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Résumé

La micro-fabrication additive ouvre de nouvelles perspectives pour la recherche biomédicale.

Les nouveaux outils offerts par la micro-impression 3D permettent en effet de créer des micro-

structures fonctionnelles ou encore d’étudier les interactions à l’échelle de la cellule. Parmi

les différents outils d’impression, les lasers présentent un large panel d’utilisation pour la

micro-fabrication, que ce soit pour produire des gouttes ou jets de liquides ou induire la

solidification de photopolymères pour former des microstructures.

Dans cette thèse, le potentiel d’utilisation d’actionneurs lasers pour l’impression 3D sus-

pendue est étudié. Dans les systèmes actuels d’impression 3D suspendue, des microstructures

molles sont construites en déposant des filaments d’encre par micro-extrusion dans un sup-

port à base de gel. La micro-extrusion produisant des filaments d’encre en continu, elle ne

permet pas de reproduire de manière fine la micro-architecture tri-dimensionnelle des tissus.

Ainsi, pour améliorer la résolution des impressions 3D suspendues, le transfert de liquide par

impulsion laser, une technique de production de jets haute-vitesses, est utilisée pour injecter

des liquides à des profondeurs arbitraires dans un gel support. Le contrôle de la profondeur

d’injection de gouttes offre un degré de liberté supplémentaire à la technique de transfert de

liquide par impulsion laser, ce qui transforme cette méthode conventionnelle d’impression

2D en une technique directe d’impression 3D.

Dans la seconde partie de cette thèse, le potentiel d’utilisation d’actionneurs lasers pour le

développement d’outils d’impression 3D à haute résolution est aussi étudié. La fabrication de

pièces comprenant des fonctions avancées, avec de multiples matériaux imprimés à différents

niveaux de résolution, reste difficile. Les techniques existantes de micro-fabrication nécessi-

tent en effet l’utilisation d’appareils encombrants et complexes, ce qui restreint l’utilisation

de ces différents outils sur une même pièce. Ainsi, pour permettre la fabrication additive

de pièces suivant plusieurs procédés, des outils miniatures de production de gouttes et de

stéréolithographie directe ont été développés dans cette thèse avec des actionneurs lasers.

Pour la conception du premier outil, un phénomène de convergence hydrodynamique induit

par laser a été étudié pour permettre la génération de micro-gouttes visqueuses à travers

un micro-capillaire de 300 µm de diamètre. Ce système ouvre la voie au développement

d’un appareil de production de gouttes à la demande offrant une plus large gamme d’encres

imprimables que les imprimantes jet d’encre conventionnelles.
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Résumé

Le second outil miniature est basé sur la photopolymérisation à un photon inhibée par

l’oxygène dissous. Ce procédé de photopolymérisation non-linéaire est étudié et implémenté

à travers une fibre de 70 µm de diamètre pour faire la démonstration de micro-fabrication

3D à travers un endoscope. Cette sonde aux capacités d’impression 3D offre une alterna-

tive compacte et bon marché aux outils conventionnels de stéréolithographie directe qui

reposent sur l’absorption à deux-photons, un phénomène d’absorption non-linéaire nécessi-

tant l’utilisation de lasers femtosecondes.

De tels outils miniatures de fabrication additive ouvrent de nouveaux horizons pour la fabrica-

tion de microstructures dans des endroits difficiles d’accès, tels que pour des applications in

vivo.

Mots-clés: fabrication additive, photopolymérisation, microfabrication 3D, fibre optique,

impression par laser, LIFT, impression 3D suspendue, appareils compacts d’impression 3D,

impression à jet d’encre.
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Abstract

Micro-additive manufacturing has become an enabling technology in biomedical research as

it allows for instance creating functional microstructures or studying cellular interactions at

the microscale. Among the various manufacturing techniques laser-actuation offers a versatile

control means for microprinting applications since it both enables jetting liquids and curing

photoresists to form three-dimensional microstructures.

In the first part of this thesis, the potential of laser-actuation for embedded three-dimensional

printing was studied. In conventional embedded three-dimensional printing, soft microstruc-

tures are built by directly depositing ink filaments with a microextruder into a gel-like support

material. As microextruders produce continuous ink filaments, they do not allow optimally

mimicking the complex three-dimensional micro-architectures of tissues. Thus, to improve

the resolution of three-dimensional embedded printing, laser-induced forward transfer, a

high-velocity liquid jetting technique, was employed to achieve depth-controlled liquid deliv-

ery within a gel-like support substrate. Interestingly, controlling the deposition depth of liquid

droplets adds a degree of freedom to laser-induced forward transfer, turning this conventional

two-dimensional patterning technique into a direct three-dimensional printing technique.

In the second part of this thesis, the potential of laser-actuation to build a compact laser-

assisted toolkit for high-resolution manufacturing was further studied. The fabrication of ad-

vanced functional parts with multi-material and multi-resolution features stills remains chal-

lenging. Existing microfabrication techniques rely on complex and bulky devices, which pre-

vent processing parts with several manufacturing tools on a single platform due to space con-

straints. Hence, to enable multiprocess additive manufacturing, miniaturized laser-assisted

drop-on-demand and direct writing tools were developed in this thesis.

In the first component of this compact toolkit, a laser-induced flow focusing phenomenon

was studied to generate viscous micro-droplets through a 300-µm glass microcapillary, thus

paving the way for a compact drop-on-demand device operating on a wider range of printable

liquids than standard inkjet printers.

The second component of the miniaturized toolkit is based on oxygen-inhibited single-photon

photopolymerization. This non-linear photopolymerization process was investigated and

then implemented through a 70-µm multimode fiber to demonstrate three-dimensional

ix



Abstract

microfabrication through an endoscope-like tool. This curing probe provides a compact and

affordable alternative to conventional direct laser writing devices, which rely on two-photon

absorption, a non-linear absorption phenomenon that entails using femtosecond lasers.

Such a miniature additive manufacturing toolkit could also open up possibilities for the fabri-

cation of microstructures in areas otherwise inaccessible, for instance in in vivo applications.

Keywords: additive manufacturing, photopolymerization, three-dimensional microfabri-

cation, fiber optics, laser-induced forward transfer, LIFT, embedded 3D printing, compact 3D

printing devices, inkjet printing.
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1 Introduction

Additive manufacturing, also commonly called 3D printing, consists in designing a three-

dimensional digital model, and then directly making the physical three-dimensional part by

joining layers of material [1].

Though the development of modern additive manufacturing techniques started in the early

1980s [2–4], only recent technological improvements made this technology suitable for the

fabrication of advanced and functional parts [5], either for research purposes or industrial

end-part production [6]. Innovative and creative applications that would otherwise not be

possible with other present technologies, are developed at an increasing rate with additive

manufacturing, which makes it a true enabling technology.

Nowadays, additive manufacturing allows designing complex three-dimensional parts with a

wide range of materials from the metric size to the micro- and nano-meter scale.

In this thesis, I focus on microscale printing and investigate alternative laser-based microfab-

rication techniques that address the integration, affordability and throughput limitations of

current printing methods. With this aim in mind, I first use laser-induced forward transfer as

an alternative to micro-extrusion printers for direct three-dimensional liquid delivery into

a soft substrate (chapter 3). I then study how to integrate several manufacturing techniques

on a single platform by developing a compact microprinting toolkit (chapters 4 to 6). In the

first component of this toolkit, I use laser-induced flow-focusing in a glass micro-capillary

to generate micro-droplets, thus creating a laser-assisted drop-on-demand device (chapter

4). The second component of this toolkit, a compact curing probe, exploits a non-linear

photopolymerization phenomenon (chapter 5) to build three-dimensional microstructures

through an ultra-thin multimode fiber (chapter 6).

This introductory chapter reviews the existing micro-additive manufacturing techniques

relevant to this thesis, and presents the current challenges of microfabrication to motivate my

work on compact laser-assisted tools for high-resolution additive manufacturing.
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Chapter 1. Introduction

1.1 Micro-additive manufacturing techniques

Three-dimensional soft microstructures are typically built using light- or ink-based techniques

by either layer-by-layer patterning (bottom-up approach), material seeding of a scaffold (top-

down approach) or direct three-dimensional writing into a soft substrate (embedded printing

approach).

1.1.1 Assembly methods for soft three-dimensional microfabrication

Most micro-additive manufacturing techniques currently follow a bottom-up printing ap-

proach [7], in which a three-dimensional model is decomposed into slices and the associated

part is built by sequentially joining layers or voxels of material (see Fig. 1.1(a)). Using this

printing strategy, the amount and type of material transferred to the part is precisely con-

trolled, thus allowing to form spatial patterns and three-dimensional micro-architectures. The

achieved micro-organization brings in turn functional features to the assembly, for instance

to promote cell differentiation into skin layers [8, 9] or to manipulate light [10–12].

In a scaffold-based approach (or top-down printing), the material is not patterned but rather

seeded in a support scaffold (see Fig. 1.1(b)). This approach requires prior fabrication of the

support scaffold using a bottom-up approach. Top-down printing is mainly used for biological

applications such as skin, cartilage or bone growth [7, 13]. Though this printing strategy

allows for instance regenerating thin tissues and studying cell interactions with different

microstructures [14], the lack of control over the diffusion of the seeded material into the

scaffold prevents its use for printing organised and functional parts [7].

Finally, in the embedded printing approach, an ink is directly written into a soft support

material (see Fig. 1.1(c)). This support material has Bingham plastic properties, it flows under

the high shear stress induced by the motion of the nozzle printer but acts as a solid under low

shear stress, and thus can support the deposited ink (see section 2.1.2 for further details). This

printing strategy offers a large design freedom [15–18] and is mostly used to print soft matter

that would collapse without a support material [19].

Figure 1.1 – Assembly strategies for additive manufacturing
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1.1. Micro-additive manufacturing techniques

In this thesis, I use bottom-up and embedded printing strategies combined with direct laser

writing, inkjet printing and laser-induced forward transfer, which are introduced in the next

section.

1.1.2 Ink- and light-based micro-additive manufacturing techniques

The numerous fabrication methods in additive manufacturing can roughly be classified as ink-

and light-based techniques. In this section, we review the most used methods for microscale

and mesoscale additive manufacturing.

Ink-based techniques

Fused deposition modeling is one of the most affordable and therefore most widespread

printing techniques [5]. In this process, a solid thermoplastic filament is simultaneously

extruded and melted to flow through a nozzle (see Fig. 1.2(a)). Three-dimensional solid parts

are then produced layer-by-layer through raster-scanning of the fused filament that eventually

cools down under its glass-transition temperature and thus solidifies [5, 19]. Because of the

melting step, this printing technique cannot be directly used with biological samples and is

rather employed to build scaffolds for cell seeding [20] following the top-down approach (see

section 1.1.1).

The unheated counterpart of fused deposition modeling is microextrusion printing. In this

technique a viscoelastic ink is made to flow through a nozzle by a pressure exceeding its yield

stress (see Fig. 1.2(b)). The nozzle or build platform are then moved in a raster-scanned

manner to form patterned layers. Once the shear-thinning ink is extruded, it becomes more

viscous again and can withstand the subsequent printed layers. This technique is extensively

exploited for bioprinting applications because of its good biocompatibility, > 40%, and its

wide range of printable inks, with viscosities ranging from 30 mPa s to > 6 ·107 mPa s [8]. To

prevent the collapse of the printed structure, its stiffness can be further increased by using a

sacrificial support material [19] or an additional curing step via thermal control [21, 22], ionic

gelation [23] or photopolymerization [22].

As described in section 1.1.1, a recent implementation of micro-extrusion, embedded printing,

allows printing soft matter without an additional curing step [15–17]. In this technique, a

granular matrix material supports the extruded soft ink while it allows for nozzle motion

(see section 2.1.2 for further details on the support material’s rheology). Layers are then

sequentially patterned through raster-scanning the nozzle (see Fig. 1.2(c)), the resulting

three-dimensional part can then also be released by liquifying the support material [17].

Inkjet printing is a combination of ink- and light-based methods. As in standard desktop

printers, a thermal or piezo print head generates droplets that are generally photopolymerized

right after impact (see Fig. 1.2(d)) since the low viscosity of the ink would prevent direct build-

up in three dimensions [24]. Three-dimensional inkjet printing benefits from the technological
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Chapter 1. Introduction

maturity of print heads [25], which can be combined in large two-dimensional arrays to greatly

increase throughput when forming the sequence of patterned layers. The high cell viability,

> 85%, demonstrated with the inkjet method, as well as its affordability, make it suitable for

bioprinting applications [8].
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(d) Inkjet printing

Figure 1.2 – Ink-based micro-additive manufacturing techniques. Fig. 1.2(a) is adapted
from [19]

Light-based techniques

Laser-induced forward transfer is a specific laser-actuated implementation of the inkjet print-

ing method. As shown in Fig. 1.3(a), upon the absorption of a nanosecond or picosecond laser

pulse, a highly focused jet is formed and picoliter volumes are transferred from a donor slide,

coated with a micrometric layer of ink, towards the printed part [26]. As in micro-extrusion and

inkjet printing, the ink’s low viscosity might prevent the direct three-dimensional build-up of

the part, thus the transferred ink can be cured using ionic gelation [27] or photocrosslinking [8].

Owing to the absence of nozzle, lower shear stresses are applied to the ink, thus resulting in

> 95% cell viability, which makes laser-induced forward transfer a technique of choice for

bioprinting [9, 28].

Selective laser sintering operates by melting and fusing together patterned layers of a polymer

powder with a high-power raster-scanned laser beam (see Fig. 1.3(b)). Once a layer is sintered,

the part is lowered down and a roll applies a fresh thin powder layer. The part is thus formed

layer-by-layer. The un-sintered powder acts as a support material for the part being printed

and can be subsequently recycled. This printing technique is limited in resolution by the

powder layer ∼100 µm (see section 1.1.3) and therefore prints parts in the mesoscale range.

Stereolithography is the oldest and one of the most mature additive manufacturing tech-

niques [4, 19]. In this printing technique, a three-dimensional part is fabricated by selectively

photopolymerizing a liquid resin. Recent technological developments enabled the fast and

continuous production of entire layers [29]. In this particular implementation of stereolithogra-
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1.1. Micro-additive manufacturing techniques

phy, called continuous liquid interface production, a two-dimensional light pattern is imaged

in a vat of photopolymer to cure a layer (see Fig. 1.3(c)). A thin volume of resin remains liquid

at the bottom of the vat as polymerization is oxygen-inhibited at the vat interface (see chapter

5 for further details on the inhibition phenomenon). In this way, the part can be produced by

continuously lifting the pedestal, which also refills by gravity the cured volume. The printing

speed is then ultimately limited by the resin viscosity [30].

In direct laser writing, as opposed to continuous liquid interface production, a layer of material

is built through pointwise scanning and curing of a voxel (see Fig. 1.3(d)). Direct laser writing

is induced by highly-focused laser pulses that triggers multiphoton absorption. This non-

linear absorption phenomenon only takes place in regions of highest intensities, which allows

to confine photopolymerization to the focal volume. This offers two main advantages: an

unparalleled printing resolution (see section 1.1.3) and the ability to write structures deep into

a volume of photoresist without any perturbating motion of the build volume. However, this

technique requires complex and expensive femtosecond laser sources.
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Figure 1.3 – Light-based micro-additive manufacturing techniques. Fig. 1.3(b)-(c) are adapted
from [19]

1.1.3 Discussion

In general, light-based techniques are less affordable than ink-based ones because of the cost

of the laser sources [19].

Summing up the printing performances of micro-additive manufacturing techniques in a

resolution, throughput and material parametric space (see Fig. 1.4), we observe in addition

that a larger range of printable materials can be formulated for ink-based techniques than the
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Chapter 1. Introduction

photoresists available for light-based techniques, which are limited to plastics, ceramics and

hydrogels. However, this larger range of printability comes to the cost of thorough optimization

of the inks’ rheological properties so that they can flow through the nozzle of micro-extruders

and inkjet print heads. Inks with inappropriate rheology often result in nozzle-clogging and

unreliable printing [8, 31]. Being a nozzleless technique, laser-induced forward transfer allows

overcoming this limitation.

The ink rheology is also critical to achieve an optimal printing resolution with ink-based

techniques. The resolution of ink-based printers is determined by the minimal quantity of ink

they can deliver. Unsuitable rheological properties might result in the generation of satellite

droplets or filaments that will degrade the printing resolution. Besides this requirement

for clean printing, the resolution of ink-based techniques is defined by their nozzle size

since the droplets and filaments roughly scales with the orifice through which they were

produced [19, 32]. On the other hand, the resolution of light-based techniques is defined by

how tight a light beam can be focused, which can be as small as a cubic volume defined by

the wavelength ∼λ3 [33], thus much smaller than the size of state-of-the-art nozzles. Hence,

direct laser writing allows achieving the finest feature resolution as shown in Fig. 1.4. In the

same way, being a nozzleless technique, laser-induced forward transfer can achieve a finer

resolution than most ink-based techniques that print through nozzles.
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Figure 1.4 – Resolution, throughput and range of printable materials of some micro-additive
manufacturing techniques. DLW: direct laser writing, LIFT: laser-induced forward transfer,
SLA: stereolithography, FDM: fused deposition modeling, SLS: selective laser sintering. This
diagram is a rough approximation based on the following references [5, 8, 9, 19, 20, 24–26, 29,
33, 34, 34–42]
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However, there is an inherent trade-off between resolution and throughtput as observed in Fig.

1.4. Techniques with a finer resolution will produce less volume of material whereas coarser

techniques will have a higher volumetric throughput. To improve throughput, nozzles or light

beams can be parallelized, as currently investigated for laser-induced forward transfer [36],

and already implemented in inkjet printers, micro-extruders and continuous liquid interface

production.

A broad spectrum of resolution, throughput and materials is already covered by existing

additive manufacturing techniques. However, creating parts with enhanced functionalities by

multi-resolution and multi-material printing still remains challenging.

1.2 Motivation

1.2.1 Compact toolkit for high-resolution additive manufacturing

Extensive research efforts have been dedicated to the improvement of the resolution and

printing speed of micro-additive manufacturing techniques. Moreover, research groups have

been focused on extending the range of printable materials with each manufacturing method

in order to fabricate functional multi-material parts with a single printing device.

Alternatively, achieving multi-material printing could also be achieved by combining several

printing techniques on a single platform. This would also allow building multi-resolution

parts with an optimized throughput. Fine details would be created with a high-resolution but

low-throughput technique while the bulk structure could be made with a coarse resolution

but high-throughput technique, as illustrated in Fig. 1.4. Multiprocess manufacturing was

recently attempted using a six-axis robotic arm to convey parts from one processing unit to

another [43].

Microscope objective
Glass 

capilla
ryMultim

ode fib
er

Figure 1.5 – Scale of our compact toolkit for micro-additive manufacturing compared to a
standard microscope objective

Such an approach is insufficient to integrate multiple processes on a single platform since

present additive manufacturing devices are too large to all be accessible by a robotic arm.
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Chapter 1. Introduction

Thus, the integration of multiple printing techniques for multi-material and multi-resolution

production also requires miniaturizing each manufacturing device.

With this aim in mind, I propose to develop a compact laser-actuated toolkit for high-resolution

additive manufacturing. Laser-actuation has both the potential for high-resolution patterning

(see Fig. 1.4) and to be used in compact devices. Actually, light can be guided and focused

through ultra-thin multimode fibers [44,45], which, in comparison to standard focusing optics,

are several orders of magnitude more compact as shown in Fig. 1.5.

The first component of the toolkit is a laser-actuated drop-on-demand device that could

deliver in situ precise quantities of liquid (see Fig. 1.6). This device is based on previous works

on high-velocity jets that were laser-induced in a glass micro-capillary [46]. In this work, the

curvature of the meniscus created by the wetting angle of the ink on glass was exploited to

flow-focus the ink with a laser-induced shockwave. In chapter 4 of this thesis, I investigate the

potential of this technique to reproducibly generate flow-focused droplets of a wide range of

viscous inks. Fig. 1.6 shows the envisioned compact laser-actuation of the liquid with a laser

pulse focused through a multimode fiber thanks to a phase control system.
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Figure 1.6 – Designed compact toolkit for micro-additive manufacturing

The second component of the toolkit is a compact curing probe. This probe is built around an

ultra-thin multimode fiber through which laser light is digitally scanned with a phase control

system to photopolymerize three-dimensional microstructures (see Fig. 1.6). To avoid the

use of complex and expensive femtosecond lasers, I propose to exploit oxygen-inhibition of
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1.2. Motivation

photopolymerization (chapter 5) to selectively cure three-dimensional microstructures with

an affordable continuous-wave laser light through the multimode fiber (chapter 6).

In an ideal printing configuration, the two compact devices would be placed alongside, so

that the curing probe selectively cures the jetted photoresist (see Fig. 1.6). This compact

system could also potentially be employed to fabricate microstructures in areas otherwise

inaccessible, for instance in in vivo applications.

1.2.2 Embedded printing through laser-induced forward transfer

In this thesis, I also investigate the potential of laser-induced forward transfer to improve

the throughtput and resolution of the embedded printing technique, which have only been

implemented with micro-extrusion nozzles [15–18].

With this current implementation, the micro-extrusion nozzle is inserted and moved into the

support matrix material (see Fig. 1.7(a)) to directly deposit continuous ink filaments, which

allows fabricating bulk structures and closed shells.

