
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. F. Eisenbrand, président du jury
Prof. O. N. A. Svensson, directeur de thèse

Prof. D. Shmoys, rapporteur
Prof. C. Mathieu, rapporteuse
Prof. M. Kapralov, rapporteur

Algorithms For Clustering Problems:
Theoretical Guarantees and Empirical Evaluations

THÈSE NO 8546 (2018)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 13 JUILLET 2018

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE THÉORIE DU CALCUL 2

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2018

PAR

Ashkan NOROUZI FARD

Be happy for this moment.
This moment is your life.

—Omar Khayyam

To my family,
Farideh, Alireza and Anahita. . .

Acknowledgements
Ph.D. is a long, exhausting and boring journey unless one have great friends and col-
leagues that make it fun. I would like to express my deepest appreciation to all those
who enabled and facilitated this journey for me.

First and foremost, I would like to acknowledge with much appreciation the crucial role
that Ola had. Not only is he the greatest advisor that one can hope for, but he is also a
good friend. He was always very patient with me trying new ideas even when he did not
agree with them, and helped me understand the strengths and weaknesses of different
approaches. His guidance was indispensable during my whole time at EPFL, whether in
research or while writing the thesis.
I would also like to express my sincere gratitude to Chantal. She was always there when
I needed help and when I had any questions. She fixed any mess that I created, all
without ever dropping her smile.

Moreover, I would like to thank the jury members of my thesis, Prof. David Shmoys, Prof.
Michael Kapralov, Prof. Clair Mathieu, and the president of the jury Prof. Friedrich
Eisenbrand, for their careful reading of my thesis and the insightful discussion we had
during and after the private defense. I am also grateful to all my co-authors for enabling
me to grow as a researcher throughout our work together.

Furthermore, I would like to thank my labmates both at EPFL and Cornell for all the
good times that I had. They made it possible for me to work everyday without getting
bored and demotivated.
Without my friends I would not have managed to survive my studies. They were always
there for me when I needed to blow off some steam, and do something stupid. I would
like to thank all my friends in Sharif university who made my bachelor studies the best
period of my life, and my friends in Lausanne who were the main reason that I did not
quit Ph.D.
Last but not least, I would like to thank my family for their continuous support and
unconditional love.

v

Abstract
Clustering is a classic topic in combinatorial optimization and plays a central role in many
areas, including data science and machine learning. In this thesis, we first focus on the
dynamic facility location problem (i.e., the facility location problem in evolving metrics).
We present a new LP-rounding algorithm for facility location problems, which yields the
first constant factor approximation algorithm for the dynamic facility location problem.
Our algorithm installs competing exponential clocks on clients and facilities, and connects
every client by the path that repeatedly follows the smallest clock in the neighborhood.
The use of exponential clocks gives rise to several properties that distinguish our ap-
proach from previous LP-roundings for facility location problems. In particular, we use
no clustering and we enable clients to connect through paths of arbitrary lengths. In
fact, the clustering-free nature of our algorithm is crucial for applying our LP-rounding
approach to the dynamic problem.

Furthermore, we present both empirical and theoretical aspects of the k-means problem.
The best known algorithm for k-means with a provable guarantee is a simple local-search
heuristic that yields an approximation guarantee of 9+ ε, a ratio that is known to be tight
with respect to such methods. We overcome this barrier by presenting a new primal-dual
approach that enables us (1) to exploit the geometric structure of k-means and (2) to
satisfy the hard constraint that at most k clusters are selected without deteriorating
the approximation guarantee. Our main result is a 6.357-approximation algorithm with
respect to the standard LP relaxation. Our techniques are quite general and we also show
improved guarantees for the general version of k-means where the underlying metric is
not required to be Euclidean and for k-median in Euclidean metrics.

We also improve the running time of our algorithm to almost linear running time and
still maintain a provable guarantee. We compare our algorithm with K-Means++ (a
widely studied algorithm) and show that we obtain better accuracy with comparable and
even better running time.

Key words: Linear Programming, Approximation Algorithms, Clustering, Facility Loca-
tion Problem, k-Median, k-Means

vii

Résumé
Le partitionnement de données est un sujet classique dans l’optimisation combinatoire. Il
joue un rôle central dans de nombreux domaines, dont la science des données et l’appren-
tissage automatique (Machine Learning). Dans cette thèse, nous nous concentrons d’abord
sur le problème de l’emplacement dynamique d’installations (c’est-à-dire l’emplacement
d’installations dans les métriques évoluantes). Nous présentons un nouvel algorithme
d’arrondissement d’optimisation linéaire pour les problèmes de l’emplacement d’installa-
tions, qui donne, pour la première fois, un algorithme d’approximation à une constante
multiplicative près pour le problème de l’emplacement dynamique d’installations. Notre
algorithme pose les minuteurs exponentiels concurrents sur les clients et les installations.
Puis, il lie chaque client par une chaîne qui suit le minuteur le moins avancé dans le
voisinage. L’utilisation d’un minuteur exponentiel donne lieu à plusieurs caractéristiques
favorables qui distingue notre méthode des méthodes précédentes pour l’arrondissement
d’optimisation linéaire pour les problèmes de l’emplacement d’installations. En particulier,
nous n’utilisons pas de partitionnement et nous permettons aux clients de se connecter
par des chaînes de longueur arbitraire. En fait, l’absence de partitionnement dans notre
algorithme est essentielle afin d’appliquer notre méthode d’arrondissement au problème
dynamique.
De plus, nous présentons les aspects empiriques et théoriques du partitionnement en
k-moyennes. Le meilleur algorithme connu pour le k-moyennes avec une garantie pour
la plus petite borne démontrable est une simple heuristique de recherche locale qui
donne une garantie approximative de 9 + ε connue pour ne pas être améliorable par ce
genre de méthodes. Nous surmontons cet obstacle en présentant une nouvelle approche
primal-dual nous permettant (1) d’exploiter la structure géométrique de k-moyennes, et
(2) de satisfaire la contrainte stricte d’avoir un maximum de k partitions sans dégrader la
garantie d’approximation. Notre résultat principal est un algorithme 6.357-approximation
par rapport à la relaxation standard d’optimisation linéaire. Nos techniques sont plutôt
générales. Nous montrons également que notre méthode améliore les garanties pour la
version générale de k-moyennes lorsque la métrique sous-jacente n’est pas forcement
euclidienne, ou quand nous utilisons le k-médianes dans les métriques euclidiennes.
De plus, nous améliorons la complexité en temps de notre algorithme qui devient presque
linéaire tout en maintenant une garantie démontrable. Nous comparons notre algorithme
avec K-Means++ (un algorithme largement étudié) et montrons que nous obtenons
une meilleure précision avec une complexité en temps comparable, voire meilleure.

ix

Résumé

mots clés : programmation linéaire, algorithme d’approximation, regroupement, Problème
de localisation d’installation, k-Median, k-Means

x

Contents
Acknowledgements v

Abstract (English/Français) vii

List of figures xii

List of tables xiv

1 Introduction 1
1.1 Approximation Algorithms . 2
1.2 Linear Programming . 3
1.3 Overview of Our Contribution . 5

2 The Dynamic Facility Location Problem 9
2.1 Introduction . 9
2.2 Preliminaries . 13

2.2.1 Facility location in evolving metrics 13
2.2.2 Exponential clocks . 15
2.2.3 Preprocessing . 15

2.3 Description of Our Algorithm . 16
2.3.1 An alternative presentation of our algorithm 16

2.4 Analysis . 18
2.4.1 Bounding the opening cost . 20
2.4.2 Bounding the connection cost . 20
2.4.3 Bounding the switching cost . 26

2.5 Preprocessing of the LP Solution . 28
2.5.1 First preprocessing . 28
2.5.2 Second preprocessing . 30

3 The k-Means and k-Median Problems 33
3.1 Introduction . 33
3.2 The Standard LP Relaxation and Its Lagrangian Relaxation 36
3.3 Exploiting Euclidean Metrics via Primal-Dual Algorithms 39

3.3.1 Description of JV(δ) . 39

xi

Contents

3.3.2 Analysis of JV(δ) for the considered objectives 41
3.4 Quasi-Polynomial Time Algorithm . 48

3.4.1 Generating a sequence of close, good solutions 49
3.4.2 Finding a solution of size k . 55

3.5 A Polynomial Time Approximation Algorithm 60
3.6 Opening a Set of Exactly k Facilities in a Close, Roundable Sequence . . . 63

3.6.1 Analysis . 64
3.7 The Algorithm RaisePrice . 68

3.7.1 The RaisePrice procedure . 70
3.7.2 The Sweep procedure . 72

3.8 Analysis of the Polynomial-Time Algorithm 73
3.8.1 Basic properties of Sweep and Invariants 2, 3, and 4 74
3.8.2 Characterizing currently undecided clients 77
3.8.3 Bounding the cost of clients . 79
3.8.4 Showing that α-values are stable 83
3.8.5 Handling dense clients . 92
3.8.6 Showing that each solution is roundable and completing the analysis 97

3.9 Running Time Analysis of Sweep . 100
3.10 Bounding the Distances . 104

4 Fast Algorithms and Empirical Results for k-Means 109
4.1 Introduction . 109
4.2 Preliminaries . 112
4.3 A Fast Primal Dual Algorithm . 114

4.3.1 Primal-Dual Algorithm . 114
4.3.2 Runtime Improvements . 115

4.4 Results for Clusterable Instances . 117
4.5 Empirical Results . 122

4.5.1 Evaluation of Initial Solutions . 122
4.5.2 Comparison after Running Lloyd’s Algorithm 123
4.5.3 Performance of FastPD Compared to K-Means++ as a Function

of the Number of Steps of Lloyd’s Algorithm 124

5 Conclusion 127

Bibliography 133

Curriculum Vitae 135

xii

List of Figures

2.1 An example of the execution of our algorithm. A support graph is shown
on the left, where squares represent facilities and circles clients. Each
node is annotated with its exponential clock value. The corresponding
connection graph is shown on the right, where the bold edges represent
Pj1(xt). Our algorithm connects j1 to i3 in this case. 17

2.2 The standard technique applied to the classic problem. (Part of) an LP
solution is shown on the left. Numbers on the edges show the connection
variables; next to the facilities (represented as squares) are the opening
variables. Result of the preprocessing is shown on the right: connection
variables are omitted, as they are equal to the incident opening variables. 31

2.3 The second preprocessing. T = 2. 31

3.1 The intuition how we improve the guarantee in the Euclidean case. In
both cases, we have αj = αj1 = 1. Moreover, i1 6∈ IS, i2 ∈ IS and we are
interested in bounding c(j, i2) as a function of αj 43

3.2 The instance has 4 clients and 5 facilities depicted by circles and squares,
respectively. The number on an edge is the squared-distance of that edge
and the squared-distances that are not depicted are all of value 5. Given
the input solution αin with λ = 2, QuasiSweep proceeds as follows. First
the opening prices of facilities are increased to 2 + εz. Next the clients
j1, j2 are added to the set A of active clients when the threshold θ = 3.
Then, until θ = 3 + εz, αj1 and αj2 increase at a uniform rate while the
(significantly) larger dual values αj3 and αj4 are decreasing |A| = 2 times
that rate. At the point θ = 3 + εz, both i1 and i2 become tight and the
witnesses of j1 and j2 respectively. This causes these clients to be removed
from A which stops their increase and the decrease of the larger values.
When θ = 4− 2εz, j3 and j4 are added to A and they start to increase at
a uniform rate. Next, the facility i3 becomes tight when θ = 4− εz and
client j3 is removed from A with i3 as its witness. Finally, j4 is removed
from A when θ = 4 + 3εz/2 at which point i5 becomes tight and its witness. 51

xiii

List of Figures

3.3 An example of the “hybrid” client-facility graph and associated conflict
graph used by QuasiGraphUpdate. G(`) and G(`+1) are the client-
facility graphs of αin and αout of Figure 3.2. Next to the facilities, we have
written the facility times (ti’s) of those solutions. As the squared-distance
between any two facilities is 5 in the example of Figure 3.2, one can see
that any two facilities with a common neighbor in the client-facility graph
will be adjacent in the conflict graph. G is the “hybrid” client-facility
graph of G(`) and G(`+1). When H is formed, we extend the given maximal
independent set IS(`) of H(`) to form a maximal independent set of H.
The facilities in the relevant independent sets are indicated with stripes. 57

4.1 The Lagrangian relaxation LP(λ) and its dual DUAL(λ). 113
4.2 Graphs showing the cost of the solutions obtained by FastPD and K-

Means++ after each step of Lloyd’s algorithm. 125

xiv

List of Tables
4.1 Results for synthetic, well-separated instances. 121
4.2 Initial solution costs for Cloud and Breast Cancer datasets (costs are ×106)123
4.3 Raw experimental results (for simplicity, we divide costs by a suitable

power of 10). 124

xv

1 Introduction

Discrete optimization problems are everywhere, from the simple daily tasks that we face,
to the algorithms used in high-tech products such as phones and computers. Clustering
is one of the famous classes of problems in discrete optimization. Clustering is the task of
dividing data into groups of similar objects. Each group, called a cluster, ideally consists
of objects that are similar and dissimilar to objects of other groups. For example, assume
we are given a set of photos of animals and we want to cluster them according to the
type of these animals. In this instance, we want each cluster to have exactly one type of
animal, e.g., one cluster for cats, one cluster for dogs, and so on.

Clustering problems play a central role in many areas, including data mining and knowl-
edge discovery, data compression, pattern recognition and classification, and detection of
abnormal data. Most of the clustering problems are NP-hard. This means that unless
P=NP, there is no algorithm that can solve these problems optimally and efficiently. The
notion of speed in theoretical computer science is mostly measured asymptotically with
respect to the size of the input n. The running time of an efficient algorithm is formally
defined to be polynomial in n. The NP-hardness of these problems have motivated a line
of research on finding tight approximation guarantees for such clustering problems. In
other words, the goal is to design an algorithm that is fast and finds a “good” solution,
despite the fact that it might not find the optimum solution. In this thesis, we are in
particular interested in improving the quality of such algorithms in two directions:

1. Designing algorithms with better approximation guarantees: This improves the
approximation guarantees that we can achieve in polynomial time by ensuring that
the quality of the solution that we get is good even in the worst-case scenario.

2. Designing fast algorithms that can be used in practice: As time is a scarce resource,
and given the huge size of datasets these days, improving the running time of
algorithms with good approximation guarantees is of great practical importance.
Such algorithms not only can be used in practice, but also guarantee a good quality
solution in any scenario.

1

Chapter 1. Introduction

The long line of research into clustering problems, both from the practical and theoretical
side, has culminated in a rich literature of algorithms and techniques for this family of
problems.

In this thesis we consider three basic clustering problems:

• Dynamic facility location problem, a natural generalization of the facility location
problem,

• The k-means and k-median problems, two well-known and well-studied problems.

For these problems, we present algorithms based on linear programs that improve the
approximation guarantee of the previous algorithms. Moreover, for the k-means problem,
we improve the running time of our algorithm and evaluate its performance in practice.

