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1. INTRODUCTION

One of the approaches that could be used to analyze a face/core debond is the elastic foundation approach.  In this 
approach, the top debonded face is considered to rest on an elastic foundation, which is provided by the rest of the structure, 
i.e., the core and the bottom face. Such elastic foundation models have been used from the 70s for the study of crack
propagation. Kanninen [1,2] used such a model for the study of the double cantilever beam (DCB) test specimen in a 
homogeneous material with the crack at mid-thickness. A “crude” approximation of the elastic foundation modulus, based 
on the half-thickness of the beam, as outlined in the Results section, was used.  Williams [3] extended Kanninen's model 
by using the Timoshenko beam theory in a homogeneous material and he used a formula for the elastic foundation constant 
similar to Kanninen's [3] based on the thickness of the debonded layer.  In a more recent paper on the subject, Li and 
Carlsson [4] used the elastic foundation analysis on the tilted sandwich debond specimen. In a sandwich section, which 
is non-homogeneous, with varying properties and geometry of the two faces and the core, it is sensible to assume that the 
elastic foundation constant will depend on the mechanical properties and thicknesses, etc of all the constituent layers. 
Thus, the objective of this research is to provide a formula that answers this question. 

2. FORMULATION

Extended High Order Sandwich Panel Theory (EHSAPT) Solution 

The details of the EHSAPT theory are in [5]. We also use the same notation as in [5]. Let us consider the loading 
configuration that would be most appropriate for the normal elastic foundation constant. The one that would most first 
come to mind is a single face loading, in which case the  normal spring constant would be defined by the transverse 
displacement of the top face/core interface and the transverse normal stress at the same place, after subtracting the 
transverse displacement at the bottom bounding surface, i.e. from a relationship of the form 

 ( ) ( , ) ( , ) ( , )c
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This relationship would, however, include the bending deformation of the bottom face and thus would not represent 
the pure transverse compression of the structure below the top face.  A symmetric loading configuration would, however, 
create a reference surface of uniform zero transverse displacement (i.e. the bending deformation would be eliminated and 
it would be like resting on a “rigid” surface.  This reference surface would be at the middle of the core for a symmetric 
sandwich construction.  Then, the normal spring constant would be defined from 

( ) ( , ) ( , ) c
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Furthermore, if we consider a simply supported sandwich panel under transversely applied symmetric sinusoidal 
loading i.e. of the form: 

   0 0sin ; sin ;t bx x
q x q q x q

a a

 
   (2) 

then the seven differential equations of the EHSAPT become seven algebraic equations for the seven constants:  U0
t,c,b,  

W0
t,c,b  and 0

c. Eliminating the  sin (x/a)   from both sides of the resulting equation gives an expression of a constant kn: 
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The shear constant of the elastic foundation (shear spring constant) expresses the relationship between the axial 
displacement, u,  and the transverse shear stress, xz, at the face/core interface. In the same spirit as for the normal spring 
constant, we need to refer to a zero axial displacement reference surface (i.e., again as resting on “rigid” surface).  This 
can be achieved with an anti-symmetric loading.  The reference surface is at the middle of the core for a symmetric 
sandwich construction. The shear spring stiffness can then be found from the relationship 
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Eliminating the cos( x/a)  from both sides of the resulting equation gives a constant value of the shear spring constant as 
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Since the shear stress can be negative, the absolute value is taken in Eq. 5. 

Elasticity Solution 

The elasticity solution is given in detail in [6,7]. The analysis is done in complex variables.  In this solution, the 
displacements in each layer are as follows: 
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where p = /a and  j   are the four roots of the characteristic equation of each layer: 
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The roots of the characteristic equation (Eq. 6c) are either all real or complex conjugates. Regarding the aj constants 
in the previous equations, within each layer i, where i = t, c, b, there are four constants:  aij, j = 1,2, 3, 4. Therefore, for 
the three layers, this gives a total of 12 constants to be determined.  These are found from the continuity conditions at the 
faces/core interfaces and the traction conditions at the bounding surfaces 

Again, eliminating the sin (x/a) from both sides of the resulting equation, gives an expression of a constant kn: 
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The shear spring constant is defined in Eq.4.  Assuming symmetric construction, for which zref = 0, and subsequently 
eliminating the cos (x/a) from both sides of the resulting equation, gives the following expression of a constant ks:  
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3. RESULTS 

Table 1 shows the elastic foundation “normal spring” constant from Elasticity (benchmark), EHSAPT and the 
Kanninen-type simple formula based on the core. It can be seen that the agreement between Elasticity and EHSAPT is 
excellent.  There is only a case of moderate discrepancy, namely a 10% discrepancy in the isotropic homogeneous case, 
which is to be expected, considering that the EHSAPT is a sandwich panel theory and makes assumptions regarding the 
faces and the core.  The Kanninen-type simple formula has a varying accuracy, which depends on the core type, and in 
all cases predicts a less stiff foundation.  
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Table 1:  Elastic Foundation Constant – “normal spring”, kn, MPa. Comparison of Elasticity, EHSAPT and  
Kanninen-type formula. 

  
Elasticity 

 
EHSAPT 

 
Kanninen [core] 
bE3

c/c 
 

 
Aluminum Faces 
H100 Core 
 

 
692.0 

 
698.1 
+0.88% 

 
520 
-24.8% 

 
Carbon Epoxy Faces 
H100 Core 
 

 
692.6 

 
698.5 
+0.85% 

 
520.0 
-24.9% 

 
Aluminum Faces 
Balsa Wood Core 
 

 
31,248.1 

 
31,308.4 
+0.19% 

 
30,880.0 
-1.18% 

 
Aluminum Faces 
Honeycomb Core 
 

 
1,220.8 

 
1,221.5 
+0.06% 

 
1,200.0 
-1.70% 

 
Aluminun Faces 
Aluminum Core 
(homogeneous isotropic) 
 

 
313,936.2 

 
346,387.4 
+10.3% 

 
276,000.0 
-12.1% 
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