However, reproducing the complex micro-architecture of cells and extracellular components

that can be found in living tissues requires delivering picoliter ink doses with a resolution

close to the size of a cell (<20µm) [24]. Since continuous microextrusion printers do not

fulfill these requirements, I alternatively suggest to use drop-on-demand techniques for direct

three-dimensional pinpoint delivery of picoliter volumes into the support material.

To this end, I propose to control the deposition depth of the ink by varying its jetting velocity.

The support matrix material has Bingham plastic properties, it behaves as a solid below its

yield stress and flows like a liquid above this critical stress (see chapter 2 for further details).

Thus, we expect that above a threshold velocity the ink will puncture the soft material and will

then be gradually slowed down [47].

Though inkjet printing has a micrometric printing resolution and can be parallelized for

high-throughput applications, it can only jet liquids over a limited range of velocities (1-30 m

s−1) [8, 25].

On the other hand, laser-induced forward transfer allows jetting materials over a wide range

of velocities [48, 49]. Moreover, this jetting method has a sufficient lateral resolution (see Fig.

1.4) to create three-dimensional ink patterns that mimick the complex micro-architecture

of tissues [8, 24]. To our knowledge the axial printing resolution of laser-induced forward

transfer in a soft material has never been investigated, in spite of extensive research on its

lateral printing resolution and precision [50–52]. Thus, in chapter 3 of this thesis, I study

depth-controlled laser-induced injection into a soft material with the aim of providing an

alternative to nozzle-based embedded printing (see Fig. 1.7(b)).

Interestingly, three-dimensional microstructures are currently printed with laser-induced
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forward transfer in a layer-by-layer process, which includes time-consuming gelation steps

between every few layers [51, 53, 54]. Hence, directly controlling the ink deposition over three-

dimensions would also greatly improve the overall throughput of this printing technique.

Figure 1.7 – Nozzle and laser-based embedded printing
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2 Dimensionless analysis for optoflu-
idics

This chapter introduces a few concepts of fluid mechanics that are essential to the understand-

ing of chapters 3 and 4, in which optofluidics devices are studied.

We first present the rheological properties of the different fluids used in this thesis and then

describe the mathematical tools needed to perform a dimensionless analysis of liquid jetting

in inkjet printing and laser-induced forward transfer processes. In particular, these tools allow

determining the optimal jetting regime for stable single-droplet generation, which produces

the best printing quality in ink-based printers.

Some of the material presented in this chapter can be found in the following paper:

• Paul Delrot, Miguel A. Modestino, François Gallaire, Demetri Psaltis, and Christophe

Moser. Inkjet Printing of Viscous Monodisperse Microdroplets by Laser-Induced Flow

Focusing. Physical Review Applied, 6(2):024003-1:024003-8, August 2016.

2.1 Rheology of Newtonian, non-Newtonian liquids and Bingham

plastics

To analyse the dynamics of fluids, it is necessary to characterize their viscous and flow proper-

ties. This is often done using flow curves, which we introduce in this section to describe the

rheology of Newtonian and non-Newtonian liquids as well as Bingham plastics.

2.1.1 Viscosity, shear rate and shear force

Let us assume a liquid standing between two infinite parallel plates separated by a distance

h. If we create a steady-state shear flow by keeping one plate still and moving the other at

constant velocity v0, we observe the appearance of friction forces ~F on the bottom plate and

−~F on the top plate (see Fig. 2.1).
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Chapter 2. Dimensionless analysis for optofluidics

Moreover the liquid is also set into motion and a steady-state gradient of velocity ~v(y) is

created. Since the velocity is continuous at the borders, the liquid velocity is null at the border

of the standing plate and v0 on the moving plate border. In the case of a Newtonian liquid,

as depicted in Fig. 2.1, the steady-state velocity gradient is linear [55] and the velocity field is

then:

~v(y) = y

h
~v0 (2.1)

Furthermore, the viscous friction force ~F is proportional to the surface S of the plates. Nor-

malising the force ~F by the surface S, it can be expressed as a function of the viscosity η of the

liquid:

~F

S
= η

h
~v0 (2.2)

Thus, the higher the liquid viscosity η, the larger the friction force ~F opposed to the motion.

Standing plate

Plate moving at speed v
o

y

x

h

Liquid

-F

F

v
o

v(y)

Figure 2.1 – Steady-state shear flow

More generally, the friction force can be written as:

~F

S
= η∂~vx

∂y
(2.3)

The norm of this relationship is more known as the constitutive equation of Newtonian

liquids [55]:

τ= ηγ̇ (2.4)
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2.1. Rheology of Newtonian, non-Newtonian liquids and Bingham plastics

where we introduced the shear stress τ and the shear rate γ̇:

τ=
∥∥~F∥∥

S
(2.5)

γ̇= ∂‖~vx‖
∂y

(2.6)

2.1.2 Flow curves

The simple relationship of Eq. 2.4 characterizes the evolution of shear stress as a function of

shear rate and allows describing the flow curves of Newtonian liquids (see Fig. 2.2(a)).

This description can be extended to other types of fluids using the Herschel-Bulkley model

[19, 55]:

τ= τy +kγ̇n (2.7)

where τ is the shear stress, τy the material yield stress, γ̇ the shear rate, k the consistency index

and n the flow index.

Some dispersed materials, such as granular media, are organized into three-dimensional

structures, called coagulated structures, that exhibit some strength. The yield stress τy is

used to describe the threshold stress that needs to be applied to these materials so that the

coagulated structure is destroyed and goes from a solid phase to a liquid phase [55]. In other

words, these materials exhibits a solid behavior at low shear stresses and flow like liquids for

shear stresses exceeding their yield stress τy .

Newtonian liquids

Using the Herschel-Bulkley model, it is possible to describe some ideal rheological behaviors.

Considering a material that is not a coagulated structure, that is to say τy = 0, and with a flow

index n = 1, we derive from Eq. 2.7 the specific case of Newtonian liquids described in Eq. 2.4:

τ= ηγ̇ (2.8)

where the consistency index k of Eq. 2.7 is here equivalent to the viscosity η of the Newtonian

liquid in Eq. 2.4.

Thus, we see on the flow curve of Fig. 2.2(a), that the shear stress τ of ideal Newtonian liquids,

like water or glycerol, increases linearly with the applied shear rate γ̇. We also note that the

viscosity η of an ideal Newtonian liquid remains constant with the shear rate γ̇ (see bottom
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graph in Fig. 2.2(a)).

Bingham plastics

On the other hand, some dispersed materials have a non-zero yield stress τy and a flow index

n = 1. Applying these parameters to Eq. 2.7 yields the Bingham equation [55]:

τ= τy +ηp γ̇ (2.9)

where the consistency index k of Eq. 2.7 is here termed the plastic viscosity ηp .

Such materials, called ideal Bingham plastics, behave as solids for shear stresses τ < τy .

Applying a shear stress τ > τy destroys their cohesive structure and they start flowing as

Newtonian liquids (see flow curve in Fig. 2.2(b)). Like Newtonian liquids, the plastic viscosity

ηp of ideal Bingham plastics is independent of the shear rate γ̇ once they start flowing (τ> τy ),

as depicted in Fig. 2.2(b).

Blended gelatin [17] is a Bingham plastic and its rheological properties are exploited to provide

a support material for soft matter in three-dimensional embedded printing (see section 1.1.1) .

In the same time, the coagulated structure of blended gelatin, can yield to let a thin nozzle

flow into it to deposit an ink (see Fig. 1.2(c)).

Non-Newtonian liquids

Ideal non-Newtonian liquids exhibit a zero yield stress τy = 0. They can be shear-thinning,

also called pseudo-plastic (n < 1) or shear-thickening, also termed as dilatant (n > 1). Applying

these parameters in the Herschel-Bulkley model (see Eq. 2.7) yields the Ostwald-De Waele

equation or power-law model of liquids [55]:

τ= kγ̇n (2.10)

By introducing the concept of apparent viscosity ηa as the ratio of shear stress τ over shear

rate γ̇:

ηa = τ

γ̇
(2.11)

we see from Eq. 2.10 and Eq. 2.11 that the flow curve of non-Newtonian liquids can be

described by the relationship:

τ= ηa(γ̇) · γ̇ (2.12)

where the apparent viscosity ηa is:

ηa(γ̇) = kγ̇n−1 (2.13)
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Hence, shear-thinning liquids (n < 1), such as some polymer solutions [56], show a decrease

in the apparent viscosity ηa with the applied shear rate γ̇, as shown in the bottom graph of

Fig. 2.2(c). Moreover, from Eqs. 2.12-2.13, we derive that their flow curve is characterized by a

decreasing slope in the shear stress τ response to an applied shear rate γ̇ that increases (see

flow curve in Fig. 2.2(c)).

Practically, in the case of inkjet printing, such shear-thinning liquids have a non-linear behav-

ior. They tend to be highly viscous for low shear rates, typically at the beginning of the jetting

process, and then start flowing with less resistance once set into motion.

Shear-thickening liquids (n > 1), as opposed to shear-thinning fluids, exhibit an increase of

their apparent viscosity ηa with shear rate(see the bottom graph of Fig. 2.2(d)) . In the same

way, their flow curve is described by an increasing slope of the shear stress σ curve with the

applied shear rate γ̇ (see Fig. 2.2(d)). In other words, the resistance of these liquids to flow

grows with the velocity of the body flowing into it. This behavior can be observed in some

suspensions of large particles [57].

(a) Newtonian liquid

τ

η

(b) Bingham plastic

τ

η
p

τ
y

(c) Shear-thinning liquid

τ

η
a

τ

η
a

(d) Shear-thickening 

liquid

Figure 2.2 – Ideal flow curves of Newtonian, non-Newtonian liquids and Bingham plastics
with the evolution of their viscosity as a function of shear rate. These curves are plotted for an
intermediate range of shear rate, therefore γ̇> 0 at the intersection of the x and y axis.
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Chapter 2. Dimensionless analysis for optofluidics

2.2 Dimensionless analysis of inkjet printing

2.2.1 Dimensionless numbers

In conventional thermal and piezoelectric inkjet printers, the drop production mechanism

is based on the generation of a pressure pulse that ejects a small amount of incompressible

liquid through a nozzle (see Fig. 2.3). If the kinetic energy imparted to the liquid overcomes

the surface energy and viscous dissipation of the liquid, one or more droplets are formed.

Though droplet production is a complex process, the two dimensionless Reynolds and Weber

numbers are commonly used to characterise inkjet printing [25, 58].

The Reynolds number (Re) represents the ratio of inertial and viscous forces. The Weber num-

ber (W e) corresponds to the ratio of the kinetic and surface energies. Re and W e respectively

give an indication on whether a jet can be created, and if it can lead to droplet formation.

These numbers are defined as:

Re = ρRV

η
(2.14)

W e = ρRV 2

σ
(2.15)

where ρ is the liquid density, R is a characteristic length, V the liquid velocity, η the liquid

dynamic viscosity and σ its surface tension (see Fig. 2.3).

Figure 2.3 – Parameters for droplet generation through a nozzle

Another dimensionless number is often used in inkjet printing to characterise the printability

of liquids without the influence of velocity [25]. The so-called Ohnesorge number (Oh) is

defined as:

Oh =
p

W e

Re
(2.16)
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2.2. Dimensionless analysis of inkjet printing

From Eq.2.14-2.15, Eq.2.16 yields the following expression for Oh:

Oh = η√
σρR

(2.17)

It is noteworthy that the Ohnesorge number Oh is the ratio of the characteristic time scale tc

and tµ for capillary and viscous effects to respectively appear:

Oh = tc

tµ
(2.18)

where:

tc =
√
ρR3

σ
(2.19)

and:

tµ = ρR2

η
(2.20)

2.2.2 Printability map of inkjet printing

Using these dimensionless numbers, several criteria were derived from experimental mea-

surements and numerical models to map the regime for stable satellite-free drop generation

from a nozzle in the frame of conventional thermal and piezoelectric inkjet printers [25, 58].

Satellite droplets are indeed detrimental to the printing performances since they degrade the

printing resolution.

First, setting the characteristic length R in Eq. 2.15 as the drop diameter, the fluid must be

imparted a sufficient velocity to overcome surface energy, yielding a criterion on W e > 4 [58],

which is equivalent to the dashed line Re = 2/Oh in Fig. 2.4. In conventional thermal and

piezoelectic print heads, this drop diameter R roughly scales with the nozzle diameter [32]

(see Fig. 2.3).

Moreover, in order to avoid drop splashing on the substrate, a condition on the drop terminal

velocity and on the ink surface tension can be plotted as OhRe5/4 = 50 in Fig. 2.4 [25, 58].

Finally, a previous study [59] related the jettability of an ink through a nozzle of diameter R

with the Ohnesorge number Oh. If the ink is too viscous, Oh >∼ 1, viscous effects appear

faster than capillary effects (see Eq. 2.18) and droplet breakup cannot occur, whereas if Oh is

too low, Oh <∼ 0.1, a trail of satellite droplets is likely to be formed.

Based on these criteria, previous works [25, 58, 60] showed that it is possible to build an

universal printability map in Oh-Re space. We adapted this diagram in Fig. 2.4 to analyze the

performances of our compact drop-on-demand device (see chapter 4), where the printability

region for conventional inkjet printers is colored in grey .
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Figure 2.4 – Printability region for conventional thermal and piezoelectric inkjet printers,
adapted from [25, 58, 60]

2.3 Dimensionless analysis of laser-induced forward transfer

2.3.1 Dimensionless numbers

A similar dimensionless analysis can be applied to the jetting process of laser-induced forward

transfer [61, 62]. In this jetting process, a thin (10-100 µm) layer of ink is coated on a planar

transparent slide (see Fig. 2.5). Upon the absorption of a nanosecond laser pulse by a thin

light-absorbing layer, a shockwave is produced, which propels the underneath liquid. As in

inkjet printing, if the kinetic energy imparted to the column of liquid is sufficient to overcome

viscous dissipation and surface energy, a high-aspect ratio jet is subsequently formed and

generates one or more liquid droplets.

Modified Ohnesorge number

Recent studies proposed to adapt the Ohnesorge and Deborah numbers to map the jetting

regime of viscous inks in laser-induced forward transfer [61, 62]. The modified Ohnesorge

number Oh∗, introduced by Turkoz et al. [62], accounts for the geometry of laser-induced

forward transfer and the modification of the ink’s viscosity η(γ̇) by the high shear rate γ̇

occuring in the ink layer during jetting (see the shear velocity vshear profile in Fig. 2.5). This

modified number reads:

Oh∗ = η(γ̇)√
σρR

(2.21)
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2.3. Dimensionless analysis of laser-induced forward transfer

where η(γ̇) is the shear-rate dependant ink viscosity, σ its surface tension, ρ its density and R

the width of the liquid filament (see Fig. 2.5).

The shear velocity vshear induced by the jetting process can be derived from mass balance

considerations [62] as:

vshear =
v j et Rb

H
(2.22)

where v j et is the mean jet velocity, Rb the focus radius and H the thickness of the ink layer

(see Fig. 2.5).

Thus, the resulting shear rate γ̇= vshear
H is equal to:

γ̇= v j et Rb

H 2 (2.23)

Time-resolved imaging of the laser-induced jetting is required to determine the jet velocity

v j et and derive the shear rate γ̇. Combined to a rheological measurement of the shear-rate

dependence of the ink viscosity η(γ̇), this allows building a parametric space of the jetting

regimes as a function of the modified Ohnesorge number Oh∗.

Modified Deborah number

The Deborah number De is the ratio of the characteristic internal relaxation time λr of the

liquid over the time scale of the deformation applied to the liquid tp :

De = λr

tp
(2.24)

where λr is an empirical parameter [61] and tp can be expressed as a function of the capillary

time scale tc of Eq. 2.19 [63]:

tp = tcp
0.118

(2.25)

In other words, the Deborah number is here used to predict if the liquid filament does not

relax before capillary effects arise to break it up into one or more droplets.

To account for the high-aspect ratio Lmax /H of the laser-induced liquid filament (see Fig. 2.5),

which reduces the relaxation time λr , previous studies proposed a modified version of the

Deborah number De∗:

De∗ = λr

tp

H

Lmax
(2.26)
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The aspect ratio Lmax /H can be estimated as [62]:

Lmax

H
∼ v j et

vc
(2.27)

where v j et is the mean jet velocity (see Fig. 2.5) and vc is the typical breakup speed:

vc =
√

σ

ρH
(2.28)

Finally, the modified Deborah number De∗ reads:

De∗ = λr

tp

vc

v j et
(2.29)

Focused laser pulse

Glass slide
Light-absorbing layer

Ink layer

R ~ H

H

L
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v
shear
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jet

R
b
/H

v
jet
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b

Figure 2.5 – Parameters for droplet generation via laser-induced forward transfer, adapted
from [62]

2.3.2 Printability map of laser-induced forward transfer

As in inkjet printing, several criteria were derived from experimental measurements and

numerical models to map the different jetting regimes of laser-induced forward transfer

[61, 62].

First, the same considerations on the ratio of the capillary and viscous time scales (see Eq.

2.18) apply for laser-induced forward transfer as in inkjet printing. If the ink is too viscous,
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2.3. Dimensionless analysis of laser-induced forward transfer

Oh∗ >∼ 1, viscous effects appear faster than capillary effects and droplet breakup cannot

occur, whereas if Oh∗ is too low, Oh∗ <∼ 0.1, multiple droplets are likely to be formed. These

two criteria are equivalent to the vertical dashed lines in Fig. 2.6.

Considering the modified Deborah number De∗, two empirical conditions were found: De∗ >∼
0.02 and De∗ >Oh∗ [62]. The first condition states a minimum value for De∗ to first form a

liquid jet before the liquid relaxes (see the dashed horizontal line in Fig. 2.6), while the second

condition sets another minimum value on De∗ to additionally induce a liquid breakup. The

condition De∗ >∼ 0.02 can be interpreted as a requirement to induce liquid deformation faster

than the liquid relaxation time λr (see Eq. 2.24). In the same way, the condition De∗ >Oh∗ is

equivalent to tc <∼
√
λr tµ (see Eqs. 2.18,2.24,2.25) which accounts for the fact that capillary

breakup of the liquid filament should occur before the combined relaxation and viscous effects

appear.

The single-drop jetting regime therefore lies between the vertical dashed lines, derived from

the criteria on the modified Ohnesorge number, and above the diagonal line that represents

the requirement for a faster droplet breakup than liquid relaxation (see gray region in Fig. 2.6).

Based on this semi-empirical model, Turkoz et al. [62] showed that a prior measurement

of the ink’s rheological properties allows predicting in which jetting regime laser-induced

forward transfer will take place. We use this jetting map to analyze the performances of our

experiments on laser-induced three-dimensional embedded printing in chapter 3.
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Figure 2.6 – Jetting map for laser-induced forward transfer, adapted from [62]
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2.4 Conclusion

The basic concepts of fluid dynamics introduced in this chapter provide simple tools to

characterize the rheology of the different fluids used in this thesis. In addition, a comparison

of the time scale of the different physical phenomena in action during drop generation allows

predicting and analyzing the jetting regimes of both inkjet printing, studied in chapter 4, and

laser-induced forward transfer, which we investigate in the next chapter.
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3 Laser-induced direct three-
dimensional liquid delivery

In this chapter, laser-induced forward transfer is used as a direct three-dimensional liquid

delivery tool, with the aim of providing an alternative to nozzle-based embedded printing.

First, the challenges of existing embedded printing techniques are reviewed to motivate the

use of laser-induced forward transfer for depth-controlled liquid delivery. I show that direct

three-dimensional liquid delivery can be achieved by producing stable liquid jets over a large

range of velocity. I further study the potential of this jetting technique as a cell-delivery vehicle

and finally discuss the limitations of the current experimental device.

Parts of the material presented in this chapter were submitted to a peer-reviewed journal

under the following title:

• Depth-controlled laser-induced jet injection for direct three-dimensional liquid delivery,

Paul Delrot, Sylvain P. Hauser, Jan Krizek, and Christophe Moser.

3.1 Introduction and motivation

3.1.1 Microextrusion embedded printing

Three-dimensional embedded printing enables free-form fabrication of soft materials [19].

In this printing technique, a microextrusion printer directly deposits filaments of a soft ink

into a volume of support material. The support material has Bingham plastic rheological

properties (see section 2.1.2), as the extrusion nozzle translates into it to raster scan the three-

dimensional structure, the gel-like support material fluidizes (see Fig. 3.1(a)). On the other

hand, this support material has a solid behavior for shear stresses lower than its yield stress.

Hence, while this gel-like material allows the nozzle to freely move, it supports the built soft

three-dimensional structures, which would otherwise collapse.

Since microextruders generate continuous ink filaments, this printing method is suitable to

fabricate bulk structures or closed shells with a resolution between 50 µm and 200 µm [15–17].
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Chapter 3. Laser-induced direct three-dimensional liquid delivery

However, optimally mimicking the complex three-dimensional micro-architectures of tissues

requires delivering picoliter ink doses with a ∼20-µm resolution [24], close to the dimension

of a cell. These requirements are currently not met by continuous microextrusion printers.

3.1.2 Drop-on-demand embedded printing

Depth-controlled three-dimensional delivery

Alternatively, I propose to use drop-on-demand printing techniques for direct depth-controlled

delivery of picoliter volumes into the gel-like support material. These techniques also have

the advantage of being easily parallelized to increase throughput (see chapter 1).

