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ABSTRACT 4 

Adaptive numerical method algorithms are presented for the numerical simulation of the hysteretic 5 

behavior of nonlinear viscous and bilinear oil dampers within a finite element program for nonlinear 6 

dynamic analysis of frame structures under earthquake excitations. The adaptive algorithms are applicable 7 

for computing high-precision solutions for nonlinear viscous and bilinear oil dampers with valve relief 8 

that are typically represented mathematically with a nonlinear Maxwell model. The algorithms presented 9 

possess excellent convergence characteristics for viscous dampers with a wide range of velocity 10 

exponents and axial stiffness properties. The algorithms are implemented in an open source finite element 11 

software, and their applicability and computational efficiency is demonstrated through a number of 12 

validation examples with data that involve component experimentation as well as the utilization of full-13 

scale shake table tests of a 5-story steel building equipped with nonlinear viscous and bilinear oil 14 

dampers.  15 
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1. Introduction 27 

In the past three decades various types of supplemental damping devices have been developed and 28 

utilized in frame buildings to control seismic and wind-induced vibrations (Constantinou and Symans 29 
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1993; Soong and Dargush 1997; Christopoulos and Filiatrault 2006; Black and Makris 2007; Symans et 30 

al. 2008; Dong et al. 2015). To this end, viscous dampers are advantageous as the forces they develop are 31 

typically out-of-phase with displacement-induced forces within a frame building under earthquake 32 

loading (Constantinou et al. 1998). Recent earthquakes demonstrated the effectiveness of viscous dampers 33 

in response modification of conventional buildings to control structural and non-structural damage 34 

(Buchanan et al. 2011; Miranda et al. 2012; Kasai et al. 2013).  35 

For the successful implementation of viscous dampers into the earthquake engineering design practice the 36 

availability of mathematical models that represent accurately the hysteretic response of such devices is 37 

necessary. Rigorous integration methods are essential for the numerical solution of these models when 38 

nonlinear response history analysis (NRHA) is conducted. Unlike in solid viscoelastic dampers (Chang et 39 

al. 1995) the temperature dependency of fluid viscous dampers is relatively low (Kasai et al. 2004b; 40 

Symans et al. 2008). In contrast with the idealized assumption of purely viscous dashpot models, viscous 41 

dampers show stiffness dependency characteristics that generally undermine the effectiveness of a viscous 42 

damper (Makris and Constantinou 1991). Although a number of researchers, have studied the effect of 43 

axial stiffness of viscous dampers on the seismic performance of frame buildings (Constantinou et al. 44 

2001; Singh et al. 2003; Chen and Chai 2011; Liang et al. 2011; Londoño et al. 2013), they mainly 45 

focused on linear viscous dampers. In the case of nonlinear viscous dampers, a common practice has been 46 

to neglect the damper axial stiffness (Pekcan et al. 1999; Ramirez et al. 2001; Lin and Chopra 2002; 47 

Hwang et al. 2008; Diotallevi et al. 2012). This is a convenient assumption because a closed-form 48 

analytical solution of the damper force can be computed when NRHA is employed. Recent shake table 49 

experiments of a full-scale 5-story steel frame building equipped with viscous dampers that were 50 

conducted at the world’s largest shake table around the world (Ooki et al. 2009; Kasai and Matsuda 2014) 51 

demonstrated that the consideration of the damper axial stiffness is critical in order to accurately predict 52 

both local and global seismic demands of the test structure (Kasai et al. 2007; Kasai and Matsuda 2014). 53 
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A blind analysis contest that was conducted to challenge the existing modeling capabilities for steel frame 54 

buildings equipped with various types of dampers demonstrated that when the brace and damper axial 55 

stiffness is incorporated in nonlinear viscous dampers, it improves the overall prediction accuracy by 56 

more than 20% compared to the experimental data (Yu et al. 2013). Recent studies (Dong et al. 2015, 57 

2018) have shown that the displacement-induced forces and damper force demands may be in phase 58 

within a frame building due to the axial stiffness of the respective damper. This has a profound effect on 59 

the seismic demands transferred to the steel columns and foundations and should be carefully quantified. 60 

Several researchers have proposed ways to account for the stiffening and frequency dependency of 61 

viscous dampers and to compute numerically their hysteretic response under harmonic and seismic 62 

excitations by employing the Maxwell model (Makris and Constantinou 1991; Constantinou and Symans 63 

1993; Reinhorn et al. 1995; Takahashi and Sekiguchi 2001; Oohara and Kasai 2002; Singh et al. 2003). 64 

Typical fixed time-step integration algorithms that have been employed to obtain numerically the viscous 65 

damper hysteretic response may require considerably small integration steps to overcome convergence 66 

problems (Oohara and Kasai 2002). In particular, numerical convergence may still be a challenge for 67 

frame buildings equipped with nonlinear viscous dampers with high axial stiffness and small velocity 68 

exponents (Oohara and Kasai 2002). In such cases, a smaller integration time step for the overall analysis 69 

is necessary. This reduces the computational efficiency of the analysis of building models with nonlinear 70 

viscous dampers. This may also be a fundamental constraint for the optimal seismic design and/or retrofit 71 

of frame buildings with nonlinear viscous dampers in which the locations as well as the damper sizes 72 

should be explicitly identified as part of the optimization problem (Lavan et al. 2008; Lavan and Avishur 73 

2013; Pollini et al. 2017). It is understood that improved integration algorithms should be utilized to 74 

reliably obtain the numerical solution of nonlinear viscous damper models.  75 

Others have proposed ways to account for the stiffening and frequency dependency of viscous 76 

dampers to compute their hysteretic response under harmonic and seismic excitations. For 77 
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instance, Terenzi (1999) has employed the Kelvin-Voigt model, in which a spring is connected 78 

parallel to a dashpot. This modeling approach is commonly utilized for solid viscoelastic 79 

devices. However, a Maxwell model (i.e., spring connected in series with a dashpot), has been 80 

found to be more appropriate to account for both the stiffness and frequency dependency of fluid 81 

viscoelastic dampers (Makris and Constantinou 1991; Constantinou and Symans 1993; Reinhorn 82 

et al. 1995; Takahashi and Sekiguchi 2001; Oohara and Kasai 2002; Singh et al. 2003). Others 83 