This chapter serves as a general introduction for the remaining chapters of this thesis,
and it introduces the basic notions that will be repeatedly used. In Section 1.1, we
define approximation algorithms. Then in Section 1.2, we focus on linear programs (LP)
and their dual forms and explain how we can use them in order to design algorithms.
Following this, we summarize the contributions of this thesis and give a general outline
of the remaining chapters in Section 1.3.

The remaining chapters of this thesis are self-contained, and can be read independently of
each other: Each chapter has its own introduction that is the basis for the corresponding
problem of interest, and covers the previous works and approaches that were previously
used in the literature to tackle it.

1.1 Approximation Algorithms

One of the main challenges of theoretical computer science during the recent decades has
been designing efficient algorithms for optimization problems. Due to the intractability
of finding optimal solutions efficiently for NP-hard optimization problems (assuming P
6= NP), there has been much interest in designing approximation algorithms.

Definition 1.1.1. [60] An α-approximation algorithm for an optimization problem is a
polynomial-time algorithm that for all instances of the problem produces a solution whose
value is within a factor of α of the value of an optimal solution.

In the remainder of this section, the facility location problem serves as an example of
optimization problem as it is closely related to the problems that we study in this thesis.
We use this problem to give examples for the concept of approximation algorithms and
Linear Programs. In this problem, we have a set of clients D and a set of facilities F .

2

1.2. Linear Programming

There is an opening cost fi associated with any facility i ∈ F , and a metric d on the set
of clients and facilities, which we refer to as the connection cost. The goal is to open a
subset S ⊆ F and to assign each client to an open facility, minimizing the total opening
cost and connection cost, i.e., min

∑
i∈S fi+

∑
j∈Dmini∈S d(i, j). We also assume that the

cost function d is metric. For an example on the concept of approximation algorithms, by
the above definition, an algorithm is a 2-approximation for the facility location problem,
if for any instance of this problem, it returns a solution that costs at most 2 times higher
than the cost of the best possible solution.1 In the following section we focus on Linear
Programming and explain their importance in designing approximation algorithms.

1.2 Linear Programming

Linear Programming (LP) plays a central role in designing approximation algorithms.
During the past decades, many different techniques have been developed based on LP.
First we define integer and linear programs, and then we formulate the facility location
problem using them.

Definition 1.2.1. [60] Each linear program or integer program is formulated in terms
of a number of decision variables. The variables are constrained by a number of linear
inequalities or equalities called constraints. Any assignment of real numbers to variables
such that all the constraints are satisfied is called a feasible solution. For an integer
program all the values assigned to the variables should be integer. In addition to the
constraints, linear and integer programs are defined by a linear function of the decision
variables called the objective function. The linear and the integer program seeks to find
a feasible solution that either minimizes or maximizes this objective function. Such a
solution is called an optimal solution.

The standard Integer Programming (IP) of the facility location problem has two sets of
variables: a variable yi for each facility i ∈ F and a variable xij for each facility-client
pair i ∈ F , j ∈ D. The intuition behind these variables is that yi should indicate whether
facility i is opened and xij should indicate whether client j is connected to facility i. The
standard IP can now be formulated as follows.

min
∑
i∈F yi · fi +

∑
i∈F ,j∈D xij · d(i, j)

s.t.
∑
i∈F xij ≥ 1 ∀j ∈ D (1.2.1)

xij ≤ yi ∀i ∈ F , j ∈ D (1.2.2)
x, y ∈ {0, 1}. (1.2.3)

The first set of constraints (1.2.1) is that each client should be connected to at least one
1After a long series of works, Li [45] designed a 1.488-approximation algorithm for the facility location

problem.

3

Chapter 1. Introduction

facility; the second set of constraints (1.2.2) enforces that clients can only be connected to
opened facilities; and the third constraint (1.2.3) is that each client is either connected to
a facility or not and similarly each facility is either opened or closed. Notice that solving
the above IP gives us an exact solution to the facility location problem. Unfortunately,
solving IPs is NP-hard, and we do not know any algorithm that efficiently solve the
above IP. Therefore, we relax the third set of constraints and get the following LP.

min
∑
i∈F yi · fi +

∑
i∈F ,j∈D xij · d(i, j)

s.t.
∑
i∈F xij ≥ 1 ∀j ∈ D (1.2.4)

xij ≤ yi ∀i ∈ F , j ∈ D (1.2.5)
0 ≤ x, y ≤ 1. (1.2.6)

We remark that this is a relaxation of the original problem, as we have relaxed the
constraint that x and y should take Boolean values to any value between zero and
one. For future reference, we let OPTLP denote the value of an optimal solution to
this relaxation. By solving this LP, we get a fractional solution to the facility location
problem. Notice that the cost of such a solution (OPTLP) is no higher than the optimum
cost (OPT) and we can solve any LP in polynomial time. Therefore any algorithm that
rounds the fractional solution to an actual (integral) solution and increases the cost by
at most a factor γ has an approximation guarantee of γ.

A line of research has been dedicated to designing polynomial time algorithms that round
such fractional solutions. For the classic facility location problem, a large number of
LP-based algorithmic techniques (and their combination) have been successfully applied,
including LP-rounding [56, 24, 20, 45], primal-dual methods [40], or dual fitting [38, 37].

Designing algorithms by using the dual form of an LP has also proven to be useful for the
facility location problem. The dual form of an LP is also an LP with many interesting
properties. In order to obtain a dual form of an LP, we associate a variable for each
constraint in the LP. Let αj be the variable to the constraint

∑
i∈F xij ≥ 1 for each client

j. Similarly let βij be the variable associated with the constraint xij ≤ yi for each client
j and facility i. We can in general derive a dual linear program for any given linear
program, but we will not go into the details of how to do so. Here is the dual form of
the above mentioned natural LP relaxation of the facility location problem.

4

1.3. Overview of Our Contribution

max
∑
j∈D αj

s.t.
∑
j∈D βij ≤ fi ∀i ∈ F (1.2.7)
αj − βij ≤ cij ∀i ∈ F , j ∈ D (1.2.8)

β, α ≥ 0. (1.2.9)

Consider any feasible solution to above dual and let costdual be its cost. By weak duality,
it is known that costDual ≤ OPTLP . Consider an algorithm that constructs a feasible
dual solution together with an integral solution of cost costanswer for the facility location
problem such that costanswer ≤ γcostdual, then we get that:

costanswer ≤ γcostDual ≤ γOPTLP ≤ γOPT,

where OPT is the optimum solution to the facility location problem. Therefore this
algorithm is a γ-approximation algorithm for the facility location problem. In this thesis,
we use both LP rounding and the primal-dual approach in order to design approximation
algorithms.

1.3 Overview of Our Contribution

We consider various clustering problems similar to the facility location problem. In
Chapter 2, we focus on the dynamic facility location problem – a generalization of the
facility location problem. The facility location problem does not consider a dynamic
environment, that is, a setting in which the distances between clients and facilities can
change with time. Motivated by diverse networks such as web links, nation- or world-wide
social networks, online social networks (Facebook or Twitter for example), we study
the dynamic facility location problem. This enables us to model and understand such
evolving networks better.

In dynamic facility location, we are given a set of facilities F , clients C, and a temporally
changing metric on them. We denote by dt(i, j) the metric distance between client j and
facility i at time t. We are also given a switching cost g, the total number of time steps
T , and an opening cost fi for each facility i. The goal is to output, for each time step t,
a subset of open facilities At and an assignment φt : C → At of clients to facilities so as
to minimize:∑

1≤t≤T,i∈At
fi +

∑
1≤t≤T,j∈C

dt(φt(j), j) +
∑

1≤t<T,j∈C
1{φt(j) 6= φt+1(j)} · g, (1.3.1)

where 1{p} is the indicator function of a proposition p, i.e., it takes value 1 if p is true
and 0 otherwise. Informally speaking, in this problem we have T time steps and in each

5

Chapter 1. Introduction

time step we are given an instance of the facility location problem. The goals are to find a
good solution to each of these instances and also – for the sake of stability – to make sure
that the number of clients that switch from the facility that is serving them to another
facility is small. Therefore, the cost function is the summation of the opening cost and
the connection cost for all those time steps, plus the switching cost of the clients.

Eisenstat et al. [27] were the first to consider this problem. They designed an LP relaxation
for this problem and presented a O(lognT)-approximation algorithm by rounding the
primal solution. We also solve the same LP relaxation for this problem and propose
a novel primal rounding scheme by using a technique called exponential clocks. This
enables us to get a 14-approximation algorithm.

In Chapter 3 we consider the k-means and the k-median problems. The k-means problem
has been well-studied theoretically, experimentally and practically [36]. In this problem,
given a set D of n points in R` and an integer k, the task is to select a set S of k cluster
centers in R`, so that

∑
j∈D c(j, S) is minimized, where c(j, S) is the squared Euclidean

distance between j and its nearest center in S. We show that for any ε > 0, there is
a (ρmean + ε)-approximation algorithm for the k-means problem, where ρmean ≈ 6.357.
Moreover, the integrality gap of the standard LP is at most ρmean. This improves over
the best known approximation algorithm for the k-means problem that was a (9 + ε)-
approximation algorithm based on local search, due to Kanungo et al. [41].

We further extend our result to two other problems. In the first extension, we consider
a variant of the k-means problem in which each c(j, S) corresponds to the squared
distance in an arbitrary (possibly non-Euclidean) metric on D ∪ F . For this problem,
the best-known approximation algorithm was a 16-approximation, thanks to Gupta and
Tangwongsan [33]. We improve over this result and show that for any ε > 0, there is a
(9 + ε)-approximation algorithm for the k-means problem in general metrics. Moreover,
the integrality gap of the standard LP is at most 9.

In the second extension, we consider the Euclidean k-median problem. Here we are
given a set D of n points in R` corresponding to clients and a set F of m points in R`

corresponding to facilities. The task is to select a set S of at most k facilities from F so
as to minimize

∑
j∈D c(j, S), where c(j, S) is now the (non-squared) Euclidean distance

from j to its nearest facility in S. For this problem, no approximation better than the
general 2.675-approximation algorithm of Byrka et al. [21] was known. We show that
for any ε > 0, there is a (ρmed + ε)-approximation algorithm for the Euclidean k-median
problem, where ρmed ≈ 2.633. Moreover, the integrality gap of the standard LP is at most
ρmed.

Our approaches for both k-means and k-median are similar. They consist of two main
steps:

6

1.3. Overview of Our Contribution

1. In the first stage, we design a novel primal-dual algorithm that produces a series of
solutions with some interesting and useful properties; even though each of them
might open a different number of facilities – not exactly k.

2. In the second stage, we carefully inspect these series of solutions and find a solution
that opens exactly k facilities by losing a factor 1+ε in the approximation guarantee.

Afterwards, in Chapter 4, we focus on designing fast, practical and provably good
algorithms for the k-means problem. We modify our algorithm and improve its run time,
so that it runs in time O(nkd) +O(d · poly(k)) and show that it outperforms one of the
best known algorithms for this problem (K-Means++) in accuracy with comparable or
even slightly better running time.

7

2 The Dynamic Facility Location
Problem

This chapter is based on a joint work with Hyung-Chan An and Ola Svensson, presented
in the the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) 2015 [3];
also invited to a special issue of ACM Transactions on Algorithms [4].

2.1 Introduction

In this chapter, we focus on the (dynamic) facility location problem. As discussed before
the facility location problem is an extensively studied combinatorial optimization problem,
which can also be understood as a problem of identifying closely related groups of nodes
in networks.

Let us first recall the definition of the facility location problem and dynamic facility
location problem. In the first problem, we are given a single metric on a set of clients and
facilities, where each facility is associated with an opening cost; the aim of the problem
is to choose a subset of facilities to open and connect every client to one of these open
facilities and minimize the solution cost. The solution cost is defined as the sum of the
opening costs of the chosen facilities and the connection cost given by the total distance
between every client and the facility it is connected to.

The dynamic facility location problem is a generalization of this classic problem to
temporally evolving metrics, proposed by Eisenstat, Mathieu, and Schabanel [27]. The
temporal aspect of the problem is modeled by T metrics given on the same set of clients
and facilities, each representing the metric at time step t ∈ {1, . . . , T}. The problem
asks us to find a feasible connection of the clients for each time step, but minimizing
a new objective function: in addition to the classic opening and connection costs, we
incur a fixed amount of switching cost every time a client changes its connected facility
between two consecutive time steps. This modification was introduced to favor “stable”
solutions, as Eisenstat et al. proposed this problem in order to study the dynamics
of evolving systems. Given a temporally changing social/transportation network, the

9

Chapter 2. The Dynamic Facility Location Problem

dynamic facility location problem is to discover a temporal evolution of groups that is
not too sensitive to transient changes in the metric. A more comprehensive discussion on
the study of the dynamics of evolving networks can be found later in this section. (Also
see Eisenstat et al. [27].)

For the classic facility location problem, a large number of algorithmic techniques (and
their combination) have been successfully applied, including LP-rounding [56, 24, 20, 45],
filtering [47], primal-dual methods [40], dual fitting [38, 37], local search [11, 23], and
greedy improvement [23]. LP-rounding approaches, in particular, have their merit that
they easily extend to other related problems with similar relaxations. Interestingly, a
common algorithmic tool is shared by these traditional LP-roundings: In rounding an
LP solution, we cannot afford to open enough number of facilities to ensure that every
client can find an open facility among the ones it is fractionally connected to in the
LP solution. Hence, these LP-rounding algorithms define a short “fall-back” path for
each client, and guarantee that at least this fall-back path will always lead to an open
facility, even if the (randomized) rounding fails to give an open facility in the direct
neighborhood. The fall-back paths are constructed based on a certain clustering of
the LP-solution, where the algorithm opens at least one facility in each cluster. These
clustering decisions, unfortunately, are very sensitive to small changes in the input. As
a result, when these traditional LP-rounding techniques are applied to the dynamic
problem, they can generate an excessive number of switches between two consecutive
time steps whose LP connection variables are only slightly different.

In this chapter, we present a novel LP-rounding approach based on exponential clocks
for facility location problems. Exponential clocks were previously used to give a new
approximation algorithm for the multiway cut problem by Buchbinder, Naor, and
Schwartz [19]. Several interesting properties distinguish our algorithm from previous
LP-rounding approaches for facility location problems. First, our algorithm enables a
client to be connected along an arbitrarily long path in the LP support, in contrast to the
traditional fall-back paths. Although, at a glance, it might appear counter-intuitive that
enabling longer paths helps, the use of exponential clock guarantees that the probability
that a long path is actually used rapidly diminishes to zero as we consider longer paths.
On the other hand, this small probability of using long paths is still sufficient to eliminate
the need of fall-back paths. Thus leading to the second property our algorithm: it does
not rely on any clustering. Our algorithm, consequently, becomes “stable” with respect
to small changes in the LP solution. For the dynamic problem, separately applying
our new LP-rounding for each time step, but with shared randomness, ensures that our
algorithm makes similar connection decisions for any two time steps whose LP connection
variables are similar. Our approach thereby yields the first constant approximation
algorithm for the dynamic facility location problem. We also note that our algorithm
is a Lagrangian-preserving constant approximation algorithm for the (classic) facility
location problem, although with a worse approximation ratio than the smallest known.

