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Abstract
Recent advances in statistical learning and convex optimization have inspired many success-

ful practices. Standard theories assume smoothness—bounded gradient, Hessian, etc.—and

strong convexity of the loss function. Unfortunately, such conditions may not hold in im-

portant real-world applications, and sometimes, to fulfill the conditions incurs unnecessary

performance degradation. Below are three examples.

1. The standard theory for variable selection via `1-penalization only considers the linear

regression model, as the corresponding quadratic loss function has a constant Hessian

and allows for exact second-order Taylor series expansion. In practice, however, non-

linear regression models are often chosen to match data characteristics.

2. The standard theory for convex optimization considers almost exclusively smooth func-

tions. Important applications such as portfolio selection and quantum state estimation,

however, correspond to loss functions that violate the smoothness assumption; existing

convergence guarantees for optimization algorithms hence do not apply.

3. The standard theory for compressive magnetic resonance imaging (MRI) guarantees the

restricted isometry property (RIP)—a smoothness and strong convexity condition on the

quadratic loss restricted on the set of sparse vectors—via random uniform sampling. The

random uniform sampling strategy, however, yields unsatisfactory signal reconstruction

performance empirically, in comparison to heuristic sampling approaches.

In this thesis, we provide rigorous solutions to the three examples above and other related

problems. For the first two problems above, our key idea is to instead consider weaker

localized versions of the smoothness condition. For the third, our solution is to propose a new

theoretical framework for compressive MRI: We pose compressive MRI as a statistical learning

problem, and solve it by empirical risk minimization. Interestingly, the RIP is not required in

this framework.

Keywords: Smoothness, strong convexity, statistical learning, convex optimization, variable

selection, lasso, quantum state estimation, mirror descent, compressive MRI
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Résumé
Les récents progrès en apprentissage statistique et en optimisation convexe ont inspiré de

nombreux pratiques avec succès. Les théories standards suppose une certaine régularité—

gradient borné, Hessienne bornée, etc.—et la forte convexité de la fonction de coût. Malheu-

reusement, ces conditions ne sont parfois pas satisfaites dans d’importantes applications

réelles, et parfois, remplir ces conditions implique une perte de performance non nécessaire.

Ci-dessous nous présentons trois exemples :

1. La théorie standard pour la selection de variables via une pénalisation l1 ne considère

que le modèle de régression linéaire, car la fonction de coût quadratique associée

possède un matrice Hessienne constante, ce qui permet une expansion de Taylor exacte

au second ordre. En pratique, cependant, les modèles de régression non-linéaires sont

souvent choisis pour correspondre aux charactéristiques des données.

2. La théorie standard d’optimisation convexe ne considère presque exclusivement que

des fonctions régulières. Cependant, d’importantes applications telles que la sélection

de portfolio ou l’estimation d’état quantique, correspondent à des fonctions de coût

qui violent cette supposition de régularité ; les garanties de convergences existantes des

algorithmes d’optimisation ne s’appliquent donc pas à ces cas.

3. La théorie standard de l’imagerie par résonance magnétique (IRM) compressive garantit

la propriété d’isométrie restreinte (RIP)—une condition de régularité et de convexité

forte sur le coût quadratique restreint sur l’ensemble de vecteurs parcimonieux— par

échantillonnage uniforme aléatoire. Cependant, il a été observé que la stratégie d’échan-

tillonnage aléatoire uniforme, cependant produit une performance de récupération

d’image insatisfaisante, en comparaison avec des approches d’échantillonnage heuris-

tiques.

Dans cette thèse, nous fournissons des solutions rigoureuses aux trois exemples ci-dessus

et d’autres problèmes connexes. Pour les deux premiers problèmes ci-dessus, notre idée clé

est de considérer plutôt des versions localisées plus faibles de la condition de lissage. Pour le

troisième, notre solution est de proposer un nouveau cadre théorique pour l’IRM compres-

sive : Nous posons l’IRM compressive comme un problème d’apprentissage statistique, et le

résolvons par minimisation du risque empirique. Fait intéressant, le RIP n’est pas requis dans

ce cadre.
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1 Introduction

The interplay between statistical learning and convex optimization has been critical in devel-

oping efficient learning algorithms. For example, a standard approach to binary classification

is empirical risk minimization (ERM) with the 0−1 loss, which outputs 1 if the classification

fails, and 0 otherwise. The corresponding statistical performance is quite well-studied—the

expected loss is inversely proportional to the square root of the sample size and cannot be

improved (see, e.g., [163, Chapter 6]). To compute the learned classification rule, however,

requires solving a non-convex optimization problem, NP-hard in general [94]. Therefore, the

use of convex surrogate functions to approximate the 0−1 loss was considered, resulting

in famous algorithms [190, 14]: logistic regression, adaptive boosting (AdaBoost), and the

support vector machine.

Another example is compressive sensing. Suppose that we would like to estimate a vector

β∗ ∈ Rp given a matrix X ∈ Rn×p and y := Xβ∗ ∈ Rn , where n < p. The linear equation is

under-determined; a solution is to introduce the sparsity assumption: The vector β∗ has s

exactly zero entries, and s is significantly smaller than the dimension p. A natural approach

is to find the sparsest vector β̃ ∈ Rp that satisfies y = X β̃. This approach actually succeeds

(i.e., β̃=β holds) if n =Ω(s), under technical conditions; however, computing β̃ is NP-hard

in general [133]. Convexifying the formulation for β̃, we arrive at the basis pursuit estimator,

which outputs the vector β̂BP ∈ Rp with the minimal `1-norm satisfying y = X β̂BP. Given a

technical condition called the restricted isometry property (RIP), the basis pursuit estimator

succeeds if n = Ω̃(s) ignoring logarithmic dependence on p [45, 89].

This thesis presents results in statistical learning, convex optimization, and their interplay, for

machine learning problems without smoothness and strong convexity.

1.1 Importance of smoothness and strong convexity

In both fields of statistical learning and convex optimization, smoothness and strong convexity

play important roles. Before continuing discussion, let us recall the definitions.

1



Chapter 1. Introduction

Definition 1.1 (Smoothness). A real-valued function f is said to be k-smooth on a set X for a

natural number k, if its (k −1)-th order derivative is Lipschitz on X . The 0-th order derivative

is defined as the function itself.

Definition 1.2 (Strong convexity). A real-valued function f is said to be strongly convex on a

set X , if there is some µ> 0, such that

(1−α) f (x)+α f (y) ≥ f ((1−α)x+αy)+α(1−α)
µ

2
‖y−x‖2

2 , ∀x, y ∈X and α ∈ [0,1] . (1.1)

Notice that the terminology “smoothness” is defined differently in statistical learning and

convex optimization. The definition in this thesis is closer to notion of a Hölder class in

non-parametric statistics (see, e.g., [175]); we choose this definition simply for convenience.

The smoothness condition in convex optimization—the gradient being Lipschitz continuous—

corresponds to 2-smoothness here.

The importance of smoothness and strong convexity is well-known in convex optimization, as

is illustrated by the following classical results.

• Convergence of the mirror descent can be established given 1-smoothness of the loss

function [135, 19]1.

• Convergence of the gradient descent can be established given 2-smoothness of the loss

function [136].

• Faster convergence rates can be guaranteed for the two cases above, if in addition strong

convexity holds [136, 90, 100].

Notice that without smoothness, even for a convex function f , it is NP-hard to decide whether

there exists some point y such that f (y) < f (x) given a point x [137]. Existing minimax results

show that without strong convexity, the convergence rates of mirror descent and gradient

descent are provably slower [135, 136].

Arguably, the importance of smoothness and strong convexity is less obvious in statistical

learning, as the formulations are typically more complicated and sometimes hidden in the

technical derivations. Below are three examples.

• The RIP for compressive sensing is indeed a 2-smoothness and strong convexity condi-

tion for the loss function

f (β) := 1

2
‖y − Aβ‖2

2 , ∀β ∈Rd , (1.2)

1To be precise, the convergence results were proved assuming boundedness of the subgradients, but the
non-smooth case is not the focus of this thesis.
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restricted on the set of vectors whose `0-norms are smaller than a given integer, where

y ∈Rn and A ∈Rn×p are given. We provide a formal proof in Chapter 7.

• In general, for possibly non-linear high-dimensional (n ¿ p) regression problems,

estimation consistency can be established given the restricted strong convexity (RSC)

condition [25, 50, 177, 134]. The condition requires strong convexity of the loss function

(1.2), restricted on a cone or cone-like set.

• The irrepresentability condition is a sufficient condition for the `1-penalized least

squares estimator to achieve successful variable selection—identifying the positions of

non-zero elements of the true weight vector—in the linear regression model [185, 191].

As we will see in Chapter 2, the sufficiency relies on the fact that the second-order

derivative of the empirical risk given in (1.2) is a constant—a strong 3-smoothness

condition.

The requirement for strong convexity is easier to understand: If the empirical risk function is a

constant, the empirical risk minimizer can be arbitrarily far from the true weight vector. Strong

convexity prevents such an undesirable situation, though this condition may be weakened.

The necessity of smoothness is subtle, but oftentimes it enables us to derive more satisfactory

results. For example, without smoothness, a convex optimization problem can still be solved

by proximal point-type methods [65, 157]; however, in each iteration, these methods require

solving an optimization sub-problem that is not essentially easier than the original one,

rendering their applications limited in practice.

1.2 Challenges due to lack of smoothness and/or strong convexity

Although smoothness and strong convexity play important roles in statistical learning and

convex optimization, logically speaking, they may not be necessary. Indeed, requiring or

forcing them creates huge gaps between practice and theory. This thesis is mainly devoted to

addressing the gaps in the following applications.

1.2.1 Variable selection consistency of `1-penalized estimators

As mentioned in the previous section, the `1-penalized least squares estimator achieves

successful variable selection in the linear regression model, given the irrepresentability condi-

tion. In general, however, non-quadratic loss functions are often used to match the possibly

non-linear statistical models [127]. Regarding the existing result for the linear regression

model, a natural approach is to introduce an `1-penalty term in the corresponding maximum-

likelihood (ML) estimators. While such an approach may provide satisfactory empirical

performances, the existing variable selection consistency result for linear regression does not

apply, as its proof is specific to the fact that the third-order derivative of the quadratic loss is

exactly zero.
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Challenge 1. Can one develop a unified theory for the variable selection consistency of `1-

penalized estimators in possibly non-linear statistical models?

1.2.2 Non-asymptotic analysis of the (constrained) lasso

As mentioned in the previous section, under the high-dimensional setting, estimation consis-

tency of the `1-penalized least squares estimator can be established given the RSC condition.

A closely related formulation is the `1-constrained least squares estimator, called the least

absolute shrinkage and selection operator (lasso) [170]. Unfortunately, one can easily verify

that the RSC condition cannot hold for the lasso, except when the `1-norm constraint is

exact, i.e., when we know the exact `1-norm of the true weight vector—typically impossible in

practice. Therefore, the estimation error guarantee of the `1-penalized least squares estimator

does not apply.

Challenge 2. Can one establish a non-asymptotic estimation error guarantee for the lasso

under the high-dimensional setting?

1.2.3 Rigorous and fast exp-linear minimization

A loss function f is called exp-linear, if it takes the form f (x) =− log〈a, x〉 for some vector a,

or f (X ) = − logTr(AX ) for some matrix A. Such a loss appears in growth-optimal portfolio

selection, positron emission tomography, quantum state estimation (QSE), positive linear

inverse problems, Poisson phase retrieval, etc., where it is asked to minimize sums of exp-

linear losses on the probability simplex or spectahedron [30, 180, 96, 34, 143]. It is easily

verified that an exp-linear loss is non-smooth on the probability simplex or spectahedron,

as 〈a, x〉 (or Tr(AX ) in the matrix case) can be arbitrarily close to zero. Therefore, standard

convergence results for the mirror descent and gradient descent do not directly apply, while

the gradient descent has been adopted in some QSE researches [28, 164].

Challenge 3. Can one develop a fast algorithm for exp-linear minimization that has a conver-

gence guarantee?

1.2.4 Design of a compressive MRI system

Compressive MRI is one of the most important applications of compressive sensing, where one

would like to recover an unknown image given a subset of its Fourier coefficients [124]. The

standard theory suggests that the subset should be chosen randomly following the uniform

distribution, as then the RIP holds with high probability [45]. In practice, however, uniform

random sampling yields obviously worse performance in comparison to heuristic non-uniform

sampling strategies, as observed in [124]. While the superiority of non-uniform sampling can

be demonstrated in theory, if we introduce more delicate assumptions on the unknown image,

it is unclear whether the assumptions always hold or not [1].
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Challenge 4. Can one develop an algorithm to find a “good” sampling strategy for compressive

MRI, with a guarantee on the recovery performance and without any unverifiable assumption

on the image?

1.3 Contributions

In this thesis, we provide rigorous solutions to the four challenges mentioned in the preceding

section. For the first three challenges, we develop theories that work with weaker formulations

of smoothness and strong convexity; for the last challenge, we eliminate the need for the RIP.

• In Chapter 2, we show that a novel local structured smoothness condition, together with a

general formulation of the irrepresentability condition, suffice to guarantee the variable

selection consistency for possibly non-quadratic loss in general statistical models. We

provide a unified framework to establish the variable selection consistency of lasso-type

methods. We derive novel sharp sample complexity bounds for several applications.

• In Chapter 3, we derive sharp non-asymptotic estimation error bounds for the lasso,

showing that the lasso is minimax optimal when the true weight vector is exactly sparse,

and when the true weight vector is weakly sparse if its exact `1-norm is accessible.

• In Chapter 4, we prove that the Frank-Wolfe algorithm indeed converges for exp-linear

minimization, with a slightly modified step size selection rule; moreover, the O(1/k)

convergence rate (see, e.g, [98]) for the standard Frank-Wolfe algorithm also holds.

• In Chapter 5, we prove that the mirror descent with Armijo line search is always guar-

anteed to converge, for a large class of functions that satisfy a novel locally relatively

smoothness condition. With this convergence result, we demonstrate that the exponen-

tiated gradient method (a.k.a. entropic mirror descent) with Armijo line search is the

fastest guaranteed-to-converge algorithm for QST, empirically on real data-sets.

• In Chapter 6, we study the convergence of the exponentiated gradient method with

Armijo line search, under the very weak assumption that the loss function is convex and

differentiable. We prove that, as long as the set of iterates has a strictly positive limit

point, the exponentiated gradient method with Armijo line search is always guaranteed

to converge. A byproduct is an improved Peierls-Bogoliubov inequality based on self-

concordant likeness.

• In Chapter 7, we develop a completely new framework for compressive MRI: We pose

compressive MRI as a statistical learning problem, and find a good sampling strategy via

ERM. We derive a rigorous bound on the generalization error, without any assumption

(e.g., sparsity) on the image to be recovered. Training and image recovery can be done

in almost linear time. The empirical performance is comparable to existing computa-

tionally much more expensive methods. Interestingly, the necessity of the RIP vanishes

in our framework.
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1.4 Notation

Let v ∈Rp and M ∈Rp1×p2 . We denote the transposes of v and M by v> and M>, respectively.

If M is invertible, its inverse is denoted by M−1.

We will frequently deal with sub-vectors and sub-matrices. Let E be a subset of {1, . . . , p }.

We denote by |E | the cardinality of E . We define E c := {1, . . . , p } \ E . We denote by vE the

sub-vector of v , consisting of elements of v indexed by E . Let E1 be a subset of {1, . . . , p1 }, and

E2 be a subset of {1, . . . , p2 }. We denote by ME1,E2 the sub-matrix of M , with rows indexed by

E1 and columns indexed by E2. When we only want to pick a few columns while keep all rows,

we write ME2 for M{1,...,p },E2 to simplify the notation. Also to simplify the notation, we write vi

and Mi , j for the i -th element of v and (i , j )-th element of M , respectively.

We write ‖v‖q for the `q -norm of v for q ∈ [0,+∞], i.e.,

‖v‖q :=


(∑p

i=1 |vi |q
)1/q

q > 0,

| { i : vi 6= 0} | q = 0,

maxi { |vi | | 1 ≤ i ≤ p } q =∞ .

The unit `q -norm ball is denoted by Bq .

We write ‖M‖q for the operator norm of M induced by the `q -norm; in particular, ‖M‖2

corresponds to the spectral norm of M , and

‖M‖∞ = max
i

{
p2∑

j=1
|Mi , j |

∣∣∣∣∣ 1 ≤ i ≤ p1

}
.

We write ‖M‖∗ for the nuclear norm of M , which corresponds to the sum of singular values of

M . Let A,B be two matrices. The expression A ≥ B means that the matrix (A−B) is positive

semi-definite, and A > B means that the matrix (A−B) is positive definite.

The notation supp v denotes the set of indices for which the corresponding element of v is

non-zero; that is,

supp v := { i | vi 6= 0 } .

The notation sign v denotes the vector (sign v1, . . . , sign vp )>, where sign vi := vi /|vi | if vi 6= 0,

and sign vi = 0 otherwise.

We will consider the first-, second-, and third-order derivatives of a function f . The k-th order

derivative of f at at a point x is denoted by Dk f [x], which is a k-linear symmetric form. It

suffices to keep in mind the following facts.

• For any v ∈Rp , we have D f [x](v) = 〈∇ f (x), v〉, where ∇ f denotes the gradient of f .

• For any u, v ∈Rp , we have D2 f [x](u, v) = 〈u,∇2 f (x)v〉, where ∇2 f denotes the Hessian
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of f .

• For any u ∈Rp , we have

D3 f (x)[u] = lim
t→0

∇2 f (x + tu)−∇2 f (x)

t
.

Moreover, for any v, w ∈Rp , we have

D3 f (x)[u, v, w] = 〈v,
(
D3 f (x)[u]

)
w〉 .

The 1-linear form (vector) D3 f (x)[u, v] is then defined as the unique vector satisfying

D3 f (x)[u, v, w] = 〈D3 f (x)[u, v], w〉 , ∀w ∈Rp .

We write PE for the probability that the event E happens. For example, P { x ≤ 1} denotes the

probability that the value of the random variable x is smaller or equal to 1. We write Ex for the

expectation of the random variable x.

This thesis contains results in statistical learning and convex optimization, respectively. To

respect the convention in the two fields, in the first two chapters about statistical learning, we

use β∗ to denote the unknown true parameter to be learned, while in Chapter 4–6, we use f ?

to denote the minimum value of the function f to be minimized.
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2 Variable selection consistency of `1-
penalized M-estimators

The first two chapters consider statistical learning in the high-dimensional setting, where the

dimension of the unknown parameter can be much larger than and scale with the sample size.

The high-dimensional setting allows one to use more flexible statistical models (with higher

parameter dimension) with more data. In this setting, there are three main topics.

1. Prediction: Does a statistical estimator guarantee small expected loss?

2. Estimation: Does a statistical estimator recover the unknown, true parameter?

3. Variable selection: Does a statistical estimator identify relevant coordinates of the

unknown, true parameter?

The three topics have been arguably well-studied for the `1-penalized least squares estimator

in the linear regression model—the prediciton, estimation, and variable selection consistency

has been established, and the corresponding sample compelxity bounds are known to be

sharp (see, e.g., [32, 80, 87, 105]). The prediction issue was addressed with great generality in,

e.g., [15, 83, 129]. Existing results for estimation and variable selection, however, do not apply

if the setup is slightly modified.

In this chapter, we develop a general framework to establish the variable selection consistency

of `1-penalized M-estimators, in possibly non-linear statistical models.

This chapter is based on the joint work with Jonathan Scarlett, Pradeep Ravikumar, and Volkan

Cevher [122].

2.1 Introduction

Consider the linear regression model

yi = 〈xi ,β∗〉+wi , i = 1,2, . . . ,n ,
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Chapter 2. Variable selection consistency of `1-penalized M-estimators

for given { xi } ⊂Rp and some unknown weight vector β∗ ∈Rp , where wi are independent and

identically distributed (i.i.d.) σ2-subgaussian random variables (r.v.’s) for some σ> 0. Suppose

that β∗ is sparse, i.e.,

s := |suppβ∗|¿ p .

The task of variable selection asks one to identify suppβ∗, given the data {(x1, y1), . . . , (xn , yn) }.

The `1-penalized least squares estimator is given by

β̂n ∈ argmin
β

{
1

2n

n∑
i=1

(
yi −〈xi ,β〉)2 +τn‖β‖1

∣∣∣∣∣β ∈Rp

}
, (2.1)

for some penalization coefficient τn > 0. It is known that under standard assumptions, we

have

lim
n→∞P

{
supp β̂n 6= suppβ∗ }= 0,

as long as n À s log p [185]. Therefore, we say that the `1-penalized least squares estimator is

consistent in variable selection under the high-dimensional setting.

The key assumption that enables the variable selection consistency result is the irrepresentabil-

ity condition.

Definition 2.1 (Irrepresentability condition). Define X ∈Rn×p as the matrix whose i -th row

is given by x>
i , S := suppβ∗, and S c := {1,2, . . . , p } \ S . We say that the irrepresentability

condition holds for some α ∈ (0,1), if∥∥∥X >
S c XS

(
X >

S XS

)−1
∥∥∥∞ < 1−α . (2.2)

where XS and XS c denotes the sub-matrix consisting of columns indexed by S and S c,

respectively. The matrix norm ‖ ·‖∞ is defined as the largest `1-norm of the rows.

The irrepresentability condition is not only sufficient but almost necessary—if the left-hand

side of (2.2) is strictly larger than one, variable selection consistency cannot hold [185].

Now, consider the general `1-penalized M-estimator

θ̂n ∈ argmin
β

{
Ln(β)+τn‖β‖1

∣∣β ∈Rp }
, (2.3)

of an unknown parameter β∗ in a possibly non-linear statistical model, for some convex loss

function Ln . Notice that Definition 2.1 may not be meaningful under this general setting, as

the statistical model is not necessarily of the regression type. The aim of this chapter is to

answer the question:
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Under what conditions can β̂n be consistent in variable selection?

2.1.1 Applications of variable selection

Suppose that the data is given as a set of pairs {(x1, y1), . . . , (xn , yn) } ⊂Rp×R, and the probability

distribution of yi given xi is solely determined by 〈xi ,β∗〉, for some unknown β∗ ∈Rp —this is

actually the case in most regression models (see, e.g., [127, 180]). Furthermore, assume that

s := |suppβ∗|¿ p .

Then it suffices to only keep {((x1)S , y1), . . . , ((xn)S , yn) } ⊂ Rs ×R and discard the elements

of xi ’s indexed by S c. If s is much smaller than p, doing so significantly reduces the cost in

storage memory, and accelerates any further data processing tasks. Notice that doing so does

not incur any loss of information, as (xi )S suffices to determine the probability distribution

of yi for every i .

Another application is Gaussian graphical model selection. Let x ∈Rp be a r.v. following the

multivariate Gaussian distribution of zero mean and covariance Σ∗ ∈Rp×p . Suppose that the

data is a set of n i.i.d. random vectors x1, . . . , xn , following the same distribution as x. The task

of graphical model selection asks one to identify the positions of the non-zero elements of the

concentration matrixΘ∗ := (Σ∗)−1. Given these positions, a graph consisting of p-nodes, where

the nodes i and j are connected if and only if Θi , j 6= 0, reveals the conditional independence

relation among the elements in x—if two nodes are not connected, the corresponding two

elements are conditionally independent, given all other elements [113]. Notice that since the

statistical model is not of the regression type, the definition of the irrepresentability condition

(Definition 2.1) does not apply.

2.1.2 Related work

For the specific case of sparse linear regression, the `1-penalized least squares estimator has

received considerable attention. With respect to variable selection consistency, results have

been obtained for both the noiseless case (e.g., [37, 66, 67]) and the noisy case [128, 185, 191].

While variable selection consistency results have been obtained for `1-penalized M-estimators

on some specific non-linear models such as logistic regression and Gaussian graphical model

selection [8, 33, 112, 128, 152, 153], general techniques with broad applicability are largely

lacking.

To the best of our knowledge, the first work to study the variable selection consistency of a

broad class of models was that of [72] for generalized linear models; however, the technical

assumptions therein appear to be difficult to check for specific models, thus making their

application difficult. Another related work is [114]; in Section 2.6, we compare it with our work,

and discuss a key advantage of our approach.
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2.1.3 Contributions

In this chapter, we introduce a novel condition called the local structured smoothness condition

(LSSC) (Definition 2.2), which controls the smoothness of the objective function in a particular

structured set. We illustrate how the LSSC enables us to address a broad set of variable selection

results in a unified fashion, including logistic regression, gamma regression, and graphical

model selection. We explicitly check the LSSC for `1-penalized maximum likelihood (ML)

estimation in these statistical models. We then establish the variable selection consistencies

of these `1-penalized ML estimators, and derive sample complexity bounds. To the best of

our knowledge, the sample complexity bounds are currently the sharpest, and our results for

gamma regression and Gaussian graphical model selection without a degree bound are the

first in literature.

2.2 Local structured smoothness condition

The following definition provides the key property of convex functions that will be exploited

in the subsequent variable selection consistency analysis.

Definition 2.2 (Local Structured Smoothness Condition (LSSC)). Let f ∈C 3(dom f ) for some

open dom f ⊆ Rp . Fix x∗ ∈ dom f , and let Nx∗ be an open set in dom f containing x∗. The

function f satisfies the (x∗,Nx∗)-LSSC with parameter K ≥ 0, if

‖D3 f (x∗+δ)[u,u]‖∞ ≤ K ‖u‖2
2,

for all δ ∈Rp such that x∗+δ ∈Nx∗ , and for all u ∈Rp such that uS c = 0, where S := supp x∗.

Note that D3 f (x∗+δ)[u,u] is a 1-linear form, so ‖ ·‖∞ in Definition 2.2 is the vector `∞-norm.

The following equivalent characterization follows immediately.

Proposition 2.3. The function f satisfies the (x∗,Nx∗)-LSSC with parameter K ≥ 0 if and only

if

|D3 f (x∗+δ)[u,u,e j ]| ≤ K ‖u‖2
2, (2.4)

for all δ ∈Rp such that x∗+δ ∈Nx∗ , for all u ∈Rp such that uS c = 0, where S := supp x∗, and

for all j ∈ {1, . . . , p }, where e j is the standard basis vector with 1 in the j -th position and 0s

elsewhere.

As we will see in the next section, this equivalent characterization is useful when verifying the

LSSC for a given M-estimator.

Since differentiation is a linear operator, the LSSC is preserved under linear combinations

with positive coefficients, as is stated formally in the following lemma.
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Lemma 2.4. Let f1 satisfy the (x,N1)-LSSC with parameter K1, and f2 satisfy the (x,N2)-LSSC

with parameter K2. Let α and β be two positive real numbers. The function f := α f1 +β f2

satisfies the (x,Nx )-LSSC with parameter K , where Nx :=N1 ∩N2, and K :=αK1 +βK2.

We conclude this section by briefly discussing the connection of the LSSC with other conditions.

The following result, Proposition 9.1.1 of [140], will be useful here and throughout the chapter.

Proposition 2.5. Let A be a 3-linear symmetric form on (Rp )3, and B be a positive-semidefinite

2-linear symmetric form on (Rp )2. If

|A[u,u,u]| ≤ B [u,u]3/2

for all u ∈Rp , then

|A[u, v, w]| ≤ B [u,u]1/2B [v, v]1/2B [w, w]1/2

for all u, v, w ∈Rp .

This proposition shows that the condition in (2.4) without structural constraints on u and e j is

equivalent to the statement that

|D3 f (x∗+δ)[u, v, w]| ≤ K ‖u‖2‖v‖2‖w‖2 (2.5)

for all u, v, w ∈Rp . In Section 2.A, we show that (2.5) holds for all δ ∈Rp such that x∗+δ ∈Nx∗

if and only if

‖D2 f (x∗+δ)−D2 f (x∗)‖2 ≤ K ‖δ‖2, (2.6)

for all δ ∈Rp such that x∗+δ ∈Nx∗ . The latter condition is simply the local Lipschitz continuity

of the Hessian of f . This is why we consider our condition a local structured smoothness

condition, with structural constraints on the inputs of the D3 f (x∗+δ) operator.

The preceding observations reveal that (2.5), or the equivalent formulation (2.6), is more

restrictive than the LSSC. That is, (2.5) implies the LSSC, while the reverse is not true in

general.

2.3 Examples

In this section, we provide some examples of functions that satisfy the LSSC.

Example 2.6. Suppose that f (β) := ‖y − Xβ‖2
2 for some fixed y ∈ Rp and X ∈ Rn×p . Since

D3 f (β) ≡ 0 everywhere, the function f satisfies the (β∗,Nβ∗)-LSSC with parameter K = 0 for

any β∗ ∈Rp and any open set Nβ∗ ⊆Rp that contains β∗. This function appears in the linear

regression model.
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Example 2.7. Let f (β) := 〈x,β〉− log〈x,β〉 for some fixed x ∈ Rp . We show that, for any fixed

β∗ ∈ dom f such that β∗
S c = 0, there exists some non-negative K and some open set Nβ∗ such

that f satisfies the (β∗,Nβ∗)-LSSC with parameter K . This function appears as the negative

log-likelihood in gamma regression with the canonical link function.

By a direct differentiation, we obtain for all u ∈Rp that

|D3 f (β∗+δ)[u,u,u]| = 2|1+γ|−3 {
D2 f (β∗)[u,u]

}3/2
, (2.7)

where

γ := 〈x,δ〉
〈x,β∗〉 ,

Combining this with Proposition 2.5, we have for each standard basis vector e j that

|D3 f (β∗+δ)[u,u,e j ]| ≤ 2|1+γ|−3D2 f (β∗)[u,u]
{
D2 f (β∗)[e j ,e j ]

}1/2

≤ 2
(
1−|γ|)−3 D2 f (β∗)[u,u]

{
D2 f (β∗)[e j ,e j ]

}1/2
,

if |γ| ≤ 1. Now define S := suppβ∗, and suppose that uS c = δS c = 0, and that

‖δ‖2 ≤ 〈x,β∗〉
(1+κ)‖xS ‖2

for someκ> 0. By the Cauchy-Schwartz inequality, it immediately follows that |γ| ≤ (1+κ)−1 < 1,

and thus β∗+δ ∈ dom f . Moreover, using this bound on |γ|, we can further upper bound |D3 f |
as

|D3 f (β∗+δ)[u,u,e j ]| ≤ 2
(
1+κ−1)3

λmaxd 1/2
max‖u‖2

2,

where λmax is the maximum restricted eigenvalue of D2 f (β∗) defined as

λmax := sup
u

{
D2 f (β∗)[u,u]

∣∣ ‖u‖2 ≤ 1,uS c = 0
}

,

and dmax denotes the maximum diagonal entry of ∇2 f (β∗). Therefore, f satisfies the (β∗,Nβ∗)-

LSSC with parameter K := 2(1+κ−1)3λmaxd 1/2
max, where

Nβ∗ :=
{
β∗+δ : ‖δ‖2 ≤

〈
x,β∗〉

(1+κ)‖xS ‖2
,δ ∈Rp

}
.