(Sivaselvan et al. 2009) have utilized a mixed Lagrangian approach to conduct nonlinear response history 84 

analyses of frame structures with linear and nonlinear viscous dampers. 85 

This paper discusses the numerical implementation of an improved adaptive algorithm for the numerical 86 

solution of the constitutive equations of nonlinear viscous and bilinear oil damper material models under 87 

dynamic loading when the axial stiffness of the dampers is considered as part of the constitutive damper 88 

formulation. The efficiency of the proposed algorithms is compared with that of traditional integration 89 

schemes that are typically used for the numerical solution of initial value problems. The proposed 90 

numerical solution techniques are implemented in an open-source finite element simulation platform and 91 

are validated with full-scale tests from nonlinear viscous and bilinear oil dampers subjected to sinusoidal 92 

excitations and various loading frequencies. Furthermore, experimental data from a 5-story steel building 93 

with the same damper types that was tested at full-scale is utilized to demonstrate the efficiency of the 94 

proposed adaptive numerical schemes in predicting global and local engineering demand parameters of 95 

frame buildings equipped with supplemental damping devices.  Finally, the paper provides tools to aid the 96 

preliminary design of steel frame buildings equipped with nonlinear viscous dampers so as analysis 97 

iterations with unnecessarily too stiff or too flexible damper models can be eliminated. 98 

 99 

 100 
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2. Hysteretic Behaviour of Viscous Dampers as Pure Viscous Models 101 

Viscous dampers contain a polymer liquid and its flow through orifices leads to pressure differential 102 

across a piston head, which produces the damper force. The design of orifice dictates the relationship 103 

between the force and velocity. Thus, the general force-velocity relationship of nonlinear viscous models 104 

can be mathematically expressed by Equation (1) (Symans and Constantinou 1998), 105 

  (1) 106 

in which, Cd is the damping coefficient and α is the velocity exponent that characterizes the viscous 107 

material; ud is the dashpot displacement ; and sgn represents the signum function. Thus, the peak force Fd0 108 

of a viscous damper under a harmonic displacement excitation that is described as ud(t) = ud0sin(ωt), is as 109 

follows, 110 

  (2) 111 

in which, ud0 and ω are the peak displacement amplitude and the circular frequency of the sinusoidal 112 

excitation, respectively. Figure 1 shows the normalized force-velocity and normalized force-displacement 113 

relations of nonlinear viscous models with different α values. A typical Bernoullian cylindrical shaped 114 

orifice produces forces, which are proportional to the square of the velocity (i.e., α = 2). Such dampers are 115 

utilized for shock wave absorption. For α = 1, a viscous damper becomes linear while for α = 0 the force-116 

displacement hysteretic relation of a viscous damper becomes rectangular, which is typical for friction 117 

models (Pall and Marsh 1982). For seismic design applications of frame buildings the capability of 118 

limiting the damper force output under high velocity pulses is often desirable. Therefore for seismic 119 

applications, α is often selected such that α < 1. Because linear viscous dampers produce forces that vary 120 

linearly with respect to the velocity demand, large damper forces may be generated under high velocity 121 

demands. This introduces uncertainties and conservatism in capacity design of non-dissipative members. 122 

In order to overcome this undesirable response, bilinear oil dampers were developed that contain a relief 123 

( )( ) ( ) sgn ( )d d d dF t C t ú tú a=

0 0( )d d dF C u aw=
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mechanism, which suppresses the force after a certain limit (Ichihasi et al. 2000; Kasai and Nishimura 124 

2004; Kasai et al. 2004b; Tsuyuki et al. 2004). This creates a bilinear relation between the damper force 125 

and velocity as shown in Figure 2a. Thus, the force produced by a bilinear oil damper can be computed as 126 

follows,  127 

  (3) 128 

in which, p is the post relief damping coefficient ratio; Fdr and údr are the relief force and relief velocity of 129 

the bilinear oil damper, respectively. The peak force Fd0 of a bilinear oil damper under sinusoidal 130 

displacement excitation ud(t) = ud0sin(ωt) can be computed as follows, 131 

  (4) 132 

the peak damper velocity ratio, µd of a bilinear oil damper, which is defined as the ratio of maximum 133 

velocity demand over the damper relief velocity can be computed as follows, 134 

  (5) 135 

Figure 2b illustrates the hysteretic behaviour of a bilinear oil damper under sinusoidal loading for 136 

different displacement amplitudes. In this figure, the horizontal axis has been normalized with respect to 137 

the peak displacement amplitude. The damper was designed for a peak damper velocity, µd = 3. The post-138 

relief damping coefficient ratio was assumed to be p = 0.1. The displacement amplitudes were increased 139 

in three steps. During the first step, the peak damper velocity was nearly equal to the damper relief 140 

velocity; therefore the hysteretic behaviour of the damper was identical to that of a linear viscous damper 141 

(Kasai et al. 2004b; Tsuyuki et al. 2004). Once the velocity demand exceeds the damper relief velocity, 142 

the relief mechanism is activated and the damping coefficient, Cd, suddenly drops as shown in Figure 2a. 143 
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3. Hysteretic Behaviour of Viscous Dampers as Maxwell Models 145 

Prior experimental findings suggest that the hysteretic behaviour of a viscous damper is dependent on its 146 

axial internal stiffness Kd, as well as the frequency characteristics of the external applied force 147 

