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Abstract
In recent years, Machine Learning based Computer Vision techniques made impressive

progress. These algorithms proved particularly efficient for image classification or

detection of isolated objects. From a probabilistic perspective, these methods can predict

marginals, over single or multiple variables, independently, with high accuracy.

However, in many tasks of practical interest, we need to predict jointly several correlated

variables. Practical applications include people detection in crowded scenes, image

segmentation, surface reconstruction, 3D pose estimation and others. A large part of the

research effort in today’s computer-vision community aims at finding task-specific solu-

tions to these problems, while leveraging the power of Deep-Learning based classifiers.

In this thesis, we present our journey towards a generic and practical solution based on

mean-field (MF) inference.

Mean-field is a Statistical Physics-inspired method which has long been used in Computer-

Vision as a variational approximation to posterior distributions over complex Conditional

Random Fields. Standard mean-field optimization is based on coordinate descent and

in many situations can be impractical. We therefore propose a novel proximal gradient-

based approach to optimizing the variational objective. It is naturally parallelizable and

easy to implement. We prove its convergence, and then demonstrate that, in practice, it

yields faster convergence and often finds better optima than more traditional mean-field

optimization techniques.

Then, we show that we can replace the fully factorized distribution of mean-field by a

weighted mixture of such distributions, that similarly minimizes the KL-Divergence to

the true posterior. Our extension of the clamping method proposed in previous works

allows us to both produce a more descriptive approximation of the true posterior and,

inspired by the diverse MAP paradigms, fit a mixture of mean-field approximations. We

demonstrate that this positively impacts real-world algorithms that initially relied on

mean-fields.
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One of the important properties of the mean-field inference algorithms is that the closed-

form updates are fully differentiable operations. This naturally allows to do parameter

learning by simply unrolling multiple iterations of the updates, the so-called back-

mean-field algorithm. We derive a novel and efficient structured learning method for

multi-modal posterior distribution based on the Multi-Modal Mean-Field approximation,

which can be seamlessly combined to modern gradient-based learning methods such as

CNNs.

Finally, we explore in more details the specific problem of structured learning and

prediction for multiple-people detection in crowded scenes. We then present a mean-field

based structured deep-learning detection algorithm that provides state of the art results

on our new and challenging Wildtrack dataset.

Keywords: mean-field inference, structured learning, conditional random fields, multi-

modal, computer-vision, detection
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Résumé
Les techniques d’apprentissage automatique utilisées en vision par ordinateur ont connu

des progrès surprenants depuis une décennie. Ces algorithmes se sont révélés particulière-

ment performants pour la classification d’images et la détection d’objets isolés. Du point

de vue du statisticien, ces méthodes permettent de prédire des distributions marginales

selon une ou plusieurs variables, de façon indépendantes et avec une grande fiabilité.

Cependant, de nombreuses tâches ayant un intérêt pratique, nécessitent la prédiction

conjointe de plusieurs variables fortement corrélées qui sont, liste non exhaustive : la

détection de personnes dans des scènes denses, la segmentation d’image, la reconstruction

de surface, l’estimation de pose en 3D et d’autres encore. Une grande partie de l’effort

de recherche dans notre domaine, est consacrée à l’élaboration de solutions spécifiques à

chacun de ces problèmes, tout en s’appuyant sur des outils de classification de base fondés

sur des réseaux de neurone profonds. Cette thèse propose de suivre notre cheminement

vers une solution pratique et générique basée sur les algorithmes d’inférence en champ-

moyen (CM).

Le calcul en champ-moyen est une approche inspirée de la physique statistique, classi-

quement utilisée en vision par ordinateur pour approximer des distributions postérieures

complexes définies par des champs aléatoires conditionnels (CAC). Les méthodes clas-

siques d’inférence en champ-moyen sont basées sur une descente par coordonnées et

sont souvent trop coûteuses à utiliser en pratique. Nous introduisons donc un nouvel

algorithme d’inférence en champ-moyen pour des CAC arbitraires. Notre approche a de

meilleures propriétés de convergence, est mieux comprise d’un point de vue théorique

et peut facilement être implémentée sur des infrastructures de calcul parallèle. Après

avoir prouvé la convergence de notre méthode, nous montrons qu’elle permet, sur des

problèmes concrets, de trouver de meilleures solutions que les méthodes traditionnelles.

Dans un second temps, nous établissons qu’il est possible de remplacer l’approximation

en champ-moyen par une superposition de telles distributions, qui comme dans le cas CM,
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minimise la divergence-KL par rapport à la distribution postérieure. Cette extension de la

méthode de clamping, nous permet d’obtenir une approximation plus fidèle du postérieur.

Notre algorithme permet de calibrer une superposition d’approximations en champ

moyen, étendant ainsi l’approche des Maximum-A-Posteriori variés. Nous prouvons

que notre méthode apporte une amélioration pratique significative aux algorithmes

pré-existants utilisant les champ-moyens.

L’approche de champ-moyen se distingue par le fait que les itérations utilisées pour

le calcul sont des opérations différentiables. Il est ainsi possible d’apprendre les para-

mètres d’un CAC par rétro-propagation en déroulant les itérations, cette méthode est

appelée rétro champ-moyen. Nous proposons une nouvelle méthode pour l’apprentissage

structuré de distributions multi-modales, basée sur l’approximation en Champ-Moyen

Multi-Modal. Celle-ci peut être facilement combinée à des méthodes d’apprentissage par

gradient, telles que les réseaux de neurones à convolution.

Enfin, nous nous concentrerons sur le problème de l’apprentissage structuré dans le cadre

de la détection des personnes dans des foules. Nous présenterons un nouvel algorithme,

basé sur ces travaux, qui fournit des résultats supérieurs à l’état de l’art dans le domaine.

Mots-Clés : champ-moyen, apprentissage structuré, champs aléatoires conditionnels,

multi-modal, vision par ordinateur, détection
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1 Introduction

Structured prediction tasks are ubiquitous to computer vision. Indeed, in many problems

where we need to predict several variables jointly, the correlations between the variables

may matter more than their individual values. This is true to tasks such as image

segmentation, people detection, curvilinear structure delineation or surface reconstruction.

Standard modern machine learning techniques such as Deep Neural-Networks, are not

explicitly designed to take into account such correlation. Since this is an important

limitation, task-specific solutions have been developed over the years to solve it. However,

they are often problem focused and do not generalize to other tasks.

Tools from theoretical computer science and machine learning, such as Conditional Ran-

dom Fields (CRF) were applied to structured prediction. One of many such approaches

was to use mean-field inference (MF) to approximate complex posterior distributions

defined through CRFs. This works well in some cases but in some others the algorithm

does not converge or the naive mean-field approximation is too simplistic.

Data and machine learning can be used to learn the parameters of the CRF which best

model the problem at hand. Mean-field inference and back-propagation through unrolled

iterations can be employed to infer the best parameters. However, such algorithms

were inherently limited by the failure modes of the mean-field algorithm and no generic

solution to the structured learning problem based on mean-field had been proposed yet.

In this thesis, we first use mean-field for prediction tasks where the structure is enforced

using a manually defined Conditional Random Fields (CRF). We improve the standard
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Chapter 1. Introduction

MF algorithm in two different ways. First, we improve the convergence properties of

mean-field algorithms for arbitrary potentials. We propose a new MF algorithm that is

faster, easily parellelizable and leads to better performances than previous ones. We then

propose a Multi-Modal Mean-Field method which extends the standard MF algorithm.

By fitting a mixture of fully factorized distribution instead of a single one, we obtain

a better approximation to multi-modal posteriors. Finally, we show that these newly

introduced tools can help us learn the CRF parameters directly from data.

Since the recent practical success of Deep-Neural Networks in computer vision, the

necessity of using Conditional Random Field structures and mean-field inference has

been rightfully questioned. We explain below what benefits CRFs can bring in modern

computer vision applications. Furthermore, we discuss how the underlying ideas behind

mean-field inference can be put to use. We provide details regarding when and where

such approaches should be considered.

Enforcing prior knowledge Humans should be able to guide the learning algorithms

with prior knowledge. Conditional Random Fields and Probabilistic Graphical Mod-

els, can be used by the programmer to input human knowledge about inter-variable

relationships in the following ways:

• As human developers and for many tasks of practical interest, we naturally know

how to write equations to discriminate between good and bad solutions. It is

therefore more intuitive to define the quality of a solution through a scoring or

energy function, than to manually design an algorithm which directly produces

the solution. We can then use off-the-shelf inference algorithms, such as the

mean-field one, to obtain solutions through energy minimization.

• In computer vision, the desired energy model often possesses physical local

invariance properties. Such prior information can be conveyed by using a graphical

structure in the definition of the energy function.

• As explained in more details below, graphical models make it possible to enforce

conditional independence properties on the variables. This is another form of prior

knowledge that is used to guide the structured prediction or learning tasks.

2



In all three cases, the pre-defined energy functions can either have all their parameters

set manually or some or all of these parameters can be undetermined a priori.

Then, if training data is available, inference can be combined with a structured learning

algorithm. This makes it possible to optimize the parameters to best model the data and

therefore learn a meaningful model. As we will see below, mean-field is a very powerful

way to learn the parameters of the pre-defined CRF.

Mean-Field as adaptive filtering In effect, parallel mean-field inference, similarly to

Convolutional Neural Networks, uses a sequence of parallel updates of variables, written

as a linear function of the neighbor’s features, followed by a softmax non-linearity. This

will be discussed extensively in Chapter 3.2.2.

However, there is a notable difference between mean-field and CNN operations. Namely,

standard CNNs use the same linear operation to update each variable with respect to its

neighbors. Mean-field updates, on the other hand are used to modulate the linear update

functions differently for every vertex, through a potential function.

Similar ideas appeared recently in a more general context through adaptative filtering for

graph CNNs [Kipf and Welling, 2016, Simonovsky and Komodakis, 2017]. However,

mean-fields provide a robust and energy-based way to enforce prior knowledge in the

structure of such filters [Krähenbühl and Koltun, 2012].

CRFs for structured learning Conditional Random Fields and Energy based models

can be used to model multi-variate probability distributions, when the predicted variables

are non-independent.

Let I denote the input variable vector, an image in vision for instance and X the vector of

output variables that we want to predict.

Training methods for Convolutional Neural Networks minimize a predefined fixed loss

function, which is usually a L2-loss for a regression task or a Cross-Entropy one for
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Chapter 1. Introduction

classification. Importantly, this loss-function is separable over variables, for instance,

L = ∑
(Ii ,Xi )∈D

∑
k
− log

(
F (Ii )l=X i

k

)
, (1.1)

for categorical variables.

In essence, this means that the network is optimized to predict the mean of continuous

variables or the marginals of categorical ones, given the input data. If the output of the

network is used directly for prediction tasks, for instance to produce image segmentation,

shape reconstruction, multi-object detection and others, this will only be valid if the

posterior over X is such that its multiple components are independent, given the input. In

other terms, that P (X|I), is a fully-factorized distribution.

For many practical applications, this assumption does not hold, as several valid answers

can co-exist for a given question. This is what we call ambiguities or Multi-Modal

posteriors. Examples of such problems range from segmentation of linear structures

such as roads or neurons, detection, 3D pose estimation or surface reconstruction. In

that case, predicting marginals or mean estimates and using them to produce outputs, do

not provide the expected results. This can translate into over-smooth segmentations on

top of which an inference method, based on mean-fields [Krähenbühl and Koltun, 2012]

or Graph-Cuts, has to be applied. For detection, it is almost always necessary to use a

Non-Maximum suppression algorithm [Ren et al., 2015], which can be interpreted as

a greedy form of inference, or to use mean-field inference [Baqué et al., 2017a]. For

multi-people pose estimation most methods also use a CRF-based post processing using

graph-cuts [Pishchulin et al., 2016].

In some other cases, the true posterior is actually fully factorized, but the Neural Network

has not enough capacity to extract and convey all the information contained in I. There-

fore even in the extreme case where P (X|I) should be a Dirac distribution – and therefore

fully-factorized –, the same distribution, conditioned on the features f eat (I), extracted

by the network, P
(
X| f eat (I)

)
, may not be fully factorized. Therefore a probabilistic

model for the correlations between output variables is needed. The augmentation of the

capacity of the Neural Networks, used for semantic segmentation for instance, led to a

reduction of the performance gain brought by CRFs in recent years. This is evidenced by

the numbers reported in Krähenbühl and Koltun [2012] and Chen et al. [2017], where
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the former was published 5 Years before the later.

It is often useful to learn the parameters, or in other terms, the CRF’s potentials, to

make them fit a dataset. We will see in this thesis how mean-fields provide a convenient

and efficient framework to learn these parameters, even if they are embedded in a Deep

architecture.
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• ‖.‖ is the Euclidean norm in RN .

• For a differentiable function f, ∇ f its gradient.

• X is a multivariate random variable composed of the random variables
{X1, . . . , XN }

• I is a vector of variables, usually an image, that is the input of our predic-
tion models.

• Pθ is a probability distribution parametrized by the vector of variables θ.

• Pθ(. | I) is a conditional distribution with input I.

• If f is a functions and Q a probability distribution EX∼Q [ f (X)], is the
expectancy of f (X) where X follows the distribution Q.

• Zθ is the partition function of the Boltzmann distribution associated to
energy Eθ.

• Q is a probability distribution on N independent Bernoulli variables
{X1, . . . , XN }.

• Lθ denotes the log-likelihood loss function used for statistical learning.

• T is a temperature parameter for a Boltzmann distribution in the sense of
statistical physics.

• KL(Q‖P ) is the Kullback-Leibler divergence between distributions Q and
P.

Table 1.1 – Notations
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2 Background and related work

Structured learning is ubiquitous to practical applications. Even though this problem has

attracted less interest in recent years, many approaches were proposed. Some of the most

successful and elegant solutions to it leverage probabilistic graphical models (PGMs).

Throughout this chapter, we will provide a review of PGMs and Conditional Random

Field models. We will go through a discussion of the challenges related to inference and

parameters learning. Furthermore, we will explain some of the existing approaches to

solving them.

We will see why traditional Deep Learning methods are not directly adapted to structured

learning problems. Since this is a major shortcoming, many solutions have been proposed

in recent years, and we will explore some of them. In particular, we will focus on previous

works that combined Deep Learning with CRF models.

Finally, we will review practical applications of the pre-cited methods for computer

vision problems.

2.1 Structured Learning

Machine Learning automatically discovers a model which to explain a set of observations,

in order to be able to predict new ones.
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Chapter 2. Background and related work

2.1.1 Learning and Inference

In this thesis, we will assume a supervised learning setting. In other terms, we assume

that we are given a data-set of observations D = {(xs ,Is)}s=1...D , composed of D train-

ing samples. For every Is , usually an input image in computer vision, we observe a

corresponding output vector xs .

In the parametric learning setting that is studied in this thesis, we assume that we are able

to design a family of parametric conditional distributions {Pθ(. | I)}θ∈P , parametrized by

a multivariate vector θ in a parameter space P . The choice of the relevant family of

distributions is based on prior knowledge about the problem, as discussed below.

Our goal is then to find a value of θ, such that xs ∼ Pθ(X|Is) is a plausible model for the

observed samples in D.

One of the most classical approaches is to set it to the maximum likelihood estimator

θ = argmax
θ

log

( ∏
s=1...D

Pθ(X = xs |Is)

)
(2.1)

= argmax
θ

∑
s=1...D

log(Pθ(X = xs |Is)) ,

which is the value of θ such that the probability of observing the outputs, given the

inputs, is maximized. In this thesis, we will call the objective function of Equation 2.1,

Loss function, and the terms of the sample-wise decomposition the Sample-Loss. We

will therefore write

Lθ =
∑

s=1...D
Lθs .

Once θ is chosen, for any new input I we can produce an estimate of the corresponding

x, either via sampling

x ∼ Pθ(X|I) , (2.2)
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or via Maximum-a-posteriori

x = argmax
x

Pθ(X = x|I) , (2.3)

which corresponds to the most likely configuration of the output.

In the field of statistical learning, the task of choosing θ, as in Equation 2.1, given

a dataset D, is called learning. The one of sampling or computing the Maximum-A-

Posteriori, as in Equation 2.3, is called inference. As we will see below, these are two

closely intricate tasks and a learning algorithm relies on an inference one.

2.1.2 Univariate Learning

For many problems of practical importance, the output X is actually a single variable.

For instance, in the standard regression problem, X is a single real random variable X .

We can then choose a family of distributions Pθ in the Gaussian form

Pθ(X = x|I) = 1p
2Πσ

exp

(
− (x − fθ(I))2

2σ2

)
, (2.4)

where fθ(I), is a parametric function and σ an arbitrary parameter, fixed or learned with

θ. fθ(I) is typically a linear function for the linear regression problem, or a Convolutional

Neural Networks in other cases such as [Baqué et al., 2018].

Another standard task is the classification one. It has attracted a lot of attention in the last

decade. Image classification has become the de-facto standard benchmark to compare

Convolutional Neural Network (CNN) architectures in computer vision. There, X is a

categorical variable that takes values in {1, . . . ,L}, or Bernouilli variable if L = 2. In many

popular machine Learning models, the parametric family {Pθ}θ∈P is taken to be such

that

Pθ(X = l ) = exp( fθ(I)l )∑
k={1,...,L}

exp( fθ(I)k )
, (2.5)

where, again fθ(I) is typically a linear function in the logistic regression model. In many
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applications, fθ(I) takes the form of a Deep-Convolutional Neural Networks as in the

seminal works of [Krizhevsky et al., 2012] and [He et al., 2016].

In this setting, the inference task is trivial. For instance, in the case of the regression

model of 2.4,

argmax
x

Pθ(X = x|I) = fθ(I) ,

and in the classification one of 2.7,

argmax
x

Pθ(X = x|I) = argmax
k

fθ(I)k .

2.1.3 Multivariate Learning

Many tasks of practical interest necessitate to predict several values at the same time. In

other terms, the realizations of our random variable X, are not any more single scalar

values or single categorical variables, but vectors of size N . Examples of such regression

problems range from depth estimation [Eigen et al., 2014] to pressure prediction in

Computational Fluid Dynamics [Baqué et al., 2018]. Moreover, standard examples

of such classification problems are semantic segmentation [Long et al., 2015] and

detection [Ren et al., 2015].

Since that the random variable X is vector-valued, the distribution Pθ(X|I) has to be

a multi-variate one. For regression tasks, a simple approach, which is often used and

sometimes works in practice, is to look for Pθ in the family of fully-factorized distribution.

In such a case, we take

Pθ(X = x | I) = ∏
i∈1...N

1p
2Πσi

exp(−
(
xi − fθ(I)i

)2

2σ2
i

) , (2.6)

where fθ(I)i is a different parametric function for every element i of the output vector.

For classification problems, the same idea applies and we use

Pθ(X = x | I) = ∏
i∈1...N

exp( fθ(I)i ,l=xi )∑
k={1,...,L}

exp( fθ(I)i ,k )
. (2.7)
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In both cases, the sample loss-functions of Equation 2.1, decompose naturally into a sum

of elementary terms, which can be optimized.

Importantly, note that the functions fθ(I)i ,l=xi , share a common set of parameters θ. For,

instance, for semantic segmentation, every pixel would be classified at the end of a large

Convolutional Neural Network. Therefore, features used for the final prediction, are

shared between variables.

Therefore the underlying probabilistic model does not assume conditional independence

between the variables,

P (X = x) 6= ∏
i∈1...N

P (Xi = xi ) .

Only their independence given an input I,

P (X|I) = ∏
i∈1...N

P (Xi |I) ,

is assumed under this class of models.

This assumption is very restrictive on the family of probability distributions that the

network can actually model. The reader can easily think of failure modes of this approach

and we will discuss it in more details later.

Another correct point of view is to say that the learned probabilities are simply marginal

probabilities

P (Xi |I) = ∑
x1,...,xi−1,xi+1,...xN∈X

P (X = x1, . . . , xi−1, Xi , xi+1, . . . xN |I) .

Hence, for a regression task, fθ(I)i will tend to predict the mean values for variable

Xi , given Ii . Similarly, for classification, we obtain marginal distributions through

exp( fθ(I)i ,k )
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2.1.4 Structured Learning

In many cases of interest, the conditional independence assumption of the output variables

contained in X, does not hold.

Therefore, the Maximum-A-Posteriori inference, or sampling, cannot be carried out

independently for all variables using the learned marginals,

argmax
x

Pθ(X = x|I) 6= argmax
x

∑
i=1,...,N

Pθ(X = xi |I) ,

and the difference can be very large. Similarly, sampling from marginal distributions

independently may not be representative of true samples drawn from Pθ(X|I).

Therefore, we can define structured prediction as the task of sampling or finding the

most likely configuration of an output which is composed of multiple strongly correlated

variables. This task corresponds to an inference problem with a non-fully factorized

distribution Pθ(X|I). Structured learning is the task of learning this distribution Pθ(X|I)

from data.

Since it is an important problem, over the years, many approaches were developed.

Earlier attempts include Structured Support Vector Machines [Taskar et al., 2005], which

are explained in more details in [Bakir et al., 2007].

Temporal models such as Hidden Markov Models [Rabiner, 1990] or Recurrent Neural

Networks [Hochreiter and Schmidhuber, 1997], can be seen as structured learning and

prediction algorithms. However, this thesis is considering applications in the domain of

computer vision and we will omit works on sequence modeling.

More recently, two Neural Network based sampling models were introduced. Varia-

tional Auto-Encoders (VAEs) [Kingma and Welling, 2014] and Generative Adversarial

Networks (GANs) [Goodfellow et al., 2014], allow to learn a latent encoding space for

a class of images, where sampling can be performed to reconstruct realistic looking

images.

In both approaches, Pθ is not defined directly, but rather through a sampling model X ∼
fg θ(Y), where fg θ is a neural network, called decoder or generator and Y, a multivariate

12



2.1. Structured Learning

independent Gaussian distribution. Since fg θ is non-invertible, computing directly Pθ(Xs)

for a sample Xs , is not tractable. Therefore, optimizing Pθ to maximize the log-likelihood

of Equation 2.1, is even less tractable. Each of the two models propose an approximation

to it.

VAEs propose to use the standard technique of variational approximation – which will

be explained in more details in Section 2.3 – over the distribution of latent variables. The

main advantage of their approach is that the variational approximation is computed by

another Neural Network that is trained explicitly to provide tight approximation bounds.

GAN methods use a different approach. One of the most successful version of this

algorithm, the WGAN of Arjovsky et al. [2017], aims at minimizing the Wasserstein

distance between Pθ and the empirical data distribution. It leverages the Kantorovich-

Rubinstein duality theorem [Villani, 2008] to do so using a discriminator neural network

fd and an adversarial competition between fd and fg . The discriminator learns a

discrepancy function to discriminate between ground-truth samples and the ones that

were sampled by the generator. The Energy-Based GAN (EBGAN) of Zhao et al.

[2016], is related to the CRF framework that we describe below. Indeed, EBGANs use

a discrepancy function which takes the form of a Boltzmann probability distribution

defined by an Energy function. The Energy function is also used in CRFs to weight the

likelihood of a new sample under the learned model.

Both of the pre-cited classes of approach, namely GANs and VAEs, were impressively

powerful for image generation tasks Goodfellow et al. [2014] or, more recently surface

mesh reconstruction Bagautdinov et al. [2018]. However, despite several attempts, they

were less successful at solving more formal, measurable computer vision tasks such as

Semantic Segmentation Luc et al. [2016].

However, one of the most popular approaches to structured learning remains the Prob-

abilistic Graphical Models (PGMs) one, which is thoroughly described in Koller and

Friedman [2009]. As explained below in more details, such models can be used to

represent a complex family of distributions Pθ.
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2.2 Conditional Random Fields

Probabilistic Graphical Models (PGMs) are used in computer science to represent and

compute probability distributions over multiple variables. By representing random

variables as nodes in a graph the practitioner can input prior knowledge about the

structure of the distribution of interest, which is particularly convenient in a scarce data

situation. The structure of the graph translates conditional independence properties

between variables. Furthermore, the graphical model’s sparse structure makes it possible

to design efficient inference and learning algorithms, even for graphs with a very large

number of variables.

The class of PGMs includes two sub-classes of models, Bayesian Networks (BNs)

and Conditional Random Fields (CRFs). They respectively correspond to directed and

undirected graphical representations. BNs are a powerful model, which induce a hierar-

chy between variables, where Pθ is defined by a sequence of conditional probabilities.

However in this thesis, we focus on parameter learning for CRFs.

2.2.1 Definition

Recall that X = (X1, . . . , XN ) represents prediction variables and I an input, usually an

image in Computer Visions. A CRF relates the ones to the others via a posterior

probability distribution

P (X) = 1

Z

∏
c∈C

ψc (Xc | I) , (2.8)

which is often rewritten in the exponential form as

P (X | I) = exp
(−E(X | I)− log(Z (I))

)
, (2.9)

where E(X | I) is an energy function that can be decomposed into a sum

E(X | I) = ∑
c∈C

φc (Xc |I) , (2.10)

14



2.2. Conditional Random Fields

where C is a subset of indices in {1, . . . , N }, called graph-cliques. φc (Xc |I) are locally

defined functions which take as input the values of the subset of variables Xc , where

Xc = {X j } j∈C .

The functions φc (·|I), are called potential functions.

Finally, A(I) = log(Z (I)) is the log-partition function that normalizes the distribution.

We will sometimes omit the dependency with respect to I and if the potential functions

do not depend on an external input I, then the model is often called a Markov Random

Field.

