12 in Ref. [36]), this value is very likely close
to the absolute/convective instability threshold of a more realistic row of vortices (with the curve in
Fig. 6 displaced to the right). Thus, it is possible that the final state of the spatial shear layer observed
by Chomaz [36] is only convectively unstable (case 1A2C) and that the observed randomness is a
result of the high sensitivity to small disturbances characteristic of convectively unstable flows (as
in the case of the “secondary vortex street” studied in Ref. [51]). This is, in our view, the most likely
consequence of the absolute/convective nature of the 2VPI.

As shown, our results make it possible to provide a simple reassessment of the previous results of
Refs. [26,36] based on simple geometry. For the experiments of Humphrey and Li [26], the aspect
ratio of their test section cannot possibly lead to a saturated free-shear layer (in the usual form of
a row of vortices) that is not absolutely unstable; the flow accordingly developed a complex spatial
structure unlike that of mixing layers. The case for the simulations of Chomaz [36] is different; the
long and narrow domain led to a permanent regime of consecutive vortices with a complex time
dependence. While the very different conditions between these two cases do not allow us to draw
conclusions, they serve to exemplify the main potential applicability of our results: providing a design
criterion for achieving planar mixing layers with counterflow. As hinted above, and given that our
criterion favors long domains, it appears essential that the different streams be driven by drag and not
pressure, for otherwise the flow will likely result in a large stagnant region. The recent experiments
testing the stabilization by confinement of stationary Kármán streets [34] could be adapted to test
our prediction.

V. SUMMARY AND CONCLUSIONS

We have characterized the effect of confinement on the absolute/convective nature of the pairing
instability based on the infinite row of point vortices. This is a minimal model to study how the
growth of free shear layers through successive pairings can be eventually limited by the effects of
confinement. Surprisingly, as shown in Sec. II B, the pairing instability is never fully stabilized by
confinement in this conservative model, the temporal growth rate of the instability becoming instead
exponentially small as confinement or, equivalently, vortex separation increases. This behavior is well
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captured with an approximate expression for the dispersion relation [Eq. (10)] that is asymptotically
valid in this limit of strong confinement q → 0.

This asymptotically valid dispersion relation also quantitatively captures the critical velocity,
marking the threshold between absolute and convective instability for values of confinement up to
q ≈ 0.69. In order to compute the thresholds, the growth rate of the impulse response as observed
in different reference frames is obtained from the (full and approximate) dispersion relations in
a single frame. For this we develop an approach, described in Sec. III A, whereby the imaginary
part of the wave number ki and the relative velocity of a moving frame v are related as conjugate
variables through a Legendre transformation of the growth rate ωi evaluated on the locus of absolute
wave numbers. The obtained results are confirmed with numerical simulations of the linearized
impulse response. These simulations do also extend the computed results to the moderate and weak
confinement regime (q � 1), for which the evaluation of the dispersion relation in the complex
plane fails due to divergence of the required series. We can thus compute the critical velocity for
absolute/convective instability for all confinement values, including the approach to the previously
known result for the unconfined limit [32,44].

Similar to the results on the tanh profile reported previously by Healey [6], we obtain a range in
which the effect of confinement is to increase the propagation velocity of the instability, thus rendering
it potentially absolute in conditions where it would be convective without confinement. This leads to
the surprising possibility of absolute instability without counterflow. However, this particular aspect
is likely related to the particular model of point vortices since, without confinement, the results of
Brancher and Chomaz [32] for the model of Stuart vortices show that the propagation of the instability
is slower with less concentrated vortices (see their Fig. 4). Still, the results of Ref. [32] are consistent
with ours in that the secondary instability becomes absolutely unstable with less counterflow than
the primary instability. This suggests that in a more realistic model the quantitative values will differ,
but the overall picture can be expected to remain valid.

Assuming values of the midchannel width h that are not too small, the primary and secondary
instabilities are, as expected, both absolute (1A2A) or both convective (1C2C) for sufficiently large
or small values of the velocity ratio R, respectively. However, the region of absolute/convective
instability for the pairing instability cannot be determined unequivocally in the (h,R) plane, because
the threshold depends on the intervortex spacing λ. This intervortex spacing physically corresponds
to the wavelength selected by the primary instability, or by previous instances of the secondary vortex
pairing instability, and is therefore left in the analysis as a free parameter to be determined by the
dynamics. As a result, situations 1A2C or 1C2A are both possible depending on the values of the
velocity ratio R and wavelength λ (Fig. 5). Fixing R sets the absolute/convective nature of the primary
instability, but the pairing instability can generally still be absolute or convective depending on the
wavelength λ. For sufficiently small λ, the secondary pairing instability becomes absolute with less
counterflow than the primary instability. Increasing the wavelength λ, as it would occur through
vortex pairings, eventually leads to the pairing instability becoming only convectively unstable.