Example 2.8. Consider the function f (Θ) = Tr XΘ− logdetΘwith a fixed X ∈Rp×p , and with

dom f := {Θ ∈Rp×p :Θ> 0}. We show that, for any fixed Θ∗ ∈ dom f , there exists some non-

negative K and some open set NΘ∗ such that f satisfies the (Θ∗,NΘ∗)-LSSC with parameter

K . This function appears as the negative log-likelihood in the Gaussian graphical learning

problem.

Note that the previous definitions (in particular, Definition 2.2), should be interpreted here as
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being taken with respect to the vectorizations of the relevant matrices.

It is already known that f is standard self-concordant [136]; that is,

|D3 f (Θ∗+∆)[U ,U ,U ]| ≤ 2
{
D2 f (Θ∗+∆)[U ,U ]

}3/2
,

for all U ∈Rp×p and all ∆ ∈Rp×p such thatΘ∗+∆ ∈ dom f . This implies, by Proposition 2.5,

|D3 f (Θ∗+∆)[U ,U ,V ]| ≤ 2
{
D2 f (Θ∗+∆)[U ,U ]

}{
D2 f (Θ∗+∆)[V ,V ]

}1/2
,

for all U ,V ∈Rp×p , and all ∆ ∈Rp×p such thatΘ∗+∆ ∈ dom f .

Moreover, by a direct differentiation,

‖D2 f (Θ∗+∆)‖2 = ‖(Θ∗+∆)−1 ⊗ (Θ∗+∆)−1‖2 = ‖(
Θ∗+∆)−1 ‖2

2 .

Fix a positive constant κ, and suppose that we choose ∆ such that ‖∆‖F ≤ (1+κ)−1ρmin, where

ρmin denotes the smallest eigenvalue of Θ∗. Since ‖∆‖2 ≤ ‖∆‖F , it follows that ‖∆‖2 ≤ (1+
κ)−1ρmin, and, by Weyl’s theorem [95],

‖(
Θ∗+∆)−1 ‖2 ≥ κ

1+κρmin.

Combining the preceding observations, it follows that f satisfies the (Θ∗,NΘ∗)-LSSC with

parameter K := 2κ−3(1+κ)3ρ−3
min, where

NΘ∗ =
{
Θ∗+∆ : ‖∆‖F < 1

1+κρmin,∆=∆>,∆ ∈Rp×p
}

.

Here we have not exploited the special structure of U in Definition 2.2 (namely, uS c = 0), though

conceivably the constant K could improve by doing so. Note that NΘ∗ ⊂ dom f and NΘ∗ is

convex.

2.4 Sufficient conditions

We are now in a position to state the main result in this chapter, whose proof can be found in

Section 2.B.

Let β∗ ∈Rp be the true parameter, and define S := suppβ∗. Define the “genie-aided" estima-

tor with access to suppβ∗:

β̌n ∈ argmin
β

{
Ln(β)+τn‖β‖1

∣∣β ∈Rp ,βS c = 0
}

. (2.8)

Theorem 2.9. Suppose that β̌n is uniquely defined. Then the `1-penalized estimator β̂n defined

in (2.3) uniquely exists, successfully recovers the sign pattern, i.e., sign β̂n = signβ∗, and satisfies
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the error bound∥∥β̂n −β∗∥∥
2 ≤ rn := α+4

λmin

p
sτn , (2.9)

if the following conditions hold true.

1. (Local structured smoothness condition) Ln is convex, three times continuously dif-

ferentiable, and satisfies the (β∗,Nβ∗)-LSSC with parameter K ≥ 0, for some convex

Nβ∗ ⊆ domLn .

2. (Positive definite restricted Hessian) The restricted Hessian at β∗ satisfies[∇2Ln(β∗)
]
S ,S ≥λminI ,

for some λmin > 0.

3. (Irrepresentablility condition) For some α ∈ (0,1], it holds that∥∥∥[∇2Ln(β∗)
]
S c,S

[∇2Ln(β∗)
]−1
S ,S

∥∥∥∞ < 1−α. (2.10)

4. (Beta-min condition) The smallest non-zero entry of β∗ satisfies

βmin := min
{ ∣∣(β∗)k

∣∣ ∣∣ k ∈S
}> rn , (2.11)

where rn is defined in (2.9).

5. The penalization parameter τn satisfies

τn < λ2
min

4(α+4)2

α

K s
. (2.12)

6. The gradient of Ln at β∗ satisfies∥∥∇Ln(β∗)
∥∥∞ ≤ α

4
τn . (2.13)

7. The relation Brn ⊆Nβ∗ holds, where

Brn := {
β ∈Rp :

∥∥βn −β∗∥∥
2 ≤ rn ,βS c = 0

}
and rn is defined in (2.9).

As mentioned previously, the first condition is the key assumption permitting us to perform a

general analysis. The second, third, and forth assumptions are analogous to those appearing
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in the literature for sparse linear regression. We refer to [32] for a systematic discussion of

these conditions1.

The remaining conditions determine the interplay between τn , n, p, and s. Whether the

relation Brn ⊆Nβ∗ holds depends on the specific Nβ∗ that one can derive for the given loss

function Ln . Whether the upper bound on
∥∥∇Ln(β∗)

∥∥∞ holds depends on the concentration

of measure behavior of ∇Ln(β∗), which usually concentrates around 0. In the next section, we

will give concrete examples for the high-dimensional setting, where p and s scale with n.

Of course, sign β̂n = signβ∗ implies that supp β̂n = suppβ∗, i.e. successful variable selection.

2.5 Applications

In this section, we provide several applications of Theorem 2.9, presenting concrete bounds

on the sample complexity in each case. We defer the full proofs of the results in this section

to Section 2.C. However, in each case, we present here the most important step of the proof,

namely, verifying the LSSC.

2.5.1 Linear regression

Recall the linear regression model and the `1-penalized least squares estimator defined in

Section 2.1. The `1-penalized least squares estimator is simply an `1-penalized M-estimator,

where the loss function is given by

Ln(β) = 1

2n

n∑
i=1

(
yi −

〈
xi ,β

〉)2 , ∀β ∈Rp .

We consider the fixed design case, where the vectors xi are given and deterministic; further-

more, we assume that∑
j

(xi )2
j ≤ n , ∀i = 1, . . . ,n , (2.14)

to normalize the vectors as in, e.g., [25] and [185]. We relax a little bit the assumption on the

additive noise; we assume that w1, . . . , wn are independent mean-zero subgaussian r.v.’s of

unit subgaussian norm.

As shown in the first example of Section 2.3, the loss function Ln satisfies the LSSC with

parameter K = 0 everywhere in Rp . Therefore, the condition on τn in (2.12) is trivially satisfied,

as is the final condition listed in the theorem.

Corollary 2.10. For the linear regression problem described above, suppose that Assumptions

2–4 of Theorem 2.9 hold for some λmin and α bounded away from zero.2 If s log p ¿ n, and we

1Equation (2.10) is sometimes called the incoherence condition [185].
2For all of the examples in this section, these assumptions are independent of the data, and we can thus talk
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choose τn À (n−1 log p)1/2, then the `1-penalized maximum likelihood estimator is consistent

in variable selection.

This corollary recovers the sample complexity result given in [185].

2.5.2 Logistic regression

In the logistic regression model, the data is given by a set of independent r.v.’s

{ (x1, y1), . . . , (xn , yn) } ⊂Rp × {0,1} .

As in Section 2.5.1, we assume that the vectors xi are given and they are properly normalized

(cf. (2.14)). Each r.v. yi follows the probability distribution

P {Yi = 1} = 1−P {Yi = 0} = 1

1+e−〈xi ,β∗〉 .

The `1-penalized ML estimator corresponds to (2.3) with

Ln(β) := 1

n

n∑
i=1

log
[

1+e−(2yi−1)〈xi ,β〉
]

.

Define

`i (β) = log
[

1+e−(2yi−1)〈xi ,β〉
]

∀i = 1, . . . ,n .

The cases yi = 0 and yi = 1 are handled similarly, so we focus on the latter. A direct differentia-

tion yields the following (this is most easily verified for u = v):

|D3`i (β∗+δ)[u,u, v]| =
∣∣1−e−〈xi ,β∗+δ〉∣∣
1+e−〈xi ,β∗+δ〉 |〈xi , v〉|D2`i (β∗+δ)[u,u]

≤ |〈xi , v〉|D2`i (β∗+δ)[u,u] , ∀δ,u, v ∈Rp ,

and

D2`i (β)[u,u] = e−〈xi ,β〉 〈xi ,u〉2(
1+e−〈xi ,β〉)2

≤ 1

4
〈xi ,u〉2 , ∀β,u ∈Rp .

The last inequality follows since the function z
(1+z)2 has a maximum value of 1

4 for z ≥ 0. It

about them being satisfied deterministically.
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follows that

|D3`i (β∗+δ)[u,u, v]| ≤ 1

4
|〈xi , v〉| |〈xi ,u〉|2

≤ 1

4
‖(xi )S ‖2

2 ‖xi‖∞ ‖u‖3
2 ,

for any u ∈Rp such that uS c = 0, and for any v equal to some standard basis vector e j . Hence,

Ln satisfies the (β∗,Nβ∗)-LSSC with parameter K = (1/4)ν2
nγn , where

νn := max
i

‖(xi )S ‖2 , γn := max
i

‖xi‖∞ .

The neighborhood Nβ∗ can be any fixed open convex neighborhood of β∗ in Rp .

Corollary 2.11. For the logistic regression problem described above, suppose that Assumptions

2–4 of Theorem 2.9 hold for some λmin and α bounded away from zero. If we choose τn À
(n−1 log p)1/2, and s and p such that s2

(
log p

)
ν4

nγ
2
n ¿ n, then the `1-penalized maximum-

likelihood estimator is sparsistent.

In [33], a sample complexity bound s ¿
p

n
(logn)2 is given, but the result is restricted to the

case that p grows polynomially with n. The result in [8] yields the sample complexity bound

s2(log p)νn
2 ¿ n, where νn := max{‖xi‖2 }. It should be noted that νn is generally significantly

larger than νn and γn ; for example, for i.i.d. Gaussian vectors, these scale on average as O(
p

p),

O(
p

s) and O(1), respectively. Our result recovers the same dependence of n on s and p as that

in [8], but removes the dependence on νn . Of course, we do not restrict p to grow polynomially

with n.

2.5.3 Gamma regression

In the gamma regression model, the data is given by a set of independent r.v.’s

{(x1, y1), . . . , (xn , yn) } ⊂Rp × [0,+∞) .

As in Section 2.5.1, we assume that the vectors xi are given and they are properly normalized

(cf. (2.14)). For every i , the r.v. yi follows the gamma distribution with known shape parameter

k > 0 and unknown scale parameter

θi = 1

k 〈xi ,β∗〉 ,

for some unknown β∗ ∈Rp . The corresponding density function is of the form

1

Γ(k)θk
i

yk−1e−yi /θi ,
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where Γ denotes the gamma function. We assume that

〈xi ,β∗〉 ≥µn , ∀i = 1, . . . ,n , (2.15)

for some µn > 0, so θi is always well-defined.

The `1-penalized maximum-likelihood estimator is given by (2.3) with

Ln(β) := 1

n

n∑
i=1

(− log〈xi ,β〉+ yi 〈xi ,β〉) .

Note that θi only enters the log-likelihood via constant terms not containing β; these have

been omitted, as they do not affect the estimation.

Defining

`i (β) =− log〈xi ,β〉+ yi 〈xi ,β〉 , ∀i = 1, . . . ,n ,

we obtain the following for all u ∈Rp such that uS c = 0, using the Cauchy-Schwartz inequality

and (2.15):

D2`i (β∗)[u,u] = 〈xi ,u〉2

〈xi ,β∗〉2 ≤ ‖(xi )S ‖2
2

〈xi ,β∗〉2 ‖u‖2
2 ≤

1

µ2
n
‖u‖2

2 ‖(xi )S ‖2
2 .

Thus, the largest restricted eigenvalue of D2`i (β∗) is upper bounded by µ−2
n ν2

n , where

νn := max
i

{‖(xi )S ‖2 |i = 1, . . . ,n
}

,

Similarly, we obtain

D2`i (β∗)[e j ,e j ] ≤ 1

µ2
n
‖xi‖2

∞,

for any standard basis vector e j . Thus, the largest diagonal entry of D2`i (β∗) is upper bounded

by µ−2
n γ2

n , where γn = maxi ‖xi‖∞.

Fix κ > 0. By Example 2.7 and Lemma 2.4, Ln satisfies the (β∗,Nβ∗)-LSSC with parameter

K = 2(1+κ−1)3µ−3
n ν2

nγn , and

Nβ∗ =
{
β∗+δ : ‖δ‖2 <

µn

(1+κ)νn
,δ ∈Rp

}
.

Corollary 2.12. Consider the gamma regression problem as described above, and suppose

that Assumptions 2–4 of Theorem 2.9 hold for some λmin, and α bounded away from zero.

If τn Àp
n−1 log p and s2

(
log p

)2
µ−6

n ν4
nγ

2
n ¿ n, then the `1-penalized maximum likelihood

estimator is consistent in variable selection.
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To the best of our knowledge, this is the first variable selection consistency result for gamma

regression.

2.5.4 Graphical model selection

We consider a setup slightly more general than the one described in Section 2.1.1. Let Θ∗ ∈
Rp×p be a positive-definite matrix. We assume there are at most s non-zero entries in Θ∗,

and let S denote its support set. Let X1, . . . , Xn be independent p-dimensional random

vectors generated according to a common distribution with mean zero and covariance matrix

Σ∗ := (Θ∗)−1. We are interested in recovering the support ofΘ∗ given X1, . . . , Xn .

We assume that each
(
Σi ,i

)−1/2 Xi ,i is subgaussian with parameter c > 0, and that Σi ,i is

bounded above by a constant κΣ∗ , for all i ∈ {1, . . . , p}. Let ρmin denote the smallest eigenvalue

ofΘ∗.

We consider the `1-penalized M-estimator of the form (2.3), given by

Θ̂n := argmin
Θ

{
Ln(Θ)+τn |Θ|1 |Θ> 0,Θ ∈Rp×p}

.

Here |Θ|1 denotes the entry-wise `1-norm, i.e.,

|Θ|1 =
∑

(i , j )∈{1,...,p}2

∣∣Θi , j
∣∣ ,

and

Ln(Θ) = Tr
(
Σ̂nΘ

)− logdetΘ ,

where

Σ̂n := 1

n

n∑
i=1

Xi X T
i

is the sample covariance matrix.

Fix κ > 0. By Example 2.8, we know that Ln satisfies the (Θ∗,NΘ∗)-LSSC with parameter

2κ−3(1+κ)3ρ−3
min, where

NΘ∗ :=
{
Θ∗+∆

∣∣∣∣ ‖∆‖F < 1

1+κρmin,∆=∆T ,∆ ∈Rp×p
}

,

where ρmin denotes the smallest eigenvalue ofΘ∗.

The beta-min condition can be written as

min
{
Θ∗

i , j

∣∣∣Θ∗
i , j 6= 0,(i , j ) ∈ {1, . . . , p}2

}
> rn .
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We now have the following.

Corollary 2.13. Consider the graphical model selection problem described above, and suppose

the above assumptions and assumptions 2 to 4 of Theorem 2.9 hold for some c, κΣ∗ , ρmin,

λmin, and α bounded away from zero. If τn À (n−1 log p)1/2 and s2 log p ¿ n, the `1-penalized

M-estimator Θ̂n is consistent in variable selection.

Corollary 2.13 is for graphical learning on general sparse networks, as we only put a constraint

on s. Several previous works have instead imposed structural constraints on the maximum

degree of each node; e.g. see [153]. Since this model requires additional structural assumptions

beyond sparsity alone, it is outside the scope of our theoretical framework.

2.6 Discussions

Our work bears some resemblance to the independent work of [114]. The smoothness condi-

tion therein is in fact the non-structured condition in (2.6). From the discussion in Section

2.2, we see that our condition is less restrictive. As a consequence, both analyses lead to

scaling laws of the form n À K 2s2(log p)γ for some γ> 0 for generalized linear models, but

the corresponding definitions of K differ significantly. Eliminating the dependence of K on p

requires additional non-trivial extensions of the framework in [114], whereas in our framework

the desired independence is immediate (e.g. see the logistic and gamma regression examples).

The framework presented here considers general sparse parameters. It is of great theoretical

and practical importance to sharpen this framework for structured sparse parameters, e.g.,

group sparsity, and graphical model learning for networks with bounded degrees.

The sample complexity results we have derived are worst-case with respect to all s-sparse

parameters. As our notion of the LSSC is local, it is interesting to explore the possibility

of deriving sample complexity bounds that depend not only on the sparsity but also other

characteristics of the true parameter.

2.A Auxiliary result for the non-structured case

In this sub-section, we prove the following claim made in Section 3. Note that, in contrast to

the main definition of the LSSC, the vectors here are not necessarily structured.

Proposition 2.14. Consider a function f ∈ C 3(domf) with domain dom f ⊆ Rp . Fix x∗ ∈
dom f , and let Nx∗ be an open set in dom f containing x∗. Let K ≥ 0. The following statements

are equivalent.

1. D2 f (x) is locally Lipschitz continuous with respect to x∗; that is,

‖D2 f (x∗+δ)−D2 f (x∗)‖2 ≤ K ‖δ‖2, (2.16)
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for all δ ∈Rp such that x∗+δ ∈Nx∗ .

2. D3 f (x) is locally bounded; that is,

|D3 f (x∗+δ)[u, v, w]| ≤ K ‖u‖2‖v‖2‖w‖2 (2.17)

for all δ ∈Rp such that x∗+δ ∈Nx∗ , and for all u, v, w ∈Rp .

Proof. Suppose that (2.16) holds. By Proposition 2.5, it suffices to prove that

|D3 f (x∗+δ)[u,u,u]| ≤ K ‖u‖3
2

for all u ∈Rp . By definition, we have

|D3 f (x∗+δ)[u,u,u]| = |〈u, Hu〉 | ≤ ‖H‖2‖u‖2
2,

where

H := lim
t→0

D2 f (x∗+δ+ tu)−D2 f (x∗+δ)

t
.

We therefore have (2.17) since ‖H‖2 ≤ K ‖δ‖2 by (2.16).

Conversely, suppose that (2.17) holds. We have the following Taylor expansion [188]:

D2 f (x∗+δ) = D2 f (x∗)+
∫ 1

0
D3 f (xt )[δ]d t ,

where xt := x∗+ tδ. We also have from (2.17) and the definition of the spectral norm that

‖D3 f (x∗+δ)[δ]‖2 ≤ K ‖u‖2, and hence

‖D2 f (x∗+δ)−D2 f (x∗)‖2 = ‖
∫ 1

0
D3 f (xt )[δ]d t‖2

≤ K ‖δ‖2.

This completes the proof.

2.B Proof of Theorem 2.9

The proof is based on the optimality conditions on β̂ for the original problem, and those on

β̌ for the restricted problem. We first observe that β̌n exists, since the function x 7→ ‖x‖1 is

coercive. Recall that β̌n is assumed to be uniquely defined.

To achieve variable selection consistency, it suffices that β̂n = β̌n and supp β̌n = suppβ∗. We

derive sufficient conditions for β̂n = β̌n in Lemma 2.15, and make this sufficient condition

explicitly dependent on the problem parameters in Lemma 2.16. This lemma will require

that
∥∥β̌n −β∗∥∥

2 ≤ Rn for some Rn > 0. We will derive an estimation error bound of the form
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∥∥β̌n −β∗∥∥
2 ≤ rn in Lemma 2.18. We will then conclude that β̂n = β̌n if rn ≤ Rn and the assump-

tions in Lemma 2.16 are satisfied, from which it will follow that sign β̌= signβ∗ provided that

βmin ≥ rn .

The following lemma is proved via an extension of the techniques of [185].

Lemma 2.15. We have β̂n = β̌n if∥∥[∇Ln(β̌n)
]
S c

∥∥
∞ < τn . (2.18)

Proof. Recall that Ln is convex by assumption. Also recall that β̌n is assumed to be uniquely

defined, and hence it is the only vector the satisfies the corresponding optimality condition:[∇Ln(β̌n)
]
S +τn žS = 0 (2.19)

for some žS such that ‖žS ‖∞ ≤ 1. Moreover, the fact that (2.18) is satisfied means that there

exists žS c such that ‖žS c‖∞ < 1 and

∇Ln(β̌n)+τn ž = 0,

where ž := (žS , žS c ). Therefore, β̌n is a minimizer of the original optimization problem in Rp .

We now address the uniqueness of β̂. By a similar argument to Lemma 1 in [152] (see also

Lemma 1(b) in [185]), any minimizer β̃ of the original optimization problem satisfies β̃S c = 0.

Thus, since β̌ is the only optimal vector for the restricted optimization problem, we conclude

that β̂n = β̌n uniquely.

We now combine Lemma 2.15 with the assumptions of Theorem 2.9 to obtain the following.

Lemma 2.16. Under assumptions 1, 2, 3 and 6 of Theorem 2.9, we have β̂n = β̌n if β̌ ∈Nβ∗ ∩
BRn , where

BRn := {
β ∈Rp

∣∣ ∥∥β−β∗∥∥
2 ≤ Rn ,βS c = 0

}
with

Rn = 1

2

√
ατn

K
. (2.20)

Proof. Applying a Taylor expansion at β∗, and noting that both β∗ and β̌n are supported on

S , we obtain[∇L(β̌n)
]
S c =

[∇Ln(β∗)
]
S c +

[∇2Ln(β∗)
]
S c,S

(
β̌n −β∗)

S + (εn)S c , (2.21)

where the remainder term is given by

εn =
∫ 1

0
(1− t )D3Ln(βt )[β̌−β∗, β̌−β∗]dt ,
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where βt :=β∗+ t (β̌−β∗) (see, e.g., [188, Section 4.5]), and thus satisfies

‖εn‖∞ ≤ sup
t

{‖D3Ln(βt )[β̌−β∗, β̌−β∗]‖∞
∣∣ t ∈ [0,1]

}
. (2.22)

Recall the optimality condition for β̌ in (2.19). Again using a Taylor expansion, we can write

this condition as[∇Ln(β∗)
]
S + [∇2Ln(β∗)

]
S ,S

(
β̌n −β∗)

S + (εn)S +τn žS = 0. (2.23)

Recall that
[∇2Ln(β∗)

]
S ,S is invertible by the second assumption of Theorem 2.9. Solving for(

β̌n −β∗)
S in (2.23) and substituting the solution into (2.21), we obtain

[∇Ln(β̌n)
]
S c =−τn

[∇2Ln(β∗)
]
S c,S

[∇2Ln(β∗)
]−1
S ,S žS

+ [∇L(β∗)
]
S c

− [∇2Ln(β∗)
]
S c,S

[∇2Ln(β∗)
]−1
S ,S

[∇Ln(β∗)
]
S

+ (εn)S c

− [∇2Ln(β∗)
]
S c,S

[∇2Ln(β∗)
]−1
S ,S (εn)S .

Using the irrepresentability condition (assumption 3 of Theorem 2.9) and the triangle inequal-

ity, we have
∥∥[∇Ln(β̌n)

]
S c

∥∥
∞ < τn provided that

max
{∥∥∇Ln(β∗)

∥∥∞ ,‖εn‖∞
}≤ α

4
τn .

The first requirement
∥∥∇Ln(β∗)

∥∥∞ ≤ (α/4)τn is simply assumption 6 of Theorem 2.9, so

it remains to determine a sufficient condition for ‖εn‖∞ ≤ (α/4)τn . Since Ln satisfies the

(β∗,Nβ∗)-LSSC with parameter K , we have from (2.22) that

‖εn‖∞ ≤ K
∥∥β̌−β∗∥∥2

2 ,

provided that β̌ ∈Nβ∗ (since Nβ∗ is convex by assumption, this implies βt ∈Nβ∗). Thus, to

have ‖εn‖∞ ≤ α
4 τn , it suffices that

∥∥β̌−β∗∥∥
2 ≤

1

2

√
ατn

K

and β̌ ∈Nβ∗ .

To bound the distance
∥∥β̌−β∗∥∥

2, we adopt an approach from [152, 159]. We begin with an

auxiliary lemma.

Lemma 2.17. Let g : Rp → R be a convex function, and let z ∈ Rp be such that g (z) ≤ 0. Let

B ⊂ Rp be a closed set, and let ∂B be its boundary. If g > 0 on ∂B and g (b) ≤ 0 for some
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b ∈B \∂B, then x ∈B.

Proof. We use a proof by contradiction. Suppose that z ∉ B. We first note that there exists

some t∗ ∈ (0,1) such that b + t∗(z −b) ∈ ∂B; if such a t∗ did not exist, then we would have

zt := b + t (z −b) → z as t → 1, which is impossible since z ∉B and B is closed.

We now use the convexity of g to write

g (b + t∗(x −b)) ≤ (1− t∗)g (b)+ t∗g (x) ≤ 0,

which is a contradiction since g > 0 on ∂B.

The following lemma presents the desired bound on
∥∥β̌n −β∗∥∥

2; note that this can be inter-

preted as the estimation error in the n > p setting, considering β∗
S

as the parameter to be

estimated.

Lemma 2.18. Define the set

Brn := {
β ∈Rp

∣∣ ∥∥β−β∗∥∥
2 ≤ rn ,βS c = 0

}
,

where

rn := α+4

λmin

p
sτn . (2.24)

Under assumptions 1, 2, 6 and 7 of Theorem 2.9, if

τn < 3λ2
min

2(α+4)K s
, (2.25)

then β̌n ∈Brn .

Proof. Set s = |S |, and for β ∈Rs let Z (β) = (β,0) ∈Rp be the zero-padding mapping, where

(β,0) denotes the vector that equals to β on S and 0 on S c. Then we have

β̌S = argmin
β

{
(Ln ◦Z )(β)+τn

∥∥β∥∥
1

∣∣β ∈Rs }
.

For δ ∈Rs , define

g (δ) = (Ln ◦Z )(β∗
S +δ)− (Ln ◦Z )(β∗

S )+τn
(∥∥β∗

S +δ∥∥
1 −

∥∥β∗
S

∥∥
1

)
.

We trivially have g (0) = 0, and thus g (δ∗) ≤ g (0) = 0, where δ∗ := β̌S −β∗
S

. Now our goal

is prove that g > 0 on the boundary of (Brn )S := {
δ ∈Rs : ‖δ‖2 ≤ rn

}
, thus permitting the

application of Lemma 2.17.

We proceed by deriving a lower bound on g (δ). We define

ϕ(t ) := (Ln ◦Z )(β∗
S + tδ) ,
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and write the following Taylor expansion:

(Ln ◦Z )(β∗
S +δ)− (Ln ◦Z )(β∗

S ) =ϕ(1)−ϕ(0)

=ϕ′(0)+ 1

2
ϕ′′(0)+ 1

6
ϕ′′′(t̃ ),

for some t̃ ∈ [0,1] (recall that Ln is three times differentiable by assumption). We bound the

term ϕ′(0) as follows:∣∣ϕ′(0)
∣∣= ∣∣〈[∇Ln(β∗)

]
S ,δ〉∣∣

≤p
s
∥∥[∇Ln(β∗)

]
S

∥∥
∞ ‖δ‖2

≤ ατn

4

p
s ‖δ‖2 ,

where the first step follows from Hölder’s inequality and the inequality ‖z‖2 ≤
p

s‖z‖1, and the

second step uses Assumption 6 of Theorem 2.9. To bound the term ϕ′′(0), we use the second

assumption of Theorem 2.9 and write

ϕ′′(0) = δT [∇2Ln(β∗)
]
S ,S δ≥λmin ‖δ‖2

2 .

We now turn to the term ϕ′′′(t̃ ). Again using the fact that Ln satisfies the (β∗,Nβ∗)-LSSC with

parameter K , it immediately follows that (Ln ◦Z ) satisfies the (β∗
S

,
(
Nβ∗

)
S

)-LSSC with param-

eter K , where
(
Nβ

)
S

= {
βS |β ∈Nβ∗

}
. Hence, and also making use of Hölder’s inequality and

the fact that ‖z‖1 ≤
p

s‖z‖2 (z ∈Rs), we have∣∣ϕ′′′(t̃ )
∣∣= ∣∣D3(Ln ◦Z )(β∗

S + t̃δ)[δ,δ,δ]
∣∣

≤ ‖δ‖1‖D3(Ln ◦Z )(β∗
S + t̃δ)[δ,δ]‖∞

≤ K
p

s ‖δ‖3
2

provided that β∗
S
+ t̃δ ∈ (

Nβ

)
S

. Since Brn ⊆Nβ∗ by assumption 7 of Theorem 2.9, the latter

condition holds provided that δ ∈ (Brn )S .

Using the triangle inequality, we have∣∣∥∥β∗
S +δ∥∥

1 −
∥∥β∗

S

∥∥
1

∣∣≤ ‖δ‖1 ≤
p

s ‖δ‖2 .

Hence, and combining the preceding bounds, we have g (δ) ≥ f (‖δ‖2), where

f (x) =−ατn

4

p
sx + λmin

2
x2 − K

p
s

6
x3 −p

sτn x.

Observe that if the inequality

0 < x < 3λmin

2K
p

s
. (2.26)
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holds, then we can bound the coefficient to x3 in terms of that of x2 to obtain

f (x) > λmin

4
x2 −

(
1+ α

4

)p
sτn x. (2.27)

By a direct calculation, this lower bound has roots at 0 and rn (see (2.24)), and hence f (rn) > 0

provided that x = rn satisfies (2.26). By a direct substitution, this condition can be ensured by

requiring that

τn < 3λ2
min

2(α+4)K s
. (2.28)

Recalling that g (δ) ≥ f (‖δ‖2), we have proved that g satisfies the conditions of Lemma 2.17

with z = δ∗, b = 0, and B = (Brn )S , and we thus have δ∗ ∈ (Brn )S , or equivalently β̌n ∈Brn .

We now combine the preceding lemmas to obtain Theorem 2.9. We require rn ≤ Rn so the

assumption that
∥∥β̌−β∗∥∥∞ ≤ Rn in Lemma 2.16 is satisfied. From the definitions in (2.20) and

(2.24), this is equivalent to requiring

τn ≤ λ2
min

4(α+4)2

α

K s
,

which is true by assumption 5 of the theorem. This assumption also implies that (2.25) holds,

since α
4(α+4) ≤ 3

2 for any α≥ 0. Finally, by the conclusion of Lemma 2.18, we have successful

sign pattern recovery if βmin ≥ rn , thus recovering assumption 4 of the theorem.

2.C Proofs of the results in Section 2.5

2.C.1 Proof of Corollary 2.10

By a direct calculation, we have

∇Ln(β∗) = 1

n

n∑
i=1

(yi −E yi )xi .

By the union bound and the Hoeffding-type inequality for subgaussian r.v.’s (cf. Theorem A.5),

P
{∥∥∇Ln(β∗)

∥∥∞ ≥ ατn

4

}
≤

p∑
i=1

P
{ ∣∣[∇Ln(β∗)

]
i

∣∣≥ ατn

4

}
≤ 2epe−nt 2

∣∣∣
t= ατn

4

.