(Constantinou and Symans 1993). Typically, Kd can be obtained empirically from experimental data as 148 

discussed in Makris and Constantinou (1991) and Kasai et al. (2004a; 2004b). Referring to Figure 3a, 149 

viscous dampers in frame buildings are typically installed with supporting braces that consist of several 150 

components (e.g., steel braces, clevises, brackets and gusset plates). These components provide additional 151 

axial flexibility to the damper and affect its hysteretic behaviour under dynamic loading. The axial 152 

flexibility of a viscous damper can be further decomposed into its various components as shown 153 

schematically in Figure 3b. In this figure, Kb, Kcl, Kgus are the stiffness contributions of the steel brace, 154 

clevis-brackets and gusset plates, respectively. The gap due to the fabrication tolerance of the damper 155 

clevis is noted as Gcl in the same figure. To this end, the Maxwell model (Maxwell 1867) has been found 156 

to represent well both the axial stiffness and frequency dependency of a viscous damper under dynamic 157 

loading (Makris and Constantinou 1991; Constantinou and Symans 1993; Singh et al. 2003). In this case, 158 

a nonlinear dashpot and a linear spring are connected in series as illustrated in Figure 3c. The axial 159 

stiffness of the damper portion, Kd, and that of the various supporting components (see Figure 3b) can be 160 

represented by an equivalent axial stiffness, Ks, as follows, 161 

  (6) 162 

The force, Fd at the nonlinear dashpot and spring (Fs) are equal; therefore, the constitutive rules within a 163 

Maxwell model can be written as follows, 164 

  (7) 165 

  (8) 166 

  (9) 167 

1 1 1 2 2

s d b cl gusK K K K K
= + + +

( ) ( ) ( )d s s sF t F t K u t= =

( ) ( ) ( )m s du t u t u t= +

( ) ( ) ( )m s dt t tú ú ú= +
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in which, um, ud and us are the total, dashpot and spring displacements, respectively (see Figure 3c). The 168 

constitutive equation that describes the force and total velocity relation within a Maxwell model can be 169 

obtained if Equations (7) and (8) are substituted into Equation (9). For a nonlinear viscous damper this 170 

equation is as follows, 171 

  (10) 172 

in which, F0 is damper force at time t0. For a bilinear oil damper, the following equations hold true, 173 

  (11) 174 

Equations (10) and (11) are first order ordinary differential equations that can only be solved numerically 175 

in the case of a random vibration input loading.  176 

 177 

4. Numerical Solution for Nonlinear Viscous and Bilinear Oil Dampers 178 

This section discusses a numerical solution scheme for Equations (10) and (11). For this reason, both 179 

equations are treated as a general initial value problem that is described by Equation (12) as follows, 180 

 , (12) 181 

Oohara and Kasai (2002) implemented the classical 4th order Runge-Kutta (RK4) explicit iterative method 182 

(Kutta 1901; Butcher 1996) to solve Equation (12) for nonlinear viscous dampers. They stated that the 183 

classical RK4 method requires very small integration time steps, h, for large Ks values. For NRHA of 184 

frame buildings under earthquake excitations, the maximum value of h is limited by the overall analysis 185 

time step dta of the integration algorithm that is employed for the numerical solution of the equation of 186 

motion; while dta should be selected at most equal to the time step of the input ground motion dt 187 
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depending on the selected integration algorithm to conduct the NRHA; the ratio of dt/dta should be an 188 

integer. Typical sampling time steps of recorded ground motions vary between 0.005-0.02 sec. However, 189 

for a large axial damper stiffness, Ks a much smaller step h should be considered for the utilization of the 190 

RK4 iterative method and subsequently the overall NRHA time step dta should be further decreased. This 191 

could be computationally expensive particularly in 3-dimensional nonlinear response history analysis of 192 

frame structures.  193 

Alternatively, adaptive solution algorithms may be used. In this section, we utilize the Dormand-Prince 194 

(DP54) explicit iterative method (Dormand and Prince 1980) as the basis to solve numerically Equation 195 

(12). The solution of this equation is tested with the absolute error predicted between 4th and 5th order 196 

solutions. The 4th order solution and the associated absolute error according to the DP54 iterative method 197 

for Equation (12) are computed based on Equations (13) and (14), respectively, as follows, 198 

  (13) 199 

  (14) 200 

in which yn+1 and yn are the solutions for Equation (12) for the current and previous steps, respectively; 201 

εn+1 is the absolute error of the numerical solution in the current step. Note that the term k2 should not 202 

appear in Equations (13) and (14) as summarized in Hairer et al. (1993). From Equations (15) to (21), the 203 

DP54 explicit iterative method uses six function evaluations in order to calculate the 4th and 5th order 204 

accurate numerical solutions for Equation (14). These function evaluations are computed as follows, 205 

   (15) 206 

  (16) 207 

  (17) 208 
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  (18) 209 

  (19) 210 

  (20) 211 

  (21) 212 

Figure 4 shows a flowchart of a single solution step, i+1, within a response history analysis of a nonlinear 213 

viscous damper. In order to obtain the damper force for the current step, Fd,i+1, the required input 214 

parameters from the overall response history analysis are the integration time step dta of the employed 215 

integrator for response history analysis (i.e., different than the one employed to obtain the damper force), 216 

the velocity of the current and previous steps, úi+1, úi, respectively, and the damper force, Fd,i from the 217 

previous step, i of the response history analysis. The velocity ú represents the velocity úm of the Maxwell 218 

model. During the initial iteration to compute the damper force, the numerical integration step, h of the 219 

DP54 method is set equal to dta. If the relative error εrel is larger than a pre-defined relative tolerance 220 

(noted as “RelTol”) or if the absolute error is larger than the absolute tolerance (noted as “AbsTol”), the 221 

solution algorithm reduces its time step h by half (see Eq. (23)) using a half-step coefficient, s (see Eq. 222 

(24)) till Equation (22) is satisfied. In this case, the velocity ún+1 at the current solution sub-step, which is 223 

required from the DP54 iterative method, should be interpolated linearly between úi and úi+1 at the 224 

corresponding sub-step. Therefore, the computation of the acceleration üi+1 at the current solution step is 225 

needed. Similarly, velocity values within the function evaluations of DP54 iterative method should be 226 

linearly interpolated between ún and ún+1 at the corresponding time increments. As the sum of half-step 227 

coefficients stot becomes equal to unity, we can obtain the damper force at the current solution step, Fd,i+1. 228 

In order to limit the number of iterations Nit within the material model, we can introduce a minimum step 229 