In this thesis, we will use the following terminology to define potential functions φc

according to the size of the corresponding clique c

• Unary potentials : |c| = 1

• Pairwise potentials : |c| = 2

• High-Order potentials : |c| ≥ 3

2.2.2 Graphical representation and properties

The CRF is often very conveniently represented as a graph. Generic CRFs use a specific

form, which is called factor graph in order to account for Higher-Order potentials with

clique size greater than two. As illustrated in Figure 2.1, a factor graph is a bipartite graph

where variable nodes are represented by circles and potential nodes are represented by

squares, called factors. Every factor node corresponds to a potential φc , and is connected

to all the variable nodes in the clique c.

Several interesting properties can be derived from the definition of the CRF.

In particular, let us consider two nodes A and B , associated with variables X A and XB .

Let us assume that C is a subset of nodes that forms a vertex-cut, which disconnects
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P (X | I) = exp

0
@ X

c⇢{1,...,N}
�c(Xc | I) � log Z(I)

1
A

X1 X2 X3

�123(X1, X2, X3)

�12(X1, X2)

�1(X1)

Figure 2.1 – Factor graph representation.

nodes A and B . Then, the following conditional independence property holds:

P (X A, XB |XC) = P (X A|XC)P (XB |XC) ,

where XC is the set of variables associated to the nodes in C.

Consequently, a variable X A, is independent of any other variable XB given XC if C

contains the set of neighbors of A in the graph.

2.2.3 Exponential family representation and duality

The exponential family is a large class of probability distributions, which is widely used

for graphical models.

There are two main representations of exponential family distributions, and both corre-

spond to parameters which are dually related and equivalent. The first representation is

given as an exponential potential, parametrized by θ and is a specific form of the one of

Equation 2.2. φ is the vector of sufficient statistics, which characterizes the family of
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distributions we are working with. A(θ) is the log-partition function, which normalizes

the distribution

Pθ(X = x) = exp
(<φ(x),θ >−Aθ

)
. (2.11)

For instance, in the case of a pairwise MRF, we have unary terms and pairwise terms

such that :

<φ(x),θ >= ∑
i=1,...,N
k=1,...,L

xi ,kθi ,l +
∑

i=1,...,N
j=1,...,N
k=1,...,L
m=1,...,L

xi ,k x j ,lθi , j ,k,l

The second representation of the exponential family distribution is the moments rep-

resentation. We denote by Xµ the random variable with sufficient statistics φ such

that

E [φ(Xµ)] =µ .

Interestingly, as explained before, for a binary pairwise CRF, the sufficient statistics

is the vector φ(x) = (xi ,l , xi , j ,k,l ). Therefore, the probability distribution is naturally

represented in terms of expectancies, variance and covariances of individual variables.

Both representations are dually related through a Legendre transform. These ideas are

used to travel between both representations throughout the thesis.

More precisely, the Legendre Transform A∗(µ) of A(θ) is also the negative entropy of

the variable Xµ under Pθ. Concretely, it means that :

Aθ = sup{< θ,µ>−A∗(µ)} ,µ ∈ M , (2.12)

where M is the set of all realizable moment parameters µ. Here, realizable means

that they respect basic properties of probability distributions about normalization and

marginalization. The moment representation corresponds to the value of µwhich achieves

the optimum in the Legendre transform of Equation 2.12. The inference task described

in Section 2.3, can be interpreted as switching from one representation to the other.
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2.3 Inference

Let us further assume that Pθ is a probability distribution defined by a CRF, as in

Equation 2.4.1. As discussed in 2.1, one of the main challenges of structured learning is

the inference one.

Note that, the seemingly simple definition of Pθ from Equation 2.4.1 hides a major

difficulty. Indeed, the normalizing partition function Z , is actually computed as the sum

of an exponentially large number of terms as

Z = ∑
xi nX

exp (−E(x)) ,

where X is the set of all possible configurations of x. In other terms, if we work with

categorical variables that can take L values, then |X | = LN .

This remark shows that, even computing marginal probabilities

Pθ(X A = k|I) ,

becomes a challenging problem, which can only be solved by brute force summation for

relatively small CRFs.

Similar challenges apply to Maximum-a-Posteriori (MAP) inference, the task of finding

the most likely configuration in X .

Because any propositional satisfiability problem can be represented as a factor graph, we

know that, in the general case, we can only hope for approximations of the solution to

the inference problems. However, for a restricted class of CRFs, the inference problem

can be solved exactly. More precisely, for graphical models having a tree-like structure,

a simple iterative marginalization technique can be applied to solve exactly the marginal

and MAP inference problems. These algorithms are called respectively sum-product and

max-sum algorithms Koller and Friedman [2009].

A slightly more challenging but also tractable case is the one of graph structures which

are close to being trees. Indeed, when a graph can be represented as a tree of small

cliques, the sum-product and max-sum algorithms can be applied on an augmented

18



2.3. Inference

graphical models where original variables are replaced by cliques. This algorithm, called

junction-tree, eliminates cycles by clustering variables. The maximum size of clusters

that have to be considered to transform a CRF into a tree is called tree-width and the

complexity of exact inference directly depends on it.

2.3.1 Belief propagation

Quite interestingly, the algorithm described above, which was initially designed for

graphs with no loops, has been applied successfully in the loopy setting. This leads

to a range of algorithms, whose convergence properties are not fully understood, and

which only provide an approximation to the marginals. This method has been developed

and used in several fields with different names. It is known as the "Bethe-Peierls

approximation" in Physics, the "sum-product" (or "max-sum") in computer science and

as "Belief Propagation" (BP) by the machine learning community.

Belief Propagation As mentioned above, the "loopy" belief propagation is inspired

from a procedure which is exact on tree-like graphical models. This procedure is

relatively simple, it is a systematic recipe to marginalise the distribution.

In this section, for clarity, a denotes a factor index from the graphical model and ∂a, the

variable indices in the corresponding clique, or in other terms the adjacent variable nodes

in the factor graph representation.

Let us assume for the moment that our probability distribution µ(x) replaces P (x) in 2.8

and that the corresponding factor graph is a tree. The main, and most important ingredient

of the BP algorithm is the set of messages νi→a and ν̂a→i which are exchanged between

variable and factor nodes.

These messages are also “local” probability distributions, defined over a single variable

xi . A message νi→a from a variable to a factor node is the marginal distribution of

xi on a “modified” model, where the factor node a has been removed. Similarly, a

message ν̂a→i from a factor to a variable node is the marginal of xi on the model where

all factors adjacent to xi but a have been removed. Intuitively, on trees, this corresponds

to marginals coming from different parts of the tree, and the true marginal of xi can be
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computed as:

µ(xi ) ∝ ∏
a∈∂i

ν̂a→i (xi ) (2.13)

Using basic marginalization properties of probability distributions, one can easily show

that the messages obey to the following fixed point equations:

νi→a = ∏
b∈∂i \a

ν̂b→i (xi )

ν̂a→i =
∑

x∂a \i
ψa(x∂a)

∏
k∈∂a\i

νk→a(xk )
(2.14)

Free Energy The free Energy of a system is defined from as its negative log-partition

function:

F =−T. log(Z ) (2.15)

where T is a temperature.

One of the basic results of statistical physics states that the Free Energy is actually the

sum of the Expected Energy and the negative entropy:

F (µ) =∑
x
µ(x) log

M∏
a=1

ψa(x∂a)︸ ︷︷ ︸
E (µ)

+T.
∑

x
µ(x) log(µ(x))︸ ︷︷ ︸

−H (µ)

(2.16)

Bethe Free Energy On tree-like factor graphs, the Bethe Free-Entropy is exactly equal

to the Free Entropy. On general graphs, it is only an approximation of it.

The Bethe Free Energy is a function over the set of marginals {µi ,µa} which are locally
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consistent

∑
x∂a \i

µa(x∂a) =µi (xi ) , (2.17)

defined as

F =− ∑
a∈F

µa(x∂a) log
µa(x∂a)

ψa(x∂a)
− ∑

i∈V
(1−|∂i |)µi (xi ) logµi (xi ) . (2.18)

Lemma 1 Note that the Free Energy can be rewritten in terms of the message passing

terms (ν, ν̂) instead of marginals µ:

F(ν) =− ∑
a∈F

Fa(ν)− ∑
i∈V

Fi (ν)+ ∑
(i a)∈E

Fi a(ν) , (2.19)

where

Fa(ν) = log

[∑
x∂a

ψa(x∂a)
∏

i∈∂a
νi→a(xi )

]
, Fi (ν) = log

[∑
xi

∏
b∈∂i

ν̂b→i (xi )

]
,

Fai (ν) = log

[∑
xi

νi→a(xi )ν̂a→i (xi )

]
.

Proof Let us first look at the Fa(ν) term.

Looking at the fixed point message passing rule, we know that

∑
x∂a

ψa(x∂a)
∏

i∈∂a
νi→a(xi ) = Za

where Za is the local partition function such that µ(x∂a) =
ψa(x∂a)

∏
i∈∂a

νi→a(xi )

Za
.

Therefore, Fa(ν) =− log(Za). Furthermore, we know that for any system, − log(Za) is

the free energy function, which can also be expressed as the sum of Energy and negative

entropy (see Equation 2.16).
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Which means that:

Fa(ν) =− log(Za)

=−∑
x∂a

µa(x∂a) log(ψa(x∂a))+∑
x∂a

µa(x∂a) log(µa(x∂a))

=∑
x∂a

µa(x∂a) log

[
µa(x∂a)

ψa(x∂a
)

] (2.20)

Now, let us look more precisely at the last term Fi a(ν). Again, we use the message

passing fixed point equation to get:

Fi a(ν) = log(
∑
xi

νi→a(xi )ν̂a→i (xi ))

= log(
∑
xi

∏
b∈∂i \a

ν̂b→i ν̂a→i (xi ))

= log(
∑
xi

∏
b∈∂i

ν̂b→i )

= Fi (ν)

(2.21)

Therefore,

− ∑
i∈V

Fi (ν)+ ∑
(i a)∈E

Fi a(ν) = (|∂i |−1)Fi (ν)

And use for Fi (ν) the same method as for Fa(ν) to terminate the proof.

To each set of messages corresponds a locally consistent set of marginals that can be

computed as

µi (xi ) = ∏
{b∈∂i }

ν̂b→i (xi )

µa(X∂a) =∑
x∂a

ψa(x∂a)
∏

k∈∂a
νk→a(xk ) .

(2.22)

Theorem 2 There is a one-to-one correspondence between stationary points of the Bethe

free entropy function and fixed points of the BP algorithm.

The first proof of this fact was given in Yedidia et al. [2001].
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Proof We provide a proof sketch.

Take the formulation of the Bethe Free Entropy as given in Equation 2.18. We are looking

to minimize this expression with respect to the marginals ba and bi . We introduce the

Lagrange multipliers to enforce the local consistency of Equation 2.17.

We then differentiate the Lagrangian in order to derive the first order stationarity condi-

tion, and obtain a simple condition on the Lagrange multipliers. It turns out, that after

an exponential reparametrisation of the Lagrange multipliers, the first order conditions

are exactly similar to the BP fixed point equations. In other terms, the BP messages

correspond (up to reparametrisation), to the Lagrange multipliers.

Fixed points and clusters. The BP message passing rules and the fact that they lead

to exact marginals on tree-like graphs, have been well known for several decades. Their

extension to loopy graphs, and the correspondence between BP fixed points and stationary

points of the Free entropy are more recent [Yedidia et al., 2001], but this knowledge

is widespread within the computer science community. However, people often use BP

in our community for loopy graphs, knowing that it might not converge, that several

local minima may exist, but without fully understanding when that may be the case.

Quite interestingly, some tools from statistical physics let us understand and predict such

behaviors.

Indeed, the main assumption that is used to show that the BP equations converge in tree-

like graphs is the conditional independence of variables in ∂a, adjacent to a same factor

a, when this factor is removed. In large random graphs, when the density of connections

is not too large, this assumption is almost verified as neighboring variables, generally

become “far apart” when the factor that was linking them is removed. Therefore, if,

as it is often the case, correlations between variables decrease on the long range, two

variables in ∂a are almost independent once factor a is removed.

In some cases, one can predict how difficult it will be for the BP algorithm to converge

or to find a good solution, for an average instance. More precisely, as the connectivity of

the graph increases, clusters of local minima of BP equations arise and the optimization

through BP iterates becomes more and more hazardous. For more details on the topic,
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we refer the reader to Mezard and Montanari [2009].

2.3.2 Mean-Field Inference

Mean-Field is another well-known method from statistical physics. In Computer-Science,

it has been derived as a special case of variational inference (VI) [Kappes et al., 2015].

We will review both techniques below.

Variational Inference Recall that the final goal of parameters learning is, as stated

in Equation 2.1 to maximize the probability of the data under the distribution Pθ, with

respect to θ. According to Equation 2.8, this is made difficult by the presence of the

partition function Z . As studied in section 2.4, one approach to alleviating this problem

is to use a variational upper bound, using an approximating auxiliary distribution Q,

within a tractable, restricted family of distributions.

More precisely, let Q denote a restricted family of distributions over the same variables

X as Pθ. Furthermore, let us assume the that these distributions are tractable for infer-

ence. For instance, they can be fully factorized or be represented by a tree-like CRF.

Furthermore, in the derivation we omit the dependence of Pθ in I for clarity. Then, we

can derive the following lower-bound to the log-partition function

Aθ = log Zθ = log
∑

x∈X

exp(−Eθ(x)) (2.23)

= log
∑

x∈X

Q(x)
exp(−Eθ(x))

Q(x)
(2.24)

≥− ∑
x∈X

Q(x)Eθ(x)+H (Q) (2.25)

≥−EX∼Q [Eθ(x)]+H (Q) = AQ , (2.26)

where Q is a probability distribution whose support includes the one of Pθ and H (Q) is

its entropy function

H (Q) =− ∑
x∈X

Q(x) log(Q(x)) .

Note that we used Jensen’s inequality between 2.24 and 2.24.

24



2.3. Inference

The approximation error in the log-partition function estimation can then be rewritten as

Aθ− AQ = log Zθ+EX∼Q [Eθ(x)]−H (Q) (2.27)

= EX∼Q [log
Q(X)

Pθ(X)
]

=KL(Q‖Pθ) , (2.28)

where KL denotes the Kullback-Leibler divergence between the variational distribution

Q and the original one P .

Variational Inference as distribution approximation The Kullback-Leibler diver-

gence is commonly used to measure distance between probability distributions. More

precisely it belongs to the wider family of Bregman divergences [Bregman, 1967] and is

defined as

KL(Q||P ) = ∑
x∈X

Q(X = x) log
Q(X = x)

P (X = x)
. (2.29)

In order to obtain an estimate of the log-partition function that is as accurate as possible,

one will be looking for a distribution Q that makes the gap of Equation 2.27 as small as

possible. In other terms, Equation 2.28 lets us think of the Variational Inference problem

as the one of approximating a complex distribution Pθ by a simpler one Q within a

restricted family of distributions Q.

For a given Pθ, the distribution Qθ stands for

Qθ = argmin
Q∈Q

KL(Q‖Pθ) ,

which is the optimal variational approximation to Pθ within the restricted family Q.

Note that,

if Pθ ∈Q

then Pθ =Qθ

and KL(Qθ‖Pθ) = 0 ,
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which means that the best approximation to Pθ is itself.

As we will see in this thesis, even when the family Q is very restricted, Q can sometimes

be a good approximation to Pθ. Intuitively, a good Variational Approximation Qθ will put

weight were Pθ already has some weight, but may ignore other likely regions. Figure 2.2,

illustrates this fact with Gaussian Approximation.

Large K L(Q‖Pθ) Small K L(Q‖Pθ)

Figure 2.2 – KL-divergence for Gaussian approximation for a mixture of Gaussians Pθ

Computationally, this minimization is only feasible because the term log Zθ in 2.27, does

not depend on Q and can therefore be ignored in the optimization process.

Mean-Field inference Mean-Field (MF) inference is a specific form of variational

inference for multivariate distributions. The MF algorithms look for an approximation

within the restricted family Q of fully-factorized distributions. Because of the very

simple form of the approximating distribution, it is also often called naive Mean-Field.

More precisely, recall that we are looking for a probability distribution on a multi-variate

variable X = (X1, . . . , XN ). We therefore introduce a distribution Q written as

Q(X = (x1, . . . , xN )) =
N∏

i=1
Qi (xi ) , (2.30)

where Qi ( · ) is a mono-dimensional distribution.

For classification types of problems, where each variable Xi is a categorical variable,

Qi ( · ) is a categorical discrete distribution, which can be parametrized by a vector qi of
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real numbers

qi ,l =Qi (Xi = l ;qi ) for i ∈ {1, . . . , N } , l ∈ {1, . . . ,L}

and qi ∈M where, M is the set of parameters verifying

∀i ∈ {1, . . . , N }
∑

l∈{1,...,L}
qi ,l = 1 .

The qi ,l are estimated by minimizing the KL-divergence of Equation 2.29. To insist on

this parametrization, we will indifferently write Qi (Xi ;qi ) or Qi (Xi ).

Since Q is fully factorized, the terms of the KL-divergence can be recombined as a sum

of an expected energy, containing as many terms as there are potentials and a convex

negative entropy containing one term per variable

KL(Q‖Pθ) = ∑
c∈C

EX∼Q [φc (X)]− ∑
i=1,...,N

H (Qi )+ log Zθ , (2.31)

where

H (Qi ) =− ∑
l∈{1,...,L}

qi ,l log qi ,l .

We can ignore Zθ, which does not depend on Q and rewrite the objective function as

F (q) =−EQ(X ;q)[logP (X | I)]︸ ︷︷ ︸
E (q)

+EQ(X ;q)[logQ(X ;q)]︸ ︷︷ ︸
−H (q)

, (2.32)

which is often called variational Free-Energy.

The design of efficient and convergent minimization algorithms for this objective function

will be part of the topic of this thesis.

If the variables are continuous ones, we will look for Q in the form of a product of

Gaussian densities. In other term, we will then choose to write Qi ( · ) as

Qi (xi ) = 1p
2Πσi

exp(− (xi −αi )2

2σ2
i

) ,
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where αi and σi are the parameters to optimize during inference. In this case, Equa-

tion 2.31, remains valid, except for the expression of the entropy.

Traditional Mean-Field Algorithm For completeness, we provide a derivation of

well-known coordinate descent optimization technique for mean-field updates, similar in

spirit to the one of Bishop [2006]. This minimization problem is going to be discussed

in more details in Chapter 3, where we derive a new approach.

The traditional Mean-Field algorithm is used to minimize of the variational Free-Energy

F (q) of Equation 2.32, iteratively with respect to q.

The algorithm performs iterations to update a probability distribution Q t until conver-

gence. qt
i = {q t

i ,1, . . . , q t
i ,L} denotes the subset of parameters corresponding to the variable

Xi .

The optimization scheme used is essentially a block coordinate descent over the parame-

ters. Therefore, at iteration t , we choose a variable index i to optimize and the subset

of parameters that correspond to all the other variables, which we will denote by qt
\i ,

remains fixed. At step t we therefore have to solve the simplified optimization problem

minimize
qi

E (qi ,qt
\i )−H (qi ,qt

\i )

subject to
∑

l
qi ,l = 1 .

(2.33)

Let us first expand the first term of Equation 2.33. We write

E (qi ,qt
\i ) =−EQ(X ;q)[logP (X|I)]

=−EQ(X ;q)
[
EQ(X |q)[logP (X|I)|Xi ]

]
=−∑

l
qi ,l EQ(X ;q\i )[logP (X|I)|Xi = l ] .

(2.34)

Since Q(X;q) is a product of categorical distributions Qi (Xi ;q), we can rewrite the second
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term of Equation 2.33 as

−H (qi ,qt
\i ) =∑

j ,l
q j ,l log q j ,l

=∑
l

qi ,l log qi ,l +
∑

j : j 6=i

∑
l

q j ,l log q j ,l︸ ︷︷ ︸
Ci

, (2.35)

where Ci denotes the constant summand which does not include terms related to Xi .

Let us now define the Lagrangian

L (qi ,µi ) = E (qi ,qt
\i )−H (qi ,qt

\i )−µi (
∑

l
qi ,l −1)

=−∑
l

qi ,l EQ(X |q−i )[log p(X|I)|Xi = l ]+∑
l

qi ,l log qi ,l −µi (
∑

l
qi ,l −1)+Ci .

(2.36)

where we introduced a dual variable µi to account for the optimization constraint. By

differentiating with respect to a qi ,l we obtain the optimality condition

log q?i ,l = EQ(X |q\i )[log p(X|I)|Xi = l ]+µi . (2.37)

This leads to the standard update rule

∀l , q?i ,l ∝ exp
[
EQ(X |q\i )[log p(X|I)|Xi = l ]

]
, (2.38)

where the normalization constant can be computed from µi .

Iteratively applying Equation 2.38 by looping through the variables then guarantees the

convergence of F , due to the fact that F is convex with respect to each qi ,l [Bishop,

2006, Baqué et al., 2015].

2.4 Parameters Learning

As discussed in 2.1, we are interested in learning the parameters θ of the distribution

Pθ(X|I) in order to model a dataset {(Xd ,Id )}d=1,...,D .
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When the variables X that we want to model are multivariate and non-independent, given

I, a good way to define an appropriate family of distributions is to use a CRF type of

models. Therefore, in this section, we will assume that Pθ takes the form of a CRF as in

Equation 2.4.1, conditioned on an input I and parametrized by θ as

Pθ(X | I) = exp
(−E (X | I;θ)− log(Z (I;θ))

)
, (2.39)

where E (X | I) is an energy function that can be decomposed into a sum

E (X | I;θ) = ∑
c∈C

φc (Xc |I;θ) .

2.4.1 Maximum likelihood learning

One of the most popular approaches to parameters learning is the maximum likelihood

one. In this setting, using the specific form of Pθ defined in Equation 2.39, we will be

looking for the maximum likelihood parameter of the loss function Lθ

argmin
θ

∑
s=1...D

− log(Pθ(X = xs |Is)) .

Since there is no closed form solution to this problem, we will be using a gradient-based

minimization approach.

∇θLθ =− ∑
s=1...D

∇θ log(Pθ(X = xs |Is)) . (2.40)

For the sake of simplicity, we will further assume that only one sample is given – or that

we compute only one term in the gradient of Equation 2.40 –, the full gradient being

then recovered by a mere summation. With a very large dataset, or on-line settings,

the gradients can be recombined via stochastic gradient descent [Bottou and Bousquet,

2008].

Let us now focus on the challenge of computing the gradient terms

∇θ− log(Pθ(X = xs |Is)) .
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According to the specific form of Pθ, given in Equation , we obtain

∇θ− log(Pθ(X = xs |Is)) =∇θE (xs | Is ;θ)−∇θ log Z (I;θ) (2.41)

=∇θE (X | Is ;θ)−
∑

x∈X
∇θ (E (x | Is ;θ))exp(−E (x | Is ;θ))

Z (Is ;θ)

=∇θE (xs | Is ;θ)− ∑
x∈X

Pθ(X = x|Is ;θ)∇θ (E (x | Is ;θ))

=∇θE (xs | Is ;θ)−EX∼Pθ [∇θE (X | Is ;θ)] . (2.42)

The formula obtained in Equation 2.42 is central to likelihood-based structured learning

methods. However, this equation hides a major technical difficulty. In order to compute

the right-most term of Equation 2.42, we need to estimate EX∼Pθ [∇θE (X | I;θ)], which is

implicitly an inference problem.

From here, several approaches can be used. One alternative is to try to approximate

explicitly EX∼Pθ [∇θE (X | I;θ)] by standard inference techniques. Both Belief Propagation

(BP) and Variational Inference (VI) methods described in Section 2.3, can be used here

for approximate inference. This approach can be slow because of the computational

complexity of inference algorithms and the quality of the learning may be limited by the

approximation capacity of inference algorithms.

These approaches, and especially the one based on Mean-Field (MF) variational inference,

will be discussed in more details in this thesis.

Another approach, which is used in practice to accelerate these algorithms, is based on

an approximation of the expectancy of 2.42 via sampling. Ideally, if we had access to a

method to sample exactly from the current estimate of the distribution Pθ, we could use

it to form an unbiased estimator of EX∼Pθ . Using convergence properties of stochastic

gradient descent, we could then, at each step, draw a point from the training set (xs ,Is) to

compute the left-most term, and a sample from our unbiased Pθ sampler to compute a

step.

In order to approximate a perfect sampler for Pθ, we can use Markov chain Monte Carlo

(MCMC) or Gibbs sampling methods on CRF Walsh [2004]. However, in theory, one

needs to run many MCMC iterations before convergence to obtain good and diverse
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samples. This has to be done again at each stochastic gradient iteration. It can make

sampling based methods very slow in practice.

An idea, called contrastive divergence algorithm, was proposed by Hinton [2002] to

solve this problem and accelerate sampling, at the cost of more noisy gradient estimates.

The main idea is to initialize the MCMC with the sampled ground truth data-point xs

and run only a few MCMC iterations from here. The underlying assumption is that the

samples from the ground-truth empirical distributions should not be too far from Pθ, and

therefore, initializing the iterations with it is better than a random initialization. Again,

we will see how this concept relates to our Multi-Modal Mean-Field algorithm.

2.4.2 Back Mean-Field

Recently, other authors developed a more pragmatic approach to the CRF parameters

learning problem. Starting from the observation that the CRF is trained in order to be

able to then make predictions using inference methods, the recent work of Domke [2013]

proposed to directly learn the weights in order to make the variational inference process

generate distributions which correctly model the ground truth. In other terms, it means

that we are looking for

θ∗ =argmin
θ

− logQθ(xs) (2.43)

s.t Qθ = argmin
Q∈Q

KL(Q‖Pθ) . (2.44)

In order to optimize the parameters θ, the authors differentiate the mean-field iterations

that are used to find Qθ from Equation 2.44 using chain rule.