Cases in which the secondary pairing instability is convective have a predictable outcome: The
row of vortices issuing from the saturation of the primary instability will be sensitive to incoming
disturbances and exhibit irregular pairings as the vortices are advected downstream. In the common
case of coflowing shear layers [3], the primary instability is also convective (1C2C) and the primary
row of vortices typically also irregular. The situation will not change dramatically if the primary
instability is absolute (1A2C), as in the case of the Bénard–von Kármán street in the cylinder wake
[31]; the secondary pairing instability might then still develop irregularly while advected on a regular
row of vortices.

Cases of absolute secondary instability are less straightforward and should be generally studied
on a case-by-case basis. A generic scenario that has been proposed is that of a sudden transition to
complex behavior [15,36]. This has been argued to be the case for free shear layers, for which the
secondary instability is absolute before the primary instability in the absence of confinement [32].
However, for the present secondary instability, which is subharmonic, the increase in wavelength
through successive pairings will also increase the effects of confinement, eventually leading to the
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instability becoming convective. In addition, since the primary instability is active for arbitrarily large
wavelengths, its spatial saturation could bypass the smaller wavelengths that are absolutely unstable,
leading directly to a row of vortices that is only convectively unstable. This constitutes a mechanism
of wavelength selection, which we propose for spatially developing shear layers with counterflow.

According to this wavelength selection mechanism, the wavelength of the ensuing vortex row must
be sufficiently large so that the secondary pairing instability is convective. As a consequence, spatially
developing rows of vortices, which respect the global flow structure of mixing layers, are only possible
with a confinement strong enough for the pairing instability to be convective; this amounts to the
requirement of a sufficiently long and narrow domain. This prediction is consistent with the numerical
results of Ref. [36] and with the failed experimental attempt of Ref. [26], providing a guideline for
the experimental and numerical search for shear layers with counterflow. Indeed, together with the
transverse pressure gradient that unavoidably results from putting in contact two opposite pressure-
driven flows, this mechanism is likely related to the lack of experimental realizations of spatial shear
layers with counterflow.

In conclusion, we propose a rationale for explaining what are the conditions under which it can
be possible to obtain spatial shear layers with counterflow. Our results, however, being obtained
in the highly idealized model of point vortices, are not expected to be quantitatively valid. Still,
experimental observations of a confined Bénard–von Kármán vortex street [34] in the absence of
advection have recently vindicated old predictions for the stability of these confined vortex streets
based on von Kármán’s point vortex model [50]. Also, our previous results reconciling Kármán’s
point vortex model with ubiquitous observations of vortex streets [31] further supports the utility of
models of point vortices for studying hydrodynamic instabilites.

Obvious ways in which the present results could and should be extended involve asymmetric
confinement and more realistic vortex street models, including but not limited to Stuart vortices with
finite core size. The latter should lead to more accurate predictions for wavelength selection, and the
details of the proposed mechanism could be then tested with numerical simulations. But ultimately,
it should be the failure or success of experimental tests which shall eventually confirm or falsify our
predictions. In this regard, soap films or an adaptation of the recent experiments [34] proving the
stability of confined vortex streets seem promising.
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APPENDIX A: LEGENDRE TRANSFORM METHOD APPLIED TO KÁRMÁN’S STREET
OF POINT VORTICES

In this Appendix, we present the application of the method developed in Sec. III A to a system with
a more complicated dispersion relation than that of the confined single row. Specifically, we consider
the dispersion relation of the unconfined and inviscid Kármán street of point vortices [22,31,33]
given by

ω = ±A + s
√

B2 − C2, (A1)

where +A and −A correspond to symmetrical and antisymmetrical modes respectively, s = ±1
gives two solution branches for each mode, and the coefficients A, B, and C are expressed as

A = 1

2
k(2π − k) − π2

cosh2 pπ
, (A2)