Since [D2Ln(β)]S ,S = [D2Ln(β∗)]S ,S is positive definite for all β ∈ Rp by the second as-

sumption of Theorem 2.9, β̌n uniquely exists, and Theorem 2.9 is applicable. Choosing τn

sufficiently large that the above bound decays to zero, we obtain the corollary.
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2.C. Proofs of the results in Section 2.5

2.C.2 Proof of Corollary 2.11

By a direct differentiation, we obtain for j ∈ {1, . . . , p} that

[∇Ln(β∗)
]

j =−
n∑

i=1
εi (xi ) j ,

where εi = n−1
(
yi −E yi

)
.

Define ξi := xi yi for all i . Notice that every ξi is a bounded r.v. taking values in [0, xi ]. By

Hoeffding’s inequality (cf. Theorem A.6) and the union bound, we obtain

P
{∥∥∇Ln(β∗)

∥∥∞ ≥ ατn

4

}
≤

p∑
j=1

P
{∣∣∣[∇Ln(β∗)

]
j

∣∣∣≥ ατn

4

}
≤ 2exp

(
log p −2nt 2)∣∣

t= ατn
4

.

This decays to zero provided that τn À (n−1 log p)1/2. Substituting this scaling into the fifth

condition of Theorem 2.9, we obtain the condition s2
(
log p

)
ν4

nγ
2
n ¿ n. The required unique-

ness of β̌ can be proved by showing that the composition Ln◦Z (with Z being the zero-padding

of a vector in Rs) is strictly convex, given the second condition of Theorem 2.9. One way to

prove this is via self-concordant like inequalities [173]; we omit the proof here for brevity.

2.C.3 Proof of Corollary 2.12

By a direct differentiation, we obtain

[∇Ln(β∗)
]

j =
n∑

i=1
εi (xi ) j

for j ∈ {1, . . . , p}, where εi := n−1
(
yi −E yi

)
.

To study the concentration of measure behavior of ∇Ln(β∗), we use Bernstein’s inequality (cf.

Theorem A.7). We first check the moment conditions using the following fact.

Lemma 2.19. Let η be a gamma r.v. with shape parameter k > 0 and scale parameter θ. Then

Eηq = Γ(q +k)

Γ(k)
θq , ∀q ∈N ,

where Γ denotes the gamma function.
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Fix j ∈ {1, . . . , p}, and define ξi := n−1(xi ) j yi . We have

n∑
i=1

Eξ2
i =

n∑
i=1

(xi )2
j

n2 E y2
i

=
n∑

i=1

(xi )2
j

n2

Γ(k +2)

Γ(k)
θ2

i .

Recall that θi = k−1 〈xi ,β∗〉−1. Using the first displayed equation in Section 2.5.3, we have

θi ≤
(
kµn

)−1 , (2.29)

and thus

n∑
i=1

Eξ2
i ≤

1

(nµn)2

Γ(k +2)

k2Γ(k)

n∑
i=1

(xi )2
j

≤ 1

nµ2
n

Γ(k +2)

k2Γ(k)
,

where we have applied the assumption
∑n

i=1(xi )2
j ≤ n. Using the identity Γ(k+2) = k(k+1)Γ(k),

we obtain

n∑
i=1

Eξ2
i ≤

k +1

nµ2
nk

.

As for the moments of higher orders, we have

n∑
i=1

E |ξi |q =
n∑

i=1

∣∣(xi ) j
∣∣q

nq E
∣∣yi

∣∣q

=
n∑

i=1

∣∣(xi ) j
∣∣q

nq

Γ(k +q)

Γ(k)
θ

q
i .

With the upper bound (2.29) on θi , we have

n∑
i=1

E |ξi |q ≤ Γ(k +q)

(knµn)qΓ(k)

n∑
i=1

∣∣(xi ) j
∣∣q

= Γ(k +q)

(knµn)qΓ(k)

∥∥((x1) j , . . . , (xn) j )
∥∥q

q .

Using the identity ‖z‖q ≤ ‖z‖2 for q ≥ 2, and the assumption
∑n

i=1(xi )2
j ≤ n, we obtain

n∑
i=1

E |ξi |q ≤ Γ(k +q)

(k
p

nµn)qΓ(k)
.
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For k ∈ (0,1], we have Γ(k+q)
Γ(q) ≤ q !, and hence by a direct substitution it suffices to choose

v = k +1

nµ2
nk2

, c = 1

k
p

nµn
. (2.30)

For k ∈ (1,∞), we have by induction on q that Γ(k+q)
Γ(q) ≤ q !kq . Thus, for k ∈ (1,∞), it suffices

that

v = 2k

nµ2
n

, c = 1p
nµn

. (2.31)

Thus, applying Bernstein’s inequality and the union bound, we obtain

P
{∥∥∇Ln(β∗)

∥∥∞ ≥ ατn

4

}
≤

p∑
i=1

P
{ ∣∣[∇Ln(β∗)

]
i

∣∣≥ ατn

4

}
≤ 2exp

[
log p − t 2

2(v + ct )

]∣∣∣∣
t= ατn

4

.

Since Ln is self-concordant and
[
D2Ln(β∗)

]
S ,S is positive definite by assumption, the com-

position Ln ◦ Z with the padding operator Z is strictly convex [140] and thus β̌n uniquely

exists. Therefore, we can apply Theorem 2.9. The scaling laws on τn and (p,n, s) follow via

the same argument to that in the proof of Corollary 2.11. Note that the final condition of

Theorem 2.9 also imposes conditions on (p,n, s), but for this term even the weaker condition

s2(log p)ν2
n ¿ n suffices.

2.C.4 Proof of Corollary 2.13

By a direct differentiation, we obtain

∇Ln(Θ∗) = Σ̂n − (
Θ∗)−1 = Σ̂n −Σ.

We apply the following lemma from [153] to study the concentration behavior of ∇Ln(Θ∗).

Lemma 2.20. Let Σ and Σ̂n be defined as in Section 6.4. We have

P
{∣∣∣(Σ̂n

)
i , j −Σi , j

∣∣∣> t
}
≤ 4exp

[
− nt 2

128(1+4c2)2κ2
Σ∗

]
,

for all t ∈ (0,8κΣ∗(1+ c)2).
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Using the union bound, we have

P
{∥∥∇Ln(Θ∗)

∥∥∞ ≤ ατn

4

}
≤ 4p2 exp

[
− nt 2

128(1+4σ2)2κ2
Σ∗

]∣∣∣∣∣
t= ατn

4

,

provided that τn → 0, and that n is large enough so that the upper bound on t in the lemma is

satisfied.

Define

Θ̌n ∈ argmin
Θ

{
Ln(Θ)+τn |Θ|1

∣∣Θ> 0,ΘS c = 0,Θ ∈ Rp×p }
. (2.32)

Since Ln is self-concordant and
[
D2Ln(Θ∗)

]
S ,S is positive definite by assumption, the com-

position Ln ◦ Z with the padding operator Z is strictly convex [140] and thus Θ̌n uniquely

exists. Therefore, we can apply Theorem 2.9. The scaling laws on τn and (p,n, s) follow via the

same arguments as the preceding examples.
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3 Estimation error of the lasso

In the previous chapter, we have studied variable selection in the high-dimensional setting. In

this chapter, we will focus on statistical estimation in the same setting. In particular, our aim is

to establish the estimation consistency of the least absolute shrinkage and selection operator

(lasso). The standard approach to establishing estimation consistency in the high-dimensional

setting relies on the restricted strong convexity (RSC) of the loss function, but the RSC does not

hold for the lasso in general. Via relaxing the RSC, we obtain sharp estimation error bounds,

and establish the minimax optimality of the lasso in some scenarios.

This chapter is based on the joint work with Nissim Zerbib, Ya-Ping Hsieh, and Volkan Cevher

[189].

3.1 Introduction

Let us revisit the linear regression model:

yi = 〈xi ,β∗〉+wi , i = 1, . . . ,n ,

for a given set of vectors { xi } ⊂ Rp and an unknown weight vector β∗, where w1, . . . , wn are

i.i.d. mean-zero subgaussian random variables (r.v.’s). For convenience, we define the design

matrix X ∈Rp , the i -th row of which is given by x>
i , and write

y = Xβ∗+w ,

where y := (y1, . . . , yn) and w := (w1, . . . , wn). The lasso is defined as

β̂n ∈ argmin
β

{
fn(β)

∣∣β ∈ cB1 ⊂Rp }
, (3.1)

33



Chapter 3. Estimation error of the lasso

for some c > 0 [170], where

fn(β) := 1

2n

n∑
i=1

(
yi −〈xi ,β〉)2 ,

and B1 denotes the unit `1-norm ball. One may view the `1-penalized least squares estimator

studied in Chapter 2,

β̂n,PLS ∈ argmin
β

{
fn(β)+τn‖β‖1

∣∣β ∈Rp }
for some τn > 0, as the Lagrangian formulation of the lasso.

Interestingly, while the lasso is conceptually not very different from its Lagrangian form,

existing non-asymptotic estimation error analyses for the latter cannot be directly applied to

the former. The essential reason is that existing analyses require the restricted strong convexity

(RSC) condition [25, 134], which does not hold for the lasso in general.

In this chapter, we introduce a novel relaxed RSC condition, based on which we derive non-

asymptotic estimation error bounds for the lasso. The result shows that the lasso is minimax

optimal if β∗ is sparse, or if β∗ is weakly sparse and c = ‖β∗‖1.

3.1.1 Related work

If c = ‖β∗‖1, and the noise wi are independent and identically distributed (i.i.d.) standard

normal random variables, the lasso is known to satisfy

‖β̂n −β∗‖2 ≤ Lσ

√
s log p

n
, (3.2)

with high probability for some constant L > 0, where s is the number of non-zero entries in β∗

[87]. The bound (3.2) shows that the lasso automatically adapts to β∗—the sparser β∗ is, the

smaller the estimation error bound.

This error bound (3.2), however, is not true in general when c 6= ‖β∗‖1. While (3.2) provides an

O((σ2n−1 log p)
1
2 ) error decaying rate, the minimax result in [151] shows that no estimator can

achieve an error decaying rate better than O((σ2n−1 log p)
1
4 ) for all β∗ ∈ cB1. This gap is due

to the possibility that β∗ may lie strictly in cB1 or, in other words, c > ‖β∗‖1.

Therefore, a more general estimation error bound for the lasso is needed. Especially, a satis-

factory estimation error bound for the lasso should be 1) sharp enough to recover (3.2) that

varies with the sparsity of β∗, and 2) able to characterize the effect of the quantity c −‖β∗‖1 on

the estimation error.

Existing results do not provide such a satisfactory error bound. The proof in [87] for (3.2) fails

when c is strictly larger than ‖β∗‖1. While the results in [148, 183] are valid as long as c ≥ ‖β∗‖1,
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the derived bounds are independent of β∗, and hence not sharp enough to recover (3.2). The

small-ball approach yields an estimation error bound that depends on β∗ [129, Theorem 4.6],

but the dependence is implicit, and even whether it can recover (3.2) is unclear. The results in

[120, 147] recover (3.2) when c = ‖β∗‖1; the dependence on c −‖β∗‖1, however, is also vague.

The paper [151] assumed that β∗ lies in an `q -norm ball Bq , q ∈ [0,1], and derived an esti-

mation error bound for a lasso-like estimator, for which the `1-norm constraint in (3.1) is

replaced by the corresponding `q -norm constraint. In contrast to [151], this paper will also

consider the same assumption on β∗, but analyze the estimation performance of the lasso

defined by (3.1) where an `1 norm constraint is used (cf. Corollary 3.15).

We are not aware of any existing work that discusses the estimation error of the lasso when

c < ‖β∗‖1, though the analysis in [120] can be easily extended to this case, and yield an

estimation error bound that is implicitly dependent on ‖β∗‖1. Note that in this case, the

lasso cannot be consistent, i.e., the estimation error is always bounded away from zero no

matter how large the sample size n is, because β∗ is not a feasible solution of the optimization

problem (3.1).

We note that while there are many well-studied estimators closely related to the lasso, such

as the penalized lasso, Dantzig selector, square-root lasso, and basis pursuit-type estimators

[22, 25, 50, 134, 177], the analysis techniques in the cited works cannot be directly applied to

study the lasso when c > ‖β∗‖1. See Section 3.3.2 for a detailed discussion.

3.1.2 Contributions

The main result of this paper, Theorem 6.1, provides a non-asymptotic estimation error bound

that is valid for any c ≥ ‖β∗‖1, and for the case when β∗ is not exactly sparse. It is sharp as it

recovers (3.2) when c = ‖β∗‖1 (cf. Corollary 3.12). For the general case, it shows the following

(cf. Corollary 3.15).

• For estimating any β∗ ∈ cB1, the lasso is minimax optimal as long as c ≥ ‖β∗‖1. The

worst case (with respect to where β∗ lies in cB1) error decaying rate is

‖β̂n −β∗‖2 =O

((
σ2 log p

n

) 1
4
)

.

• For estimating any weakly sparse β∗ ∈ cB1 that is to mean it has bounded `q -norm for

some q ∈ (0,1], the lasso is minimax optimal if c = ‖β∗‖1. The worst case error decaying

rate is

‖β̂n −β∗‖2 =O

((
σ2 log p

n

) 1
2− 1

4 q)
.
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Formal statements can be found in Section 3.4.

The results in this paper are non-asymptotic, i.e., the error bounds (and the corresponding

probability bounds) are valid for all finite values of the sample size n, parameter dimension p,

sparsity level s, and other parameters that will be specified in Section 3.4.

3.2 Preliminaries

Fix K ⊆ Rp and λ ∈ R. The notations K − v and λK denote the sets {u − v : u ∈K } and

{λu : u ∈K }, respectively. The notation K denotes the conic hull of K , i.e.,

K := {
ρv

∣∣ v ∈K ,ρ ≥ 0
}

.

The following notions about r.v.’s are necessary for our proof.

Definition 3.1. A random vector η ∈Rp is isotropic, if for any v ∈Rp ,

E〈η, v〉2 = ‖v‖2
2.

Definition 3.2. A random vector η ∈Rp is subgaussian, if the r.v. 〈η, v〉 is subgaussian for all

v ∈Rp . The subgaussian norm of a subgaussian random vector η is defined as

‖η‖ψ2 := sup
{‖〈η, v〉‖ψ2

∣∣ v ∈Rp ,‖v‖2 = 1
}

.

Example 3.3. A vector of either i.i.d. standard normal (Gaussian with zero mean and unit

variance) or i.i.d. Rademacher (random sign) r.v.’s is subgaussian.

The Gaussian width is useful when studying a collection of subgaussian r.v.’s indexed by a

subset in the metric space (Rp ,‖ ·‖2) [169, Theorem 2.4.1].

Definition 3.4 (Gaussian width). The Gaussian width of a set K ⊆Rp is given by

w(K ) :=E sup{〈g , v〉 : v ∈K } ,

where g is a vector of i.i.d. standard normal r.v.’s.

By Proposition 3.10 below, the Gaussian width of a set of the form C ∩B2, where C ⊆Rp is

a closed convex cone, characterizes the sample size required for the lasso to have a small

estimation error. We always have w(C ∩B2) ≤p
p. By Proposition 3.10 and Theorem 3.11,

this implies the possibility of doing estimation when n < p.

Proposition 3.5. We have the following:

1. If K1 ⊆K2, then w(K1) ≤ w(K2).
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2. If K =Rp , then w(K ∩B2) =p
p.

Proof. The first assertion is obvious by definition. The second assertion is because

w(Rp ∩B2) = w(B2) = (1/
p

p)E‖g‖2
2 =

p
p,

where g is a vector of i.i.d. standard normal r.v.’s.

3.3 Relaxed restricted strong convexity

The key notion for deriving the results in this paper is the relaxed restricted strong convexity

(RSC) condition introduced in our unpublished work [120]. This section provides a brief

discussion on the relaxed RSC condition, specialized for the lasso.

3.3.1 Definition of the relaxed RSC condition

Conventionally, linear regression is solved by the least-squares (LS) estimator, which works

as long as the Hessian matrix Hn := ∇2 fn(β∗) ≡ n−1X T X is non-singular. Under the high-

dimensional setting where n < p, however, the Hessian matrix Hn is always singular, and the

LS approach fails, as illustrated by [43, Fig. 1].

The idea of the relaxed RSC condition is to require, only in some directions, that the Hessian

matrix Hn behaves like a non-singular matrix.

Definition 3.6 (Feasible Set). The feasible set is defined as

F := cB1 −β∗ = {
β−β∗ ∣∣β ∈ cB1

}
.

That is, the feasible set is the set of all possible error vectors.

Definition 3.7 (Relaxed RSC [120]). The (µ, tn)-relaxed RSC condition holds for some µ > 0

and tn ≥ 0, if and only if for all v ∈F \ tnB2,

〈∇ fn(β∗+ v)−∇ fn(β∗), v〉 ≥µ‖v‖2
2.

Remark 3.8. The parameter tn in general can scale with the sample size n; therefore the sub-

script n is added.

Proposition 3.9. The (µ, tn)-relaxed RSC condition is equivalent to requiring

min

{
vT Hn v

‖v‖2
2

∣∣∣∣∣ v ∈F \ tnB2

}
≥µ,

i.e., it requires the restricted smallest eigenvalue of Hn with respect to F \ tnB2 is bounded

below by µ.
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Proof. By direct calculation, we obtain

〈∇ fn(β∗+ v)−∇ fn(β∗), v〉 = vT Hn v.

The validity of assuming the relaxed RSC condition is verified by the following proposition,

which shows that as long as the sample size n is sufficiently large (while it can be still less than

p), the relaxed RSC condition can hold with high probability.

Proposition 3.10. Suppose that the rows of the design matrix X are i.i.d., isotropic, and sub-

gaussian with subgaussian norm α > 0. There exist constants c1,c2 > 0 such that for any

δ ∈ (0,1), if

p
n ≥ c2

1α
2w(F \ tB2 ∩B2) , (3.3)

for some t ≥ 0, the (1−δ, t )-relaxed RSC condition holds with probability at least 1−e−c2δ
2n/α4

.

Proof. Assume that (3.3) is satisfied. By [130, Theorem 2.3], with probability at least 1−e−c2δ
2n ,

we have

‖X v‖2
2

n
= 〈v, Hn v〉

n
≥ (1−δ)‖v‖2

2 ,

for any v ∈F \ tB2. The proposition follows by Proposition 3.9.

3.3.2 Discussions

One interesting special case of Proposition 3.10 is when β∗ has only s < p non-zero entries

and c = ‖β∗‖1. In this case, we can simply choose tn ≡ 0; then F \ tnB2 reduces to F , called

the tangent cone in [50]. By [50, Proposition 3.10], the inequality (3.3) can be guaranteed, if

p
n ≥ c2

1α
2

√
2s log

( p

s

)
+ 5

4
s.

Notice that the right-hand side can be much smaller than
p

p.

This observation is the main idea behind existing works on high-dimensional sparse parameter

estimation in [177, 22, 25, 50, 134], to cite a few. Roughly speaking, the approach in the cited

works can be summarized as follows.

1. Identify a convex cone K (possibly with a controlled small perturbation [134, 150]) in

which the error vector β̃n −β∗ lies, where β̃n denotes the estimator under consideration.

2. Derive a lower bound on the sample size n, such that the RSC (relaxed RSC with tn ≡ 0,

not necessary with respect to the `2-norm [177]) with respect to K holds with high

probability.
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3.4. Main result and its implications

3. Given that the RSC condition holds, the Hessian Hn = n−1X T X behaves like a non-

singular matrix with respect to the error vector, and classical approaches for analyzing

the estimation error for the LS estimator applies.

While this existing approach is valid for analyzing the penalized least squares estimator,

Dantzig selector, square-root lasso, and basis pursuit-type estimators as shown in [22, 177,

25, 50, 134], it is not applicable to the lasso. When c > ‖β∗‖1, the conic hull of the set of all

possible error vectors of the lasso, β̂n −β∗, is the whole space Rp , and hence requiring the

relaxed RSC condition with tn=0 is equivalent to requiring the non-singularity of the Hessian

Hn , which cannot hold when n ¿ p.

The next section shows that the relaxed RSC condition with a non-zero tn suffices for deriving

minimax optimal estimation error bounds for the lasso.

3.4 Main result and its implications

The main theorem requires the following assumptions to be satisfied.

Assumption 1. The noise w is a vector of i.i.d. mean-zero subgaussian r.v.’s of unit subgaussian

norm.

Assumption 2. The design matrix X is normalized, i.e.,
∑

j X 2
i , j ≤ n for all i ≤ p.

Assumption 3. The (µ, tn)-relaxed RSC condition holds for some µ, tn > 0.

The first assumption on the noise is valid in the standard Gaussian linear regression model,

where w is a vector of i.i.d. standard normal r.v.’s, and the persistence framework in [129],

where w is a vector of i.i.d. mean-zero bounded r.v.’s. The second assumption is standard;

recall that we have introduced this assumption in Chapter 2. We had discussed the validity of

the third assumption in Section 3.3.

Theorem 3.11. If Assumptions 1–3 are satisfied, then there exists a constant c3 > 0 such that,

for any τ> 0 and S ⊆ {1, . . . , p },

‖β̂n −β∗‖2 ≤ max

 tn ,
c3
p

1+τ
µ

·σ
√

log p

n
γ(tn ;β∗,S )


with probability at least 1−ep−τ, where

γ(tn ;β∗,S ) := 2
√

|S |+ 2‖β∗
S c‖1 + (c −‖β∗‖)

tn
. (3.4)

Proof. See Section 3.A.
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Theorem 3.11 immediately recovers the well-known result (3.2) up to a constant scaling.

Corollary 3.12. Suppose that β∗ has s non-zero entries, and c = ‖β∗‖1 in (3.1). Then if As-

sumptions 1–3 are satisfied, there exists a constant c3 > 0 such that, for any τ > 0, we have

‖β̂n −β∗‖2 ≤ 2c3
p

1+τ
µ

·σ
√

s log p

n
,

with probability at least 1−ep−τ.

Proof. Recall that in this case (cf. Section 3.3), the relaxed RSC can hold with tn ≡ 0, as

discussed in Section 3.3. Choosing tn ≡ 0 and S as the support set of β∗ in Theorem 3.11

completes the proof.

In general, β∗ may not be exactly sparse, and in practice, c can hardly be chosen as exactly

‖β∗‖1.

Definition 3.13 (Weak sparsity [134]). A vector v ∈ Rp is q-weakly sparse for some q ∈ [0,1],

if and only if there exists some Cq > 0 such that ‖v‖q :=∑
i |vi |q ≤Cq .

Remark 3.14. A 0-weakly sparse parameter is exactly sparse.

Corollary 3.15. Assume that β∗ is q-weakly sparse for some q ∈ [0,1], log p ¿ n, and Assump-

tions 1–3 are satisfied with

tn =


Θ

(√
Cq

(
(1+τ)σ2 log p

µ2n

) 1
2− 1

4 q
)

if c = ‖β∗‖1 ,

Θ

(√
δ+Cq

(
(1+τ)σ2 log p

µ2n

) 1
4

)
if c > ‖β∗‖1 .

(3.5)

where δ := c −‖β∗‖1 and Cq := ‖β∗‖q . Then we have, with probability at least 1−ep−τ,

‖β̂n −β∗‖2 =O(tn)

for any τ ∈ (0,1).

Proof. See Section 3.B.

Remark 3.16. If tn converges too fast to zero with respect to increasing n, the sample complexity

bound (3.3) may not hold, and the validity of Assumption 3 in Corollary 3.15 would be in

question. However, since

w(F \ tnB2 ∩B2) = w(F \B2 ∩B2)

tn
=Θ

(
1

tn

)
,

the sample complexity bound (3.3) can hold as long as tn = O(n−1/2), which is satisfied in

Corollary 3.15.
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3.5. Discussions

The minimax error bound in [151, Theorem 3] shows that no estimator can achieve a better

error decaying rate than

O

(√
Cq

(
σ2 log p

n

) 1
2− 1

4 q)

with probability larger than 1/2 in the worst case, for estimating a q-weakly sparse parameter,

q ∈ (0,1]. According to Corollary 3.15, this implies:

• The lasso with c ≥ ‖β∗‖1 is minimax optimal (up to a constant scaling) for estimating a

parameter with bounded `1-norm.

• The lasso with c = ‖β∗‖1 is minimax optimal (up to a constant scaling) for estimating a

q-weakly sparse parameter, q ∈ (0,1].

Note that the error decaying rates in the two assertions are for the worst case. It is possible to

have a better error decaying rate in special cases, as shown by Corollary 3.12.

3.5 Discussions

We have focused on the case where the design matrix X has subgaussian rows and the noise

w has subgaussian entries. This is simply for convenience of presentation, and the analysis

framework can be easily extended to more general cases.

Proposition 3.10, which shows the validity of the relaxed RSC condition, can be easily extended

for design matrices whose rows are not necessarily subgaussian, with a possibly worse sample

complexity bound compared to (3.3). The interested reader is referred to [108, 145, 166] for

the details.

Theorem 3.11 can be easily extended for possibly non-subgaussian noise. One only needs to

replace the Hoeffding-type inequality in the proof of Proposition 3.20 by Bernstein’s inequality

[126] or other appropriate concentration inequalities for sums of independent r.v.’s. Note that

the obtained estimation error bound may be worse, as shown in [122].

Finally, we remark that by Proposition 3.10 and the union bound, Theorem 3.11 also implies

an estimation error bound for the random design case, where the design matrix X is a random

matrix independent of the noise w . Such an error bound can be useful for compressive sensing,

where the design matrix is not given, but can be chosen by the practitioner.

Corollary 3.17. Suppose the rows of the design matrix X are i.i.d., isotropic, and subgaussian

with subgaussian norm α> 0, and X is independent of the noise w. Then there exist constants

c1,c2,c3 > 0 such that, if (3.3) and Assumptions 2 and 3 are satisfied, for any τ > 0 and S ⊆
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{1, . . . , p }, we have

‖β̂n −β∗‖2 ≤ max

 tn ,
c3
p

1+τσ
1−δ

√
log p

n
γ(tn ;β∗,S )


with probability at least 1−ep−τ−exp(−c2δ

2n/α4) (with respect to the design matrix X and

the noise w), where γ(tn ;β∗,S ) is defined as in (3.4).

Corollary 3.15 can be extended for the random design case in the same manner.

3.A Proof of Theorem 3.11

Define ∆n := β̂n −β∗ for convenience.

By definition, ∆n lies in either tnB2 or F \ tnB2. In the former case, it holds trivially that

‖∆n‖2 ≤ tn . We now consider the latter case.

Proposition 3.18. If the (µ, tn)-relaxed RSC condition holds for some µ, t > 0, and if ∆n ∈
F \ tB2, then we have

‖∆n‖2 ≤ 1

µ

‖∆n‖1

‖∆n‖2

〈−∇ fn(β∗),∆n〉
‖∆n‖1

. (3.6)

Proof. By the relaxed RSC condition, we have

〈∇ fn(β̂n)−∇ fn(β∗),∆n〉 ≥µ‖∆n‖2. (3.7)

Since (3.1) defines a convex optimization problem, we have, by the optimality condition of β̂n

[136],

〈−∇ fn(β̂n),∆n〉 ≥ 0. (3.8)

Summing up (3.7) and (3.8), we obtain

〈−∇ fn(β∗),∆n〉 ≥µ‖∆n‖2
2,

which implies

‖∆n‖2 ≤ 1

µ

‖∆n‖1

‖∆n‖2

〈−∇ fn(β∗),∆n〉
‖∆n‖1

.

This completes the proof.

The rest of this subsection is devoted to deriving an upper bound of the right-hand side of

(3.6), which is independent of ∆n .
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3.A. Proof of Theorem 3.11

We first derive a bound on (‖∆n‖1/‖∆n‖2).

Proposition 3.19. The estimation error satisfies

‖∆n‖1 ≤ 2(‖(∆n)S ‖1 +‖β∗
S c‖1)+ (c −‖β∗‖),

for any S ⊆ {1, . . . , p }, where S c := {1, . . . , p } \S .

Proof. By definition, we have β̂n ∈ cB1, and hence

c ≥ ‖β̂n‖1 = ‖(β∗+∆n)S + (β∗+∆n)S c‖1

≥ ‖β∗
S + (∆n)S c‖1 −‖β∗

S c + (∆n)S ‖1

= ‖β∗
S ‖1 +‖(∆n)S c‖1 −‖β∗

S c‖1 −‖(∆n)S ‖1

= ‖β∗‖1 −2‖β∗
S c‖1 +‖∆n‖1 −2‖(∆n)S ‖1,

which proves the proposition.

By Proposition 3.19, we obtain

‖∆n‖1

‖∆n‖2
≤ 2

‖(∆n)S ‖1

‖∆n‖2
+ ‖2β∗

S c‖1 + (c −‖β∗‖)

‖∆n‖2

≤ 2
‖(∆n)S ‖1

‖(∆n)S ‖2
+ 2‖β∗

S c‖1 + (c −‖β∗‖)

tn

≤ 2
√

|S |+ 2‖β∗
S c‖1 + (c −‖β∗‖)

tn
, (3.9)

if ∆n ∈F \ tnB2.

Now we bound the term 〈−∇ fn(β∗),∆n〉/‖∆n‖1.

Proposition 3.20. If the design matrix X is normalized, i.e.,
∑

j X 2
i , j ≤ n for all i ≤ p, there

exists a universal constant c3 > 0 such that for any τ> 0, we have

〈−∇ fn(β∗),∆n〉
‖∆n‖1

≤ c3σ

√
(1+τ) log p

n
,

with probability at least 1−ep−τ.

Proof. We note that

〈−∇ fn(β∗),∆n〉
‖∆n‖1

≤ sup
{ 〈−∇ fn(β∗), v〉 ∣∣ ‖v‖1 = 1

}
= ‖−∇ fn(β∗)‖∞ .
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By a direct calculation, we obtain

(∇ fn(β∗))i = 1

n

n∑
j=1

Xi , j w j ,

for all i ≤ p; hence, by the Hoeffding-type inequality for subgaussian r.v.’s (cf. Theorem A.5),

there exists a universal constant L > 0 such that for any ε> 0,

P
{ |(∇ fn(β∗))i | ≥ ε

}≤ e ·exp

(
−Lε2n

σ2

)
.

By the union bound, this implies

P
{‖∇ fn(β∗)‖∞ ≥ ε}≤ p∑

i=1
P { |(∇ fn(β∗))i | ≥ ε }

≤ e ·exp

(
−Lε2n

σ2 + log p

)
.

Choosing

ε=σ
√

(1+τ) log p

Ln

completes the proof.

Theorem 3.11 follows by combining (3.9) and Proposition 3.20.

3.B Proof of Corollary 3.15

Define

Sn := {
i
∣∣ |β∗

i | ≥ ρn
}

,

for some ρn > 0. Then we have

|Sn | ≤Cqρ
−q
n ,

as

Cq ≥ ∑
i∈Sn

|β∗
i |q ≥ |Sn |ρq

n .
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3.B. Proof of Corollary 3.15

Moreover, we have

‖β∗
S c

n
‖1 =

∑
i∈S c

n

|β∗
i |q |β∗

i |1−q

≤ ∑
i∈S c

n

|β∗
i |qρ1−q

n

≤Cqρ
1−q
n .