They then use this differentiable mapping to compute

∂ logQθ(xs)

∂θ
,

which can finally be used to optimize Equation 2.43 with a gradient descent scheme.

In practice, Domke [2013], uses this method where Qθ is obtained via naive Mean-Field

inference. As we will see, this has severe limitations in terms of structured learning
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properties, because of the very limited modeling power of the naive MF approach.

However, it comes with the advantage that the practitioner can fine tune the parameters

of a predefined CRF, via simple back-propagation through the MF iterations.

2.5 Deep CRFs and Computer Vision

Conditional Random Fields are a very useful modeling tool for structured learning

problems. On the other hand, Deep Convolutional Neural Networks have proven their

unmatched efficacy for feature extraction, univariate classification and regression tasks in

Computer Vision. Very naturally, attempts have been made at combining both approaches

in recent years. We will describe the type of models which is most often used and some

of the relevant works in the domain.

2.5.1 Deep CRFs

In the previous sections, we described the CRFs as an hyper-graph where variables are

connected by potentials. In Section 2.2, we also studied the exponential family CRFs,

where the potentials φc (Xc | θ) can be decomposed as

φc (Xc | θ) = θcφc (Xc ) ,

where φc is a polynomial function of the clique variables Xc , usually called sufficient

statistics.

Here, we go one step further and assume that the potential functions depend parametri-

cally on an image input I, and hence rewrite the energy terms of Equation 2.10 as

φc (Xc | I,θ) = θc (I,ω)φc (Xc ) ,

where θc is a Neural Network function and ω its synaptic weights.

In this setting, we replace the objective of learning the CRF parameters θc by the one of

learning a parametric mapping from an image I through CNN parameters ω. Most of the

33



Chapter 2. Background and related work

times, the synaptic weights ω, will be shared between several neural networks, which

will actually be a single one with many heads.

2.5.2 Not end-to-end CRFs as refinement

In many practical examples of structured prediction, a neural network is trained using a

standard independent loss as in 2.1.1. However the obtained predictions, which don’t

take inter-variable correlations into account, are not suitable answers to the prediction

problems. A predefined pairwise or higher order CRF inference module can then be used

to recover a structured output. We provide below three examples of such cases.

Dense CRF for semantic segmentation This CRF model, introduced by Krähenbühl

and Koltun [2011], has been used in many semantic segmentation pipelines and success-

fully used in conjunction with Deep-Learning based methods Chen et al. [2015]. We will

build on top of it in several chapters of this thesis.

In this model, a CNN is trained to predict a marginal distribution over semantic labels

independently for each pixel. A dense network of pairwise CRF potentials is then

considered on top to refine the segmentation, based on pixels’ proximity on the image

and RGB similarity. More precisely, the pairwise potentials can be written as

φi , j (xi , x j | I;θ) = ∑
(k,l )

xi ,k x j ,l exp

(
−‖pi −p j‖2

2θ2
α

)
exp

(
−‖Ii − I j‖2

2θ2
β

)
, (2.45)

where pi denotes the physical coordinates of the pixel on the image and Ii the rgb color

on the original image.

Higher-Order repulsive CRF for detection Conditional random-field techniques

have also been used in the context of object detection, even though not always presented

as such. The most typical example is the Hough transform framework. The Hough

method can be interpreted as a greedy heuristic to find a Maximum-a-Posteriori in a

CRF. In that case, the energy has the same form as the objective of a facility location

problem [Farahani et al., 2012].
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In this class of problems, large clique sizes are involved. The potential terms in the energy

function are designed to take a large value if at least one of the variables in a clique has

label of interest and 0 otherwise. These potentials are useful for detection tasks, where

we observe a detection evidence on the image, for instance a non-background pixel, and

we want at least one of the detection variables to be on to explain this detection. More

precisely, the potential functions will be written as

φc (xc | I;θ) =∏
i∈c

(1−xi )θ(I); (2.46)

where θ(I) is a detection feature function in the image. It can be a background subtraction

operation, as in Fleuret et al. [2008], or be based on a more sophisticated classifier, as

in Barinova et al. [2012].

Barinova et al. [2012] propose a powerful Heuristic – inspired by standard Operations

Research techniques –, in order to solve for a MAP assignment in a repulsive MRF. They

apply their method in the context of pedestrian detection with Hough Forests. As the

non-maximum-suppression task is fairly simple in the examples they use, their method

performs well [Barinova et al., 2012].

In Fleuret et al. [2008], a similar problem is solved by using a mean-field relaxation,

which is solved with fixed point iterations.

Other works Very recent approaches to bounding-box detection in images, such as Ren

et al. [2015], Liu et al. [2016], use a Non-Maximum-Suppression (NMS) post-processing

step to produce final detections. This is needed because the unary classifier produces

independent detections which don’t take into account the fact that an object has already

been detected. The NMS step can then be seen as a MAP inference process in a pairwise

repulsive CRF where variables correspond to bounding-boxes and potentials are based

on the Intersection-over-Union between bounding-boxes.

Recent approaches to multiple people pose estimation such as the one of Pishchulin et al.

[2016], are also using a pairwise CRF to reconstruct skeletons, where unary potentials

are based on joint detectors and pairwise ones are based on a learned estimation of

compatibility between pairs of joints.
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2.5.3 End-to-end trained models

In all the examples described above, the unary and pairwise potentials can sometimes

use data-driven models. For instance, unary potentials can stem from trained CNN-based

pixel classifiers Chen et al. [2015] or pairwise potentials may be computed from a learned

regressor as in Pishchulin et al. [2016]

However, some parts of the parameters CRF parameters always need to be set manually

and the model is never trained directly to produce the expected outputs. It therefore often

requires a careful manual selection of some parameters, which will for instance weight

the importance of the different types of potentials with respect to each other.

Training the model end-to-end requires to apply one of the methods which were described

in section 2.4. However, modern Neural Network architectures are very efficiently

implemented and are usually orders of magnitude faster than the slow and iterative

inference processes described above. Therefore, the practical complexity of inference

methods has slowed down their adoption in modern computer vision pipeline which are

hardly ever trained end-to-end.

Nevertheless, the work of Zheng et al. [2015] partially solved the problem and proposed

an approach based on the back mean-field method described in section 2.4. The authors

unroll the naive mean-field inference iterations as a sequence of neural-network layers.

They can then back-propagate the gradient over the iterations and learn the parameters of

the CRF which have implicitly become Neural Network parameters in this new inference

layer.

One of the strengths of this new model was to introduce the concept of adaptive filtering

in Neural Networks. The convolutions were not any more performed according to the

image distance, but on a higher 5-dimensional space including xy-coordinates and rgb

colors in the initial image.

However, as we will see in this thesis, this method remains restricted by the modeling

power of the naive mean-field. It fails to learn parameters properly in very ambiguous

and multi-modal settings.
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ence for Discrete Random Fields

3.1 Optimizing Mean-Field

As explained in Chapter 2, many Computer Vision problems, ranging from image

segmentation to depth estimation from stereo, can be naturally formulated in terms

of Conditional Random Fields (CRFs). Solving these problems then requires either

estimating the most probable state of the CRF, or the marginal distributions over the

unobserved variables. Since there are many such variables, it is usually impossible to get

an exact answer, and one must instead look for an approximation.

Mean-field variational inference Wainwright and Jordan [2008] is one of the most

effective ways to do approximate inference and has become increasingly popular in

our field Saito et al. [2012], Vineet et al. [2014], Krähenbühl and Koltun [2013]. It

involves introducing a variational distribution that is a product of terms, typically one

per hidden variable. These terms are then estimated by minimizing the Kullback-Leibler

(KL) divergence between the variational and the true posterior. The standard scheme is

to iteratively update each factor of the distribution one-by-one. This is guaranteed to

converge Bishop [2006], Koller and Friedman [2009], but is not very scalable, because all

variables have to be updated sequentially. It becomes impractical for realistically-sized

problems when there are substantial interactions between the variables. This can be

remedied by replacing the sequential updates by parallel ones, often at the cost of failing

to converge.

It has nonetheless recently been shown that parallel updates could be done in a provably
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input baseline ours ground truth

Figure 3.1 – First two rows: VOC2012 images in which we outperform a baseline by
adding simple co-ocurrence terms, which our optimization scheme, unlike earlier ones,
can handle. Bottom row: Our scheme also allows us to improve upon a baseline for the
purpose of recovering a character from its corrupted version.

convergent way for pairwise CRFs, provided that the potentials are concave Krähenbühl

and Koltun [2013]. When they are not, an ad hoc heuristic designed to achieve conver-

gence, which essentially smooths steps by averaging between the next and current iterate,

has been used over the years. This heuristic is mentioned explicitly in some works Sun

et al. [2013], Frostig et al. [2014], or used implicitly in optimization schemes Fleuret

et al. [2008], Vineet et al. [2014] by introducing an additional damping parameter.

However, a formal justification for such smoothing is never provided, which we do in

this chapter. More specifically, we show that, by damping in the natural parameter space

instead of the mean-parameter one, we can reformulate the optimization scheme as a

specific form of proximal gradient descent. This yields a theoretically sound and practical

way to chose the damping parameters, which guarantees convergence, no matter the

shape of the potentials. When they are attractive, we show that our approach is equivalent

to that of Krähenbühl and Koltun [2013]. However, even when they are repulsive and can

cause the earlier methods to oscillate without ever converging, our scheme still delivers

convergence. For example, as shown in Figure 3.1, this allows us to add co-occurrence

terms to the model used by a state-of-the-art semantic segmentation method Chen et al.

[2015] and improves its results. Furthermore, we retain the simplicity of the closed-form
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mean-field update rule, which is one of the key strengths of the mean-field approach.

In short, our contribution is threefold:

• We introduce a principled, simple, and efficient approach to performing parallel

inference in discrete random fields. We formally prove that it converges and

demonstrate that it performs better than state-of-the-art inference methods on

realistic Computer Vision tasks such as segmentation and people detection.

• We show that many of the earlier methods can be interpreted as variants of ours.

However, we offer a principled way to set its metaparameters.

• We demonstrate how parallel mean-field inference in random fields relates to the

gradient descent. This allows us to integrate advanced gradient descent techniques,

such as momentum and ADAM Kingma and Ba [2014], which makes mean-field

inference even more powerful.

To validate our approach, we first evaluate its performance on a set of standardized

benchmarks, which include a range of inference problems and have recently been used to

assess inference methods Frostig et al. [2014]. We then demonstrate that the performance

improvements we observed carry over to three realistic Compute Vision problems,

namely Characters Inpainting, People Detection and Semantic Segmentation. In each

case, we show that modifying the optimization scheme while retaining the objective

function of state-of-the-art models Fleuret et al. [2008], Nowozin et al. [2011], Chen

et al. [2015] yields improved performance and addresses the convergence issues that

sometimes arise Vineet et al. [2014].

3.2 Related Work

In this section, we briefly review basic Conditional Random Field (CRF) theory detailed

in section 2.2 and the use of mean-field inference to solve the resulting optimization

problems. We also give a short introduction into proximal gradient descent algorithms,

on which our method is based. Note, in this work, we focus on models involving discrete

random variables.
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3.2.1 Conditional Random Fields

Let X = (X1, . . . , XN ) represent hidden variables and I represent observed variables. For

example, for semantic segmentation, the Xi s are taken to be variables representing

semantic classes of N pixels, and I represents the observed image evidence.

A Conditional Random Field (CRF) models the relationship between X and I in terms of

the posterior distribution

P (X | I) = exp

( ∑
c⊂{1,...,N }

φc (Xc | I)− log Z (I)

)
, (3.1)

where φc (.) are non-negative functions known as potentials and log Z (I) is the log-

partition function. It is a constant that we will omit for simplicity since we are mostly

concerned by estimating values of X that maximize P (X | I).

This model is often further simplified by only considering unary and pairwise terms:

P (X | I) ∝ exp

(∑
i
φi (Xi , Ii )+ ∑

(i , j )
φi j (Xi , X j )

)
. (3.2)

3.2.2 Mean-Field Inference

Typically, one wants either to estimate the posterior P (X|I) or to find the vector X̂ that

maximizes P (X|I), which is known as the MAP assignment. Unfortunately, even for

the simplified formulation of Equation 3.2, both are intractable for realistic sizes of X.

As a result, many approaches settle for approximate solutions. These include sampling

methods, such as Gibbs sampling Gelfand and Smith [1990], and deterministic ones such

as mean-field variational inference Winn and Bishop [2005], belief propagation Murphy

et al. [1999], Minka [2001], Kolmogorov [2015], and others Boykov et al. [2001],

Gorelick et al. [2014]. A comprehensive comparison of inference methods in discrete

models is provided in Kappes et al. [2015].

Note that, mean-field methods have been shown to combine the advantages of good

convergence guarantees Bishop [2006], flexibility with respect to the potential functions

that can be handled Saito et al. [2012], and potential for parallelization Krähenbühl and
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Koltun [2013]. As a result, they have become very popular in our field. Furthermore,

they have recently been shown to yield state-of-the-art performance for several Computer

Vision tasks Saito et al. [2012], Vineet et al. [2014], Chen et al. [2015], Zheng et al.

[2015].

Mean-field involves introducing a distribution Q of the factorized form

Q(X = (x1, . . . , xN );q) =
N∏

i=1
Qi (Xi = xi ;qi ) , (3.3)

where Qi ( . ;qi ) is a categorical distribution with mean parameters qi . That is,

∀l , Qi (Xi = l ;qi ) = qi ,l , (3.4)

with q in the space M such that ∀i ∈ {1, . . . , N }, l ∈ {1, . . . ,L}, 0 ≤ qi ,l ≤ 1 and ∀i ,
∑

l qi ,l =
1, where N is often the number of pixels, and L is the number of labels.

Q is then used to approximate P (X | I) by minimizing the KL-divergence:

KL(Q||P ) =∑
x

Q(X = x;q) log
Q(X = x;q)

P (X = x | I)
. (3.5)

In some cases, this approximation is the desired final result. In others, one seeks a MAP

assignment. To this end, a standard method is to select the assignment that maximizes

the approximate posterior Q(X;q), which is equivalent to rounding when the Xi s are

Bernoulli variables. An alternative approach is to draw samples from Q(X;q).

When minimizing the KL-divergence of Equation 3.5, Q(X;q) can be reparameterized in

terms of its natural parameters defined as follows. For each variable Xi and label l , we

take the natural parameter θi ,l to be such that

Q(Xi = l ;qi ) = qi ,l ∝ exp[−θi ,l ]. (3.6)

As we will see below, this parameterization often yields simpler notations and implemen-

tations.
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Sweep Mean-Field Inference

As seen in section 2.3 the expression of Equation 3.5 is equivalent Bishop [2006] to

minimizing

F (q) =−EQ(X ;q)[logP (X | I)]︸ ︷︷ ︸
E (q)

+EQ(X ;q)[logQ(X ;q)]︸ ︷︷ ︸
−H (q)

, (3.7)

with respect to q ∈M . F (.) is sometimes called the variational free energy. Its first term

is the expectation of the energy under Q(X;q), and its second term is the negative entropy,

which acts as a regularizer.

One can minimize F (q) by iteratively updating each qi ,l in sequence while keeping the

others fixed Bishop [2006]. Each update involves setting qi ,l to

q?i ,l ∝ exp
[
EQ(X/Xi ;q)

[
logP (X | I)

]]
. (3.8)

This coordinate descent procedure, which we will call SWEEP, is guaranteed to converge

to a local minimum of F Bishop [2006]. However, it tends to be very slow for realistic

image sizes and impractical for many Computer Vision problems Vineet et al. [2014],

Krähenbühl and Koltun [2013]. Namely, in the case of dense random fields, it involves

re-computing a large number of expectations (one per factor adjacent to the variable)

after each sequential update. Filter-based mean-field inference Krähenbühl and Koltun

[2011] attempts to reduce the complexity of these updates, but it effectively performs

parallel updates, which we will describe below.

Parallel Mean-Field Inference

To obtain reasonable efficiency in practice, Computer Vision practitioners often perform

the updates of Equation 3.8 in parallel as opposed to sequentially. Not only does it avoid

having to reevaluate a large number of factors after each update, it also allows the use

of vectorized instructions and GPUs, both of which can have a dramatic impact on the

computation speed.

Unfortunately, these parallel updates invalidate the convergence guarantees and in prac-
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tice often lead to undesirable oscillations in the objective. Several approaches to remedy-

ing this problem have been proposed, which we review below.

Damping A natural way to improve convergence is to replace the updates of Equa-

tion 3.8 by a damped version, expressed as

q t+1
i ,l = (1−η) ·q t

i ,l +η ·q?i ,l , (3.9)

where t denotes the current iteration, q?i ,l is the result of solving the optimization problem

of Equation 3.8, and η is a heuristically chosen damping parameter. This damping is

explicitly mentioned in papers such as the ones of Sun et al. [2013], Frostig et al. [2014].

In Vineet et al. [2014], convergence issues are mentioned and a damping parameter is

provided in the publicly available code. Similarly, in Fleuret et al. [2008], the algorithm

relies on mean-field optimization with repulsive terms. The need for damping is not

explicitly discussed in the paper, but the publicly available code also includes a damping.

Damping delivers satisfactory results in many cases, but does not formally guarantee

convergence. It may fail if the parameter η is not carefully chosen, and sometimes

changed at different stages of the optimization. In all the approaches that we are aware

of, this is done heuristically. We will refer to this type of methods as ADHOC.

Concave potentials A principled way to address the convergence issue for the pairwise

random fields is offered in Krähenbühl and Koltun [2013], and we refer to the corre-

sponding algorithm as FULL-PARALLEL. However, authors restrict their potentials φi j

of Equation 3.2 to be concave, which in some cases is reasonable, but as we will show in

Section 3.4, many Computer Vision models violate this requirement. By contrast, our

approach is similarly principled but without additional constraints. In practice it works

for higher-order, or, equivalently, non-pairwise potentials.

3.2.3 Proximal Gradient Descent

Let F be a generic objective function of the form F (x) = f (x)+ g (x), where g is a

regularizer, and xt is the value of the optimized variable at iteration t of a minimization

procedure on a constraint set X . Proximal gradient descent, also known as composite

43



Chapter 3. Principled Parallel Mean-Field Inference for Discrete Random Fields

mirror-descent Duchi et al. [2010], is an iterative method that relies on the update rule

xt+1 = argmin
x∈X

{〈x,∇ f (xt )〉+ g (x)+λΨ(x,xt )} , (3.10)

where Ψ is a non-negative proximal function that satisfies Ψ(x,xt ) = 0 if and only if

x = xt , and λ> 0 is a scalar parameter. g contains the terms of the objective function

that do not need to be approximated to the first order, while still allowing efficient

computation of update of Equation 3.10. Ψ can be understood as a distance function

that accounts for the geometry of X Teboulle [1992] while also making it possible to

compute the update of Equation 3.10 efficiently. λ can then be thought of as the inverse

of the step size.

As shown in Section 3.3.1, our algorithm is a version of proximal gradient descent in

which Ψ is based on the KL-divergence and allows automated step-size adaptation as

the optimization progresses. Recently, a variational approach that also relies on the KL-

divergence as the proximal function has been proposed Khan et al. [2015]. This thesis

explores the connection between the KL-proximal method and the Stochastic Variational

Inference Amari [1998], Hoffman et al. [2013]. However, the method presented there is

not directly applicable to discrete random fields, especially for the Vision problems we

consider. Moreover, it does not allow for step size adaptation, which often yields better

performance, as we demonstrate in our experiments.

3.3 Method

As discussed in the previous section, the goal of mean-field inference is to

minimize
q∈M

F (q) (3.11)

where F is the variational free energy of Equation 3.7. Performing sequential updates of

the qi ,l is guaranteed to converge, but can be slow. Parallel updates are usually much

faster, but the optimization procedure may fail to converge.

In this section, we introduce our approach to guaranteeing convergence whatever the

shape of the pairwise potentials. To this end, we rely on proximal gradient descent as
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described in Section 3.3.1 and formulate the proximal function Ψ in terms of the KL-

divergence. This is motivated by the fact that it is more adapted to measuring the distance

between probability distributions than the usual L2 norm, while being independent of

how the distribution is parameterized.

We will show that this both guarantees convergence and yields a principled way to obtain

a closed form damped update equation equivalent to Equation 3.9.

3.3.1 Proximal Gradient for Mean-Field Inference

In our approach to minimizing the variational free energy of Equation 3.7, we treat E as

the function f of Equation 3.10 and the negative entropy −H as the regularizer g . This

choice stems from the fact that −H is separable, and therefore, can be minimized in

parallel in Equation 3.10, without using a first order approximation. Also, −H being

the regularizer g means that we do not need to look at its derivatives with respect to the

mean-parameters, which are not well behaved when they approach zero. We then define

Ψt (q,qt ) =∑
i

∑
l

d t
i ,l qi ,l log

qi ,l

q t
i ,l

= Dt ¯KL(q||qt ) , (3.12)

where KL is the non-negative KL-divergence, which is a natural choice for a distance

between distributions. Dt is a diagonal matrix with positive diagonal elements d t
i ,l s,

which we introduce to allow for anisotropic scaling of the proximal KL-divergence term.

As will be discussed below, different choices of the d t
i ,l s yield different variants of our

algorithms. Note however that, Ψt is a valid proximal function.

The update of Equation 3.10 then becomes

qt+1 = argmin
q∈M

{〈q,∇E (qt )〉−H (q)+Dt ¯KL(q||qt )} . (3.13)

This computation can be performed independently for each index i ∈ {1, . . . , N }. Further-

more, as we prove in section 3.3.2, it can be done in closed form and can be written
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as

q t+1
i ,l ∝ exp[ ηt

i ,l ·EQ(X/Xi=l ;q)
[

logP (X|I)
]

(3.14)

+(1−ηt
i ,l ) · log q t

i ,l ] ,

where ηt
i ,l =

1

1+d t
i ,l

. Eq 3.14 can be rewritten as

θt+1
i ,l = ηt

i ,l ·θ?i ,l + (1−ηt
i ,l ) ·θt

i ,l , (3.15)

where θ?i ,l =−EQ(X/Xi ;q)
[

logP (X|I)
]

now is a natural parameter, like those of Equation 3.6.

In other words, we have replaced the heuristic update rule of Equation 3.9 in the space

of mean parameters by a principled one in the space of natural ones. As we will see, this

yields performance and convergence improvements in most cases. As for the stopping

criteria, one can define one based on the value of the objective, or, in practice, run

inference for a fixed number of iterations.

3.3.2 Derivation of the closed form update

We will now derive the closed-form update rule for the KL-proximal gradient descent

introduced in the previous section.

Let us now consider the proximal gradient update,

minimize
q∈M

{〈q,∇E (qt )〉−H (q)+Dt ¯KL(q||qt )
}

, (3.16)

where the first and the second terms are the expected energy and negative entropy

respectively, and the last term is the proximal term. It can be written as

Dt ¯KL(q||qt ) =∑
i ,l

di ,l ·qi ,l log
qi ,l

q t
i ,l

, (3.17)

where Dt is a diagonal matrix with non-zero elements di ,l .
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Our goal is to derive a closed-form update for all the mean parameters qi ,l , or, alterna-

tively, for all the natural parameters θi ,l . We can then write down the partial derivative of

the expected energy with respect to any qi ,l as

∇E (qt )i ,l =
∂E (qt )

∂qi ,l
= EQ(X|qt

\i )[log p(X|I)|Xi = l ] . (3.18)

Note, that both our objective F and the constraints q ∈M are separable over the variables

X1, . . . , XN , which makes it possible to minimize independently for each Xi . In other

words, our goal is to solve for all i

minimize
qi

∑
l

qi ,l∇E (qt )i ,l +
∑

l
qi ,l log qi ,l +d t

i

∑
l

qi ,l log
qi ,l

q t
i ,l

, (3.19)

subject to
∑

l
qi ,l = 1 (3.20)

Similarly to the sweep updates described previously, we convert each problem to an

unconstrained one by introducing the Lagrangian

L (qi ,µi ) =∑
l

qi ,l∇E (qt )i ,l +
∑

l
qi ,l log qi ,l ,

+d t
i

∑
l

qi ,l log
qi ,l

q t
i ,l

−µi

(∑
l

qi ,l −1

)
,

(3.21)

where µi is a corresponding Lagrange multiplier.

We then differentiate it with respect to qi ,l , ∀i , l

(1+d t
i ) log q?i ,l = EQ(X |q−i )[log p(X|I)|Xi = l ]+d t

i log q t
i ,l +µi , (3.22)

which in turn leads to the update rule

q t+1
i ,l ∝ exp

[
ηt

i ·EQ(X |q−i )[log p(X|I)|Xi = l ]+ (1−ηt
i ) · log q t

i ,l

]
, (3.23)

where ηt
i = 1

1+d t
i
, and normalization constant can be obtained from µi .
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3.3.3 Fixed Step Size

The simplest way to instantiate our algorithm is to fix all the d t
i ,l s of Equation 3.12 to the

same value d and to write

∀t , Dt = D = d I ⇒ ∀t , i , l ,ηt
i ,l =

1

1+d
, (3.24)

where ηt
i ,l plays the same role as the damping factor of Equation 3.9. We now show that

this is guaranteed to converge when the proximal term is given enough weight.

In our mean-field settings, E (q) is a polynomial function of the mean-parameters vector

q. Therefore, one can always find some positive real number L such that the gradient of

E is L-Lipschitz continuous. We prove below that this property implies that our proximal

gradient descent scheme is guaranteed to converge for any fixed matrix D = d I such that

d > L.

Intuitively, when updating the value of qt to qt+1, the magnitude of the gradient change

stays controlled and thus the coordinate-wise optimum θ?i ,l = −∇E (qt )i ,l will also be

changing smoothly across iterations. As a result, L is the key value to understand

oscillations. In practice, our goal is to find its smallest possible value to allow steps as

large as possible while guaranteeing convergence.