4 1 2 3
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size hmin. This can simply be done by defining a maximum number of iterations, Nit,max, for the half step 230 

coefficient s as shown in Equation (24). 231 

  (22) 232 

  (23) 233 

  (24) 234 

In order to investigate the effectiveness of the adaptive time step DP54 iterative method on the numerical 235 

solution of the force for nonlinear viscous dampers under a sinusoidal displacement excitations, Figure 5 236 

illustrates the force-displacement relation of nonlinear viscous dampers with varying velocity exponents, 237 

α (α varies from 0.01 to 2) and normalized damper axial stiffnesses, ks (i.e., ks varies from 0.1 to 1000). 238 

The sinusoidal displacement that represents the external loading is um0sin(ωt) in which um0 and ω are the 239 

peak displacement amplitude and the angular frequency (ω = 2πf) of the external loading, respectively. In 240 

this case, umo = 1 and f = 1 Hz. Referring to Figs. 5 to 8, a 1.0Hz frequency is selected just for the sake of 241 

comparisons between computed solutions and experimental results. This frequency is within a typical 242 

frequency range of harmonic input excitations that are used for experimental testing of supplemental 243 

damping devices (Kasai et al. 2004b). The authors have validated the computed solutions with other 244 

meaningful frequency ranges that reflect those typically seen in seismic excitations relative to the 245 

employed supplemental damping device characteristics. The overall time step dta of the external loading 246 

was selected to be dta = 0.01 sec. The nonlinear viscous damper was designed such that if ks is neglected 247 

then the peak damper force, Fd0 becomes unity. Thus, Fd0 can be computed from Equation (25) (i.e., pure 248 

viscous dashpot) and therefore, ud0 = um0. In this case, the normalized damper stiffness ks can be obtained 249 

from Equation (26). A relative tolerance RelTol = 10-6 and an absolute tolerance AbsTol = 10-10 are 250 

selected herein. The selected threshold for the relative and absolute tolerances is deemed to be small 251 

enough for the reliable computation of the numerical solutions of Equations (10) and (11). The selected 252 
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values are consistent with prior work on the numerical solution of initial value problems (Griffiths and 253 

Higham 2010). More strict convergence criteria could be possibly considered; although the sufficiency of 254 

the numerical solution would marginally change, its efficiency would be less given the higher 255 

computational cost.  256 

  (25) 257 

  (26) 258 

The number of iterations, Nit required for the half step coefficient are reported for each case in Figure 5. 259 

From this figure, when ks increases the required number of iterations in order to achieve convergence 260 

based on the pre-defined tolerances also increases. From the same figure, the damper exponent α variation 261 

has a relatively small influence on the required number of iterations for numerical convergence. The only 262 

exception is for α = 2, in which a relatively large number of iterations is required to satisfy the pre-263 

defined convergence tolerances (see Figure 5). This is due to the fact that for α = 2 the absolute tolerance 264 

becomes the critical condition to minimize the error in the damper force prediction, while for all other α 265 

values the relative tolerance limits Nit. From Figure 5, it is evident that ks strongly affects the peak damper 266 

forces as well as the damper hysteretic shape. These issues are further investigated later on as part of this 267 

paper. 268 

In order to illustrate the accuracy of the adaptive integration algorithm for obtaining the hysteretic 269 

response of nonlinear viscous dampers compared to traditional iterative numerical methods that have been 270 

previously employed, Figure 6 illustrates the force-displacement relations for the same nonlinear viscous 271 

dampers that were analyzed in Figure 5 when the classical 4th order RK4 iterative method is employed. 272 

Referring to Figure 6, it is evident that when the RK4 iterative method is employed and for dta = 0.01sec 273 

it is not possible to obtain the numerical solution of Equation (10) if ks > 10. Notably, numerical 274 
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convergence is achieved for only three α values (i.e., α = 0.5, 1.0 and 2.0). In order to obtain a stable 275 

numerical solution even in these cases an integration step dta = 0.00005 sec must be selected. 276 

The adaptive DP54 iterative method can be also implemented for the numerical solution of bilinear oil 277 

dampers. In this case, Equation (11) is solved numerically. Note that when p = 0 (i.e., constant damper 278 

force after relief), F’d(t) in Equation (11) becomes infinite; therefore the damper force, Fd,i+1 in this case 279 

should be directly equal to Fdr. Alternatively, we can compute the damper force Fd,i+1 through a finite 280 

difference approximation of Eq. (11) as follows, 281 

  (27) 282 

  (28) 283 

  (29) 284 

After substituting Equations (27) to (29) into Equation (11), Equation (30) is obtained. First, Fd,i+1 shall be 285 

computed through Equation (30) by assuming that the oil damper is linear (i.e., |Fd,i+1 | ≤ Fdr). If the 286 

computed damper force |Fd,i+1 | > Fdr, then Fd,i+1  shall be recomputed using the sign value, sgn(Fd,i+1) of 287 

the initially computed linear oil damper force prediction. 288 

 

 (30) 289 

Kasai et al. (2004b) recommended that in order to compute the bilinear oil damper force with a high 290 

precision, smaller integration steps should be employed. In order to be compatible with the adaptive DP54 291 

iterative method, the error of the numerical solution in this case is defined by subtracting the solution 292 
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are obtained per iteration, one computed with a time step h1 and another one with h2 as shown in Equation 294 

(31). Similar to the adaptive DP54 iterative method, for each iteration the integration time step is reduced 295 

by half, until the absolute error or the absolute relative error becomes smaller than the predefined 296 

tolerances, based on Equation (22).  297 

  (31) 298 

In order to compare the adaptive DP54 iterative method with the proposed adaptive numerical integration 299 

method (NI) discussed herein for the case of bilinear oil dampers, the force-displacement relations for oil 300 

dampers under a sinusoidal external loading with umo = 1 and f = 1 Hz are computed in Figures 7 and 8. 301 

The bilinear oil dampers are designed such that their peak force, Fd0, becomes unity when the damper 302 

axial flexibility is neglected. For bilinear oil dampers, Fd0 can be computed based on Equation (32). Two 303 

cases are analyzed. In the first case, the peak damper velocity ratios are fixed (i.e., µm = 2) and p varies 304 

from 0 to 1.0 (see Figure 7). In the second case, the p value is fixed (i.e., p = 0.05) and µm varies from 1 to 305 