10

2.1. Introduction

Eisenstat et al. [27] propose O(lognT)-approximation algorithms for the dynamic problem
that avoid the stability issue in a different way: They connect every client directly to one
of the randomly opened facilities to which the client is fractionally connected in the LP
solution, where the random choices are made based on exponential distributions. Such a
direct connection keeps the algorithm from relying on the triangle inequality, yet any
algorithm that does not assume the triangle inequality cannot achieve a sublogarithmic
approximation under complexity-theoretic assumptions. Eisenstat et al. in fact consider
two versions of the dynamic facility location problem for both of which they presented
logarithimic approximation algorithms: in one version, the facility opening decision is
global – paying the opening cost makes the facility available at every time step. In the
other version, considered in here, more flexibility is given to the facility opening decision:
a facility is opened for a specific set of time steps, and hourly opening cost is paid for
each time step. They show that the first version does not admit a o(log T)-approximation
algorithm even for the metric case, and they leave the open question about whether a
constant approximation algorithm is possible for the second case, which we now answer
positively.

Related work. A huge amount of data is gathered by observing social networks such
as face-to-face contact in a primary school [57], where these networks evolve over time.
Different tools have been suggested and analyzed in order to understand the dynamic
structure of these networks [52, 58, 54]. The dynamic facility location problem is a new
tool for analyzing temporal aspects of such networks, introduced by Eisenstat et al. [27].
In this chapter, we present a constant approximation algorithm for this problem.

Apart from the offline and the dynamic versions of the facility location problem discussed
so far, the online setting is a well studied one (see [31] for a survey). In this setting,
the clients arrive one at a time and we need to connect them to facilities on the
fly. The study of this online setting was started by Meyerson [50], who achieved
a competitive ratio of O(log n). Later, Fotakis [30] showed an asymptotically tight
competitive ratio of Θ(log n/log log n). Online problems have also been studied under
varying assumptions to give constant competitive algorithms: Anagnostopoulos, Bent,
Upfal, and Hentenryck [5] studied the case where the clients are drawn from a known
distribution; Fotakis [29] presented an algorithm for the case where the reassignment
of clients is allowed; Divéki and Imreh [26] considered a setting that allows us to move
facilities.

Finally, the facility leasing problem is a variant of the facility location problem introduced
by Anthony and Gupta [6], who considered a family of leasing problems. While the facility
leasing problem also aims at connecting clients to open facilities over multiple time steps,
there exist major differences from the dynamic facility location problem, such as the
existence of switching costs. Nagarajan and Williamson [51] present a 3-approximation
algorithm for the facility leasing problem.

11

Chapter 2. The Dynamic Facility Location Problem

Overview of our approach. The standard LP relaxation for the classic problem
consists of two types of decision variables: opening variables indicating whether each
facility is to be opened, and connection variables that indicate whether each pair of client
and facility is to be connected. Our algorithm for the dynamic problem starts by solving
the natural extension of the standard LP [27], which augments the LP with a new set
of switching variables that reflect the `1-distances between the connection variables of
consecutive time steps. Once we obtain an optimal solution, we apply the preprocessing
of Eisenstat et al. to ensure that the connection variables of each client does not change
too often compared to the switching cost paid: each time a client changes its (fractional)
connection variables, at least one half of the switching cost is paid by the LP solution.

The second step of our algorithm is then to install competing exponential clocks, i.e.,
to sample a value from an exponential distribution, on every client and facility. These
exponential clocks are said competing, as the random choices made by our algorithm are
based on comparing the clocks on subsets of nodes and choosing the best (i.e., smallest-
valued) one. After sampling these clocks, our algorithm considers the LP solution of each
time step separately to construct an assignment for that time step, but based on a single
set of exponential clocks shared across all time steps.

At each time step, in order to determine which facility is to be connected to a given
client j, our algorithm constructs a path called connection path. The path starts from
j, and iteratively proceeds to the smallest-clock node among the neighborhood of the
current node. If this “smallest-following” path enters a cycle, we stop and connect j
to the last facility seen. Under this random process of connecting j, the path may
become very long, which is one of the unusual characteristics of our algorithm discussed
earlier. However, observe from the construction that the sequence of clock values that
this smallest-following path witnesses keep decreasing: in other words, in order for this
path to grow, it has to see in the neighborhood a clock that beats everything seen so far.
As such, as the path becomes longer, the probability that the path continues will rapidly
diminish (Lemma 2.4.4). For any given edge e, this key observation implies that most
of the paths that start from a distant node will fail to reach e; in fact, we show via a
counting argument that the expected number of connection paths passing through e is
within a constant factor of its connection variable (Corollary 2.4.6). This bounds the
connection cost (and opening cost, with some additional arguments: see Lemma 2.4.3)
within a constant factor of the LP cost.

Finally, in order to bound the switching cost, recall that the exponential clocks are shared
by all time steps. Hence, if the LP solution did not change at all between two time
steps, the random construction of connection paths would not change, either. Now, if
the LP solution did change slightly, for example around a single client, an obstacle in
the analysis would be that the change in the single client’s connection may lead to the
switches of multiple clients’ connections, whereas the LP solution only pays a constant
fraction (namely 1/2) of a single switch cost. Recall that, however, the connection

12

2.2. Preliminaries

paths tend to be short; thus, a local change in the connection variable cannot affect
the connection of a distant client with high probability, and indeed we show that a
change in a single client’s connection globally causes only constant number of switches in
expectation (Lemma 2.4.7). This yields the last piece of analysis to establish that our
algorithm is a constant approximation algorithm.

Our new LP-rounding approach for facility location problems raises several interesting
research directions. In general, we envision that a further understanding of the techniques
using exponential clocks will be fruitful for these problems. A more specific question is
how far the approximation guarantee of our current analysis can be pushed. We know
that, by incorporating more case analyses, the guarantee on the connection costs can be
improved. However, it remains an interesting open problem to understand if a different
analysis can lead to bounds that compete with the best known ratios for the classic
facility location problem. Further, while the use of connection paths is important for the
stability of the solution, a potential improvement of our algorithm when applied to the
classic facility location problem is in connecting each client to the closest opened facility
instead of always following the connection path.

2.2 Preliminaries

2.2.1 Facility location in evolving metrics

In this section, we recall the dynamic facility location problem’s formal definition and
adjust the LP relaxation presented before, to model this problem.

Problem definition. In dynamic facility location, we are given a set of facilities F ,
clients C, and a temporally changing metric on them. We denote by dt(i, j) the metric
distance between client j and facility i at time t. We are also given a switching cost g,
the total number of time steps T , and an opening cost fi for each facility i. The goal is to
output, for each time step t, a subset of open facilities At and an assignment φt : C → At
of clients to facilities so as to minimize:∑

1≤t≤T,i∈At
fi +

∑
1≤t≤T,j∈C

dt(φt(j), j) +
∑

1≤t<T,j∈C
1{φt(j) 6= φt+1(j)} · g, (2.2.1)

where 1{p} is the indicator function of proposition p, i.e., it takes value 1 if p is true
and 0 otherwise. In words, the objective function consists of the hourly opening costs for
each open facility, the connection costs of each client, and the switching costs.

13

Chapter 2. The Dynamic Facility Location Problem

Linear programming relaxation. We first introduce the standard linear program-
ming relaxation for the classic facility location problem (or, equivalently, the dynamic
version with a single time step). We then formulate the relaxation for the dynamic facility
location problem, introduced in [27], which is a natural generalization of the relaxation
for the classic facility location problem.

In the standard LP-relaxation of the classic facility location problem, we have a variable
yi for each facility i ∈ F and a variable xij for each facility i ∈ F and client j ∈ C. The
intuition of these variables is that yi should take value 1 if i is opened and 0 otherwise;
xij should take value 1 if client j is connected to facility i and 0 otherwise. The set
of feasible solutions to the relaxation is now described by PFL = {(x, y) |

∑
i∈F xij =

1, ∀j ∈ C; xij ≤ yi, ∀i ∈ F, j ∈ C; and x, y ≥ 0}. The first set of inequalities says that
each client should be connected to a facility and the second set says that if a client j is
connected to a facility i then that facility should be opened. In this terminology, the
standard LP relaxation of the classic facility location problem is the following:

minimize
∑
i∈F

yifi +
∑

i∈F,j∈C
xijd(i, j)

subject to (x, y) ∈ PFL.

We now adapt the above relaxation to the dynamic facility location problem. Let
[T] = {1, . . . , T} and [T) = {1, . . . , T − 1}. For each time step t ∈ [T], the relaxation
has a variable yti for each facility i ∈ F and a variable xtij for each facility i ∈ F and
client j ∈ C. These variables indicate which facilities should be opened at time t and
where to connect clients at this time step. In other words, (xt, yt) should be a solution to
the classic facility location problem and our relaxation will constrain that (xt, yt) ∈ PFL
for each t ∈ [T]. To take into account the switching costs, our relaxation will also have
a non-negative variable ztij for each client j ∈ C, facility i ∈ F and time t ∈ [T]. The
intuition of ztij is that it should take value 1 if client j was connected to facility i at
time t but not at time t + 1. The relaxation of the dynamic facility location problem
introduced in [27] is

minimize
∑

i∈F,t∈[T]
ytifi +

∑
i∈F,j∈C,t∈[T]

xtijdt(i, j) +
∑

i∈F,j∈C,t∈[T)
ztij · g

subject to (xt, yt) ∈ PFL ∀t ∈ [T],
ztij ≥ xtij − xt+1

ij and ztij ≥ 0, ∀i ∈ F, j ∈ C, t ∈ [T).

14

2.2. Preliminaries

2.2.2 Exponential clocks

We refer to independent exponential random variables as exponential clocks. The
probability density function of an exponential distribution with rate parameter λ > 0
is fλ(x) = λe−λx for x ≥ 0. If a random variable X has this distribution, we write
X ∼ Exp(λ). We use the following well-known properties of the exponential distribution:

1. If X ∼ Exp(λ), then X
c ∼ Exp(λc) for any c > 0.

2. LetX1, X2, ..., Xn be independent exponential clocks with rate parameters λ1, λ2, ..., λn,
then

(a) min{X1, ..., Xn} ∼ Exp(λ1 + ...+ λn).
(b) Pr[Xi = min{X1, ..., Xn}] = λi

λ1+...+λn .

3. Exponential clocks are memoryless, that is, if X ∼ Exp(λ), for any n,m > 0:

Pr(X > m+ n|X > m) = Pr(X > n).

Note that the memorylessness property implies that if we have a set of exponential clocks
then after observing the minimum of value say v, the remaning clocks, subtracted by v,
are still exponentially distributed with their original rates.

2.2.3 Preprocessing

The first preprocessing is from the O(lognT)-approximation algorithm by Eisenstat et
al. [27]. Losing a factor of 2 in the cost, this simple preprocessing lets us assume that
the LP pays one switching cost each time a client changes its fractional connection.

Lemma 2.2.1 ([27]). Given an LP solution, we can, by increasing its cost by at most a
factor of 2, obtain in polynomial time a feasible solution (x, y, z) satisfying:

• If we let Zt = {j ∈ C | xtij 6= xt+1
ij for some i ∈ F} denote the set of clients that

changed its fractional connection between time step t and t+ 1, then
∑T−1
t=1 |Zt| ≤∑T−1

t=1
∑
i∈F,j∈C z

t
ij .

The second preprocessing is obtained by using the standard trick of duplicating facilities,
while being careful that if the connection variables of a client remain the same between
two consecutive time steps, they remain so even after the preprocessing.

Observation 2.2.2. Without loss of generality, we assume that (x, y, z) satisfies the
following:

1. For any facility i ∈ F , client j ∈ C, and time step t ∈ [T], xtij ∈ {0, yti}.

15

Chapter 2. The Dynamic Facility Location Problem

2. For each facility i ∈ F , there exists oi ∈ [0, 1] such that yti ∈ {0, oi} for each time
step t ∈ [T].

For formal proofs of the above statements, we refer the reader to section 2.5.

2.3 Description of Our Algorithm

Given a preprocessed solution (x, y, z) to the linear programming relaxation that satisfies
the properties of Lemma 2.2.1 and Observation 2.2.2, our algorithm proceeds by first
making a random choice and then opening facilities and connecting clients in each time
step.

Random choice: Sample independently an exponential clock Qi ∼ Exp(oi) for each
facility i ∈ F and an exponential clock Rj ∼ Exp(1) for each client j ∈ C.

Opening and connecting: At each time step t ∈ [T], open facilities and connect clients
as follows. Consider the clients in the non-decreasing order of their sampled clocks
(Rj ’s). When client j ∈ C is considered, find the facility i = arg mini:xtij>0Qi of
the smallest clock among the facilities that j is connected to in the support of xt.
Similarly, let j′ = arg minj′:xt

ij′>0Rj′ be the client with the smallest clock in the
neighborhood of i. The connection of j at time t is now determined as follows: if
j = j′ then open i and connect j to i; otherwise, connect j to the same facility as
j′.

Note that, with probability 1, all clocks will have distinct values so we make that
simplifying assumption. We also remark that the procedure is well-defined. Indeed, if j
connects to the same facility as j′ then Rj′ < Rj (since both j and j′ are adjacent to i) ,
and therefore j′ was already connected to a facility when j was considered.

2.3.1 An alternative presentation of our algorithm

In this section, we rewrite the opening and connecting step of the algorithm by using
graph terminology, simplifying the presentation of our analysis. The new opening and
connecting step for time step t reads as follows.

Let SG(xt) be the support graph of xt: i.e., SG(xt) is an undirected bipartite graph on
vertex set F t ∪ C that has an edge {i, j} if and only if xtij > 0, where F t := {i ∈ F |
∃j xtij > 0}. Then we construct a directed bipartite graph CG(xt), called connection
graph, which represents the random choices made by the algorithm. CG(xt) is a directed
graph on the same vertex set F t ∪ C, where every vertex has exactly one outgoing arc
directed towards the vertex with the smallest clock among its neighborhood in SG(xt).

16

2.3. Description of Our Algorithm

Note that the underlying undirected graph of CG(xt) is therefore a subgraph of SG(xt).
Now the algorithm finds all length-2 cycles in CG(xt), and opens every facility that
appears on any of these cycles.