Applying Theorem 3.11 with S =Sn , we obtain

‖β̂n −β∗‖2 ≤ max

 t ,
c3
p

1+τσ
µ

√
log p

n
γn


≤ tn + c3

p
1+τσ
µ

√
log p

n
γn , (3.10)

with probability at least 1−ep−τ, where

γn := 2
√

Cqρ
−q
n + 2Cqρ

1−q
n + (c −‖β∗‖1)

tn
.

The corollary follows by optimizing over tn and ρn by the inequality for arithmetic and ge-

ometric means on (3.10). Specifically, the best possible error decaying rate can be achieved

when

ρn =Θ
((

(1+τ)σ2 log p

µ2n

) 1
2
)

,

and tn is chosen as in (3.5).
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4 A Frank-Wolfe algorithm for Poisson
phase retrieval

In this and the following two chapters, we address convex optimization problems where the

objective functions are not smooth with respect to Definition 1.1. In particular, we will mainly

focus on the exp-linear function: f (x) =− log〈a, x〉 for some vector a or f (X ) =− logTr(AX )

for some matrix A. Notice that an exp-linear function is not smooth, if 〈a, x〉 (or Tr(AX )) is

allowed to be arbitrarily close to zero; therefore, many existing analyses of convex optimization

algorithms do not apply. Section 4.3 provides a detailed discussion, regarding why existing

algorithms are not guaranteed to converge for exp-linear functions.

As discussed in Chapter 1, exp-linear functions appear in many applications. In this chapter,

we consider the specific application of phase retrieval with Poisson noise. Adopting the idea of

PhaseLift, the maximum-likelihood estimator is computed via minimizing a sum of exp-linear

losses on a nuclear norm ball. In practice, the dimension of the parameter is typically so high

that computing the projection onto the nuclear norm ball is computationally expensive. The

Frank-Wolfe algorithm then becomes a competitive choice, as it avoids the projection step,

unlike most existing optimization algorithms.

Unfortunately, existing convergence guarantees for the Frank-Wolfe algorithm require the

objective function to be smooth. We prove in this chapter that, with a slightly modified step

size selection rule, the Frank-Wolfe algorithm provably converges for a prototype convex

optimization problem, of which Poisson phase retrieval is a special case.

This chapter is based on the joint work with Gergely Odor et al. [143].

4.1 Introduction

Phase retrieval is the problem of estimating a complex-valued signal from intensity measure-

ments, which arises in many applications such as X-ray crystallography, diffraction imaging,

astronomical imaging, and many others [165].

We focus on the Poisson noise model in this paper. Formally speaking, we are interested
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Chapter 4. A Frank-Wolfe algorithm for Poisson phase retrieval

in estimating a signal x\ ∈ Cp , given a1, . . . , an ∈ Cp and measurement outcomes y1, . . . , yn ,

modeled as independent random variables following the Poisson distribution:

P
{

yi = y
}= e−λiλ

y
i

y !
, y ∈ {0}∪N ,

where λi := |〈ai , x\〉 |2 for all i . In practice, each yi represents the number of photons detected

by the sensor [73].

The maximum-likelihood (ML) estimation approach yields a non-convex optimization prob-

lem that is difficult to solve. A recent approach to circumvent this computational issue is

PhaseLift [39, 44]. The PhaseLift approach casts the phase retrieval problem as a low rank

matrix recovery problem, for which we can apply any convex optimization-based estimator,

such as the basis pursuit like estimator [154], nuclear-norm penalized estimator [42], and

lasso-like estimator [63].

Following the PhaseLift approach, we show in Section 4.2 that we can recover x\ by solving

X̂ ∈ argmin
X

{
f (X )

∣∣ X ∈X
}

, (4.1)

where

f (X ) :=
n∑

i=1

{−yi log[Tr(Ai X )]+Tr(Ai X )
}

, (4.2)

X := {
X ∈Cp×p

∣∣ X ≥ 0, ‖X ‖∗ ≤ c
}

, (4.3)

for some c > 0, Ai := ai aH
i . The notation ‖ ·‖∗ denotes the nuclear norm—the sum of singular

values. A rule of thumb for choosing the parameter c is presented in Section 4.2.1. We then

find an eigenvector associated with the largest eigenvalue of X̂ as our estimate of x\.

It is easy to check that (4.1) is a convex optimization problem. Existing convex optimization

tools, however, are not directly applicable due to two issues.

1. Most existing algorithms, such as [172], are computationally expensive for nuclear norm

constraints, as they require computing the eigenvalue decomposition of a matrix in

Cp×p at each iteration.

2. While Frank-Wolfe-type algorithms are relatively scalable for nuclear norm constraints

[98], existing theoretical convergence guarantees for these Frank-Wolfe-type algorithms

are not valid for our loss function in (4.1).

We will address the issues in detail in Section 4.3.

In this chapter, we show that the standard Frank-Wolfe algorithm converges for the optimiza-

tion problem (4.1), with a properly chosen parameter to be explicitly specified in Theorem 4.2.
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4.2. Poisson phase retrieval by convex optimization

Our theorem guarantees that the Frank-Wolfe algorithm converges at the rate O(1/t ) globally,

where t is the iteration counter. Numerical experiments show that the empirical convergence

rate can be even faster. The algorithm shares the same merit of the standard Frank-Wolfe

algorithm, in the sense that it is scalable when dealing with a nuclear norm constraint.

To the best of our knowledge, this is the first theoretical guarantee for the Frank-Wolfe al-

gorithm applied to a non-Hölder (and hence non-Lipschitz) continuous gradient objective

function.

4.2 Poisson phase retrieval by convex optimization

For the Poisson noise model, the ML estimator of x\ is given by

x̂ML ∈ argmin
x

{
L(x)

∣∣ x ∈Cp }
, (4.4)

where L is the negative log-likelihood function (up to a constant shift):

L(x) :=
n∑

i=1

[−yi log
(|〈ai , x〉|2)+|〈ai , x〉|2] .

The function L, unfortunately, is non-convex.

Motivated by the PhaseLift approach [39, 44], we can reformulate the non-convex optimization

problem (4.4) as follows. Define Ai := ai aH
i for all i , and X \ := x\(x\)H. We have

| 〈ai , x\〉 |2 = Tr
(

Ai X \
)

, ∀i ,

and hence we can rewrite the original optimization problem as

x̂ML ∈ argmin
x

{
f (X )|X = xxH, x ∈Cp}

,

where f is given in (4.2). This is equivalent to the optimization problem

X̂ML ∈ argmin
X

{
f (X )|X ≥ 0,rank(X ) = 1, X ∈Cp×p}

.

Note that given X̂ML, x̂ML can be recovered via the relation X̂ML = x̂MLx̂H
ML.

As the variable X is always of rank 1, we consider the convex relaxation given in (4.1). We then

find an eigenvector associated with the largest eigenvalue of X̂ as our estimate of x\.

It is easily verified that (4.1) is a convex optimization problem.
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4.2.1 A rule of thumb for setting the constraint

In the convex optimization formulation (4.1), we leave one parameter c unspecified. The ideal

setting should be c = ‖X \‖∗ = ‖x\‖2
2. While this setting may not be practically feasible, we need

c > ‖x\‖2
2 to ensure that X \ is in the constraint set X .

The following theorem shows that choosing c = (1/n)
∑n

i=1 yi suffices, if the sampling scheme

satisfies an isometry property with high probability.

Proposition 4.1. Let A ∈ Cn×p , whose i -th row is given by aH
i . Assume that there exists some

ε> 0 such that

(1−ε)‖x\‖2
2 ≤

∥∥∥∥ 1p
n

Ax\
∥∥∥∥2

2
≤ (1+ε)‖x\‖2

2 (4.5)

with probability at least 1−pε. Then we have, for any t > 0,

ȳ := 1

n

n∑
i=1

yi > (1+ε)‖x\‖2
2 + t

with probability at least 1−pε−pt , where

pt := exp

[
−nt

4
log

(
1+ t

2(1+ε)‖x\‖2
2

)]
.

We defer the proof to Section 4.A. If x\ is sparse, the isometry condition (4.5) can be implied

by the restricted isometry property (RIP) of A [38, 76, 160]. Even without sparsity, if n is

sufficiently large, a matrix A of independent and identically distributed (i.i.d.) subgaussian

random variables can also satisfy (4.5) with high probability (see, e.g., [76]).

While the isometry property of the Fourier measurement with a coded diffraction pattern is

unclear currently, we show via numerical experiments in Section 4.5 that this rule of thumb

works well on both synthetic and real-world data.

4.3 Review of convex optimization tools

We address why several existing convex optimization algorithms are not applicable to (4.1) in

this section.

Note that (4.1) is a constrained convex minimization problem with a differentiable loss

function, and there are many well-known algorithms for solving such a problem. State-

of-the-art choices for large-scale applications include the proximal gradient-type methods

[7, 20, 56, 137, 139, 172], alternating direction method of multipliers (ADMM) [69], and Frank-

Wolfe-type algorithms (a.k.a. conditional gradient methods) [77, 79, 86, 98, 138, 187]. There

are also well-developed MATLAB packages available on the Internet [21, 172]. Those seemingly
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4.3. Review of convex optimization tools

Algorithm 1 (Frank-Wolfe algorithm)

Choose an arbitrary x0 ∈X

for t = 0, . . . ,T do
Compute vt ∈ argmins

{ 〈s,∇ f (xt )〉 ∣∣ s ∈X
}

Update xt+1 = (1−τt )xt +τt vt

end for

ready-to-use convex optimization tools, however, are not desirable for solving our problem

(4.1) for two issues.

The first issue is scalability. When applied to the problem (4.1), both proximal gradient-type

methods and the ADMM require computing the prox-mapping given by

prox(X ) := argmin
S

{ω(S −X ) : S ∈X }

for a given strongly convex “distance generating function” (DGF) ω. A standard choice of

DGF for matrix variables is ω(X ) := (1/2)‖X ‖2
F, where ‖ ·‖F denotes the Frobenius norm. For a

positive semi-definite matrix X ∈Cp×p , whose eigenvalue decomposition is X =U diag(v)U H,

we have prox(X ) =U diag(ṽ)U H, where ṽ is the Euclidean projection of v onto the probability

simplex in Rp scaled by c. While the prox-mapping is simple to describe, the eigenvalue

decomposition renders the algorithm slow when the parameter dimension p is large, as its

computational complexity is in general O(p3). Similar issues exist when we choose other

DGFs. See the next chapter for an example, where ω is chosen as the quantum relative entropy.

Scalability is a major reason why Frank-Wolfe-type algorithms have been attracting attention

in recent years. We summarize the Frank-Wolfe algorithm (when applied to (4.1)) in Algorithm

1, where {τt } is a sequence of real numbers in (0,1] to be specified. There is a slight abuse

of notations; when applied to our specific problem (4.1), the variables x0, . . . , xt and ∇ f (xt )

should be understood as their matrix counterparts X0, . . . , X t and ∇ f (X t ), respectively.

The computational bottleneck is in computing vt (or its matrix counterpart Vt ). For the specific

constraint set X given in (4.3) and any positive semi-definite matrix X t , it can be easily verified

that Vt is a scaled rank-one approximation of ∇ f (X t ), and hence can be efficiently computed

by the Lanczos method [98]. More precisely, let ut ∈Cp be an eigenvector of ∇ f (X t ) associated

with the largest eigenvalue. We have Vt = c(ut uH
t ).

Unfortunately, the second issue arises: none of the existing theoretical convergence guarantees

for Frank-Wolfe-type algorithms, to the best of our knowledge, is valid for the specific loss

function (4.2). The result in [98] requires a bounded curvature condition; [77, 79, 86] require

the gradient of the objective function to be Lipschitz continuous; [138] requires a weaker

condition that the gradient is Hölder continuous; the Frank-Wolfe like algorithm in [187]

requires the gradient of the conjugate of the objective function to be Hölder continuous.

However, the objective function given in (4.2) does not satisfy the Hölder gradient conditions.
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The second issue also exists for proximal gradient-type methods and the ADMM, as [7, 20,

56, 69, 137, 139] also require the Lipschitz continuity of the gradient. The only exception is

SCOPT—a proximal gradient method for composite self-concordant minimization—proposed

in [172]. Notice that the logarithmic function is a typical example of self-concordant functions.

Recently, there have been some other computationally efficient approaches to phase retrieval

under the noiseless or additive-noise setting [11, 41, 53, 81, 141]. The theoretical guarantees

therein do not directly extend for the Poisson noise case. After we finished this work, a gradient

descent-type algorithm aiming at directly computing the ML estimator was proposed in [54].

4.4 Convergence guarantee

In this section, we provide a convergence guarantee for the Frank-Wolfe algorithm in Algorithm

1, for the prototype constrained convex optimization optimization problem:

g? := min
X

{
g (X )

∣∣ X ∈C
}

(4.6)

where C is a nuclear norm ball in Rp×p , and

g (X ) := Tr(ΨX )−
n∑

i=1
ηi logTr(Φi X ) (4.7)

for some Ψ ∈ Rp×p , non-negative integers η1, . . . ,ηn , and positive semi-definite matrices

Φ1, . . . ,Φn ∈Rp .

We start with some definitions. Define dC as the diameter of C , i.e.,

dC := max
X ,Y

{‖X −Y ‖2 | X ,Y ∈C } ,

where ‖ · ‖2 denotes the spectral norm—the operator norm induced by the `2-norm. Let

dΦ := maxi ‖Φi‖ and dΨ := ‖Ψ‖. Furthermore, we define

µ̄ := max
i ,x

{ Tr(Φi X ) | 1 ≤ i ≤ n, X ∈C } ,

µ := min
i

{ Tr(Φi X0) | 1 ≤ i ≤ n } .

Notice that we need to choose the initial iterate X0 such that µ > 0, due to the presence of

logarithmic functions in g .

Our main theoretical result is the following theorem:

Theorem 4.2. Consider the optimization problem (4.6). The iterates (X t )t≥0 given by Algorithm

1 with

τt := 2

t +3
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satisfies

g (X t )− g? < 8γ2d 2
Φd 2

C

t +2
+ 2dC ‖∇g (X0)‖
µ(t +1)(t +2)

The quantity γ := max{γ1,γ2,γ3 } is a constant independent of t , where

γ1 := 2dΨdC

µ
, γ2 := 2

ndη
µ

(
4nµ̄dη
µ

+1

)2

,

γ3 :=
64n2µ̄2d 2

η

µ3

(
4nµ̄dη
µ

+1

)
.

Consequently, we have g (X t )− g? =O(1/t ).

Remark 4.3. Our choice of τt is slightly different from the standard one in [98, 138], where

τt := 2/(t +2). This is due of technical concerns in the proof.

Theorem 4.2 establishes the validity of using the Frank-Wolfe algorithm to solve (4.1). We note

that this theorem is a worst case guarantee for all loss functions of the form (4.7). As we will see

in the next section, empirically, the constants and the convergence rate can be much better.

We defer the proof to Section 4.B. The key idea in the proof is to show the boundedness

of ‖∇g (X t+1)−∇g (X t )‖ for all t , where ‖ · ‖ denotes the spectral norm. This bound, by the

framework in [138], is sufficient to establish the convergence guarantee. This is simple if the

gradient is Hölder continuous, since then

‖∇g (X t+1)−∇g (X t )‖ ≤ Lν‖X t+1 −X t‖ν∗ ≤ Lνdν
C

for some ν ∈ (0,1] and Lν > 0. For the optimization problem (4.1) we consider, this issue can

be reduced to the boundedness of

Ct :=
n∑

i=1

ηi

Tr(Φi X t )

for all t . We complete the proof by showing that Ct is bounded above by a constant for all t , if

we choose τt = 2/(t +3).

4.5 Numerical results

In this section, we present numerical evidence to assess the convergence behaviour and the

scalability of the proposed Frank-Wolfe algorithm.

Our numerical experiment is based on coded diffraction pattern measurements with the

octonary modulation, which were considered in [41, 187] for the noiseless model. A similar
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Figure 4.1 – Convergence behaviours of the algorithms for different dimensions in the first
experiment. Solid lines show the average performance over 10 random trials, and the two
dashed lines show the best and the worst performances, respectively.

setup was also considered also in [40] for the Poisson noise model.

In [40], the MATLAB package TFOCS [21] was used to solve a convex optimization problem

similar to (4.1). The algorithm, however, is not guaranteed to converge for the problem under

our consideration (cf. Section 4.3). We compare the Frank-Wolfe algorithm with SCOPT—a

proximal gradient algorithm for composite self-concordant minimization—proposed in [172].

Recall that the objective function is self-concordant, and hence the algorithms in [172] are

applicable.

In the first experiment, we consider the random Gaussian signal model: We generate x\ as a

random vector in Rp , the real and imaginary parts of the elements of which are independent

and identically standard normal random variables. We run both algorithms starting from the

same Gaussian initial iterate, sampled from the same distribution as x\. We keep track of the

objective value and the elapsed time over the iterations, and compute the approximate relative

objective residual (| f − f ∗|/| f ∗|) as the performance measure, where the actual optimum value

f ? is approximated by f ∗, the minimum objective value obtained by running 200 iterations of

the SCOPT and/or 10000 iterations of the Frank-Wolfe algorithm.

In the second experiment, we test the scalability of the Frank-Wolfe approach, by recovering

a real image as in [41, 187]. We choose the EPFL campus image of 1323×1984 pixels as the

signal to be measured, which corresponds to a signal dimension p = 2624832. We apply the

Frank-Wolfe algorithm to recover three color channels separately, and stop the algorithm

when the recovery error (‖x −x\‖F/‖x\‖F) reached 10−2.
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Figure 4.2 – Each color (blue, green, red) represents one color channel.

In both experiments, we set the constraint parameter c to the mean of the measurements,

following the rule of thumb in Section 4.2.1, and we set the number of different modulating

waveforms L to 20.

We implement Algorithm 1 in MATLAB and use the built-in eigs function, which is based on

the Lanczos algorithm, with 10−3 relative error tolerance, to perform the minimization step of

the Frank-Wolfe algorithm. In the weighting step, we adapt the efficient thin singular value

decomposition updating method of [29] under low rank modifications, as explained in [187],

in order to tame the memory growth.

We time our experiments on a computer cluster, and restricting the computational resource to

8 CPU of 2.40 GHz and 32 GB of memory space per simulation.

Figure 4.1 illustrates the convergence behaviour of the algorithms for different data sizes.

The first three plots on the left correspond to the first experiment. Solid lines show the average

performance over 10 random trials, and the two dashed lines show the best and the worst

instances, respectively. In the first two plots, we observe that the empirical rate of convergence

is about O(t−1.89), which is better than the theoretically guaranteed rate O(t−1). In the third

plot, we show the time required to reach a predefined accuracy level of 10−5 in terms of the

relative objective residual, for different data sizes.

The last two plots of Figure 4.1 correspond to the second experiment, which also provides an

empirical evidence for the estimation quality using the constraint parameter c. Each color

(blue, green, red) represents one color channel.
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Figure 4.3 – An EPFL image of size 1323×1984, reconstructed by 75 iterations of the Frank-
Wolfe algorithm: PSNR = 44.92 dB.

Finally, Figure 4.3 shows the estimate xt , after 75 iterations of the Frank-Wolfe method. The

PSNR of the reconstructed image is 44.92dB.

Notice that, considering the lifted dimensions p2 in the second experiment, even the genera-

tion of a simple iterate X t would require approximately 7 TB of memory space, for a single color

channel, when using the prox-mapping-based solver in SCOPT. By avoiding the computation

of the prox-mapping, and adapting the efficient low rank updates, the Frank-Wolfe algorithm

keeps a low memory footprint, and hence is more scalable compared to the self-concordant

optimization method in SCOPT.

4.6 Discussions

The dependence of the convergence rate on the number of summands n is O(n6). This is un-

satisfactory for applications where the sample size is large—in machine learning applications,

typically, the number of summands n corresponds to the sample size. A future work is to study

the tightness of the convergence rate guarantee.

While we focus on the Poisson phase retrieval problem in this chapter, the main contribution

is in verifying the validity of applying the Frank-Wolfe algorithm to optimization problems of

the form (4.1). Therefore, the application of Theorem 4.2 is not restricted to Poisson phase
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retrieval. One interesting application is quantum state tomography [96]. We will see in the

next chapter that, unfortunately, the per-iteration computational efficiency of the Frank-Wolfe

algorithm does not compensate the relatively slow O(1/t) convergence rate, empirically on

real data-sets.

4.A Proof of Proposition 3.1

Notice that, conditioning on a1, . . . , an , the random variable nȳ is Poisson with mean
∑n

i=1λi .

By the tail bound for Poisson random variables [27, 109], conditioning on a1, . . . , an , we have

for any t > 0,

P { ȳ −E ȳ > t } ≤ exp

[
−nt

4
log

(
1+ t

2λ

)]
,

where λ := (1/n)
∑n

i=1λi .

Recall that λi := |〈ai , x\〉 |2. By the assumption on A, we have (1−δ)‖x‖2
2 ≤λ≤ (1+δ)‖x‖2

2 with

probability at least 1−pδ. Moreover, on this event, we have

P { ȳ − (1+δ)‖x\‖2
2 > t } ≤P { ȳ −λ> t }

≤ exp

[
−nt

4
log

(
1+ t

2(1+δ)‖x\‖2
2

)]
.

This proves the proposition.

4.B Proof of Theorem 5.1

Let {αt }, α0 6= 0, be a sequence of non-negative real numbers. We consider step sizes of the

form

τt =αt+1/St+1, (4.8)

where St :=∑t
k=0αt . Unless otherwise stated, { X t } refers to the sequence of iterates generated

by Algorithm 1, with the step size chosen as in (4.8). Notice that then the convergence rate of

the algorithm depend on the choice of {αt }.

By the convexity of C , it is obvious that X t ∈C for all t . Due to the presence of the logarithmic

function, we also need to verify that X t ∈ dom g for all t .

Proposition 4.4. The following hold.

1. Tr(Φi Vt ) ≥ 0 for all i and t.

2. If Tr(Φi X0) > 0, then Tr(Φi X t ) > 0 for all i and t.
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Proof. See Section 4.B.1.

Now we show the boundedness of Ct for all t , as stated in Section 5. Recall that

Ct :=
n∑

i=1
(ηi /Tr(Φi X t )) .

Lemma 4.5. For any T such that 1−4n(µ̄/µ)dητT > 0, we have Ct ≤C , where C is a constant

independent of t defined as

C := max


2dΨdC

µ
,C0

T∏
i=0

1

1−τi
,

64n2µ̄2d 2
η

µ3

(
1− 4nµ̄dη

µ τT

)
 .

Proof. See Section 4.B.2.

The following lemma mimics [138, Theorem 1]. Define

Bt :=α0 max
X

{ 〈∇g (X0), X0 −X 〉 ∣∣ X ∈X
}+(

t∑
k=1

α2
k

Sk−1

)
γ,

where γ :=C 2d 2
Φd 2

C
.

Lemma 4.6. For any t ≥ 0 and X ∈X , we have

St g (X t ) ≤
t∑

k=0

{
αk

[
g (Xk )+〈∇g (Xk ), X −Xk〉

]}+Bt

Proof. See Section 4.B.3.

Set X = X?, a minimizer, in Lemma 4.6, and notice that

g (Xk )+〈∇g (Xk ), X?−Xk〉 ≤ g?

for all k. We immediately obtain a convergence guarantee for any (at )t≥0.

Corollary 4.7. We have g (X t )− g? ≤ (Bt /St ).

Now we consider the special case where αt = t +1. As then St = (t +1)(t +2)/2, this choice

corresponds to τt = 2/(t +3) as in Theorem 6.1.

Proposition 4.8. Choose αt = t +1. We have

Bt

St
< 8

(
max{γ1,γ2,γ3 }

)2 d 2
Φd 2

C

t +2
+ 2dC ‖∇g (X0)‖

(t +1)(t +2)
,
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where

γ1 := 2dΨdC

µ
, γ2 := 2

ndη
µ

(
4nµ̄dη
µ

+1

)2

,

γ3 :=
64n2µ̄2d 2

η

µ3

(
4nµ̄dη
µ

+1

)
.

Proof. See Section 4.B.4.

4.B.1 Proof of Proposition 4.4

Recall that Vt is always a positive semi-definite matrix of rank 1, as discussed in Section 4.

SinceΦi is also positive semi-definite, this implies Tr(Φi Vt ) ≥ 0 for all i and t .

We prove the second claim by induction. The second claim holds true for t = 0 by assumption.

Suppose Tr(Φi X t ) > 0 for some t ≥ 0 for all i . Because of the assumption thatα0 6= 0, we always

have τt < 1 for all t . Then

Tr(Φi X t+1) = (1−τ)Tr(Φi X t )+τt Tr(Φi Vt )

≥ (1−τ)Tr(Φi X t ) > 0,

where the first inequality is by the first claim.

4.B.2 Proof of Lemma 4.5

Consider the sequence (Ct )t≥0. Roughly speaking, the idea behind the proof is to show that

there exists some T > 0, such that Ct+1 ≤Ct for all t ≥ T ; then we can bound Ct from above by

CT for all t ≥ T , a constant independent of t . Notice that, however, the actual argument in this

proof is slightly more delicate (cf. the proof of Proposition 4.11).

A simple bound on Ct+1 is

Ct+1 =
n∑

i=1

ηi

Tr(Φi X t+1)

≤ 1

(1−τt )

n∑
i=1

ηi

Tr(Φi X t )

= 1

1−τt
Ct , (4.9)

obtained by the fact that

Tr(Φi X t+1) ≥ (1−τt )Tr(Φi X t ) .

This yields the following simple result.
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Proposition 4.9. We have Ct ≤C0
∏t

i=0(1−τt )−1.

However, as 1−τt < 1, the upper bound (4.9) is not sharp enough for our purpose.

Notice that for any k, we have

Ct+1 =
∑
i 6=k

ηi

Tr(Φi X t+1)
+ ηk

Tr(Φk X t+1)

≤ ∑
i 6=k

ηi

(1−τt )Tr(Φi X t )
+ ηk

Tr(Φk X t+1)

= Ct

1−τt
− ηk

(1−τt )Tr(Φk X t )
+ ηk

Tr(Φk X t+1)

= Ct

1−τt
− ηkτt Tr(ΦkVt )

[(1−τt )Tr(Φk X t )]Tr(Φk X t+1)

≤ Ct

1−τt
−ξk (4.10)

where

ξk := τt Tr(ΦkVt )

[(1−τt )Tr(Φk X t )]Tr(Φk X t+1)
;

the last inequality is due to the fact that either ηk = 0 or ηk ≥ 1 in the Poisson phase retrieval

problem. This bound is sharper than (4.9), as ξk is always non-negative.

Proposition 4.10. If Ct > 2µ−1dΨdC , then there exists some k ≤ n such that

1

Tr(Φk X t )
≥

µCt

4nµ̄dη
,

Tr(ΦkVt ) ≥
µ

4
.

Proof. We prove by contradiction. By the definition of Vt , we have

〈Vt ,∇g (X t )〉 ≤ 〈X0,∇g X t 〉 .

Hence,

n∑
i=1

ηi 〈Vt ,Φi 〉
〈X t ,Φi 〉

≥
n∑

i=1

(
ηi 〈X0,Φi 〉
〈X t ,Φi 〉

)
+〈Ψ, X0 −Vt 〉

≥
n∑

i=1

ηi 〈X0,Φi 〉
〈X t ,Φi 〉

−dΨdC

≥µCt −dΨdC ≥
µCt

2
.

LetΩ be the set of i ’s such that 〈X t ,Φi 〉−1 ≥µCt /(4nµ̄dη). Suppose the claim of the proposition
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is false, i.e. for all i ∈Ω, 〈Vt ,Φi 〉 <µ/4. Then we have

n∑
i=1

ηi 〈Vt ,Φi 〉
〈X t ,Φi 〉

= ∑
i∈Ω

ηi 〈Vt ,Φi 〉
〈X t ,Φi 〉

+ ∑
i∉Ω

ηi 〈Vt ,Φi 〉
〈X t ,Φi 〉

<
µ

4
Ct +ndηµ̄

µCt

4nµ̄dη

=
µCt

2
,

a contradiction. This completes the proof.

Assume Ct > 2µ−1dΨdC . By Proposition 4.10 and (4.10), we have

Ct+1 ≤Ct


1

1−τt
−

τtµ

4

(1−τt )
4nµ̄dη
µ

[
(1−τt )

4nµ̄dη
µCt

+τt
µ

4

]
 .

By direct calculation, we obtain Ct+1 ≤Ct , if

1− 4nµ̄dη
µ

τt > 0, (4.11)

Ct ≥ κt :=
64(1−τt )n2µ̄2d 2

η

µ3

(
1− 4nµ̄dη

µ τt

) .

Proposition 4.11. Assume that Ct > 2µ−1dΨdC . Choose T such that (4.11) holds for t = T .

Then we have

Ct ≤ max

C0

T∏
i=0

1

1−τi
,

64n2µ̄2d 2
η

µ3

(
1− 4nµ̄dη

µ τT

)
 .

Proof. Since (τt )t≥0 is a decreasing sequence, the inequality (4.11) holds for all t ≥ T .

If t ≤ T , we can apply Proposition 4.9, and obtain

Ct ≤C0

t∏
i=0

1

1−τi
≤C0

T∏
i=0

1

1−τi
.

Consider the case when t > T . Suppose CT ≥ κT . We have Ct+1 ≤ Ct ≤ CT , which can be

bounded using Proposition 4.9, until some t∗ such that Ct∗ < κt∗ . But then Ct+1 ≤ (1−τt )−1κt

for all t ≥ t∗. If CT < κT , similarly, we also obtain Ct+1 ≤ (1− τt )−1κt for all t ≥ T . The
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proposition follows, as

1

1−τt
κt =

64n2µ̄2d 2
η

µ3

(
1− 4nµ̄dη

µ τt

) ≤
64n2µ̄2d 2

η

µ3

(
1− 4nµ̄dη

µ τT

) .

If Ct ≤ 2µ−1dΨdC , then this is already a constant upper bound on Ct . This completes the

proof.

4.B.3 Proof of Lemma 4.6

We prove by induction. The claim is obviously correct for t = 0. Suppose the claim holds for

some t ≥ 0. Then we have

t+1∑
k=0

αk
[
g (Xk )+〈∇g (Xk ), X −Xk〉

]+Bt

≥ St g (X t )+αk+1
[
g (X t+1)+〈∇g (X t+1), X −X t+1〉

]
= St+1g (X t+1)+St

[
g (X t )− g (X t+1)

]+〈∇g (X t+1),αt+1(X −X t+1)〉
≥ St+1g (X t+1)+〈∇g (X t+1),αt+1(X −X t+1)+St (X t −X t+1)〉
= St+1g (X t+1)+αt+1 〈∇g (X t+1), X −Vt 〉
≥ St+1g (X t+1)+αt+1 〈∇g (X t+1)−∇g (X t ), X −Vt 〉 ,

where the second inequality is due to convexity of g , and the third inequality is due to the fact

that

〈∇g (X t ), X −Vt 〉 ≥ 0

for any X ∈C , as Vt minimizes 〈∇g (X t ), ·〉 on C .