To control the droplet deposition depth, I suggest to exploit the Bingham plastic properties of

the support material. Fluidization of the support gel occurs above its yield stress (see section

2.1.2), we thus expect a droplet of ink to puncture and fluidize the support material above

a threshold velocity [47]. Above this velocity, the gel behaves as a viscous Newtonian liquid,

which will slow down the injected droplets. To build soft three-dimensional microstructures, I

therefore propose to perform depth-controlled delivery by varying the droplet velocity, faster

droplets being deposited deeper into the support material as described in Fig. 3.1(b).

In this way, targeting a large span of injection depth requires generating microdrops over a

wide range of velocity.

Inkjet printing

Among the ink-based printing techniques (see section 1.1.2), inkjet printing offers a microscale

printing resolution and can be readily parallelized for high-throughput applications. On the

other hand, it can only jet liquids over a limited range of velocity [8, 25] (1-30 m s−1), as shown

in Fig. 3.1(c).

Laser-induced forward transfer

In contrast, laser-induced forward transfer allows jetting viscous materials over a wide velocity

range, from 20 m s−1 to more than 150 m s−1 [48, 49]. In addition, this jetting method offers

a high throughput (>104 drops/s) and a micrometric lateral resolution (see Fig. 3.1(d)) that

enable the fast replication of the complex micro-architectures of tissues [8, 9].

Interestingly, controlling the deposition depth of droplets would add a degree of freedom

to laser-induced forward transfer, turning this conventional two-dimensional patterning

technique into a direct three-dimensional printing technique. Thus, the time-consuming

gelation steps currently required when building a microstructure layer-by-layer could be

avoided, thus greatly improving the overall throughput of laser-induced forward transfer

[51, 53, 54]. Finally, it is noteworthy that the axial printing resolution of laser-induced forward
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3.2. Generation of high-velocity jets by laser-induced forward tranfer

transfer into a soft material has never been investigated, in spite of extensive research on its

lateral printing resolution and precision [50–52].

In this chapter, I first describe the methods employed to laser-induce stable jet of an alginate-

based ink. I then show that the velocity of these jets can be controlled by varying the laser

fluence, which in turn enables to control the injection depth of the jets in a 300-µm thick

volume of gelatin. The potential of this three-dimensional delivery technique for cell-delivery

is then further studied.

Figure 3.1 – Improving throughput of three-dimensional embedded printing via depth-
controlled injection

3.2 Generation of high-velocity jets by laser-induced forward tran-

fer

This section further describes the concept of direct three-dimensional liquid delivery using

laser-induced forward transfer. The rheology of the gelatin substrate, essential to this depth-

controlled injection, is characterized. The variation of the jet velocity was also calibrated using

time-resolved imaging to ensure an accurate jet injection depth.
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Chapter 3. Laser-induced direct three-dimensional liquid delivery

3.2.1 Methods

Concept and experimental setup

Direct three-dimensional liquid delivery was achieved by adapting a two-dimensional laser-

induced forward tranfer system developed by Fraunhofer-ILT (LIFTSYS). I realized the adapta-

tion of this commercial laser-induced forward transfer system together with Sylvain Hauser,

an EPFL master student.

The principle of three-dimensional liquid delivery is described in Fig. 3.2(a). Upon absorption

of a laser pulse, liquid jets are generated from the donor slide. Increasing laser fluences result

in faster jets. As their impact velocity increases, these liquid jets penetrate deeper into the

gelatin receiver substrate. While this substrate lets the jet flow above a threshold velocity, it acts

as a support material once they stopped. This behavior stems from the substrate’s Bingham

plastic properties, further described in the next section and in section 2.1.2 of chapter 2.

The solid receiver slide typically used in standard laser-induced forward transfer systems was

replaced by a 300-µm thick soft gelatin substrate so that microjets were directly injected from

the donor slide into this soft substrate (see Fig. 3.2(a)). The donor slide and the top surface of

the gelatin substrate were placed 1400 µm apart. Both the donor slide and receiver substrate

were carried in the LIFTSYS machine by two-axis stages for two-dimensional lateral motion

and patterning.

The donor slide (see Fig. 3.2(b)) consisted of a standard silica microscope slide onto which

a 60-nm light-absorptive titanium layer was sputtered (Alliance Concept, DP650). A 30-µm

thick layer of liquid ink was then coated with a doctor blade (Elcometer, model 3580) onto

this titanium layer. The donor slide was subsequently placed in the LIFTSYS machine where

5-ns UV laser pulses were absorbed by the titanium layer and induced shockwaves, thereby

producing liquid microjets of ink [64, 65].

The liquid ink was made of 1% (w/v) sodium alginate (Sigma Aldrich) into a 1:3 (v/v) mixture of

glycerin (>99.5%, Roth) and deionized water. To image the depth and morphology of injection,

0.2-µm fluorescent beads (Thermo Fischer, FluoSpheres®F8811) were added to the ink with

a concentration of 5 ·109 beads/mL. For the experiments investigating the potential of our

technique as a direct three-dimensional cell-delivery vehicle, cell-like fluorescent beads (◦10

µm, density: 1.05 g mL−1, Polysciences, Fluoresbrite®YG) were also added to the ink with a

concentration of 1 ·107 beads/mL, similar to cell concentrations used in previous studies on

cell delivery using laser-induced forward transfer [66, 67].

Gelatin as a soft support material

Previous studies on laser-induced forward transfer systems used either solid receiver sub-

strates when patterning non-sensitive material [65], or receiver slides coated with a thin

layer of damping material such as Matrigel or gelatin in order to increase cell viability for
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Figure 3.2 – (a) Experimental setup for three-dimensional liquid delivery by laser-induced
forward transfer. (b) Composition of the donor slide (c) Rheological analysis of elastic (G ′) and
viscous (G ′′) modulus for the gelatin receiver substrate showing Bingham plastic behavior

bio-printing applications [50, 68, 69].

In this thesis, to investigate direct three-dimensional liquid delivery, the receiver substrate

consisted of a 300-µm thick soft gelatin substrate. Gelatin, as an inert and biocompatible

material [70], has been used as a soft tissue model [47, 71, 72] or as a scaffold material for

soft tissue engineering applications [73–75]. Interestingly, gelatin exhibits Bingham plastics

rheological properties. As shown in the rheological analysis of Fig. 3.2(c), its elastic (G ′)
and viscous (G ′′) remain constant below a threshold oscillation frequency (∼10Hz), which

corresponds to a threshold shear stress. This is typical of a solid material. Above the yield

stress, the gelatin elastic modulus (G ′) and viscous modulus (G ′′) increases linearly, which

denotes a Newtonian liquid behavior (see section 2.1.2). In terms of jet dynamics, this means

that above a threshold jet velocity, gelatin will be punctured and the jet will flow into it. Once

the drag force has sufficiently slowed down the jet, gelatin will act as a solid support material

for the injected dose.

Analysis of the depth-controlled injections

In order to perform confocal imaging of the injections, we used coverslip-mounted plastic

dishes (MatTek, model P35G-1.5-14-C) as gelatin containers (receiver substrates). A solution

of 2% (w/v) gelatin (Sigma-Aldrich, 300 g bloom force) and 0.5% (w/v) C aC l2 (Sigma-Aldrich)

in deionized water was prepared at 37◦C and mixed with 0.2-µm fluorescent beads (Thermo
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Chapter 3. Laser-induced direct three-dimensional liquid delivery

Fischer, FluoSpheres®F8810) at a concentration of 5 · 109 beads/mL. Labeling the gelatin

substrate with fluorescent markers orthogonal to that of the injected liquid allowed us deter-

mining precisely the top surface of the gelatin volume and the injection depth. The liquid

mixture was then poured in the plasma-cleaned dish to form a 300-µm thick volume with a flat

top surface. The receiver substrates were stored at 5◦C at least for two hours, until experiments

took place. The experiments were run at 22◦C and lasted 4 min thus not degrading the gelatin’s

rheological properties, after which the receiver substrates were stored back at 5◦C until being

imaged. As mentioned above, the injections were imaged with a confocal fluorescent micro-

scope under a protected atmosphere (22◦C, > 85% humidity) to prevent drying of the samples.

Finally, the image tiles were reconstructed using an open-source plugin [76].

Time-resolved imaging of jet velocity

The jet dynamics were imaged using a custom-made high-brightness continuous light source

combined with a high-speed camera (Vision Research, Phantom Miro M310) mounted with a

microscope objective. These time-resolved imaging experiments were performed together

with my colleague Jan Krizek.

The dimensions of the LIFTSYS machine allowed us to image the jetting velocity near the

donor slide. However, the small space available within the machine did not allow us imaging

the impact of the jets onto the soft gelatin substrate.

3.2.2 Control of the jetting velocity with the laser fluence

Precise and efficient three-dimensional liquid delivery requires controlling the injected dose,

its dispersion, which we define as the lateral resolution, as well as its injection depth. More

specifically, depth-controlled nozzle-free injections demand the production of liquid microjets

over a wide range of velocity.

By varying the incident laser fluence on the donor slide (see Fig. 3.2(a)) we demonstrate

microjet generation with estimated velocities at impact ranging from 10 m/s to more than 80

m/s (see Fig. 3.3(a)). The estimated velocity at impact on the substrate is measured 1400 µm

away from the donor slide, where the top surface of the soft gelatin substrate stands during

injection experiments (see the dashed lines in Figs. 3.3(b)-(d)).

Interestingly, our device allows generating stable jets, with a high directionality over this wide

range of velocity (see Figs. 3.3(b)-(d)) whereas at high-velocity standard inkjet printers create

turbulent jets and satellite droplets, which can degrade the lateral resolution of injection. In

the same way, as shown in Figs. 3.3(b)-(d), our laser-based system enables the production

of these high-speed jets with a width as small as ∼15 µm, which also contributes to a finer

lateral resolution of injection (see section 3.3.1) than in existing microextrusion embedded

printers [15–17].
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Figure 3.3 – (a) Jet velocity at 1.4 mm from the donor slide as a function of the incident laser
fluence on the donor slide (b) Time-resolved imaging of the laser induced jet for a 7.17±0.57 J
cm−2 laser fluence (c) 2.89±0.23 J cm−2 laser fluence (d) 1.53±0.12 J cm−2 laser fluence. Low
velocity liquid droplets or trailing filaments can be observed for times >108 µs, >81 µs and
>99 µs in Fig. 3.3(b), 3.3(c) and 3.3(d) respectively. These low velocity volumes are responsible
for the liquid deposited on top of the injection sites (see Fig. 3.4(a)).

Laser-induced jets could potentially be produced over an even larger dynamic range of velocity
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by increasing the ink’s viscosity, as viscosity tends to stabilize laser-induced jet and droplet

generation [31, 77]. However, for this study the LIFTSYS’s laser experimentally limited us to an

upper fluence limit of 7.17±0.57 J cm−2, therefore the stability of higher velocity jetting could

not be investigated.

3.3 Depth-controlled injection for direct three-dimensional liquid

delivery

3.3.1 Depth-controlled injection

To assess the ability of laser-induced forward transfer to achieve depth-controlled injections I

used the setup of Fig. 3.2(a) with the unseeded ink described in section 3.2.1, and generated

grids of 11 by 20 jets, each row of jets being injected with an increasing laser fluence and

therefore with an increasing jet velocity (see Fig. 3.3(a)).

Above a threshold velocity, the gelatin substrate was punctured and the injection depth was

reproducibly controlled from 0 to ∼230 µm, linearly scaling with the jet velocity (see red data

points and dashed fit in Fig. 3.4(a)). This linear trend is consistent with the viscous stress

model developed by Tagawa et al. [47] in which a viscous drag force, proportional to the jet

velocity v , is applied to the liquid as it penetrates into the material. The injection depth Dp ,

which is the length of the column of material injected, then linearly scales with the jet velocity

v as:

Dp = 1

cv
(v − vc ) (3.1)

where cv is a fitting parameter in s−1 and vc is the threshold velocity for puncturing the

material [47], which we find to be vc = 7.5 m/s by fitting the data with this viscous stress model.

Such a threshold model is also consistent with the Bingham plastic behavior measured for the

gelatin substrate (see Fig. 3.2(c)) since below a yield velocity, the material remains solid to the

impact of the jet whereas above this yield velocity, it flows under impact.

The depth precision of the injection is ± 25 µm (see red error bars in Fig. 3.4(a)) while the

lateral precision of delivery is ±4 µm (not depicted here). In addition, the lateral resolution of

injection of the laser-assisted device, which is defined as the lateral area over which the deliv-

ered liquid is dispersed, is 12 ± 4 µm (see cross-sections of injection sites in Figs. 3.4(b)-(d)).

This low dispersion of the delivered liquid is likely due to the ultra-thin microjets generated by

laser-induced forward transfer (see Figs. 3.3(b)-(d)) rather than the gelation of the alginate-

based ink in the Ca2+-rich gelatin substrate. Analyzing the respective penetration time of the

jet and gelation time of the alginate-based ink reveals indeed that the injection occurs over a

time shorter by several order of magnitude, ∼3 µs, than the diffusion [78] of calcium ions over

6 µm, ∼30 ms.
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Figure 3.4 – Control of the injection depth by the jetting velocity. The data points are linearly
fitted to show consistency with a viscous stress model [47]. Cross-sections of the injected ink
are depicted for various data points of the plain ink, scale bar: 100 µm, green: injected liquid,
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3.3.2 Morphology of injection

Though the principle of laser-assisted depth-controlled injection is validated, the geometry of

micro-injections shown in the imaging cross-sections of Figs. 3.4(b)-(d), with a thin injected

column of ink capped with a larger volume on the gelatin surface, differs from the desired

local deposition at a specific depth depicted in Fig. 3.2(a).

First, as shown in Fig. 3.5, an important part of the jetted volume was not even injected into

the material. A possible backflow of the injected liquid towards the substrate surface could

account for the presence of this larger volume of liquid on the substrate surface than inside the

gelatin substrate. However, such a backflow model would experimentally be evidenced by an

asymptotic depth of injection [79], which is not observed in Fig. 3.4(a). Thus, I rather speculate

that the volume of liquid appearing on the top surface of injection (see imaging cross-sections

of Figs. 3.4(b)-(d)) is due to the low velocity trailing filament and satellite droplets produced at

the end of the laser-induced jetting process (see images for times >108 µs, >81 µs and >99 µs

in Figs. 3.3(b), 3.3(c) and 3.3(d) respectively).

The ratio of injected ink over the whole volume of jetted ink quickly reaches an asymptotic

value of ∼12% once the jet overcomes the threshold velocity for puncture, as respectively

shown with red circles in Fig. 3.5 and Fig. 3.4(a). Improving this ratio would require to either

impart the same velocity to the whole body of jetted liquid or to suppress its low velocity

components, namely the trailing filament and satellite droplets (see Figs. 3.3(b)-(d)). These
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Chapter 3. Laser-induced direct three-dimensional liquid delivery

two conditions are equivalent to jetting a single high-velocity droplet, as discussed in section

3.3.4.

Though our laser-based system currently has a relatively low injection efficiency, it allows

injecting picoliter doses (see green squares in Fig. 3.5) over a two-dimensional area with a

±25 µm depth-control as well as a ±4 µm lateral precision and a 12±4 µm lateral dispersion.

This micrometric lateral and axial control over the liquid delivery is comparable to the size

of a cell and therefore falls within the range of the optimal printing precision for direct three-

dimensional delivery of cells or particles [24]. I thus investigate in the next section the ability

of the system to deliver particles at a pinpoint location in a volume.
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Figure 3.5 – Injection efficiency for the plain ink

3.3.3 Application to particle delivery

Laser-induced forward transfer, as a precise biocompatible printing system, has been exten-

sively used in the past years for two-dimensional cell patterning or to build layer-by-layer

three-dimensional tissue engineered constructs [7, 27, 51]. Nozzle-free depth-controlled de-

livery of cells or particles within soft tissues or support material would for instance enable

studying cell responses to specific micro-architectures in a minimally invasive way. To study

the potential of our direct three-dimensional laser-based injector to carry a cell-like payload,

the liquid ink was seeded with ◦10 µm fluorescent beads (see section 3.2.1 for further details).

The particle-seeded liquid was injected less deep into the soft gelatin substrate than the

plain liquid (see blue and red datapoints respectively in Fig. 3.6(a)), a phenomenon already

observed in previous work on needle-free injection [80]. Here, as evidenced by the poorer fit
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3.3. Depth-controlled injection for direct three-dimensional liquid delivery

to the viscous stress model (see blue dashed line in Fig. 3.6(a)) compared to the plain liquid, I

hypothesize that the seeded particles influence the puncture ability of the jet. The particles are

indeed approximately the same size, ◦10 µm, as the jet thickness, ∼12 µm, which could affect

the jet cross-sectional drag area, thus reducing its potential for puncture and penetration.
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Figure 3.6 – Injection performances of the plain ink and particle-seeded ink (a) Injection
depth as a function of the jet velocity and laser fluence (b) Injection efficiency and total jetted
volume

The ratio of injected ink over total jetted volume of the particle-seeded liquid is almost halved

compared to the plain liquid, reaching an asymptotic value of ∼7% (see blue circles in Fig.

3.6(b)), which is caused by the larger amount of liquid jetted with the particle-seeded liquid

than with the plain liquid (see blue and orange squares in Fig. 3.4(b)). I speculate that a larger

volume of low-velocity liquid was pulled towards the substrate by bead aggregates, possibly

induced by capillary forces between beads. This hypothesis is supported by the higher average

number of beads deposited per dose than what would be expected from the initial bead

concentration in the liquid. As shown in Fig. 3.7, fitting the experimental bead distributions by

Poisson distributions [50] reveals that an average 1.15±0.06 and 2.35±0.14 beads per dose are

respectively delivered for 2.4±0.2 and 6.3±0.5 J cm−2 laser fluences, whereas combining the

measured dose volume (see blue squares in Fig. 3.4(b)) with the 107 beads/mL concentration

indicates that 0.75±0.15 and 1.4±0.22 bead per dose would respectively be expected. This

inconsistency suggests that beads are forming aggregates prior or during jetting, and are likely

to increase the amount of low-velocity liquid transferred towards the gelatin substrate.

However, as shown in the cross-section of injection of Fig. 3.7, I demonstrated that cell-like

beads can be injected into a soft gelatin substrate using the laser-based microjet device. The

injected beads lie in the 12-µm diameter thin column of liquid depicted in Fig. 3.4(b), thus

precise lateral delivery of the cell-like payload can be achieved. Since more volume of liquid
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Chapter 3. Laser-induced direct three-dimensional liquid delivery

was delivered on the substrate surface than injected into the substrate, the likelihood of bead

injection into the substrate is proportionally decreased (see Fig. 3.7). Similarly, this degrades

the control over the delivery depth of the particles, as indicated by the green error bar that

shows the ±57 µm depth deviation of the injected beads for jets generated at 7.2±0.6 J cm−2

laser fluence.

Embedding particles in a single high-velocity droplet would allow overcoming this limitation

to achieve axially localized deposition. Generation of high-velocity single-drops could be

demonstrated through modification of the ink rheology as discussed in the next section.

Figure 3.7 – Probability distribution of the amount of beads per delivered dose for two laser
fluences. The orange and blue bar plots respectively represent the measured distribution of
delivered beads for doses jetted at 2.4±0.2 J cm−2 and 6.3±0.5 J cm−2, N = 20. The dashed
orange and blue lines are Poisson distribution fits to the experimental bead distribution. A
cross-section of injection with the seeded ink is shown on the left, several beads (in bright
green) are deposited on the top gelatin surface (in blue) while one bead is injected ∼170 µm
into the substrate. The green deviation bar represents the depth-uncertainty on the deposition
of beads for a laser fluence of 7.2±0.6 J cm−2. The image is processed to better distinguish the
deposited beads. White scale bar: 100 µm.

3.3.4 Dimensionless analysis for the generation of high-velocity single-droplet

Direct three-dimensional liquid delivery for embedded printing requires accurately control-

ling the injection depth of the jetted liquid. I proposed and demonstrated depth-controlled

injection by varying the jetting velocity via laser-induced forward transfer. Though experi-

mental results (see section 3.3.1) validated this concept, axially localized liquid delivery would
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3.3. Depth-controlled injection for direct three-dimensional liquid delivery

require generating single-droplets over a wide range of velocity. As an outlook, I discuss in this

section the changes to operate on the ink composition to perform laser-assisted single-droplet

jetting.

Printability diagram

To analyze the jetting regimes of the laser-assisted device, I use the dimensionless printability

diagram defined in section 2.3.2.

This diagram is a parametric space of the dimensionless Deborah De∗ and Ohnesorge Oh∗

numbers, modified to account for the specificities of laser-induced forward transfer [62]. De∗

represents the ratio of the characteristic internal relaxation time of the liquid over the time

scale of the deformation applied to the liquid. In other words, De∗ is used to predict if the

liquid jet relaxes before capillary effects arise to break it up into one or more droplets. In the

same way, Oh∗ is the ratio of the characteristic time scales for capillary and viscous effects to

respectively appear.

Using these dimensionless numbers, previous works [61,62] defined a predictive semi-empirical

model for the jetting regimes of laser-induced forward transfer, as shown in Fig. 3.8.