Lemma 3 The gradient of the proximal term at the current iteration point ∇qDt ¯
KL(q||qt )|q=qt is orthogonal to M .

Proof Let’s write down the gradient:

∇qDt ¯KL(q||qt ) = (d t
1 ·∇q1KL(q1||qt

1), . . . ,d t
N∇qN KL(qN ||qt

N )) , (3.25)

with each component containing:

∇qi KL(qi ||qt
i ) = (log

qi ,1

q t
i ,1

+1, . . . , log
qi ,M

q t
i ,M

+1) . (3.26)
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The partial gradient at the current iteration point qt
i is the all-ones vector:

∇qi KL(qi ||qt
i )|qi=qt

i
= (1, . . . ,1) , (3.27)

which is obviously orthogonal to the hyperplane defined by the constraint
∑

l qi ,l = 1.

Thus, d t
i ∇qi KL(qi ||qt

i )|qi=qt
i

is also orthogonal to this hyperplane, and we easily obtain

the orthogonality of the product vector ∇qDt ¯KL(q||qt )|q=qt to M .

Lemma 4 For all qt in M ,

∀q ∈M , Dt ·KL(qt+1||qt ) ≥ L

2
‖q−qt‖2

2 .

Proof Note that the Hessian of the KL-proximal term is diagonal with

∀q ∈M ,
∂2Dt ·KL(q||qt )

∂q2
i ,l

|q =
d t

i ,l

qi ,l
≥ L . (3.28)

Therefore, the proximal term is L-strongly convex on M . For all qt in M ,

∀q ∈M , Dt ·KL(q||qt ) ≥ 〈∇qDt ¯KL(q||qt )|q=qt ,q−qt 〉+ L

2
‖q−qt‖2

2 . (3.29)

The first term of the right hand side is null according to the orthogonality property 3.

Which leads to

∀q ∈M , Dt ·KL(qt+1||qt ) ≥ L

2
‖q−qt‖2

2 . (3.30)

We will now demonstrate, that under certain assumptions, applying updates of Eq. 3.23

lead to a decrease in objective at each iteration.

Theorem 5 If E is L-Lipschitz gradient on M , and that d t
i s are chosen such that

d t
i ≥ L, ∀t , i . Then the objective function is decreasing at each step.
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Proof Let us assume that E is L-Lipschitz gradient on M and that d t
i ≥ L, ∀t , i . Then,

we can show that the value of the objective function E (qt+1)−H (qt+1) at step t +1 has

to be smaller than E (qt )−H (qt )

E (qt )−H (qt ) ≥ argmin
q

[
E (qt )+〈(q−qt ),∇E (qt )〉−H (q)+Dt ·KL(q||qt )

]
(3.31)

≥ E (qt )+〈(qt+1 −qt ),∇E (qt )〉−H (qt+1)+Dt ·KL(qt+1||qt )

(3.32)

≥ E (qt )+〈(qt+1 −qt ),∇E (qt )〉−H (qt+1)+ L

2
‖qt+1 −qt‖2

2 (3.33)

≥ E (qt+1)−H (qt+1) (3.34)

where step Equation 3.32 comes from the fact that by definition qt+1 realizes the mini-

mum, Equation 3.33 holds by strong-convexity lower bound 4 and Equation 3.34 holds

by L-Lipschitz gradient property of E .

In the pairwise case, the Hessian of the objective function is a constant matrix, which

we call potential matrix. Therefore, the highest eigenvalue of the potential matrix is a

valid Lipschitz constant and efficient methods allow to compute it for moderately sized

problems.

In fact, the convergence result presented in Krähenbühl and Koltun [2013] is strongly

related to this. Namely, assuming that the potential matrix is negative semi-definite, is

equivalent to assuming that L < 0 in our formulation. This directly corresponds to the

concavity assumptions on the potentials in Krähenbühl and Koltun [2013]. Therefore,

under the assumptions of Krähenbühl and Koltun [2013], our algorithm leads to η= 1,

corresponding to the fully-parallel update procedure. In that sense, our procedure is a

generalization of the one proposed by Krähenbühl and Koltun [2013].

In the non-pairwise case, the Hessian is not constant, and the calculation of the Lipschitz

constant is not trivial. For each specific problem, bounds should be derived using the

particular shape of the CRF at hand.

50



3.3. Method

3.3.4 Adaptive Step Size

Note that the Hessian of the KL-proximal term is diagonal with

∂2Dt ·KL(q||qt )

∂q2
i ,l

|q=qt =
d t

i ,l

q t
i ,l

. (3.35)

Therefore, when some of the qi ,l s get close to 0, the elements of the Hessian may become

very large, especially when using a constant value for the d t
i ,l as suggested above. When

that happens, the local KL-approximation remains a valid upper bound of the objective

function, but not a tight enough one, which results in step sizes that are too small for fast

convergence.

This can be reduced by choosing a matrix Dt that compensates for this. A simple

way to do this would be to scale the d t
i ,l proportionally to max(qi ,0, . . . , qi ,Li−1) to start

compensating for diagonal terms. However, this method is still sub-optimal because it

ignores the fact that all our variables lie inside the simplex M . A better alternative is to

bound from below the proximal term by a quadratic function, but on M rather than on

Rn .

In this chapter, we only apply this method to the binary case, for which we set

d t
i ,0 = d t

i ,1 = q t
i ,0q t

i ,1 ·d , (3.36)

were d is an additional parameter that should be set close to L. Extending this approach

to the multi-label case will be a topic for future work. In Section 3.3.5, we provide a

different alternative to performing adaptive anisotropic updates in all settings.

Intuitively, when the current parameters are close to the borders of the simplex, the mean

parameters are less sensitive to natural parameters, which, therefore, need less damping.

We demonstrate in our experiments that it provides a way to choose the step size without

tuning.
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3.3.5 Momentum

Our approach can easily be extended to incorporate techniques that are known to speed-

up gradient descent and help to avoid local minima, such as the classic momentum

method Polyak [1964] or the more recent ADAM technique Kingma and Ba [2014].

The momentum method involves averaging the gradients of the objective f (x) over the

iterations in a momentum vector m and use it as the direction for the update instead of

simply following the current gradient. To integrate it into our framework, we replace the

gradient ∇E in Equation 3.13 by its rolling exponentially weighted average m computed

as

mt+1 = γ1mt + (1−γ1)∇E (qt ) , (3.37)

with the exponential decay parameter γ1 ∈ [0;1]. This substitution brings the following

update rule

θt+1
i ,l = η ·mt

i ,l + (1−η) ·θt
i ,l . (3.38)

We will refer to this approach as OURS-MOMENTUM.

3.3.6 ADAM

The ADAM method Kingma and Ba [2014] has become very popular in deep learning.

Our framework makes it easy to use for mean-field inference as well by appropriately

choosing the matrix Dt at each step and combining it with the momentum technique.

We define the averaged second moment vector v of the natural gradient as

v t+1
i ,l = γ2[θt

i ,l +∇E (qt )i ,l ]2 + (1−γ2)v t
i ,l , (3.39)

where v is initialized to a strictly positive value and γ2 ∈ [0;1] is an exponential memory
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parameter for v.

Then, the Dt matrix is defined through each of its diagonal entries as

d t
i ,l =

√
v t+1

i ,l d +ε−1 , (3.40)

where ε is a fixed parameters and d controls the damping. We will refer to this method

as OURS-ADAM.

Intuitively it is good at exploring parameter space thanks to a form of auto-annealing of

the gradient. The natural gradient θt +∇E (qt ) is zero at a local minimum of the objective

function Hoffman et al. [2013]. Therefore, close to a minimum, the proximal term Dt

becomes small, thus allowing more exploration of the space. On the other hand, after a

long period of exploration with large natural gradients, more damping will tend to make

the algorithm converge.

3.4 Experimental Evaluation

In this section, we evaluate our method on a variety of inference problems and demon-

strate that in most cases it yields faster convergence and better minima. All the code,

including our efficient GPU mean-field inference framework, will be made publicly

available.

3.4.1 Baselines and Variants

We compare several variants of our approach to some of the baselines we introduced in

the related work section. The baselines we consider are as follows:

• SWEEP. As discussed in Section 3.2.2, it involves sequential coordinate de-

scent Bishop [2006] and is not always computationally tractable for large problems.

• ADHOC. As discussed in Section 3.2.2, it performs parallel updates with the ad

hoc damping parameter η of Equation 3.9 chosen manually.

• FULL-PARALLEL. As also discussed in Section 3.2.2, it relies on the inference

described in Krähenbühl and Koltun [2013]. For example, the popular densecrf
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framework Krähenbühl and Koltun [2011] uses this approach.

We compare to these the following variants of our approach:

• OURS-FIXED. Damping occurs in the space of natural parameters instead of

mean ones as described in Section 3.3.3.

• OURS-ADAPTIVE. Adaptive and anisotropic damping in the space of natural

parameters as described in Section 3.3.4.

• OURS-MOMENTUM. Similar to OURS-ADAPTIVE, but using the momentum

method instead of ordinary gradient descent, as described in Section 3.3.5. We use

the same parameter value γ1 = 0.95 for all datasets.

• OURS-ADAM. Similar to OURS-ADAPTIVE but using the ADAM method instead

of ordinary gradient as described in Section 3.3.6. We use the same parameters

as in the original publication Kingma and Ba [2014], γ1 = 0.99, γ2 = 0.999 and

ε=1E-8 for all datasets.

All four methods involve a parameter η= 1
1+d , defined in Equation 3.24 for OURS-FIXED,

Equation 3.36 for OURS-ADAPTIVE, Equation 3.38 for OURS-MOMENTUM and Equa-

tion 3.40 for OURS-ADAM. Additionally, in Section 3.4.3 and Figure 3.2 we demonstrate

that our method is less sensitive to the choice of this parameter than its competitors.

3.4.2 Experimental Setup

We evaluated all the methods first on a set of standardized benchmarks Frostig et al.

[2014]: DBN, containing 108 instances of deep belief networks (on average 920 variables),

GRID, containing 21 instances of two-dimensional grids (1600 variables), and SEG,

containing 100 instances of segmentation problems (230 variables), where each instance

is represented as a binary pairwise random field.

We then consider three realistic Computer Vision tasks that all involve minimizing a

functional of the form given in Equation 3.7. We describe them below.
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Characters Inpainting We consider character inpainting, formulated as a binary pair-

wise random field, Decision Tree Fields (DTF, Nowozin et al. [2011]). The dataset

contains 100 test instances of occluded characters, and the goal is to restore the occluded

part, as shown in the last row of Figure 3.1. We use pre-computed potentials provided

by Nowozin et al. [2011]. Note, that this model consists of data-driven potentials, and

includes both short and long-range interactions, which makes it particularly interesting

from the optimization perspective.

People Detection We consider detecting upright people in a multi-camera settings,

using the Probabilistic Occupancy Map approach (POM, Fleuret et al. [2008]), that

relies on a random field with high-order repulsive potentials, which models background

subtraction signal given the presences of people in the environment. We evaluate it on

the ISSIA D’Orazio et al. [2009] dataset, which contains 3000 frames of a football game,

captured by 6 cameras located on two sides of the field. The original work Fleuret et al.

[2008] does not explicitly mention it, but the publicly available implementation uses

the ADHOC damping method. We implement all our methods and remaining baselines

directly in this code of Fleuret et al. [2008].

Semantic Segmentation We consider semantic segmentation on PASCAL VOC 2012

dataset Everingham et al. [2012], which defines 20 object classes and 1 background class.

We based our evaluation on DeepLab-CRF model Chen et al. [2015], which is currently

one of the best-performing methods. This model uses CNNs to obtain unary potentials,

and then employs densecrf of Krähenbühl and Koltun [2013] with dense pairwise

potentials. However, this basic CRF model does not contain any strong repulsive terms,

and thus we expect densecrf’s standard inference, FULL-PARALLEL, to work well.

To improve performance, we additionally introduced co-occurrence potentials Vineet

et al. [2014], which, as we will show, violate the conditions assumed in densecrf, but

can still be successfully handled by our method. Intuitively, these co-occurrence terms

put priors on the sets of classes that can appear together. We made minor modifications

of densecrf to support both our inference and co-occurrence potentials.

We performed all the experiments on Intel(R) Xeon(R) CPU E5-2680 2.50GHz, and a

GPU GeForce GTX TITAN X (12GB GRAM).
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DBN GRID SEG

method 0.05s 0.30s 1.00s 0.05s 0.30s 1.00s 0.05s 0.30s 1.00s
SWEEP -112.94 -2088.07 -2138.13 -5540.59 -16675.55 -18592.26 78.81 75.50 75.50
FULL-PARALLEL -1952.52 -1951.54 -1942.86 -2564.39 -2777.33 -2439.08 75.66 75.66 75.66
ADHOC -2047.31 -2047.31 -2047.31 -18345.42 -18348.80 -18349.03 76.10 75.66 75.66
OURS-FIXED -2081.91 -2081.91 -2081.91 -18213.81 -18219.42 -18219.45 77.17 75.61 75.61
OURS-ADAPTIVE -2125.48 -2130.61 -2130.61 -18245.93 -18252.48 -18252.48 77.68 75.64 75.61
OURS-MOMENTUM -2260.98 -2362.14 -2374.51 -18143.48 -19074.45 -19184.37 74.35 73.75 73.75
OURS-ADAM -2107.98 -2107.93 -2107.93 -18617.06 -18732.59 -18740.36 72.37 72.32 72.32

Table 3.1 – Results for KL minimization for three benchmark datasets Frostig et al. [2014]:
DBN (deep belief networks), GRID (two-dimensional grids), SEG (binary segmentation).
All the numbers are KL divergence (lower is better) averaged over the instances.
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Figure 3.2 – Sensitivity of OURS-FIXED (red) and OURS-ADAPTIVE (dashed red) vs
ADHOC (blue) to the damping parameter η= 1

1+d . We report KL-divergence (lower is better)
vs the value of the parameter, both in log-space.

3.4.3 Comparative Results

In order to understand how the methods behave in practical settings, when the available

computational time is limited, we evaluate all methods for several computational budgets.
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Figure 3.3 – Convergence results. (a) OURS-ADAM and OURS-MOMENTUM converge
very fast to a much better minima. (b) OURS-FIXED outperforms ADHOC both in
terms of speed of convergence and the value of the objective. (c) OURS-ADAM and
OURS-FIXED show the best performance. The former converges a bit slower, but in the
end provide slightly better minima. ADHOC for this dataset converges rather fast, but
fails to find a better optima.

The shortest budget corresponds to the early-stopping scenario after few iterations, the

longest one roughly models the time until convergence, and the middle one is around

20-30% of the longest.

Benchmarks Quantitative results are given in Table 3.1. Our methods systematically

outperform the ADHOC damping method. The SWEEP method usually provides good

performance, but is generally slow due to its sequential nature.

Figure 3.2 shows that our methods are less sensitive to damping parameter changes than

ADHOC. In Figure 3.2, the vertical orange lines corresponds to the choice of the damping

parameter according to d = L, which can be computed directly by the power-method.

Interstingly, for the GRID dataset, which includes strong repulsive potentials, algorithms

do not produce reasonable results when no damping is applied. On the other hand, for

the segmentation task, SEG, all the algorithms work well even without damping, in

accordance with the results of Krähenbühl and Koltun [2013] or Section 3.3.3.

Characters Inpainting Quantitative results in terms of average pixel accuracy and KL-

divergence are given in Table 3.2 and Figure 3.3 (a). Our method, especially when used

with more advanced gradient descent schemes, outperforms all the baselines. SWEEP

shows relatively good performance, but does not scale as well in terms of the running

time. See the bottom row of Figure 3.1 for an example of a result.
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0.05s 0.3s 3s
method KL PA KL PA KL PA

SWEEP -
6342.56

54.57 -
25233.54

58.38 -
49519.33

62.50

FULL-PARALLEL -
49516.98

60.99 -
49519.27

62.00 -
49519.33

62.05

ADHOC -
49514.27

61.46 -
49520.09

62.15 -
49520.20

62.17

OURS-FIXED -
49505.59

60.99 -
49520.33

62.26 -
49521.71

62.35

OURS-ADAPTIVE -
49503.43

60.93 -
49520.14

62.32 -
49522.49

62.60

OURS-MOMENTUM -
49513.57

63.69 -
49536.67

65.26 -
49540.76

65.95

OURS-ADAM -
49516.02

65.36 -
49538.84

67.03 -
49544.58

67.12

Table 3.2 – Results for characters inpainting problem Nowozin et al. [2011] based on
DTFs. PA is the pixel accuracy for the occluded region (bigger is better). Our methods
outperform the baselines by a margin of 3-5%. Since FULL-PARALLEL is not damped,
it gets to low KL-divergence value quickly, however the actual solution is significantly
worse.

0.5s 1.3s 5s
method KL MODA KL MODA KL MODA

SWEEP 1865.43 0.630 1795.66 0.656 1795.60 0.656
FULL-PARALLEL 2573.79 0.000 2573.79 0.000 8500.90 0.030
ADHOC 2573.79 0.308 1760.02 0.781 1753.71 0.829
OURS-FIXED 1783.63 0.626 1754.55 0.802 1753.63 0.829
OURS-MOMENTUM 1931.36 0.040 1797.19 0.650 1753.83 0.826
OURS-ADAM 2008.52 0.021 1813.66 0.501 1754.52 0.824

Table 3.3 – Results for people detection task D’Orazio et al. [2009] based on POM Fleuret
et al. [2008]. OURS-FIXED outperforms the baselines and adaptive methods. This
means that this problem does not require more sophisticated parameter exploration
techniques.

People Detection Quantitative results, presented in Table 3.3 and Figure 3.3 (b),

demonstrate that our method with a fixed step size, OURS-FIXED, brings both faster

convergence and better performance. Thanks to our optimization scheme, the time re-

quired to get a Multiple Object Detection Accuracy (MODA, Bernardin and Stiefelhagen

[2008]) within 3% of the value at convergence is reduced by a factor of two. This can
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5s 15s 50s
method KL I/U KL I/U KL I/U

FULL-PARALLEL [o] −
67.18

−
67.70

−
68.00

OURS-ADAM [o] −
66.45

−
67.50

−
68.07

FULL-PARALLEL -
3129799 67.21

-
3134437 67.72

-
3133010 68.01

ADHOC -
3129469 67.19

-
3134557 67.73

-
3136865 68.04

OURS-FIXED -
3100079 67.76

-
3135225 68.18

-
3138206 68.44

OURS-MOMENTUM -
3060405 66.20

-
3128121 67.39

-
3136543 68.18

OURS-ADAM -
3091787 67.08

-
3131624 68.02

-
3138335 68.47

Table 3.4 – Results for semantic segmentation problem Everingham et al. [2012] based
on DeepLab-CRF Chen et al. [2015]. For all the budgets, our method obtains better
segmentation accuracy. Again, FULL-PARALLEL obtains lower KL faster, with a price
of reduced performance. On the top, we provide results for the original DeepLab-CRF
model without co-occurrence potentials (denoted by [o]), for which the KL divergence
has therefore a different meaning and is not shown.

be of big practical importance for surveillance applications of the algorithm BenShitrit

et al. [2014], Bagautdinov et al. [2015], in which it is required to run in real-time.

SWEEP exhibits much worse performance than our parallel method because of its greedy

behavior.

Semantic Segmentation Quantitative results are presented in Table 3.4 and Fig-

ure 3.3 (c). We observe that a similar oscillation issue as noted by Vineet et al. [2014]

starts happening when the FULL-PARALLEL method is used in conjunction with co-

occurrence potentials, producing even worse results than without those. Using our

convergent inference method fixes oscillations and provides an improvement of 0.5%

in the average Intersection over Union measure (I/U) compared to the basic method

without co-occurrence. What it represents is a big improvement in performance, as

the ones shown in Fig 3.1, for at least 30-40 images out of total 1449. Note also, that
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we obtain this improvement with minimal changes in the original code. By contrast,

authors Chen et al. [2015] get similar or smaller improvements by significantly aug-

menting the training set or by exploiting multi-scale features, which leads to additional

computational burden.

3.5 Chapter Conclusion

We have presented a principled and efficient way to do parallel mean-field inference

in discrete random fields. We have demonstrated that proximal gradient descent is a

powerful theoretical framework for mean-field inference, which unifies and sheds light

on existing approaches. Moreover, it naturally allows to incorporate existing adaptive

gradient descent techniques, such as ADAM, to mean-field methods. As shown in our

experiments, it often brings dramatic improvements in performance. Additionally, we

have demonstrated, that our approach is less sensitive to the choice of parameters.

Our method makes it possible to use mean-field inference with a wider range of potential

functions, which was previously unachievable due to the lack of convergent optimization.

This new optimization method will be used as a new standard throughout this thesis.
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4 Multi-Modal Mean-Fields via
Cardinality-Based Clamping

4.1 Introduction

The mean-field (MF) modeling technique has been central to statistical physics for

a century. Its ability to handle stochastic models involving millions of variables and

dense graphs has attracted much attention in the computer vision community. It is

routinely used for tasks as diverse as detection [Fleuret et al., 2008, Bagautdinov et al.,

2015], segmentation [Saito et al., 2012, Krähenbühl and Koltun, 2013, Chen et al., 2015,

Zheng et al., 2015], denoising [Cho et al., 2000, Nowozin et al., 2011, Li and Zemel,

2014], depth from stereo [Fransens et al., 2006, Krähenbühl and Koltun, 2013] and

pose-estimation [Vineet et al., 2013].

MF approximates a “true” probability distribution by a fully-factorized one that is

easy to encode and manipulate [Koller and Friedman, 2009]. The true distribution is

usually defined in practice through a Conditional Random Field (CRF), and may not be

representable explicitly, as it involves complex inter-dependencies between variables. In

such a case the MF approximation is an extremely useful tool.

While this drastic approximation often conveys the information of interest, usually

the marginal distributions, the true distribution may concentrate on configurations that

are very different, equally likely, and that cannot be jointly encoded by a product law.

Section 4.3 depicts such a case where groups of variables are correlated and may take one

among many values with equal probability. In this situation, MF will simply pick one
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valid configuration, which we call a mode, and ignore the others. So-called structured

mean-field methods Saul and Jordan [1995], Bouchard-Côté and Jordan [2009] can help

overcome this limitation. This can be effective but requires arbitrary choices in the design

of a simplified sub-graph for each new problem, which can be impractical especially if

the initial CRF is very densely connected.

Here we introduce a novel way to automatically add structure to the MF approximation

and show how it can be used to return several potentially valid answers in ambiguous

situations. Instead of relying on a single fully factorized probability distribution, we

introduce a mixture of such distributions, which we will refer to as Multi-Modal Mean

Field (MMMF).

We compute this MMMF by partitioning the state space into subsets in which a standard

MF approximation suffices. This is similar in spirit to the approach of Weller and Domke

[2015] but a key difference is that our clamping acts simultaneously on arbitrarily sized

groups of variables, as opposed to one at a time. We will show that when dealing

with large CRFs with strong correlations, this is essential. The key to the efficiency

of MMMF is how we choose these groups. To this end, we introduce a temperature

parameter that controls how much we smooth the original probability distribution before

the MF approximation. By doing so for several temperatures, we spot groups of variables

that may take different labels in different modes of the distribution. We then force the

optimizer to explore alternative solutions by clamping them, that is, forcing them to

take different values. Our temperature-based approach, unlike the one of Weller and

Domke [2015], does not require a priori knowledge of the CRF structure and is therefore

compatible with “black box” models.

In the remainder of the chapter, we will describe both MF and MMMF in more details.

We will then demonstrate that MMMF outperforms both MF and the clamping method

of Weller and Domke [2015] on a range of tasks.

4.2 Related Work

Conditional Random Fields (CRFs) are often used to represent correlations between

variables Wang et al. [2013]. Mean-field inference is a means to approximate them in a
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computationally efficient way. We briefly review both techniques below.

4.2.1 Conditional Random Fields

As will be shown in Section 4.3, the mean-field approximation model sometimes comes at

the cost of downplaying the dependencies between variables. The DivMBest method Ra-

makrishna and Batra [2012], Batra et al. [2012] addresses this issue starting from the

following observation: When looking for an assignment in a graphical model, the result-

ing MAP is not necessarily the best because the probabilistic model may not capture

all that is known about the problem. Furthermore, optimizers can get stuck in local

minima. The proposed solution is to sequentially find several local optima and force

them to be different from each other by introducing diversity constraints in the objective

function. It has recently been shown that it is provably more effective to solve for diverse

MAPs jointly but under the same set of constraints Kirillov et al. [2015]. However, none

of these methods provide a generic and practical way to choose local constraints to be

enforced over variable sub-groups. Furthermore, they only return a set of MAPs. By

contrast, our approach yields a multi-modal approximation of the posterior distribution,

which is a much richer description and which we will show to be useful.

Another approach to improving the MF approximation is to decompose it into a mixture

of product laws by “clamping” some of the variables to fixed values, and finding for each

set of values the best factorized distribution under the resulting deterministic conditioning.

By summing the resulting approximations of the partition function, one can provably

improve the approximation of the true partition function Weller and Domke [2015]. This

procedure can then be repeated iteratively by clamping successive variables but is only

practical for relatively small CRFs. At each iteration, the variable to be clamped is

chosen on the basis of the graphical model weights, which requires intimate knowledge

about its internals, which is not always available.

Our own approach is in the same spirit but can clamp multiple variables at a time without

requiring any knowledge of the graph structure or weights.

Finally, DivMBest approaches do not provide a way to choose the best solution without

looking at the ground-truth, except for the one of Yadollahpour et al. [2013] that relies on

63



Chapter 4. Multi-Modal Mean-Fields via Cardinality-Based Clamping

training a new classifier for that purpose. By contrast, we will show that the multi modal

Bayesian nature of our output induces a principled way to use temporal consistency to

solve directly practical problems.