To complete the proof, we need to show that

αt+1 〈∇g (X t+1)−∇g (X t ), X −Vt 〉 ≥ Bt −Bt+1 =−α
2
t+1

St
γ,

or

〈∇g (X t+1)−∇g (X t ), X −Vt 〉 ≥−αt+1

St
γ. (4.12)

By Hölder’s inequality, we have

| 〈∇g (X t+1)−∇g (X t ), X −Vt 〉 | ≤ ‖∇g (X t+1)−∇g (X t )‖‖X −Vt‖∗
≤ ‖∇g (X t+1)−∇g (X t )‖dC ,

where ‖ ·‖ denotes the spectral norm.
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Now we bound the quantity ‖∇g (X t+1)−∇g (X t )‖. By direct calculation, we obtain

‖∇g (X t+1)−∇g (X t )‖ =
∥∥∥∥∥ n∑

i=1

ηi 〈X t −X t+1,Φi 〉
〈X t ,Φi 〉〈X t+1,Φi 〉

Φi

∥∥∥∥∥
≤ dΦ

n∑
i=1

ηi | 〈X t −X t+1,Φi 〉 |
〈X t ,Φi 〉〈X t+1,Φi 〉

= τt dΦ
n∑

i=1

ηi | 〈X t −Vt ,Φi 〉 |
〈X t ,Φi 〉〈X t+1,Φi 〉

≤ τt dΦ
n∑

i=1

ηi‖X t −Vt‖∗‖Φi‖
〈X t ,Φi 〉〈X t+1,Φi 〉

≤ τt d 2
ΦdC

n∑
i=1

ηi

〈X t ,Φi 〉〈X t+1,Φi 〉
.

Since either ηi = 0 or ηi ≥ 1, we have

‖∇g (X t+1)−∇g (X t )‖ ≤ τt d 2
ΦdC

n∑
i=1

η2
i

〈X t ,Φi 〉〈X t+1,Φi 〉

≤ τt d 2
ΦdC

1−τt

n∑
i=1

(
ηi

〈X t ,Φi 〉
)2

≤ τt

1−τt
d 2
ΦdC

(
n∑

i=1

ηi

〈X t ,Φi 〉

)2

≤ αt+1

St
d 2
ΦdC

(
n∑

i=1

ηi

〈X t ,Φi 〉

)2

.

By Lemma 4.5,

‖∇g (X t+1)−∇g (X t )‖ ≤ αt+1

St
d 2
ΦdC C 2.

Hence it suffices to choose γ≥C 2d 2
Φd 2

C
.

4.B.4 Proof of Proposition 4.8

By Hölder’s inequality, the first term in the definition of Bt can be bounded above by ‖∇g (X0)‖dC .

The second term can be bounded as(
t∑

k=1

α2
k

Sk−1

)
γ= γ

t∑
k=1

(
2+ 2

k

)
≤ 4tγ.
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Then we obtain

Bt

St
≤ 8tγ

(t +1)(t +2)
+ 2dC ‖∇g (X0)‖

(t +1)(t +2)

< 8γ

t +2
+ 2dC ‖∇g (X0)‖

(t +1)(t +2)

≤ 8C 2d 2
Φd 2

C

t +2
+ 2dC ‖∇g (X0)‖

(t +1)(t +2)
.

The definition of C in Lemma 4.5 also involves τt . We notice that choosing T = 8n(µ̄/µ)dη−1

suffices to ensure 1−4n(µ̄/µ)dητT ≥ 0. Then we obtain

T∏
k=0

1

1−τk
= (T +2)(T +3)

2

< (T +3)2

2
= 2

(
4nµ̄dη
µ

+1

)2

.

The quantity C0 can be easily bounded as C0 ≤ nµ−1dη. Finally, we have

64n2µ̄2d 2
η

µ3

(
1− 4nµ̄dη

µ τT

) =
64n2µ̄2d 2

η

µ3

(
4nµ̄dη
µ

+1

)
.
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5 Convergence of mirror descent under
a weak smoothness condition

For this and the next chapters, the main motivation was quantum state tomography (QST).

Numerically, QST corresponds to minimizing a sum of exp-linear functions, on the set of quan-

tum density matrices—a matrix analogue of the probability simplex. In the previous chapter,

we have proved that the Frank-Wolfe algorithm can be adopted for QST. Unfortunately, as

the numerical results in Section 5.6 show, the O(1/k) convergence rate of the Frank-Wolfe

algorithm is unsatisfactory on real experimental data-sets. It is natural to expect that an

optimization algorithm that does not only use the linear minimization oracle would con-

verge faster. However, existing convergence results of first-order algorithms typically require

smoothness of the objective function, but the loss function for QST is a sum of exp-linear

functions that do not satisfy the smoothness condition.

In this chapter, we explore the possibility of proving convergence for a class of optimization

algorithms, under weak assumptions on the objective function. Specifically, we prove that the

mirror descent with Armijo line search always converges, if the objective function is locally

relatively smooth.

This chapter is based on the joint work with Carlos Riofrío and Volkan Cevher [121].

5.1 Introduction

Consider a constrained convex optimization problem:

f ? = min
x

{ f (x) | x ∈X } , (P)

where f is a convex differentiable function, and X is a convex closed set in Rd . We assume

that f ? >−∞.

The mirror descent algorithm is standard for solving such a constrained convex optimization
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Chapter 5. Convergence of mirror descent under a weak smoothness condition

problem [19, 135]. Given an initial iterate x0 ∈X , the mirror descent algorithm iterates as

xk+1 = argmin
x

{ 〈∇ f (xk ), x −xk〉+αk Dh(x, xk )
∣∣ x ∈X

}
, ∀k ∈N , (5.1)

for some convex differentiable function h and a properly chosen sequence of step sizes {αk },

where Dh denotes the Bregman divergence induced by h:

Dh(z2, z1) := h(z2)− [h(z1)+〈∇h(z1), z2 − z2〉] , ∀(z2, z2) ∈ domh ×dom∇h .

In comparison to the standard projected gradient descent, the mirror descent algorithm can

have an almost dimension-independent convergence rate guarantee, or lower per-iteration

computational complexity. A famous example is the exponentiated gradient method, which

enjoys both benefits [100]. The exponentiated gradient method corresponds to the mirror

descent algorithm with h being the negative Shannon entropy.

Convergence of the mirror descent algorithm has been established under the following two

conditions on the objective function.

1. Bounded gradient: There exists some L > 0, such that

‖∇ f (x)‖ ≤ L, ∀x ∈X ,

for some norm ‖ ·‖ [19, 135].

2. Relative smoothness: There exist some L > 0 and a convex differentiable function h,

such that

f (y) ≤ f (x)+〈∇ f (x), y −x〉+LDh(y, x), ∀x, y ∈X ,

where Dh denotes the Bregman divergence induced by h [7, 16, 123]1.

These conditions may not hold, or introduce undesirable computational burdens for some

applications. Quantum state tomography is one such instance.

Example 5.1. Quantum state tomography (QST) is the task of estimating the state of qubits

(quantum bits) given measurement outcomes [146]; this task is essential to calibrating quantum

computation devices. Numerically, it corresponds to minimizing the function

fQST(x) :=−
n∑

i=1
logTr(Mi x),

1Notice that the relative smoothness condition only involves the first-order derivative, and hence does not
conform perfectly to the general definition of “smoothness” adopted in this thesis (cf. Definition 1.1). We decide to
use the term “relative smoothness” here, to keep consistency with existing literature [123].
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5.1. Introduction

for given positive semi-definite matrices Mi , on the set of quantum density matrices

D :=
{

x ∈Cd×d
∣∣∣ x ≥ 0,Tr(x) = 1

}
. (5.2)

The dimension d equals 2q , where q is the number of qubits.

Notice that the diagonal of a density matrix in Rd×d must belong to the probability simplex in

Rd ; therefore, a density matrix can be viewed as a matrix analogue of a probability distribution.

Regarding this observation, it is natural to consider the matrix version of the exponentiated

gradient method, for which the Shannon entropy is replaced by its matrix analogue called the

von Neumann entropy [31, 174]. Unfortunately, we prove the following in Appendix 5.A.

Proposition 5.2. The gradient of the function fQST is not bounded. The function fQST is not

smooth relative to the von Neumann entropy.

Another popular choice of the function h is Burg’s entropy; the resulting mirror descent

algorithm iterates as

xk+1 =
(
x−1

k +αk∇ f (xk )
)−1

, ∀k ∈N ,

where αk is chosen such that Tr(xk+1) = 1 [110]. The numerical search for αk yields high

per-iteration computational complexity of the mirror descent.

We note that in terms of the objective functions and constraint sets, positron emission tomog-

raphy, optimal portfolio selection, and non-negative linear inverse problems are essentially

vector analogues of QST [34, 58, 180]. The same issues we have discussed above remain

in these applications, though the computational burden due to the Burg entropy may be

relatively minor in the vector cases.

To address “non-standard” applications like QST, we relax the condition on the objective func-

tion. Specifically, we propose a novel localized version of the relative smoothness condition.

The local relative smoothness condition does not involve any parameter, in comparison to

the bounded gradient and (global) relative smoothness conditions. Therefore, we do not seek

for a closed-form expression for the step sizes; instead, we consider selecting the step sizes

adaptively by Armijo line search.

5.1.1 Related work

The mirror descent algorithm was introduced in [135]. The formulation (5.1) was proposed in

[19], which is equivalent to the original one under standard assumptions. The interior gradient

method studied in [7] is also of the form (5.1); the difference lies in the conditions on the loss

function and the algorithm setup. Standard convergence analyses of the mirror descent, as

discussed above, assumes either bounded gradient or relative smoothness [7, 16, 19, 123, 135].

67



Chapter 5. Convergence of mirror descent under a weak smoothness condition

The exponentiated gradient method was proposed in [103]; it is also known as the entropic

mirror descent.

For quantum state tomography, there are few guaranteed-to-converge optimization algo-

rithms. The RρR algorithm was proposed as an analogue of the expectation maximization

algorithm [96], but does not always converge [184]. The diluted RρR algorithm is a variant of

the RρR algorithm, which guarantees convergence by exact line search [184]. The preceding

chapter shows that the Frank-Wolfe algorithm converges with a slightly different step size

selection rule. The SCOPT algorithm proposed in [172], a proximal gradient method for com-

posite self-concordant minimization, also converges, as the logarithmic function is a standard

instance of a self-concordant function. The numerical results in Section 5.6, unfortunately,

showed that the convergence speeds of the diluted RρR, Frank-Wolfe, and SCOPT algorithms

are not satisfactory on real data-sets.

For the vector analogues of QST mentioned above, the standard approach is based on expectation-

maximization-type methods developed in [58, 62]. See also [35] for a modern introduction.

The numerical results in Section 5.6 showed that this standard approach is slow on real

data-sets for portfolio selection.

Armijo line search was proposed in [6], for minimizing 2-smooth functions. The formulation

of Armijo line search studied in this chapter is the generalized version proposed in [23].

5.1.2 Contributions

Our main result is Theorem 5.11, which establishes convergence of mirror descent with

Armijo line search under the relative smoothness condition. Numerical results showed that,

because of Theorem 5.11, the exponentiated gradient method with Armijo line search was

the fastest guaranteed-to-converge algorithm for QST, empirically on real data-sets. To the

best of our knowledge, even for globally relatively smooth objective functions, convergence of

mirror descent with Armijo line search has not been proven; Theorem 5.11 provides the first

convergence guarantee for this setup.

5.2 Mirror descent with Armijo line search

Let h be a convex differentiable function strictly convex on X . The corresponding Bregman

divergence is given by

Dh(z2, z1) := h(z2)− [h(z1)+〈∇h(z1), z2 − z2〉] , ∀(z2, z2) ∈ domh ×dom∇h.

Because of the strict convexity of h, it holds that Dh(z2, z1) ≥ 0, and Dh(z2, z1) = 0 if and only if

z2 = z1.

Define X̃ :=X ∩dom∇ f ∩dom∇h. The corresponding mirror descent algorithm starts with
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5.3. Local relative smoothness

Algorithm 2 Mirror Descent with Armijo Line Search

Require: ᾱ> 0, r ∈ (0,1), τ ∈ (0,1), x0 ∈Xh

1: for k = 1,2, . . . do
2: αk ← ᾱ

3: while τ
〈∇ f (xk−1), xk−1(αk )−xk−1

〉+ f (xk−1) < f (xk−1(αk )) do
4: αk ← rαk

5: end while
6: xk ← xk−1(αk )
7: end for

some x0 ∈ X̃ , and iterates as

xk = xk−1(αk ) := argmin
x

{αk 〈∇ f (xk−1), x −xk−1〉+Dh(x, xk−1) | x ∈X } , ∀k ∈N,

where αk denotes the step size. To ensure that the mirror descent algorithm is well-defined,

we will assume the following throughout this paper.

Assumption 4. For every x ∈ X̃ and α≥ 0, x(α) is uniquely defined and lies in X̃ .

There are several sufficient conditions that guarantee Assumption 4, but in practice, it is

typically easier to directly check Assumption 4. The interested reader is referred to, e.g.,

[16, 17] for the details.

We consider choosing the step sizes by the Armijo rule. Let ᾱ> 0 and r,τ ∈ (0,1). The Armijo

rule outputs αk = r j ᾱ for every k, where j is the least non-negative integer such that

f (xk−1(r j ᾱ)) ≤ f (xk−1)+τ〈∇ f (xk−1), xk−1(r j ᾱ)−xk−1〉 .

The Armijo rule can be easily implemented by a while-loop, as shown in Algorithm 2.

5.3 Local relative smoothness

In this section, we introduce the local relative smoothness condition, and provide a detailed

discussion. In particular, we provide some practical approaches to checking the local rel-

ative smoothness condition, alone with concrete examples illustrating when the practical

approaches can and cannot be applied.

Roughly speaking, the local relative smoothness condition asks that for every point, there

exists a neighborhood on which f is relatively smooth.

Definition 5.3. We say that f is locally smooth relative to h on X , if for every x ∈X ∩dom f ,

there exist some Lx > 0 and εx > 0, such that

f (z2) ≤ f (z1)+〈∇ f (z1), z2 − z1〉+Lx Dh(z2, z1), ∀z1, z2 ∈Bεx (x)∩X̃ , (5.3)
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Chapter 5. Convergence of mirror descent under a weak smoothness condition

where Bεx (x) denotes the ball centered at x of radius εx with respect to a norm.

If we set h : x 7→ (1/2)‖x‖2
2, then (5.3) becomes

f (z2) ≤ f (z1)+〈∇ f (z1), z2 − z1〉+ Lx

2
‖z2 − z1‖2

2, ∀z1, z2 ∈Bεx (x)∩X̃ ,

This is indeed the the locally Lipschitz gradient condition in literature.

Lemma 5.4. The following two statements are equivalent.

1. The function f is locally smooth relative to h : x 7→ (1/2)‖x‖2
2 on X .

2. Its gradient ∇ f is locally Lipschitz on intX̃ ; that is, for every x ∈X ∩dom f , there exists

some Lx > 0 and εx > 0, such that

‖∇ f (z2)−∇ f (z1)‖2 ≤ Lx‖z2 − z1‖2, ∀z1, z2 ∈Bεx (x)∩X̃ .

The proof of Lemma 5.4 is standard; we give it in Appendix 5.B.

It is already known that the local Lipschitz gradient condition lies strictly between the following

two conditions.

1. The function f is differentiable.

2. The gradient of f is (globally) Lipschitz; that is, the function f is 2-smooth.

See [93, 97] for the details.

The following result provides a practical approach to checking the local Lipschitz gradient

condition.

Proposition 5.5. Suppose that dom f ∩X is relatively open in X , and f is twice continuously

differentiable on dom f ∩X . Then f is locally smooth relative to h(·) := (1/2)‖ ·‖2
2 on X .

Proof. Recall the definition of relative openness: For every x in dom f ∩X , there exists some

εx such that Bεx (x)∩X ⊆ dom f ∩X . Notice that the largest eigenvalue of ∇2 f is a continuous

function on Bεx (x)∩X ; by the extreme value theorem, there exists some Lx such that ∇2 f (z) ≤
Lx I for every z ∈ Bεx (x)∩X . For every z1, z2 ∈ Bεx ∩ X̃ , we use Taylor’s formula with the

integral remainder and write

f (z2) = f (z1)+〈∇ f (z1), z2 − z1〉+
∫ 1

0

∫ t

0
〈∇2 f (z1 +τ(z2 − z1))(z2 − z1), z2 − z1〉 dτdt

≤ f (z1)+〈∇ f (z1), z2 − z1〉+
∫ 1

0

∫ t

0
Lx‖z2 − z1‖2

2 dτdt

= f (z1)+〈∇ f (z1), z2 − z1〉+ Lx

2
‖z2 − z1‖2

2,
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5.3. Local relative smoothness

which proves the proposition.

Corollary 5.6. If f is twice continuously differentiable on X , then it is locally smooth relative

to h(·) := (1/2)‖ ·‖2
2 on X .

Indeed, under the setting of Corollary 5.6, the function f has a bounded Hessian by the extreme

value theorem, and hence is smooth relative to h(·) := (1/2)‖ ·‖2
2, i.e., the function satisfies the

standard smoothness assumption in literature [136]; then most existing convergence results

for first-order optimization algorithms apply. To derive an upper bound of the Lipschitz

parameter, however, may be non-trivial. Moreover, there are cases where Corollary 5.6 does

not apply, while Proposition 5.5 is applicable. Below is an example.

Example 5.7. Set f (x) :=− log(x1)− log(x2) for every x := (x1, x2) ∈R2. Set X to be the positive

orthant. Then f is not twice continuously differentiable on X ; for example, ∇2 f (1,0) does not

exist. However, Proposition 5.5 is applicable—dom f ∩X is relatively open in X as dom f is

open, and it is easily checked that f is twice continuously differentiable on dom f ∩X .

Note that the local Lipschitz gradient condition is not always applicable.

Example 5.8. Set f (x) := x1 log(x1)+ x2 log(x2) for every x := (x1, x2) ∈ R2. Set X to be the

probability simplex in R2. Then f is not locally smooth relative to h(·) := (1/2)‖·‖2
2. For example,

the point x = (0,1) lies in dom f ∩X , while ∇ f is unbounded around (0,1). However, it is

obvious that f is locally smooth relative to the negative Shannon entropy—indeed, f itself is the

negative Shannon entropy function.

A standard setting for the mirror descent algorithm requires the following [7, 19, 100].

Assumption 5. The function h is strongly convex with respect to a norm ‖·‖ on X ; that is, there

exists some µ> 0, such that

Dh(z2, z1) ≥ µ

2
‖z2 − z1‖2, ∀(z2, z1) ∈ (domh ∩X )× (dom∇h ∩X ).

If f is locally smooth relative to h(x) := (1/2)‖x‖2
2, it is also locally smooth relative to any

function h̃ strongly convex on X with respect to a norm ‖ · ‖—if for some L > 0 and z1, z2 ∈
dom∇h̃ ×dom h̃, it holds that

f (z2) ≤ f (z1)+〈∇ f (z1), z2 − z1〉+ L

2
‖z2 − z1‖2

2,

then we have

f (z2) ≤ f (z1)+〈∇ f (z1), z2 − z1〉+ C L

µ
Dh̃(z2, z1),
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Chapter 5. Convergence of mirror descent under a weak smoothness condition

for some C > 0 such that ‖ ·‖2 ≤C‖ ·‖, which exists because all norms on a finite-dimensional

space are equivalent. Therefore, with Assumption 5, it suffices to check for local smoothness

relative to h(x) := (1/2)‖x‖2
2.

Example 5.9. Suppose that the constraint set X is the probability simplex. By Pinsker’s in-

equality, the negative Shannon entropy is strongly convex on X with respect to the `1-norm

[61]. By the discussion above and Corollary 5.6, any convex objective function that is twice

continuously differentiable on X is locally smooth relative to the negative Shannon entropy.

It is possible that Assumption 5 does not hold, while we have local relative smoothness.

Example 5.10. Consider the function f as defined in Example 5.7. Set h := f , the Burg entropy.

Then obviously, f is smooth—and hence locally smooth—relative to h. However, if we set X to

be the positive orthant, h is not strongly convex on X .

5.4 Main result

The main result of this chapter, the following theorem, says that the mirror descent algorithm

with Armijo line search is well-defined, and guaranteed to converge, given assumptions

discussed above.

Theorem 5.11. Suppose that Assumption 4 holds. Suppose that dom f ∩X ⊆ domh ∩X , and

f is locally smooth relative to h. Then the following hold.

1. The Armijo line search procedure terminates in finite steps.

2. The sequence { f (xk ) } is non-increasing.

3. The sequence { f (xk ) } converges to f ?, if { xk } is bounded.

Boundedness of the sequence { xk } holds, for example, when the constraint set X or level

set { x ∈X | f (x) ≤ f (x0) } is bounded. A sufficient condition for the latter case is coercivity—a

function is called coercive, if for every sequence { xk } such that ‖xk‖→+∞, we have f (xk ) →
+∞ (see, e.g., [18]).

5.5 Proof of Theorem 5.11

The proof of Theorem 5.11 stems from standard arguments (see, e.g., [7]), showing that the

mirror descent algorithm converges, as long as the step sizes αk are bounded away from zero.

However, without any global parameter of the objective function, we are not able to provide

a lower bound for all step sizes as in [7]. We solve this difficulty by proving the existence of a

strictly positive lower bound, for all but a finite number of the step sizes.
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The following result shows that for every x ∈ X̃ , x(α) can be arbitrarily close to x by setting α

very small. This result is so fundamental in our analysis that we will use it without explicitly

mentioning it.

Lemma 5.12. The function x(α) is continuous in α for every x ∈ X̃ .

Proof. Apply Theorem 7.41 in [158].

For ease of presentation, we put the proofs of some technical lemmas in Section 5.C.

5.5.1 Proof of Statement 1

Statement 1 follows from the following lemma.

Lemma 5.13. For every x ∈ X̃ , there exists some αx > 0, such that

f (x(α)) ≤ f (x)+τ〈∇ f (x), x(α)−x〉 , ∀α ∈ (0,αx ]. (5.4)

Proof. We write (5.4) equivalently as

f (x(α))− [
f (x)+〈∇ f (x), x(α)−x〉]≤−(1−τ)〈∇ f (x), x(α)−x〉 , ∀α ∈ (0,αx ].

By the local relative smoothness condition, it suffices to check

Lx Dh(x(α), x) ≤−(1−τ)〈∇ f (x), x(α)−x〉 , ∀α ∈ (0,αx ].

By Lemma 5.20, it suffices to check

αLx Dh(x(α), x) ≤ (1−τ)Dh(x(α), x), ∀α ∈ (0,αx ].

If Dh(x(α), x) > 0, it suffices to set αx = L−1
x (1−τ). Otherwise, we have x = x(α); then Lemma

5.19 implies that x is a minimizer, and Lemma 5.13 follows with any αx > 0.

5.5.2 Proof of Statements 2 and 3

We start with the following theorem.

Theorem 5.14. Let { xk } be a sequence in X̃ . Suppose that the assumptions in Theorem 5.11

hold. Then the sequence { f (xk ) } monotonically converges to f ?, if the following hold.

1. There exists some τ ∈ (0,1), such that

f (xk ) ≤ f (xk−1)+τ〈∇ f (xk−1), xk −xk−1〉 , ∀k ∈N.

2. The sum of step sizes diverges, i.e.,
∑∞

k=1αk =+∞.
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Chapter 5. Convergence of mirror descent under a weak smoothness condition

Theorem 5.14 is essentially a restatement of Theorem 4.1 in [7]. We give a proof in Appendix

5.D for completeness.

The first condition in Theorem 5.11 is automatically satisfied by the definition of Armijo line

search. The second condition is verified by the following lemma.

Lemma 5.15. Suppose that the assumptions in Theorem 5.11 hold. If none of the iterates is a

solution to (P), it holds that
∑∞

k=1αk =+∞.

Proof. We prove by contradiction. Suppose that liminf{αk } = 0. Then there exists a sub-

sequence {αk | k ∈K ⊆N } converging to zero. By the boundedness of { xk }, there exists a

sub-sequence { xk | k ∈K ′−1} converging to a limit point x∞, for some K ′ ⊆K . Notice that

{αk | k ∈K ′ } converges to zero. For large enough k ∈ K ′−1, we have, by the definition of

Armijo line search, that

f (xk−1(r−1αk )) > f (xk−1)+τ〈∇ f (xk−1), xk−1(r−1αk )−xk−1〉 .

This implies

f (xk−1(r−1αk ))− [
f (xk−1)+〈∇ f (xk−1), xk−1(r−1αk )−xk−1〉

]
>−(1−τ)〈∇ f (xk−1), xk−1(r−1αk )−xk−1〉 .

By the local relative smoothness condition and Lemma 5.20, we write

r−1αk Lx∞Dh(xk−1(r−1αk ), xk−1) > (1−τ)Dh(xk−1(r−1αk ), xk−1).

If xk−1(r−1αk ) 6= xk−1, we get

αk > r (1−τ)

Lx∞
,

for large enough k ∈K ′−1, a contradiction. Therefore, liminf{αk } is strictly positive, and the

lemma follows.

Proof of Statements 2 and 3 of Theorem 5.11. If none of the iterates is a solution to (P), Theo-

rem 5.14 and Lemma 5.15 imply that the sequence { f (xk ) } converges to f ?. Otherwise, if xk is

a solution, Lemma 5.19 implies that xk ′ = xk for every k ′ > k. Monotonicity of the sequence

{ f (xk ) } follows from Corollary 5.21 in Section 5.C.

5.6 Numerical results

We illustrate applications of Theorem 5.11 in this section.
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5.6. Numerical results

5.6.1 Portfolio selection

Consider long-term investment in a market of d stocks under the discrete-time setting. At the

beginning of the t-th day, t ∈N, the investor distributes his total wealth to the stocks following

a vector xt in the probability simplex P ⊂Rd . Denote the price relatives—(possibly negative)

returns the investor would receive at the end of the day with one-dollar investment—of the

stocks by a vector at ∈ [0,+∞)d . Then, if the investor has one dollar at the beginning of the

first day, the wealth at the end of the t-th day is Πt
i=1 〈ai , xi 〉. For every t ∈N, the best constant

rebalanced portfolio x?t up to the t-th day is defined as a solution of the optimization problem

[59]

x? ∈ argmin
x

{
−

t∑
i=1

log〈ai , x〉
∣∣∣∣∣ x ∈P

}
. (BCRP)

The wealth incurred by the best constant rebalanced portfolio is a benchmark for on-line

portfolio selection algorithms [59, 60, 91].

Denote the objective function in (BCRP) by fBCRP. As fBCRP is simply a vector analogue of fQST,

most existing convergence guarantees in convex optimization does not hold. The optimization

problem (BCRP) was addressed by an expectation-maximization (EM)-type method developed

by Cover [58]. Given an initial iterate x0 ∈P ∩dom( fBCRP), Cover’s algorithm iterates as

xk =−xk−1 ·∇ fBCRP(xk−1), ∀k ∈N,

where the symbol “·” denotes element-wise multiplication. The algorithm possesses a guaran-

tee of convergence but not the convergence rate [58, 62].

Now we show that the optimization problem (BCRP) can be also solved by the exponentiated

gradient method with Armijo line search.

Proposition 5.16. The function fBCRP is locally smooth relative to the (negative) Shannon

entropy on the constraint set P .

Proof. Note that dom( fBCRP) is open, and hence dom( fBCRP)∩X is relatively open in X . It

is easily checked that fBCRP is twice continuously differentiable on dom( fQST), and hence

on dom( fBCRP) ∩X . By Proposition 5.5, the function fBCRP is locally smooth relative to

h(·) := (1/2)‖ · ‖2
2. By Pinsker’s inequality [61], the Shannon entropy is strongly convex on

P with respect to the `1-norm. As all norms on a finite-dimensional space are equivalent, the

proposition follows.

Therefore, the exponentiated gradient method—mirror descent with the Shannon entropy—is

guaranteed to converge for solving (BCRP). The iteration rule has a closed-form:

x(α) = c−1x ·exp(−α∇ fBCRP(x)) , ∀x ∈P ,α≥ 0,

where we set exp(v) := (ev1 , . . . ,evd ) for any v = (v1, . . . , vp ) ∈Rp .
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Figure 5.1 – Wealth yielded by different algorithms for the NYSE data.

We compare the convergence speeds of Cover’s algorithm and the exponentiated gradient

method with Armijo line search, for the New York Stock Exchange (NYSE) data during January

1st, 1985–June 30th, 2010 [116]. The corresponding dimensions are n = 6431 and d = 23. We set

α= 10, r = 0.5, and τ= 0.8 for the Armijo line search procedure. The numerical experiments

were done in MATLAB R2018a, on a MacBook Pro with an Intel Core i7 2.8GHz processor and

16GB DDR3 memory.

The numerical result is presented in Figure 5.1, where we plot the total wealth yielded by the

algorithm iterates, with an initial wealth of one dollar. The proposed approach—exponentiated

gradient method with Armijo line search—was obviously faster than Cover’s algorithm. For

example, fixing the budget of the computation time to be one second, the proposed approach

yields more than twice of the wealth yielded by Cover’s algorithm.

5.6.2 Quantum state tomography

Quantum state tomography (QST) is the task of estimating the state of qubits (quantum bits),

given measurement outcomes. Numerically, QST corresponds to solving a convex optimization

problem specified in Example 5.1. Recall that in the introduction, we have shown that the

corresponding objective function, fQST, does not satisfy the bounded gradient condition and is

not smooth relative to the von Neumann entropy, while mirror descent with the Burg entropy

has high per-iteration computational complexity.

The following proposition is a matrix analogue to Proposition 5.16. A proof is provided in
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Section 5.E.

Proposition 5.17. The function fQST is locally smooth relative to the von Neumann entropy on

the constraint set D.

Therefore, the (matrix) exponentiated gradient method—mirror descent with the von Neu-

mann entropy—with Armijo line search is guaranteed to converge, by Theorem 5.11. The

corresponding iteration rule has a closed-form expression [31, 174]:

x(α) = c−1 exp(log(x)−α∇ f (x)),

for every x ∈ X̃ andα≥ 0, where c is a positive real normalizing the trace of x(α). The functions

exp and log denote matrix exponential and logarithm, respectively.

We test the empirical performance of the exponentiated gradinet method with Armijo line

search, on real experimental data generated following the setting in [85]. To the best of our

knowledge, the diluted RρR algorithm [184], SCOPT [172], and the Frank-Wolfe algorithm

studied in the previous chapter [143] are the only existing algorithms that are guaranteed to

converge. We will also consider the RρR algorithm [96]; it does not always converge [184], but

is typically much faster than the diluted RρR algorithm in practice.
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Figure 5.2 – The 6-qubit case.

We compare the convergence speeds for the 6-qubit (d = 26) and 8-qubit (d = 28) cases, in Fig.