Briefly, below a threshold value De∗ ∼0.2, the liquid relaxes too fast for jetting to take place (see

no jetting:liquid relaxation region in Fig. 3.8). In addition, viscous effect will prevent jetting

or capillary breakup for large Ohnesorge numbers (Oh∗>∼1). On the other hand, capillary

effects dominate for small Ohnesorge numbers (Oh∗<∼ 0.1), thus resulting in the generation of

multiple droplets (see multiple drops region in Fig. 3.8). Finally, for Oh∗ > De∗ and De∗ ∼0.2,

jetting is possible but viscous effects will dominate the jetting process and prevent breakup

of the liquid filament (see jetting without breakup region in Fig. 3.8). All these criteria allow

defining a parametric space for single drop generation, as shown in grey in Fig. 3.8 (see section

2.3.2 for further details on the printability diagram).

Experimental results

By superimposing the experimental data points with the printability diagram, we observe that

the experimental parameters lie at the border of the viscosity threshold for breakup (see blue

circles and diagonal line De∗ >Oh∗ in Fig. 3.8) .

We effectively imaged jetting with breakup for the lowest velocities (see Fig. 3.3(d)), and jetting

without breakup for the highest velocities as accurately predicted by the diagram. However, as

Oh∗ ∼1 for our ink, we do not expect the filament to breakup and generate multiple drops as

experimentally imaged (see Fig. 3.3(d)).

Table 3.1 summarizes the parameters used for plotting the experimental results, as well as

their references.
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Chapter 3. Laser-induced direct three-dimensional liquid delivery

Parameter Value Reference
R jet thickness (m) 15·10−6 experimental data
v j et mean jet velocity (s−1) 10-81 experimental data
γ̇ shear rate (s−1) 0.35-6.8·105 experimental data
σ ink surface tension (N m) 44.6·10−3 [61]
ρ ink density (kg m−3) 1010 [61]
η(γ̇) ink viscosity (Pa s) 27·10−3 [81]
vc breakup speed (m s−1) 1.7 [62]
λr characteristic relaxation time (s) 560·10−6 [61]
De∗ modified Deborah number 0.46-3.3 experimental data, [61, 62, 81]
Oh∗ modified Ohnesorge number 1.0 experimental data, [61, 81]

Table 3.1 – Parameters for the dimensionless analysis of the laser-induced jetting regimes

Predictive jetting regimes with modification of the ink

The ink being composed of water, glycerol and sodium alginate (see section 3.2.1), changing

the concentration of sodium alginate appears to be the most straighforward way to change

the ink relaxation properties.
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Figure 3.8 – Dimensionless analysis of the laser-induced jetting process

Not only will a modification of sodium alginate concentration change the characteristic

relaxation time of the ink [61], but it will also modify the ink’s viscosity [81]. A decreasing

sodium alginate concentration cal g will result in a shorter relaxation time λr and therefore in
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3.4. Conclusion

a decreasing Deborah number De∗1. Similarly, a decreasing sodium alginate concentration

will result in a decreasing viscosity and therefore in a decreasing Ohnesorge number Oh∗.

Assuming that the concentration change of sodium alginate does not affect the jetting velocity,

I plotted the parametric curve Oh∗(cal g )-De∗(cal g ) for sodium alginate concentration be-

tween 0.5% and 6% of the volume and 10-m s−1 and 81-m s−1 jetting velocities, as respectively

depicted by the green and red curves in Fig. 3.8.

We observe that stable single-droplet generation is more likely to take place if the sodium

alginate concentration is decreased. This physically means that capillary effects are favored by

this concentration decrease, which will be studied in future work.

3.4 Conclusion

In this chapter, to provide an alternative to microextrusion-based embedded printing, I

demonstrated depth-controlled liquid injection into a 300-µm soft gelatin substrate over two

dimensions, thus achieving direct three-dimensional liquid delivery. The injection depth

was controlled by producing 15-µm stable liquid streams over a wide range of velocity with a

laser-induced forward system.

The axial resolution of delivery is currently limited by the injection profile, as the low-velocity

components of the laser-induced jets are not injected into the substrate. Since no splash back

of the high-velocity jets was experimentally observed at the impact on the gelatin substrate, a

possible solution would be to generate high-velocity single-droplets instead of jets. In this

way, the whole liquid volume would travel at the same velocity and would thus be injected at

the same depth. A dimensionless analysis of the jetting regimes reveals that single-droplet

generation could be achieved by lowering the ink’s concentration in sodium alginate.

Finally, as this system can deliver picoliter doses up to depth of ∼230 µm with a 25-µm depth

repeatability and a 12-µm lateral resolution, it could offer a precise and high-throughput

alternative to existing needle-free microjet injectors [82].

1It is noteworthy that the ink’s surface tension and density will also slightly evolve with the sodium alginate
concentration, which we account for plotting the curves of Fig. 3.8
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4 Compact laser-assisted inkjet printing
of highly viscous fluids

In this chapter, a flow focusing phenomenon is exploited to laser-induce viscous microdrops

on demand through a glass microcapillary, which constitutes the first part of my compact

toolkit for high-resolution additive manufacturing.

I first introduce the challenges of drop-on-demand generation and then present the hydrody-

namic phenomenon that allows generating high velocity jets through a glass microcapillary. I

show that this laser-induced flow focusing phenomenon can be exploited to produce monodis-

perse droplets with a wider range of viscous materials than conventional inkjet printers. I

finally investigate the biocompatibility of the drop-on-demand device and discuss how to

further compact it.

Some of the material presented in this chapter can be found in the following paper:

• Paul Delrot, Miguel A. Modestino, François Gallaire, Demetri Psaltis, and Christophe

Moser. Inkjet Printing of Viscous Monodisperse Microdroplets by Laser-Induced Flow

Focusing. Physical Review Applied, 6(2):024003-1:024003-8, August 2016.

4.1 Introduction

Integrating several printing techniques into a single platform requires miniaturizing each

additive manufacturing tool. In this frame, the desired compact ink delivery tool should

accommodate a wide range of printable materials, while being able to dispense an amount of

ink as small as possible to achieve an optimal printing resolution.

Microextrusion (see section 1.1.2 and Fig. 4.1(a)) has the widest range of printable inks among

the different ink delivery techniques, with viscosities ranging from 30 mPa s to > 6 · 107 mPa

s [8]. Though it can produce micrometric-thin filaments of ink through a thin nozzle, its

continuous mode of operation precludes its use for high-resolution material delivery. On the

other hand, compact inkjet print heads (see section 1.1.2 and Fig. 4.1(b)) allow delivering

single droplets of ink with volumes in the picoliter range. However, this jetting technique has
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Chapter 4. Compact laser-assisted inkjet printing of highly viscous fluids

a limited range of printable liquids, since the ink viscosity should remain between 1 and 50

mPa s [8, 25] to avoid clogging of the nozzle.

Alternatively, nozzle-free approaches have been used to circumvent nozzle-clogging issues,

for instance photoacoustic actuation [83] or laser-induced forward transfer [84]. Thanks to its

unconfined geometry, laser-induced forward transfer can be employed with a micrometric

resolution for the deposition of highly viscous biological inks (1-300 mPa s) [8,9] and functional

inks (>200 Pa s), such as silver nanoparticle suspensions [85] (see section 1.1.2 and Fig. 4.1(c)).

However, the planar geometry of laser-induced forward transfer prevents its use as a compact

drop-on-demand device.

A more compact implementation of laser-actuated liquid jetting was recently implemented

to generate high-velocity jets for needle-free drug delivery [46, 47, 86]. In this technique, a

nanosecond laser pulse is focused on an water-filled glass microcapillary, thus vaporizing part

of the liquid and producing a shockwave (see Fig. 4.1(d)). Owing to the curvature of the liquid

meniscus and the axisymmetry of the microcapillary, the laser-induced flow is focused and

allows generating supersonic jets one order of magnitude smaller than the capillary size.

Figure 4.1 – Principle and performances of ink delivery systems (η: ink viscosity)

To develop the compact drop-on-demand device of my high-resolution additive manufac-

turing toolkit, I use the same flow focusing effect in a 300-µm microcapillary with the aim of

broadening the range of functional materials that can be printed using conventional inkjet

printers. This flow focusing jetting method can indeed generate liquid streams smaller than

the nozzle from which they originate, which has the potential to overcome the nozzle clog-

ging limitations of conventional inkjet printers. In addition, this device could potentially be

arranged in a compact setup since laser actuation can be provided through ultra-thin light

guiding media, such as multimode fibers.

In this chapter, I study the jetting regimes of this laser-actuated inkjet printer with a wide

range of viscous liquids. The achievable printing resolution and biocompatibility of the

drop-on-demand device are then investigated.

40



4.2. Generation of viscous monodisperse droplets by laser-induced flow-focusing

4.2 Generation of viscous monodisperse droplets by laser-induced

flow-focusing

Prior to measuring the printing performances of the drop-on-demand device as a function of

the inks’ rheological properties, its jetting dynamics are studied and the subsequent jetting

regimes are calibrated as a function of the laser energy. To do so, a time-resolved imaging

setup was built together with a precise energy monitoring, as described in the next section.

4.2.1 Experimental setup

Methods

Micro-drops were produced at room temperature by focusing a 5-ns laser pulse (Continuum,

ML-II, 532 nm) with a 10x microscope objective on a liquid-filled glass microcapillary (see

Fig. 4.2(a)). The laser pulse was split in two arms by a polarizing beamsplitter, and the energy

was then calibrated to a ratio 1:1 between the microscope objective focal spot and the energy-

meter arm thanks to a half-wave plate. The energy sent on the liquid was thus monitored with

the energy-meter (Thorlabs, ES111C) and adjusted using optical density filters and the laser

internal variable attenuator. Time-resolved imaging of the droplet generation was achieved

by synchronizing a custom-made LED-based pulsed Köhler illumination and a fast camera

(Vision Research, Phantom Miro M310) with a delay generator (Berkeley Nucleonics, Model

577).

The glass micro-capillary, which takes the role of the nozzle of the drop-on-demand device,

was set in a upright configuration (see Fig. 4.2(b)) as in conventional inkjet printers. The Bond

number B = ∆ρg (D/2)2/σ [46] which represents the ratio of the gravitational and surface

tension forces is estimated to be between 10-4 and 10-2 for the different capillary sizes (where

∆ρ is the density difference between the liquid and air phases, g the acceleration of gravity,

D the diameter of the capillary and σ surface tension of the liquid). Hence, gravity is not

expected to significantly affect the actuation of the liquid in the micro-capillary, nor the

meniscus concavity.

A hydrophobic treatment [87] (1H,1H,2H,2H-perfluorooctyltrichlorosilane, ABCR, Germany)

on the tip of the capillary pinned the contact line of the meniscus. In this way, the contact

angle θ of the meniscus and the distance Z between the laser focal spot and the meniscus was

controlled via gentle actuation of the syringe pump (New Era Pump Systems Inc, NE-1000)

connected to the upper end of the capillary. Borosilicate glass micro-capillaries with inner

diameters D ranging from 100 to 300 µm were used (Capillary Tube Supplies Ltd for the 100

and 200-µm capillaries, BLAUBRAND intraMark for the 300-µm capillaries). The droplets

were deposited on glass microscope slides actuated by a two-axis microscope stage (Thorlabs,

MLS203-1).
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Chapter 4. Compact laser-assisted inkjet printing of highly viscous fluids

Formulation of the inks

The shear-thinning polymer precursor solutions were stained with an organic dye, oil red

EGN (Aldrich, USA) at a 56-mM concentration to absorb laser light at 532 nm. These solu-

tions were: 1,6-hexanediol diacrylate (HDDA; 80%, Aldrich, USA) and trimethylolpropane

triacrylate (TMPTA; >70%, Aldrich, USA), which were mixed with 2 wt% phenylbis(2,4,6-

trimethyl-benzol)phosphine oxide (PI; 97%, Aldrich, Germany) as a photo-initiator. SU-8

with 50% solid content (SU-8; Gersteltec, Switzerland) was also used as received. Dynamic

viscosity and surface tension of the non-newtonian liquids were respectively measured with

a rheometer at low shear rates (Malvern Instruments Ltd, Bohlin CVO 120) and using the

pendant drop method [88].

Newtonian mixtures of water and glycerol (99.5%, Rotipuran, Roth, Germany) were studied as

a model for bio-inks and for comparison with the non-Newtonian behavior of the polymer

precursor solutions and stained with 52 mM of Allura Red AC (ARAC; 80%, Sigma Aldrich,

USA). The dynamic viscosity (2 to 210 mPa s) and density of these mixtures were estimated

with Cheng’s empirical formula [89], variations of the lab temperature were monitored during

the experiments.

Further information on the rheology of Newtonian and non-Newtonian liquids is available in

chapter 2.
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Figure 4.2 – Experimental setup: (a) top-view of the time-resolved imaging setup, the capillary
axis is perpendicular to the graph, λ/2: half-wave plate, PBS: polarizing beam-splitter, EM:
energy-meter, OD: optical density; (b) side-view of the micro-capillary in which the droplets
were generated and description of the experimental parameters impacting the droplet size
and velocity.
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4.2.2 Dynamics of flow-focused jetting

The mechanisms underlying the dynamics of droplet formation in my experiments (see

Fig.4.3(a-b)) correlate well to those described by Peters et al. [86] for the generation of thin

supersonic jets from water-filled capillaries [46].

At time t = 0 µs, a laser pulse is fired and absorbed by the dyed solution, hence creating a

bubble (see upper left corner of the picture at time t = 150 µs in Fig.4.3(a)). The consequent

instantaneous pressure pulse first accounts for the acceleration of the liquid-air interface (see

Fig.4.3(b)). The concavity of the meniscus helps to focus the flow along the axis of the capillary

and results in a further acceleration of the jet.

The wetting properties of the solutions on the glass capillary were demonstrated both ex-

perimentally and theoretically to be critical for the flow focusing [46, 86, 90, 91], with narrow

contact angles resulting into thinner jets. Therefore, in order to jet droplets as small as possible

to ensure an optimal printing resolution, the wetting interactions between the solutions and

the capillary were controlled to keep a low contact angle. Following the acceleration phase, the

bubble collapse and the fluid surface tension slow down and stretch the jet (see Figs. 4.3(a-b))

until it breaks up. With a correct tuning of the laser energy, satellite-free droplet generation of

viscous liquids was achieved, as shown Figure 4.3(a) (see Section 4.2.3 for more details on the

jetting regimes).
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Figure 4.3 – (a) Time-resolved imaging of the flow-focusing phenomenon, the 300-µm capillary
was filled with a mixture of water-glycerol (67 mPa s viscosity at 25◦C). The liquid-air interface
is highlighted with respectively a solid and dashed white line for clarity on the first two images
corresponding to pre-firing and post-firing of the laser. The lateral borders of the images
correspond to the inner capillary walls. The black surroundings below the meniscus are
due to distortion induced by the glass thickness of the capillary. Scale bar: 200 µm. (b) Jet
dynamics corresponding to the droplet formation depicted in Fig. 4.3(a) (dashed line: spline
interpolation). The blue circles are the data points corresponding to the pictures of Fig. 4.3(a).
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Chapter 4. Compact laser-assisted inkjet printing of highly viscous fluids

Thermal and piezoelectric actuators are able to trigger repeatable pressure pulses, which

contribute to the precision of commercial inkjet printers. In order to achieve a reproducible

generation of jets and droplets with my laser-assisted drop-on-demand device, I designed the

experiments so that the laser pulse was absorbed in a well-defined focal volume of liquid from

one experiment to another. Hence, the solutions were stained to absorb 90% of the laser light

within a 10-µm liquid thickness. In the same way, the laser focal spot was axially translated

with respect to the capillary axis, to be focused in proximity of the capillary’s inner wall (see Fig.

4.2(b) and Fig. 4.3(a)). Under these conditions the off-axis location of the laser-induced bubble,

did not impact the axisymmetry of the flow-focusing provided that the distance Z > 1.5D for

most solutions (see Fig. 4.2(b)), or Z > 2D for highly viscous fluids.

Another important feature of inkjet printers is their printing speed, which is typically more

than 10 kHz for conventional inkjet printers. The rates achievable by my drop-on-demand

device could approach this range in the case of low viscosity solutions, as they are only limited

by the time for the meniscus to set back to its initial position after droplet generation. For a

300-µm capillary, this corresponded to ∼500 µs for the least viscous liquids to ∼2000 µs for

the most viscous inks, as shown in Figs. 4.3(a-b), which would potentially result in repetition

rate between 2 kHz and 500 Hz. However the effective repetition rate of my drop-on-demand

system could not be investigated due to the low operating frequency of the pulsed laser (15

Hz).

4.2.3 Jetting regimes for Newtonian and non-Newtonian inks

Production of satellite-free micro-droplets is of high interest [92–94] since satellite drops

negatively impact the quality of printing. Hence, I characterised the jetting regimes of the

laser-assisted device to ensure that a single minimal volume of liquid is dispensed at a time.

The interplay of dynamic viscosity of the jetted inks and the laser fluence was demonstrated to

be of importance in laser-induced forward transfer, which is a similar process to the one used

in my experiments, though nozzleless. For both Newtonian [77] and non-Newtonian inks [95],

viscous inks tended to stabilise the jets and allowed to select the stable printing regime on a

larger range of laser fluence, thus avoiding the need for fine adjustments of the laser.

Here, with increasing laser pulse energy three different jetting regimes were observed, which

were also viscosity-dependent: a sub-threshold regime, a satellite-free jetting regime and a

regime with multiple droplet generation. First, at low pulse energy, only a bubble was observed

without droplet generation (see regime I in Fig. 4.4(a-b)). Even if a sufficient amount of laser

energy was absorbed to generate a cavitation bubble, the transferred kinetic energy to the

open interface of the liquid was insufficient to accelerate the fluid to a point of breakup. Within

this regime surface energy and viscous dissipation prevented the formation of droplets.

By increasing the laser energy, a satellite-free jetting regime was observed with an energy

threshold specific to each ink (see regime II in Figs. 4.4(a-b)). At the upper energy end of this
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4.2. Generation of viscous monodisperse droplets by laser-induced flow-focusing

regime, two droplets could be noticed before their coalescence. Interestingly, the range of

pulse energy over which stable satellite-free droplet generation was achievable increased with

the dynamic viscosity of the liquids for both Newtonian and non-Newtonian inks, which is

consistent with the results mentioned above for laser-induced forward transfer [77, 95]. This

result is likely dominated by the interplay of two competing phenomena: the axial contraction

of the trailing liquid filament attached to the main drop which favors satellite-free drop

formation (see Fig. 4.3(a)) and the radial collapse of this filament, which on the contrary leads

to the formation of satellite droplets [96]. In the case of more viscous fluids, the radial collapse

would be delayed through viscous dissipation, allowing the formation of satellite-free drops

even for high pulse energies that generate long trailing filaments [96].

Moreover, the velocity of the Newtonian inks at breakup of the generated satellite-free droplets

was measured to be of the order of 1-2 m/s, which is low enough to prevent the micro-droplets

from splashing on the substrate [97]. On the other hand, the non-Newtonian TMPTA and

SU-8 droplets had significantly slower velocity at breakup (0.5-1.5 m/s) and drop pinch-off

was also significantly delayed with respect to the Newtonian inks. Previous studies showed

that polymer viscoelasticity and specifically polymer extensional strain hardening [98, 99]

accounts for this phenomenon. For the same reason, we would expect satellite-free droplets to

be generated with more ease and therefore on a larger energy range using the polymer shear-

thinning inks. Indeed, thanks to their elasticity, polymer inks have been demonstrated [94] to

be more resistant to the capillary-driven radial necking of a filament following a main drop

(see for instance Fig. 4.3(a)). However, this expected behaviour cannot be clearly extrapolated

from my results as seen in Figs. 4.4(a-b).
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Figure 4.4 – Jetting regimes of inks with various dynamic viscosity for the same capillary
diameter (300 µm), the y-axis has a logarithmic scale, the distance Z between the laser focal
spot and meniscus was kept constant at 500 µm. (a) Newtonian water-glycerol solutions. (b)
Non-Newtonian polymer solutions.
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Chapter 4. Compact laser-assisted inkjet printing of highly viscous fluids

Finally, when a higher pulse energy was used, a third jetting regime was observed in which a

faster, longer and thinner jet was ejected and broke up into two droplets or more (see III in Fig.

4.4(a-b)).

As shown in Fig. 4.4(b), the ejection of TMPTA satellite-free droplet overlapped with the two

other ejection regimes, which resulted from a poor reproducibility of the jetting process with

TMPTA. Micro-aggregates of the light-absorbing dye were observed in the capillary, possibly

due to a saturation of the ink with the dye and we believe that the inhomogeneous distribution

of the dye resulted in this poor reproducibility. For the other solutions, the cross-over between

the satellite-free regime and the other regimes was measured to be between 7 and 18% of

the satellite-free energy range, thus leaving a sufficient working range for stable satellite-free

droplet generation.

4.3 Printing performances

Having demonstrated that stable satellite-free drop generation can be performed over a large

range of viscous inks for specific energy ranges, I evaluated the printing performances of our

drop-on-demand device with respect to standard inkjet printers.

4.3.1 Range of printable liquids

To compare the performances of the laser-assisted device to conventional thermal and piezo-

electric inkjet printers, I used the dimensionless printability diagram defined in section 2.2.2.

This diagram is a parametric space of the dimensionless Reynolds Re and Ohnesorge Oh

numbers, which respectively represent the ratio of inertial and viscous forces and the ratio

of the time scales for capillary and viscous effects to appear. Using these dimensionless

numbers, previous works defined a semi-empirical model for the range of materials printable

by conventional inkjet printers, as shown in the grey region in Fig. 4.5 (see section 2.2.1 for

further details on the printability diagram).