Once the algorithm determines the set of facilities to be opened, it produces an assignment
of the clients to the open facilities. For each client j, the algorithm defines its connection
path Pj(xt) as follows: the path starts from j, and follows the unique outgoing arc in
the connection graph until it stops just before it is about to visit a vertex that it has
already visited. Note that this path is well-defined, since every vertex has exactly one
outgoing arc in the connection graph and there are finitely many vertices in the graph.
The algorithm assigns j to the facility that appears latest on Pj(xt): if Pj(xt) ends at a
facility, j is assigned to that facility; if Pj(xt) ends at a client, the second-to-last vertex of
the path is a facility, and j is assigned to that facility. Figure 2.1 illustrates an execution
of our algorithm.

j1

i1 .8 i2 .5 i3 .2 i4 .4

j2 j3 j1

i1 i2 i3 i4

j2 j3.7 .3 .1

Figure 2.1 – An example of the execution of our algorithm. A support graph is shown on
the left, where squares represent facilities and circles clients. Each node is annotated
with its exponential clock value. The corresponding connection graph is shown on the
right, where the bold edges represent Pj1(xt). Our algorithm connects j1 to i3 in this
case.

Following is a useful observation in the analysis of our algorithm.

Observation 2.3.1. CG(xt) does not contain a simple cycle with more than two arcs.

Proof. Suppose that CG(xt) contains a simple cycle 〈i1, j1, i2, . . . , ik, jk(, i1)〉 for k ≥ 2.
Note that i1 6= i2, {j1, i1}, {j1, i2} ∈ SG(xt), and (j1, i2) ∈ CG(xt); hence, Qi2 < Qi1 .
Repeating this argument yields Qi1 < Qi1 , obtaining contradiction.

Each connection path therefore ends only when it reaches a length-2 cycle, and this is
why the new presentation of the algorithm is guaranteed to assign every client to an open
facility. Observation 2.3.2 easily follows from the fact that the connection graph is merely
a graph representation reflecting the random choices made by the original algorithm.

Observation 2.3.2. The two versions of our algorithm are equivalent: they open the
same set of facilities and produce the same assignment.

17

Chapter 2. The Dynamic Facility Location Problem

Proof. First we verify that both versions of our algorithm open the same set of facilities.
As the connection graph is bipartite, every length-2 cycle contains exactly one facility and
one client. Let {(i, j), (j, i)} be a length-2 cycle where i ∈ F and j ∈ C; the new version
opens i in this case. When the original version considers j’s connection, it selects i in the
neighborhood and subsequently finds that j has the smallest clock in the neighborhood
of i. Hence, the original version also opens i.

Note that this in fact is the only case in which the original version opens a facility: i′ ∈ F
is opened if and only if, for some client j′, i′ had the smallest clock in the neighborhood
of j′ and vice versa. This emerges as a length-2 cycle in the connection graph, and
therefore the new version also opens i′.

Now we show by induction that, for all k ∈ N, a client j whose connection path consists
of k arcs is assigned to the same facility by both versions of our algorithm. Suppose k = 1.
In this case, Pj(xt) = {(j, i)} and (i, j) ∈ CG(xt). Thus, the original version opens i and
assigns j to i, which is consistent with the decision made by the new version. Suppose
k = 2. In this case, Pj(xt) = {(j, i), (i, j′)} and (j′, i) ∈ CG(xt). The new version assigns
j to i; the original version assigns j to the same facility as j′, and assigns j′ to facility i.
Hence, the decisions are consistent in this case as well.

Suppose that k is an odd integer greater than two, and let (j, i1), (i1, j1) be the first two
arcs of Pj(xt) and (j2, i2) be the last. Then the outgoing arc from i2 in the connection
graph has to be towards j2, since it has to be towards a vertex that is already visited,
creating a length-2 cycle. (See Observation 2.3.1.) Thus, we can obtain Pj1(xt) by
removing the first two arcs from Pj(xt), and the original version of the algorithm assigns
j1 to i2 from the induction hypothesis. It assigns j also to i2, which is consistent with
the decision made by the new version of our algorithm.

The final case where k is even follows from a symmetric argument.

2.4 Analysis

In this section, we analyze our algorithm described in Section 4.3 for the dynamic facility
location problem. Throughout this section, let Xt

ij denote the random indicator variable
that takes value 1 if the algorithm connects client j to facility i at time step t and let Y t

i

be the random indicator variable that takes value 1 if facility i is opened during time
step t. All probabilities and expectations in this section are over the random outcomes of
the exponential clocks. With this notation and by linearity of expectation, the expected

18

2.4. Analysis

cost of the returned solution equals

T∑
t=1

E

∑
i∈F

fi · Y t
i +

∑
i∈F,j∈C

dt(i, j)Xt
ij


︸ ︷︷ ︸

(i)

+

g ·
T−1∑
t=1

E

∑
j∈C

1{Xt
ij 6= Xt+1

ij for some i ∈ F}


︸ ︷︷ ︸

(ii)

,

where the term (i) expresses the expected opening cost and connection cost at time
step t and the second term (ii) expresses the expected number of clients who changed,
between time steps t and t + 1, the facility to which they are connected. Note that
analyzing (i) is simply the problem of analyzing our algorithm for the uncapacitated
facility location problem. To analyze (ii) we crucially rely on the fact that the random
choices of our algorithm (i.e., the sampling of the exponential clocks) are based on a
single set of exponential clocks shared by all time steps. This will enable us to prove
that the expected number of clients that change connection is proportional to the cost
that the LP pays towards the switching cost.

More specifically, we prove the following lemma:

Lemma 2.4.1. For any time step t ∈ [T], we have

E
[∑
i∈F

fiY
t
i

]
≤
∑
i∈F

fiy
t
i , (2.4.1)

E

 ∑
i∈F,j∈C

dt(i, j)Xt
ij

 ≤ 6
∑

i∈F,j∈C
dt(i, j)xtij , (2.4.2)

g · E

∑
j∈C

1{Xt
ij 6= Xt+1

ij for some i ∈ F}

 ≤ 7g|Zt|. (2.4.3)

The above lemma implies that our algorithm is a 14-approximation algorithm for the
dynamic facility location, from the following argument. The preprocessing of Lemma 2.2.1
incurs a factor of 2. Combining this with the above lemma gives us that the opening
costs are approximated within a factor of 2, the connection cost within a factor of 12,
and the switching cost within a factor 14 since

∑
t∈[T) |Zt| ≤

∑
i∈F,j∈C,t∈[T) z

t
ij . Hence,

we have the following1:

Theorem 2.4.2. There is a randomized 14-approximation algorithm for the dynamic
facility location problem.

1 As can be seen from the argument, we could also have temporally changing opening cost without
changing our algorithm: we can allow the input to specify f ti , the opening cost of facility i at time step t.

19

Chapter 2. The Dynamic Facility Location Problem

We prove Inequalities (2.4.1), (2.4.2), and (2.4.3) of Lemma 2.4.1 in Sections 2.4.1, 2.4.2,
and 2.4.3, respectively.

2.4.1 Bounding the opening cost

We show that the probability to open a facility i at time step t equals yti .

Lemma 2.4.3. For any time step t ∈ [T] and facility i ∈ F , E[Y t
i] ≤ yti .

Proof. If i /∈ F t, it does not appear in SG(xt) and cannot be opened: E[Y t
i] = 0 ≤ yti .

Suppose i ∈ F t, and let j be the facility to which i has its outgoing arc in the connection
graph: i.e., (i, j) ∈ CG(xt). Let F (j) be the set of facilities that are adjacent to j in
SG(xt). Observe that i will be opened if and only if (j, i) ∈ CG(xt), or, in other words,
Qi = mini′∈F (j)Qi′ . Note that this event is independent from the event (i, j) ∈ CG(xt),
since the facility-clocks are independent from the client-clocks. Thus, from Property 2b
of exponential clocks, we have E[Y t

i] = yti∑
i′∈F (j) y

t
i′

= yti , where the last equality follows

from 1 =
∑
i′∈F (j) x

t
i′j =

∑
i′∈Fj y

t
i′ . (See Observation 2.2.2.)

2.4.2 Bounding the connection cost

In this section we bound the connection cost for a fixed time step t ∈ [T], i.e.,
E
[∑

i∈F,j∈C dt(i, j)Xt
ij

]
. As the time step t is fixed throughout this section, we simplify

the notation by letting (x, y) = (xt, yt) and we also abbreviate SG(xt), CG(xt), and Pj(xt)
by SG, CG, and Pj , respectively.

By the triangle inequality, the connection cost of a client is at most the sum of distances
of the edges in its connection path. Therefore we have that

E

 ∑
i∈F,j∈C

dt(i, j)Xt
ij

 ≤ E

∑
j∈C

dt(Pj)

 ,
where dt(Pj) denotes the total distance of the edges in the path Pj . Note that the right-
hand side can be further rewritten by summing over all the edges in SG and counting
the expected number of connection paths that use this edge (note that the paths do not
repeat a vertex). That is, we obtain the following bound on the connection cost∑

{i,j}∈SG
dt(i, j)E[|{j′ ∈ C | (i, j) or (j, i) is in Pj′}|].

To analyze this, we first bound the probability, over the randomness of the exponential

20

2.4. Analysis

clocks, that a connection path starts with a given prefix. We then show that the expected
number of connection paths that traverses an edge {i, j} is at most 6xij , which then
implies Inequality (2.4.2) of Lemma 2.4.1.

The probability of a prefix

Consider a client j0 and its connection path Pj0 . We use the notation prefix(Pj0) to
denote the set of all the prefixes of this path, i.e., the subpaths of Pj0 that start at
j0. We also let C(i) denote the set of clients adjacent to a facility i in SG. Similarly,
let F (j) denote the set of facilities adjacent to client j in SG. We further abbreviate
C(i1)∪ · · · ∪C(i`) by C(i1, . . . , i`) and F (j1)∪ · · · ∪F (j`) by F (j1, . . . , j`). Finally, for a
subset F ′ ⊆ F of facilities, we let y(F ′) =

∑
i∈F ′ yi. Using this notation, we now bound

the probability that a given subpath appears as a prefix of a connection path.

Lemma 2.4.4. We have

Pr[〈j0, i1, j1, i2, . . . , ik, jk, ik+1〉 ∈prefix(Pj0)]

≤
k∏
`=1

1
|C(i1, i2, . . . , i`)|

·
k∏
`=0

yi`+1

y(F (j0, j1, . . . , j`))
,

Pr[〈j0, i1, j1, i2, . . . , ik, jk〉 ∈prefix(Pj0)]

≤
k∏
`=1

1
|C(i1, i2, . . . , i`)|

·
k−1∏
`=0

yi`+1

y(F (j0, j1, . . . , j`))
.

Proof. We start by analyzing Pr[〈j0, i1, j1, i2, . . . , ik, jk, ik+1〉 ∈ prefix(Pj0)]. First note
that 〈j0, i1, j1, i2, . . . , ik, jk, ik+1〉 ∈ prefix(Pj0) if and only if all the arcs (j0, i1), (i1, j1),
. . . , (jk, ik+1) exist in CG. The algorithm uses two independent sources of randomness:
the client-clocks and facility-clocks. We use the randomness of the client-clocks to bound
the probability that all the arcs (i1, j1), (i2, j2), . . . , (ik, jk) exist in CG. Note that for
(i`, j`) to exist, j` has to have the smallest clock of the clients in C(i`). Moreover, as
j`−1 ∈ C(i`), we have Rj` < Rj`−1 . By repeating this argument, we have that a necessary
condition for all arcs to exist in CG is that Rj` < Rj`−1 < . . . < Rj1 , which implies that
the arcs exist only if

Rj` = min{Rj | j ∈ C(i1, i2, . . . , i`)} for ` = 1, . . . , k.

To bound the probability that these conditions hold, we use the well-known properties of
the exponential distribution. Note first that all client-clocks are distributed according to
the exponential distribution with the same rate (which is 1) and therefore the probability

21

Chapter 2. The Dynamic Facility Location Problem

of Rjk = min{Rj | j ∈ C(i1, i2, . . . , ik)} is

1
|C(i1, i2, . . . , ik)|

. (2.4.4)

Now, by the memorylessness property, if we condition on the event that jk has the
smallest exponential clock of all clients in C(i1, i2, . . . , ik), then the clocks of the clients
different from jk, subtracted by Rjk , are still distributed according to the exponential
distribution with same rates. Therefore, the probability of Rjk−1 = min{Rk−1 | j ∈
C(i1, i2, . . . , ik−1)} is 1/|C(i1, i2, . . . , ik−1)| even if we condition on the event Rjk =
min{Rj | j ∈ C(i1, i2, . . . , ik)}.2 Note that jk 6∈ C(i1, . . . , ik−1) and more gener-
ally j` /∈ C(i1, . . . , i`−1) (otherwise, as Rj` < Rj`−1 < . . . < Rj1 , one of the facil-
ities in {i1, . . . , i`−1} would have its outgoing arc to j` or another client of smaller
clock). By repeating this argument, we get that the probability that all the arcs
(i1, j1), (i2, j2), . . . , (ik, jk) exist in CG is at most

k∏
`=1

1
|C(i1, i2, . . . , i`)|

.

We then use the randomness of the facility-clocks to bound the probability that all the
arcs (j0, i1), (j1, i2), . . . , (jk, ik+1) exist. Similarly to above, we have that these arcs exist
only if

Qi`+1 = min{Qi | i ∈ F (j0, j1, . . . , j`)} for ` = 0, . . . , k.

As the clock Qi of a facility is distributed according to the rate oi = yi, we have that
Pr[Qi`+1 = min{Qi | i ∈ F (j0, j1, . . . , j`)} equals

yi`+1

y(F (j0, j1, . . . , j`))

and again by using the memorylessness property, all these arcs exist with probability at
most

yi1
y(F (j0)) ·

yi2
y(F (j0, j1)) · · ·

yik+1

y(F (j0, j1, . . . , jk))
.

The bound now follows since the client-clocks and facility-clocks are independent.

Let us now calculate an upper bound on Pr[〈j0, i1, j1, i2, . . . , ik, jk〉 ∈ prefix(Pj0)]. Simi-
larly to above we have that the probability that all the arcs (i1, j1), (i2, j2), . . . , (ik, jk)
exist in CG is at most (2.4.4). We now bound the probability that all the arcs
(j0, i1), (j1, i2), . . . , (jk−1, ik) exist in CG. By using analogous arguments to above, this is

2Since the exponential clocks have all the same rate, an equivalent (more combinatorial) point of view
is the following: choose a random permutation of the clients in C(i1, i2, . . . , ik). The probability that a
certain client is the first (smallest clock) is 1 over the cardinality of the set; and even after conditioning
on this event all permutations of the remaining clients are equally likely.

22

2.4. Analysis

at most
yi1

y(F (j0)) ·
yi2

y(F (j0, j1)) · · ·
yik

y(F (j0, j1, . . . , jk−1))
and the statement again follows from the independence of the facility-clocks and client-
clocks.

Expected number of connection paths traversing an edge

We now bound the expected number of connection paths that traverse an edge in the
support graph. When we say that a path visits k clients before going through arc (j, i)
we mean that it visits k clients different from j before going through the arc.

Lemma 2.4.5. Consider a facility i ∈ F and a client j ∈ C. For any integer k ≥ 1, the
expected number of connection paths that visits k clients before going through arc (i, j) is
at most

xij
2max(0,k−2)

and, for any integer k ≥ 0, the expected number of connection paths that visits k clients
before going through the arc (j, i) is at most

xij
2max(0,k−1) .