5.2 and 5.3, respectively. The corresponding “sample sizes” (number of summands in fQST)

are n = 60640 and n = 460938, respectively. The numerical experiments were done in MATLAB

R2015b, on a MacBook Pro with an Intel Core i7 2.8GHz processor and 16GB DDR3 memory.

We set α= 10, and γ= τ= 0.5 in Algorithm 2 for both cases. In both figures, f ? denotes the

minimum value of fQST found by the five algorithms in 120 iterations.
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Figure 5.3 – The 8-qubit case.

One can observe that the exponentiated gradient method with Armijo line search is the fastest,

in terms of the actual elapsed time. The slowness of the other algorithms is explainable.

1. The diluted RρR algorithm, using the notation of this paper, iterates as

xk+1 = c−1
k

[
I +βk f ′(xk )

]H
ρk

[
I +βk f ′(xk )

]
,

where ck normalizes the trace of xk+1. To guarantee convergence, the step sizes βk are

computed by exact line search. The exact line search procedure renders the algorithm

slow.

2. SCOPT is a projected gradient method for minimizing self-concordant functions [136,

140]. Notice that projection onto D typically results in a low-rank output; hence, it is

possible that Tr(Mi xk ) = 0 for some low-rank Mi and iterate xk , but then xk is not a

feasible solution because log(0) is not defined2. This issue was pointed out by us, and

called the stalling problem in [104]. Luckily, self-concordance of fQST ensures that if

an iterate xk lies in dom fQST, and the next iterate xk+1 lies in a small enough Dikin

ellipsoid centered at xk , then xk+1 also lies in dom fQST. It is easily checked that fQST is

a self-concordant function of parameter 2
p

n. Following the theory in [136, 140], the

radius of the Dikin ellipsoid shrinks at the rate O(n−1/2), so SCOPT becomes slow when

n is large.

3. The Frank-Wolfe algorithm suffers for a sub-linear convergence rate when the solution

is near an extreme point of the constraint set (see, e.g., [111] for an illustration in the

2In a standard implementation of quantum state tomography, the matrices Mi are single-rank [85].
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vector case). Notice that the set of extreme points of D is the set of single-rank positive

semi-definite matrices of unit trace. In the experimental data we have, the density

matrix to be estimated is indeed close to a single-rank matrix (which is called a pure

state in quantum mechanics). Therefore, the ML estimate—the minimizer of fQST on

D—is expected to be also close to a single-rank matrix.

5.7 Concluding remarks

We have proved convergence of the mirror descent under a novel local relative smoothness

condition, which is satisfied in many applications. Indeed, according to our discussion in

Section 5.3, the local relative smoothness condition lies strictly between two existing con-

ditions: the objective function being differentiable, and the objective function has a locally

Lipschitz gradient. Our numerical results showed that the exponentiated gradient method

with Armijo line search is a rigorous and efficient solution to portfolio selection and quantum

state tomography.

We point out two future research directions. First, our result only considers convergence in

function value. It would be good to also establish convergence in iterates, or show that such

convergence cannot hold in general without modifying the algorithm. Note that for portfolio

selection and quantum state tomography, uniqueness of the minimizer is easily checked via

self-concordance of the objective function [140, 136]; hence, convergence in function value

implies convergence in iterates. Second, it is of both practical and theoretical importance

to study convergence for possibly non-convex objective functions, under weak smoothness

conditions. This topic was recently studied in [68, 142], using the notion of a growth function.

The results therein require in addition convergence in iterates and/or other conditions on the

objective function, verifying which is an issue in general.

5.A Proof of Proposition 5.2

Consider the two-dimensional case, where x = (xi , j )1≤i , j≤2 ∈ C2×2. Define e1 := (1,0) and

e2 := (0,1). Suppose that there are only two summands, with M1 = e1 ⊗ e1 and M2 = e2 ⊗ e2.

Then we have f (x) = − log(x1,1)− log(x2,2). It suffices to disprove all properties on the set

of diagonal density matrices. Hence, we will focus on the function g (x, y) := − log x − log y ,

defined for any (x, y) in the probability simplex P ⊂R2.

As either x or y can be arbitrarily close to zero, it is easily checked that the gradient of g is

unbounded. Now we check the relative smoothness condition. As we only consider diagonal

matrices, it suffices to check with respect to the (negative) Shannon entropy:

h(x, y) :=−x log x − y log y +x + y , ∀(x, y) ∈P ,

for which the convention 0log0 := 0 is adopted.

79



Chapter 5. Convergence of mirror descent under a weak smoothness condition

Lemma 5.18 ([123]). The function g is L-smooth relative to the Shannon entropy for some

L > 0, if and only if −Lh − g is convex.

Therefore, we check the positive semi-definiteness of the Hessian of −Lh − g . A necessary

condition for the Hessian to be positive semi-definite is that

−L
∂2h

∂x2 (x, y)− ∂2g

∂x2 (x, y) = L

x
− 1

x2 ≥ 0,

for all x ∈ (0,1), but the inequality cannot hold for x < (1/L), for any fixed L > 0.

5.B Proof of Lemma 5.4

(Statement 2 ⇒ Statement 1) Let x ∈ X ∩dom f , and z1, z2 ∈ Bεx (x)∩ X̃ . Define, for every

τ ∈ [0,1], zτ := z1 +τ(z2 − z1). We write

f (z2)− [
f (z1)+〈∇ f (z1), z2 − z1〉

]= ∫ 1

0
〈∇ f (zτ)−∇ f (z1), z2 − z1〉 dτ

≤
∫ 1

0
‖∇ f (zτ)−∇ f (z1)‖2‖z2 − z1‖2 dτ

≤
∫ 1

0
Lxτ‖z2 − z1‖2

2 dτ

= Lx

2
‖z2 − z1‖2

2,

where we have applied the Cauchy-Schwarz inequality for the first inequality, and the local

smoothness condition for the second inequality. Note that Bεx ∩ X̃ is the intersection of

convex sets, and hence is convex; therefore, zτ ∈Bεx ∩X̃ for every τ ∈ [0,1].

(Statement 1 ⇒ Statement 2) Let x ∈ X ∩dom f , and z1, z2 ∈ Bεx (x)∩ X̃ . Define ϕ(z) :=
f (z)−〈∇ f (z1), z〉. Then ∇ϕ is locally Lipschitz on X̃ ; moreover, since ∇ϕ(z1) = 0, the point z1

is a global minimizer of ϕ. Therefore, we obtain

ϕ(z1) ≤ϕ(z2 − 1

Lx
∇ϕ(z2)) ≤ϕ(z2)− 1

2Lx
‖∇ϕ(z2)‖2;

that is,

f (z2) ≥ f (z1)+〈∇ f (z1), z2 − z1〉+ 1

2Lx
‖∇ f (z2)−∇ f (z1)‖2

2.

Similarly, we get

f (z1) ≥ f (z2)+〈∇ f (z2), z1 − z2〉+ 1

2Lx
‖∇ f (z1)−∇ f (z2)‖2

2.
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Summing up the two inequalities; we obtain

〈∇ f (z2)−∇ f (z1), z2 − z1〉 ≥ 1

Lx
‖∇ f (z2)−∇ f (z1)‖2

2.

This implies, by the Cauchy-Schwarz inequality,

‖∇ f (z2)−∇ f (z1)‖2 ≤ Lx‖z2 − z1‖2.

5.C Auxiliary technical lemmas for proving Theorem 5.11

Lemma 5.19. If x(α) = x for some x ∈ X̃ , then x is a solution to (P). If a point x ∈ X̃ is a

solution to (P), then x(α) = x for all α ∈ [0,+∞).

Proof. That x is a solution to (P) is equivalent to the optimality condition

〈∇ f (x), z −x〉 ≥ 0, ∀z ∈X .

We can equivalently write

〈α∇ f (x)+∇h(x)−∇h(x), z −x〉 ≥ 0, ∀z ∈X ,

which is the optimality condition of

x(α) = argmin
z

{α〈∇ f (x), z −x〉+Dh(z, x) | z ∈X } .

Lemma 5.20. For every x ∈ X̃ and α> 0, it holds that

〈∇ f (x(α)), x(α)−x〉 ≤−α−1D(x(α), x) ≤ 0.

Proof. By definition, we have

α〈∇ f (x(α)), x(α)−x〉+D(x(α), x) ≤α〈∇ f (x, x −x〉+D(x, x) = 0.

Corollary 5.21. The sequence { xk } is non-increasing.

Proof. The Armijo rule and Lemma 5.20 guarantee that

f (xk ) ≤ f (xk−1)+τ〈∇ f (xk−1), xk −xk−1〉 ≤ f (xk−1).
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Chapter 5. Convergence of mirror descent under a weak smoothness condition

5.D Proof of Theorem 5.14

For every u ∈X ∩dom f , we write

f (xk−1)− f (u) ≤−〈∇ f (xk−1),u −xk−1〉
=−〈∇ f (xk−1),u −xk〉−〈∇ f (xk−1), xk −xk−1〉 .

The optimality condition for xk implies

〈αk∇ f (xk−1)+∇h(xk )−∇h(xk−1),u −xk〉 ≥ 0.

Applying the three-point identity, we obtain

〈∇ f (xk−1),u −xk〉 ≥−α−1
k 〈∇h(xk )−∇h(xk−1),u −xk〉

=−α−1
k [Dh(u, xk−1)−Dh(u, xk )−Dh(xk , xk−1)]

≥−α−1
k [Dh(u, xk−1)−Dh(u, xk ))] .

Then we can write

αk
[

f (xk−1)− f (u)
]≤ [Dh(u, xk−1)−Dh(u, xk ))]−αk 〈∇ f (xk−1), xk −xk−1〉 .

Summing up the inequality for all 1 ≤ k ≤ n, we get

−Sn f (u)+
n∑

k=1
αk f (xk−1) ≤ D(u, x0)−

n∑
k=1

αk 〈∇ f (xk−1), xk −xk−1〉 ,

where Sn :=∑n
k=1αk . Corollary 5.21 says that the sequence ( f (xk ))k∈N is non-increasing; then

we have

n∑
k=1

αk f (xk−1) ≥
n∑

k=1
αk f (xn) = Sn f (xn).

Therefore, we obtain

f (xn)− f (u) ≤ S−1
n

[
D(u, x0)−

n∑
k=1

αk 〈∇ f (xk−1), xk −xk−1〉
]

.

Note that by the Armijo rule, we have

f (x0)− f ? ≥ lim
k→∞

f (x0)− f (xk )

=
∞∑

j=1

[
f (x j−1)− f (x j )

]
≥−τ

∞∑
j=1

〈∇ f (x j−1), x j −x j−1〉 .
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5.E. Proof of Proposition 5.17

Therefore, 〈∇ f (xk−1), xk −xk−1〉, which are non-negative by Lemma 5.15, must converge to

zero. Theorem 5.14 then follows from the following lemma.

Lemma 5.22 ([149]). Let { ak } be a sequence of real numbers, and {bk } be a sequence of positive

real numbers. Define cn :=σ−1
n

∑n
k=1 bk ak for every n ∈N, where σn :=∑n

k=1 bk . If ak → 0 and

σn →+∞, then cn → 0.

5.E Proof of Proposition 5.17

Note that dom( fQST) is open, and hence dom( fQST)∩X is relatively open in X . It is easily

checked that fQST is twice continuously differentiable on dom( fQST), and hence on dom( fQST)∩
X . By Proposition 5.5, the function fQST is locally smooth relative to h(·) := (1/2)‖ ·‖2

F, where

‖ · ‖F denotes the Frobenius norm. By the quantum version of Pinsker’s inequality [92], the

von Neumann entropy is strongly convex on D with respect to the trace norm. As all norms on

a finite-dimensional space are equivalent, the proposition follows.
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6 A general convergence result for the
exponentiated gradient method

In the previous chapter, we have proved that the mirror descent with Armijo line search con-

verges, as long as the loss function is locally relatively smooth. Is it possible to further get

rid of the local relative smoothness condition? In this chapter, we explore the possibility of

deriving similar results for mirror descent-type algorithms. Specifically, we prove that the ex-

ponentiated gradient method—arguably the most well-known instance of mirror descent-type

algorithms—always converges for the problem of minimizing a continuously differentiable

convex function on the spectahedron, if the sequence of iterates possesses a strictly positive

limit point. As a byproduct, we obtain an improved Peierls-Bogoliubov inequality, via the

self-concordant likeness of a log-partition function.

This chapter is based on the joint work with Volkan Cevher [119].

6.1 Introduction

Consider the optimization problem

f ? = min{ f (ρ) | ρ ∈D } , (P)

where f is a convex function differentiable on intdom f , and D denotes the set of quantum

density matrices, i.e.,

D := {ρ ∈Cd×d | ρ ≥ 0,Trρ = 1} ,

for some positive integer d . We assume that f ? >−∞.

This problem formulation (P) allows us to address two other constraints simultaneously:

• The probability simplex P := { x ∈Rd+ | ‖x‖1 = 1}.

• The spectahedron S := { X ∈Rd×d | X ≥ 0,Tr X = 1}.
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Algorithm 3 Exponentiated Gradient Method with Armijo Line Search

Require: ᾱ> 0, r ∈ (0,1), τ ∈ (0,1), ρ0 ∈D non-singular
1: for k = 1,2, . . . do
2: αk ← ᾱ

3: while f (ρk−1(αk )) > f (ρk−1)+τ〈
f ′(ρk−1),ρk−1(αk )−ρk−1

〉
do

4: αk ← rαk

5: end while
6: ρk ← ρk−1(αk )
7: end for

Optimization problems with a probability simplex, spectahedron, or quantum density matrix

constraint appear in various applications, such as sparse regression [170], low-rank matrix

estimation [106], and quantum state tomography [146], to mention a few; the corresponding

objective functions are typically convex and differentiable.

Starting with some non-singular ρ0 ∈D, the exponentiated gradient (EG) method iterates as

ρk =C−1
k exp

[
log(ρk−1)−αk∇ f (ρk−1)

]
, k ∈N, (6.1)

where Ck is a positive real number normalizing the trace of ρk , and αk > 0 denotes the step

size. Equivalently, one may write

ρk ∈ argmin{αk 〈∇ f (ρk−1,σ−ρk−1)〉+D(σ,ρk−1) |σ ∈D } , (6.2)

where D denotes the quantum relative entropy. Therefore, the EG method can be viewed as

mirror descent with the von Neumann entropy [19, 135, 174], or a special case of the interior

gradient method [7].

There are various approaches to selecting the step size. We focus on Armijo line search. Let

ᾱ> 0 and r,τ ∈ (0,1). The Armijo line search procedure outputs αk = r j ᾱ, where j is the least

non-negative integer that satisfies

f (ρk ) ≤ f (ρk−1)+τ〈∇ f (ρk−1),ρk −ρk−1〉 ;

the dependence on j lies implicitly in ρk . We give the pseudo codes in Algorithm 3, where we

define

ρk−1(αk ) := C̃−1
k exp

[
log(ρk−1)−αk∇ f (ρk−1)

]
, ∀k ∈N;

C̃k normalizes the trace of ρk−1(αk ).

Implementing Armijo line search does not require any parameter of the objective function,

e.g., the Lipschitz constant of the objective function or its gradient. This observation shows

the possibility of proving a convergence guarantee for the EG method with respect to a general

class of objective functions. Indeed, we will only assume that the objective function is convex
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6.2. Main result

and differentiable throughout this chapter.

6.1.1 Related work

Recall that, as discussed in the previous chapter, quantum state tomography, positron emission

tomography, optimal portfolio selection, and non-negative linear inverse problems all require

one to solve an optimization problem of the form (P), but existing results cannot guarantee

convergence of the exponentiated gradient method. The essential reason is that existing

results require either 1) the gradient ∇ f is bounded, or 2) the objective function is smooth

relative to the negative entropy, but none of the conditions holds in these applications.

There are some convergence guarantees that require mild differentiability conditions, but they

are all for gradient descent-type methods. Bertsekas proved that the projected gradient descent

with Armijo line search always converges for a differentiable objective function, when the

constraint is a box or the positive orthant [23]. Gafni and Bertsekas generalized the previous

result for any compact convex constraint [78]. Salzo proved the convergence of proximal

variable metric methods with various line search schemes, assuming that ∇ f is uniformly

continuous on any compact set [161].

Our proof relies on the self-concordant likeness of a log-partition function. The notion of self-

concordant likeness is closely related to that of self-concordance, the foundation of interior

point methods [140]. Self-concordant likeness was proposed by Bach for statistical analyses

[8]; it was introduced to the field of convex optimization to derive fast convergence rates for

non-strongly convex functions in [10, 173]. A generalization of self-concordant likeness for

non-Euclidean norms can be found in [55, 117]. A systematic study of self-concordant likeness

and other variants of self-concordance can be found in [168].

6.1.2 Contributions

In comparison to existing results, we highlight the following contributions.

• To the best of our knowledge, we give the first convergence guarantee of a mirror

descent-type method1 that only requires differentiability.

• Our convergence analysis exploits the self-concordant likeness of the log partition

function. As a by-product, we improve on the Peierls-Bogoliubov inequality, which is of

independent interest (cf. Remark 6.9).

6.2 Main result

Our main result is the following theorem.

1Here we exclude the very standard projected gradient method.
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Theorem 6.1. Suppose that f is differentiable at every non-singular ρ ∈D. Then we have:

1. The Armijo line search procedure terminates in finite steps.

2. The sequence ( f (ρk ))k∈N is non-increasing.

3. For any converging sub-sequence (ρk )k∈K , K ⊆N, it holds that

liminf{D(ρk (β),ρk ) | k ∈K } = 0,

for every β> 0, where ρk (β) denotes the next iterate of ρk with step size β.

Remark 6.2. Statement 3 is always meaningful—due to the compactness of D, there exists at

least one converging sub-sequence of (ρk )k∈N.

Taking limit, we obtain the following convergence guarantee.

Corollary 6.3. If the sequence (ρk )k∈N possesses a non-singular limit point, the sequence

( f (ρk ))k∈N monotonically converges to f ?.

Proof. Let (ρk )k∈K be a sub-sequence converging to a non-singular matrix ρ∞ ∈ D. By

Statement 3 of Theorem 6.1, there exists a sub-sequence (ρk )k∈K ′ , K ′ ⊆ K , such that

D(ρk (β),ρk ) → 0 as k →∞ in K ′. As ρ∞ is non-singular, we can take the limit and obtain

D(ρ∞(β),ρ∞) = 0, showing that ρ∞(β) = ρ∞. Lemma 6.18 in the appendix then implies that

ρ∞ is a minimizer of f on D. Since the sequence ( f (ρk ))k∈N is non-increasing and bounded

from below by f ?, limk→∞ f (ρk ) exists. We write

f ? ≤ lim
k→∞

f (ρk ) = liminf{ f (ρk ) | k ∈N } ≤ f (ρ∞) = f ?.

It is currently unclear to us whether convergence to the optimum holds, when there does not

exist a non-singular limit point; see Section 6.4.3 for a discussion. One way to get around is to

consider solving

f ?λ = min{ f (ρ)−λ logdetρ | ρ ∈D } , (P-λ)

where λ is a positive real number. As − logdet(·) is a barrier function for the set of positive

semi-definite matrices [140], every limit point must be non-singular; otherwise, monotonicity

of the sequence ( f (ρk ))k∈N (Statement 2 in Theorem 6.1) cannot hold.

Proposition 6.4. It holds that limλ↓0 f ?
λ
= f ?.

Proof. Notice that − logdet(·) > 0 on D. We write

lim
λ↓0

f ?λ = inf
λ>0

f ?λ = inf
λ>0

inf
ρ∈D

fλ(ρ) = inf
ρ∈D

inf
λ>0

fλ(ρ) = inf
ρ∈D

f (ρ) = f ?,

where fλ(ρ) := f (ρ)−λ logdetρ.
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6.3. Proof of Theorem 6.1

Existence of a non-singular limit point can be easily verified in some applications. For example,

hedged quantum state tomography corresponds to solving (P) with the objective function

fHQST(ρ) := fQST(ρ)−λ logdetρ,

for some λ> 0 [26]. As discussed above, all limit points of the iterates must be non-singular.

Similarly in the probability simplex constraint case, if the optimization problem involves the

Burg entropy as in [64], all limit points must be element-wisely strictly positive2.

Notation

Let A ∈Cd×d . We denote its largest and smallest eigenvalues by λmax(A) and λmin(A), respec-

tively. We denote its Schatten p-norm by ‖A‖p . We will only use the Hilbert-Schmidt inner

product in this chapter; that is, 〈A,B〉 := Tr(AHB) for any A,B ∈Cd×d , where AH denotes the

Hermitian of A.

6.3 Proof of Theorem 6.1

The key to our analysis is the following proposition.

Proposition 6.5. Let ρ ∈D be non-singular. Suppose that

∆ :=λmax(∇ f (ρ))−λmin(∇ f (ρ)) > 0.

Then the mapping

α 7→ D(ρ(α),ρ)

e∆α(∆α−1)+1
(6.3)

is non-increasing on (0,+∞).

Proposition 6.5 was inspired by a lemma due to Gafni and Bertsekas [78], which says that the

mapping

α 7→ ‖ΠD(ρ−α∇ f (ρ))−ρ‖F

α
(6.4)

is non-increasing on [0,+∞), whereΠD denotes projection onto D with respect to the Frobe-

nius norm ‖ · ‖F. The lemma of Gafni and Bertsekas was proved by an Euclidean geometric

argument; see [24] for an illustration. In comparison, we will prove Proposition 6.5 by exploit-

ing the self-concordant likeness of the log-partition function.

We prove Proposition 6.5 in Section 6.3.1. Then we prove the three statements in Theorem

2For any element-wisely strictly positive vector v := (vi )1≤i≤d , the Burg entropy is defined as b(v) :=
−∑d

i=1 log vi .
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6.1 separately in the following three sub-sections. To simplify the presentation, we put some

necessary technical lemmas in Appendix 6.A.

6.3.1 Self-concordant likeness of the log-partition function and
proof of Proposition 6.5

For any non-singular ρ ∈D and α> 0, define

ϕ(α;ρ) := logTrexp
[
log(ρ)−α∇ f (ρ)

]
,

which, in statistical physics, is the log-partition function of the Gibbs state for the Hamiltonian

Hα :=− log(ρ)+α∇ f (ρ) at temperature 1. We will simply write ϕ(α) instead of ϕ(α;ρ), when

the corresponding ρ is clear from the context or irrelevant.

The log-partition function is indeed closely related to the EG method, as shown by the following

lemma.

Lemma 6.6. For any non-singular ρ ∈D and α> 0, it holds that

D(ρ(α),ρ) =ϕ(0)− [
ϕ(α)+ϕ′(α)(0−α)

]
.

Proof. Direct calculation.

We say that a three times continuously differentiable convex function g is µ-self-concordant

like, if |g ′′′(x)| ≤µg ′′(x) for all x [8, 10, 173].

Lemma 6.7. For any non-singular ρ ∈ D, the function ϕ(α) is ∆-self-concordant like, where

∆ :=λmax(∇ f (ρ))−λmin(∇ f (ρ)).

Proof. Lemma 6.19 shows that

ϕ′′(α) =E
(
ηα−Eηα

)2 , ϕ′′′(α) =E
(
ηα−Eηα

)3 ,

where ηα is a random variable taking values in [−λmax(∇ f (ρ)),−λmin(∇ f (ρ))]. The lemma

follows.

The following sandwich inequality follows from self-concordant likeness [173].

Lemma 6.8. Suppose that ∆> 0. For any non-singular ρ ∈D, it holds that either ρ is a solution

of (P), or(
e−∆α+∆α−1

)
∆2 ϕ′′(α) ≤ϕ(0)− [

ϕ(α)+ϕ′(α)(0−α)
]≤ (

e∆α−∆α−1
)

∆2 ϕ′′(α).
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Remark 6.9. The lower bound improves upon the Peierls-Bogoliubov inequality [144], which

says that

0 ≤ϕ(0)− [
ϕ(α)+ϕ′(α)(0−α)

]
.

Notice that lower bound provided by Lemma 6.8 is always non-negative.

For completeness, we provide a proof in Section 6.B.

Now we are ready to prove Proposition 6.5.

Proof of Proposition 6.5. We look for a differentiable function χ : (0,+∞) → (0,+∞), such that

the mapping

g (α) := D(ρ(α),r ho)

χ(α)

is non-increasing on (0,+∞). Note that g is non-increasing if and only if g ′ ≤ 0 on (0,+∞).

Applying Lemma 6.6, a direct calculation gives

g ′(α) = αϕ′′(α)χ(α)−{
ϕ(0)− [

ϕ(α)+ϕ′(α)(0−α)
]}
χ′(α)[

χ′(α)
]2 .

Therefore, g ′(α) ≤ 0 if and only if the numerator is negative, i.e.,

(logχ)′(α) ≥ αϕ′′(α)

ϕ(0)− [
ϕ(α)+ϕ′(α)(0−α)

] ,

where we have used the fact that χ′/χ= (logχ)′. By Lemma 6.8, we can set

(logχ)′(α) = ∆2α

e−∆α+∆α−1
.

Solving the equation gives χ(α) := e∆α(∆α−1)+1.

For convenience, we will apply Proposition 6.5 via the following corollary.

Corollary 6.10. Let ρ ∈ D be non-singular and ᾱ > 0. Suppose that ∆ := λmax(∇ f (ρ)) −
λmin(∇ f (ρ)) is strictly positive. It holds that

D(ρ(α),ρ)

α2 ≥ κD(ρ(ᾱ),ρ), ∀α ∈ (0, ᾱ],

where κ := {
2
[
e∆ᾱ(∆ᾱ−1)+1

]}−1
∆2.

Proof. Define g (α) := e∆α(∆α−1)+1− (∆2/2)α2. Then g (0) = 0, and

g ′(α) =α[
e∆α∆2 −∆2]≥α(∆2 −∆2) = 0, ∀α ∈ (0,+∞).
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Therefore, g (α) ≥ 0 on (0,+∞), i.e.,

e∆α(∆α−1)+1 ≥ ∆2

2
α2, ∀α ∈ (0,+∞).

By Proposition 6.5, we write

D(ρ(α),ρ)
∆2

2 α
2

≥ D(ρ(α),ρ)

e∆α(∆α−1)+1
≥ D(ρ(ᾱ),ρ)

e∆ᾱ(∆ᾱ−1)+1
, ∀α ∈ (0, ᾱ].

6.3.2 Proof of Statement 1

The first statement is a direct consequence of the following proposition.

Proposition 6.11. For every non-singular ρ ∈D, there exists some αρ > 0 such that

f (ρ(α)) ≤ f (ρ)+τ〈∇ f (ρ),ρ(α)−ρ〉 , ∀α ∈ [0,αρ]. (6.5)

Recall that τ is the parameter in Armijo line search.

Proof. If ρ is a minimizer, by Lemma 6.18, we have ρ(α) = ρ for all α ∈ [0,+∞), and the

proposition follows. Suppose that ρ is not a minimizer in the rest of this proof. By Lemma 6.18,

we have D(ρ(α),ρ) > 0 for all α ∈ (0,+∞). By the mean-value theorem, we write

f (ρ(α))− f (ρ) = 〈∇ f (σ),ρ(α)−ρ〉 ,

for some σ in the line segment joining ρ(α) and ρ. Then (6.5) can be equivalently written as

〈∇ f (σ)−∇ f (ρ),ρ(α)−ρ〉 ≤−(1−τ)〈∇ f (ρ),ρ(α)−ρ〉 , ∀α ∈ [0,αρ]. (6.6)

By Lemma 6.17, (6.6) holds if

〈∇ f (σ)−∇ f (ρ),ρ(α)−ρ〉 ≤ (1−τ)D(ρ(α),ρ)

α
, ∀α ∈ [0,αρ]. (6.7)

Consider two cases.

• If λmax(∇ f (ρ)) =λmin(∇ f (ρ)), then ∇ f (ρ) is a multiple of the identity. We have

〈∇ f (ρ),σ−ρ〉 = 0, ∀σ ∈D;

showing that ρ is a minimizer. By Lemma 6.18, the proposition follows for every αρ > 0.

• Otherwise, set αρ ≤ ᾱ. By Corollary 6.10, there exists some κ> 0, such that

D(ρ(α),ρ)

α
≥√

D(ρ(α),ρ)
√
κD(ρ(ᾱ),ρ), ∀α ∈ [0,αρ].
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Applying Hölder’s inequality and Pinsker’s inequality, we write

〈∇ f (σ)−∇ f (ρ),ρ(α)−ρ〉 ≤ ‖∇ f (σ)−∇ f (ρ)‖∞‖ρ(α)−ρ‖1

≤ ‖∇ f (σ)−∇ f (ρ)‖∞
√

2D(ρ(α),ρ).

Then (6.7) holds if

‖∇ f (σ)−∇ f (ρ)‖∞
p

2 ≤ (1−τ)
√
κD(ρ(ᾱ),ρ), ∀α ∈ [0,αρ]

Recall that a convex differentiable function is continuously differentaible [156]. Notice

that ρ(α) is continuous in α. As the right-hand side is a strictly positive constant by

Lemma 6.18, the proposition follows for a small enough αρ .

6.3.3 Proof of Statement 2

By the definition of Armijo line search and Lemma 6.17, we have

f (ρk ) ≤ f (ρk−1)+τ〈∇ f (ρk−1),ρk −ρk−1〉 ≤ f (ρk−1)− τD(ρk ,ρk−1)

αk
.

As the quantum relative entropy D is always non-negative, it follows that the sequence

( f (ρk ))k∈N is non-increasing.

6.3.4 Proof of Statement 3

If ρk is a minimizer for some k ∈N, by Lemma 6.18, it holds that ρk ′ = ρk for all k ′ > k, and the

statement trivially follows. In the rest of this sub-section, we assume that ρk is not a minimizer

for all k; then by Lemma 6.18, it holds that ρk 6= ρk−1 for all k ∈N.

Let (ρk )k∈K be a sub-sequence converging to a limit point ρ∞ ∈D, which exists due to the

compactness of D. Then ρ∞ must lie in intdom f ; otherwise, monotonicity of the sequence

( f (ρk ))k∈N (Statement 2 of Theorem 6.1) cannot hold. As f is continuously differentiable, it

holds that

∆∞
2

≤λmax(∇ f (ρk ))−λmin(∇ f (ρk )) ≤ 2∆∞, (6.8)

for large enough k ∈K , where ∆∞ :=λmax(∇ f (ρ∞))−λmin(∇ f (ρ∞).

Lemma 6.12. If ∆∞ = 0, then liminf{D(ρk (β),ρk ) | k ∈K } = 0 for every β ∈ [0,+∞).

Proof. Define∆k :=λmax(∇ f (ρk ))−λmin(∇ f (ρk )); then∆k →∆∞ = 0. Defineϕk :α 7→ϕ(α;ρk ).
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By Lemma 6.8 and Corollary 6.20, we have

ϕk (0)− [
ϕk (β)−ϕ′

k (β)(0−β)
]≤ (

e∆kβ−∆kβ−1
)

∆2
k

ϕ′′
k (β)

≤
(
e∆kβ−∆kβ−1

)
4

.