By superimposing the experimental data points for the Newtonian mixtures to this printability

diagram, we observe that the range of Ohnesorge numbers for which satellite-free droplets

were generated is extended to ∼ 0.01 <Oh <∼ 1.5 with the laser-assisted flow-focusing drop-

on-demand system, whereas the standard printable region of inkjet printers is limited to

∼ 0.1 <Oh <∼ 1, as shown in Fig. 4.5.

This result is in good agreement with the work of Castrejón-Pita et al. in which droplets

where produced from large nozzles thanks to piezoelectric-driven flow focusing [60]. The

most plausible explanation for this extension of the satellite-free ejection regime with respect

to conventional inkjet printers is that my device is less sensitive to viscosity. Indeed, the

measured initial velocity of the jet in the case of satellite-free droplet generation was in the

range 4-7 m/s for both Newtonian and Non-Newtonian inks and all the capillaries I tested.
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4.3. Printing performances

Such initial velocities correspond to Re ∼ 200 for the least viscous inks and to Re ∼ 5 for the

most viscous ones. The initial acceleration phase was then inertia dominated for the range of

viscous liquid studied, which is also consistent with previous works [86, 90] on both inviscid

and low-viscosity liquids.

Furthermore, as shown in Fig. 4.5, it appears that my experimental data points are roughly

located along the line representing the surface energy barrier defined by Derby [58] as: W e ' 4.

This is due to the fact that I experimentally adjusted the laser pulse energy to be slightly above

the droplet generation threshold in order to obtain satellite-free drops. Therefore, the kinetic

energy imparted to the droplets was close to the surface energy threshold, which corresponds

to the criterion W e > 4.
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Figure 4.5 – Conventional inkjet printability region adapted from [58, 60] superimposed with
the experimental data points obtained with our laser-assisted flow-focusing device in the
satellite- free jetting regime and with the water-glycerol Newtonian mixtures. Red, yellow and
blue dots were respectively obtained for 300, 200 and 100-µm capillary diameters. Error bars
are omitted for clarity, each data point is the results of at least 10 experiments.

4.3.2 Printing resolution

The data of Fig. 4.5 can be further rescaled to provide a master curve for the resolution

capability of the laser-assisted device as a function of the Ohnesorge number of the jetted

Newtonian liquids, (see Fig. 4.6).

The general trend observed in Fig. 4.6 for all capillary sizes is a rapid increase of the droplet

diameters with Oh for 0.01 <Oh < 0.2 followed by a plateau for higher Ohnesorge numbers.
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Chapter 4. Compact laser-assisted inkjet printing of highly viscous fluids

This plateau shows that the size of the droplets produced by my device has little dependency

on the inks viscosity for highly viscous solutions. This is a promising feature since droplets of

even more viscous solutions could possibly be produced without significant impact on the

drop size.

However, experimental results suggest that the upper limit of ejection of viscous liquids is set

by the laser-induced bubbles. For highly viscous liquids, the cavitation bubbles expanded

along the capillary axis and surface tension led to the formation of static bubbles inside the

capillary thus preventing further droplet generation. A way to circumvent this issue would be

to generate multiple bubbles, instantaneously or not, to create multiple pressure waves whose

intensity would superimpose on the open liquid interface.
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Figure 4.6 – Satellite-free drop diameter of water-glycerol mixtures as a function of the Ohne-
sorge number for various capillary sizes. The distance Z between the laser focal spot and
the meniscus was kept constant at Z = 500,400 and 350µm respectively for D = 300,200
and 100µm. Power law fits are also displayed. Each data point is the result of at least 10
experiments.

As shown in Fig. 4.6, satellite-free droplets with a size smaller than the nozzle from which they

originated were generated up to Oh > 1.3 (corresponding to viscosities up to 210 mPa s) for

capillary diameters D = 300µm and 200 µm. For a smaller orifice diameter, D = 100µm, the

droplets of viscosity up to 110 mPa s (Oh ∼ 1.2) were approximately equal to the size of the

nozzle. Thus, by scaling down the orifice of the drop-on-demand device, the advantage of

the sub-nozzle resolution was lost. A possible explanation for this result is that at a smaller

nozzle scale the time for viscous effects to arise is comparable to the flow-focusing time of the

device. In other words, viscous dissipation would degrade the geometry of the flow focusing.

However, further theoretical studies of the phenomena can help clarify how the droplet size

relates to the tube radius as well as to interpret the trend of the master curves of Fig. 4.6.
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4.4 Biocompatibility of the laser-actuation

Bio-inks are highly sensitive to heat and could therefore be degraded during the laser-induced

drop generation. In order to assess the potentiality of the laser-assisted drop-on-demand de-

vice to deliver biomolecules, bio-inks respectively containing mouse and rabbits immunoglob-

ulins (IgGs) were printed on poly-L-lysine slides. An immunoassay was performed to check

the integrity of the deposited IgGs following the protocol of [100].

The droplets were generated in the satellite-free jetting regime (see section 4.2.3) and columns

of rabbit IgGs were alternatively printed with columns of mouse IgGs on a slide placed 2 mm

below the capillary tip. Prior to drying and blocking the slides with bovine serum albumin,

the array was imaged under bright field microscopy (see Fig. 4.7(a)). The droplets were

generated with a good reproducibility and controllability, as showed in Fig 4.7(a-b), and even

when multiple droplets were generated, the axisymmetry of the jet allowed us to keep a clean

printing process.

Finally, after washing the slides, an immunoassay was performed with Cy3-conjugated sec-

ondary antibodies against rabbit IgG and Cy5-conjugated secondary antibodies against mouse

IgG. The fluorescent marking was specific to the mouse and rabbit IgGs (see Fig. 4.7(b)),

thus demonstrating that the functionality of the IgGs was not affected by the laser-assisted

printing process. This is achieved as only a small fraction of the biomaterials is exposed to

the laser pulse, while the bulk of the printed material is not expected to exhibit a significant

temperature increase during the process.

Figure 4.7 – (a) Array of droplets (60%(v/v) of glycerol in PBS) with rabbit and mouse IgGs
imaged with a bright-field microscope prior to droplet drying. All droplets appear red due to
the light-absorbing dye. (b) The same array imaged under fluorescence after drying the droplet
and performing an immunoassay with fluorescent-labelled secondary anti-IgGs against rabbit
(in blue) and mouse (in green) (false colors).

However, at high operating frequencies, the temperature rise in the system may become

important. The role of thermal effects in the growth and collapse of a laser-induced bubble

was investigated by Sun et al. [101] in a water-filled micro-capillary. With similar experimental

conditions to mine, they reported an abrupt rise of the bubble vapor temperature to ∼170◦C

for a few microseconds, followed by a decrease to ∼60◦C in ∼400µs. Similarly, in thermal inkjet
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Chapter 4. Compact laser-assisted inkjet printing of highly viscous fluids

printing, in which the fluid is also bubble-actuated, inks are heated to 200-300◦C for ∼2 µs [8],

resulting in a general temperature rise of 4-10◦C in the print head at a high frequency (3.5

kHz) [102]. Thus, various inks with cell and protein content were reported to be viably jettable

using thermal inkjet printers [8]. By analogy, my laser-assisted system could potentially be

viable for sensitive bio-inks at high operating frequencies. This issue was not investigated in

this thesis due to the low repetition rate of our laser (15 Hz).

4.5 Compact fiber-based drop-on-demand system

The current actuation of the drop-on-demand device is based on focusing a laser pulse on the

side of the microcapillary with a microscope objective (see Fig. 4.2(b)).

Focusing light through thin multimode fibers (◦ 100 µm) was demonstrated in several groups

[44,103] using phase control systems, as spatial light modulators. To further compact the drop-

on-demand tool, I envision to employ this digital light focusing method through a multimode

fiber enclosed in the microcapillary (see Fig. 4.8(a)).

Furthermore, engineering the input laser wavefront could allow simultaneously generating

multiple focal spots through the multimode fiber, thus structuring the shape of the induced

sum of shockwaves [104]. This approach could intensify the flow focusing effect and lead to

the production of smaller droplets (see Fig. 4.8(b)).

Such digital light focusing techniques are implemented and further described in this thesis to

build three-dimensional microstructures through a ◦70−µm fiber (see chapter 6).
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4.6 Conclusion

In this chapter, I demonstrated that the range of printable inks of conventional inkjet printers

can be broadened by generating viscous microdroplets through a 300-µm thin microcapil-

lary using a laser-induced flow focusing phenomenon. The experimental results show that

viscous microdrops (2-200 mPa s) can be generated with a sub-nozzle resolution, which could

circumvent the nozzle clogging limitation of existing inkjet printers.

The current drop-on-demand device constitutes the basis of the first component of my com-

pact toolkit for high-resolution additive manufacturing. This tool could be made more com-

pact using digital light focusing through a multimode fiber, as implemented in the compact

curing probe, the second component of my compact toolkit. This fiber-based curing probe is

studied in chapters 5-6.

51





5 Single-photon non-linear photopoly-
merization

This chapter presents the chemical phenomenon exploited in the second component of

my compact toolkit for high-resolution additive manufacturing: single-photon non-linear

photopolymerization.

I first introduce the concept of free-radical chain photopolymerization and then review the

literature on micro-additive manufacturing techniques to motivate the use of single-photon

photopolymerization. I show that free-radical scavenging, induced by oxygen inhibition, can

be used to generate a non-linearity in the photopolymerization dynamics of an off-the-shelf

photoresist. Finally, methods to perform a live measurement of photopolymerization kinetics

are discussed.

Some of the material presented in this chapter can be found in the following paper:

• Paul Delrot, Damien Loterie, Demetri Psaltis, and Christophe Moser. Single-photon

three-dimensional microfabrication through a multimode optical fiber. Optics Express,

26(2):1766:1778, January 2018.

5.1 Introduction and motivation

5.1.1 Free-radical chain photopolymerization

Three-dimensional microfabrication is an enabling technology that allows, for instance, the

study of interactions at the cellular level [20, 26] by mimicking biological micro-architectures,

or to manipulate light by building photonic microstructures [10–12].

A way to generate such microstructures is to selectively cure a liquid photosensitive material

[36]. This is usually achieved through radical chain photopolymerization, which consists of

three steps: photoinitiation, propagation and termination [105, 106]. In the photoinitiation

step, an initiating molecule I is first photocleaved to generally yield two radicals R·. These

radicals then react with a first polymer precursor molecule M , which can be a monomer or a
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short polymer, to start chain growth with the chain-initiating radical M1·:I
hν, kd−−−−→ 2R·

R·+M
ki−−→ M1·

(Type I photoinitiation)

This reactive pathway corresponds to type I photoinitiation. On the other hand, in type

II photoinitiation, the initiating molecule I requires a co-initiator molecule C to produce

initiating radicals R·:I+C
hν, kd−−−−→ 2R·

R·+M
ki−−→ M1·

(Type II photoinitiation)

Following the production of a chain-initiating radical M1· by type I or type II photoinitiation,

the polymer chain is grown by successive additions of polymer precursors M to the existing

chain radical Mn ·, thus creating a longer chain radical Mn+1·. This is the propagation step:

M1·+M
kp−−→ M2·

M2·+M
kp−−→ M3·
...

Mn ·+M
kp−−→ Mn+1·

(Propagation)

Polymer growth terminates through the reaction of two chain radicals Mn · and Mm · to yield

either a coupled inactivated polymer chain Mn+m or two inactivated polymer chains Mn and

Mm . This is the termination step:Mn ·+Mm · ktc−−→ Mn+m

Mn ·+Mm · ktd−−→ Mn +Mm

(Termination)

Solidification, or gelation, of the polymer occurs through crosslinking of the growing polymer

chains that forms an "infinite" polymer network (see Fig. 5.1(a)). Flory [107] showed that

solifidication statistically takes place when a threshold quantity of the polymer precursor is

converted into polymer chains, this is the gelation threshold γc :

γc = 1

f −1
(5.1)

where f is the number of polymerizable groups, or functionality, of the polymer precursor

M . For instance, trimethylolpropane triacrylate, a polymer precursor used in this thesis has 6

functional groups, it thus gelates when a 20%-conversion is reached.

After photopolymerization, the structure is developed with a solvent and only the voxels where

the conversion overcame the gelation threshold will remain insoluble (see Fig. 5.1(b)). This
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threshold also allows refining the size of the polymerized features by varying the exposure

time of the polymer, as shown in Fig. 5.1(b) assuming a Gaussian profile of illumination.

Using this photopolymerization process, one can sequentially cure layers or voxels of a pho-

toresist to form solid three-dimensional microstructures.
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Figure 5.1 – Polymer gelation

5.1.2 Optimal three-dimensional microfabrication

The fabrication of these microstructures is best achieved without moving elements inside the

build volume, as would occur in microstereolithography [108] for instance (see Fig. 5.2(a)),

since these moving parts can distort the end product and decrease the axial printing resolution

[36].
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Figure 5.2 – (a) Micro-stereolithography and (b) direct laser writing
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Hence, an optimal fabrication method consists in directly writing the solid three-dimensional

microstructure deep into a liquid material. For a laser direct writing system, such a manufac-

turing method requires the ability to confine photopolymerization to a local voxel of material

deep into a liquid photoresist (see Fig. 5.2(b)).

This confinement cannot be achieved with a purely linear photopolymerization process, such

as the combination of single-photon absorption with a linear photoresist behavior [109, 110].

In this case, the accumulation of absorbed dose, and therefore the cumulative curing of the

photoresist prevents axial features to be resolved. To illustrate this, I simulated the sequential

laser scanning of two lines deep into a weakly-absorbing photoresist, to neglect the attenuation

of the beam (see cross-section images in Fig. 5.3). The gelation threshold was arbitrarily

defined to an absorbed dose (see brownish color in Fig. 5.3) so that the axial curing induced

by one laser spot is much smaller than the axial separation of the two lines we intend to cure

within the photoresist (see solid black lines in Fig. 5.3). As the lines are being scanned, the

accumulation of dose creates a thick block of polymer instead of two resolved lines (see image

on the right-hand side in Fig. 5.3).

This cumulative crosstalk induced by linear photopolymerization can be reduced by using

a proximity-effect correction algorithm [111] to account for the exposure of each part of the

microstructure by the other exposed layers, as discussed in chapter 6. On the other hand, in

this chapter I show that the selective curing of a voxel of material can also be achieved by

inducing a non-linearity in the photopolymerization process, either in the photoresist dose

response or in the laser beam absorption.
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Figure 5.3 – Cumulative curing when scanning two lines deep into a photoresist with a linear
photopolymerization process.
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5.1.3 Two-photon photopolymerization

Non-linear absorption is implemented in two-photon photopolymerization (TPP), which

was first introduced in 1997 by Maruo et al. [112] and has become the technique of choice

for producing three-dimensional microstructures [113]. In TPP, a photo-initiating molecule

is activated upon simultaneous absorption of two photons [114, 115], as opposed to single-

photon absorption, see respectively in Fig. 5.4(a) the red and blue arrows. The resulting

activated photo-initiating molecule then proceeds to a reactive triplet state and produces a

radical R· that initiates polymer chain growth of Mn ·. Owing to the extremely small two-photon

absorption cross-section of photo-initiating molecules (102-103 ·10−50cm4s photon−1), which

encompasses the limited lifetime (10−15-10−16 s) of their excited state after the first photon

is absorbed [116], TPP is confined to voxels where there is both a high photon flux density

and an intense photon flux [117]. Typically, in most TPP systems, such conditions for non-

linear absorption are met by focusing femtosecond laser pulses with high numerical aperture

(NA) objectives. Though TPP systems can achieve a linewidth resolution of 80 nm [118], the

complexity and cost of femtosecond lasers limit the integration of these printing systems

within other manufacturing platforms and lessen their affordability.

To overcome these limitations and provide a compact and affordable alternative to TPP sys-

tems, I investigated alternative non-linear photopolymerization processes that could be im-

plemented through a multimode fiber and with an inexpensive continuous-wave laser, which

constitutes the second part of my compact toolkit for high-resolution additive manufacturing.
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5.1.4 Alternative non-linear photopolymerization processes

The implementation complexity of TPP has oriented research towards alternative non-linear

photopolymerization processes.

Two-color photo-initiation photo-inhibition polymerization

Scott et al. [119,120] investigated the lateral spatial confinement of polymerization using a two-

color photo-initiation photo-inhibition scheme in which a second continuous-wave laser (see

violet arrow in Fig. 5.4(b)) generates dithiocarbamyl radicals DT C · that can either scavenge

the free-radicals R· generated by the photo-initiating continuous-wave laser wavelength (see

blue arrow in Fig. 5.4(a)), or reversibly terminate polymer growth. The authors did not

explore axial spatial confinement of polymerization but suggested the use of an inhibiting

“bottle beam” [121] to achieve it. Recent progress in designing an efficient non-linear photo-

inhibitor [122] could open up this possibility.

High-intensity continuous-wave polymerization

Alternatively, several groups have recently demonstrated three-dimensional microfabrication

deep into a photoresist through pointwise scanning of a highly-focused continuous-wave

(CW) laser beam [109, 123–127]. The mechanisms behind this spatially confined photopoly-

merization process are still unclear: the authors respectively suggested a non-linear dose

response of the photoresist [109], a possible photolysis of organic bonds [123] or an ultra-low

single-photon absorption combined with photothermal effects [124,125,128]. Though simpler

and more affordable than TPP, this direct writing technique still requires the generation of

intensities as high as ∼107W.cm−2 to reach the polymerization threshold. As reported by

several authors [109, 123, 129], such intensity levels can result in erratic microexplosions in the

material, thus reducing the printing dynamic range and damaging the printed microstructure

and its vicinity.

Single-photon polymerization with oxygen inhibition

Another approach to induce a non-linear photopolymerization behavior consists in the com-

bination of single-photon absorption and a non-linear dose response of the photoresist.

Oxygen, as a strong radical scavenger [105], inhibits photopolymerization through scavenging

of free radicals R· or termination of chain radicals Mn · (see Fig. 5.4(c)), which can be described

by the following reaction equations:Mn ·+O2
kt ,O2−−−→ M−OO·

R·+O2
kt ,O2−−−→ R−OO·

(Oxygen inhibition)
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5.1. Introduction and motivation

Oxygen inhibition is used to create a so-called "dead-zone" of polymerization for continuous

liquid interface production [29]. In these inhibited zones of polymerization, the rate of radical

photogeneration is lower than the rate of radical scavenging by oxygen and no polymerization

takes place even after long exposures. On the other hand, in regions exposed to a higher

intensity, a similar dose will result in polymerization since the rate of radical photogeneration

will overcome the scavenging threshold.

Similarly, this phenomenon can be exploited to inhibit off-focal photopolymerization and

selectively cure a voxel of material deep within a photopolymer with a CW laser source. This

is evidenced by the simulation results of Fig. 5.5, whose model and parameters are further

described in Appendix A. These simulations, performed for the experimental conditions of my

intended microfabrication device (see Fig. 5.5(a)), show that oxygen inhibition (see dashed

curves with O2 in Fig. 5.5(b)) induces a non-linear axial polymerization growth that can

potentially remove off-focal photopolymerization. This is supported by the comparison of the

cross-sections views and solid and dashed red curves in Fig. 5.5 where an oxygen-inhibited

photopolymerization yields an asymptotic axial polymer growth (see dashed red curve in Fig.

5.5(b)) whereas a non-inhibited photopolymerization process for the same 200-nW optical

power results in a linear axial growth over time (see solid red curve in Fig. 5.5(b)). Below a

threshold power of 100 nW, oxygen radical scavenging even prevents any photopolymerization

(see blue dashed curve in Fig. 5.5(b)).

Figure 5.5 – Simulation of the effect of oxygen inhibition on the photopolymerization extent
of a voxel produced 50-µm deep into our photoresist. N2: without oxygen inhibition, O2: with
oxygen inhibition. Further information on the simulation model can be found in Appendix A
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Chapter 5. Single-photon non-linear photopolymerization

Maruo et al. [126] took advantage of this non-linear dose response to build three-dimensional

microstructures through single-photon polymerization. This was achieved by focusing a CW

laser with a 1.0-NA microscope objective to confine photopolymerization to the focal volume

without suffering from the cumulative dose effect in the surrounding "dead-zones". With

this method, intensities of 10−1W.cm−2, less harmful to materials than high-intensity CW

polymerization, and off-the-shelf photo-initiators can be employed.

To build the curing probe of my high-resolution additive manufacturing toolkit, I used the

same non-linear photopolymerization phenomenon through a thin multimode optical fiber

(◦ 70 µm, NA 0.64) with the aim of providing a compact and affordable alternative to TPP

systems.

In this chapter, I investigate the kinetics of single-photon photopolymerization and show that

oxygen inhibition can be exploited to induce a non-linearity in the photopolymerization of

an off-the-shelf photoresist. In chapter 6, I combine this non-linearity with a specific curing

method to achieve three-dimensional microfabrication of solid and hollow microstructures

by digitally focusing and scanning CW laser light through a multimode fiber.

5.2 Photopolymerization kinetics

To optimally exploit oxygen inhibition as a means of controlling the axial extent of single-

photon polymerization, the non-linear gelation threshold of the photoresist was calibrated for

different exposure times and writing powers, with and without oxygen.