Proof. We divide the proof into the following cases: k = 0, k = 1, and k ≥ 2.

Case k = 0. In this case there is no path that visits 0 clients before going through the
arc (i, j). The expected number of paths that visits 0 clients before going through the
arc (j, i) is equal to the probability of that 〈j, i〉 ∈ prefix(Pj), which by Lemma 2.4.4 is
at most yi/y(F (j)) = yi = xij .

Case k = 1. Note that any prefix of a connection path that visits 1 client before going
through the arc (i, j) must be of the form 〈j0, i1, j1〉 where i1 = i, j1 = j and j0 ∈ C(i1).
Hence, by linearity of expectation, we have that the expected number of such paths is at
most ∑

j0∈C(i1)
Pr[〈j0, i1, j1〉 ∈ prefix(Pj0)] ≤

∑
j0∈C(i1)

1
|C(i1)|

yi1
y(F (j0)) = yi1 = xi1j1 ,

where the inequality follows from Lemma 2.4.4 and the equalities follow from y(F (j0)) =∑
i∈F xij0 = 1 and xi1j1 = yi1 since i1 ∈ F (j1).

23

Chapter 2. The Dynamic Facility Location Problem

Let us now consider the expected number of connection paths whose prefix visits 1 client
before going through the arc (j, i). If we let j1 = j and i2 = i, any such prefix has
the form 〈j0, i1, j1, i2〉 where i1 ∈ F (j1) and j0 ∈ C(i1). Hence, again by linearity of
expectation and by Lemma 2.4.4, we have the upper bound of∑

i1∈F (j1)

∑
j0∈C(i1)

Pr[〈j0, i1, j1, i2〉 ∈prefix(Pj0)]

≤
∑

i1∈F (j1)

∑
j0∈C(i1)

1
|C(i1)|

yi1
y(F (j0))

yi2
y(F (j0, j1))

≤yi2
∑

i1∈F (j1)

∑
j0∈C(i1)

1
|C(i1)|

yi1
y(F (j1)) = yi2 = xi2j1 ,

where the last inequality follows from y(F (j0, j1)) ≥ y(F (j1)) and y(F (j0)) = 1.

Case k ≥ 2: We start by analyzing the expected number of connection paths that have
prefixes that visit k clients before going through arc (i, j). For notational convenience let
ik = i and jk = j. Any such prefix with nonzero probability has the form

〈j0, i1, j1, i2, . . . , jk−1, ik, jk〉,

where j` ∈ C(i`+1) for ` = 0, 1, . . . , k − 1 and i` ∈ F (j`) for ` = 1, . . . , k. Moreover, we
have that i` 6∈ F (j`+1), i.e., i` ∈ F (j`) \ F (j`+1). Indeed, as the client-clocks decrease
along a path, if i` ∈ F (j`+1) then i` would have its outgoing arc to j`+1 (or a client of
even smaller clock) instead of j`. By linearity of expectation, we can thus upper bound
the expected number of such prefixes by the following sum:∑
jk−1∈C(ik)

∑
ik−1∈F (jk−1)\F (jk)

jk−2∈C(ik−1)

· · ·
∑

i1∈F (j1)\F (j2)
j0∈C(i1)

Pr[〈j0, i1, j1, i2, . . . , jk−1, ik, jk〉 ∈ prefix(Pj0)].

By Lemma 2.4.4 we have that Pr[〈j0, i1, j1, i2, j2, . . . , jk−1, ik, jk〉 ∈ prefix(Pj0)] is at most

k∏
`=1

1
|C(i1, i2, . . . , i`)|

·
k−1∏
`=0

yi`+1

y(F (j0, j1, . . . , j`))

≤
k∏
`=1

1
|C(i`)|

· yik
y(F (j0)) ·

k−2∏
`=0

yi`+1

y(F (j`, j`+1))

≤ yik
|C(ik)|y(F (j0))

yik−1

|C(ik−1)|y(F (j0, j1))

k−2∏
`=1

yi`
|C(i`)|y(F (j`, j`+1))

≤ yik
|C(ik)|

yik−1

|C(ik−1)|

k−2∏
`=1

yi`
|C(i`)|y(F (j`, j`+1)) .

24

2.4. Analysis

Substituting in this bound, we get that the expected number of connection paths is at
most

∑
jk−1∈C(ik)

∑
ik−1∈F (jk−1)\F (jk)

jk−2∈C(ik−1)

· · ·
∑

i1∈F (j1)\F (j2)
j0∈C(i1)

yik
|C(ik)|

yik−1

|C(ik−1)|

k−2∏
`=1

yi`
|C(i`)|y(F (j`, j`+1)) ,

which, by rearranging terms, equals

∑
jk−1∈C(ik)

yik
|C(ik)|

 ∑
ik−1∈F (jk−1)\F (jk)

jk−2∈C(ik−1)

yik−1

|C(ik−1)| · · ·

 ∑
i1∈F (j1)\F (j2)

j0∈C(i1)

yi1
|C(i1)|y(F (j1, j2))


 .

To analyze this expression, let us first consider the last term

∑
i1∈F (j1)\F (j2)

∑
j0∈C(i1)

1
|C(i1)|

yi1
y(F (j1, j2)) =

∑
i1∈F (j1)\F (j2)

yi1
y(F (j1, j2)) = y(F (j1) \ F (j2))

y(F (j1, j2)) .

Recall that F (j1) and F (j2) are two sets such that y(F (j1)) = y(F (j2)) = 1. Let
s = y(F (j1) ∩ F (j2)). Then

y(F (j1) \ F (j2))
y(F (j1, j2)) = 1− s

2− s ≤
1
2 .

In general, we have for ` = 1, . . . k − 2 that the `-th last term is bounded by

y(F (j`) \ F (j`+1))
y(F (j`, j`+1)) ≤ 1

2 .

Thus, repeating the same arguments for the k − 2 last terms enable us to upper bound
the expected number of paths by

1
2max(0,k−2)

∑
jk−1∈C(ik)

yik
|C(ik)|

 ∑
ik−1∈F (jk−1)\F (jk)

jk−2∈C(ik−1)

yik−1

|C(ik−1)|


and using that y(F (jk−1) \ F (jk)) ≤ 1 this is at most yik 1

2max(0,k−2) = xikjk
1

2max(0,k−2) as
required.

Let us now bound the expected number of connections paths whose prefix visits k clients
before going through the arc (j, i). For notational convenience, let now jk = j and
ik+1 = i. By the same arguments as above, any such prefix with nonzero probability
has the form 〈j0, i1, j1, i2, . . . , jk−1, ik, jk, ik+1〉, where j` ∈ C(i`+1) for ` = 0, 1, . . . , k and
i` ∈ F (j`) \ F (j`+1) for ` = 1, . . . , k − 1. By linearity of expectation, we can thus bound

25

Chapter 2. The Dynamic Facility Location Problem

the expected number of such prefixes by∑
ik∈F (jk)
jk−1∈C(ik)

∑
ik−1∈F (jk−1)\F (jk)

jk−2∈C(ik−1)

· · ·
∑

i1∈F (j1)\F (j2)
j0∈C(i1)

Pr[〈j0, i1, j1, . . . , jk−1, ik, jk, ik+1〉 ∈ prefix(Pj0)].

Similarly to above, by applying Lemma 2.4.4 and rearranging the terms, we have the
following upper bound

yik+1

∑
ik∈F (jk)
jk−1∈C(ik)

yik
|C(ik)|

(
∑

ik−1∈F (jk−1)\F (jk)jk−2∈C(ik−1)

yik−1

|C(ik−1)|y(F (jk−1, jk))
· · ·

(
∑

i1∈F (j1)\F (j2)
j0∈C(i1)

yi1
|C(i1)|y(F (j1, j2)))).

Again, we have that the last term is at most 1/2, and repeating that argument now for
the last k − 1 terms allows us to upper bound the expected number of connection paths
by

1
2max(0,k−1) yik+1

∑
ik∈F (jk)
jk−1∈C(ik)

yik
|C(ik)|

.

As y(F (jk)) = 1, this equals 1
2max(0,k−1) yik+1 = 1

2max(0,k−1)xik+1jk as required.

The following corollary follows from the fact that the expected number of connection
paths that traverse arc (i, j) is at most

∑∞
k=1

xij
2max(0,k−2) = 3xij and the expected number

of connection paths that traverse arc (j, i) is at most
∑∞
k=0

xij
2max(0,k−1) = 3xij .

Corollary 2.4.6. The expected number of connections paths that traverse the arc (i, j)
(and respectively arc (j, i)) is at most 3xtij. Hence, the expected number of connection
paths that traverse the edge {i, j} in any direction is at most 6xtij.

2.4.3 Bounding the switching cost

In this section, we prove (2.4.3) of Lemma 2.4.1. Lemma 2.4.7 shows (2.4.3) for a special
case where |Zt| = 1.

Lemma 2.4.7. For some client k ∈ C, suppose that (xA, yA), (xB, yB) ∈ PFL satisfy
xAij = xBij for all i ∈ F and j ∈ C \ {k}. If we use a single set of exponential clocks to
construct both of their corresponding connection graphs, the expected number of clients
whose connection paths are different is at most 7.

Proof. We first compare CG(xA) and CG(xB) to characterize their difference. Recall that
every node has exactly one outgoing arc in a connection graph. For any j ∈ C \ {k}, its

26

2.4. Analysis

neighborhood in SG(xA) and in SG(xB) are the same; hence, the unique outgoing arc
from j is the same in both connection graphs (note that we use a single set of exponential
clocks to define both connection graphs). The only client whose outgoing arc can be
different in CG(xA) and CG(xB) is k.

Now suppose that a facility i ∈ F has different outgoing arcs in CG(xA) and CG(xB):
(i, jA) ∈ CG(xA) and (i, jB) ∈ CG(xB) for jA 6= jB. This implies {i, jA} ∈ SG(xA) and
{i, jB} ∈ SG(xB). We have that at least one of these two edges is absent in the other
support graph, since otherwise both edges are in both support graphs and the choice of
outgoing arc from i should have been consistent in both connection graphs. Suppose that
{i, jA} /∈ SG(xB); in this case, jA = k, since {i, jA} ∈ SG(xA) and k is the only client
whose neighborhood can be different in the two support graphs. If {i, jB} /∈ SG(xA),
jB = k. In sum, if a facility i ∈ F has different outgoing arcs in CG(xA) and CG(xB),
one of the two outgoing arcs is towards k.

This characterization leads to the following claim:

Claim 2.4.8. For a client j ∈ C, if Pj(xA) is different from Pj(xB), at least one of
them contains k.

Proof. Let v be the last vertex of the maximal common prefix of Pj(xA) and Pj(xB); the
outgoing arcs of v are different in CG(xA) and CG(xB) from the choice. If v is a client,
v = k, hence the claim follows. If v is a facility, one of its two outgoing arcs in CG(xA)
and CG(xB) is towards k. Assume without loss of generality that (v, k) ∈ CG(xA). In this
case, either (v, k) ∈ Pj(xA), or (v, k) /∈ Pj(xA) because k was already visited by Pj(xA).
In both cases, k ∈ Pj(xA).

The connection path of k automatically contains k; for any other client j ∈ C \ {k},
its connection path contains k if and only if it contains an arc (i, k) for some i ∈ F .
Therefore, the lemma follows from the following claim (and its analogue for CG(xB)).

Claim 2.4.9. The expected number of connection paths in CG(xA) that contain (i, k) for
some i ∈ F is at most 3.

Proof. For each i ∈ F , the expected number of connection paths that contain (i, k) is at
most 3xAik from Corollary 2.4.6. Thus, the expected number of connection paths that
contain (i, k) for any i ∈ F is at most

∑
i∈F 3xAik = 3

∑
i∈F x

A
ik = 3, since (xA, yA) ∈

PFL.

For some j ∈ C, if at least one of Pj(xA) and Pj(xB) contains k, one of the following
is true: j = k (there is one such connection path), (i, k) ∈ Pj(xA) for some i ∈ F (in
expectation, there are at most three such j), or (i, k) ∈ Pj(xB) for some i ∈ F (again,

27

Chapter 2. The Dynamic Facility Location Problem

there are at most three such j in expectation). Thus, the expected number of clients
whose connection paths are different is at most 1 + 3 + 3 = 7.

For the general case where |Zt| > 1, Corollary 2.4.10 shows (2.4.3) by applying Lemma 2.4.7
multiple times.

Corollary 2.4.10. For some K ⊂ C, suppose that (xA, yA), (xB, yB) ∈ PFL satisfy
xAij = xBij for all i ∈ F and j ∈ C \K. If we use a single set of exponential clocks to
construct both of their corresponding connection graphs, the expected number of clients
that are assigned to different facilities is at most 7|K|.

Proof. Let us denote the elements of K as k1, . . . , k|K|. Note that Lemma 2.4.7 considers
two sets of connection variables that are different in the neighborhood of only one client,
whereas this Corollary considers the case where the connection variables are different
around |K| clients. In order to apply Lemma 2.4.7, we can construct a series of solutions
(x0, y0), (x1, y1), . . . , (x|K|, y|K|), which starts with (x0, y0) = (xA, yA) and gradually
looks more similar to (xB, yB) until it ends with (x|K|, y|K|) = (xB, yB). In particular,
we ensure that x`−1 and x` are different only in the neighborhood of k`. By applying
Lemma 2.4.7 on each consecutive pair of these solutions, we obtain that the expected
number of clients whose connection paths are different in CG(xA) and CG(xB) is at most
7|K|. Note that, if a client is assigned to different facilities, its connection paths have to
be different.

2.5 Preprocessing of the LP Solution

In this section, we present the two preprocessings we apply to the LP solution.

2.5.1 First preprocessing

The first preprocessing formalized by Lemma 2.2.1 is due to Eisenstat et al. [27]. For the
sake of completeness, we present their preprocessing in this section under our notation.

Let (x̄, ȳ, z̄) be a given LP solution. In polynomial time, we output a feasible solution
(x, y, z) satisfying the following:

• The cost of (x, y, z) is at most twice the cost of (x̄, ȳ, z̄).

• If we let Zt = {j ∈ C | xtij 6= xt+1
ij for some i ∈ F} denote the set of clients that

changed its fractional connection between time step t and t+ 1, then

T−1∑
t=1
|Zt| ≤

T−1∑
t=1

∑
i∈F,j∈C

ztij . (2.5.1)

28

2.5. Preprocessing of the LP Solution

Note that this will prove Lemma 2.2.1. The vector x is constructed from x̄ as follows:

1. For each client j, we decide on a set Lj = {tj0, t
j
1, . . . , t

j
ι(j) = T +1} of boundary time

steps that divide the entire time span into time intervals [tj0, t
j
1), · · · , [tjι(j)−1, t

j
ι(j)) :

• Let tj0 = 1 and ι = 1.
• Now select tjι to be the largest t ∈ (tjι−1, T+1] such that

∑
i∈F (min

tjι−1≤u<t
x̄uij) ≥

1/2.
• If tjι = T + 1 we are done selecting boundaries: ι(j) ← ι, and Lj ←
{tj0, . . . , t

j
ι(j)}.