B = πk sinh p(π − k)

cosh pπ
+ π2 sinh pk

cosh2 pπ
, (A3)

C = π2 cosh pk

cosh2 pπ
− πk cosh p(π − k)

cosh pπ
, (A4)
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FIG. 7. Isocontours of ωi in the complex k plane for the dispersion relation of the Kármán street (A1) with
p = 0.3 (left) and p = 0.316 (right). The red line represents the locus K0 of absolute wave numbers defined by
(19). Note that in both cases K0 contains multiple values of kr for some intervals of ki .

where p is the ratio of the vertical distance between the two rows of vortices to the horizontal
distance between consecutive vortices in the same row. The wave number k of the perturbation
is nondimensionalized by the inverse of the distance between consecutive vortices. In Fig. 7, we
plot the contour levels of ωi(k) from (A1) for p = 0.3 (left) and p = 0.316 (right), together with
the locus K0 of absolute wave numbers defined by Eq. (19). Unlike the earlier case of the single
row of vortices, here K0 contains multiple values of kr for some intervals of ki . We now apply the
geometrical technique of Sec. III A for obtaining the growth rate of an impulse response wave packet
along spatiotemporal rays x/t = v. First, we plot in Fig. 8 the curve ωi(kv

0r (ki),ki) for p = 0.3 (left)
and p = 0.316 (right), which represents the imaginary part of the frequency along K0. Note that, as
always in these plots, ωi intersects the axis ki = 0 at the maximum of the temporal growth rate. For
the present dispersion relation, ωi(k ∈ K0) is a multivalued function of ki . At the point where K0

becomes parallel to the kr axis and ωi becomes multivalued, Eq. (20) prevents ωi from becoming
vertical, and it generically develops a cusp instead, as shown in Fig. 8 (right). Another possibility for
this conservative system can be seen in Figure 7 (left), in which K0 coincides with the kr axis for a
finite distance and the tangent to ωi(kv

0r (ki),ki) has a discontinuity when touching the origin in Fig. 8
(left). Nevertheless, the monotonous behavior of ∂ωi/∂ki = v along K0 ensures that every point on
the locus corresponds to a unique value of v. This allows for the unambiguous determination of the
growth rate of the impulse response wave packet based on (21) and the geometrical construction

FIG. 8. Imaginary part of the frequency along the locus K0 of absolute wave numbers, expressed as a
multivalued function ωi(kv

0r (ki),ki) of ki for p = 0.3 (left) and p = 0.316 (right).
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FIG. 9. Growth rate σ (v) of the impulse response wave packet along spatiotemporal rays x/t = v for
p = 0.3 (left) and p = 0.316 (right). The streamwise extent of the wave packet is given by the leading- and
trailing-edge velocities v±

g such that v±
g = 0.

detailed in Sec. III A. The resulting curve σ (v) is shown in Fig. 9 for p = 0.3 (left) and p = 0.316
(right).

APPENDIX B: DETERMINATION OF THE REGION WHERE THE SPI IS VALID
AS A MODEL OF THE 2VPI

The SPI makes sense as a model of the 2VPI only when the vortex spacing λ is a wavelength
unstable to the primary instability. The function R̄2C(h), which delimits the region in which the
Rc2,λ(h) family describes different A/C regions for 2VPI, can be obtained as illustrated in the inset
of Fig. 5. Take a value of λ = λ̄ slightly larger than 4π (say, for example, λ̄ = 4.4π shown in one
of the continuous lines of the inset of Fig. 5, corresponding to k̄ = 2π/λ̄ = 1/2.2) and follow its
corresponding Rc2,λ̄ curve while decreasing h until the value h̄ for which the corresponding k̄ is
critical for the tanh profile, i.e., the h̄ such that kc(h̄) = k̄. This determines R̄2C(h) for h = h̄ as
R̄2C(h̄) = Rc2,λ̄(h = h̄). Below this h̄ the wavelength λ̄ cannot result from the primary instability
since it is stable for k̄. Indeed, for an h < h̄, the wavelength from the primary instability must be a
λ > λ̄, which would select a critical curve Rc2,λ to the right of Rc2,λ̄ that will not extend below R̄2C(h).
Conversely, if we fix h and take a value of R below the R̄2C(h) curve, the primary instability will
necessarily select a wavelength λ such that Rc2,λ lies above R̄2C(h), and the 2VPI will be convective.
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