5.2.1 Calibration methods

The selective curing of a voxel of material for true three-dimensional microfabrication requires

inducing a non-linearity in the photopolymerization process, either in the photoresist dose

response or in the laser beam absorption.

The intensity attenuation of a light beam undergoing a N -photon absorption process in a

material can be generally expressed as:

d I (z)

d z
=−α · I (z)N (5.2)

where I (z) is the intensity of the light beam propagating along the z-axis andα is the N -photon

absorption coefficient of the material [115].

Similarly, the effective non-linearity or linearity of CW-induced photopolymerization can be

determined by measuring the exponent N of the relationship between the exposure dose D , the

threshold power for photopolymerization Pth and the exposure time ∆t [36, 109, 123, 129, 130]:
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5.2. Photopolymerization kinetics

D ∝∆t ·Pth
N (5.3)

Rewriting this relationship to show the trend of the threshold gelation dose D in a parametric

space of threshold power versus exposure time:

Pth ∝∆t−1/N (5.4)

we infer that the non-linearity exponent N can be measured by varying the photoresist expo-

sure time ∆t and determining the associated threshold power for polymerization Pth [123].

The photoresist used in this chapter and chapter 6 was made of off-the-shelf chemical compo-

nents: an organic polymer precursor trimethylolpropane triacrylate (TMPTA; >70%, Aldrich,

USA), 1wt% of the Norrish type II photoinitiator (see section 5.1.1) camphorquinone (CQ;

97%, Aldrich, USA) and 0.5wt% of the synergist ethyl 4-(dimethylamino)benzoate (EDAB; 97%,

Aldrich, USA).

To calibrate the photoresist’s photopolymerization kinetics, I experimentally implemented

the calibration method described above by focusing CW laser light at 488 nm into a droplet

of photoresist deposited onto a plasma-cleaned glass slide (see left-hand side illustration

in Fig. 6.2). The impact of oxygen on the photopolymerization threshold was measured by

imaging the induced polymer spots with a DIC-microscope (see right-hand side measurement

picture in Fig. 6.2) . Prior to the experiment, the photoresist was either bubbled with O2 and

the droplet was let to reach gas equilibrium onto the glass slide for a few minutes, or the

photoresist was bubbled with N2 and enclosed between a glass slide and a coverslip. Laser

light was focused in an inverted configuration through a microscope objective matching the

numerical aperture of the multimode fiber we use in chapter 6 and reflections at the air-glass

interface were taken into account. The same measurement was then performed with the

multimode fiber setup (see chapter 6) for the oxygen-bubbled configuration and exhibited

consistent results.

Photoresist

Droplet is sealed with a coverslip for
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2 
saturation experiments

CW laser beam
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Microscope

objective
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laser power

P
th
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Increasing

laser power

P
th

Figure 5.6 – Experimental procedure for the measurement of the photopolymerization non-
linearity.

61



Chapter 5. Single-photon non-linear photopolymerization

5.2.2 Single-photon non-linear photopolymerization

The calibration of the photopolymerization threshold clearly reveals a non-linear photopoly-

merization behavior for both the oxygen- and nitrogen-bubbled photoresists (see Fig. 5.7(a))

as the measured photopolymerization thresholds do not follow an isodose trend (see dashed

lines in Fig. 5.7(a)), typical of a linear photopolymerization process. For the oxygen-bubbled

photoresist, which is used for three-dimensional microfabrication, we find the non-linearity

exponent to be NO2 = 3.36±0.21 with a power-law fit on the data points with exposure time be-

low 2 seconds. This value is similar to that obtained by Mueller et al. [130] with 7-diethylamino-

3-thenoylcoumarin (DETC) and isopropylthioxanthone (ITX) photoinitiators. For exposure

times longer than 2 s, the data points deviate from the power-law fit for both the oxygen-

and nitrogen-bubbled photoresists, likely due to oxygen diffusion and photoinitiator deple-

tion [130]. This deviation also evidences that bubbling the photoresist with nitrogen did not

remove all the oxygen content, which might also account for the high non-linearity of the

nitrogen-bubbled photoresist NN2 = 2.41±0.36. The non-linearities measured here would

likely turn towards N = 1, that is to say a linear photoresist behavior, for sufficiently small

exposure times, where diffusion effects are too slow to quench photopolymerization.
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Figure 5.7 – (a) Polymerization threshold power of a single polymer spot versus the spot
exposure time, the dashed lines are isodose lines (b) Absorption spectrum of camphorquinone
(CQ) in C6H12 (l = 0.4 cm) (c) Simulation of the beam propagation and absorption within the
photoresist. The beam is focused 50 µm below the multimode fiber.
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5.2. Photopolymerization kinetics

Previous works reported on a similar non-linear photopolymerization behavior induced by CW

laser light [109, 123–125, 128]. The authors speculated that the non-linearity stemmed from an

ultra-low single-photon absorption [109, 124] as well as the photolysis of organic bonds [123],

or single-photon photopolymerization inhibited by oxygen radical scavenging [126]. As to the

non-linearity evidenced in my experiments, the used intensity level and the absorbance of

the photoresist unambiguously rule out a non-linear absorption phenomenon, a photolysis

of organic bonds and an ultra-low single-photon absorption phenomenon. Indeed, the laser

intensities I used experimentally, ∼ 101-102W.cm−2 (see Fig. 5.7(a)), are too low by several

orders of magnitude to induce multiphoton absorption or avalanche ionization ∼ 1012W.cm−2

[117, 131], or to induce the photolysis of organic bonds ∼ 107W.cm−2 [123]. In addition, as

the name indicates, ultra-low single-photon absorption was performed with weak absorption

conditions, for instance the absorbance is A = 0.0072 in the work of Do et al. [124], whereas my

experiments are performed with a significant single-photon absorption (see Fig. 5.7(b)), which

accounts for a 2.1% decrease of intensity after a 50-µm propagation within our photoresist.

Moreover, photo-thermal effects at the focus can be ruled out as Tong et al. [128] showed that

an absorbed light density of ∼ 1015W.m−3 is required to bring a photoresist to a temperature

of 150◦C, whereas the light density absorbed at focus is more than six orders of magnitude

lower in my experiments (see Fig. 5.7(c)).

Hence, I speculate that the observed non-linear photopolymerization behavior results from a

combination of single-photon absorption and a non-linearity of the photoresist, such as the

one induced by oxygen radical scavenging. This hypothesis is supported by the lower non-

linearity NN2 = 2.41±0.36 measured with a nitrogen-bubbled photoresist (see Fig. 5.7(a)) and

the low intensity level ∼ 10−1-100W.cm−2, close to mine, used by Maruo et al. in their seminal

work on single-photon photopolymerization inhibited by oxygen radical scavenging [126].

The propagation and absorption of the laser beam from the distal facet of the multimode fiber

to a focal spot 50µm deep into the photoresist are simulated (see Fig. 5.7(c)) and indicate

more than a 100-fold contrast between the focus and regions 5µm off-focus. The combination

of this high contrast with the non-linear photopolymerization threshold depicted in Fig. 5.7(a)

suggests that off-focal photopolymerization can potentially be removed by illuminating the

photoresist so that only the focal volume reaches the photopolymerization threshold. This is

discussed in chapter 6, in which this phenomenon is exploited to build three-dimensional

microstructures through a multimode fiber.

5.2.3 Time-resolved measurement of photopolymerization kinetics

The measurement setup of the photopolymerization threshold described in section 5.2.1 is

not optimal. Though the impact of oxygen on the gelation threshold (see Fig. 5.7(a)) could

be determined, I experimentally observed that the DIC microscope imaging of the samples

quickly polymerizes the whole photoresist volume and degrades the quality of measurement.

To better understand the non-linearity observed when the photoresist is bubbled with nitrogen,
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Chapter 5. Single-photon non-linear photopolymerization

as well as to study the relative impact of camphorquinone and its co-initiatior on the non-

linear photopolymerization of TMPTA, a finer measurement of photopolymerization kinetics

would be needed. Hence, I investigated the possibility to perform a live and time-resolved

measurement of photopolymerization kinetics, as opposed to the a posteriori and discrete

measurements used in sections 5.2.1-5.2.2. These time-resolved measurement setups of

photopolymerization are discussed in the next two sub-sections.

Scattering detection of the photopolymerization onset

In order to obtain a better time resolution of the onset of photopolymerization as a function

of the spot power than the one determined in Fig. 5.7(a), I implemented on our setup a

measurement method based on the work of Engelhardt et al. [132] and Mueller et al. [130].
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Figure 5.8 – (a) Experimental setup for time-resolved measurement of the photopolymeriza-
tion threshold. Light is focused through the multimode fiber into a droplet of photoresist,
and the resulting focused spot is imaged on a camera as photopolymerization occurs. MOD:
single-mode fiber, PWM: power-meter, BS: non-polarizing beam-splitter, SLM: spatial light
modulator, L1: lens, (f=175 mm), M:mirror, F: filtering diaphragm, λ/4: quarter wave-plate,
OBJ: microscope objective (NA 0.8, 100x, Zeiss), MMF: multimode optical fiber (GOF85, NA
0.64, ◦ 70 µm, Schott), CAM:camera (b) Time-resolved measurement of the photopolymeriza-
tion threshold for a spot power of 352±3nW . The FWHM of the laser spot generated through
the MMF is plotted over time (in blue, see left vertical axis), as well as the relative integrated
power on the camera (in orange, see right vertical axis).
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5.2. Photopolymerization kinetics

As shown in Fig. 5.8(a), the micro-additive manufacturing setup presented in chapter 6 was

adapted so that the laser spot generated into the photoresist at the level of the glass substrate

is directly imaged onto a camera (C AM ). According to previous studies [130, 132], the onset of

polymerization locally modifies the refractive index of the polymer, thus leading to scattering

of the laser used to induce photopolymerization [132] or of another light probe [130].

Using the setup of Fig. 5.8(a), both the power integrated on the camera and the measured spot

FWHM are monitored over time while photopolymerization occurs. However, a significant

change of these signals that would evidence the onset of photopolymerization is not measured

before time t ∼ 2s (see the blue curve in Fig. 5.8(b)), whereas DIC imaging of polymer spots

generated with the same spot power showed that photopolymerization occurs within 0.8±0.1s

(see the gray area in Fig. 5.8(b)). The measurement setup of Fig. 5.8(a) therefore over-estimates

the time necessary for the onset of photopolymerization. Mueller et al. [130] calculated that

the relative scattering signal induced by the voxel onset is of the order of a few percents, to

which our measurement setup might not be sensitive.

Holographic detection of the photopolymerization onset

To overcome the sensitivity limitation of scattering detection, we are currently studying the

possibility to measure the refractive index changes induced by polymerization using off-axis

holography [133]. This study is a collaboration with my colleague Dr. Damien Loterie and

Nathanaël Restori, an EPFL master student.

Briefly, as shown in Fig. 5.9(a), a photoresist sample sandwiched between two glass slides

is made to polymerize locally by a blue laser light focused through a microscope objective

OB J . In parallel, a red laser beam, to which the photopolymer is not sensitive, is split into

two components by a beamsplitter BS1: a reference beam and a probe beam. Thanks to a

dichroic mirror DM , the probe beam follows the same optical path as the polymerizing beam.

However, it is not focused on the sample but rather collimated so that refractive index changes

within the photoresist sample modifies its wavefront. The probe beam is then recombined

with the off-axis reference beam using the beamsplitter BS2 and the two beams are made to

interfer on the camera C AM .

The resulting interferometric fringes, which constitutes a hologram, are then imaged on the

camera (see Fig. 5.9(b)) and allows retrieving the phase profile of the sample (see Fig. 5.5(c)).

Providing that the probe laser source is noise-free, this type of interferometric measurement

allows achieving nanometric height resolution [134], which corresponds to a refractive index

change ∆ n = 10−3 over a distance of 1 µm, a resolution one order of magnitude better than

the refractive index change of a monomer to a polymer.
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Figure 5.9 – (a) Experimental setup for time-resolved measurement of the photopolymerization
threshold using off-axis holography. BS: non-polarizing beam-splitter, L1: relay lens, M:mirror,
DM: dichroic mirror, DF: dichroic filter, OBJ: microscope objective (NA 0.8, 100x, Zeiss),
CAM:camera.

5.3 Conclusion

As shown in this chapter, oxygen inhibition combined with single-photon absorption can

generate a non-linear photopolymerization process, which we plan to further study with

an optimized characterization setup. Analyzing the photopolymerization kinetics of the

photoresist reveals that an inexpensive continuous-wave laser can potentially be employed to

selectively cure a voxel of material without off-focal polymerization. To implement a compact

and affordable alternative to current microfabrication setups, which are based on complex and

expensive pulsed lasers, I implement this photopolymerization process through a multimode

fiber for three-dimensional microfabrication, as discussed in the next chapter.
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6 Three-dimensional microfabrication
through a multimode fiber

In this chapter, the non-linear polymerization process presented in chapter 5, single-photon

non-linear photopolymerization, is used to build three-dimensional microstructures through

an ultra-thin multimode fiber, which constitutes the second part of my compact toolkit for

high-resolution additive manufacturing.

I first introduce the challenges of image transmission through multimode fibers and then

present the transmission matrix method that allows digitally scanning light through a multi-

mode fiber. I show that optimal three-dimensional microfabrication through a multimode

fiber requires a specific curing strategy and investigate the limitations of this compact print-

ing device. Finally, proximity effect corrections algorithms are discussed, with the aim of

improving the printing resolution of the compact microprinter.

Some of the material presented in this chapter can be found in the following paper:

• Paul Delrot, Damien Loterie, Demetri Psaltis, and Christophe Moser. Single-photon

three-dimensional microfabrication through a multimode optical fiber. Optics Express,

26(2):1766:1778, January 2018.

6.1 Digital light scanning through a multimode fiber

6.1.1 Image transmission through multimode fibers

The integration of several printing techniques into a single platform requires to miniaturize

each additive manufacturing tool. In the same way, in vivo micro-additive manufacturing

would require minimally invasive tools to focus and scan light to cure photosensitive materials.

Multimode fibers, which can be thinner than 100 µm, have the potential to be used as compact

optical elements for such applications.

Multimode fibers are indeed thin guiding media in which light is transmitted through total

internal reflections that result from the higher refractive index of the core glass medium than
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Chapter 6. Three-dimensional microfabrication through a multimode fiber

the cladding medium (see reflected rays in Fig. 6.1).

However, modal scrambling prevents image transmission through multimode fibers. Owing

to the different propagation constants of the fiber’s modes, an image supplied at the input of a

fiber will be distorted as it travels through it; which eventually results in a scrambled speckle

pattern at the output (see Fig. 6.1).

This limitation can be overcome since the effect of modal scrambling on image transmission

is deterministic and can be compensated by measuring the multimode fiber’s propagation

characteristics [44, 135, 136], as discussed in the next section.

core

cladding

Image Scrambled patternModal scrambling

Multimode fiber

Figure 6.1 – Image transmission through a step-index multimode fiber

6.1.2 Calibration of the multimode fiber for the distal generation of focused laser
spots

Since multimode fibers are scrambling media, the generation of focused laser spots through it

requires a calibration step prior to each microfabrication experiment. This calibration step,

which consists in the measurement of the fiber’s transmission matrix, was developed by my

colleague Dr. Damien Loterie during his PhD thesis [137, 138]. We then collaborated to build

an upright version of his setup for three-dimensional microfabrication through multimode

fibers.

The transmission matrix [139] of the multimode fiber is determined by measuring with off-

axis holography the fiber’s output response (on the distal side in Fig. 6.2(a)) to a series of

independent plane waves that are fed to its input using wavefront shaping (on the proximal

side in Fig. 6.2(a)).

In other words, a basis of independent plane waves is generated by a spatial light modulator

(see SLM patterns in Fig. 6.2(b)), which corresponds to different input angles (or input

vectors X in Fig. 6.2(b)) fed to the multimode fiber. Each of these input vectors results in a

different scrambled speckle pattern, or output vector Y , at the fiber distal end. In this way, the

scrambling transformation T applied to the input vector X to yield the output vector Y = T X
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6.1. Digital light scanning through a multimode fiber

is determined. This transformation T is the fiber transmission matrix, and by numerically

inverting this matrix to obtain T −1, arbitrary output vectors Y, such as focused spots, can be

generated by digitally producing the appropriate input wavefront X = T −1Y .
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Figure 6.2 – Experimental setup for the calibration of the multimode fiber (MMF) prior to
each microfabrication experiment. The MMF transmission matrix is determined by feeding a
series of independent plane waves to its proximal side using wavefront shaping, the MMF’s
response to these inputs is measured on the distal side with off-axis holography

To measure the transmission matrix, CW laser light at 488 nm (Coherent, Sapphire 488 SF) is

coupled into two polarization-maintaining single mode fibers MOD and REF with a 90:10

ratio (see Fig. 6.2(a)). The linearly-polarized MOD beam is collimated by a lens LC (f = 150

mm) and modulated by a spatial light modulator (SLM ; Pluto VIS, Holoeye). Half of the beam

is sent to a powermeter PW M (Model 2936-C, Newport) through a 50:50 beamsplitter BS to

monitor the beam power. The modulated beam is fed to the multimode optical fiber (M MF ;

GOF85, NA 0.64,◦ 70 µm, Schott), held in a syringe needle, through a 4-f system made of lens

L1 (f = 175 mm) and microscope objective OB J (NA 0.8, 100x, Zeiss). The beam is further

filtered by a pinhole F in the Fourier plane to retain only its modulated component. Because

step-index fibers tend to preserve circular polarizations [103], the beam is circularly polarized

with a quarter-wave plate λ/4 before being coupled to the fiber, and then set back to a linear

polarization at the fiber output [103]. The resulting speckle pattern at the MMF distal side is

combined with a tilted reference plane wave REF and imaged onto a camera C AM . Using this

off-axis holographic system, we thus extract the amplitude and phase response of the MMF to

a series of independent plane waves (which are points in the Fourier domain) to determine
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Chapter 6. Three-dimensional microfabrication through a multimode fiber

the fiber’s transmission matrix. Further details on this measurement can be found in previous

works [45, 137].

6.1.3 Experimental setup for single-photon microfabrication

Following the calibration of the fiber’s transmission matrix, focused CW laser spots can be

generated ahead of the fiber’s distal facet using the proximal wavefront shaping system.

The single-photon direct-writing experiments were then carried out with the experimental

setup described in Fig. 6.3(a). The multimode fiber and proximal side of the calibration setup

shown in Fig. 6.2(a) were jointly vertically displaced and the distal end of the fiber was dipped

into a droplet of photoresist deposited on a plasma-cleaned glass slide. Three-dimensional

microstructures were then fabricated in open-air conditions by digitally focusing and scanning

point-by-point CW laser light through the fiber using the wavefront shaping system at the

proximal end.
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Figure 6.3 – Experimental setup and parameters for single-photon three-dimensional micro-
fabrication through a multimode fiber

The microstructures were written into a cubic volume of 30-µm edge (see the close-up view in

Fig. 6.3(b)). This build volume was centered on the optical axis of the fiber and microstructures

were fabricated with a bottom-up approach, starting from the glass slide, 50 µm below the

fiber’s distal facet. The uniformity of light delivery over the build volume is of paramount
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6.2. Curing method for optimal single-photon three-dimensional fabrication

importance to correctly print microstructures. Therefore, the ratio of energy focused in the

phase-controlled spot over the total field energy was measured and a maximal energy gap of

20% over the build volume was observed (see Fig. 6.3(c)), which I assume to be reasonable to

print simple structures within this volume. The uniformity of light delivery could be improved

to further enlarge the build volume, for instance by compensating for the spot distortion as

light is focused off the fiber’s axis [140].

To build three-dimensional microstructures through the multimode fiber with a CW laser,

I used the photoresist described in chapter 5 for which was measured a non-linear single-

photon photopolymerization behavior: an organic polymer precursor trimethylolpropane

triacrylate (TMPTA; >70%, Aldrich, USA), 1wt% of the Norrish type II photoinitiator cam-

phorquinone (CQ; 97%, Aldrich, USA) and 0.5wt% of the synergist ethyl 4-(dimethylamino)

benzoate (EDAB; 97%, Aldrich, USA).

6.2 Curing method for optimal single-photon three-dimensional fab-

rication

6.2.1 Generation of high-contrast laser focal spots through the multimode fiber

The challenge of three-dimensional microfabrication using single-photon photopolymeriza-

tion is to avoid the cumulative off-focal polymerization that may eventually solidify unwanted

volumes. To prevent this cumulative polymerization and ensure the curing of a specific voxel

element, the non-linear single-photon photopolymerization process determined in chapter 5

must be combined with a high contrast focus of light and an optimal curing method.

Therefore, using the setup of Fig. 6.3(a), light was focused 50 µm below the fiber’s distal facet

and the spot’s point spread function intensity distribution was measured (see Figs. 6.4(a)-

6.4(b)), showing more than a 200-fold contrast between the peak focal intensity (in white in

Figs. 6.4(a)-6.4(b)) and the direct surroundings (in green in Figs. 6.4(a)-6.4(b)).

6.2.2 Sampling parameters

To determine the optimal curing method, using the setup of Fig. 6.3(a), I experimentally

built test three-dimensional microstructures with various printing parameters. The test

microstructure is a hollow microtube (◦i n = 21.5µm, ◦out = 31.5µm, length : 20µm) whose axis

is perpendicular to the fiber’s optical axis (see Fig. 6.3(b) for the position of the microtube).