4.3 Motivation

To motivate our approach, we present here a toy example that illustrates a typical failure

mode of the standard MF technique, which ours is designed to prevent. Figure 4.1

depicts a CRF where each pixel represents a binary variable connected to its neighbors

by attractive pairwise potentials.

For the sake of illustration, we split the grid into four zones as follows. The attractive

terms are weak on left side but strong on the right. Similarly, in the top part, the unary

terms favor value of 1 while being completely random in the bottom part.

The unary potentials are depicted at the top left of Figure 4.1 and the result of the standard

MF approximation at the bottom in terms of the probability of the pixels being assigned

the label 1. In the bottom right corner of the grid, because the interaction potentials

are strong, all pixels end up being assigned high probabilities of being 1 by MF, where

they could just as well have all been assigned high probabilities to be zero. We explain

below how our MMMF algorithm can produce two equally likely modes, one with all

pixels being zero with high probability and the other with all pixel being one with high

probability.

4.4 Multi-Modal Mean-Fields

Given a CRF defined with respect to a graphical model and the probability P (X = x),

recall that X denotes the set of all possible states of the vector x. The standard MF

approximation only models a single mode of the P , as discussed in Section ??. We

therefore propose to create a richer representation that accounts for potential multiple

modes by replacing the fully factorized distribution of Equation 2.30 by a weighted

mixture of such distributions that better minimizes the KL-divergence to P .

The potential roadblock is the increased difficulty of the minimization problem. In this
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Figure 4.1 – A typical failure mode of MF resolved by MMMF. Grey levels indicate
marginal probabilities, under the prior (Input) and under the product laws (MF and
MMMF).

section, we present an overview of our approach to solving it, and discuss its key aspects

in the following two.

Formally, let us assume that we have partitioned X into disjoint subsets Xk for 1 ≤ k ≤ K .

We replace the original mean-field (MF) approximation by one of the form

P (X = x) ≈ QM M (X = x) = ∑
k

mkQk (x) , (4.1)

Qk (x) = ∏
i

qk
i (xi ) ,

where Qk is a MF approximation for the states x ∈Xk with individual probabilities qk
i

that variable i can take value xi in a set of labels L , and mk is the probability that a

state belongs to Xk .

We can evaluate the mk and qk
i values by minimizing the KL-divergence between QM M

and P . The key to making this computation tractable is to guarantee that we can evaluate

the qk
i parameters on each subset separately by performing a standard MF approximation
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for each. One way to achieve that is to constrain the support of the Qk distributions to be

disjoint, that is,

∀k 6= k ′,Qk ′ (Xk ) = 0 . (4.2)

In other words, each MF approximation is specialized on a subset Xk of the state space

and is computed to minimize the KL-Divergence there. In practice, we enrich our approx-

imation by recursively splitting a set of states Xk among our partition X1, . . . ,XK into

two subsets X 1
k and X 2

k to obtain the new partition X1, . . . ,Xk−1,X 1
k ,X 2

k ,Xk+1, . . . ,XK ,

which is then reindexed from 1 to K +1. Initially, Xk represents the whole state space.

Then we take it to be the newly created subset in a breadth-first order until a preset

number of subsets has been reached. Each time, the algorithm proceeds through the

following steps:

• It finds groups of variables likely to have different values in different modes of the

distribution using an entropy-based criterion for the qk
i .

• It partitions the set into two disjoint subsets according to a clause that sets a threshold

on the number of variables in this group that take a specific label. X 1
k will contain

the states among Xk that meet this clause and X 2
k the others.

• It performs an MF approximation within each subset independently to compute pa-

rameters qk,1
i and qk,2

i for each of them. This is done by a standard MF approximation,

to which we add the disjointness constraint 4.2.

This yields a binary tree whose leaves are the Xk subsets forming the desired state-

space partition. Given this partition, we can finally evaluate the mk . In Section 4.5,

we introduce our cardinality based criterion and show that it makes minimization of

the KL-divergence possible. In Section 4.6, we show how our entropy-based criterion

selects, at each iteration, the groups of variables on which the clauses depend.
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4.5 Partitioning the State Space

In this section, we describe the cardinality-based criterion we use to recursively split

state spaces and explain why it allows efficient optimization of the KL-divergence

KL(QM M‖P ), where QM M is the mixture of Equation 4.1.

4.5.1 Cardinality Based Clamping

The state space partition Xk , 1≤k≤K introduced above is at the heart of our approximation

and its quality and tractability critically depend on how well chosen it is. In Weller and

Domke [2015], each split is obtained by clamping to zero or one the value of a single

binary variable. In other words, given a set of states Xk to be split, it is broken into

subsets X 1
k = {x ∈Xk |xi = 0} and X 2

k = {x ∈Xk |xi = 1}, where i is the index of a specific

variable. To compute a mean-field approximation to P on each of these subspaces, one

only needs to perform a standard mean-field approximation while constraining the qi

probability assigned to the clamped variable to be either zero or one. However, this

is limiting for the large and dense CRFs used in practice because clamping only one

variable among many at a time may have very little influence overall. Pushing the

solution towards a qualitatively different minimum that corresponds to a distinct mode

may require simultaneously clamping many variables.

To remedy this, we retain the clamping idea but apply it to groups of variables instead of

individual ones so as to find new modes of the posterior while keeping the estimation of

the parameters mk and qk
i computationally tractable. More specifically, given a set of

states Xk to be split, we will say that the split into X 1
k and X 2

k is cardinality-based if

X 1
k = {x ∈Xk s.t.

∑
u=1...L

1(xiu = vu) ≥C } , (4.3)

X 2
k = {x ∈Xk s.t.

∑
u=1...L

1(xiu = vu) <C } , (4.4)

where the i1, . . . , iL denote groups of variables that are chosen by the entropy-based

criterion and v1, . . . , vL is a set of labels in L . In other words, in one of the splits, more

than C of the variables have the assigned values and in the other less than C do. For

example, for semantic segmentation X 1
k would be the set of all segmentations in Xk for
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which at least C pixels in a region take a given label, and X 2
k the set of all segmentations

for which less than C pixels do.

We will refer to this approach as cardinality clamping and will propose a practical way

to select appropriate i1, . . . , iL and v1, . . . , vL for each split in Section 4.6.

4.5.2 Instantiating the Multi-Modal Approximation

The cardinality clamping scheme introduced above yields a state space partition Xk , 1≤k≤K .

We now show that given such a partition, minimizing the KL-divergence KLQM M‖P )

using the multi-modal approximation of Equation 4.1 under the disjointness constraint,

becomes tractable.

In practice, we relax the constraint 4.2 to near disjointness

∀k 6= k ′,Qk ′ (Xk ) ≤ ε , (4.5)

where ε is a small constant. It makes the optimization problem better behaved and

removes the need to tightly constrain any individual variable, while retaining the ability

to compute the KL divergence up to O (ε log(ε)).

Let m̂ and q̂ stand for all the mk and qk
i parameters that appear in Equation 4.1. We

compute them as

min
m̂,q̂

KL(QM M‖P )= min
m̂,q̂

∑
x∈X

∑
k≤K

mkQk (x) log

(
QM M (x)

P (x)

)
≡ min

m̂

∑
k≤K

mk log(mk )− ∑
k≤K

mk Ak , (4.6)

where Ak = max
qk

i ,i=1...N

∑
x∈X

Qk (x) log

(
e−E(x)

Qk (x)

)
(4.7)

where Ak is maximized under the near-disjointness constraint of Equation 4.9.

As proved formally in the next section, the second equality of Equation 4.6 is valid up to

a constant and after neglecting a term of order O (ε logε) which appears under the near

disjointness assumption of the supports. Given the Ak terms of Equation 4.7 and under
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the constraints that the mixture probabilities m̂ sum to one, we must have

mk = e Ak∑
k ′≤K

e Ak′
, (4.8)

and we now turn to the computation of these Ak terms. We formulate it in terms of a

constrained optimization problem as follows.

4.5.3 Minimising the KL-Divergence

Let us see how the KL-Divergence between QM M and P of Equation 4.7, can be min-

imised with respect to the parameters mk and to the distributions Qk , leading to Equation

9. We reformulate the minimisation problem up to a constant approximation factor of

order ε log(ε).

First, remember that our minimisation problem enforces the near-disjointness condition,

∀k 6= k ′ ∑
x∈X ′

k

Qk (x) ≤ ε , (4.9)

between the elements of the mixture.

Let us then prove the following useful Lemma.

Lemma 6 For all mixture element k ≤ K ,

∑
x∈X

Qk (x) log

( ∑
k ′≤K

mk ′Qk ′(x)

)
= ∑

x∈X

Qk (x) log(mkQk (x))+O (ε logε) . (4.10)

Proof Let k be the index of a mixture component k ≤ K , and let us denote the approxi-

mation error

δk = ∑
x∈X

Qk (x) log

( ∑
k ′≤K

mk ′Qk ′(x)

)
− ∑

x∈X

Qk (x) log(mkQk (x)) . (4.11)
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Then, we use the near-disjointness condition to bound δk ,

δk ≤ ∑
x∈Xk

Qk (x) log

1+

∑
k ′ 6=k

mk ′Qk ′(x)

Qk (x)


︸ ︷︷ ︸

I

+ ∑
x∈X \Xk

Qk (x) log

1+

∑
k ′ 6=k

mk ′Qk ′(x)

Qk (x)


︸ ︷︷ ︸

J

(4.12)

We first use the well known inequality log(1+x) ≤ x in order to upper bound I ,

I ≤ ∑
x∈Xk

Qk (x)

∑
k ′ 6=k

mk ′Qk ′(x)

Qk (x)
(4.13)

≤ ∑
k ′ 6=k

∑
x∈Xk

mk ′Qk ′(x) (4.14)

≤ ∑
k ′ 6=k

ε (4.15)

≤O (ε) . (4.16)

The second term, J , can then be upper-bounded using the fact that the mk ′ and Qk ′ are

mixture weights and probabilities and hence
∑

k ′ 6=k
mk ′Qk ′(x) ≤ 1 for all x. Therefore,

J ≤ ∑
x∈X \Xk

Qk (x) log

(
1+ 1

Qk (x)

)
(4.17)

≤ ∑
x∈X \Xk

−Qk (x) log(Qk (x)) (4.18)

≤ ∑
k ′ 6=k

∑
x∈Xk′

−Qk (x) log(Qk (x)) . (4.19)

Furthermore, for all k ′ 6= k, the near-disjointness condition enforces that
∑

x∈Xk′
Qk (x) ≤ ε.

Under this constraint, on each of the subsets Xk ′ , the maximal entropy is reached if

Qk (x) = ε

|Xk ′ | for all x in Xk ′ . And, therefore

∑
x∈Xk′

−Qk (x) log(Qk (x)) ≤ ε log

( |X ′
k |
ε

)
(4.20)

≤O (ε logε)+O (ε) , (4.21)
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Assuming that we are able to compute Ak , for all k, the minimisation of this KL-

Divergence with respect to parameters mk , under the nomalisation constraint

∑
k≤K

mk = 1 , (4.31)

is then straightforward and leads to

mk = e Ak∑
k ′≤K

e Ak′
. (4.32)

Handling Two Modes

Let us first consider the case where we generate only two modes modeled by Q1(x) =∏
q1

i (xi ) and Q2(x) = ∏
q2

i (xi ) and we seek to estimate the q1
i probabilities. The q2

i

probabilities are evaluated similarly.

Recall from Section 4.5.2 that the q1
i must be such that the A1 term of Equation 4.7 is

maximized subject to the near disjointness constraint of Equation 4.9, which becomes

Q1

( ∑
u=1...L

1(Xiu = vu) <C

)
≤ ε , (4.33)

under our cardinality-based clamping scheme defined by Equation 4.4. Performing this

maximization using a standard Lagrangian Dual procedure Boyd and Vandenberghe

[2004] requires evaluating the constraint and its derivatives. Despite the potentially

exponentially large number of terms involved, we can do this in one of two ways. In both

cases, the Lagrangian Dual procedure reduces to a series of unconstrained mean-field

minimizations with well known additional potentials.

1. When C is close to 0 or to L, the Lagrangian term can be treated as a specific form

of pattern-based higher-order potentials, as in Vineet et al. [2014], Fleuret et al.

[2008], Kohli and Rother [2012], Arnab et al. [2015].

2. When C is both substantially greater than zero and smaller than L, we treat
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∑
u=1...L1(Xiu = vu) as a large sum of independent random variables under Q1. We

therefore use a Gaussian approximation to replace the cardinality constraint by a

simpler linear one, and finally add unary potentials to the MF problem.

We will encounter the first situation when tracking pedestrians and the second when

performing semantic segmentation, as will be discussed in the results section.

Handling an Arbitrary Number of Nodes

Recall from Section 4.5 that, in the general case, there can be an arbitrary number

of modes. They correspond to the leaves of a binary tree created by a succession of

cardinality-based splits. Let us therefore consider mode k for 1 ≤ k ≤ K . Let B be the set

of branching points on the path leading to it. The near disjointness 4.9, can be enforced

with only |B | constraints. For each b ∈ B , there is a list of variables i b
1 , . . . , i b

Lb , a list of

values vb
1 , . . . , vb

Lb , a cardinality threshold C b , and a sign for the inequality ≥b that define

a constraint

Qk

( ∑
u=1...Lb

1(Xi b
u
= vb

u) ≥b C b

)
≤ ε (4.34)

of the same form as that of Equation 4.33. It ensures disjointness with all the modes in

the subtree on the side of b that mode k does not belong to. Therefore, we can solve

the constrained maximization problem of Equation 4.7, as in Section 4.5.3, but with |B |
constraints instead of only one.

4.6 Selecting Variables to Clamp

We now present an approach to choosing the variables i1, . . . , iL and the values v1, . . . , vL ,

which define the cardinality splits of Eqs. 4.3 and 4.4, that relies on phase transitions in

the graphical model.

To this end, we first introduce a temperature parameter in our model that lets us smooth

the probability distribution we want to approximate. This well known parameter for

physicists Kadanoff [2009] was used in a different context in vision by Premachandran
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et al. [2014]. We study its influence on the corresponding MF approximation and how

we can exploit the resulting behavior to select appropriate values for our variables.

4.6.1 Temperature and its Influence on Convexity

We take the temperature T to be a number that we use to redefine the probability

distribution of Eq. 3.1 as

P T (X = x) = 1

Z T
e
−

1

T
E(x)

, (4.35)

where Z T is the partition function that normalizes P T so that its integral is one. For T = 1,

P T reduces to P . As T goes to infinity, it always yields the same Maximum-A-Posteriori

value but becomes increasingly smooth. When performing the MF approximation at

high T , the first term of the KL-Divergence, the convex negative entropy, dominates

and makes the problem convex. As T decreases, the second term of the KL-Divergence,

the expected energy, becomes dominant, the function stops being convex, and local

minima can start to appear. In the next section, we introduce a physics-inspired proof

that, in the case of a dense Gaussian CRF Krähenbühl and Koltun [2013], we can

approximate and upper-bound, in closed-form, the critical temperature Tc at which the

KL divergence stops being convex. We validate experimentally this prediction, using

directly the denseCRF code from Krähenbühl and Koltun [2013]. This makes it easy to

define a temperature range [1,Tmax] within which to look for Tc . For a generic CRF, no

such computation may be possible and the range must be determined empirically.

4.6.2 Computing the Critical Temperature for the Dense Gaussian
CRFs

We first compute analytically the phase transition temperature parameter Tc of 6.2 where

the KL-Divergence stops being convex. In the first part Analytical Derivation, we make

strong assumptions in order to be able to obtain a closed form estimation of Tc . We then

explain how this result helps understanding real cases. In the second part Experimental

Analysis, in order to justify our assumptions, we run experiments under three regimes, one

where our assumptions are strictly verified, one which corresponds to a real-life scenario
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and an intermediate one. This set of experiments shows that our strong assumptions

provide a valuable insight for practical applications.

Analytical derivation Let us take probability distribution P to be defined by a dense

Gaussian CRF Krähenbühl and Koltun [2013]. In order to make computation tractable,

we assume that the RGB distance between pixels is uniform and equal to dr g b . Therefore

the RGB Kernel is constant with value

θr g b = e

−d 2
r g b

2σr g b . (4.36)

We consider the case where we have only two possible labels and the same unary potential

on all the variables. Even if this assumption sounds strong, we can expect them to be

locally valid. Formally, on a N ×N dense grid, the energy function is defined as

E(x) = Γθr g b

2πσ2

∑
(i , j ),(i ′, j ′)

1[x(i , j ) 6= x(i ′, j ′)]e
−
‖(i , j )− (i ′, j ′)‖2

2σ

+ ∑
(i , j )

U(i , j )1[x(i , j ) = 0] ,

where σ controls the range of the correlations and U(i , j ) is a unary potential.

Since that we assumed that all the variables receive the same unary U , all the variables

are undiscernibles. Furthermore, the pairwise potentials are attractive, we therefore

expect all the mean-field parameters qi , j =Q(xi , j = 0) to have the same value at the fixed

point solution of the Mean-Field. Therefore, we designate this common parameter qT

and we can try to find analytically the Mean-Field fixed point for qT corresponding to a

temperature T .
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At convergence, the parameter qT will have to satisfy

log(qT ) = EQ (E(x)|xi = 0)

=− Γθr g b

2πσ2T

∑
(i , j )∈Z×Z

(1−qT )e
−
‖(i , j )‖2

2σ − U

T

=− (1−qT )Γθr g b +U

T

Hence, we obtain the fixed point equation

q̃T = 1

2
tanh

(
q̃TΓθr g b −U

T

)
, (4.37)

where q̃T = qT −0.5. As depicted in Figure 4.2, when unaries are 0 (on the left) there

are two distinct regimes for the solutions of this equation. For high T , there is only

one stable solution at q̃ = 0. For low T , there are two distinct stable solutions where

q̃ is close to −0.5 or 0.5. The temperature threshold Tc where the transition happens,

corresponds to the solution of

1

2

d tanh(
q̃Γθr g b

T
)

d q̃
|q̃=0 = 1 , (4.38)

and hence Tc =
Γθr g b

2
. For real images, we have θr g b ≤ 1, and therefore, Tc = Γ

2
can be

used to upper-bound the true critical temperature.

When unaries are non-zero, there is no closed form solution for Tc , however, from

Equation 4.37, we can show that the smaller the unaries (U ), the lower the critical

temperature will be. This is intuitively justified in Fig. 4.2.

The authors of Weller and Domke [2015], use several heuristics which basically consist

in looking for high correlations and low unaries directly in the potentials of the graphical

model, in order to find good variables to clamp. We, instead use a criterium based on the

critical temperature in order to spot these.

76



4.6. Selecting Variables to Clamp

Without unaries With unaries

Figure 4.2 – tanh(
q̃Γ−U

T
) for two temperatures. Low T (blue) and High T (red).

Experimental analysis We use the dense CRF implementation of Krähenbühl and

Koltun [2013] to verify the phase transition experimentally for Γ= 10. In our experiments,

we used the three following settings, which range from the stylised example used for

calculation to real semantic segmentation problems:

• Model 1: We use a uniform rgb image dr g b = 0. Two classes without unary

potentials. This is exactly the model used for the derivations with θr g b = 1 and

U = 0.

• Model 2: Gaussian potentials defined over image coordinates distance + RGB

distance. Two classes without unary potentials. In other words, θr g b ≤ 1.

• Model 3: Gaussian potentials defined over image coordinates distance + RGB

distance. Two classes with unary potentials produced by a CNN. This is a real-life

scenario.

Fig. 4.3 shows that, as expected, two regimes appear for Model 1, before and after T = 5.

We see that our prediction remains completely valid for Model 2, some non-uniform

regions fall under the regime θr g b ≤ 1 and therefore the 10 % highest entropy percentile

transitions slightly earlier. For Model 3, however, we see that the minimal and average

entropy remain low even for T > 5. This is well explained by the fact that large regions

of the image receive strong unary potentials from one class or the other, and therefore

fall under the case "with unaries" of Fig. 4.2 where the U parameter cannot be ignored.
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4.6.3 Entropy-Based Splitting

We describe here our approach to splitting X into X1 and X2 at the root node of the tree.

The subsequent splits are done in exactly the same way. The variables to be clamped are

those whose value change from one local minimum to another so that we can force the

exploration of both minima.

To find them, we start at Tmax , a temperature high enough for the KL divergence to be

convex and progressively reduce it. For each successive temperature, we perform the MF

approximation starting with the estimate for the previous one to speed up the computation.

When looking at the resulting set of approximations starting from the lowest temperature

ones T = 1, a telltale sign of increasing convexity is that the assignment of some variables

that were very definite suddenly becomes uncertain. Intuitively, this happens when

the CRF terms that bind variables is overcome by the entropy terms that encourage

uncertainty. In physical terms, this can be viewed as a local phase-transition Kadanoff

[2009].

Let T be a temperature greater than 1 and let QT and Q1 be the corresponding Mean

Field approximations, with their marginal probabilities qT
i and q1

i for each variable i . To

detect such phase transitions, we compute

δi (T ) =1[H (qT
i ) > hhi g h]1[H (q1

i ) < hlow ] , (4.39)

for all i , where H denotes the individual entropy.

All variables and labels with positive δi become candidates for clamping. If there are

none, we increase the temperature. If there are several, we can either pick one at random

or use domain knowledge to pick the most suitable subset and values as will be discussed

in the Results Section.
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4.7 Pseudo-code for the Multi-Modal Mean-Fields algo-

rithm

Algorithm 1 summarises the operations to split one mode into two, or, in other words,

to obtain the two additional constraints which are used to define the two newly created

subsets. Algorithm 2 summarises the operations to obtain the Multi-Modal Mean Field

Distribution by constructing the whole Tree.

In Algorithm 2, Constr ai ntTr ee, is taken to be a Tree in the form of a list of constraints,

one for each branching-point, or leaf,—except for the root—, in a breadth first order. The

function pathto(nNode), returns the set of indices corresponding to the branching

points on the path to the branching point, or leaf with index nNode, including index

nNode itself.

4.8 Results

We first use synthetic data to demonstrate that MMMF can approximate a multi-modal

probability density function better than both standard MF and the recent approach

of Weller and Domke [2015], which also relies on clamping to explore multiple modes.

We then demonstrate that this translates to an actual performance gain for two real-

world algorithms—one for people detection Fleuret et al. [2008] and the other for

segmentation Chen et al. [2015], Yu and Koltun [2016]—both relying on a traditional

Mean Field approach. We will make all our code and test datasets publicly available.

The parameters that control MMMF are the number of modes we use, the cardinality

threshold C at each split, the ε value of Equation 4.9, the entropy thresholds hlow

and hhi g h of Equation 4.39, and the temperature Tmax introduced in Section 4.6. In

all our experiments, we use ε = 10−4, hlow = 0.3, and hhi g h = 0.7. As discussed in

Section 4.6, when the CRF is a dense Gaussian CRF, we can approximate and upper

bound the critical temperature Tc in closed-form and we simply take Tmax to be this

upper bound to guarantee that Tmax > Tc . Otherwise, we choose Tmax empirically on a

small validation-set and fix it during testing.
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Algorithm 1 Function:Split(Constr ai ntLi st )
Input:
E(x): An Energy function defined by a CRF;
SolveMF(E ,Constr ai ntLi st ): A Mean Field solver with cardinality constraint.;
Temper atur es: A list of temperatures in increasing order;
H low ,Hhi g h: Entropy thresholds for the phase transition. 0.3 and 0.6 here.
C : A cardinality threshold
Output:
Le f tConstr ai nt s: A triplet containing a list of variables, clamped to value, -C
Ri g htConstr ai nt s: A triplet containing a list of variables, clamped to value, C

QT0 ←SolveMF(E)
for T in Temper atur es do

QT ←SolveMF(
E

T
,Constr ai ntLi st )

il i st ← [.]
vl i st ← [.]
for index in 1. . .len(Q t ), v in l abel s do

if 1[H (qT
i ndex) > 0.6]1[H (qT0

i ndex) < 0.3]1[qT0
i ndex,v > 0.5] = 1 then

il i st.append(index),vl i st.append(v)
end if

end for
if len(il i st ) > 0 then
exit for loop

end if
end for
Le f tConstr ai nt s = il i st , vl i st ,−C
Ri g htConstr ai nt s = il i st , vl i st ,C
return Le f tConstr ai nt s,Ri g htConstr ai nt s
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Algorithm 2 Compute Multi-Modal Mean Field
Input:
E(x): An Energy function defined on a CRF;
SolveMF(E ,Constr ai ntLi st ): A Mean Field solver with cardinality constraint;
Split(Constr ai ntLi st ): Alg. 1. A function that computes the new constraints.
N Modes: A target for the number of modes in the Multi-Modal Mean Field
Output:
Ql i st : A list of Mean Field distributions in the form of a table of marginals
ml i st : A list of probabilities, one for each mode

Constr ai ntTr ee = [.]
We first build the tree by adding constraints.
while nNode < N Modes do

Constr ai ntLi st = [.]
for p in pathto(nNode) do

Constr ai ntLi st.append(ConstraintTree[p])
end for
Le f tConstr ai nt s,Ri g htConstr ai nt s ←Split(Constr ai ntLi st )
Constr ai ntTr ee.append(Le f tConstr ai nt s)
Constr ai ntTr ee.append(Ri g htConstr ai nt s)

end while
We now turn to the computation of on MF distribution per leaf.
Ql i st = [.], Z li st = [.],ml i st = [.]
for mode in 0. . . N Modes do

Constr ai ntLi st = [.]
for p in pathto(mode +N Modes −1) do

Constr ai ntLi st.append(ConstraintTree[p])
end for
Q,Z ← SolveMF(E,ConstraintList)
Ql i st .append(Q)
Z li st .append(Z )

end for
Finally, we compute the mode probabilities.
for mode in 0. . . N Modes do

ml i st .append(
Z li st [mode]∑

Z li st
)

end for
return Ql i st , ml i st
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4.8.1 Synthetic Data

To demonstrate that our approach minimizes the KL-Divergence better than both standard

MF and the clamping one of Weller and Domke [2015], we use the same experimental

protocol to generate conditional random fields with random weights as in Eaton and

Ghahrmani [2009], Weller and Jebara [2014], Weller and Domke [2015]. Our task is then

to find the MMMF approximation with lowest KL-Divergence for any given number of

nodes. When that number is one, it reduces to MF. Because it involves randomly chosen

positive and negative weights, this problem effectively mimics difficult real-world ones

with repulsive terms, uncontrolled loops, and strong correlations.