By Lemma 6.6, we obtain

0 ≤ liminf{D(ρk (β),ρk ) | k ∈K }

= liminf{ϕk (0)− [
ϕk (β)−ϕ′

k (β)(0−β)
] | k ∈K }

≤ e0 −0−1

4
= 0.

Suppose that ∆∞ > 0. We have the following analogy of Corollary 6.10 for large enough k ∈K :

Corollary 6.13. Suppose that ∆∞ > 0 and ρk is not a minimizer for every k ∈K . There exists

some κ> 0, such that

D(ρk (α),ρk )

α2 ≥ κD(ρk (ᾱ),ρk ), ∀α ∈ (0, ᾱ],

for large enough k ∈K .

Proof. Recall that (6.8) provides both upper and lower bounds ofλmax(∇ f (ρk ))−λmin(∇ f (ρk )),

for large enough k ∈K . With regard to Corollary 6.10, it suffices to set

κ= ∆2∞
4
[
e2∆∞ᾱ(2∆∞ᾱ−1)+1

] .

Based on Corollary 6.13, we prove the following proposition.

Proposition 6.14. Suppose that ∆∞ > 0 and ρk is not a minimizer for every k ∈ K . It holds

that liminf{D(ρk (ᾱ),ρk ) | k ∈K } = 0.

The proof of Proposition 6.14 can be found in Section 6.C, which essentially follows the strategy

of Gafni and Bertsekas [78] with necessary modifications.

To summarize, we have proved that for any converging sub-sequence (ρk )k∈K , there exists

some γ> 0 such that

liminf{D(ρk (γ),ρk ) | k ∈K } = 0.

For the case where ρk is a minimizer for some k ∈K or ∆∞ = 0, γ can be any strictly positive

real number. Otherwise, we set γ= ᾱ by Proposition 6.14.
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6.4. Concluding remarks

By Lemma 6.6 and Lemma 6.8, it holds that

0 ≤ liminf

{ (
e−(1/2)∆∞γ+ (1/2)∆∞γ−1

)
γ2 ϕ′′

k (γ)

∣∣∣∣∣ k ∈K

}
≤ liminf{D(ρk (γ),ρk ) | k ∈K } = 0,

showing that liminf{ϕ′′
k (γ) | k ∈K } = 0. Applying Lemma 6.6 and Lemma 6.8 again, we obtain

0 ≤ liminf{D(ρk (β),ρk ) | k ∈K |k ∈K }

≤ liminf

{ (
e2∆∞β−2∆∞β−1

)
β2 ϕ′′

k (β)

∣∣∣∣∣ k ∈K

}
= 0,

for any β ∈ (0,+∞). This proves Statement 3 of Theorem 6.1.

6.4 Concluding remarks

Assuming only differentiability of the objective function, we have proved that the EG method

with Armijo line search monotonically converges to the optimum, if the sequence of iterates

possesses a non-singular limit point. Our proof exploits the self-concordant likeness of the

log-partition function, which is of independent interest; in particular, Lemma 6.8 improves

upon the Peierls-Bogoliubov inequality.

6.4.1 Importance of self-concordant likeness

With regard to (6.4), one may suspect whether it suffices, for the convergence analysis, to

prove the following: There exists some ε > 0, such that the mapping α 7→ α−εD(ρ(α),ρ) is

non-increasing on (0, ᾱ] for every non-singular ρ ∈D. Indeed, following the proof strategy for

Proposition 6.5, we obtain the following result without self-concordant likeness.

Proposition 6.15. Let ρ ∈D be non-singular. Define

M := sup{ϕ′′(α;ρ) |α ∈ (0, ᾱ) } , m := inf{ϕ′′(α;ρ) |α ∈ (0, ᾱ) } .

Suppose that m > 0. Then the mapping α 7→α−εD(ρ(α),ρ) is non-increasing on (0, ᾱ), where

ε := 2M/m.

Remark 6.16. For the case where m = 0, Lemma 6.19 implies that ∇ f must be a multiple of the

identity. Then it is easily checked that ρ is a minimizer as it verifies the optimality condition.

Then in the proof of Proposition 6.11, for example, the condition we need to verify becomes:

‖∇ f (σ)−∇ f (ρ)‖∞
p

2 ≤ (1−τ)αε/2−1

√
D(ρ(ᾱ),ρ)

ᾱ2 , ∀α ∈ [0,αρ].
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Chapter 6. A general convergence result for the exponentiated gradient method

Notice that ε≥ 2 by definition. Both sides can converge to zero as α→ 0, so in general, there

does not exist a small enough αρ that verifies the condition. Moreover, because αε ≤α2 for

α ∈ [0,1], it is impossible to obtain an analogue of Corollary 6.10.

The point in our analysis is to show that there exists some χ(α), bounded from below by α2 for

every α close to zero, such that the mapping α 7→ D(ρ(α),ρ)/χ(α) is non-increasing. This is

where self-concordant likeness of the log-partition function comes into play.

6.4.2 Extensions for the probability simplex and spectahedron constraints

The EG method can be extended for the spectahedron and probability simplex constraints;

in fact, the EG method is arguably better known for these two cases [7, 19, 103, 174]. For the

former case, the iteration rule writes exactly the same as (6.1), and is equivalent to (6.2) with D

replaced by the spectahedron S . For the latter case, the iteration rule becomes element-wise

(see, e.g., [19]) and is equivalent to (6.2), with D replaced by the probability simplex P , and the

quantum relative entropy replaced by the (classical) relative entropy. The Armijo line search

rule applies without modification.

It is easily checked that our proof holds without modification for the spectahedron constraint.

As a vector in Rd is equivalent to a diagonal matrix in Rd×d , it can be easily checked that the

statements in Theorem 6.1 applies to the probability simplex constraint. Corollary 6.3 also

holds true for these two constraints with slight modification—for the probability simplex

constraint, non-singularity should be replaced by element-wise strict positivity.

6.4.3 Convergence with possibly singular limit points

Corollary 6.3 requires existence of at least one non-singular limit point. Regarding the result in

the preceding chapter, if we introduce a slightly stronger condition that the objective function

is locally smooth relative to the entropy function, convergence of the exponentiated gradient

method also holds. In general without the local relative smoothness condition, we conjecture

that convergence to the optimum cannot be guaranteed. However, we have not found a

counter-example.

6.A Technical lemmas necessary for Section 6.3

Recall the definition:

ρ(α) :=C−1
ρ exp

[
log(ρ)−α∇ f (ρ)

]
,

for every non-singular ρ ∈D and α≥ 0, where Cρ is the positive real number normalizing the

trace of ρ(α).

96



6.A. Technical lemmas necessary for Section 6.3

Lemma 6.17. For every non-singular ρ ∈D and α> 0, it holds that

〈∇ f (ρ),ρ(α)−ρ〉 ≤−D(ρ(α),ρ)

α
.

Proof. The equivalent formulation of the EG method, (6.2), implies that

α〈∇ f (ρ),ρ(α)−ρ〉+D(ρ(α),ρ) ≤α〈∇ f (ρ),ρ−ρ〉+D(ρ,ρ) = 0.

Lemma 6.18. Let ρ ∈ D be non-singular. If ρ is a minimizer of f on D, then ρ(α) = ρ for all

α≥ 0. If ρ(α) = ρ for some α> 0, then ρ is a minimizer of f on D.

Proof. The optimality condition says that ρ ∈ intD is a minimizer, if and only if

〈∇ f (ρ),σ−ρ〉 ≥ 0, ∀σ ∈D.

For any α> 0, we can equivalently write

〈α∇ f (ρ)+ [∇h(ρ)−∇h(ρ)
]

,σ−ρ〉 ≥ 0, ∀σ ∈D, (6.9)

where h denotes the negative von Neumann entropy function, i.e.,

h(ρ) := Tr(ρ logρ)−Trρ.

Notice that the quantum relative entropy D is the Bregman divergence induced by the negative

von Neumann entropy. It is easily checked, again by the optimality condition, that (6.9) is

equivalent to

ρ = argmin{α〈∇ f (ρ),σ−ρ〉+D(σ,ρ) |σ ∈D } = ρ(α).

For every non-singular ρ ∈D and α≥ 0, define

G :=−∇ f (ρ), Hα := logρ+αG .

Let G =∑
j λ j P j be the spectral decomposition of G . Define ηα as a random variable satisfying

P
{
ηα =λ j

}= Tr
(
P j exp(Hα)

)
Trexp(Hα)

. (6.10)

It is easily checked that P
(
ηα =λ j

)> 0 for all j , and the probabilities sum to one.

Lemma 6.19. For any α ∈R, it holds that

ϕ′(α) =Eηα, ϕ′′(α) =E
(
ηα−Eηα

)2 , ϕ′′′(α) =E
(
ηα−Eηα

)3 .
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Proof. Notice that

Eηn
α = Tr(Gn exp(Hα))

Trexp(Hα)
,

for any n ∈N. Define σα := exp(Hα)/Trexp(Hα). A direct calculation gives

ϕ′(α) = Tr(Gσα), ϕ′′(α) = Tr(G2σα)− (Tr(Gσα))2 ,

ϕ′′′(α) = Tr(G3σα)−3Tr(G2σα)Tr(Gσα)+2(Tr(Gσα))3 .

The lemma follows.

Since ηα is a bounded random variable, it follows that ϕ′′ is bounded from above.

Corollary 6.20. It holds that ϕ′′(α) ≤ (1/4)∆2, where ∆ :=λmax(∇ f (ρ))−λmin(∇ f (ρ)).

Proof. Recall that the variance of a random variable taking values in [a,b] is bounded from

above by (b −a)2/4.

6.B Proof of Lemma 6.8

Recall the random variable ηα defined in (6.10). Suppose that ϕ′′(α) = 0 for some α ∈ [0,+∞).

Then we have ηα = 0 almost surely, but this implies that ∆= 0, a contradiction. Therefore, we

have ϕ′′(α) > 0 for all α ∈ [0,+∞).

We prove a general result. Let ψ : R→ R be a µ-self-concordant like function. Suppose that

ψ′′(t ) > 0 for all t . Consider the function χ(t ) := log
(
ψ′′(t )

)
. We write, by the self-concordant

likeness of ψ, that

|χ′(t )| = |ψ′′′(t )|
ψ′′(t )

≤µ , ∀t ∈R .

Then, for any t1, t2 ∈R, we have

|χ(t1)−χ(t2)| = ∣∣log
(
ψ′′(t1)

)− log
(
ψ′′(t2)

)∣∣≤µ|t2 − t1| ;

that is,

e−µ|t2−t1|ψ′′(t2) ≤ψ′′(t1) ≤ eµ|t2−t1|ψ′′(t2) .
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6.C. Proof of Proposition 6.14

Applying the Newton-Leibniz formula, we obtain

ψ′(t2)−ψ′(t1) =
∫ 1

0
ψ′′(t1 +τ(t2 − t1))(t2 − t1)dτ

≤
∫ 1

0
eµτ|t2−t1|ψ′′(t1)(t2 − t1)dτ

=
(

eµ|t2−t1|−1

µ|t2 − t1|
)
ψ′′(t1)(t2 − t1) ;

similarly, we obtain

ψ′(t2)−ψ′(t1) ≥−
(

e−µ|t2−t1|−1

µ|t2 − t1|
)
ψ′′(t1)(t2 − t1) .

Applying the Newton-Leibniz formula again, we obtain

ψ(t2)−ψ(t1) =
∫ 1

0
ψ′(t1 +τ(t2 − t1))(t2 − t1)dτ

=ψ′(t1)(t2 − t1)+
∫ 1

0

(
ψ′(t1 +τ(t2 − t1))−ψ′(t1)

)
(t2 − t1)dτ

≤ψ′(t1)(t2 − t1)+
∫ 1

0

(
eµτ|t2−t1|−1

µτ|t2 − t1|
)
ψ′′(t1)τ(t2 − t1)2 dτ

=ψ′(t1)(t2 − t1)+
(
eµ|t2−t1|−µ|t2 − t1|−1

)
µ2 ψ′′(t1) ;

similarly, we obtain

ψ(t2)−ψ(t1) ≥ψ′(t1)(t2 − t1)+
(
e−µ|t2−t1|+µ|t2 − t1|−1

)
µ2 ψ′′(t1) .

Lemma 6.8 follows from setting ψ=ϕ, µ=∆, t2 = 0, and t1 =α.

6.C Proof of Proposition 6.14

Suppose that α := liminf{αk | k ∈K } > 0. By the Armijo line search rule and Corollary 6.10,

we write

f (ρk )− f (ρk+1) ≥−τ〈∇ f (ρk ), f (ρk+1)− f (ρk )〉
≥ τα−1

k D(ρk+1,ρk )

= ταkα
−2
k D(ρk (αk ),ρk )

≥ τακD(ρk (ᾱ),ρk )

≥ 0,

for large enough k ∈K . Taking limit, we obtain that D(ρk (ᾱ),ρk ) → 0 as k →∞ in K .
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Suppose that liminf{αk | k ∈K } = 0. Let (αk )k∈K ′ , K ′ ⊆K , be a sub-sequence converging

to zero. According to the Armijo rule, we have

f (ρk (r−1αk ))− f (ρk ) > τ〈∇ f (ρk ),ρ(r−1αk )−ρ(αk )〉 , (6.11)

for large enough k ∈K . The mean value theorem says that

f (ρk (r−1αk ))− f (ρk ) = 〈∇ f (σ),ρk (r−1αk )−ρk〉 ,

for some σ in the line segment jointing ρk (r−1αk ) and ρk . Then (6.11) can be equivalently

written as

〈∇ f (σ)−∇ f (ρk ),ρk (r−1αk )−ρk〉 >−(1−τ)〈∇ f (ρk ),ρk (r−1αk )−ρk (αk )〉 . (6.12)

By Pinsker’s inequality and Hölder’s inequality, we obtain

‖∇ f (σ)−∇ f (ρk )‖∞
√

2D(ρk (r−1αk ),ρk ) ≥ ‖∇ f (σ)−∇ f (ρk )‖∞‖ρk (r−1αk ),ρk‖1

≥ 〈∇ f (σ)−∇ f (ρk ),ρk (r−1αk )−ρk〉 . (6.13)

for large enough k ∈K . Notice that r−1αk ≤ ᾱ for large enough k ∈K . By Lemma 6.17 and

Corollary 6.13, we obtain

−〈∇ f (ρk ),ρk (r−1αk )−ρk (αk )〉 ≥ D(ρk (r−1αk ),ρk )

r−1αk

≥√
κD(ρk (ᾱ),ρk )

√
D(ρk (r−1αk ),ρk ), (6.14)

for large enough k ∈K . Since D(ρk (r−1αk ),ρk ) is strictly positive for all k ∈K ′ by assumption,

(6.12), (6.13), and (6.14) imply

‖∇ f (σ)−∇ f (ρk )‖∞ > (1−τ)

√
κD(ρk (ᾱ),ρk )

2
≥ 0.

Taking limits, we obtain that D(ρk (ᾱ),ρk ) → 0 a k →∞ in K ′.
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7 An agnostic PAC approach to com-
pressive MRI

In the previous chapters, the focuses are either statistical or computational. In this chapter, we

present a theoretical framework for compressive magnetic resonance imaging (MRI) that ad-

dresses both aspects. The framework is indeed a standard application of the agnostic probably

approximately correct (PAC) learning theory—empirical risk minimization in particular. The

result, however, is quite interesting: Subjective conditions, e.g., sparsity, is not required. The

restricted isometry property (RIP)–a condition on the strong convexity and smoothness of the

quadratic loss that ensures accurate signal reconstruction—is no longer required; competitive

empirical results were achieved via computationally cheap (almost linear-time) algorithms.

This chapter is mainly based on the joint work with Volkan Cevher [118], supplemented by the

results in [12, 82].

7.1 Introduction

Compressive MRI is essentially a linear inverse problem. The goal is to recover an unknown

signal x\ ∈Cp , given a a sub-sampling patternΩ⊂ {1, . . . , p } with |Ω| = n for some n < p, and

the outcome of compressive sampling:

y := PΩF x\ , (7.1)

where F :Cp →Cp is the Fourier transform matrix, and PΩ :Cp →Cn is a linear operator that

only keeps entries of F x\ indexed by Ω. In practice, x\ is usually a two- or three-dimensional

object; then F should be replaced by the corresponding multi-dimensional Fourier transform.

The standard theory of compressive sampling (CS) assumes that x\ possesses certain structure,

and studies conditions on Ω such that x\ can be recovered given y and Ω. For example, if x\ is

sparse, then as long as the matrix AΩ := PΩF satisfies the RIP and n is sufficiently large, the

basis pursuit estimator,

x̂BP ∈ argmin
x

{‖x‖1
∣∣ y = AΩx, x ∈Cp }

,
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perfectly recovers x\ [38, 43].

The RIP indeed requires the quadratic loss f (x) := (1/2)‖y − AΩx‖2
2 to be both strongly convex

and 2-smooth, restricted on the set of sparse vectors. Recall the definition.

Definition 7.1 (Restricted isometry property (RIP) [38]). We say that the (s,δ)-RIP holds for

some s ∈N and δ≥ 0, if

(1−δ)‖x‖2
2 ≤ ‖AΩx‖2

2 ≤ (1+δ)‖x‖2
2 , ∀x ∈Cp such that ‖x‖0 ≤ 2s . (7.2)

Proposition 7.2. The RIP ensures that the function f is strongly convex with parameter µ, on

the set

Xs := { x ∈Cp | ‖x‖0 ≤ s } .

Proof. A direct calculation shows that strong convexity with parameter µ holds (cf. Definition

1.2), if and only if

‖AΩ(z −x)‖2
2 ≥µ‖z −x‖2

2 , ∀x, z ∈Xs .

Notice that ‖z − x‖0 ≤ 2s for all x, z ∈Xs . Therefore, the desired inequality is guaranteed by

the lower bound in (7.2), with µ= 1−δ.

Similarly, it is easily checked that the upper bound in (7.2) implies that f is 2-smoothness with

parameter L = 1+δ on Xs , with respect to the following equivalent definition1.

Definition 7.3. We say that a function g is 2-smooth on a set X , if there exits some L > 0 such

that

(1−α)g (x)+αg (z) ≤ g ((1−α)x +αz)+α(1−α)
L

2
‖z −x‖2

2 , ∀x, z ∈X and α ∈ (0,1) .

The RIP is guaranteed to hold for compressive MRI—if n is sufficiently large, and the set Ω

is randomly chosen from all sub-sets of {1, . . . , p } following the uniform distribution, the RIP

holds with high probability [45, 89, 160]. Similar theories have been developed for signal

structures more complicated than mere sparsity, where the objective function in the basis

pursuit estimator may be replaced by some non-differentiable stucture-promoting functions

[1, 9, 13, 50, 71].

The standard theory of compressive MRI described above is theoretically sound, and has

inspired many breakthroughs, such as matrix completion, phase retrieval, and numerical

algorithms for non-differentiable optimization, to mention a few (see, e.g., [39, 139, 154]).

However, it has three undesirable properties especially to MRI practitioners. First, to force

1Notice that f is a real-valued non-constant function of complex variables, so it violates the Cauchy-Riemann
equation and is not differentiable. Therefore, here we use the definition of 2-smoothness that can be directly
extended for the complex variable case [136, Theorem 2.1.5].
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the RIP, the theory deviates from the practice—the uniformly random sub-sampling does

not give satisfactory reconstruction results. An empirical evidence can be found in [124,

Figure 6]. In fact, empirical observations have shown that low-frequency samples are more

relevant; therefore, usually a random variable density sampling strategy that focuses more on

low-frequency samples is adopted [51].

Second, the signal structure must be known in advance, and the sub-sampling pattern is

chosen with respect the known structure. This results in difficulties in practice. Finding a

sparse representation of the unknown signal is highly non-trivial [171], whereas we cannot

guarantee in advance whether the unknown signal under a given representation is sparse

enough for the RIP to hold, without any subjective assumption. Moreover, focusing on a

specific a priori guess of the signal structure may result in a sub-optimal design of the sub-

sampling pattern, due to overlooking other structures that the unknown signal also possesses.

Third, the signal reconstruction procedure requires computing a basis pursuit-like estimator,

formulated as a convex optimization problem with a non-differentiable objective function.

While there are a variety of convex optimization tools guaranteed to solve the optimization

problem up to numerical accuracy (see, e..g, [76]), a significant amount of computation time

is needed, especially when compared to the classical least squares (LS) approach.

In this chapter, we propose a new theoretical framework for compressive MRI, aiming to

address the three issues raised above simultaneously.

7.1.1 Related work

Existing approaches to compressive MRI essentially follows the standard theory. The typical

pattern is summarized as follows.

1. Find a transformation matrixΨ :Cp →Cp , such that x\ =Ψ−1z\ and z\ possesses certain

structure. For example, the sparsity of z\ was considered in [43], the sparsity of z\ and

smoothness of x\ were exploited in [124], the tree sparsity of z\ was considered in [52],

and the multi-level sparsity of z\ wasconsidered in [1].

2. Choose a random sub-sampling patternΩ and sample F x\ accordingly. The probability

distribution may be constructed to ensure a RIP or RIP-like condition regarding the

signal structure, or with respect to the practical wisdom that low-frequency samples are

more informative (see, e.g., [1, 43, 51, 124, 181], to mention a few).

3. Finally, apply a non-linear signal reconstruction algorithm to reconstruct x\. The stan-

dard basis pursuit estimator was considered in [1, 51]. A basis pursuit-like estimator

minimizing a sum of the `1-norm and the total variation semi-norm was proposed in

[124]. An LS estimator with the `1-norm and total variation semi-norm penalizations

was considered in [186]. A similar penalized LS estimator with an additional penalization

term for tree sparsity was introduced by [52].
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The second and third issues we raised in the introduction—requirement of a priori knowledge

of the signal structure and computationally expensive signal reconstruction—are obviously

inherited. As for the sub-sampling pattern, the theoretically sound approaches only consider

specific signal structures [1, 43, 51]; the heuristic approaches lack rigorous performance

guarantees, and may involve many parameters to be properly tuned [124, 181].

7.1.2 Contributions

The main novelty is that we formulate the design of an optimal compressive MRI system as a

statistical learning problem. We solve the learning problem via empirical risk minimization

(ERM). We adopt the agnostic PAC perspective [88, 176, 179] and derive rigorous performance

guarantees, which hold without any a priori knowledge of the signal structure. We show

that, within our framework, even the classical LS reconstruction approach yields competitive

empirical results on real MRI images, in comparison to seminal work [124]. Notice that the LS

reconstruction approach is computationally cheap—the LS estimator is simply F HP>
Ω y for any

given sub-sampling patternΩ. Indeed, we show that with the LS estimator, the ERM problem

can be exactly solved via an almost linear-time algorithm; hence the training procedure is also

computationally cheap.

7.2 Agnotic PAC framework

We briefly introduce relevant notions in PAC learning theory in this section. We start with a

formal, abstract definition of the statistical learning model; then we provide an illustrating

example. The interested reader is referred to, e.g., [132, 163] for more details.

7.2.1 Formal definition

Let Z be an abstract set. A statistical learning problem consists of three ingredients.

1. The training data is a set of independent and identically distributed (i.i.d.) random

variables (r.v.’s) { Z1, . . . , Zm } ⊂Z , following an unknown probability distribution Q.

2. The hypothesis class is a set of functions H . An element of the hypothesis class is called

a hypothesis.

3. The loss functions is a real-valued function L : H ×Z →R.

We assume that the loss function takes values in [0,1] for simplicity.

The expected loss is called the risk, which is a function R : H →R given by

R(h) :=EL(h, Z ) , ∀h ∈H ,
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where Z is a r.v. following the probability distribution Q. The optimal hypothesis h? minimizes

the risk; that is,

h? ∈ argmin
h

{ R(h) | h ∈H } .

As the probability distribution Q is unknown, we cannot evaluate the risk function exactly. The

ERM approach approximates the risk by the empirical risk. The empirical risk R̂m is simply

the average of the loss on the data; that is,

R̂m(h) := 1

m

m∑
i=1

L(h, Zi ) , ∀h ∈H .

It is natural to expect that R̂m is close to R when m is large enough, by the law of large numbers.

We expect that the empirical risk minimizer ĥm given by

ĥm ∈ argmin
h

{
R̂m(h)

∣∣ h ∈H
}

is a good approximation of the optimal hypothesis.

Definition 7.4. We say that the hypothesis class H is agnotic PAC learnable via ERM, if for

every ε,δ ∈ (0,1), there exists some positive integer mH (ε,δ), such that

R(ĥm) ≤ R(h?)+ε ,

with probability at least (1−δ).

Sometimes, we are interested in ensuring that the hypothesis h̃m found by a given training

algorithm yields a small enough risk. Define the generalization error

G(h) := |R(h)− R̂m(h)| , ∀h ∈H .

If the generalization error is guaranteed to be small, the empirical risk R̂m(h̃m) can serve as an

estimate of the risk R(h̃m).

7.2.2 Example

Consider the problem of binary classification. In this problem, the training data is given by

pairs as

Zi = (Xi ,Yi ) ∈Rp × {0,1} =: Z , ∀i = 1, . . . ,m ,

For example, the vector Xi may be the numerical representation of an image; the correspond-

ing label Yi = 1 if the image contains a human face, and Yi = 0, otherwise.
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For the problem of binary classification, the hypothesis class consists of classification rules—

functions that map a given image to the corresponding label. Suppose that the aim is to

minimize the probability of false classification. It suffices to choose the loss function as the

0−1 loss, given by

L(h, (X ,Y )) =
{

0 if h(X ) = Y ,

1 otherwise.

It is easily checked that the risk corresponds to the probability of false classification.

7.3 Proposed framework for compressive sampling

The training data is absent in the standard theory of compressive MRI; at first glance, therefore,

there is nothing from which we can learn. Indeed, the result of learning is implicitly encoded

by the sparsity assumption.

Let us examine the origin of the sparsity assumption. Without any subjective assumption,

the validity of the sparsity assumption can only be established by its empirical success: We

have observed that many real-world signals are essentially sparse, if a proper representation

is chosen [125]; therefore, the sparsity assumption seems to be reasonable. The discovery of

the sparsity structure is hence the result of a learning procedure, perhaps not very principled,

given real-world signals. The real-world signals that help us discover the sparsity structure are

then the training data.

Our framework takes into presence of training data into account, in order to develop a prin-

cipled approach to designing the sub-sampling pattern. Instead of modeling the unknown

signal x\ to be deterministic unknown, we adopt the statistical learning philosophy. We model

x\ as a random vector following some unknown probability distribution Q, and assume that

we have access to m training signals x1, . . . , xm ∈Cp , which are i.i.d. r.v.’s following the same

probability distribution Q. Notice that this is different from Bayesian compressive sampling

[99], as the prior Q is unknown in our model.

Our theory indeed works with any unitary measurement matrix. Therefore, we consider the

following measurement model in the rest of this chapter:

y = PΩΦx\ ,

for some unitaryΦ ∈Cp×p .

For any given sub-sampling patternΩ, the LS estimator has an explicit form:

x̂LS = argmin
x

{‖y −PΩΦx‖2
2

∣∣ x ∈Cp }
=ΦHP>

Ω y .
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Once the estimator is fixed, the only issue is to chooseΩ that optimizes the resulting estimation

performance.

The set of all possible sub-sampling patterns is then the hypothesis class. Define

x̂Ω :=ΦHP>
ΩPΩΦx , ∀x ∈Cp ,

the LS estimate of x given the measurement outcomes using the sub-sampling pattern Ω. The

loss function we consider is the normalized squared error

L(Ω, x) := ‖x̂Ω−x‖2
2

‖x‖2
2

, ∀Ω⊆ {1, . . . , p } and x ∈Cp .

Proposition 7.5. The risk—expected squared error—is given by

R(Ω) :=EL(Ω, x) = 1−E fΩ(x) , ∀Ω⊂ {1, . . . , p } , (7.3)

where the expectation is with respect to x ∼Q, and

fΩ(x) := ‖PΩΦx‖2
2

‖x‖2
2

.

Proof. In fact, the equality holds deterministically, as

‖x̂Ω−x\‖2
2 = ‖x̂Ω‖2

2 −2〈x̂Ω, x\〉+‖x\‖2
2

= ‖ΦHP>
ΩPΩΦx\‖2

2 −2〈ΦHP>
ΩPΩΦx\, x\〉+‖x\‖2

2

= ‖PΩΦx\‖2
2 −2‖PΩΦx\‖2

2 +‖x\‖2
2.

In the third equality, we used the fact that A A† A = A for any unitary matrix A and its Moore-

Penrose generalized inverse A†, by setting A := PΩΦ.

Fix a budget n ∈N on the total number of measurements. The proposition above implies that

the optimal sub-sampling pattern Ω?, or the optimal hypothesis, is given by the following

optimization problem:

Ω? ∈ argmax
Ω

{
E fΩ(x)

∣∣Ω⊂ {1, . . . , p } , |Ω| = n
}

. (7.4)

We cannot evaluate the function E fΩ(x) exactly as Q is assumed unknown, so we adopt the

ERM approach. The empirical risk minimizer Ω̂m is given by

Ω̂m ∈ argmax
Ω

{
Êm fΩ(x)

∣∣Ω⊂ {1, . . . , p } , |Ω| = n
}

, (7.5)
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where Êm denotes the expectation with respect to the empirical measure, i.e.,

Êm fΩ(x) := 1

m

m∑
i=1

fΩ(xi ) = 1

m

m∑
i=1

‖PΩΦxi‖2
2

‖xi‖2
2

.

Notice that Ω̂m is a random variable, as it depends on the random vectors x1, . . . , xm .

The overall compressive sampling system is summarized as follows.

1. Find a sub-sampling pattern Ω̂m by (7.5).

2. Sub-sample x\ using Ω̂m and obtain the measurement outcome

y := PΩ̂m
Φx\.

3. Recover x\ by

x̂ :=ΦHP>
Ω̂m

y.

7.3.1 On computing the empirical risk minimizer

Define ϕ>
i as the i -th row of the matrix Φ. Interestingly, the optimization problem (7.5) can be

exactly solved by the following algorithm.

1. Compute the values

vi := 1

m

m∑
j=1

| 〈ϕi , x j 〉 |2
‖x j‖2

2

, ∀i = 1, . . . , p.

2. Set Ω̃m as the set of indices corresponding to n largest vi ’s.

Proposition 7.6. It holds that Ω̃m = Ω̂m .

Proof. Notice that, for any Ω= {k1, . . . ,kn } ⊂ {1, . . . , p },

Êm fΩ(x) = 1

m

m∑
i=1

‖PΩΦxi‖2
2

‖xi‖2
2

= 1

m

m∑
i=1

n∑
j=1

| 〈ϕk j , xi 〉 |2
‖xi‖2

2

=
n∑

j=1
vk j .

The first step of the algorithm requires computing the matrix-vector products Φxi ; hence, its

computational complexity is O(mp2). The second step of the algorithm requires sorting p real
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numbers, the computational complexity of which is O(p log p) [57]. The overall computational

complexity is then O(mp2). If the matrix Φ is a suitably structured matrix, such as the Fourier

and Hadamard matrix, the overall computational complexity becomes O(mp log p), almost

linear-time [74].