Such a test microstructure allows studying both the axial confinement of photopolymerization

through imaging the void of the tube, and the ability of my technique to print suspended

structures. These microstructures were built through pointwise scanning with a bottom-up

approach, starting from the glass substrate, 50µm below the MMF’s distal facet. The lateral

and axial sampling pitches were varied between 1
3 and 3

2 of the respective lateral and axial spot

FWHM (see Figs. 6.4(c)-6.4(d)) fitted from the measurement of Figs. 6.4(a)-6.4(b). The optimal
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Chapter 6. Three-dimensional microfabrication through a multimode fiber

printing parameters were further investigated by varying the spot power from 70 nW to 800

nW, thus covering the range of polymerization threshold power determined in chapter 5 (see

Fig. 6.5) whereas the exposure time per scanning spot was fixed to 0.06s or 0.1s to build the

microstructures as fast as technically possible (see section 6.3) and to avoid long-term power

drifts.
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Figure 6.4 – (a) Lateral PSF measured through the MMF in the focal plane (b) Axial PSF mea-
sured through the MMF (c) Fit of the data of Fig. 6.4(a) and experimental lateral overlapping
of the voxels during 3D printing with the computed cumulative intensity (d) Fit of the data
of Fig. 6.4(b) and experimental axial overlapping of the voxels during 3D printing with the
computed cumulative intensity (e) SEM image of a non-optimal printing of a micro-hollow
tube through the MMF via single-photon photopolymerization (0.1s exposure time per spot,
159±2 nW/spot). The axis of the microtube was printed orthogonally to the MMF optical
axis, the microstructure fell aside during development revealing the tube’s cross-section. The
arrows indicate the scanning direction for building the microstructure. (f) SEM image of a
micro-hollow tube printed through the MMF via single-photon photopolymerization (0.06s
exposure time per spot, 208±2 nW/spot).

6.2.3 Optimal curing strategy

I empirically determined that the optimal printing method consists in combining a large lateral

and axial overlap of the scanning spots with an operating spot power below the polymerization

threshold. More precisely, the respective optimal lateral and axial overlap of the spots are

∼ FW H Ml at
2 and ∼ FW H Max

2 (see the overcure parameters in Figs. 6.4(c)-6.4(d)) and the optimal
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6.2. Curing method for optimal single-photon three-dimensional fabrication

experimental spot power is between ∼ 120nW and ∼ 250nW (see the gray area in Fig. 6.5).

With a looser lateral and axial sampling I observed a collapse of the microstructure, if printed

at all. A higher spot power resulted in an overpolymerized microcylinder, conversely a lower

spot power yielded imperfectly printed microtubes.

I hypothesize that the lateral and axial overlap of the sampled spots resulted in an overcuring

of one voxel (see blue spots and curves in Figs. 6.4(c)-6.4(d)) by the next one (see orange spots

and curves in Figs. 6.4(c)-6.4(d)), thus providing a cumulative dose (see yellow spots and

curves in Figs. 6.4(c)-6.4(d)) that overcame the photopolymerization threshold (see Fig. 6.5).

This hypothesis is further supported by the microtube depicted in Fig. 6.4(e), which is im-

perfectly printed. This microtube fell aside during development hence revealing the tube’s

cross-section. The white and black arrows indicate the scanning directions adopted to print

the curved structure layer-by-layer, from bottom to top. Interestingly, the bottom of the

microtube was incompletely sealed (see close-up view in Fig. 6.4(e)), and I speculate that

this volume element did not reach the polymerization threshold as the contiguous spots

located in this area were not consecutively overcured. Indeed, the pointwise scanning first

took place in the direction of the black arrow. This lasted 5 seconds, during which the median

free radicals might have diffused or be scavenged by oxygen before the lateral overlapping

scanning started in the direction of the white arrow. However, further time-resolved studies

of the photopolymerization kinetics (see section 5.2.3) could help interpret these optimal

printing parameters.
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Figure 6.5 – Experimental printing range for three-dimensional microfabrication
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Nonetheless, using a shorter exposure time per spot (0.06 s), a sealed microtube can be

correctly printed (see Fig. 6.4(f)). The printed microtube exhibits a smooth surface but deviates

from the designed model, the microtube’s length is measured to be 20.0±0.3µm, the outer

diameter 33.5±0.5µm and the inner diameter 17.6±1.1µm versus respectively 20µm, 31.5µm

and 21.5µm as defined in the model. The microtube’s walls are therefore too thick and further

optimization of the printing parameters is required to produce accurate structures. Though

not perfectly true to the model, this hollow microstructure demonstrates the possibility to

remove the off-focal polymerization inherent to single-photon photopolymerization by taking

advantage of the non-linearity of the photoresist.

6.3 Limitations of the current device

6.3.1 Hardware limitations

The printing speed of my curing system is currently limited by the refresh rate (20 Hz) of the

spatial light modulator (SLM in Fig. 6.3(a)), which yields a one-hour printing time for the

microtube depicted in Fig. 6.4(f). A digital micro-mirror device (DMD), capable of refresh rate

over 20 kHz, could also be used as a phase control system [141] at the cost of a lower efficiency

of modulation than SLMs. Owing to the low power required by the writing method, the power

budget of the phase control system is not of crucial importance, and the use of a DMD would

dramatically increase the printing speed. However, the scanning speed might ultimately be

limited by the oxygen diffusion time [142].

Experimentally, I also observed that successful three-dimensional microfabrication requires to

have more than ∼ 30% of the MMF’s output laser power focused within the phase-controlled

spot. Otherwise, the laser power of the background speckle appears to cumulatively degrade

the printing quality. Finally, my attempts to fabricate three-dimensional microstructures with

a lower multimode fiber’s numerical aperture (NA = 0.22, 0.39) did not succeed as no proper

axial confinement of photopolymerization could be achieved.

6.3.2 Lateral printing resolution

To determine the achievable complexity of the microstructures printed with my curing device,

its lateral and axial printing resolution was investigated. The printing resolution is determined

following Abbe’s criterion, that is to say the minimal printable grating period is measured,

both laterally and axially, which is often different from the minimal achievable linewidth [11].

Hence, using the setup of Fig. 6.3(a), I printed a series of gratings with a decreasing period

to determine the achievable lateral printing resolution. As evidenced in Fig. 6.6(a), a grating

with a lateral pitch of 1.05±0.06 µm can be resolved (see blue curve in Fig. 6.6(a)) whereas a

grating period of 0.9 µm cannot be resolved (see red curve in Fig. 6.6(a)). The lateral printing

resolution could likely be improved using the phenomenon observed in Fig. 6.4(e), that is to

say by writing the adjacent lines with a long time period between each. In this way, the free
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radicals generated when writing the first line would have time to diffuse or be inhibited before

writing the second line, thus decreasing the cumulative dose of the interval between two lines.
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Figure 6.6 – Lateral printing resolution of our fiber-based single-photon micro-additive
manufacturing device. Series of lines are printed with a decreasing pitch to determine the
lateral printing resolution using Abbe’s criterion.

6.3.3 Axial printing resolution

Similarly, in order to determine the axial printing resolution, the minimal axial separation

between two polymer structures was measured. As shown in Fig. 6.4(f), a hollow micro-tube

of 21.5 µm inner diameter can be printed with our device, which means that two lines printed

21.5 µm axially apart can be resolved. Furthermore, by slightly overpolymerizing the same

model structure, it is possible to generate axially adjacent lines separated by only 9.3±0.7 µm

(see Fig. 6.7(a)). However, lines designed to be 7.5 µm axially apart could not be resolved (see

Fig. 6.7(b)), even though we targeted the lower end of the printing dynamic range (0.051s

exposure per spot and 150nW per spot) to avoid overpolymerization. Suspended lines as thin

as 3µm can still be printed through my ultra-thin curing probe, as shown in Fig. 6.7(c).

Improving the lateral printing resolution would either require using higher numerical aperture

multimode fibers or adapt the exposure of each scanned spot to account for the crosstalk

exposure induced by scanning nearby parts of the microstructure. Such proximity exposure

corrections are studied in the next section.
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Figure 6.7 – (a) SEM top view of the smallest axial separation achieved between two solid
lines. The model structure is the same as in Fig. 6.4(e) i.e. a micro-hollow tube of respectively
21.5µm and 31.5µm inner and outer diameter. (0.08s/spot, 197±2 nW/spot). The microtube
fell aside during development. The slight overpolymerization of the structure results in a
narrower hollow tube than designed. (b) SEM perspective view of an axially non-resolved
hollow microtube. The model parameters are ◦i n = 7.5µm, ◦out = 15µm, length = 10µm.
(0.051s/spot, 149±1 nW/spot) (c) Suspended lines (0.051s/spot, 204±2 nW/spot).

6.4 Exposure correction algorithms

6.4.1 Proximity exposure correction

During pointwise scanning of the build volume, the lateral and axial extent of the laser point

spread function (PSF) leads to the exposure of nearby areas (see PSF extent in Figs. 6.4(a)-(b)).

This overlap of the exposed regions is essential to my curing method (see section 6.2.3) yet

the overall crosstalk accumulated dose from the exposure of the whole structure degrades the

printing quality [111].

To correct for this single-photon accumulated dose, Wan and Menon [111] developed a proxim-

ity exposure correction (PEC) algorithm. Briefly, as shown in the flowchart and cross-sections

of Fig. 6.8, the initial three-dimensional target model is used to create an exposure map.

In other words, every voxel that we aim at polymerizing is initially assigned a unitary value

of exposure in the three-dimensional exposure map (see step A in Fig. 6.8). The resulting

absorbed dose is then derived through convolution of the exposure map with the PSF (see

step B in Fig. 6.8). Thresholding the dose map yields the three-dimensional polymerized map,

which is then substracted to the model to yield the error map (see steps C and D in Fig. 6.8).
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Figure 6.8 – Proximity exposure correction algorithm

Applying this algorithm to the polymerization of our microtube model (length: 30µm, ◦i n=21.5

µm, ◦out =31.5 µm see Fig. 6.9(a)), we observe that the exposure map is significantly modified

and allows improving the fidelity of the printing structure to the model (see cross-sections and

total error in Fig. 6.9(b)). It is noteworthy that this polymerization model does not take into

account the non-linear photopolymerization process induced by oxygen, thus there appears a

simulated "lime" shape of the cylinder, which I did not observe in the experimental photopoly-

merization of the microtube (see Fig. 6.4(f)). Though this PEC algorithm could potentially

improve the printing resolution, I hypothesize it has better performance on structures with

lower fill ratio than our microtube, such as woodpiles for example [111].

Another limitation of this proximity exposure correction method is that the algorithm tends

towards negative exposure values on the structure edges, in order to sharpen them. Negative

exposure and negative intensities cannot be physically produced. On the other hand, the

complex amplitude of light beams can take negative values and interfer destructively to yield

regions of null intensity, which is investigated in the next section.
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Figure 6.9 – Proximity exposure correction algorithm applied to the microtube model

6.4.2 Volumetric phase optimization

Additive manufacturing of three-dimensional microstructures is generally achieved by point-

wise scanning [143] or layer-by-layer curing, such as in micro-stereolithography [144]. Such

sequential printing strategies set limitations on the printing speed as well as on the complexity

of printing shapes. For instance, overhanging geometries need support structures to not

collapse during printing [145].

Volumetric printing, that is to say the exposure and curing of a whole volume of photosensistive

material in one step, requires generating arbitrary three-dimensional exposure patterns. In

this section, I study the generation of such holographic three-dimensional intensity pattern

using wavefront shaping through our multimode fiber curing probe (see Fig. 6.3(a)).

As a case study, we investigate the generation of a tube of light, whose axis is orthogonal to the

multimode fiber’s optical axis (see Fig. 6.11(a)), similar to the microprinted tube in Fig. 6.3(b).

The tube of light we intend to generate is 30 µm long but as opposed to our microprinted tube

(see Fig. 6.4(f)) it has an elliptical section of outer diameter 31.5 µm by 5.2 µm respectively

along the axial and lateral directions (see Fig. 6.11(a)). Computational limitations indeed

prevent to define a larger lateral diameter.

To focus light, be it on a spot or on an arbitrary pattern, we need to know the complex

amplitude to display at the fiber output, which is the output vector Y in Fig. 6.2(b), in order to
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determine the required input vector X to display with the spatial light modulator at the fiber

proximal end (see Fig. 6.2(b)). A direct way to find this wavefront Y would be to follow steps A,

B and C in Fig. 6.10. The targeted three-dimensional intensity pattern would be decomposed

in multiple layers corresponding to the different depth cross-sections of the pattern (see step

A in Fig. 6.10), each of these slices is then numerically optically propagated [146] towards a

common plane 1 in step B in Fig. 6.10. These complex amplitudes are then summed, thus

defining the wavefront Y to generate at the fiber output (see step C in Fig. 6.10).
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Figure 6.10 – Multi-plane Gerchberg-Saxton algorithm

However, the phases of each layer might interfer destructively when summed in this common

plane, which will degrade the three-dimensional light pattern. We experimentally evidenced

this degradation by generating, with the above procedure, the wavefront corresponding to the

tube of light described in Fig. 6.11(a). As shown in the axial and lateral cross-sections of the

tube in Fig. 6.11(b), this direct summation process results in a three-dimensional intensity

pattern not true to the model.

The phase of the output vector Y should therefore be optimized prior to calculating the input

wavefront X . To do so, we developed together with my colleague Dr. Damien Loterie a multi-

plane phase-optimization algorithm inspired by the Gerchberg-Saxton algorithm [147, 148].

In this iterative algorithm, described in Fig. 6.10, following the definition of the stack of target

layers (step A), their numerical propagation (step B) and summation (step C ), the resulting

sum of the complex amplitude is numerically back-propagated to each plane (see step D in

Fig. 6.10). The amplitude of each layer is then reset to the one of the target layers, while the

phase resulting of the back-propagation is preserved (see step E in Fig. 6.10). Steps B , C , D

and E are then iterated.

In this way, the phase of the wavefront Y is quickly optimized and allows generating a three-
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dimensional microtube of light through the multimode fiber as shown in Fig. 6.11(c). As the

power level required to cure a single spot in the photoresist is small (see section 6.2.3), we

attempted to directly photopolymerize the whole volume of the tube in one step through

the multimode fiber. The size of the generated structure did not allow us to determine if

the printed tube was hollow. However, applying this phase optimization algorithm to larger

microstructures, such as scaffolds could open up new possibilities for direct holographic

microprinting.
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Figure 6.11 – Experimental generation of a three-dimensional intensity pattern through the
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6.5 Conclusion

In this chapter, I demonstrated that oxygen inhibition combined with single-photon ab-

sorption can be used through a 70-µm thick multimode fiber to build three-dimensional

microstructures. This is achieved without any motion of the multimode fiber, by digitally

scanning a phase-controlled laser spot over the build volume. I studied exposure correction al-

gorithms and showed that complex three-dimensional light patterns can directly be generated

through the multimode fiber.

Single-photon off-focal photopolymerization is inhibited by taking advantage of the non-

linearity of the photoresist, which is induced by oxygen radical scavenging. The experiments

provide evidence that optimal writing of the microstructures is achieved by combining a

large lateral and axial overlap of the scanning spots with an operating spot power below the

photopolymerization threshold. Thus, it appears that a volume element is only polymerized

if the cumulative exposure dose reaches the polymerization threshold within a writing time

shorter than the termination time of free-radicals.

My curing system, made of a CW laser and an ultra-thin multimode fiber, constitutes an

affordable and compact alternative to existing microfabrication setups and creates new oppor-
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tunities for in vivo microfabrication through endoscopes. In the same way, this device could

foster research towards the miniaturization of microfabrication systems and therefore for the

integration of several additive manufacturing tools on a single platform.
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7 Conclusion

This thesis presents new implementations of laser-actuation for direct three-dimensional

embedded printing and the development of a compact toolkit for high-resolution additive

manufacturing.

7.1 Summary of results

7.1.1 Laser-induced direct three-dimensional liquid delivery

In the first part of this work, laser-induced forward transfer was applied to realize direct

three-dimensional liquid delivery with the aim of providing a high-resolution alternative to

microextrusion-based three-dimensional embedded printing.

Laser-induced depth-controlled delivery of picoliter doses within a 300-µm gelatin soft sub-

strate was demonstrated. The injection depth was controlled by producing 15-µm stable liquid

streams over a wide range of velocity (10-80 m/s) with a conventional laser-induced forward

transfer system. Increasing laser fluences result in faster liquid jets. As the jet impact velocity

on the soft gelatin substrate increases, these liquid jets penetrate deeper into it, thanks to the

Bingham plastic properties of gelatin. Using this process, picoliter doses could be delivered up

to depth of ∼230 µm with a 25-µm depth repeatability and a 12-µm lateral resolution. As the

achieved laser-assisted device operates over two lateral dimensions, controlling the delivery

depth results in creating a direct three-dimensional liquid delivery system.

7.1.2 Compact toolkit for high-resolution additive manufacturing

In the second part of this thesis, laser-actuation was applied to realize compact drop-on-

demand and direct laser writing tools for high-resolution additive manufacturing.
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Inkjet printing of viscous monodisperse droplet by laser-induced flow focusing

Laser-induced drop-on-demand generation was demonstrated through a 300-µm glass mi-

crocapillary. The production of viscous micro-droplets with a smaller diameter than the

microcapillary diameter was achieved by exploiting a flow focusing effect, thus demonstrating

a subnozzle printing resolution. A stable satellite-free drop-generation regime was evidenced

for a wide range of viscous inks (2–200 mPa s). Selectivity of this jetting regime required fine

or coarse adjustments of the laser-pulse energy, respectively, for the inks of low and high

viscosity. In addition, the achieved drop-on-demand system extends the range of printable

liquids to a range of Ohnesorge numbers (Oh) from 0.1 to 1 for conventional inkjet printers to

approximately 0.01 < Oh < ∼1.5.

Direct laser writing through a multimode fiber

Single-photon three-dimensional microfabrication with a 1.0-µm lateral and 21.5-µm axial

printing resolution was demonstrated through a 70-µm multimode optical fiber. This was

achieved without any motion of the multimode fiber, by digitally scanning a phase-controlled

laser spot over the build volume. Single-photon off-focal photopolymerization was inhibited

by taking advantage of oxygen radical scavenging, which induces a non-linearity of the pho-

toresist. Optimal writing of the microstructures was achieved by combining a large lateral

and axial overlap of the scanning spots with an operating spot power below the measured

photopolymerization threshold. Thus, it appears that a volume element was only polymerized

if the cumulative exposure dose reached the polymerization threshold within a writing time

shorter than the termination time of free radicals.

7.2 Future work

Future work could address the limitations of the devices developed in the course of this thesis.

7.2.1 Laser-induced direct three-dimensional liquid delivery

High-resolution three-dimensional embedded printing would require delivering at arbitrary

depths infinitesimal liquid amounts within a gel-like substrate. As evidenced in this thesis,

achieving such performances with laser-induced forward transfer would demand to gener-

ate monodisperse droplets over a wide range of velocity rather than the current thin jets.

Indeed, the shape of these laser-induced jets results in a column of injected liquid covered

by a large volume of liquid on the substrate interface. Time-resolved imaging showed that

the low-velocity components of the jets are responsible for this poor injection efficiency. A

dimensionless analysis of the jetting regimes revealed that single-droplet generation could be

achieved by lowering the ink’s concentration in sodium alginate. Future work should therefore

focus on rheological optimization of the jetted ink.
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7.2.2 Compact toolkit for high-resolution additive manufacturing

Inkjet printing of viscous monodisperse droplet by laser-induced flow focusing

The current drop-on-demand device constitutes the basis of the first component of the de-

veloped compact toolkit for high-resolution additive manufacturing. The present device is

actuated by focusing a nanosecond laser pulse through a microscope objective. Further minia-

turization of the drop-on-demand system could be achieved in future work by implementing

wavefront shaping through a multimode fiber enclosed in the microcapillary, thus providing a

compact digital laser-actuation.

Direct laser writing through a multimode fiber

The performances of the compact direct laser writing device created in this work currently

face two main limitations: the printing speed and the axial printing resolution. Owing to

the low power budget required with the developed curing technique, a faster digital light

scanning could be achieved using a digital micro-mirror device (DMD) instead of a spatial

light modulator (SLM) for wavefront shaping. The axial printing resolution could be improved

by further investigation of the exposure correction algorithms presented in this thesis. In the

same way, the systematic study of the photopolymerization kinetics of various photoresists

could help identifying chemical compounds more prone to oxygen radical scavenging, which

is essential to remove single-photon off-focal photopolymerization.

7.3 End word

As shown in this thesis, laser-actuation has the potential to provide alternative technical solu-

tions in the field of microprinting, be it for direct laser writing, drop-on-demand generation or

embedded three-dimensional printing.

The laser-actuated three-dimensional liquid delivery system demonstrated in this work con-

stitutes a proof-of-concept of injection at arbitrary depths through liquid velocity control.

The precision of the achieved device could open new possibilites to replicate the complex

micro-architecture of tissues. Furthermore, this approach could also offer a precise and

high-throughput alternative to existing needle-free microjet injectors.

In the same way, laser-actuated drop-on-demand generation allows delivering monodisperse

droplets with a wide range of viscous liquids, thus overcoming one of the main limitations of

conventional inkjet printers.