20 (see Figure 8). For both cases, the normalized damper axial stiffness, ks varies from 0.1 to 1000. The 306 

relative and absolute tolerances are set equal to RelTol=10-6 and AbsTol=10-10, respectively. 307 

  (32) 308 

  (33) 309 

Figure 7 illustrates the computed hysteretic behaviour of bilinear oil dampers with varying p and ks values 310 

based on the adaptive DP54 and finite difference approximation methods. In the same figure we have 311 

superimposed the number of iterations, Nit required for the half step coefficient based on both iterative 312 

methods. From Figure 7 it is concluded that for large ks values (i.e., ks ³ 100) a small integration time step 313 

is required when the adaptive DP54 method is employed; however, this is not the case when the 314 

alternative proposed integration scheme is employed. Therefore, for oil dampers that utilize ks ³ 100 the 315 
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alternative numerical integration method is able to provide the same solution accuracy with the adaptive 316 

DP54 iterative method with a smaller number of iterations. For flexible bilinear oil dampers (i.e., 317 

ks < 100) the adaptive DP54 iterative method typically satisfies the pre-defined tolerance criteria with just 318 

a single iteration (see Figure 7). Similar conclusions hold true when p is fixed (i.e., p = 0.05) and the peak 319 

damper velocity ratio, µm varies (see Figure 8). 320 

 321 

5. Sensitivity of Viscous Damper Behaviour to the Damper Axial Stiffness 322 

This section investigates the effect of the axial stiffness, Ks due to viscoelasticity of a viscous damper on 323 

its hysteretic behaviour and dynamic stiffnesses based on the proposed adaptive numerical method 324 

discussed above. In particular, a sensitivity study is conducted in order to quantify the effect of Ks on the 325 

reduction factor of the damper energy dissipation, eK; the damper peak force, Fdo; the damper storage 326 

stiffness, Km,st; and the damper loss stiffness, Km,l. A harmonic vibration is assumed for this purpose. A 327 

sinusoidal displacement that represents the external loading is applied with umo = 1 and f = 1 Hz. The 328 

evaluation is conducted in a normalized manner. In particular, similarly with the normalized stiffness ks 329 

(see Equation (26)), the normalized storage and loss stiffnesses km,st and km,l, respectively, can be obtained 330 

according to Equation (26). Figure 9 illustrates the graphical definition of these phenomena as well as the 331 

dynamic stiffnesses (see Figure 9c). The reduction factor of the damper energy dissipation, eK is obtained 332 

by first computing the area under the corresponding damper hysteresis numerically and then dividing it 333 

into the energy produced by the pure viscous model under the same loading conditions. The energy 334 

dissipated by nonlinear and bilinear viscous models can be directly computed according to Constantinou 335 

and Symans (1993) and Kasai and Nishimura (2004), respectively. The normalized peak damper force fm 336 

is obtained by dividing the peak damper force into the peak force of a pure viscous model, which can be 337 

calculated, based on Equations (25) and (32) for nonlinear and bilinear viscous models, respectively. 338 

Nonlinear viscous dampers are employed with the utilization of the Maxwell model in order to facilitate 339 
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the discussion in the next paragraph. The observations below are general and can be applied to bilinear oil 340 

dampers not discussed herein due to brevity. 341 

Figure 10 illustrates the variation of eK, fm, km,st and km,l (values are normalized as discussed earlier and 342 

range between 0 to 1) with respect to the nonlinear viscous damper normalized stiffness ks for a wide 343 

range of α values. From Figure 10, the following observations hold true, 344 

 The change in eK is relatively large for small α values (see Figure 10a). This is attributed to the 345 

fact that the smaller the exponent α, the more stable the damper force becomes with the increase 346 

of velocity (see Figure 1a). Therefore, a decrease in external total displacement (i.e. ks) would 347 

mainly affect the dashpot displacement and not that of the spring because the spring force 348 

remains relatively constant and the spring displacement is proportional to its force. For instance, 349 

when α = 0, for ks < 1 the damper hysteretic energy diminishes. For α = 0 (i.e., friction dampers) 350 

and α = 1 (i.e., linear dampers) the reduction factor of the nonlinear viscous damper can be 351 

directly computed based on the following equation (Constantinou et al. 1998; Kasai et al. 2003), 352 

  (34) 353 

 From Figure 10b a decrease in ks has a larger impact on the normalized peak forces (fm) of a 354 

damper with large exponent α (e.g., α = 1). Similarly, this is attributed to the fact that the damper 355 

force is relatively sensitive to the velocity variation once α becomes large. Therefore, a reduction 356 

in the dashpot displacement due to the axial flexibility causes relatively large force reductions 357 

when α = 1. Note that specifically for friction and linear dampers the peak damper forces can be 358 

computed as follows, 359 

  (35) 360 
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 The normalized storage stiffness km,st is large for small α values; km,st becomes maximum when 361 

ks = 1 (see Figure 10c). This implies that although the inclination angle of the damper hysteresis 362 

is small for ks < 1 (see Figure 5), the km,st is relatively small due to fact that the normalized peak 363 

forces, fm significantly decrease for ks < 1 as shown in Figure 10b. For ks  > 1 the km,st reduces due 364 

to the changing shape of the damper hysteresis. For large ks values the damper hysteresis 365 

becomes similar to that of a pure viscous model, which has no storage stiffness. For friction and 366 

linear dampers the normalized storage stiffness can be computed as follows, 367 

  (36) 368 

 From Figure 10d the normalized loss stiffness, km,l increases with the increase of ks. Under the 369 

same loading conditions, a pure viscous model would have a normalized loss stiffness km,l = 1, 370 

because the maximum force occurs at zero displacement; thus the larger the ks, the larger the km,l 371 

becomes. Note that Equation (37) can be employed to compute the normalized loss stiffness for 372 

friction and linear dampers,  373 

  (37) 374 

Figure 10 can facilitate the design and modeling of the damper stiffness. For instance, Figure 10a suggests 375 

that if the damper has a normalized stiffness ks >100, it is practically a pure viscous model, while for 376 

ks = 10 the energy dissipation is about 90% of that of a viscous model for a low velocity exponent. If ks < 377 