7.4 Performance Analysis

Formulating compressive sampling as a statistical learning problem, we can derive a perfor-

mance guarantee of the agnostic PAC type (cf. Definition 7.4).

Proposition 7.7. For any ε,δ ∈ (0,1), if the number of training signals m satisfies

m ≥ 2log
[(p

n

)
/δ

]
ε2 ,

it holds that

R(Ω̂m) ≤ R(Ω?)+ε ,

with probability at least (1−δ). Recall that R is the expected normalized reconstruction error

(cf. (7.3)).

The proof is standard. Define the empirical risk

R̂m(Ω) := 1

m

m∑
i=1

L(Ω, xi ) , ∀Ω⊆ {1, . . . , p } .

We first prove the uniform convergence of the empirical risk R̂m to the risk R on the hypothesis

class

Cn := {Ω⊆ {1, . . . , p } | |Ω| = n } .

Lemma 7.8. For any δ> 0, we have

P
{

R(Ω)− R̂m(Ω) ≤ tδ ∀Ω ∈Cn
}≥ 1−δ ,

P
{

R̂m(Ω)−R(Ω) ≤ tδ ∀Ω ∈Cn
}≥ 1−δ ,

where

tδ :=
√

log
[(p

n

)
/δ

]
2m

. (7.6)

Proof. Notice that the normalized reconstruction error satisfies

L(Ω, x) ∈ [0,1] , ∀Ω ∈Cn and x ∈Cp .
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By Hoeffding’s inequality, we obtain that for any t > 0 andΩ ∈Cn ,

P
{

R(Ω)− R̂m(Ω) ≥ t
}≤ e−2mt 2

.

By the union bound, we obtain that for any t > 0,

P
{

R(Ω)− R̂m(Ω) < t ∀Ω ∈Cn
}≥ 1−

(
p

n

)
e−2mt 2

,

which implies the first inequality. The second inequality is proved similarly.

Proof of Proposition 7.7. We write

R(Ω̂m)−R(Ω?) = (
R(Ω̂m)− R̂m(Ω̂m)

)+ (
R̂m(Ω̂m)− R̂m(Ω?)

)+ (
R̂m(Ω?−R(Ω?)

)
≤ (

R(Ω̂m)− R̂m(Ω̂m)
)+ (

R̂m(Ω?−R(Ω?)
)

,

where the inequality follows from the fact that Ω̂m is a minimizer of the empirical risk. By

Lemma 7.8, we obtain that, for any δ> 0,

P
{

R(Ω̂m)−R(Ω?) ≤ 2tδ
}> 1−δ ,

where tδ is defined in (7.6). Solving the equality 2tδ = ε proves the proposition.

According to Proposition 7.7, it suffices to have O(n log p) training signals to ensure a small

enough reconstruction error. Notice that this performance guarantee is a worst-case for all

possible probability distributions Q; in practice, the required number of training signals can

be significantly smaller, as the numerical results in the next section show.

7.5 Numerical Results

We use a three-dimensional data-set of raw knee-images data in the k-space2. We first take

an inverse Fourier transform along the z-axis, and eliminate the z−slices of low energy that

are close to the boundary of the datacube. These are noise-like slices that do not exhibit any

knee feature, as they are close to the skin of the patient. We then investigate subsampling

schemes in the 320×320 x − y Fourier plane, which corresponds to compressive sampling for

each z-slice.

We pick the images of the first ten patients in the given dataset for training, and test the learned

sub-sampling patterns on the remaining ten patients—notice the number of training signals

is much smaller than suggested by the worst-case guarantee. We compare our learning-based

approach to the variable density sampling sheme proposed in [124], which is parametrized

by the radius of the fully sampled region, r , and a polynomial degree, d . We use the values

2The data-set is available on http://mridata.org/fullysampled.
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6.25% sampling 12.5% sampling 25% sampling

Figure 7.1 – First row: the subsampling maps of the tuned random variable sampling scheme
[124]. Second row: the maps given by our learning-based approach.

of r and d that achieve the highest average peak signal-to-noise ratio (PSNR) on the training

signals.

Figure 7.1 illustrates the best performing randomized indices and our learned set of indices

in the x − y plane of the k-space. Both the variable density approach [124] and our learning-

based approach concentrates its sampling budget on the low frequencies, however the latter

is endowed with the capability to adapt its frequency selection to the frequency content of the

training signals instead of assuming a circularly symmetric selection.

Table 7.1 – Average PSNR on the test data

Indices
Sampling rate

6.25% 12.50% 25%
Best-n approx. 25.29 dB 26.36 dB 28.35 dB

Lustig et al. 24.51 dB 25.11 dB 26.05 dB
This work 24.66 dB 25.18 dB 26.12 dB

Table 7.1 shows the performance of both approaches on the test data, in addition to the error

lower-bounds obtained by the best n-sample approximations with respect to the Fourier basis.

It appears that the learning based approach slightly outperforms the randomized variable

density based approach.
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proposed

Lustig et al., 2007

25% 12.5% 6.25%

Figure 7.2 – MRI reconstructions of both schemes at different subsampling rates for a knee
slice of patient #13, whose fully sampled reconstruction is shown on the top left.

However, the slight numerical improvements are actually accentuated when we look at the

details of reconstructions, shown in Figure 7.2 for the test Patient #13. It is clear that the

learning-based reconstructions provide more details especially for 6.25% and 12.5%.

7.6 Discussions

Rather than imposing subjective assumptions on the signal structure and taking the risk of

overlooking other possible structures, our approach directly learns an optimal sub-sampling

pattern for a given decoder from training signals. As the sub-sampling pattern is chosen to

favor the given decoder, we have shown that even the very simple least squares estimator can

be effective for compressive MRI. The empirical learned sub-sampling pattern complies with

the practical wisdom that low-frequency samples are more important.

The trade-off is that our statistical error bound is weaker than those in standard compressive

sampling literature. We cannot guarantee a small risk, but a small gap to the unknown optimal

risk, due to the agnostic nature of our approach.

We discuss four possible research directions below.
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7.6.1 Classification

In some application scenarios, the ultimate aim of MRI is not recovering the unknown image,

but telling whether the unknown image possesses certain characteristics of interest. A doctor

may be more interested in whether there is a tumor or not than the PSNR value. For such

scenarios, one may replace the loss function in our MRI framework by the 0−1 loss or any of

its convex approximates, such as the logistic and hinge losses. We notice that standard PAC

learning theory directly applies. The practical performance, however, needs to be checked via

experiments on real data-sets.

7.6.2 Non-linear estimators

Our framework does not involve any subjective assumption on the signal structure. A proper

introduction of assumptions on the signal structure can nevertheless be helpful. Empirical

observations have shown that real-world signals posses structures such as sparsity, smooth-

ness, and other more complicated ones; well-designed non-linear reconstruction methods,

such as basis pursuit, the lasso, and neural networks match these structures and give better

reconstruction performances. The theoretical framework presented in this chapter directly ex-

tends for non-linear estimators—one simply needs to replace the LS estimator by a non-linear

one. The performance guarantee (Proposition 7.7) still holds. However, there may not exist

efficient algorithms to compute the corresponding empirical risk minimizer.

In [82], we have developed an efficient greedy algorithm for any given estimator. The algorithm

is not guaranteed to find the empirical risk minimizer, unless the ERM problem possesses

some structure, e.g., sub-modularity; however, the empirical performance on real data-sets is

already better than some state-of-the-art approaches.

It is reasonable to consider designing the sub-sampling pattern and the estimator jointly. The

corresponding ERM formulation is immediate. Let T be the set of estimators—functions

that map the measurement outcome to a vector in Cp . For example, T can be the set of

penalized LS estimators with penalization coefficients in a given interval, or the set of all

possible realizations of a neural network. The ERM formulation is given by

(τ̂m ,Ω̂m) ∈ argmin
(τ,Ω)

{
1

m

n∑
i=1

L(τ,Ω, xi )

∣∣∣∣∣ (τ,Ω) ∈T ×Cn

}
, (7.7)

where the loss function is still the normalized reconstruction error, i.e.,

L(τ,Ω, x) := ‖x −τ(PΩΦx)‖2
2

‖x‖2
2

.

Following standard arguments in statistical learning theory, the required number of training

signals then depends on the complexity of T ; see, e.g., [5, 105, 163] for various complexity

measures in statistical learning theory. Solving the optimization problem (7.7), however, is
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computationally difficult in general.

7.6.3 Generalization error bound

It is not necessary, for the purpose of learning, to devise a rigorous optimization algorithm to

solve the empirical risk minimization problem. If a heuristic algorithm yields a small empirical

risk, though perhaps not the minimum empirical risk, and the number of training signals is

sufficiently large, then a small risk can be guaranteed. This can be easily proved even for a

general loss function and reconstruction algorithm.

Indeed, consider any loss function L that maps a given sub-sampling patternΩ and signal x to

a number in [0,1]. The following generalization error bound is standard in statistical learning

theory.

Proposition 7.9. For any ε,δ ∈ (0,1), if the number of training signals m satisfies

m ≥ log
[
2
(p

n

)
/δ

]
ε2 ,

it holds that

|R(Ω)− R̂m(Ω)| ≤ ε , ∀Ω ∈Cn ,

with probability at least (1−δ).

Proof. By Hoeffding’s inequality and the union bound, we have

P
{ |R(Ω)− R̂m(Ω)| ≥ t

}≤ 2e−2mt 2
, ∀t > 0 andΩ ∈Cn .

By the union bound, we have

P
{ |R(Ω)− R̂m(Ω)| ≤ t for allΩ ∈Cn

}≥ 1−2

(
p

n

)
e−2mt 2

.

The rest is similar to the proofs of Lemma 7.8 and Proposition 7.7.

Therefore, a number of training signals of O(n log p) ensures that the empirical risk is a good

estimate of the true risk. Notice that the proof does not assume the specific normalized

reconstruction error loss and LS estimator; both can be chosen arbitrarily. Indeed, it is easily

checked that Proposition 7.7 also admits such generality.

114



7.6. Discussions

7.6.4 Effect of noise in training signals

In practice, the training signals are also obtained by measurements, and hence involve noise.

Suppose that the noise is not negligible. Define the noisy training signals

zi := xi +wi , ∀i = 1, . . . ,m ,

where wi ∈Rp denotes some additive noise.

We clarify some notions first. Fix a unitary measurement matrix Φ ∈ Cp×p . An estimator

is a mapping τ that maps a measurement outcome and sub-sampling pattern, (y,Ω), to an

estimate of the corresponding unknown signal. For example, the LS estimator corresponds to

the choice

τ(y,Ω) =ΦHP>
Ω y .

We do not assume any specific estimator in this sub-section.

To emphasize the effect of noise, we write a loss function L in a slightly redundant manner. We

write a loss function L as a mapping that maps a triple consisting of the sub-sampling pattern,

unknown signal, and its estimate, (Ω, x, x̂), to a number in [0,1]. For example, the setup in the

previous sections corresponds to the choice

L(Ω, x,τ(PΩΦx))
‖x −τ(PΩΦx)‖2

2

‖x‖2
2

.

We do not assume any specific loss function in this sub-section.

Now the issue is clear. We would like to minimize the risk

R(Ω) :=EL(Ω, x,τ(PΩΦx)) , ∀Ω ∈Cn .

However, the empirical estimate of the risk we can compute, given the noisy training signals,

is given by

R̃m(Ω) := 1

m

m∑
i=1

L(Ω, xi +wi ,τ(PΩΦ(xi +wi ))) , ∀Ω ∈Cn .

We cannot expect that by the law of large numbers, R̃m is close to R when m is large.

Proposition 7.10. Assume that supi {‖wi‖2 } ≤W for some W > 0. Suppose that the loss func-

tion L(Ω, x,τ(y)) is L1-Lipshitz in x for any given y, and L2-Lipschitz in y for any given x. For

any ε,δ ∈ (0,1), if the number of training signals m satisfies

m ≥ log
[
2
(p

n

)
/δ

]
ε2 ,
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it holds that

|R(Ω)− R̃m(Ω)| ≤ (L1 +L2)W +ε , ∀Ω ∈Cn ,

with probability at least (1−δ).

Proof. We write

|R(Ω)− R̃m(Ω)|
= |R(Ω)− R̂m(Ω)|+∣∣∣∣∣R̂m(Ω)− 1

m

m∑
i=1

L(Ω, xi ,τ(PΩΦ(xi +wi )))

∣∣∣∣∣+∣∣∣∣∣ 1

m

m∑
i=1

L(Ω, xi ,τ(PΩΦ(xi +wi )))− 1

m

m∑
i=1

L(Ω, xi +wi ,τ(PΩΦ(xi +wi )))

∣∣∣∣∣ .

The first term at the right-hand side is bounded above with high probability as in Proposition

7.9; the second term is bounded above by L2W by the triangle inequality; similarly, the third

term is bounded above by L1W .

The Lipschitz parameter L1 depends solely on the loss function. The Lipschitz parameter L2 is

closely related to the robustness of the estimator. Suppose that the output of the estimator is

robust to measurement noise, in the sense that

‖τ(y +ω)−τ(y)‖2 ≤ γ‖ω‖ , ∀y,ω ∈Rn .

Then L2 exists if the loss function is Lipschitz continuous in its third argument.

In the generalization error bound, there is a non-zero gap between the risk and its empir-

ical estimate based on noisy training signals. It is easily checked that the non-zero gap is

unavoidable, even in the ideal case where x1 = ·· · = xm = x for some x ∈Rp , and the estimator

τ is a constant function that always outputs x. Proposition 7.10 shows that, however, one

can improve on the generalization performance guarantee, by denoising the training signals

before learning a sub-sampling pattern.

A result similar to Proposition 7.10 can be found in [82], where the additive Gaussian noise

model is assumed.
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8 Conclusions

We have presented rigorous solutions to address issues due to lack of smoothness and/or

strong convexity.

• We have developed a unified framework to establish variable selection consistency of

`1-penalized M-estimators, based on a novel local structured smoothness condition

(LSSC). We have derived the sample complexity in the high-dimensional setting for

several statistical learning problems.

• We have presented a sharp analysis of the estimation error of the lasso, based on a novel

relaxed restricted strong convexity (RSC) condition. Our result establishes the minimax

optimality of the lasso for estimating exactly or weakly sparse parameters.

• We have proved three convergence results for convex optimization.

– Convergence of the Frank-Wolfe algorithm for objective functions involving the

exp-linear loss.

– Convergence of the mirror descent algorithm for locally relatively smooth objective

functions.

– Convergence of the exponentiated gradient method for convex differentiable ob-

jective functions.

The first result shows that the Frank-Wolfe algorithm is a scalable approach to rigorous

exp-linear optimization. Numerical results showed that the exponentiated gradient

method with Armijo line search was the fastest guaranteed-to-converge algorithm for

quantum state tomography, on real data-sets.

• We have proposed a novel framework for compressive MRI based on agnostic PAC

learning, where the necessity of the famous restricted isometry property (RIP) vanishes.

The framework leads to a computationally efficient compressive MRI system, with a

rigorous statistical risk guarantee that does not require any a priori knowledge of the

signal structure.
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A key idea underlying most of our results above is localization. That is, we identify a specific set

on which the smoothness/strong convexity condition is actually necessary, and only require

the condition on the set. For example, the LSSC essentially requires the the Hessian of the

loss function to be Lipschitz continuous, in a neighborhood of the parameter to be estimated;

the relaxed RSC condition requires the RSC to hold, outside an `2-norm ball centered at the

parameter to be estimated; the local relative smoothness condition requires the objective

function to be relatively smooth, in a neighborhood of a limit point of the sequence of iterates.

Another key idea is reformulation. There can be several mathematical models corresponding

to the same real-world application. Each model has its own pros and cons; in particular, a

hard issue in a model may vanish in another model. Our approach to compressive MRI has

demonstrated the power of a proper reformulation, showing the possibility of designing a

compressive MRI system without any knowledge of the signal structure. The trade-off is that

the performance guarantee is not on the statistical risk, but the gap to the unknown optimal

risk.

8.1 Future research directions

It seems impossible to address all machine learning problems without smoothness and/or

strong convexity in a unified framework. Focusing on the exp-linear loss, however, may lead to

a deeper understanding of the necessity of smoothness and strong convexity conditions. There

are already some theories for the exp-linear loss, yet many important applications involving

the exp-linear loss currently lack complete solutions.

Recall that the exp-linear loss is defined as f (x) :=− log〈a, x〉 for some vector a, or f (X ) :=
− logTr(AX ) for some matrix A. The exp-linear loss appears in several important applications;

below are three examples.

• Positron emission tomography (PET): Maximum-likelihood (ML) PET requires solving

the optimization problem [180]:

x? ∈ argmin
x

{
1

n

n∑
i=1

(〈ai , x〉− yi log〈ai , x〉) ∣∣∣∣∣ x ∈P

}
,

for given { ai } ⊂Rp and { yi } ⊂N, where P denotes the probability simplex.

• Optimal portfolio selection (OPS): The growth-optimal portfolio selection strategy

requires solving the optimization problem [30]:

x? ∈ argmin
x

{
E

[− log〈a, x〉] ∣∣ x ∈P
}

,

where the expectation is with respect to the random vector a. Each element of a denotes

the price relative of an investment alternative. Notice that this strategy requires the
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probability distribution of the price relatives.

A closely related problem is on-line portfolio selection. Fix some time horizon T ∈N.

The aim of on-line portfolio selection is to generate portfolios x1, . . . , xT sequentially, to

achieve a small regret. The regret is defined as

RT :=
T∑

i=1

(− log〈at , xt 〉
)−min

x

{
T∑

i=1

(− log〈at , x〉) ∣∣∣∣∣ x ∈P

}
,

for sequentially incoming price relative vectors at .

• Quantum state tomography (QST): ML QST was discussed in Chapter 5. It requires

solving the optimization problem [96]:

X? ∈ argmin
X

{
1

n

n∑
i=1

(− logTr(Ai X )
) ∣∣∣∣∣ X ∈D

}
,

for a given set of Hermitian matrices { Ai }, where D denotes the set of quantum density

matrices (cf. (5.2)).

Other applications involve gamma regression (cf. Section 2.5.3), positive linear inverse prob-

lems [34], etc. Notice that the interior point method (IPM) for linear programming also involves

minimizing exp-linear functions, which act as barrier functions for the linear constraints, as

intermediate steps [136, 140].

We point out four interesting research directions below.

8.1.1 Compressive QST with guarantees

QST is essentially a matrix estimation problem, while we have only addressed the compu-

tational aspect of QST in Chapter 5. In a standard implementation of QST, when there are

q qubits, one has to do about 3q ·100 measurements; that is, the sample complexity grows

exponentially with the number of qubits [85]. In many situations, it is already known that the

matrix to be estimated is low-rank [85]. Can we exploit the theory of compressive sensing—

low-rank matrix recovery in particular—to accelerate the measurement procedure?

Research Problem 1 Characterize the sample complexity of QST, in terms of the rank of the

unknown quantum density matrix.

The possibility of compressive QST, when QST is approximated by a linear inverse problem,

has been rigorously proved and attracted attention of the quantum computation community

(see, e.g., [36, 75, 84, 107, 155, 167]). In practice, however, the ML estimator for the exact

statistical model (cf. Example 5.1) was adopted, as it yields better statistical accuracy [85, 146].

The aim of Research Problem 1 is to provide a rigorous verification for the practice.
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8.1.2 Provably faster PET/OPS/QST

In Chapter 5, we have rigorously proved that the exponentiated gradient method converges

for QST, and observed that it was empirically the fastest on real data. As PET and OPS are also

exp-linear optimization problems, it is easily checked that the exponentiated gradient method

also applies to these two applications. A natural next step is the following.

Research Problem 2 Characterize the convergence rate of the exponentiated gradient method

applied to the exp-linear loss.

Such a result is especially important for QST—none of the fast enough existing QST algorithms

has a convergence speed guarantee. Notice that the standard approach to PET and OPS, based

on expectation maximization, does not have a convergence speed guarantee either [58, 180].

It is already known that the IPM for linear programming converges slowly, when the number

of linear constraints is large; addressing this issue has been an open problem in theoretical

computer science for decades [115]. The rationale is similar to what we have discussed in Sec-

tion 5.6: When there are many linear constraints, the step sizes have to be very small to ensure

that none of the constraints will be violated. The standard IPM concerns with minimizing a

sequence of exp-linear losses by Newton’s method, and our results in Chapter 5 and 6 show

that one may replace Newton’s method by the exponentiated gradient method. Interestingly,

as the iterates of the exponentiated gradient method are element-wise strictly positive, all

constraints are automatically satisfied in Karmarkar’s formulation of linear programs [102]. A

good result for Research Problem 2 may help us attack this open problem.

8.1.3 On-line algorithms

On-line portfolio selection is a classical topic in on-line learning. It is known that, if there exists

a constant strictly positive market variability parameter (MVP), a fast rate (RT =O(logT )) can

be achieved [2, 90, 91, 178]. Requiring existence of a constant MVP, however, is unrealistic—the

MVP is a lower bound on the elements of the price relatives a1, . . . , aT , which can be arbitrarily

close to zero as T →∞. There are indeed algorithms for online portfolio selection without the

MVP, but they are computationally very expensive [59, 60, 101].

PET and QST are very suitable for the on-line learning framework—the number of mea-

surements is typically very large, so one would like to process the measurement outcomes

sequentially, instead of in a batch, to reduce the computational burden. To the best of our

knowledge, there does not exist any on-line algorithm for QST. There is one very recent result

on “almost on-line” PET, which is sequential, but cannot run on the fly during the measure-

ment process [70].

Research Problem 3 Develop efficient on-line algorithms for on-line portfolio selection, PET,

and QST, without unrealistic assumptions.

There is one bonus. Given a “truly on-line” algorithm, the corresponding statistical per-
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formance guarantee comes for free by online-to-batch conversion [47, 48]. Therefore, this

research direction provides an alternative approach to addressing Research Problem 1.

8.1.4 OPS and optimal time series prediction

The special structure of the exp-linear loss had been exploited by information theorists to

prove the optimality of growth-optimal portfolio selection [4, 30]. However, the growth-

optimal portfolio selection strategy requires knowledge of the true probability distribution of

the market, which is unrealistic. Can we solve the issue?

Research Problem 4 Develop a probability-free version of the growth-optimal portfolio selection

strategy.

To be more precise, the goal is to show that the growth-optimal strategy is optimal under

Knightian uncertainty—uncertainty for which we do not even have a probabilistic model. This

is indeed the main focus of on-line learning and game-theoretic probability [49, 162]. The

idea is to re-formulate and re-study the growth-optimal strategy under these frameworks.

The growth-optimal strategy was later generalized to derive the optimal strategy for time series

prediction [3, 131], under some statistical assumptions. A good result for Research Problem

4 may lead to a similar result for time series prediction, without any subjective, unverifiable

statistical assumption. Such a result would be of broad interest in the fields of machine

learning and information theory.
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A Mathematical Prerequisites

This chapter summarizes the mathematical facts necessary for the theories in this thesis.

A.1 Convex analysis

Let d be a positive integer. A set X ⊆Rd is said to be convex, if

x ∈X , y ∈X ⇒αx + (1−α)y ∈X ,∀(x, y) ∈X ×X ,α ∈ (0,1) .

Let f be a function from Rd to [−∞,+∞]. Its epigraph is given by

epi f :=
{

(x, y) ∈Rd ×R
∣∣∣ f (x) ≤ y

}
.

We say that f is closed, if epi f is a closed set. We say that f is convex, if epi f is a convex set. It

is easily checked that f is convex, if and only if

f (αx + (1−α)y) ≤α f (x)+ (1−α) f (y) , ∀(x, y) ∈Rd ×Rd ,α ∈ (0,1) .

The (effective) domain of f is the projection of epi f on Rd , i.e.,

dom f :=
{

x ∈Rd
∣∣∣ f (x) <+∞

}
.

Consider the constrained optimization problem:

f ? ∈ min
x

{
f (x)

∣∣ x ∈X
}

,

where f is a closed convex function on Rd , and X is a closed convex set in Rd .

Theorem A.1. Suppose that f is differentiable at a point x? ∈X . The point x? minimizes f on
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X , if and only if

〈∇ f (x?), x −x?〉 ≥ 0, ∀x ∈X .

The notion of 2-smoothness has equivalent formulations (see, e.g., [136]). Recall that a func-

tion f is 2-smoothness, if its gradient is Lipschitz continuous.

Theorem A.2. Let f be a continuously differentiable function on Rp . The following three

statements are equivalent.

1. The gradient of f is Lipschitz with parameter L > 0, i.e.,

‖∇ f (y)−∇ f (x)‖2 ≤ L‖y −x‖2 , ∀x, y ∈Rp .

2. It holds that

f (y) ≤ f (x)+〈∇ f (x), y −x〉+ L

2
‖y −x‖2

2 , ∀x, y ∈Rp .

3. It holds that

α f (x)+(1−α) f (y) ≤ f (αx+(1−α)y)+α(1−α)
L

2
‖x−y‖2

2 , ∀x, y ∈Rp and α ∈ [0,1] .

The notion of strong convexity also has equivalent formulations (see, e.g., [136]).

Theorem A.3. Let f be a function on Rp . The following three statements are equivalent.

1. The function f is strongly convex with parameter µ> 0, i.e.,

(1−α) f (x)+α f (y) ≥ f ((1−α)x+αy)+α(1−α)
µ

2
‖y−x‖2

2 , ∀x, y ∈X and α ∈ [0,1] .

2. Suppose that f is continuously differentiable. It holds that

〈∇ f (y)−∇ f (x), y −x〉 ≥µ‖y −x‖2
2 , ∀x, y ∈Rp .

3. Suppose that f is twice continuously differentiable. It holds that

∇2 f (x) ≥µI , ∀x ∈Rp .

A.2 Matrix analysis

Chapters 5 and 6 involve matrix functions. The functions exp(·) and log(·) in (6.1) denote matrix

exponential and logarithm functions, respectively. In general, let X ∈Cd×d be Hermitian, and
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X = ∑
j λ j P j be its spectral decomposition. Let g be a real-valued function whose domain

contains {λ j }. Then g (X ) :=∑
j g (λ j )P j .

The Peierls-Bogoliubov inequality says that the function

ϕ(t ) := logTrexp(A+ tB) , ∀t ∈R ,

is convex for any given Hermitian matrices A and B (see, e.g., [144]). Equivalently, we have

ϕ′′(t ) ≥ 0, ∀t ∈R .

The set of d ×d quantum density matrices is given by

D :=
{
ρ ∈Cd×d

∣∣∣ ρ ≥ 0,Trρ = 1
}

.

A quantum density matrix can be viewed as a matrix analogue of a probability distribution;

in particular, it is easily checked that the diagonal of a quantum density matrix defines a

probability distribution for a d-ary random variable (r.v.).

Let ρ,σ ∈D be non-singular. The negative von Neumann entropy is defined as

h(ρ) := Tr(ρ logρ)−Tr(ρ).

The quantum relative entropy is defined as

D(ρ,σ) := Tr(ρ logρ)−Tr(ρ logσ)−Tr(ρ−σ) .

The quantum relative entropy is jointly convex; that is (see, e.g., [46]), for every α ∈ [0,1],

αD(ρ1,σ1)+ (1−α)D(ρ2,σ2) ≥ D(αρ1 + (1−α)ρ2,ασ1 + (1−α)σ2) .

It is easily checked that the quantum relative entropy is the Bregman divergence induced by

the negative von Neumann entropy; hence, it is always non-negative. Pinsker’s inequality says

that [92]

D(ρ,σ) ≥ 1

2
‖ρ−σ‖2

∗,

where ‖ ·‖∗ denotes the nuclear norm. Therefore, D(ρ,σ) = 0 if and only if ρ =σ. Restricting

the inequality above to diagonal matrices, we obtain the original form of Pinsker’s inequality

(see, e.g., [61]):

D(v,u) :=
p∑

i=1
vi log

(
vi

ui

)
≥ 1

2
‖v −u‖2

1 , ∀v,u ∈P ,

where ‖ ·‖1 denotes the `1-norm, and P denotes the probability simplex in Rp .
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A.3 Concentration inequalities

The notion of subgaussian random variables (r.v.’s) is an extension of that of Gaussian r.v.’s.

Definition A.4. A r.v. ξ is subgaussian, if there exists a constant K > 0 such that

(E |ξ|p )1/p ≤ K
p

p , ∀p ≥ 1.

The subgaussian norm ‖ξ‖ψ2 of a subgaussian r.v. ξ is defined as the smallest K , i.e.,

‖ξ‖ψ2 := sup
{

p−1/2(E |ξ|p )1/p
∣∣ p ≥ 1

}
.

For example, Gaussian, Rademacher, and bounded r.v.’s are subgaussian.

Let ξ1, . . . ,ξn be independent and identically distributed Gaussian r.v.’s of zero mean and unit

variance. Then their average ξ̄n is a Gaussian r.v. of zero mean and variance (1/n). It is easily

verified, via Chernoff’s bound, that

P
{ ∣∣ξ̄n

∣∣≥ t
}≤ e−λtEeλξ̄n

∣∣∣
λ=t

= e−(1/2)nt 2
, ∀t ≥ 0.

A similar result holds for subgaussian r.v.’s (see, e.g., [182]).

Theorem A.5 (Hoeffding-type inequality). Let ξ1, . . . ,ξn be independent mean-zero subgaus-

sian r.v.’s. Define

Kmax := max
i

{‖ξi‖ψ2

∣∣ i = 1, . . . ,n
}

.

There exists some universal constant c > 0, such that

P

{∣∣∣∣∣ n∑
i=1

aiξi

∣∣∣∣∣≥ t

}
≤ e ·exp

(
−ct 2

K 2
max‖a‖2

2

)
, ∀a ∈Rn and t ≥ 0.

For bounded r.v.’s, a sharp inequality can be obtained via Hoeffding’s lemma (see, e.g., [126]).

Theorem A.6 (Hoeffding’s Inequality). Let ξ1, . . . ,ξn be independent r.v.’s, such that ξi takes

its value in [ai ,bi ] almost surely for all i ∈ {1, . . . ,n}. Then

P

{∣∣∣∣∣ n∑
i=1

(ξi −Eξi )

∣∣∣∣∣≥ t

}
≤ 2exp

[
− 2t 2∑n

i=1(bi −ai )2

]
, ∀t ≥ 0.

In the two inequalities above, the exponents of the probability bounds depends on t through

t 2. In general, this may not be true. For r.v.’s that are not subgaussian, the following result is

useful (see, e.g., [126]).

126



A.3. Concentration inequalities

Theorem A.7 (Bernstein’s Inequality). Let X1, . . . , Xn be independent real random variables.

Suppose that there exist v > 0 and c > 0 such that
∑n

i=1EX 2
i ≤ v, and

n∑
i=1

E |Xi |q ≤ q !

2
vcq−2

for all integers q ≥ 3. Then

P

{∣∣∣∣∣ n∑
i=1

(Xi −EXi )

∣∣∣∣∣≥ t

}
≤ 2exp

[
− t 2

2(v + ct )

]
, ∀t ≥ 0.

Notice that the dependence of the exponent of the probability bound on t is different from

that in Theorems A.5 and A.6.
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