Otherwise, we increment ι and repeat the previous step to select the next
boundary.

Note that each client defines its own division of the time span.

2. Once we have decided on these time intervals, we redefine the connection variables
so that, for each client j, its connection variables do not change within each time
interval defined by itself.
For each client j and each of its time interval [tjk, t

j
k+1), we set

xtij :=
min

tj
k
≤u<tj

k+1
x̄uij∑

i′∈F (min
tj
k
≤u<tj

k+1
x̄ui′j)

for each i ∈ F and t ∈ [tjk, t
j
k+1).

Note that the right-hand side is not dependent on t, achieving the desired property.

By construction we have xtij ≤ x̄tij/
∑
i′∈F (min

tj
k
≤u<tj

k+1
x̄ui′j) ≤ 2x̄tij . Therefore the

connection cost of x is at most twice the connection cost of x̄. Moreover, if we let y = 2ȳ,
then xtij ≤ yti for all i ∈ F, j ∈ C and t ∈ [T]. Finally, by construction

∑
i∈F x

t
ij = 1 for

all j ∈ C and t ∈ [T], hence we can conclude that

(xt, yt) ∈ PFL for all t ∈ [T].

We finish the description of the preprocessing by specifying z. Towards this aim we use
the following fact from [27]:

Fact 2.5.1. For each client j ∈ C and its time interval [tjk−1, t
j
k) where 1 ≤ k < ι(j),∑

tj
k−1≤t<t

j
k

∑
i∈F

z̄tij > 1/2.

Note that this implies that
∑
j∈C(ι(j)− 1) ≤

∑T−1
t=1

∑
i∈F,j∈C 2z̄tij . On the other hand,

recall that the fractional connection of a client j does not change within each of its time

29

Chapter 2. The Dynamic Facility Location Problem

interval from constuction; thus,
∑T−1
t=1 |Zt| ≤

∑
j∈C(ι(j)− 1). We have, as a result,

T−1∑
t=1
|Zt| ≤

T−1∑
t=1

∑
i∈F,j∈C

2z̄tij .

Therefore, if we can obtain (feasible) z such that
∑T−1
t=1

∑
i∈F,j∈C z

t
ij =

∑T−1
t=1

∑
i∈F,j∈C 2z̄tij ,

(2.5.1) would follow, and the switching cost would be at most twice the original switching
cost.

We first set ztij := xtij−x
t+1
ij for all i ∈ F, j ∈ C and t ∈ [T), and we have

∑T−1
t=1

∑
i∈F,j∈C z

t
ij ≤∑

j∈C(ι(j)−1) from construction, which in turn implies
∑T−1
t=1

∑
i∈F,j∈C z

t
ij ≤

∑T−1
t=1

∑
i∈F,j∈C 2z̄tij .

Then we can increase z in an arbitrary manner until we achieve
∑T−1
t=1

∑
i∈F,j∈C z

t
ij =∑T−1

t=1
∑
i∈F,j∈C 2z̄tij .

2.5.2 Second preprocessing

The second preprocessing formalized by Observation 2.2.2 follows from applying the
standard technique of duplicating facilities. We present the details in this section.

Let us first review the standard technique that is used by multiple algorithms for the
classic problem: it ensures xij ∈ {0, yi}. Suppose there exists a facility i that is open
by the fraction of .6 and connected to clients a, b, c, and d each by .1, .4, .4, and .6,
respectively, in the LP solution. The standard technique in this case duplicates i into
three copies, each of which is to be opened by .1, .3, and .2. Then a, b, c, and d is
respectively connected to the first one, two, two, and three copies of the facility. Figure 2.2
illustrates this duplication. Note that this technique modifies the problem instance since
it creates copies of facilities. However, we define the metric so that the copied facilities
are exactly at the same position as the original facility: e.g., d(i, j) = d(i1, j) for all
j ∈ C, and the copied facilities are also defined to have the same opening cost as the
original. Thus, this modification does not change the cost of the LP solution, and if we
find an (approximate) solution to the new instance, it translates back to the original
instance by opening the original facilities instead of their duplicates. In general, the
connection variables of each facility determine the set of “threshold” values ({.1, .4, .6}
in this case) to be used to split that facility, and the facility is split into multiple copies
each of which is to be opened by the fraction equal to the difference of two consecutive
threshold values (.1, .4− .1, and .6− .4 in this case).

For the dynamic problem, we additionally need to ensure that each copy of a facility is
open by the same fraction (or by zero) at every time step (Property 2 of Observation 2.2.2).
In order to obtain this property, every time step will share a single set of threshold values:
we determine the thresholds for facility i ∈ F by taking all its LP variables across all
the time steps: {xtij | j ∈ C, t ∈ [T]} ∪ {yti | t ∈ [T]}. Figure 2.3 shows an example: the

30

2.5. Preprocessing of the LP Solution

.3

a b c d

i .6

.1 .4 .4 .6
.1 .2

yi1 yi2 yi3

1

a b c d

i1 .1 i2 .3 i3 .2xia xic
xib

xid
yi

Figure 2.2 – The standard technique applied to the classic problem. (Part of) an LP
solution is shown on the left. Numbers on the edges show the connection variables;
next to the facilities (represented as squares) are the opening variables. Result of the
preprocessing is shown on the right: connection variables are omitted, as they are equal
to the incident opening variables.

set of threshold values is {.1, .3, .4, .7, .8}. Therefore we create five copies of the facility,
each of which is to be opened respectively by .1, .2, .1, .3, and .1. Now the openings
and connections of the facility are implemented by subsets of the first few copies of the
facility.

.3

a b c

i .4

.1 .4 .4

.1 .2

y1i1
y2i1

y2i4
y1i2
y2i2

1

a b c

i1 .1 i2 .2 i3 .1

x1ia

x1ic
x2ib

a b c

i .8

.7 .4 .3

.1

y1i3
y2i3

.1

y2i5

x2ic

x1ib

y1i

x2ia y
2
i

i4 0 i5 0

a b c

i1 .1 i2 .2 i3 .1 i4 .3 i5 .1t = 2

t = 1 t = 1

t = 2

Figure 2.3 – The second preprocessing. T = 2.

Finally, note that the connection variables of the same value are implemented by con-
necting to the same set of copies. In Figure 2.3, x1

ib = x2
ib = .4 and both are implemented

by connecting to {i1, i2, i3} in their respective time steps. Thus, if a client j has exactly
the same set of connection variables in two time steps, this remains the case even after
the preprocessing.

31

3 The k-Means and k-Median Prob-
lems

This chapter is based on a joint work with Sara Ahmadian, Ola Svensson and Justin
Ward, published in 58th Annual Symposium on Foundations of Computer Science (FOCS)
2017 [2].

3.1 Introduction

In this chapter, we focus on one of the most widely considered clustering problems, the
so-called k-means problem. Let us briefly recall the definition of this problem: Given a
set D of n points in R` and an integer k, the task is to select a set S of k cluster centers
in R`, so that

∑
j∈D c(j, S) is minimized, where c(j, S) is the squared Euclidean distance

between j and its nearest center in S.

The k-means problem has been well-studied experimentally and practically [36]. One of
the most commonly used heuristics for k-means is Lloyd’s algorithm [48], which is based
on iterative improvements. Despite its ubiquity in practice, Lloyd’s algorithm has, in
general, no worst-case guarantee and might not even converge in polynomial time [8, 59].
Arthur and Vassilvitskii [9] propose a randomized initialization procedure for Lloyd’s
algorithm, called k-means++; it leads to a Θ(log k) expected approximation guarantee
in the worst case. Under additional assumptions about the clusterability of the input
dataset, Ostrovsky et al. [53] show that Lloyd’s algorithm gives a PTAS for k-means
clustering.

Various other PTASes have been developed for restricted instances of the k-means
problem, under a variety of assumptions. For example, Awasthi, Blum, and Sheffet
obtain a PTAS assuming the instance has certain stability properties [13], and there is
a long line of work (beginning with [49]) that obtains better and better PTASes under
the assumption that k is constant. Most recently, it has been shown that local search
gives a PTAS under the assumption that the dimension ` of the dataset is constant
[25, 32]. These last results generalize to the case in which the squared distances are from

33

Chapter 3. The k-Means and k-Median Problems

the shortest path metric on a graph with forbidden minors [25] or from a metric with
constant doubling dimension [32].

Under no additional assumptions, however, the best approximation for the general k-
means problem has for some time remained a (9 + ε)-approximation algorithm based
on local search, due to Kanungo et al. [41]. Their analysis shows that no natural local
search algorithm performing a fixed number of swaps can improve upon this ratio. In
terms of hardness, Awasthi, Charikar, Krishnaswamy, and Sinop [14] show that k-means
is APX-hard, and so we cannot hope for a PTAS in the general case. Follow-up work by
Lee, Schmidt, and Wright [44] shows that it is NP-hard to approximate this problem to
within a factor better than 1.0013.

In summary, while k-means is perhaps the most widely used clustering problem in
computer science, the only constant-factor approximation algorithm for the general
case is based on simple local search heuristics. This is in stark contrast to many other
well-studied clustering problems, such as facility location and k-median. Over the past
several decades, work on these problems has been responsible for the refinement of a
variety of core techniques in approximation algorithms such as dual fitting, primal-dual,
and LP-rounding [56, 24, 20, 45, 47, 39, 38, 46, 37]. The development of these techniques
has led to several breakthroughs giving the current best approximation guarantees for
both facility location (a 1.488-approximation due to Li [45]) and k-median (a 2.675-
approximation due to Byrka et al. [21]). In both cases, LP-based techniques now give
significantly better results than previous local search algorithms [11, 23]. These techniques
have not yet been able to attain similar improvements for k-means primarily because
they have relied heavily on the triangle inequality, which does not hold in the case of
k-means.

Our results In this work, we overcome this barrier by developing new techniques
that enables us to exploit the standard LP formulation for k-means. We significantly
narrow the gap between known upper and lower bounds by designing a new primal-dual
algorithm for the k-means problem. We stress that our algorithm works in the general
case that k and ` are part of the input, and requires no additional assumptions on the
dataset.

Theorem 3.1.1. For any ε > 0, there is a (ρmean + ε)-approximation algorithm for the
k-means problem, where ρmean ≈ 6.357. Moreover, the integrality gap of the standard LP
is at most ρmean.

We now describe our approach and contributions at a high level. Given a k-means
instance, we apply standard discretization techniques (e.g., [28]) to obtain an instance
of the discrete k-means problem, in which we are given a discrete set F of candidate
centers in R` and must select k centers from F , rather than k arbitrary points in R`.

34

3.1. Introduction

This step incurs an arbitrarily small loss in the approximation guarantee, with respect to
the original k-means instance. Using Lagrangian relaxation, we can then consider the
resulting discrete problem by using the standard linear programming formulation for
facility location.

Our approach then starts with the framework of Jain and Vazirani [39] for the k-median
problem. In their paper, they first present a Lagrangian Multiplier Preserving (LMP)
3-approximation algorithm for the facility location problem. Then they run binary search
over the opening cost of the facilities and use the aforementioned algorithm to find
two solutions: one that opens more than k facilities and one that opens less than k,
such that the opening cost of facilities in these solutions are close to each other. These
solutions are then combined to obtain a solution that opens exactly k facilities. This
step results in losing another factor 2 in the approximation guarantee, which results in
a 6-approximation algorithm for k-median. The factor 6 was later improved by Jain,
Mahdian, and Saberi [38] who obtained a 4-approximation algorithm for k-median by
developing an LMP 2-approximation algorithm for facility location.

One can see that the same approach gives a much larger constant factor for the k-means
problem since one can no longer rely on the triangle inequality. We use two main ideas
to overcome this obstacle: (1) we exploit the geometric structure of k-means and (2) we
develop a new primal-dual approach. Specifically, we modify the primal-dual algorithm
of Jain and Vazirani [39] into a parameterized version, which enables us to regulate the
“agressiveness” of the opening strategy of facilities. By using properties of Euclidean
metrics, we show that this leads to improved LMP approximation algorithms for k-means.

By the virtue of [7], these results already imply upper bounds on the integrality gaps
of the standard LP relaxations, albeit with a rounding algorithm that might require
exponential time. Our second main contribution is a new polynomial time algorithm
that accomplishes the same task. Several new ideas are required to obtain this rounding.
Specifically, instead of finding two solutions by binary search as in the framework of [39],
we find a sequence of solutions such that the opening costs and the dual values of any two
consecutive solutions are close in L∞-norm. We show how to combine two appropriate
such solutions to obtain a solution that opens exactly k facilities and loses only a factor
1 + ε in the approximation guarantee.

Extensions to other problems In addition to the standard k-means problem, we
show that our results also extend to the following two problems. In the first extension,
we consider the Euclidean k-median problem. Here we are given a set D of n points in
R` and a set F of m points in R` corresponding to facilities. The task is to select a set S
of at most k facilities from F so as to minimize

∑
j∈D c(j, S), where c(j, S) is now the

(non-squared) Euclidean distance from j to its nearest facility in S. For this problem,
no approximation better than the general 2.675-approximation algorithm of Byrka et

35

Chapter 3. The k-Means and k-Median Problems

al. [21] for k-median was known.

Theorem 3.1.2. For any ε > 0, there is a (ρmed + ε)-approximation algorithm for the
Euclidean k-median problem, where ρmed ≈ 2.633. Moreover, the integrality gap of the
standard LP is at most ρmed.

In the second extension, we consider a variant of the k-means problem in which each
c(j, S) corresponds to the squared distance in an arbitrary (possibly non-Euclidean)
metric on D ∪ F . For this problem, the best-known approximation algorithm is a 16-
approximation thanks to Gupta and Tangwongsan [33]. In this thesis, we obtain the
following improvement:

Theorem 3.1.3. For any ε > 0, there is a (9 + ε)-approximation algorithm for the
k-means problem in general metrics. Moreover, the integrality gap of the standard LP is
at most 9.

We remark that the same hardness reduction as used for k-median [38] immediately
yields a hardness result for the above generalization much stronger than what is known
for the standard k-means problem: it is hard to approximate the k-means problem in
general metrics within a factor 1 + 8/e− ε ≈ 3.94 for any ε > 0.

Outline of this chapter. In Section 3.2, we review the standard LP formulation that
we use, as well as its Lagrangian relaxation. In Section 3.3, we show how to exploit the
geometric structure k-means and Euclidean k-median to give improved LMP guarantees.
In Section 3.4, we show the main ideas behind our new rounding approach by giving an
algorithm that runs in quasi-polynomial time. Then, in order to obtain an algorithm
that runs in polynomial time, we generalize the results in Sections 3.5, 3.6, and 3.7.

3.2 The Standard LP Relaxation and Its Lagrangian Re-
laxation

Here and in the remainder of this chapter, we shall consider the discrete k-means problem,
where we are given a discrete set F of facilities (corresponding to candidate centers).1

Henceforth, we will simply refer to the discrete k-means problem as the k-means problem.