10, the loss in energy dissipation increases dramatically. When α ≈ 0 the damper hysteretic energy 378 

diminishes for ks <1. These graphs can be utilized to accelerate the preliminary evaluation procedures 379 

within a building model. If the damper stiffness properties are unknown, Figure 10 can be used to easily 380 

assign a damper stiffness, that is computationally efficient (not too stiff) and at the same time reasonably 381 

conservative (i.e. not too flexible) for the evaluation of a building’s engineering demand parameters. This 382 
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should aid eliminating analysis iterations with unnecessarily too stiff or too flexible damper models. Note 383 

that, an estimation of the building’s fundamental frequency and peak damper displacement (um0) is 384 

sufficient to compute the required damper stiffness that satisfies the selected ks (see Eq. 26). Similar 385 

expressions can be derived for bilinear oil dampers. 386 

 387 

6. Experimental Validation 388 

This section discusses the validation of the proposed adaptive integration techniques for the numerical 389 

models of nonlinear viscous and bilinear oil dampers. The validation is conducted with damper 390 

component experiments conducted in prior studies. System-level experimental data from a full-scale 391 

shake table test of a 5-story steel frame building with nonlinear viscous and bilinear oil dampers are also 392 

utilized. 393 

 394 

 Component Level Validation 395 

Component level experiments for both nonlinear viscous and oil dampers are adopted from earlier 396 

experimental studies (Kasai et al. 2004b; Ooki et al. 2009; Hikino 2012). The nonlinear viscous damper 397 

that was tested had a viscous coefficient, Cd = 196 KN/(mm/s)0.38, axial stiffness, Kd = 438 KN/mm and a 398 

damper exponent, α = 0.38. The nonlinear viscous damper was subjected to sinusoidal loading with 399 

increasing displacement amplitudes and loading frequencies of 0.5Hz and 2Hz, respectively. Figure 11 400 

illustrates the measured hysteretic response of the nonlinear viscous damper in terms of its force-401 

displacement relation for the two loading frequencies of interest. In the same figure, we have 402 

superimposed the computed hysteretic response of the nonlinear viscous damper based on a Maxwell 403 

model. For the numerical solution of the constitutive equation of the Maxwell model with the proposed 404 

adaptive numerical technique an integration step of 0.01sec is adopted. The adaptive DP54 method 405 

required 3 iterations (i.e. h = 0.00125 sec) to satisfy the pre-defined convergence criteria (i.e., 10-6 and 10-406 
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10 for the relative and absolute tolerances, respectively). From Figure 11, the average absolute relative 407 

error of the predicted positive and negative peak damper forces per loading cycle versus the measured 408 

ones is 9% and 6% for 0.5 and 2.0Hz, respectively. This suggests that the proposed numerical model for 409 

nonlinear viscous dampers represents well the experimental data regardless of the employed loading 410 

frequency. 411 

Similarly, for bilinear oil dampers the experimental data from Kasai et al. (2004b) is utilized. In this case, 412 

the bilinear oil damper that was tested dynamically at full-scale had an initial damper coefficient, 413 

Cd = 24.5 KN/(mm/s), an axial stiffness, Kd = 392.3 KN/mm, a relief velocity, údr = 32 mm/s, and a post-414 

relief coefficient ratio, p = 0.068 (Takahashi and Sekiguchi 2001). The bilinear oil damper was subjected 415 

to sinusoidal loading with increasing displacement amplitude of 1, 5 and 15 mm and loading frequencies 416 

of 0.25 Hz and 1 Hz. Figure 12 illustrates the measured hysteretic response of the bilinear oil damper for 417 

the two loading frequencies of interest. From Figure 3.12a, at 0.25 Hz the relief valve of the oil damper 418 

was not activated; therefore, the damper response was linear. However, at 1Hz and during the last loading 419 

cycle (i.e., displacement amplitude of 15 mm) the damper relief velocity was exceeded. Thus, a bilinear 420 

force-velocity relation was measured as shown in Figure 12b. In the same figure we have superimposed 421 

the computed hysteretic response of the same damper. The integration step of the proposed adaptive 422 

numerical technique that was employed was 0.01 sec. The adaptive DP54 method required 5 iterations 423 

(i.e. h = 0.0003125 sec) to satisfy the pre-defined convergence criteria (i.e., 10-6 and 10-10 for the relative 424 

and absolute tolerances, respectively). Referring to Figure 12, the computed hysteretic response of the oil 425 

damper is nearly identical with the one obtained from the experimental data regardless of the loading 426 

frequency. This is also indicated from the average absolute error of positive and negative peak damper 427 

forces per loading cycle that was 5% and 3% for 0.25 Hz and 1 Hz, respectively. 428 

 429 

 430 
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 Validation with System-Level Experimental Data 431 

This section discusses the implementation of the proposed adaptive integration techniques for simulating 432 

the hysteretic response of nonlinear viscous and bilinear oil dampers based on the utilization of full-scale 433 

shake table experiments of a 5-story steel frame building that was tested at the world’s largest shake table 434 

at E-Defense in Japan (Ohtani et al. 2004; Kasai et al. 2008; Kasai et al. 2010; Hikino 2012; Kasai and 435 

Matsuda 2014). The test structure was equipped various types of dampers including nonlinear viscous and 436 

bilinear oil dampers (Ooki et al. 2009; Kasai et al. 2010; Hikino 2012). The employed numerical models 437 

including the adaptive integration techniques (noted as “ViscousDamper” and “BilinearOilDamper”) 438 

discussed in this paper have been implemented in an open-source finite element simulation platform for 439 

nonlinear response history analysis of 2- and 3-Dimensional frame buildings under earthquake excitations 440 

[so called: Open System for Earthquake Engineering Simulation (OpenSees), (McKenna 1997)]. These 441 

models including their documentation are publically available (BilinearOilDamper 2015; ViscousDamper 442 

2015).  443 

Figure 13a shows the test structure after the installation on the E-Defense shake table. The test structure 444 

plan view was 10x12 m as (see Figure 13b). Its total height was 15.85 m and its overall weight was 445 