Similarly, the developed direct laser writing device, made of a continuous-wave laser and an

ultra-thin multimode fiber, provides an inexpensive and compact alternative to conventional

direct laser writing systems, which rely on complex and bulky femtosecond lasers.
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Finally, combining these endoscopic-like drop-on-demand and direct laser writing devices

would also provide an enabling toolkit for in vivo microprinting. The achieved 1.0-µm lateral

and 21.5-µm axial printing resolution of the fiber-based direct laser writing system could

indeed allow studying interactions at the cellular level by fabricating biologic scaffolds.
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A Modelization of oxygen-inhibited
single-photon photopolymerization

In this appendix, I derive the rate equations of photopolymerization in the case of single-

photon absorption combined with oxygen free radical scavenging. Oxygen replenishment

through diffusion is also taken into account. Simulations of chain growth and polymer con-

version at focus of a Gaussian beam are then performed using a partial differential equation

(PDE) solver in Wolfram Mathematica®10.

A.1 Photopolymerization model

A.1.1 Initiation and propagation

As mentioned in chapter 5, photo-induced polymer growth results from three steps: photo-

initiation, propagation and termination. Briefly the photopolymerization mechanism is the

following [105, 106]: upon absorption of a photon, a photoinitiator I is generally homolytically

cleaved to generate two free radicals R· that then react with a first polymer precursor M1 to

create a chain-initiating radical M1· (see Eq. A.1).I
hν, kd−−−−→ 2R·

R·+M
ki−−→ M1·

(A.1)

The polymer chain is then grown by successive additions of polymer precursors M to the

existing chain radical Mn ·, thus creating a longer chain radical Mn+1·. This is the propagation

step (see Eq. A.2):

M1·+M
kp−−→ M2·

M2·+M
kp−−→ M3·
...

Mn ·+M
kp−−→ Mn+1·

(A.2)
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Appendix A. Modelization of oxygen-inhibited single-photon photopolymerization

To simplify the model, we consider that each reactive chain radical is equivalent to the first

generated reactive radical R· [106]. Thus, the chain radical Mn · that reacts with a polymer

precursor M to yield a longer chain radical Mn+1· is assimilated to the reaction of a radical R·
with an unreacted double bond B of the polymer precursor M to yield a radical R·. Equations

A.1-A.2 are then rewritten as:I
hν, kd−−−−→ 2R·

R·+B
kp−−→ R·

(A.3)

A.1.2 Termination

In the case of acrylates, the combination mode (first equation of Eq. A.4) dominates the

dispropornation mode of termination (see second equation of Eq. A.4) [106], therefore the

equations for the termination of polymerization first introduced in chapter 5:Mn ·+Mm · ktc−−→ Mn+m

Mn ·+Mm · ktd−−→ Mn +Mm

(A.4)

can be simplified to:

Mn ·+Mm · kt−−→ Mn+m (A.5)

And applying our simplified notation on the reactive radical, we obtain that equation A.5 is

equivalent to:

R·+R· kt−−→ Ri nacti ve (A.6)

A.1.3 Oxygen inhibition

We also take into consideration the polymerization inhibition by the oxygen dissolved within

the photoresist, which is equivalent to a second mode of termination of the reactive radicals

R·:

R·+O2
kt ,O2−−−→ Ri nacti ve (A.7)

The chemical reactions of our photopolymerization model sum up as:

I
hν, kd−−−−→ 2R·

R·+B
kp−−→ R·

R·+R· kt−−→ Ri nacti ve

R·+O2
kt ,O2−−−→ Ri nacti ve

(A.8)
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A.2. Photo-initiation

where I is the photo-initiating species (for instance a photoinitiator), R· are radicals, B are

unreacted double bonds of the photopolymer and O2 is the dissolved oxygen in the photoresist.

A.2 Photo-initiation

A.2.1 Initiating gaussian beam

To model the kinetics of photopolymerization, one must first accurately describe the propaga-

tion and absorption of a focused light beam within the photopolymer. Due to the axisymmetry

of the problem, we limit our study to a 2D model in the y z space, z being the propagation

direction from the focusing optics (see Fig. A.1).
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Figure A.1 – Description of the orientation of simulation

We assume a linearly polarized light. The propagating x-component Ex of the electrical field

of the Gaussian initiating field focused in the photopolymer can be written as [149]:

Ex (y, z) = E0
ω0

ω(z)
e

y2

ω(z)2 e
−i

(
k y2

2R(z)+kz−η(z)
)

(A.9)

with:

• E0 the nominal electrical field, in V m−1,

• ω0 the beam waist at focus, in m,

• ω(z) the beam waist at depth z in the polymer, in m,

• k, the wavenumber, in m−1,

• R(z) the wavefront radius of curvature, in m,
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• η(z) the Gouy phase.

In the case of a diffraction-limited focus, these parameters are defined as:

E0 =
√

2Φ0

cn0ε0
(A.10)

ω0 = λ

πn0N A
(A.11)

ω(z) =ω0

√(
z

zR

)2

+1 (A.12)

R(z) = z

((
z

zR

)2

+1

)
(A.13)

η(z) = t an−1
(

z

zR

)
(A.14)

with:

• Φ0 the nominal intensity of the beam, in W m−2,

• c the speed of light, c = 299792458 m s−1,

• ε0 the permittivity of vacuum ε0 = 8.854187818·10−12 F m−1 that we approximate to the

relative permittivity of the polymer precursor mixture,

• n0 the refractive index of the polymer precursor, n0 = 1.474 at room temperature,

• λ the laser wavelength, here λ = 488 nm,

• N A the numerical aperture of the focusing optics, which is here the multimode fiber,

then N A = 0.64,

• zR the Rayleigh range, in m.

The nominal intensity and Rayleigh range of the beam can be derived from the other parame-

ters:

Φ0 =
2P f i ber

πω2
0

(A.15)
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A.2. Photo-initiation

zR = πn0ω
2
0

λ
(A.16)

where P f i ber is the input optical power, which corresponds to the optical power at the fiber

distal end.

Finally, the propagated intensity Φ is derived from Eq. A.9:

Φ(y, z) = 1

2
cn0ε0|Ex (y, z)|2 (A.17)

A.2.2 Light absorption

The rate of photo-consumption of the initiator I (see first equation of Eq. A.8) is proportional

to the volumetric amount of absorbed photons Φa and the concentration [I ] of initiator in

solution:

∂[I ](t , y, z)

∂t
=−kd [I ](t , y, z)Φa(y, z) (A.18)

where the rate constant for dissociation kd encompasses the efficiency χ of the photoinitiator

species to generate a free radical for each photon absorbed [105], therefore kd is written:

kd = λχ

chNA
(A.19)

with:

• Φa(y, z) the local volumetric light absorption in W m−3, which is assumed to be locally

constant as the fiber output power does not vary is assumed to be constant,

• λ the laser wavelength,

• χ the photoinitiatior efficiency, (χ=1 if one absorbed photon yields two radicals),

• c the speed of light,

• h the Planck constant, h = 6.62607004·10−34 m2 kg s−1,

• NA the Avogadro number, NA = 6.022140857·1023,

In short, kd converts the absorbed intensity into moles of efficient photons.

Hence, to determine the rate of photoinitiator consumption and consequently the rate of

radical generation, we need to find the local volumetric light absorption of the Gaussian

beam as it propagates and focuses in the photopolymer. Starting from Lambert-Beer law, the
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absorbed light intensity Φsl i ce (z) after propagation through a slice thickness z of polymer is:

Φsl i ce (y, z) =Φ(y, z)(1−e−αz[I ](y,z)) (A.20)

where:

• Φ(y, z) is the local incident light intensity at the outer surface of the absorbing layer,

• [I ](y, z) is the local molar concentration of the light-absorbing photoinitiator I in mol

m−3,

• α is the absorption coefficient of I in m2 mol−1,

The local decrease of Φsl i ce corresponds to the local volumetric light absorption Φa which we

can write:

Φa(y, z) = ∂Φsl i ce (y, z)

∂z
(A.21)

From Eq. A.21 we obtain the following expression for the local volumetric absorbed light

intensity:

Φa(y, z) =α[I ](y, z)Φ(y, z)e−α(z0−z)[I ](y,z) (A.22)

where z0 is the working distance between the fiber facet and the focal spot.

As a first application of this light propagation and absorption model, I can validate the con-

centration of the photoinitiator species for a beam propagation and focusing 50 µm deep into

a photoresist. The requirement for our system is to have a higher light absorption in the focal

spot than in the optical path preceding the focal spot. Camphorquinone (CQ) is used as a

photoinitiator in the photoresist, with a concentration [CQ] = 66.2 mol m−3. CQ absorption

coefficient at the polymerizing wavelength (λ = 488 nm) is αCQ = 6.35 m2 mol−1.

As shown in Fig. A.2, the CQ concentration in the photoresist allows creating a zone of high

intensity deep into the material whereas a photoinitiator with an absorption 500 times higher

would absorb more in the first layers than in the targeted focal spot.
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A.3. Photopolymerization rate equations

Figure A.2 – Simulation of absorbed light density for a 200-nW Gaussian beam focused 50
µm away from the multimode fiber (NA = 0.64) in our photoresist (left-hand side) and in a
photoresist 500x more absorbing at λ=488 nm (right-hand side).

A.3 Photopolymerization rate equations

A.3.1 Single-photon photopolymerization without oxygen inhibition

From equations A.8, A.18 and A.22, we derive the following rate equations for photopolymer-

ization without oxygen inhibition:

∂[I ](t , y, z)

∂t
=−kdαCQΦ(y, z)[I ](t , y, z)e−αCQ (z0−z)[I ](t ,y,z) (A.23)

∂[R·](t , y, z)

∂t
= 2kdαCQΦ(y, z)[I ](t , y, z)e−αCQ (z0−z)[I ](t ,y,z) −2kt [R·]2(t , y, z) (A.24)

∂[B ](t , y, z)

∂t
=−kp [B ](t , y, z)[R·](t , y, z) (A.25)
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where kd , kt and kp are respectively the rate constants for initiator dissociation, radical

termination and polymer propagation (see Eq. A.8).

Equations A.23, A.24 and A.25 constitute a first system of non-linear differential equations

that describes non-inhibited photopolymerization.

A.3.2 Oxygen-inhibited single-photon photopolymerization

In the case oxygen inhibition is further taken into account (see Eq. A.18), Eq. A.24 is modified

as follows:

∂[R·](t , y, z)

∂t
= 2kdαCQΦ(y, z)[I ](t , y, z)e−αCQ (z0−z)[I ](t ,y,z) −2kt [R·]2(t , y, z)

−kt ,O2 [O2](t , y, z)[R·](t , y, z) (A.26)

where the right-hand terms of Eq. A.26 respectively correspond to the contribution of the

photo-induced generation of radicals, their termination by combination and oxygen inhibition.

kt ,O2 is therefore the rate constant for oxygen radical termination (see Eq. A.8).

Moreover, as oxygen is consumed during the inhibition reaction (see Eq. A.8), it creates a

local concentration gradient. Owing to the creation of this gradient, oxygen consumption is

replenished by diffusion. We can therefore derive the following equation for the concentration

evolution of oxygen:

∂[O2](t , y, z)

∂t
= DO2

(
∂2[O2](t , y, z)

∂y2 + ∂2[O2](t , y, z)

∂z2

)
−kt ,O2 [O2](t , y, z)[R·](t , y, z) (A.27)

where DO2 is the diffusion coefficient of oxygen in solution which we estimate to be DO2 =10−10

m2 s−1 [106].

Equations A.23, A.25, A.26 and A.27 constitute the system of non-linear differential equations

that describe oxygen-inhibited photopolymerization.

A.3.3 Rate constants

In most of my experiments, I used acrylic polymer precursors. For instance, one of the

photoresists is made of off-the-shelf chemical components: an organic acrylate polymer

precursor trimethylolpropane triacrylate (TMPTA; >70%, Aldrich, USA), 1wt% of the Norrish

type II photoinitiator camphorquinone (CQ; 97%, Aldrich, USA) and 0.5wt% of the synergist

Ethyl 4-(dimethylamino)benzoate (EDAB; 97%, Aldrich, USA).

The rate constant kd for photoinitiator dissociation can be calculated knowing the efficiency

χ of camphorquinone (see Eq. A.19) that was measured to be 0.07±0.01 [150]. The other rate

constants for propagation kp , termination kt and oxygen inhibition kt ,O2 are experimental
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constants specific to each polymer precursor however typical values for acrylates can be found

in the literature (see Table A.1).

Rate constant Value Reference
kd (m3 J−1) 2.9·10−7 [150]
kp (m3 mol−1 s−1) 15 [151]
kt (m3 mol−1 s−1) 2.5·103 [152]
kt ,O2 (m3 mol−1 s−1) 5·105 [152]

Table A.1 – Rate constants for simulations of acrylate photopolymerization

A.3.4 Initial conditions

Non-inhibited photopolymerization

Based on the composition of the photoresist, the following initial conditions are set to simulate

non-inhibited photopolymerization:
[I ](0, y, z) = 66.2 molm−3

[R·](0, y, z) = 0 molm−3

[B ](0, y, z) = 12.9 ·103 mol m−3

(A.28)

Oxygen-inhibited photopolymerization

Similarly, based on previous works [106], we set the following initial conditions to simulate

oxygen-inhibited photopolymerization:

[I ](0, y, z) = 66.2 molm−3

[R·](0, y, z) = 0 molm−3

[B ](0, y, z) = 12.9 ·103 mol m−3

[O2](0, y, z) = 1.05 mol m−3

(A.29)

A.4 Simulation results

A.4.1 Case study

The simulations are performed with Wolfram Mathematica®10 using the spatial PDE dis-

cretization method on the NDSolve PDE solver (additional options: method of lines with a

tensor product grid and a minimum of 400 points).
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I simulate the temporal evolution of photopolymerization induced by the propagation and

absorption of a Gaussian laser beam (λ=488 nm) focused 50µm deep into a photoresist (see

Fig. A.3), whose absorptivity and chemical properties are described in sections A.2.2 and A.3.3

respectively. I further simulate the focusing of the laser beam by a NA 0.64 optical system,

similar to the multimode fiber used in my compact high-resolution curing probe (see chapter

6).

Due to the axisymmetry of the model, the study is limited to a 2D model in the y z space,

z being the propagation direction (see Fig. A.3). The simulations are then run on a two

dimensional domain of 40 µm x 40 µm centered on the focal spot, 50 µm deep into the

photoresist. The photopolymerization kinetics are studied on the first 0.8s of the process with

a constant optical powers in the range of 100 nW.

Considering the length of the temporal domain studied,∆t = 0.8s, and the diffusion coefficient

of oxygen DO2 = 10−10 m2 s−1, I infer that the diffusion distance is ∆y ∼ 13µm over this

time. Hence, the half-width of the simulation domain being 20 µm, boundary conditions

are applied on the limits of the simulation domain specifying that the oxygen concentration

remains constant over time in order to ease the PDE solving in the case of the oxygen-inhibited

simulations.

Finally, since the photoresist is a tri-acrylate, its gelation threshold is 20% (see Eq. 5.1).

Figure A.3 – Simulation settings
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A.4.2 Results

Simulation results reveal that the axial size of the photopolymerized volume increases linearly

with time under non-inhibited conditions (see solid curves in Fig. A.4) whereas oxygen

inhibition induces a non-linear axial growth of the voxel of polymer (see Fig. A.4). Figs. A.5, A.6

and A.7 allows comparing the extent of conversion of the polymer precursor into a polymer

with and without oxygen inhibition.

Moreover, simulations showed that below a threshold power of ∼100 nW, no photopoly-

merization occurs (see Fig. A.5(b)), which is consistent with the work of Maruo et al. [126].

Interestingly, the photopolymerization threshold that is theoretically determined is of the

same order of magnitude as the one I experimentally measured (see section 5.2.2).
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(b) With oxygen inhibition

(a) Without oxygen inhibition

Figure A.5 – Comparison of simulation results with and without oxygen inhibition for an
optical power P f i ber = 100 nW at times t = 0 s, t = 0.25 s, t = 0.5 s, t = 0.75 s. The applied power
is insufficient to overcome oxygen inhibition
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(b) With oxygen inhibition

(a) Without oxygen inhibition

Figure A.6 – Comparison of simulation results with and without oxygen inhibition for an
optical power P f i ber = 200 nW at times t = 0 s, t = 0.25 s, t = 0.5 s, t = 0.75 s
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(b) With oxygen inhibition

(a) Without oxygen inhibition

Figure A.7 – Comparison of simulation results with and without oxygen inhibition for an
optical power P f i ber = 400 nW at times t = 0 s, t = 0.25 s, t = 0.5 s, t = 0.75 s
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German (beginner) 

 

Softwares 

Matlab, LightTools , Zemax, CATIA V5, NX, ProEngineer, SolidWorks, OSLO, SPEOS, MS Office, Image J, 
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LaTex. 

 

Computer Science 

Solid skills in Matlab, C programming and Mathematica, good skills in C++ and Arduino programming. 

 

    

 

 Education	
PhD in Photonics                                                                                           Oct. 2014 - July 2018 (exp.) 

École polytechnique fédérale de Lausanne (EPFL), Switzerland 
Research on micro-additive manufacturing. 

 

Engineer’s degree in Optics (valedictorian on year 1 & 2)                               Sept. 2010 - Dec. 2013 
Institut d’Optique Graduate School (IOGS), Palaiseau, France                                                   

The Institut d’Optique has provided me with advanced skills in both Optics and Engineering as well as 

in numerous domains of Physics dealing with Optics such as: optical design, photometry, radiometry, 

optical physics, thin film principles, semiconductors, laser diodes, electronics, signal&image processing, 

fiber optics, interferometry, quantum mechanics. 

 

Master of Science in Engineering Physics (Results: A+)                                     Aug. 2012 - Dec. 2013 
Royal Institute of Technology (KTH),  Stockholm, Sweden                                                           

During an international exchange, I could extend my knowledge in: X-ray Physics, detectors of 

radiation and medical imaging systems, physics and engineering of lasers, spectroscopy, experimental 

methods for biomolecular studies, biomedicine, biocellular physics, technical English. 
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 List	of	publications	
Peer-reviewed articles  

Delrot, P., Loterie, D., Psaltis, D. & Moser, C. Single-photon three-dimensional microfabrication through 
a multimode optical fiber. Opt. Express 26, 1766–1778 (2018). 

Delrot, P., Modestino, M. A., Gallaire, F., Psaltis, D. & Moser, C. Inkjet Printing of Viscous Monodisperse 
Microdroplets by Laser-Induced Flow Focusing. Phys. Rev. Applied 6, 024003 (2016). 

Dubreuil, M., Delrot P., Leonard I., Alfalou A., Brosseau C., Dogariu A. Exploring underwater target 
detection by imaging polarimetry and correlation techniques. Applied Optics 52, 997–1005 (2013). 

Conference papers and talks 

Delrot P., Loterie D., Psaltis D., and Moser C., " Single-photon micro-additive manufacturing through a 
multimode optical fiber", Photonics West 2018, San Francisco, USA, LASE conference, session on "Laser 
3D Manufacturing V", (31/01/2018). 

Delrot P., Hauser S.P., Krizek J., and Moser C. " Extending the printing capabilities of laser-induced 
forward transfer from two-dimensional patterning to direct three-dimensional printing", Photonics West 
2018, San Francisco, USA, LASE conference, session on "Laser 3D Manufacturing V", (30/01/2018). 

Delrot P., Loterie D., Psaltis D., and Moser C., "Integrated Platform for Multi-resolution Additive 
Manufacturing," in Industrializing Additive Manufacturing - Proceedings of Additive Manufacturing in 
Products and Applications - AMPA2017, 2nd ed. (Springer International Publishing, 2017), Vol. 32, pp. 
145–151. 

 Delrot P., Krizek J., Modestino M.A., Psaltis D., and Moser C. "Laser direct writing of viscous liquids by 
flow focusing ", Photonics West 2017, San Francisco, USA, LASE conference, session on "Laser 3D 
Manufacturing IV", (30/01/2017).   

Delrot P. and Moser C. “Single- and Two-Photon Micro-Additive Manufacturing through Multimode 
Optical Fibers” at WE-Heraeus-Seminar on Merging Micro- and Nano-Optics: 3D Printing for Advanced 
and Functional Optics, Bad Honnef, Germany, (10/01/2017)   

Delrot P., Psaltis D. and Moser C. “Integrated platform for multi-process precision 3D Printing”, Strategic 
Focus Area - Advanced Manufacturing, 1st workshop: Information Exchange and Consortia Building, 
Dübendorf, Switzerland, (17/10/2016).  

Delrot P., Modestino M.A., Psaltis D., and Moser C. "Laser-assisted inkjet printing of highly viscous fluids with 
sub-nozzle resolution", Photonics West 2016, San Francisco, USA, LASE conference, session on "Laser 3D 
Manufacturing III", (15/02/2016).   

 

 

 

 

   
 

Extracurricular	activities	
Part time consulting in Junior Enterprise Opto-Services                                               2011-2012 
Palaiseau, France 

Writing a scientific report for the French Astronomy non-profit organisation on glare in mesopic vision 

and the standards to implement for urban lighting and for astronomical amateur observatory. 

Manager at the EPFL Photonics Chapter                                                                                 2015-2017 
Lausanne, Switzerland 

Organizing Science outreach events for kids and youngsters (labtours, small experiments to show light 

properties…). 
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