In Figure 4.5, we plot the KL-Divergence as a function of the number of modes used

to approximate the distribution on the standard benchmarks. These modes are obtained

using either our entropy-based criterion as described in Section 4.6, or the MaxW one

of Weller and Domke [2015], which we will refer to as BASELINE-MAXW. It involves

sequentially clamping the variable having the largest sum of absolute values of pairwise

potentials for edges linking it to its neighbors. It was shown to be one of the best methods

among several others, which all performed roughly similarly. In our experiments, we

used the phase-transition criterion of Section 4.6 to select candidate variables to clamp.

We then either randomly chose the group of L variables to clamp or used the MaxW

criterion of Weller and Domke [2015] to select the best L variables. We will refer to the

first as OURS-RANDOM and to the second as OURS-MAXW. Finally, in all cases,

C = L and the values vu correspond to the ones taken by the MAP of the mode split.

In Figure 4.5, we plot the resulting curves for L = 1 and L = 3, evaluated on 100 instances.

OURS-RANDOM performs better than the method BASELINE-MAXW in most cases,

even though it does not use any knowledge of the CRF internals, and OURS-MAXW,

which does, performs even better. The results on the 13× 13 grid demonstrate the

advantage of clamping variables by groups when the CRF gets larger.

4.8.2 Multi-modal Probabilistic Occupancy Maps

The Probabilistic Occupancy Map (POM) method Fleuret et al. [2008] relies on mean-

field inference for pedestrian detection. More specifically, given several cameras with
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Mixed grid Attractive grid Mixed random Attractive random

Figure 4.5 – KL-divergence using either our clamping method or that of Weller and
Domke [2015] averaged over 100 trials. The vertical bars represent standard deviations.
Attractive means that pairwise terms are drawn uniformly from [0,6] whereas Repulsive
means drawn from [−6,6]. Grid indicates a grid topology for the CRF, whereas Random
indicates that the connections are chosen randomly such that there are as many as in the
grids. We ran our experiments with both 7×7 and 13×13 variables CRFs.

overlapping fields of view of a discretized ground plane, the algorithm first performs

background subtraction. It then estimates the probabilities of occupancy at every discrete

location as the marginals of a product law minimizing the KL divergence from the “true”

conditional posterior distribution, formulated as in Equation 3.1 by defining an energy

function. Its value is computed by using a generative model: It represents humans as

simple cylinders projecting to rectangles in the various images. Given the probability

of presence or absence of people at different locations and known camera models, this

produces synthetic images whose proximity to the corresponding background subtraction

images is measured and used to define the energy.

This algorithm is usually very robust but can fail when multiple interpretations of a

background subtraction image are possible. This stems from the limited modeling power

of the standard MF approximation. We show here that, in such cases, replacing MF by

MMMF while retaining the rest of the framework yields multiple interpretations, among

which the correct one is usually to be found.

Figure 4.6 depicts what happens when we replace MF by MMMF to approximate

the true posterior, while changing nothing else to the algorithm. To generate new

branches of the binary tree of Section 4.5, we find potential variables to clamp as
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described in Section 4.6. Among those, we clamp the one with the largest entropy

gap—H (qT
i )−H (q1

i ), using the notations of Equation 4.39—and its neighbors on the

grid. When evaluating our cardinality constraint, we take C to be 1, meaning that one

branch of the tree corresponds to no one in the neighborhood of the selected location and

the other to at least one person being present in this neighborhood. Since we typically

create those locations by discretizing the ground plane into 10cm ×10cm grid cells,

this forces the two newly instantiated modes to be significantly different as opposed

to featuring the same detection shifted by a few centimeters. In Figure 4.6, we plot

the results as dotted curves representing the MODA scores as functions of the distance

threshold used to compute them Bernardin and Stiefelhagen [2008]. In all cases, we

used 4 modes for the MMMF approximation and followed the DivMBest evaluation

metric Batra et al. [2012] to produce a score by selecting among the 4 detection maps

corresponding to each mode the one yielding the highest MODA score. This produces

red dotted MMMF curves that are systematically above the blue dotted MF.

However, to turn this improvement into a practical technique, we need a way to choose

among the 4 possible interpretations without using the ground truth. We use temporal

consistency to jointly find the best sequence of modes, and reconstruct trajectories from

this sequence. In the original algorithm, the POMs computed at successive instants

were used to produce consistent trajectories using the a K-Shortest Path (KSP) algo-

rithm Berclaz et al. [2011]. This involves building a graph in which each ground location

at each time step corresponds to a node and neighboring locations at consecutive time

steps are connected. KSP then finds a set of node-disjoint shortest paths in this graph

where the cost of going through a location is proportional to the negative log-probability

of the location in the POM Suurballe [1974]. Since MMMF produces multiple POMs,

we then solve a multiple shortest-path problem in this new graph, with the additional

constraint that at each time step all the paths have to go through copies of the nodes

corresponding to the same mode, as described in more details in the next section.

The solid blue lines in Figure 4.6 depict the MODA scores when using KSP and the red

ones the multi-modal version, which we label as KSP∗. The MMMF curves are again

above the MF ones. This makes sense because ambiguous situations rarely persist for

more than a few a frames. As a result, enforcing temporal consistency eliminates them.
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Figure 4.6 – Replacing MF by MMMF in the POM algorithm Fleuret et al. [2008]. The
blue curves are MODA scores Bernardin and Stiefelhagen [2008] obtained using MF
and the red ones scores using MMMF. They are shown as solid lines when temporal
consistency was enforced and as dotted lines otherwise. Note that the red MMMF
lines are above corresponding blue MF ones in all cases. (a) 1000 frames from the
MVL5 Mandeljc et al. [2012] dataset using a single camera. (b) 400 frames from the
Terrace dataset Berclaz et al. [2011] using two cameras. (c) 80 frames of the EPFL-Lab
dataset Berclaz et al. [2011] using a single camera. (d) 80 frames from the EPFL-Lab
dataset Berclaz et al. [2011] using two cameras.

4.8.3 Multi-Modal Semantic Segmentation

CRF-based semantic segmentation is one of best known application of MF inference

in Computer Vision and many recent algorithms rely on dense CRF’s Krähenbühl and

Koltun [2013] for this purpose. We demonstrate here that our MMMF approximation

can enhance the inference component of two such recent algorithms Chen et al. [2015],

Yu and Koltun [2016] on the Pascal VOC 2012 segmentation dataset and the MPI video

segmentation one Galasso et al. [2013].
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Individual VOC Images We write the posterior in terms of the CRF of Chen et al.

[2015], which we try to approximate. To create a branch of the binary tree of Section 4.5,

we first find the potential variables to clamp as described in Section 4.6. As in 4.8.2, we

select the ones in the sliding window with the largest entropy gap, H (qT
i )−H (q1

i ). We

then take C to be L/2 when evaluating our cardinality constraint, meaning that we seek

the dominant label among the selected variables and split the state space into those for

which more than half these variables take this value and those in which less than half do.

(a) (b)

(c) (d)

Figure 4.7 – Qualitative semantic segmentation. (a) Original image. (b) Entropy gap. (c)
Labels with maximum a Posteriori Probability after MF approximation. (d) Labels with
maximum a Posteriori Probability for the best mode of the MMMF approximation.

Figure 4.7 illustrates the results on an image of the VOC dataset. To evaluate such

results quantitatively, we first use the DivMBest metric Batra et al. [2012], as we did

in Section 4.8.2. We assume we have an oracle that can select the best mode of our

multi-modal approximation by looking at the ground truth. Figure 4.8 depicts the results

on the validation set of the VOC 2012 Pascal dataset in terms of the average intersection

over union (IU) score as a function of the number of modes. When only 1 mode is

used, the result boils down to standard MF inference as in Chen et al. [2015]. Using
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32 yields a 2.5% improvement over the MF approximation. This may seem small until

one considers that we only modify the algorithm’s inference engine and leave the unary

terms unchanged. In Chen et al. [2015], Zheng et al. [2015], this engine has been shown

to contribute approximately 3% to the overall performance, which means that we almost

double its effectiveness. For analysis purposes, we implemented two baselines:

• Instead of clamping groups of variables, we only clamp the variable with the

maximum entropy gap at each step. As depicted by the red curve in Figure 4.8,

this has absolutely no effect and illustrates the importance of clamping groups of

variable instead of single ones as in Weller and Domke [2015].

• The DivMBest approach Batra et al. [2012] first computes a MAP and then adds a

penalty term to the energy function to find another MAP that is different from the

first. It then repeats the process. We adapted this approach for MF inference. The

green curve in Figure 4.8 depicts the result, which MMMF outperforms by 1.5%.

IU
score for the best mode

Figure 4.8 – Quantitative semantic segmentation on VOC 2012. IU score for best mode
as a function of the number of modes. MMMF in blue, baselines in red and green.
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Method Mean IOU
MF 44.9%
Weller and Domke [2015] + Temp 44.9%
MMMF + Temporal 47.3%
MMMF-Best 53.2%

Table 4.1 – Quantitative semantic segmentation MPI dataset Galasso et al. [2013].

Semantic Video Segmentation. We ran the same experiment on the images of the

MPI video segmentation dataset Galasso et al. [2013] using the CRF of Yu and Koltun

[2016]. In this case, we can exploit temporal consistency to avoid having to use an oracle

and nevertheless get an exploitable result, as we did in Section 4.8.2. Furthermore, we

can do this in spite of the relatively low frame-rate of about 1Hz.

More specifically, we first define a compatibility measure between consecutive modes

based on label probabilities of matching key-points, which we compute using a key-

point matching algorithm Revaud et al. [2016]. We then compute a shortest path over

the sequence of modes, taking into account individual mode probabilities given by

Equation ??. Finally, we use only the MAP corresponding to the mode chosen by the

shortest path algorithm to produce the segmentation. In Figure 4.1, we again report

the results in terms of IU score. This time the improvement is around 2.4%, which

indicates that imposing temporal consistency very substantially improves the quality

of the inference. To the best of our knowledge, other state of the art video semantic

segmentation methods are not applicable for such image sequences. Hur and Roth [2016]

requires non-moving scenes and a super-pixel decomposition, which prevents using all

the dense CRF-based image segmentors. Kundu et al. [2016] was only applied to street

scenes and requires a much higher frame rate to provide an accurate flow estimation.

4.9 K-Shortest Path algorithm for the Multi-Modal Prob-

abilistic Occupancy Maps

We present here the algorithm we use to reconstruct tracks from the Multi-Modal

Probabilistic Occupancy Maps (MMPOMs) of Section 4.8
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KSP In the original algorithm of Berclaz et al. [2011], the POMs computed at succes-

sive instants were used to produce consistent trajectories using the a K-Shortest Path

(KSP) algorithm Suurballe [1974]. This involves building a graph in which each ground

location at each time step corresponds to a node and neighboring locations at consecutive

time steps are connected. KSP then finds a set of node-disjoint shortest paths in this graph

where the cost of going through a location is proportional to the negative log-probability

of the location in the POM Berclaz et al. [2011]. The KSP problem can be solved in

linear time and an efficient implementation is available online.

KSP for Multi-Modal POM Since MMMF produces multiple POMs, one for each

mode, at each time-step, we duplicate the KSP graph nodes, once for each mode as well.

Each node is then connected to each copy of neighboring locations from previous and

following time steps. We then solve a multiple shortest-path problem in this new graph,

with the additional constraint that at each time step all the paths have to go through

copies of the nodes corresponding to the same mode. This larger problem is NP-Hard

and cannot be solved by a polynomial algorithm such as KSP. We therefore use the

Gurobi Mixed-Integer Linear Program solver Gurobi Optimization [2016].

More precisely, let us assume that we have a sequence of Multi-Modal POMs Q t
k

and mode probabilities mt
k for t ∈ {1, . . . ,T } representing time-steps and k ∈ {1, . . . ,K }

representing different modes. Each Q t
k is materialized through a vector of probabilities

of presence q t
k,i , where each i ≤ N is indexes a location on the tracking grid.

Using the grid topology, we define a neighborhood around each variable, which corre-

sponds to the maximal distance a walking person can make on a grid in one time step.

Let us denote by Ni the set of indices corresponding to locations in the neighbourhood

of i . The topology is fixed and hence Ni does not depend on the time steps. We define

the following log-likelihood costs.

Using a Log-Likelihood penalty, we define the following costs:

• C t
k,i = log

(
1−q t

k,i

q t
k,i

)
, representing the cost of going through variable i at time t if

mode k is chosen.
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• C t
k = log

(
1−mt

k

mt
k

)
, representing the cost of choosing mode k at time t .

We solve for an optimization problem involving the following variables:

• x t
k,i ,l , j is a binary flow variable that should be 1 if a person was located in i at t

and moved to j at t +1, while modes k and l were respectively chosen at time t

and t +1.

• y t
k is a binary variable that indicates whether mode k is selected at time t .

We can then rewrite the Multi-Modal K-Shortest Path problem as the following program,

were we always assume that t ≤ T stands for a time step, k ≤ K and l ≤ K stand for mode

indices, and i ≤ N and j ≤ N stand for grid locations:

min
∑
t ,k

C t
k y t

k +
∑

t ,k,l≤K

∑
i , j∈Ni

C t
k,i x t

k,i ,l , j

s.t. ∀(t ,k, i ) ,
∑

l , j∈Ni

x t−1
l , j ,k,i =

∑
l , j∈Ni

x t
k,i ,l , j flow conservation

∀(t ,k, i ) ,
∑

l , j∈Ni

x t
k,i ,l , j ≤ y t

k disjoint paths + selected mode

∀t ,
∑
k

y t
k = 1 selecting one mode

∀t ,k, i , l , j , 0 ≤ x t
k,i ,l , j ≤ 1

∀t ,k , y t
k ∈ {0,1}

(4.40)

KSP prunning However, the problem as written above, may involve several tens

millions of flow variables and therefore becomes intractable, even for the best MILP

solvers. We therefore first prune the graph to drastically reduce its size.

The obvious strategy would be by thresholding the POMs and removing all the outgoing

and incoming edges from locations which have probabilities below qthr esh . However,
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Figure 4.9 – Illustration of the output of our K-Shortest Path algorithm in the case of
multiple modes.

this would be self-defeating as one of the main strengths of the KSP formulation is to be

very robust to missing-detections and be able to reconstruct a track even if a detection is

completely lost for several frames.

We therefore resort to a different strategy. More precisely, we initially relax the constraint

disjoint paths + selected mode, to a simple disjoint path constraint, and re-

move the constraint selecting one mode. We therefore obtain a relaxed problem

min
∑
t ,k

∑
t ,k,l≤K

∑
i , j∈Ni

C t
k,i x t

k,i ,l , j

s.t. ∀(t ,k, i ) ,
∑

l , j∈Ni

x t−1
l , j ,k,i =

∑
l , j∈Ni

x t
k,i ,l , j flow conservation

∀(t ,k, i ) ,
∑

l , j∈Ni

x t
k,i ,l , j ≤ 1 disjoint paths

∀t ,k, i , l , j , 0 ≤ x t
k,i ,l , j ≤ 1

(4.41)

which is nothing but a vanilla K-Shortest Path Problem. It can be solved using our

linear-time KSP algorithm. This KSP problem will output a very large number of paths,

going through all the different modes simultaneously. From, this output, we extract the

set of grid locations which are used, in any mode, at each time step, and select them as
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our potential locations in the final program. In our current implementation, we add to

these locations, the ones for which q t
k,i ≥ qthr esh for any mode at time-step t .

We can finally solve Program 4.40, where non-selected locations are pruned from the

flow graph. We don’t know if our strategy, based on a relaxation and pruning, provides a

guaranteed optimal solution to 4.40, but this is an interesting question.

4.10 Conclusion

We have shown that our MMMF aproach makes it possible to add structure to the

standard MF approximation of CRFs and to increase the performance of algorithms that

depend on it. In effect, our algorithm creates several alternative MF approximations with

probabilities assigned to them, which effectively models complex situations in which

more than one interpretation is possible.

In future chapters, we will see how MMMF can be integrated into structured learning

architectures through the Back Mean-Field procedure.

93





5 Improved parameters learning

5.1 Practical Challenges of Learning through Mean-Fields

We have been focusing so far on inference problems, assuming that the parameters of the

model were fixed. In many problems this assumption is reasonable, and the parameters

can be set manually to express prior knowledge or geometric properties of the predictions,

such as continuity or local smoothness.

However, these parameters cannot always be chosen manually and it is crucial to be

able to learn them from data. The learned parameters can range from a relatively small

number of values encoding potentials at a low level, to a higher level parameterization,

such as the weights of a deep neural net.

In previous works [Arnab et al., 2018], the mean-field algorithm has often been used

for parameters learning using a very pragmatic method. The back mean-field algorithm

optimizes the weights directly to make the approximate variational distribution, computed

by the MF inference algorithm, fit the observed data. This method, despite its popularity,

is often limited in practice and suffers from the existence of many modes in the posterior.

We therefore derive a new learning method, that leverages on the Multi-Modal Mean-

Field approach of Chapter 4. We show how this learning method bridges the two previous

classes of approach to parameters learning, described in section 2.4. More precisely,

we propose a flexible new learning framework, which creates a continuum between

contrastive divergence and back mean-field based techniques. We call this new method
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Multi-Modal Back Mean-Field.

However, the learning precision brought by this new approach sometimes comes at

the cost of an increased computational complexity. In order to alleviate this issue,

we finally derive a simple but efficient approximation to the Multi-Modal Mean-Field

Learning approach, which, as the back mean-field one, can be seamlessly integrated

in Deep-Learning pipelines, but brings substantial improvements to structured learning

tasks.

5.2 Related Work

Lets us assume that we observe D data-points {(x1,I1), . . . , (xD ,ID )} = D. The task of

learning the CRF parameters can be expressed as the maximization of the log-likelihood

of the observed data under the CRF model parametrized by θ,

θ∗ = max
θ

∑
(x,I)∈D

log(P (X = x | I;θ)) (5.1)

= max
θ

∑
(x,y)∈D

E(x | I;θ)− log(Zθ) . (5.2)

As discussed in Chapter 2 one of the ways explored in the literature to solve this

task is to approximate Zθ via a variational bound, sampling, or other approximate

inference methods. Nevertheless, sampling can be very slow and other inference methods

intractable in many cases. Variational Inference techniques, such as the mean-field one,

can be used to approximate the partition function.

The methods presented above use an explicit energy model, which is only related to

the mean-field algorithm through the energy function parameters which defines the KL-

Divergence. However, because of the highly non-convex nature of the KL-Divergence

function, and the instability of the MF algorithm with respect to the initialization and

step size, the situation is slightly more complex. Indeed, a "good" energy function – such

that the corresponding posteriors fit the observed data –, is not always going to be easily

optimizable at inference time. Therefore, the output of the inference algorithm might not

be a good approximation of the posterior itself.
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Therefore, Domke [2013] proposed a more direct approach. Namely, instead of max-

imizing the log-likelihood of the data under the true posterior distribution, the back

mean-field maximizes the log-likelihood under the mean-field approximation,

θ∗ = max
θ

∑
(x,I)∈D

log(Q(X = x | I;θ)) (5.3)

= max
θ

∑
(x,I)∈D

∑
i

logQi (Xi = xi | I;θ) , (5.4)

where Q(X = x | I;θ) depends on the parameters θ through the optimization problem

Qθ = argmin
Q∈Q

KL(Q‖Pθ) . (5.5)

Note that, to compute Qθ from the CRF potential functions φ, we use the gradient

descent method described in Chapter 3.2.2. By unrolling those iterations, we obtain a

differentiable mapping from θ to Qθ. Therefore, assuming that the potential function

φ(. | I,θ) is a differentiable parametrization, θ can be optimized via stochastic gradient

descent.

In practice, it means that mean-field iterations can be "unrolled" at the end of a Neural

Network architecture and gradient information can be Back-Propagated through it.

Unrolling iterations as a part of the Neural Network requires to store the activations

during the forward pass – values of Q t at each iteration in this context –, in order to

compute the Backward pass. This is memory inefficient. Furthermore, in practice, it

turns out that the gradient vanishes very quickly over the backward computation, because

of the normalization of the MF iterations, which act like sigmoid transfer functions.

Therefore, in practice, we can restrict the back-propagation to the last few iterations,

without loss of efficiency.

Despite some practical successes, this method suffers from the multi-modality of the MF

objective function. Intuitively, even if the learned distribution Pθ is a good model for the

empirical data, the MF distribution Qθ, computed at inference time may concentrate on

a single mode of Pθ. Therefore, if the drawn sample (xs ,Is), belongs to another mode

which is not modeled by Q, the sample learning loss will be high, resulting in an update

on θ, even though Pθ is a good model. We will see how this can be remedied using
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Multi-Modal Back Mean-Field.

5.3 Method

5.3.1 Multi-Modal Back Mean-Field

In this section, the Multi-Modal Mean-Field method presented in Chapter 4, is leveraged

to improve parameters learning in CRFs. We call this novel procedure Multi-Modal

Back-Mean-Field, and, similarly to the case of the MF approximation, its goal is to

maximize the log-likelihood of the observations under the approximation of the posterior,

which is a MMMF distribution in this case.

Intuitively, one of the main weaknesses of the standard back-MF learning method comes

from the problem of multi-modality. More precisely, if the MF approximation converged

to a mode which is very different from the one the ground truth sample is actually

belonging to, the gradients computed will be wrong and might mislead the parameters

update. By using the tree structure we augment the chances to model correctly the

mode the sample belongs to, and therefore get more reliable updates. Furthermore, by

weighting mode probabilities according to the likelihood of samples belonging to it, we

can strengthen the parameters learning.

As above, lets us assume that we observe D data-points {(x1,I1), . . . , (xD ,ID )} =D. Our

goal is therefore to find the CRF parameters θ∗ which maximizes the data likelihood

under QM M (. | I,θ).

Our main observation is that each data-point x actually belongs to a single element of

the state space partition {X1, . . . ,XK } introduced in section 4.4. Therefore, for every

data-point, it brings a drastic simplification of the log-likelihood formula
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θ∗ = max
θ

∑
(x,I)∈D

log(QM M (X = x | I,θ)) (5.6)

= max
θ

∑
(x,I)∈D

log

(∑
k

mkQk (X = x | I,θ)

)
(5.7)

= max
θ

∑
(x,I)∈D

[
logmk(x)(I,θ)+ logQk(x)(X = x | I,θ)

]
, (5.8)

where mk is defined in Equation 4.8 and k(x) is the index k of the partition function such

that x ∈Xk .

Each one of the two terms of the sum in Equation 5.8 is computed as a differentiable

function of the CRF parameters θ and the objective is therefore optimized via stochastic

gradient descent, as in the standard back mean-field case.

The first term of Equation 5.8, weights the probability of the mode the ground-truth

belongs to, compared to other modes. It is therefore similar in spirit to the approximations

used in the standard contrastive divergence-based CRF training methods presented in

section 2.4. We will even see below that, in some cases, they are exactly equivalent.

On the other hand, the second term of Equation 5.8, stems from a direct training method

where we optimize the weights of the CRF to make the clamped MF approximation

fit the data on the non-clamped terms. We will even see below that the standard back

mean-field can be seen as a special case of or method.

5.3.2 Connection to other CRF training methods

. We explain below how multiple standard CRF training methods can be recovered as

specific-cases of ours.

i Back mean-field: It is trivial to see that the standard Back Mean-Field method

corresponds to ours where only a single mode is explored.

ii Variational log-partition function approximation and contrastive divergence:

A popular way of training conditional random fields is to use a variational approx-
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imation of the log-partition function of Equation 5.2. This approximation makes

the gradient computation tractable and one can proceed with optimization. Actually,

it turns out that the specific configuration of our method where the branch of the

clamping tree containing the ground truth element is completely explored and no

other branch is, corresponds to this scenario.

No gradient information would then be propagated through the second term of Equa-

tion 5.8. The first term is then computed as the difference between the energy of

the probability of the ground truth element and a mean-field approximation of the

log-partition function.

Interestingly, variants of our algorithms include exploring branches starting closer to

the ground truth sample. This technique is a variant of the contrastive divergence

one, where the ground truth sample is used to guide the sampling of Pθ.

iii Brute force: On the opposite, the brute force training method can be achieved in

our framework by exploring completely every branch. This will lead to an exact

computation of Zθ in Equation 5.2 and therefore an exact log-likelihood gradient.

MMMF Brute Force

Variational Z approx. Ground-Truth Clamping

Figure 5.1 – Illustration of the different versions of Multi-Modal Back Mean-Field and
connections to other methods. The ground truth label xg t , is (000).
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5.4 A new end-to-end training method for CRF-CNN

In this section, we present a new parameters learning method for CRFs, which is based on

the Multi-Modal Back Mean-Field and is as efficient as the Back Mean-Field algorithm.