4730 KN. Detailed information regarding the test structure is reported extensively elsewhere (Ooki et al. 446 

2009; Kasai et al. 2010; Kasai and Matsuda 2014). Due to brevity, the reader is referred to the 447 

aforementioned studies. 448 

Twelve dampers were installed in the test structure in total (four in the Y-loading direction; eight in the 449 

X-loading direction) as shown in Figures 13c and 13d. Table 1 provides the various properties of the 450 

nonlinear viscous and bilinear oil dampers based on damper component tests prior to the shake table 451 

experiments. In summary, Table 1 includes the damping coefficients, Cd, the stiffness properties (i.e., 452 

damper portion, Kd and total stiffness Ks) of the corresponding dampers installed in the test structure. The 453 

velocity exponent, α, of the nonlinear viscous dampers was found to be, α = 0.38. The relief velocity, údr 454 
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and post relief damping coefficient ratio, p of the bilinear oil dampers were found to be, údr = 64 mm/sec 455 

and p = 0.068, respectively (Kasai et al. (2008); Ooki et al. (2009); Hikino 2012). 456 

The test structure was subjected to the three components of the JR Takatori record from the 1995 Kobe 457 

earthquake. These components were scaled incrementally at 50%, and 100% of the unscaled intensity of 458 

the same ground motion. Further details regarding the testing program can be found in Kasai and Matsuda 459 

(2014).  460 

A 3-Dimensional (3D) model of the test structure was developed in the OpenSees simulation platform. 461 

The steel beams and columns were modeled with a single force-based distributed plasticity beam-column 462 

element with five integration points along their length. In order to trace flexural yielding within the cross 463 

sections a combined isotropic/kinematic material model (Menegotto and Pinto 1973) was assigned to the 464 

fiber-based cross sections that were assigned to the force-based nonlinear beam-column elements. The 465 

fiber discretization of each cross section consisted of 5x3 fiber elements along the width and thickness of 466 

flanges and webs, respectively. The measured material properties reported by (Kasai and Matsuda 2014) 467 

were explicitly assigned to the various steel beam and columns of the test structure. The reinforced 468 

concrete slab on top of the steel beams was modeled with a concrete material (Yassin 1994), which 469 

accounts for the effect of linear tension softening of the concrete. The effective width of the concrete slab 470 

was calculated based on Section I3.1a of ANSI/AISC 360-10 (AISC 2010). Rigid diaphragms were 471 

assigned at each floor level. The P-Delta transformation was assigned to the steel members of the test 472 

structure to simulate the second order effects. The viscous damping forces of the test structure were 473 

simulated with the Rayleigh model. In particular, 2% damping ratio was assigned to the first and third 474 

modes of the 3-D model. Two seismic intensities (50% and 100%) were considered for the evaluation 475 

presented herein. Nonlinear response history analysis with direct integration of the equations of motion 476 

was conducted. The Newmark’s average acceleration method (Newmark 1959) was used for this purpose. 477 
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The integration time step was taken equal to dt=0.01 sec. A detailed summary of the developed numerical 478 

model of the test structure can be found in Lignos (2012) and (Akcelyan et al. 2016). 479 

Figure 14 shows a comparison of the measured (noted as Test-50 and Test-100) and computed absolute 480 

peak values of story drift ratios, story shear forces and floor absolute accelerations along the height of the 481 

test structure with nonlinear viscous dampers under 50% and 100% of the unscaled Takatori record in 482 

both loading directions (i.e., directions X and Y). In order to illustrate the efficiency of the adaptive 483 

integration techniques for the numerical solution of viscous dampers including their axial flexibility, two 484 

types of nonlinear response history analyses are carried out. In the first one (noted as NRHA1) the axial 485 

flexibility of the dampers is neglected. In the second one (noted as NRHA2) the axial flexibility of the 486 

damper is considered. Note that the average absolute errors of global peak engineering demand 487 

parameters (EDPs) shown in Figure 14 increase from 7% to 27% when the axial flexibility of the damper 488 

is disregarded. In the Y-loading direction, the average absolute errors along the height of the test structure 489 

are much larger than those in the X-loading direction. In particular, the predicted peak EDPs are 490 

underestimated by more than 45% in average. Referring to Figure 15, nearly identical findings hold true 491 

for the test structure with oil dampers. These simple comparisons indicate the importance of rigorous 492 

mathematical models, such as the nonlinear Maxwell model, to accurately represent the hysteretic 493 

response of viscous dampers including their axial flexibility. In this case, the advantage of the proposed 494 

adaptive numerical method techniques to overcome typical convergence problems during nonlinear 495 

response history analyses of large-scale finite element models with fairly large integration steps is also 496 

pronounced. 497 

Figure 16 illustrates the measured hysteretic response of the damper portion (Kd and Cd) of the nonlinear 498 

viscous and bilinear oil dampers installed in the first story of the test structure in X- and Y- loading 499 

directions, respectively, for the 100% seismic intensity of the JR Takatori record. In the same figure we 500 

have superimposed the simulated hysteretic response of the same components based on NRHA of the 3D 501 
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model representation of the test structure with nonlinear viscous dampers and bilinear oil dampers based 502 

on the proposed adaptive integration techniques discussed in this paper. From Figure 16 it is evident that 503 

in both cases the proposed numerical models are rational and are able to capture fairly well both the peak 504 

damper forces as well as the damper displacement amplitudes. 505 

The efficiency of the presented algorithms in computing the numerical solutions of the damper devices 506 

presented herein has been also evaluated in cases that steel frame buildings retrofitted with nonlinear 507 

viscous dampers exhibit inelastic behavior during severe ground motion shaking (Akcelyan 2017, 508 