Given an instance (D,F , d, k) of the k-means problem or the k-median problem, let c(j, i)
denote the connection cost of client j if connected to facility i. That is, c(j, i) = d(j, i)
in the case of k-median and c(j, i) = d(j, i)2 in the case of k-means. Let n = |D| and
m = |F|.

1As discussed in the introduction, it is well-known that a ρ-approximation algorithm for this case can
be turned into a (ρ+ ε)-approximation algorithm for the standard k-means problem, for any constant
ε > 0 (see e.g., [28]).

36

3.2. The Standard LP Relaxation and Its Lagrangian Relaxation

Similar to the previously discussed LP for the facility location problem, the standard
LP relaxation of these problems has two sets of variables: a variable yi for each facility
i ∈ F and a variable xij for each facility-client pair i ∈ F , j ∈ D. The intuition of these
variables is that yi should indicate whether facility i is opened and xij should indicate
whether client j is connected to facility i. The standard LP relaxation can now be
formulated as follows.

min
∑

i∈F ,j∈D
xij · c(j, i)

s.t.
∑
i∈F

xij ≥ 1 ∀j ∈ D

(3.2.1)

xij ≤ yi ∀j ∈ D, i ∈ F
(3.2.2)∑

i∈F
yi ≤ k (3.2.3)

x, y ≥ 0 . (3.2.4)

The first set of constraints says that each client should be connected to at least one
facility; the second set of constraints enforces that clients can only be connected to
opened facilities; and the third constraint says that at most k facilities can be opened.
We remark that this is a relaxation of the original problem, as we have relaxed the
constraint that x and y should take Boolean values to a non-negativity constraint. For
future reference, we let OPTk denote the value of an optimal solution to this relaxation.

A main difficulty for approximating the k-median and the k-means problems is the hard
constraint that at most k facilities can be selected, i.e., constraint (4.2.4) in the above
relaxation. A popular way of overcoming this difficulty, pioneered in this context by
Jain and Vazirani [39], is to consider the Lagrangian relaxation where we multiply the
constraint (4.2.4) times a Lagrange multiplier λ and move it to the objective. This
results, for every λ ≥ 0, in the following relaxation and its dual that we denote by LP(λ)
and DUAL(λ), respectively.

37

Chapter 3. The k-Means and k-Median Problems

LP(λ)

min
∑

i∈F ,j∈D
xij · c(j, i) + λ ·

(∑
i∈F

yi − k
)

s.t. (4.2.2), (4.2.3), and (4.2.5).

DUAL(λ)

max
∑
j∈D

αj − λ · k

s.t.
∑
j∈D

[αj − c(j, i)]+ ≤ λ ∀i ∈ F (3.2.5)

α ≥ 0.

Here, we have simplified the dual by noticing that the dual variables {βij}i∈F ,j∈D
corresponding to the constraints (4.2.3) of the primal can always be set βij = [αj−c(j, i)]+;
the notation [a]+ denotes max(a, 0). Moreover, to see that LP(λ) remains a relaxation,
note that any feasible solution to the original LP is a feasible solution to the Lagrangian
relaxation of no higher cost. In other words, for any λ ≥ 0, the optimum value of LP(λ)
is at most OPTk.

If we disregard the constant term λ · k in the objective functions, LP(λ) and DUAL(λ)
become the standard LP formulation and its dual for the facility location problem where
the opening cost of each facility equals λ and the connection costs are defined by c(·, ·).
Recall that the facility location problem (with uniform opening costs) is defined as the
problem of selecting a set S ⊆ F of facilities to open so as to minimize the opening
cost |S|λ plus the connection cost

∑
j∈D c(j, S). Jain and Vazirani [39] introduced the

following method for addressing the k-median problem motivated by simple economics.
On the one hand, if λ is selected to be very small, i.e., it is inexpensive to open facilities,
then a good algorithm for the facility location problem will open many facilities. On
the other hand, if λ is selected to be very large, then a good algorithm for the facility
location problem will open few facilities. Ideally, we want to use this intuition to find an
opening price that leads to the opening of exactly k facilities and thus a solution to the
original, constrained problem.

To make this intuition work, we need the notion of Lagrangian Multiplier Preserving
(LMP) approximations: We say that a ρ-approximation algorithm is LMP for the facility

38

3.3. Exploiting Euclidean Metrics via Primal-Dual Algorithms

location problem with opening costs λ if it returns a solution S ⊆ F satisfying∑
j∈D

c(j, S) ≤ ρ(OPT(λ)− |S|λ) ,

where OPT(λ) denotes the value of an optimal solution to LP(λ) without the constant
term λ ·k. The importance of this definition becomes apparent when either λ = 0, |S| ≤ k
or |S| = k. In these cases, we can see that the value of the k-median or k-means solution
is at most ρ times the optimal value of its relaxation LP(λ), and thus an ρ-approximation
with respect to its standard LP relaxation since OPT(λ)− k · λ ≤ OPTk for any λ ≥ 0.

3.3 Exploiting Euclidean Metrics via Primal-Dual Algo-
rithms

In this section we show how to exploit the structure of Euclidean metrics to achieve
better approximation guarantees. Our algorithm is based on the primal-dual algorithm
for the facility location problem by Jain and Vazirani [39]. We refer to their algorithm as
the JV algorithm. The main modification to their algorithm is that we permit for a more
“aggressive” opening strategy of facilities. The amount of aggressiveness is measured by
the parameter δ: we devise an algorithm JV(δ) for each parameter δ ≥ 0, where a smaller
δ results in a more aggressive opening strategy. We first describe JV(δ), we then optimize
δ for the considered objectives to obtain the claimed approximation guarantees.

We remark that the result in [7] (non-constructively) upper bounds the integrality gap of
the standard LP relaxation of k-median in terms of the LMP approximation guarantee
of JV. This readily generalizes to the k-means problem and JV(δ). Consequently, our
guarantees presented here upper bound the integrality gaps, as the theorems state in the
introduction.

3.3.1 Description of JV(δ)

As alluded to above, the algorithm is a modification of JV, and Remark 3.3.2 below
highlights the only difference. The algorithm consists of two phases: the dual-growth
phase and the pruning phase.

Dual-growth phase: In this stage, we construct a feasible dual solution α to DUAL(λ).
Initially, we set α = 0 and let A = D denote the set of active clients (which is all clients
at first). We then repeat the following until there are no active clients, i.e., A = ∅:
increase the dual-variables {αj}j∈A corresponding to the active clients at a uniform rate
until one of the following events occur (if several events happen at the same time, break
ties arbitrarily):

39

Chapter 3. The k-Means and k-Median Problems

Event 1: A dual constraint
∑
j∈D[αj − c(j, i)]+ ≤ λ becomes tight for a facility i ∈ F .

In this case we say that facility i is tight or temporarily opened. We update A by
removing the active clients with a tight edge to i, that is, a client j ∈ A is removed
if αj − c(j, i) ≥ 0. For future reference, we say that facility i is the witness of these
removed clients.

Event 2: An active client j ∈ A gets a tight edge, i.e., αj − c(j, i) = 0, to some already
tight facility i. In this case, we remove j from A and let i be its witness.

This completes the description of the dual-growth phase. Before proceeding to the
pruning phase, let us remark that the constructed α is indeed a feasible solution to
DUAL(λ) by design. It is clear that α is non-negative. Now consider a facility i ∈ F
and its corresponding dual constraint

∑
j∈D[αj − c(j, i)]+ ≤ λ. On the one hand, the

constraint is clearly satisfied if it never becomes tight during the dual-growth phase.
On other hand, if it becomes tight, then all clients with a tight edge to it are removed
from the active set of clients by Event 1. Moreover, if any client gets a tight edge to i
in subsequent iterations it gets immediately removed from the set of active clients by
Event 2. Therefore, the left-hand side of the constraint will never increase (nor decrease)
after it becomes tight so the constraint remains satisfied. Having proved that α is a
feasible solution to DUAL(λ), let us now describe the pruning phase.

Pruning phase: After the dual-growth phase (too) many facilities are temporarily
opened. The pruning phase will select a subset of these facilities to open. In order
to formally describe this process, we need the following notation. For a client j, let
N(j) = {i ∈ F : αj − c(j, i) > 0} denote the facilities to which client j contributes to
the opening cost. Similarly, for i ∈ F , let N(i) = {j ∈ D : αj − c(j, i) > 0} denote the
clients with a positive contribution toward i’s opening cost. For a temporarily opened
facility i, let

ti = max
j∈N(i)

αj ,

and by convention let ti = 0 if N(i) = ∅ (this convention will be useful in future sections
and will only be used when the opening cost λ of facilities are set to 0). Note that,
if N(i) 6= ∅, then ti equals the “time” that facility i was temporarily opened in the
dual-growth phase. A crucial property of ti that follows from the construction of α is
the following.

Claim 3.3.1. For a client j and its witness i, αj ≥ ti. Moreover, for any j′ ∈ N(i) we
have ti ≥ αj′.

A key ingredient for the pruning phase is the client-facility graph G and the conflict

40

3.3. Exploiting Euclidean Metrics via Primal-Dual Algorithms

graph H. The vertex set of G consists of all the clients and all facilities i such that∑
j∈D[αj − c(j, i)]+ = λ (i.e., the tight or temporarily open facilities). There is an edge

between facility i and client j if i ∈ N(j). The conflict graph H is defined based on the
client-facility graph G and t as follows:

• The vertex set consists of all facilities in G.

• There is an edge between two facilities i and i′ if some client j is adjacent to both
of them in G and c(i, i′) ≤ δmin(ti, ti′).

The pruning phase now finds a (inclusion-wise) maximal independent set IS of H and
opens those facilities; clients are connected to the closest facility in IS.

Remark 3.3.2. The only difference between the original algorithm JV and our modified
JV(δ) is the additional condition c(i, i′) ≤ δmin(ti, ti′) in the definition of the conflict
graph. Notice that if we select a smaller δ, we will have fewer edges in H. Therefore
a maximal independent set will likely grow in size, which results in a more “aggressive”
opening strategy.

3.3.2 Analysis of JV(δ) for the considered objectives

In the following subsections, we optimize δ and analyze the guarantees obtained by
the algorithm JV(δ) for the objective functions: k-means objective in general metrics,
standard k-means objective (in Euclidean metrics), and k-median objective in Euclidean
metrics. The first analysis is very similar to the original JV analysis and can also serves
as a motivation for the possible improvements in Euclidean metrics.

k-Means objective in general metrics

We consider the case when c(j, i) = d(j, i)2 and d forms a general metric. We let δ =∞
so JV(δ) becomes simply the JV algorithm. We prove the following.

Theorem 3.3.3. Let d be any metric on D ∪ F and suppose that c(j, i) = d(j, i)2 for
every i ∈ F and j ∈ D. Then, for any λ ≥ 0, Algorithm JV(∞) constructs a solution α
to DUAL(λ) and returns a set IS of opened facilities such that∑

j∈D
c(j, IS) ≤ 9 · (

∑
j∈D

αj − λ|IS|) .

41

Chapter 3. The k-Means and k-Median Problems

Proof. Consider any client j ∈ D. We shall prove that

c(j, IS)
9 ≤ αj −

∑
i∈N(j)∩IS

(αj − c(j, i)) = αj −
∑
i∈IS

[αj − c(j, i)]+ . (3.3.1)

The statement then follows by summing up over all clients and noting that any facility
i ∈ IS was temporarily opened, thus we have

∑
j∈D[αj − c(j, i)]+ = λ.

To prove (3.3.1), we first note that |IS∩N(j)| ≤ 1. Indeed, consider i 6= i′ ∈ N(j). Then
(j, i) and (j, i′) are edges in the client-facility graph G and as δ =∞, i and i′ are adjacent
in the conflict graph H. Hence, the temporarily opened facilities in N(j) form a clique
and at most one of them can be selected in the maximal independent set IS. We complete
the analysis by considering the two cases |IS ∩N(j)| = 1 and |IS ∩N(j)| = 0.

Case |IS ∩N(j)| = 1: Let i∗ be the unique facility in IS ∩N(j). Then

c(j, IS)
9 ≤ c(j, IS) ≤ c(j, i∗) = αj − (αj − c(j, i∗)) = αj −

∑
i∈N(j)∩IS

(αj − c(j, i)).

Notice the amount of slack in the above analysis (specifically, the first inequality).
In the Euclidean case, we exploit this slack for a more aggressive opening and to
improve the approximation guarantee.

Case |IS ∩N(j)| = 0: Let i1 be j’s witness. First, if i1 ∈ IS then by the same arguments
as above we have the desired inequality; specifically, since j has a tight edge to i1
but i1 6∈ N(j) we must have αj = c(i1, j). Now consider the more interesting case
when i1 6∈ IS. As IS is a maximal independent set in H, there must be a facility
i2 ∈ IS that is adjacent to i1 in H. By definition of H, there is a client j1 such that
(j1, i1) and (j1, i2) are edges in the client-facility graph G, i.e., j1 ∈ N(i1) ∩N(i2).
By the definition of witness and N(·), we have

αj ≥ c(j, i1,) , αj1 > c(j1, i1) , αj1 > c(j1, i2) ,

and by the description of the algorithm (see Claim 3.3.1 in Section 3.3) we have
αj ≥ ti1 ≥ αj1 . Hence, using the triangle inequality and that (a + b + c)2 ≤
3(a2 + b2 + c2),

c(j, IS) ≤ c(j, i2) = d(j, i2)2 ≤ (d(j, i1) + d(j1, i1) + d(j1, i2))2 (3.3.2)
≤ 3(d(j, i1)2 + d(j1, i1)2 + d(j1, i2)2)
= 3(c(j, i1) + c(j1, i1) + c(j1, i2)) ≤ 9αj .

As
∑
i∈N(j)∩IS(αj − c(j, i)) = 0, this completes the proof of this case and thus the

theorem.

42

3.3. Exploiting Euclidean Metrics via Primal-Dual Algorithms

k-Means objective in Euclidean metrics

j

1
j1

11
i1i2

Worst case configuration

The clients and the facilities are arranged on a
line and we have c(i2, j) = d(i2, j)2 = 9αj .

j

1
j1

11
i1i2

Better case in Euclidean space

The distance d(j, i2) is better than that the tri-
angle inequality gives yielding a better bound.

Figure 3.1 – The intuition how we improve the guarantee in the Euclidean case. In both
cases, we have αj = αj1 = 1. Moreover, i1 6∈ IS, i2 ∈ IS and we are interested in bounding
c(j, i2) as a function of αj .