5.4.1 Efficient Multi-Modal training for CRF

The Multi-Modal Mean-Field presented in Chapter 4, provides a good approximation of

the posterior at inference time. However, the sophisticated heuristics used to compute

this approximation, make it sometimes difficult to use in practice for learning. This is

especially true when the Conditional Random Field is combined with a Neural Network

which parametrizes its potentials. Then, learning through gradient descent on the ob-

jective of Equation 5.8, can become very expensive as a new MMMF approximation

must be computed for each gradient step. Even though it is superior in theory, it is not as

efficient and easy to use as the standard back-MF one of Domke [2013].

However, note that Equation 5.8, is composed of two terms. Those two terms are not

supposed to compensate each other and play different roles toward the same goal. The

first one reweights the modes to make the one containing the data more likely, while

the second one makes the MF approximation fit the data inside the mode. In theory, at

convergence, both terms should have a gradient which is null.

Therefore, in practice, we can choose to ignore the first term and focus on the other. It

means that we only train the CRF potentials such that the clamped-MF approximation,

where some variables have been clamped to ground-truth, fits the data well. The problem

could be that, when not clamped, the MF approximation converges to completely wrong

modes, but this does not prevent our method to work well in practice.

At inference time, the MF iterations which were trained with clamping, will naturally

converge to a mode of the true posterior, unlike those trained via standard back-MF.

Effectively, for Multi-Modal Posterior distributions, the results will be more realistic

and sampling from the obtained Mean-Field distributions, will produce more realistic

looking results.
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5.4.2 A generic structured learning framework for CNNs

In previous works, mean-field iterations were unrolled at the end of a Neural Network in

order to refine the output. We propose a new generic Neural Network layer, based on the

clamped mean-field algorithm presented above. Our new layer has the same advantage

as previous unrolled mean-field approaches, namely, it introduces adaptive filtering in

the Neural Network pipeline. Besides, our new generic layer has a better capacity to

predict structured outputs directly.

As depicted in Figure 5.2, we use a first Neural Network to produce a set of unary

potentials and a second one to produce pairwise ones. The pairwise potentials can take

multiple forms and multiple parametrizations. By default, we assume that each vertex is

connected to a fixed number of neighbors and that the CNN produces a vector of pairwise

terms. More sophisticated adaptive strategies such as in Krähenbühl and Koltun [2011]

or Simonovsky and Komodakis [2017], can be used.

For each training sample, we draw a fixed clamping mask with a fixed rate. It corresponds

to a set of indices C in {1, . . . , N }, where N is the number of vertices in the CRF. In

practice, we observed that clamping 20% of the variables works well. We then unroll the

MF iterations as is usually done, except that, after each iteration, the vertices selected by

the clamping mask, are fixed to ground truth.

5.5 Experimental Evaluation

5.5.1 Learning People Detection with Multi-Modal Mean-Fields

We now show how we can use the training methods presented above to improve the

results of our CRF Mean-Field based Multi-Camera detection algorithm of Baqué et al.

[2017b], presented in more details in the last chapter of this thesis.

The core motivation behind our original approach is to properly handle occlusions,

while still leveraging the power of CNNs. To do so, we model the interactions between

multiple people who occlude each other but may not be physically close to each other.

Our solution is to introduce an observation space; a generative model for observations
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Clamping GT 
P%

CNN

CNN

Mean-Field Update
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Ground Truth
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Figure 5.2 – A clamped MF iteration in a Convolutional Neural Network.

given where people are located in the ground plane; and a discriminative model that

predicts expected observations from the images. We then define a loss function that

measures how different the CNN predictions are from those generated by the model.

Finally, we use a Mean-Field approach with respect to probabilities of presence in the

ground plane to minimize this loss. We cast this computation in terms of minimizing

the energy of a Conditional Random Field in which the interactions between nodes are

non-local because the people who occlude each other may not be physically close, which

requires long range high-order terms.

As in our previous paper [Baqué et al., 2017b], we assume that we observe D data point

(X0,I0), . . . , (XD ,ID ) at training time, where Id represents a multi-view image and Xd the

corresponding ground truth presences. The purpose of training is then to optimize the

CRF parameters θ to maximize
∑

d≤D
logP (Xd ;Id ).

As discussed in section 5.3, this can be tackled by end-to-end CRF learning techniques.

In Baqué et al. [2017b], the back mean-field method is used. It improves slightly the
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results but at the price of a careful initialization, and careful tuning of the MF step sizes,

mean-field temperature and learning rate.

Here, we compare this method to the ground truth clamping of section 5.4, which is

inspired by the Multi-Modal Back Mean-Field. We observe that it is much more versatile,

robust and easier to train compared to the back mean-field one which, barely works.

As in [Baqué et al., 2017b], we consider our Wildtrack Dataset of Chavdarova et al.

[2018] to which we contributed. In this dataset, we provide a large-scale HD multi-camera

pedestrian dataset. The seven-static-camera set-up captures realistic and challenging

scenarios of walking people. Notably, its camera calibration, with joint high-precision

projections, widens the range of algorithms which may make use of this dataset. It aims

to help accelerate the research on automatic camera calibration, such annotations also

accompany this dataset.

For evaluation, we use the Multiple Object Detection Accuracy (MODA) metric

[Kasturi et al., 2009] which we will plot as a function of the distance parameter r , which

measures the distance maximal from the ground truth for a detection to be considered as

valid.

Fig. 5.3 shows the MODA score for the test set for several training methods and the

dependency in r .

Figure 5.3 – MODA score after or before end-to-end fine-tuning of the CRF
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5.5.2 Learning Surface Reconstruction with Multi-Modal Mean-Fields

We now apply our generic structured learning CNN to a monocular surface reconstruction

task. More precisely, from a single RGB image of a blank slate which is deformed under

the effect of the wind, our goal is to reconstruct its 3D shape. The shape is parametrized

by the coordinates of the vertices of a mesh which is initialized at regular intervals on the

original slate before deformation. Because the reconstructed surface is completely blank,

without structure, its shape is inherently ambiguous, or, in other terms, multi-modal.

Architecture Similarly to the approach used in previous works in the domain of CNN-

based surface reconstruction, we use a Convolutional Neural Network inspired by the

architecture of the ResNet-51 one [He et al., 2016], followed by three fully-connected

layers to predict a vector of size 363 = 3×11×11, corresponding to the three coordinates

of the displacement of control points on the mesh.

Whereas in standard benchmark implementations, the predictions would directly be taken

to be the output of the network, we add several clamped MF layers as the one depicted

in Figure 5.2. Instead of using a Cross-Entropy loss, we use a standard L2-Distance. The

pairwise potentials take the form of a 4-connected grid – meaning that each vertex is

connected only to its neighbors – and are predicted by a network that shares weights with

the ResNet-51 used for the unaries, but has also three separate fully-connected layers.

Note that, in our implementation, the unary potentials are pretrained using the benchmark

architecture described above.

Results We compare our method to the benchmark one, where only a standard neural

network is used and to one where we train the same architecture as ours – with mean-field

layers –, but without using the ground-truth clamping approach.

Since that the problem we are dealing with is ambiguous and that several reconstructions

are possible for a given RGB image, a perfectly chosen and trained Neural Network could,

in theory, minimize the vertex-wise Root-Mean Square Error (RMSE), while not caring

about the structure of the problem. Nevertheless, we expect our approach to provide

more naturally looking reconstructions and more reconstruction with small RMSE,
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while potentially making bigger mistakes on some other, at the benefit of inter-vertices

coherence.

As explained above, there is no fundamental reason why our model should be better than

the standard approach with respect to the RMSE loss. Nevertheless, and quite strikingly,

our approach outperforms it, as shown in table 5.4.

Method Test RMSE
Baseline (CNN) 17.6 %

Back-MF 15.9 %
Clamped Back-MF 15.6 %

Figure 5.4 – Regression results.

In order to get a more fine grained understanding of the benefits brought by our method,

and see if it really improves the results in the way it is meant to, we plot the cumulative

histogram of RMSE errors in Figure 5.5. It clearly shows that the Clamped-MF approach

outperforms the standard CNN one. Interestingly, and as expected, we can see on the

top right of the plot that, for very large errors, the standard CNN makes slightly smaller

mistakes than ours.

Figure 5.5 – Cumulative histogram of achieved RMSE, in percentage of the dataset.
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Figure 5.6 – Surface reconstruction. Left: Baseline. Center: Ground-Truth. Right:
Clamped Back MF.

Finally, we provide a qualitative comparison of the obtained results in Figure 5.6, which

shows that our approach makes more naturally looking reconstructions and, unlike

benchmark approaches, does not tend to make over-smooth reconstructions.

5.6 Chapter Conclusion

We presented a new structured learning method based on a conjunction between Back

Mean-Field and Multi-Modal Mean-Field. We showed how other standard CRF training

methods can be interpreted as specific instantiation of this new Multi-Modal Back

Mean-Field approach.

We proposed a simplification of the model, which makes it seamlessly integrable in

standard CNN architectures, thus proposing a dedicated, principled structured learning

architecture, at no additional computational cost.

Future works should explore more practical applications of our approach for a wide

range of structured learning problems.
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6 Application: Multi-Camera People
Detection

6.1 Introduction

Multi-Camera Multi-Target Tracking (MCMT) algorithms have long been effective at

tracking people in complex environments. Before the emergence of Deep Learning, some

of the most effective methods relied on simple background subtraction, geometric and

sparsity constraints, and occlusion reasoning [Fleuret et al., 2008, Berclaz et al., 2011,

Alahi et al., 2011]. Given the limited discriminative power of background subtraction,

they work surprisingly well as long as there are not too many people in the scene.

However, their performance degrades as people density increases, making the background

subtraction used as input less and less informative.

RCNN-2D/3D POM-CNN Ours

Figure 6.1 – Multi-camera detection in a crowded scene. Even though there are 7
cameras with overlapping fields of view, baselines inspired by earlier approaches—-
RCNN-2D/3D by Xu et al. [2016] and POM-CNN by Fleuret et al. [2008], as described
in Section 6.7.2—both generate false positives denoted by red rectangles and miss or
misplace a number of people, whereas ours does not. This example is representative of
the algorithm’s behavior and is best viewed in color.

Since then, Deep Learning based people detection algorithms in single images [Ren et al.,

109



Chapter 6. Application: Multi-Camera People Detection

2015] have become among the most effective. However, their power has only rarely

been leveraged for MCMT purposes. Some recent algorithms, such as the one of Xu

et al. [2016], attempt to do so by first detecting people in single images, projecting the

detections into a common reference-frame, and finally putting them into correspondence

to achieve 3D localization and eliminate false positives. As shown in Fig. 6.1, this is

prone to errors for two reasons. First, projection in the reference frame is inaccurate,

especially when the 2D detector has not been specifically trained for that purpose. Second,

the projection is usually preceded by Non Maximum Suppression (NMS) on the output of

the 2D detector, which does not take into account the multi-camera geometry to resolve

ambiguities.

Ideally, the power of Deep Learning should be combined with occlusion reasoning

much earlier in the detection process than is normally done. To this end, we designed a

joint CNN/CRF model whose posterior distribution can be approximated by Mean-Field

inference using standard differentiable operations. Our model is trainable end-to-end

and can be used in both supervised and unsupervised scenarios.

More specifically, we reason on a discretized ground plane in which detections are

represented by boolean variables. The CRF is defined as a sum of innovative high-order

terms whose values are computed by measuring the discrepancy between the predictions

of a generative model that accounts for occlusions and those of a CNN that can infer that

certain image patches look like specific body parts. To these terms, we add unary and

pairwise ones to increase robustness and model physical repulsion constraints.

To summarize, our contribution is a joint CNN/CRF pipeline that performs detection

for MCMT purposes in such a way that NMS is not required. Because it explicitly

models occlusions, our algorithm operates robustly even in crowded scenes. Further-

more, it outputs probabilities of presence on the ground plane, as opposed to binary

detections, which can then be linked into full trajectories using a simple flow-based

approach [Berclaz et al., 2011].
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6.2 Related Work

In this section, we first discuss briefly recent Deep Learning approaches to people

detection in single images. We then move on to multi-image algorithms and techniques

for combining CNNs and CRFs.

6.2.1 Deep Monocular Detection

As in many other domains, CNN-based algorithms [Ren et al., 2015, Redmon et al.,

2016] have become for very good for people detection in single images and achieve

state-of-the-art performance [Zhang et al., 2016]. Algorithms in this class usually first

propose potential candidate bounding boxes with scores assigned to them. They then

perform Non-Maximum Suppression (NMS) and return a final set of candidates. The very

popular method of Ren et al. [2015] performs both steps in a single CNN pass through

the image. It returns a feature map in which a feature vector of constant dimension is

associated to each image pixel. For any 2D bounding-box of any size in that image, a

feature vector of any arbitrary dimension can then be computed using Region Of Interest

(ROI) pooling and fed to a classifier to assess whether the bounding box does indeed

correspond to a true detection.

While this algorithm has demonstrated its worth on many benchmarks, it can fail in

crowded scenes such as the one of Figure 6.1. This is perennial problem of single-image

detectors when people occlude each other severely. One solution to this problem is to

rely on cameras with overlapping fields of view, as discussed below.

6.2.2 Multi-Camera Pedestrian Detection

Here, we distinguish between recent algorithms that rely on Deep Learning but do not

explicitly account for occlusions and older ones that model occlusions and geometry but

appeared before the Deep Learning became popular. Our approach can be understood as

a way to bring together their respective strengths.

The recent algorithm of Xu et al. [2016] runs a monocular detector similar to the one

of Ren et al. [2015] on multiple views and infers people ground locations from the
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resulting detections. However, this method is prone to errors both because the 2D

detections are performed independently of each other and because combining them by

projecting them onto the ground plane involves reprojection errors and ignores occlusions.

Yet, it is representative of the current MCMT state-of-the-art and is benchmarked against

much older algorithms [Fleuret et al., 2008, Berclaz et al., 2011] that rely on background

subtraction instead of a Deep Learning approach.

These older algorithms use multiple cameras with overlapping fields of view to leverage

geometrical or appearance consistency across views to resolve the ambiguities that

arise in crowded scenes and obtain accurate 3D localisation [Fleuret et al., 2008, Alahi

et al., 2011, Peng et al., 2015]. They rely on Bayesian inference and graphical models

to enforce detection sparsity. For example, the Probabilisitic Occupancy Map (POM)

approach Fleuret et al. [2008] takes background subtraction images as input and relies

on Mean Field inference to compute probabilities of presence in the ground plane. More

specifically, given several cameras with overlapping fields of view of a discretized ground

plane, POM first performs background subtraction. It then uses a generative model that

represents humans as simple rectangles in order to create synthetic ideal images that

would be observed if people were at given locations. Under this model of the image given

the true occupancy, it approximates the probabilities of occupancy at every location using

Mean Field inference. Because the generative model explicitly accounts for occlusions,

POM is robust and often performs well. But it relies on background subtraction results as

its only input, which is not discriminative enough when the people density increases, as

shown in Figure 6.1. The algorithm of Alahi et al. [2011] operates on similar principles

as POM but introduces more sophisticated human templates. Since it also relies on

background subtraction, it is subject to the same limitations when the people density

increases. And so is the algorithm of Peng et al. [2015] that introduces a more complex

Bayesian model to enhance the results of Alahi et al. [2011].

6.2.3 Combining CNNs and CRFs

Using a CNN to compute potentials for a Conditional Random Field (CRF) and training

them jointly for structured prediction purposes has received much attention in recent

years [LeCun et al., 2006, Do and Artieres, 2010, Domke, 2013, Zheng et al., 2015,

Arnab et al., 2015, Kirillov et al., 2015, Larsson et al., 2017, Bagautdinov et al., 2017].
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However, properly training the CRFs remains difficult because many interesting models

yield intractable inference problems. A popular workaround is to optimize the CRF

potentials so as to minimize a loss defined on the output of an inference algorithm. Back

Mean-Field [Domke, 2013, Zheng et al., 2015, Arnab et al., 2015, Larsson et al., 2017]

has emerged as a promising way to do this. It relies on the fact that the updates steps

during Mean-Field inference are continuous and parallelizable Baqué et al. [2016]. It is

therefore possible to represent these operations as additional layers in a Neural Network

and back-propagate through it. So far, this method has mostly been demonstrated either

for toy problems or for semantic segmentation with attractive potentials, whereas our

approach also requires repulsive potentials.

6.3 Modeling Occlusions in a CNN Framework

The core motivation behind our approach is to properly handle occlusions, while still

leveraging the power of CNNs. To do so, we must model the interactions between

multiple people who occlude each other but may not be physically close to each other.

Our solution is to introduce an observation space; a generative model for observations

given where people are located in the ground plane; and a discriminative model that

predicts expected observations from the images. We then define a loss function that

measures how different the CNN predictions are from those generated by the model.

Finally, we use a Mean-Field approach with respect to probabilities of presence in the

ground plane to minimize this loss. We cast this computation in terms of minimizing

the energy of a Conditional Random Field in which the interactions between nodes are

non-local because the people who occlude each other may not be physically close, which

requires long range high-order terms.

In the remainder of this section, we first introduce the required notations to formalize

our model. We then define a CRF that only involves high-order interaction potentials.

Finally, we describe a more complete one that also relies on unary and pairwise terms.
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6.3.1 Notations

We discretrize the ground plane in grid cells and introduce Boolean variables that denote

the presence or absence of someone in the cell. Let us therefore consider a discretized

ground plane containing N locations. Let Xi be the boolean variable that denotes the

presence of someone at location i . Let us assume we are given C RGB images Ic of

size H c ×W c from multiple views 1 ≤ c ≤C and I = {I1, . . . ,IC }. For each ground plane

location i and camera c, let the smallest rectangular zone containing the 2D projection

of a human-sized 3D cylinder located at i be defined by its top-left and bottom-right

coordinates T c
i and B c

i . For a pixel k ∈ {1, . . . , H c }× {1, . . . ,W c }, let Lc
k be the set of such

projections that contain k.

We also introduce a CNN that defines an operator F (·;θF ), which takes as input the

RGB image of camera c and outputs a feature map F c =F (Ic ;θF ), where θF denotes

the network’s parameters. It contains a d-dimensional vector F c
k for each pixel k.

6.3.2 High-Order CRF

We take the energy of our CRF to be a sum of High-Order potentials φc,k
h , one for each

pixel. They handle jointly detection, and occlusion reasoning while removing the need

for Non-Maximum Suppression. Each of these potentials use Probability Product Kernels

to represent the agreement between a generative model and a discriminative model over

the observation space, at a given pixel, as depicted in Fig. 6.2. We therefore write

P (X | I) = 1

Z
exp−Eh(X |F (I ;θF )) , (6.1)

Eh(X;F ) = ∑
1≤c≤C ,k∈{1,...,H c }×{1,...,W c }

φc,k
h (X |F c

k ) .

Assuming we know the values of the occupancy variables X, the generative model

computes distributions over the set of observations. For each pixel in each image,

it considers the corresponding line of sight and computes a distribution of vectors

depending on the probability that it actually belongs to the successive people it traverses.

This results in images whose pixels are vectors representing a distribution of 2D vectors,
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Generative Model

Discriminative Model

Figure 6.2 – Schematic representation of our High-Order potentials as described in
Section 6.3.2.

the observations, as depicted in the top row of Fig 6.2. Our discriminative model relies

on a CNN which tries to predict similar distributions of 2D vectors, directly by looking

at the image. For ease of understanding, we first present in more details a simple version

of our High-Order potentials φc,k
h . It assumes that our observations are zeros and ones at

every pixel. The discriminative model therefore acts much as the background subtraction

algorithms used in Fleuret et al. [2008] did. We then extend them to take into account

the 2D vector output of our discriminative model.

Simple Generative Model

We first introduce a binary observation variable Y c
k ∈ {0,1} over which we define two

distributions P g and P d produced by the generative and discriminative model respectively.
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We take the distribution P g to be

P g (Y c
k = 1|X) = 0, if Xi = 0 ∀i ∈ Lc

k , (6.2)

P g (Y c
k = 1|X) = 1 otherwise,

and the discriminative one P d to be P d (Y c
k |F c

k ) = fb(F c
k ;θb), where F c

k is the d-

dimensional feature vector associated to pixel k introduced above and fb is a Multi-Layer

Perceptron (MLP) with weights θb . In other words, fb plays the role of a CNN-based

semantic segmentor or background-subtraction.

For each pixel, we then take the high-order potential to be the dot product between the
distributions

φc,k
h (Z ;F c

k ) =−µh log
∫

Y c
k ∈{0,1}

P g (Y c
k |{Zi }i∈Lc

k
)P d (Y c

k |F c
k ) , (6.3)

as in the probability product kernel method of Jebara et al. [2004]. Intuitively, φc,k
h

is high when the segmentation produced by the network matches the projection of the

detections in each camera plane using the simple generative model of Equation 6.2. µh

is an energy scaling parameter.

Full Generative Model

The above model correctly accounts for occlusions and geometry but ignores much image

information by focusing on background / foreground decisions. To refine it, we model

the part of the bounding-box a pixel belongs to rather than just the fact that it belongs to

a bounding-box. To this end, we redefine the Boolean auxiliary variable Y c
k as

~Y c
k ∈ {0}∪R2 , (6.4)

where the label 0 represents background as before, and a label in R2 denotes the dis-

placement with respect to the center of the body of the visible person at this pixel

location.

To extend the simple model and account for what part of a bounding-box pixel k belongs
to if it does, we sample from the distribution P g (~Y c

k |{Xi }i∈Lc
k

). To this end, let us assume
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without loss of generality that the Lc
k are ordered by increasing distance to the camera,

as shown in the top left corner of Fig. 6.2. We initialize the variables ~Y c
k to 0. Then,

for each i in Lc
k such that Xi = 1, we draw a boolean random variable Oi with fixed

expectancy o. If Oi = 1, then

~Yk = ~y i
k , (6.5)

=
(

kx −0.5(T c
i x

+B c
i x

)

B c
i x

−T c
i x

;
ky −0.5(T c

i y
+B c

i y
)

B c
i y

−T c
i y

)
,

that is, the relative location of pixel k with respect to the projection of detection i in

camera c, as depicted in the upper right corner of Fig. 6.2.

We define the distribution P d (~Yk |F c
k ) as an M-Modal Gaussian Mixture

P d (~Yk = 0) = fb(F c
k ;θb) , (6.6)

P d (~Yk |~Xk 6= 0) = ∑
1≤m≤M

fh(F c
k ;θh)mN (~Yk −αm ;σm) ,

as depicted in the bottom right corner of Fig. 6.2. As a result, P d (~Yk = 0) is the same as

in the simple model but P d (~Yk |~Yk 6= 0) encodes more information. (αm ,σm) are Gaussian

parameters learned for each mode m. fh is a MLP parametrized by θh that outputs M

normalized real probabilities where M is a meta-parameter of our model. Similarly,

fb(F c
k ;θb) is a background probability.

Finally, as in Equation 6.3, we take our complete potential to be

φc,k
h (X |F c

k ) =−µh log
∫

~Xk∈{0}∪R2

P g (~Yk |{Xi }i∈Lc
k
)P d (~Yk |F c

k ) . (6.7)

6.3.3 Complete CRF

To increase the robustness of our CRF, we have found it effective to add, to the high-
order potentials of Equation 6.1, unary and pairwise ones to exploit additional image
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information. We therefore write our complete CRF model as

P (X | I) = 1

Z
exp[−E(X |F )] , (6.8)

E(X |F ) = Eh(X |F )+ ∑
i≤N

φi
u(Xi |F )+ ∑

i≤N , j≤N
φp(Xi , X j ),

where φh is the high-order CRF of Equation 6.1, the φi
u are unary potentials, and φp

pairwise ones, which we describe below.

Unaries

The purpose of our unary potentials is to provide a prior probability of presence at a

given location on the ground, before considering the occlusion effect and non maximum

suppression. For each location i and camera c, we use a CNN fu(T c
i ,B c

i ,F c ), which

outputs a probability of presence of a person at location i . fu works by extracting a fixed

size feature vector from the rectangular region defined by T c
i ,B c

i in F c , using an ROI

pooling layer Ren et al. [2015]. A detection probability is finally estimated using an

MLP. Estimates from the multiple cameras are pooled through a max operation

φi
u(Xi |F ) =−µuZi max

c
log

fu(T c
i ,B c

i ,Fc )

1− fu(T c
i ,B c

i ,Fc )
, (6.9)

where µu is a scalar that controls the importance of unary terms compared to others.

Pairwise

The purpose of our pairwise potentials is to represent the fact that two people are unlikely

to stand too close to each others.

For all pairs of locations (i , j ), let E i , j
p = Ep[|xi −x j |; |yi − y j |], where Ep is a 2D kernel

function of of predefined size. We write

φp(Xi , X j ) = E i , j
p Xi X j (6.10)

for locations that are closer to each other than a predefined distance and 0 otherwise.
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6.4 Inference and Derivation

Given the CRF of Equation 6.8 and assuming all parameters known, finding out where

people are in the ground plane amounts to minimizing φ with respect to X, the vector of

binary variables that indicates which ground locations contain someone, which amounts

to computing a Maximum-a-Posteriori of the posterior P . Instead of doing so directly,

which would be intractable, we use Mean-Field inference Wainwright and Jordan [2008]

to approximate of P by a fully-factorised distribution Q. As in Fleuret et al. [2008], this

produces a Probability Occupancy Map, that is, a probability of presence Q(Xi = 1), at

each location, such as the one depicted by Fig. 6.3.

(a) (b)

Figure 6.3 – Output. (a) Given a set of images of the same scene, ours algorithm produces
a Probabilistic Occupancy Map, that is, a probability of presence at each location of the
ground plane. Red values indicate probabilities close to 1 and blue ones values close to
zero. (b) Because the probabilities are very peaked, they can easily be thresholded to
produce detections whose projections are the green boxes in the original image(s).