Akcelyan and Lignos 2018, Wang and Mahin, 2017). It was found in all cases that the proposed 509 

numerical schemes have excellent convergence characteristics. 510 

 511 

7. Summary and Conclusions 512 

This paper discusses the implementation of advanced adaptive numerical integration algorithms for the 513 

numerical solution of the constitutive equations that describe the force-displacement relation of viscous 514 

dampers under random vibrations. The integration schemes are implemented in an open source finite 515 

element analysis program in order to calculate fourth- and fifth-order accurate numerical solutions of a 516 

damper force under dynamic loading when the axial flexibility of the respective viscous damper is 517 

considered in the mathematical model representation of the damper. Through a sensitivity study, the 518 

efficiency of the adaptive integration algorithm over traditional integration schemes for the numerical 519 

solution of initial value problems is demonstrated. In particular, it is shown that even in cases that involve 520 

nonlinear viscous dampers with large axial stiffness and small velocity exponents a high-accuracy 521 

numerical solution of the force-displacement relations of the respective damper is achieved with relatively 522 

large integration steps and only few sub-step iterations. In the case of bilinear oil dampers with large axial 523 

stiffness an alternative adaptive numerical integration algorithm is also proposed. This integration scheme 524 

is able to provide same accuracy solutions with the adaptive Dormand-Prince iterative method but with 525 
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much smaller number of sub-step iterations. The employed integration schemes allow for the 526 

investigation of the sensitivity of the viscous damper behaviour to its axial stiffness. The adaptive 527 

integration schemes for the numerical solution of the nonlinear Maxwell model are validated through a 528 

series of comparisons with damper component tests as well as system-level experimental data from full-529 

scale shake table tests of a 5-story steel frame building with nonlinear viscous and bilinear oil dampers. 530 

The validation studies underscore the efficiency of the proposed integration schemes in predicting the 531 

global and local engineering demand parameters of frame buildings equipped with supplemental damping 532 

devices at a relatively low computational cost.  533 
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Table 1: Properties of nonlinear viscous dampers and oil dampers (Hikino, 2012). 722 

(a) Estimated stiffness values (Kd) for damper portion due to lack of data of dampers at third and fourth story (Yu et 723 

al. 2013). 724 

 725 

 726 

 727 

 728 

 729 

  
Nonlinear Viscous Damper 

(α = 0.38) 

Oil Damper  

(údr  = 64 mm/s, p = 0.068) 

Frame Story 
Cd 

[KN/(mm/s)0.38] 

Kd 

[KN/mm] 

Ks
  

[KN/mm] 

Cd 

[KN/(mm/s)] 

Kd 

[KN/mm] 

Ks
  

 [KN/mm] 

X 

direction 

(2 bays) 

4 49 119(a) 60 3.13 88 57 

3 49 119(a) 60 6.25 137 85 

2 98 193 104 6.25 137 85 

1 98 193 101 12.5 274 146 

Y 

direction 

(1 bay) 

4 98 193 104 6.25 137 85 

3 98 193 104 12.5 274 154 

2 196 438 179 12.5 274 154 

1 196 438 171 18.75 441 242 
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  730 

(a) Force - velocity relation (b) Force - displacement relation 

 731 

Figure 1: Hysteretic behaviour of nonlinear viscous dampers with various velocity exponents under 732 

sinusoidal motion 733 
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 735 

(a) Force - velocity relation (b) Force - displacement relation 

 736 

Figure 2: Hysteretic behaviour of bilinear oil dampers under sinusoidal motion with increasing loading 737 

amplitudes 738 
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 740 
Figure 3: Schematic representation of nonlinear viscous damper including its mathematical model 741 
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 743 

Figure 4: Flow chart of the numerical solution based on the adaptive DP54 explicit iterative method for 744 

nonlinear viscous dampers 745 
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 747 

 748 

Figure 5: Force-displacement relations for nonlinear viscous dampers under sinusoidal displacement 749 

loading based on the adaptive DP54 iterative method 750 
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 752 

 753 

Figure 6: Force-displacement relations for nonlinear viscous dampers under sinusoidal displacement 754 

based on the classical 4th order Runge-Kutta method 755 

  756 



 

   36 

 

 757 

 758 

Figure 7: Comparison of the force-displacement relation predictions for bilinear oil dampers under 759 

sinusoidal displacement based on the adaptive DP54 iterative method and the alternative adaptive 760 

numerical integration algorithm (NI) for µm=2  761 
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 762 

 763 

Figure 8: Force-displacement relations for bilinear oil dampers under sinusoidal displacement based on 764 

the adaptive DP54 iterative method and the alternative adaptive numerical integration algorithm (NI) for 765 

p=0.05 766 
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 768 
   (a) α = 0               (b) α = 0.30         (c) α = 1.0 

 769 

Figure 9: Variation of nonlinear viscous dampers force-displacement relations with different parameters 770 

under sinusoidal displacement and graphical definition of dynamic stiffness 771 
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 774 

Figure 10: Effect of normalized stiffness on various properties of nonlinear viscous dampers with 775 

different velocity exponents 776 
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 778 

(a) 0.5 Hz (b) 2 Hz 

 779 

Figure 11: Comparison of the simulated and experimental hysteretic response of nonlinear viscous 780 

dampers under dynamic sinusoidal loading (experimental data adopted from Kasai et al. 2004b) 781 
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 783 

(a) 0.25 Hz (b) 1 Hz 

 784 

Figure 12: Comparison of the simulated and experimental hysteretic response of bilinear oil dampers 785 

under dynamic sinusoidal loading (experimental data adopted from Kasai et al. (2004b) 786 

 787 
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 789 
Figure 13: 5-story test-structure tested at E-Defense; (a) building after installation on the shake table; (b) 790 

plan view (c) elevation view in X- loading direction; (d) elevation view in Y-loading direction (images 791 

adopted from Akcelyan et al. (2016), dimensions in mm) 792 



 

   43 

 

 793 

  794 

Figure 14: Comparison of computed and measured peak engineering demand parameters of the test 795 

structure with nonlinear viscous dampers (50% and 100% JR Takatori record) 796 
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 798 

  799 

Figure 15: Comparison of computed and measured peak engineering demand parameters of the test 800 

structure with bilinear oil dampers (50% and 100% JR Takatori record) 801 
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  803 

Figure 16: Comparison between the simulated and measured hysteretic response of nonlinear viscous and 804 

bilinear oil dampers installed in the first story of the test structure (100% JR Takatori record) 805 

 806 