To perform this minimization, we rely on the natural-gradient descent scheme of Baqué
et al. [2016]. It involves taking gradient steps that are proportional to

∇ηi = EQ
[(
φ(X |F )

) |Xi = 1
]−EQ

[(
φ(X,F )

) |Xi = 0
]

, (6.11)

for each location i . The contribution to ∇ηi of the unaries derives straightforwardly
from Equation 6.9. Similarly, the one of the pairwise potentials of Equation 6.10 is

(∇ηi )p =−∑
j

E i , j
p Q j (X j = 1) , (6.12)

=−∑
j

Ep[|xi −x j |, |yi − y j |]Q j (X j = 1) ,
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which can be implemented as a convolution over the current estimate of the probabilistic

occupancy map Q with the two dimensional kernel Ep[., .]. This makes it easy to unroll

the inference steps using a Deep-Learning framework.

Formulating the contributions of the higher-order terms of Equation 6.7 is more involved
and requires simplifications. We first approximate the Gaussians used in Equation 6.6
by a function whose value is 1 in Bm and ε elsewhere, where Bm is the rectangle of
center αm and half-size 3σm . Note that this approximation is only used for inference
purposes, and that during training, it keeps its original Gaussian form. We then threshold
the Gaussian weights fh resulting in the binary approximation f̃h. This yields a binary
approximation P̃ d(~Yk ) of P d(~Yk ). Note that the corresponding approximate potential
φ̃c,k

h (Z ,F c
k ) can be either O(logε), if P d(~Yk ,bk = 1; Z ) = 0 for all ~Yk such that P d(~Yk ) > ε

or O(log(1)). Hence, the configurations where φc,k
h (X,F c

k ) =O(logε) will dominate the
others when computing the expectancies. This yields the approximation of Equation 6.11,

∇̃ηi =−C (EQ [∆(X)|Xi = 1]−EQ [∆(X)|Xi = 0]) , (6.13)

where C =−l ogε is a constant and ∆(X) is a binary random variable, which takes value
1 if φ̃c,k

h (X |F c
k ) = 0, and 0 otherwise. Note that φc,k

h (X |F c
k ) =O(log(1)) iff

∃i ≤ N ,m ≤ M s.t f̃h(F c
k ;θh)m = 1 and ~Y i

k ∈ Bm . (6.14)

This means that for each pixel k, given a thresholded output from the network

f̃h(F c
k ;θh), we obtain a list of compatible explanations Ck ⊂ {1, . . . , N } such that pixel k

defines a very simple pattern-based potential of the form 1 if Xi = 0 ∀i ∈Ck , 0 otherwise,

which is similar to the potentials used in the Mean-Fields algorithms of Vineet et al.

[2014], Fleuret et al. [2008], Kohli and Rother [2012], Arnab et al. [2015].

6.5 Training

We now show how our model can be trained first in a supervised manner and then in an

unsupervised one.
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6.5.1 Supervised Training

Let us first assume that we observe D data point (X0,I0), . . . , (XD ,ID ), where Id rep-

resents a multi-view image and Xd the corresponding ground truth presences. The

purpose of training is then to optimize the network parameters θF ,θu,θh defined in

Sections 6.3.1, 6.3.3 and 6.3.2 respectively, the gaussian parameters α,σ of Equa-

tion 6.6 and the energy-scaling meta-parameters µu,µh of Eqs. 6.9 and 6.3 to maximize∑
d≤D

logP (Xd |Id ). It cannot be done directly using Equation 6.8 because computing the

partition function Z is intractable.

Back Mean-Field An increasingly popular work-around is to optimize the above-

mentioned parameters to ensure that the output of the Mean-Field inference fits the

ground truth. In other terms, let QθF ,θu,θh,α,σ(X | I) be the distribution obtained after

inference . We look for

argmax
θF ,θu,θh,α,σ

∑
(Xd |Id )

logQθF ,θu,θh,α,σ(X = xd | Id ) . (6.15)

Since QθF ,θu,θh,α,σ(X = xd | Id ) is computed via a sequence of operations which are all

differentiable with respect to the parameters θF ,θu, and θh, it is therefore possible to

solve Equation 6.15 by stochastic gradient descent Domke [2013], Zheng et al. [2015].

Pre-training However, it still remains difficult to optimize the whole model from

scratch. We therefore pre-train our potentials separately before end-to-end fine-tuning.

More precisely, the CNN fu that appears in the unary terms of Equation 6.9 is trained as

a standard classifier that gives the probability of presence at a given location, given the

projection of the corresponding bounding-box in each camera view. For each data point,

this leaves the high-order terms for which we need to optimize

∑
c

∑
k∈Pc

log(φc,k
h (Xd |F c

k )) , (6.16)

with respect to the parameters of the Gaussian Mixture network θh,α, and σ. We use

Jensen’s inequality to take our generative distribution P g out of the integral in Equa-

121



Chapter 6. Application: Multi-Camera People Detection

tion 6.7 and approximate it by random sampling procedure described in Section 6.3.2.

We rewrite the set of samples for ~Y c
k from all the pixels from all the cameras from all

the data-points as S(X0, . . . ,XD ). The optimization objective of Equation 6.16 can then be

rewritten as

∑
~ys∈S(X0,...,XD )

log(P d (~ys |F c
k ,θh,α,σ)) , (6.17)

which is optimized by alternating a standard stochastic gradient descent for the θh

parameters and a closed form batch optimization for α,σ. This procedure is similar to

one often used to fit a Mixture of Gaussians, except that, during the E-Step, instead of

computing the class probabilities directly to increase the likelihood, we optimise the

parameters of the network through gradient descent.

This pre-training strategy creates potentials which are reasonable but not designed to be

commensurate with each others. We therefore need to choose the two energy parameters

scalars µu, and µh, via grid-search in order to optimize the relative weights of Unary and

High-Order potentials before using the Back-Mean field method.

6.5.2 Unsupervised Training

In the absence of annotated training data, inter-view consistency and translation invari-

ance still provide precious a-priori information, which can be leveraged to train our

model in an unsupervised way.

Let us assume that the background-subtracting part of the network, which computes fb,

the MLP introduced in Section 6.3.2, is reasonably initialized. In practice, it is easy to

do either by training it on a segmentation dataset or by relying on simple background

subtraction to compute fb. Then, starting from initial values of the parameters θ, we

first compute the Mean-Field approximation of P (X | I0,θ), which gives us a first lower

bound of the partition function. We then sample X from Q and use that to train our

potentials separately as if these samples were ground truth-data, using the supervised

procedure of Section 6.5.1. We then iterate this procedure, that is, Mean-Field inference,

sampling from X, and optimizing the potentials sequentially. This can be interpreted as

an Expectation-Maximization (EM) Blei et al. [2016] procedure to optimize an Expected
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Lower Bound (ELB) to the partition function Z of Equation 6.8.

6.6 Implementation Details

Our implementation uses a single VGGNet-16 Network with pre-trained weights. It

computes features that will then be used to estimate both unary and pairwise potentials.

The features map F c =F (Ic ;θF ) is obtained by upsampling of the convolutional layers.

Similarly to the classification step in Ren et al. [2015], we restrict the Region-Of-Interest

pooling layer (ROI) to the features from the last convolutional layer of VGGNet. The

output of the ROI is a 3x3x1024 tensor, which is flattened and input to a two layers MLP

with ReLU non-linearities. In a similar way as in previous works on segmentation Zheng

et al. [2015], we use a two layers MLP to classify each hyper-column of our dense features

map F c =F (Ic ;θF ) to produce segmentation fb and Gaussian Class fh probabilities.

We use M = 8 modes for Multi-Modal Gaussian distribution of Eq. 6.6 for all our

experiments and we have not assessed the impact of this choice on the performance.

Besides, our kernel defining the pairwise potentials of Eq. 6.10 takes an arbitrary uniform

constant value. For unsupervised training, we use a fixed number of 6 EM iterations,

which we empirically found to be enough.

Finally, all our pipeline is implemented end-to-end using standard differentiable opera-

tions from the Theano Deep-Learning library Theano Development Team [2016]. For

Mean-Field inference, we use a fixed number of iterations (30) and step size (0.01).

6.7 Evaluation

6.7.1 Datasets, Metrics, and Baselines

We introduce here the datasets we used for our experiments, the metrics we relied on to

evaluate performance, and the baselines to which we compared our approach.

Datasets.
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• ETHZ. It was acquired using 7 cameras to film the dense flow of students in front

of the ETHZ main building in Zürich for two hours. It comprises 250 annotated

temporal 7-image frames in which up to 30 people can be present at a time. We

used 200 of these frames for training and validation and 50 for evaluation. See the

image of Figure 6.1 for a visualization.

• EPFL. The images were acquired at 25 fps on the terrace of an EPFL building

in Lausanne using 4 DV cameras. The image of Figure 6.3 is one of them. Up

to 7 people walk around for about 3 1/2 minutes. As there are only 80 annotated

frames, we used them all for evaluation purposes and relied either on pre-trained

models or unsupervised training.

• PETS. The standard PETS 2009 (PETS S2L1) is widely used for monocular and

multi-camera detection. It contains 750 annotated images and was acquired from

7 cameras. It is a simple dataset in the sense that it is not very crowded, but the

calibration is inaccurate and the image quality low.

Metrics. Recall from Section 6.4, that our algorithms produces Probabilistic Occu-

pancy Maps, such as the ones of Figure 6.3. They are probabilities of presence of people

at ground locations and are very peaky. We therefore simply label locations where the

probability of presence is greater than 0.5 as being occupied and will refer to these as

detections, without any need for Non-Maximum suppression. We compute false positive

(FP), false negative (FN) and true positives (TP) by assigning detections to ground truth

using Hungarian matching. Since we operate in the ground plane, we impose that a

detection can be assigned to a ground truth annotation only if they are less than a distance

r away. Given FP, FN and TP, we can evaluate:

• Multiple Object Detection Accuracy (MODA) which we will plot as a function

of r , and the Multiple Object Detection Precision (MODP) Kasturi et al. [2009].

• Precision-Recall. Precision and Recall are taken to be TP/(TP + FN) and TP/(TP+FP)

respectively.

We will report MODP, Precision, and Recall for r = 0.5, which roughly corresponds

to the width of a human body. Note that these metrics are unforgiving of projection
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errors because we measure distances in the ground plane, which would not be the case

if we evaluated overlap in the image plane as is often done in the monocular case.

Nevertheless, we believe them to be the metrics for a multi-camera system that computes

the 3D location of people.

ETHZ EPFL PETS

ETHZ EPFL PETS
Method Precision / Recall MODP Precision / Recall MODP Precision / Recall MODP

Ours 95 / 80% 53.8% - - - -
Ours-No-FT 93 / 80% 53.4% 88 / 82% 48.3% 93 / 87% 60.4%

Ours-Unsuperv 86 / 80% 49.8% 80 / 85% 47.5% - -
Ours-Simple-HO 87 / 70% 47.5% 85 / 75% 43.2% 93 / 87% 60.4%

Ours-No-HO 84 / 55% 34.4% 37 / 68% 23.3% 93 / 81% 55.2%
POM-CNN 75 / 55% 30.5% 80 / 78% 45.9% 90 / 86% 42.9%

RCNN-2D/3D 68 / 43% 18.4% 39 / 50% 21.6% 50 / 63% 27.6%

Figure 6.4 – Results on our three test datasets. Top row. MODA scores for the different
methods as function of the radius r used to compute it, as discussed in Section 6.7.1.
Bottom row. Precision/Recall and MODP for the different methods for r = 0.5. Some
of the values are absent either due to the bad calibration of the data-set, or missing
ground-truth, as explained in Sections 6.7.1 and 6.7.2. The numbers we report for the
RCNN-2D/3D baseline are much lower than those reported in Xu et al. [2016] for the
method that inspired it, in large part because we evaluate our metrics in the ground plane
instead of the image plane and because Xu et al. [2016] uses a temporal consistency to
improve detections.

Baselines and Variants of our Method. We implemented the following two baselines.

• POM-CNN. The multi-camera detector Fleuret et al. [2008] described in Sec-

tion 6.2.2 takes background subtraction images as its input. In its original imple-

mentation, they were obtained using traditional algorithms Ziliani and Cavallaro

[1999], Oliver et al. [2000]. For a fair comparison reflecting the progress that has

occurred since then, we use the same CNN-based segmentor as the one use to

segment the background, that is fb(F c
k ;θb)0 from Equation 6.6.
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• RCNN-2D/3D. The recent work of Xu et al. [2016] proposes a MCMT tracking

framework that relies on a powerful CNN for detection purposes Ren et al. [2015],

as discussed in Section 6.2.2. Since the code of Xu et al. [2016] is not publicly

available, we reimplemented their detection methodology as faithfully as possible

but without the tracking component for a fair comparison with our approach

that operates on images acquired at the same time. Specifically, we run the 2D

detector Ren et al. [2015] on each image. We then project the bottom of the 2D

bounding box onto the ground reference frame as in Xu et al. [2016] to get 3D

ground coordinates. Finally, we cluster all the detections from all the cameras

using 3D proximity to produce the final set of detections.

To gauge the influence of the different components or our approach, we compared these

baselines against the following variants of our method.

• Ours. Our method with all three terms in the CRF model turned on, as described

in Section 6.3.3, and fine tuned end-to-end through back Mean-Field, as described

in Section 6.5.1.

• Ours-No-FT. Ours without the final fine-tuning.

• Ours-Unsuperv. Same as Ours-No-FT but the training is done without ground

truth annotations, as described in Section 6.5.2.

• Ours-Simple-HO : We replace the full High-Order term of Section 6.3.2 with the

simplified one that approximates the one of Fleuret et al. [2008], as described at

the beginning of that section.

• Ours-No-HO. We remove the High-Order term of Section 6.3.2 altogether.

6.7.2 Results

We report our results on our three test datasets in Figure 6.4.

ETHZ. Ours and Ours-No-FT clearly dominate the RCNN-2D/3D and POM-CNN
baselines, with Ours slightly outperforming Ours-No-FT because of the fine-tuning.
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Simplifying the high-order term, as in Ours-Simple-HO, degrades performance and

removing it, as in Ours-No-HO, degrades it even more. The methods discussed above

rely on supervised training, whereas Ours-Unsuperv does not but still outperforms the

baselines.

EPFL. Because the images have different statistics than those of ETHZ, the unary

terms as well as the people detector RCNN-2D/3D relies on are affected. And since

there is no annotated data for retraining, as discussed above, the performance of Ours-
No-HO and RCNN-2D/3D drop very significantly with respect to those obtained on

ETHZ. By contrast, the high order terms are immune to this, and both Ours-No-FT and

Ours-Unsuperv hold their performances.

PETS. The ranking of the methods is the same as before except for the fact that

Ours-Simple-HO does as well as Ours-No-FT. This is because the PETS dataset is

poorly calibrated, which results in inaccurate estimates of the displacement vectors in the

generative model of Section 6.3.2. As a result, it does not deliver much of a performance

boost and we therefore did not find it meaningful to report results for unsupervised

training and fine-tuning of these High-Order potentials.

From Detections to Trajectories. Since our method produces a Probability Occu-

pancy Map for every temporal frame in our image sequences, we can take advantage of

a simple-flow based method Berclaz et al. [2011] to enforce temporal consistency and

produce complete trajectories. As shown in Figure 6.5 this leads to further improvements

for all three datasets.

Method ETHZ EPFL PETS
Ours 74.1% 68.2% 79.8%
Ours + Berclaz et al. [2011] 75.2% 76.9% 83.4%

Figure 6.5 – MODA scores for r = 0.5 before and after enforcing temporal consistency.

6.8 Discussion

We introduced a new CNN/CRF pipeline that outperforms the state-of-the art for multi-

camera people localization in crowded scenes. It handles occlusion while taking full
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advantage of the power of a modern CNN and can be trained either in a supervised or

unsupervised manner.

A limitation, however, is that the CNN used to compute our unary potentials still operates

in each image independently as opposed to pooling very early the information from

multiple images and then leveraging the expected appearance consistency across views.

In future work, we will therefore investigate training such a CNN for people detection

on multiple images simultaneously, jointly with our CRF.

128



7 Concluding Remarks

In this thesis, we studied and proposed improvements of the variational mean-field

methods in Computer Vision. We applied this new tool to structured parameter learning

in Conditional Random Fields. Our methodology was to find generic algorithmic

solutions to fundamental issues and then show how these new tools could be used to

solve practical problems better than previous approaches.

7.1 Summary and contributions

In Chapter 3, we proposed a new approach to mean-field inference, which is more

efficient, better understood and brings better results than previous methods. The per-

formance of this method has been acknowledged in other works, which use it for many

different tasks, that we did not envision initially, such as cancer detection, ultrasound

processing or image attribute prediction. Furthermore, our work sheds light on several

ad-hoc heuristics that were used for parallel mean-field inference in conditional random

fields, and we provide convergence guarantees for such methods.

In Chapter 4, we moved to the challenge of adding structure to the naive mean-field

method. Since it looks for a fully factorized approximation to a complex posterior

distribution by minimizing the KL-divergence to it, the standard mean-field approach

is often too simplistic. Sometimes, this rough approximation is sufficient to extract the

information of interest, and sometimes, the posterior is so complex that finding a good

variational approximation to it, is almost impossible. However, is many cases of practical
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interest, the posterior has a clear multi-modal structure, with a limited number of modes.

In order to handle such situations, we designed an efficient Multi-Modal Mean-Field

approximation method. We showed, that, in practice, it can be used to propose multiple

solutions to a CRF inference problem, which brings improved performance for several

segmentation and tracking algorithms.

In Chapter 5, we used the tools developed in th two previous ones to design a novel

parameter learning algorithm for Conditional Random Fields. This approach is based

on the Multi-Modal Mean-Field method and we showed that several classical parameter

learning algorithms for CRFs, can be interpreted as specific instantiations of ours.

However, in the general case, our approach can be computationally costly, making

it unappealing compared to fast Neural Network based learning, combined with the back

mean-field method. We therefore proposed a simplification of our approach, which,

while being much more computationally simple and as easily scalable as other popular

methods, retains good performances.

Finally, in Chapter 6, we proposed to use Conditional Random Fields and our new

approach to mean-field inference for people detection in a crowded scene from multiple

views. We presented a new detection model, which extends the popular POM algorithm

of [Fleuret et al., 2008] using CNN-based potentials. Our method performs better and

is more robust to occlusions, illumination changes or other perturbations than previous

approaches. In order to evaluate our algorithm in a truly challenging setting, we recorded

and annotated a new multi-person, multi-camera tracking dataset, which has been made

public and is known as the Wildtrack dataset [Chavdarova et al., 2018].

7.2 Limitations and future work

7.2.1 New Applications of Structured Learning for CRFs

In this thesis, we proposed a novel approach to structured parameters learning for

Conditional Random Fields. We demonstrated performance gains on a limited number of

practical applications , which is not yet enough to make Multi-Modal Back Mean-Field

a widely used practical tool. Therefore, we hope that future work will aim at using one

or another instantiation of our method to demonstrate its applicability on a wider range
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of CRF problems.

We envision applications in several domains of computer vision where the learning

problems are inherently structured and where CRFs have long been used. First, we think

that our method could be used for curvilinear structure delineation in medical images.

Indeed, such problems are highly structured, because we want to reconstruct consistent

paths and they are multi-modal since medical images are often noisy and ambiguous.

Multiple people 3D pose estimation is another area of computer vision where CRFs and

structured learning have traditionally been used. Future research will aim at combining

our Multi-Modal Back Mean-Field with state of the art Deep-Learning tools in this

domain.

However, researchers will hopefully find many other tasks of interest where our algo-

rithms can be put to use.

Because of the recent improvements of CNN-based semantic segmentation methods

and of the introduction of large scale datasets such as the Cityscape one, very little

ambiguities remain for the semantic segmentation of these images. Therefore, we think

that standard semantic segmentation tasks would benefit only very marginally from our

approach. However, it should be used in low data contexts, such as for medical imaging

or potentially for multiple-instance semantic segmentation.

7.2.2 Multiple-people multi-camera tracking with Deep-Occlusion
reasoning

The multi-camera setting is a popular and affordable solution to people tracking in

densely crowded scenes. We have demonstrated that mean-field inference in Conditional

Random Fields, can be combined with deep Convolutional Neural Networks to obtain

state of the art results in this task. However, several challenges regarding this framework

are still open.

In our work, tracking cannot be performed in real time, because of the computational

cost of the inference model. Future work should look at more efficient implementations

of out approach, potentially leveraging on recent progress of Deep-Learning libraries.
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The inter-dataset transferability of our method should be improved in the future. Indeed,

a CNN that was trained with a given camera and background setting will not perform as

well on very different scenes. We are exploring solutions where the potentials are trained

using large scale 2D datasets, such as the MSCOCO one, to improve the robustness of

our algorithm.

Our framework is currently being used for behavioral analysis and social scene under-

standing tasks in videos. It will be extended, for instance to detect groups of peoples

who interacting with each other. This new feature is being developed in collaboration

with a retail company to analyze representative-customer interactions in their shops.
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  Pierre	
  Baqué	
  ·∙	
  	
  
Francois	
  Fleuret	
  ·∙Pascal	
  Fua	
  

CVPR	
  2017	
   Multi-­‐Modal	
  Mean-­‐Fields	
  inference	
  via	
  cardinality	
  based	
  clamping.	
  Pierre	
  Baqué	
  ·∙	
  	
  
Francois	
  Fleuret	
  ·∙Pascal	
  Fua	
  

CVPR	
  2016	
   Principled	
  Parallel	
  Mean-­‐Field	
  inference	
  for	
  discrete	
  random	
  fields.	
  Pierre	
  Baqué	
  ·∙	
  
Timur	
  Bagautdinov	
  ·∙	
  Francois	
  Fleuret	
  ·∙Pascal	
  Fua	
  

NIPS	
  2015	
   Kullback-­‐Leibler	
  Proximal	
  Variational	
  Inference.	
  M.E	
  Khan	
  ·∙	
  Pierre	
  Baqué	
  ·∙	
  Francois	
  
Fleuret	
  ·∙Pascal	
  Fua	
  

GRANTS	
  AND	
  AWARDS:	
  	
  
2018	
   	
   Innogrant	
  innovation	
  fellowship	
  (100	
  kCHF)	
  

2017	
   	
   Bridge	
  Proof	
  of	
  Concept	
  research	
  funding	
  (130	
  kCHF)	
  

OTHER	
  PROJECTS:	
  	
  
	
  
2016	
   	
  EPFL	
   Pedestrian	
   annotation	
   tool,	
   Project	
   Leader.	
  Managed	
  a	
  project	
   involving	
   four	
  

persons	
  that	
  aims	
  at	
  annotating	
  large-­‐scale	
  pedestrian	
  tracking	
  datasets.	
  We	
  deployed	
  a	
  
web-­‐based	
   tool	
   and	
   used	
   Amazon	
   Mechanical	
   Turk	
   to	
   get	
   human	
   labeling.	
  
(http://pedestriantag.epfl.ch)	
  

	
  
2015	
   	
  CarmenV2,	
   co-­‐Creator.	
   Developed	
   a	
   ropeways-­‐transportation	
   engineering	
   software.	
  

Invented	
   and	
   implemented	
   the	
   first	
   automatic	
   ropeways	
   implantation	
   algorithm.	
   The	
  
software	
  was	
  sold	
  and	
  is	
  used	
  by	
  more	
  than	
  10	
  engineering	
  and	
  constructing	
  firms.	
  

	
  
2012-­‐2013	
   	
  CrowdGuess,	
   Founding	
   member.	
   Launched	
   a	
   Bitcoin	
   predictive	
   market	
   online	
  

platform.	
  
	
  
2012-­‐2013	
   	
  So	
  What	
   Project,	
  Founding	
  member.	
  Market	
  making	
   and	
   algorithmic	
   trading	
   on	
   the	
  

electronic	
  betting	
  exchange	
  through	
  a	
  JAVA	
  API.	
  
	
  
2010	
   	
  Image	
  processing	
  and	
  statistics	
  project.	
  Aimed	
  at	
  counting	
  people	
  in	
  a	
  demonstration	
  

with	
  the	
  help	
  of	
  a	
  video	
  camera.	
  Achieved	
  satisfactory	
  results	
  (sampling	
  error	
  +	
  or	
  -­‐5%).	
  
Selected	
   as	
   the	
   best	
   project	
   of	
   the	
   year	
   by	
   the	
   computer	
   science	
   department	
   of	
  	
  
Polytechnique.	
  

	
  
	
  
	
  
	
  



SKILLS:	
  	
  
	
  
Coding	
  skills:	
  	
  Very	
  strong	
  knowledge	
  of	
  Python	
  and	
  strong	
  background	
  in	
  Java,	
  C++	
  and	
  R.	
  
	
   Expertise	
  with	
  Theano,	
  TensorFlow	
  and	
  CUDA	
  GPU	
  programming.	
  	
  
	
   Working	
  knowledge	
  in	
  web	
  development	
  .	
  
	
  
Sports:	
  	
   Tae	
  Kwon	
  Do:	
  Won	
  French	
  Championships	
  2003	
  and	
  2007.	
  Junior	
  category.	
  
	
   	
   Running	
  :	
  Personal	
  Best	
  32’04”	
  on	
  10km	
  and	
  1h10’30”	
  on	
  Half-­‐Marathon.	
  
	
   	
   1	
  month	
  cycling	
  trip	
  across	
  Kirghizstan	
  and	
  Ouzbekistan.	
  
	
  
Languages:	
  	
  	
  	
  	
  	
  French,	
  native	
  -­‐	
  English,	
  fluent;	
  	
  

Spanish,	
  working	
  knowledge	
  -­‐	
  Chinese,	
  basics	
  	
  	
  