We begin with some intuition that illustrates our approach. From the standard analysis
of JV (and our analysis of k-means in general metrics), it is clear that the bottleneck
for the approximation guarantee comes from the connection-cost analysis of clients that
need to do a “3-hop” as illustrated in the left part of Figure 3.1: client j is connected
to open facility i2 and the squared-distance is bounded by the path j − i1 − j1 − i2.
Furthermore, this analysis is tight when considering JV = JV(∞). Our strategy will
now be as follows: Select δ to be a constant smaller than 4. This means that in the
configurations of Figure 3.1, we will also open i2 if the distance between i1 and i2 is close
to 2. Therefore, if we do not open i2, the distance between i1 and i2 is less than 2 (as
in the right part of Figure 3.1) which enables us to obtain an approximation guarantee
better than 9. However, this might result in a client contributing to the opening cost of
many facilities in IS. Nonetheless, by using the properties of Euclidean metrics, we show
that, even in this case, we are able to achieve a LMP approximation guarantee with ratio
better than 9.

Specifically, define δmean to be the constant larger than 2 that minimizes

ρmean(δ) = max
{

(1 +
√
δ)2,

1
δ/2− 1

}
,

which will be our approximation guarantee. It can be verified that δmean ≈ 2.3146 and
ρmean ≈ 6.3574. Let also c(j, i) = d(j, i)2 where d is the underlying Euclidean metric. The
proof uses the following basic facts about squared-distances in Euclidean metrics: given
x1, x2, . . . , xs ∈ R`, we have that miny∈R`

∑s
i=1 ‖xi − y‖22 is attained by the centroid µ =

1
s

∑s
i=1 xi and in addition we have the identity

∑s
i=1 ‖xi−µ‖22 = 1

2s
∑s
i=1

∑s
j=1 ‖xi−xj‖22.

Theorem 3.3.4. Let d be a Euclidean metric on D∪F and suppose that c(j, i) = d(j, i)2

for every i ∈ F and j ∈ D. Then, for any λ ≥ 0, Algorithm JV(δmean) constructs a solution

43

Chapter 3. The k-Means and k-Median Problems

α to DUAL(λ) and returns a set IS of opened facilities such that∑
j∈S

c(j, IS) ≤ ρmean · (
∑
j∈D

αj − λ|IS|) .

Proof. To simplify notation, we use δ instead of δmean throughout the proof. Consider any
client j ∈ D. We prove that

c(j, IS)
ρmean

≤ αj −
∑

i∈N(j)∩IS
(αj − c(j, i)) = αj −

∑
i∈IS

[αj − c(j, i)]+ .

Similarly to the proof of Theorem 3.3.3, the statement then follows by summing up
over all clients. A difference compared to the standard analysis of JV is that in our
algorithm we may open several facilities in N(j), i.e., client j may contribute to the
opening of several facilities. We divide our analysis into the three cases |N(j) ∩ IS| = 1,
|N(j) ∩ IS| > 1, and |N(j) ∩ IS| = 0. For brevity, let S denote N(j) ∩ IS and s = |S|.

Case s = 1: If we let i∗ be the unique facility in S,

c(j, IS)
ρmean

≤ c(j, IS) ≤ c(j, i∗) = αj − (αj − c(j, i∗)) = αj −
∑

i∈N(j)∩IS
(αj − c(j, i)) .

Case s > 1: In this case, there are multiple facilities in IS that j is contributing to. We
need to show that αj −

∑
i∈S(αj − c(j, i)) ≥ 1

ρmean
c(j, IS).

The sum
∑
i∈S c(j, i) is the sum of square distances from j to facilities in S

which is at least the sum of square distances of these facilities from their centroid
µ, i.e.,

∑
i∈S c(j, i) ≥

∑
i∈S c(i, µ). Moreover, by the identity,

∑
i∈S c(i, µ) =

1
2s
∑
i,i′∈S c(i, i′), we get

∑
i∈S

c(j, i) ≥ 1
2s

∑
i,i′∈S

c(i, i′) .

As there is no edge between any pair of facilities in S ⊆ IS, we must have

c(i, i′) > δ ·min(ti, ti′) ≥ δ · αj ,

where the last inequality follows because j is contributing to both i and i′ and
hence min(ti, ti′) ≥ αj . By the above,

∑
i∈S

c(j, i) ≥
∑
i,i′∈S c(i, i′)

2s ≥
∑
i6=i′∈S δ · αj

2s = δ · s− 1
2 · αj .

44

3.3. Exploiting Euclidean Metrics via Primal-Dual Algorithms

Hence,

∑
i∈S

(αj − c(j, i)) ≤
(
s− δ · s− 1

2

)
αj =

(
s
(
1− δ

2
)

+ δ
2

)
αj .

Now, since δ ≥ 2, the above upper bound is a non-increasing function of s. Therefore,
since s ≥ 2, we always have∑

i∈S
(αj − c(j, i)) ≤

(
2− δ

2
)
αj . (3.3.3)

We also know that αj > c(j, i) for any i ∈ S. Therefore, αj > c(j, IS) and, since
δ ≥ 2:

(
δ
2 − 1

)
c(j, IS) ≤

(
δ
2 − 1

)
αj . (3.3.4)

Combining Inequalities (3.3.3) and (3.3.4),∑
i∈S

(αj − c(j, i)) +
(
δ
2 − 1

)
c(j, IS) ≤

(
2− δ

2
)
αj +

(
δ
2 − 1

)
αj = αj .

We conclude the analysis of this case by rearranging the above inequality and
recalling that ρmean ≥ 1

δ/2−1 .

Case s = 0: Here, we claim that there exists a tight facility i such that

(1 +
√
δ)√αj ≥ d(j, i) +

√
δti . (3.3.5)

To see that such a facility i exists, consider the witness w(j) of j. By Claim 3.3.1,
we have αj ≥ tw(j) and since j has a tight edge to its witness w(j), αj ≥ c(j, w(j) =
d(j, w(j))2; or, equivalently, √αj ≥

√
tw(j) and √αj ≥ d(j, w(j)) which implies

that there is a tight facility, namely w(j), satisfying (3.3.5).

Since IS is a maximal independent set of H, either i ∈ IS, in which case d(j, IS) ≤
d(j, i), or there is an i′ ∈ IS such that the edge (i′, i) is in H, in which case

d(j, IS) ≤ d(j, i) + d(i, i′) ≤ d(j, i) +
√
δti ,

where the inequality follows from d(i, i′)2 = c(i, i′) ≤ δmin(ti, ti′) by the definition
of H. In any case, we have by (3.3.5)

d(j, IS) ≤ (1 +
√
δ)√αj .

Squaring both sides and recalling that ρmean ≥ 1
(1+
√
δ)2 completes the last case and

the proof of the theorem.

45

Chapter 3. The k-Means and k-Median Problems

k-Median objective in Euclidean metrics

We use a very similar approach as the one for k-means (in Euclidean metrics) to address
the k-median objective in Euclidean metrics. In this section, we have c(j, i) = d(j, i), i.e.,
the distances are not squared. Define,

δmed =
√

8
3 and ρmed = 1 +

√
8
3 = max

(
1 + δmed, 1/(δmed − 1), 1/

(3
2δmed − 2

))
.

We have δmed ≈ 1.633 and ρmed ≈ 2.633.

Theorem 3.3.5. Let d be a Euclidean metric on D ∪F and suppose that c(j, i) = d(j, i)
for every i ∈ F and j ∈ D. Then, for any λ ≥ 0, Algorithm JV(δmed) constructs a solution
α to DUAL(λ) and returns a set IS of opened facilities such that∑

j∈S
c(j, IS) ≤ ρmed · (

∑
j∈D

αj − λ|IS|) .

Proof. To simplify notation, we use δ instead of δmed throughout the proof. Similarly to
the proof of the previous theorem, we proceed by considering a single client j and prove

c(j, IS)
ρmed

≤ αj −
∑

i∈N(j)∩IS
(αj − c(j, i)) = αj −

∑
i∈IS

[αj − c(j, i)]+ .

Let S denote N(j) ∩ IS and s = |S|. We again proceed by case distinction on s. We first
bound the number of cases.

Claim 3.3.6. We have s ≤ 3.

Proof. Using the centroid property of squared distances in Euclidean space,

∑
j∈S

d(j, i)2 ≥
∑
i,i′∈S d(i, i′)2

2s >
δ2(s− 1)α2

j

2 ,

where the last inequality follows from that i, i′ ∈ IS are not adjacent in H so d(i, i′) >
δmin(ti, ti′) and min(ti, ti′) ≥ αj since i, i′ ∈ S. Since the left-hand side is upper bounded
by sα2

j , we get s > δ2(s−1)
2 . Therefore s < δ2

δ2−2 = 4.

We now proceed by considering the cases s = 0, 1, 2, 3.

Case s = 0: Consider the witness i1 of j. We have αj ≥ ti1 and αj ≥ c(j, i1,). Since IS is
a maximal independent set of H, either i1 ∈ IS, in which case c(j, IS) = d(j, IS) ≤

46

3.3. Exploiting Euclidean Metrics via Primal-Dual Algorithms

d(j, i1) ≤ αj , or there is an i2 ∈ IS such that the edge (i1, i2) is in H, in which case

c(j, IS) = d(j, IS) ≤ d(j, i1) + d(i1, i2) ≤ d(j, i1) + δti1 ≤ (1 + δ)αj .

In any case, we have c(j, IS)/ρmed ≤ αj as required.

Case s = 1: If we let i∗ be the unique facility in S,

c(j, IS)
ρmed

≤ c(j, IS) ≤ c(j, i∗) = αj − (αj − c(j, i∗)) = αj −
∑

i∈N(j)∩IS
(αj − c(j, i)) .

Case s = 2: Let S = {i∗1, i∗2}. We have

2αj = c(j, i∗1) + c(j, i∗2) + (αj − c(j, i∗1)) + (αj − c(j, i∗2))

≥ c(i∗1, i∗2) +
∑
i∈S

(αj − c(j, i))

≥ δαj +
∑
i∈S

(αj − c(j, i)) ,

where we used the triangle inequality and that c(i∗1, i∗2) > δmin(ti∗1 , ti∗2) ≥ δαj since
both i∗1 and i∗2 are in S and hence i∗1 and i∗2 are not adjacent in H. Rearranging
the above inequality, we have

(δ − 1)c(j, IS) ≤ αj −
∑
i∈S

(αj − c(j, i)),

and the case follows because ρmed ≥ 1/(δ − 1).

Case s = 3: Similar to the previous case,

3αj =
∑
i∈S

c(j, i) +
∑
i∈S

(αj − c(j, i))

≥ 1
2

∑
{i,i′}⊆∈S

c(i, i′) +
∑
i∈S

(αj − c(j, i))

≥ 3δ
2 · αj +

∑
i∈S

(αj − c(j, i)) ,

using the triangle inequality. Rearranging the above inequality, we have(
3δ
2 − 2

)
c(j, IS) ≤ αj −

∑
i∈S

(αj − c(j, i))

and the lemma follows because ρmed ≥ 1/(3δ
2 − 2).

47

Chapter 3. The k-Means and k-Median Problems

3.4 Quasi-Polynomial Time Algorithm

In this section, we present a quasi-polynomial time algorithm that achieves the improved
approximation guarantees explained in the previous section. We also introduce several
of the ideas used in the polynomial time algorithm. Although the results obtained in
this section are weaker (quasi-polynomial instead of polynomial), we believe that the
easier quasi-polynomial algorithm serves as a good starting point before reading the
more complex polynomial time algorithm. From now on, we concentrate on the k-means
problem and we let ρ = ρmean denote the approximation guarantee and δ = δmean denote the
parameter to our algorithm, where ρmean and δmean are defined as in Section 3.3.2 (it will
be clear that the techniques presented here are easily applicable to the other considered
objectives, as well). Throughout this section we fix ε > 0 to be a small constant, and we
assume for notational convenience and without loss of generality that n� 1/ε. We also
assume that the distances satisfy the following:

Lemma 3.4.1. By losing a factor (1 + 100/n2) in the approximation guarantee, we
can assume that the squared distance between any client j and any facility i satisfies:
1 ≤ d(i, j)2 ≤ n6, where n = |D|.

The proof follows by standard discretization techniques and is presented in Section 3.10.

Our algorithm will produce a (ρ + O(ε))-approximate solution. In the algorithm, we
consider separately the two phases of the primal-dual algorithm from Section 3.3.2.
Suppose that the first phase produces a set of values α = {αj}j∈D satisfying the following
definition:

Definition 3.4.2. A feasible solution α of DUAL(λ) is good if for every j ∈ D there
exists a tight facility i such that (1 +

√
δ + ε)

√
αj ≥ d(j, i) +

√
δti.

Recall that for a dual solution α, ti is defined to be the largest α-value out of all clients that
are contributing to a facility i: ti = maxj∈N(i) αj where N(i) = {j ∈ D : αj−d(i, j)2 > 0}.

As the condition of Definition 3.4.2 relaxes (3.3.5) by a tiny amount (regulated by ε), our
analysis in Section 3.3 shows that as long as the first stage of the primal-dual algorithm
produces an α that is good, the second stage will find a set of facilities IS such that∑
j∈D d(j, IS)2 =

∑
j∈D c(j, IS) ≤ (ρ+O(ε))

(∑
j∈D αj − λ|IS|

)
. If we could somehow find

a value λ such that the second stage opened exactly k facilities, then we would obtain
a (ρ+O(ε))-approximation algorithm. In order to accomplish this, we first enumerate
all potential values λ = 0, 1 · εz, 2 · εz, . . . , L · εz, where εz is a small step size and L is
large enough to guarantee that we eventually find a solution of size at most k (for a
precise definition of L and εz, see (3.4.1) and (3.4.2)). Specifically, in Section 3.4.1, we
give an algorithm that in time nO(ε−1 logn) generates a quasi-polynomial-length sequence
of solutions α(0), α(1), . . . , α(L), where α(`) is a good solution to DUAL(` · εz). We ensure
that each consecutive set of values α(`), α(`+1) are close in the following sense:

48

3.4. Quasi-Polynomial Time Algorithm

Definition 3.4.3. Two solutions α and α′ are close if |α′j − αj | ≤ 1
n2 for all j ∈ D.

Unfortunately, it might be the case that for a good solution α(`) to DUAL(λ), the second
stage of our algorithm opens more than k facilities, while for a good solution α(`+1)

to DUAL(λ+ εz), it opens fewer than k facilities. In order to obtain a solution that
opens exactly k facilities, we must somehow interpolate between consecutive solutions
in our sequence. In Section 3.4.2 we describe an algorithm that accomplishes this task.
Specifically, for each pair of consecutive solutions α(`), α(`+1) we show that, since their
α-values are nearly the same, we can control the way in which a maximal independent set
in the associated conflict graphs changes. Formally, we show how to maintain a sequence
of approximate integral solutions with cost bounded by α(`) and α(`+1), in which the
number of open facilities decreases by at most one in each step. This ensures that some
solution indeed opens exactly k facilities and it will be found in time nO(ε−1 logn).

3.4.1 Generating a sequence of close, good solutions

We first describe our procedure for generating a close sequence of good solutions. We
select the following parameters

εz = n−3−10 log1+ε n , (3.4.1)

L = 4n7 · ε−1
z = nO(ε−1 logn) . (3.4.2)

We now describe a procedure QuasiSweep that takes as input a good dual solution αin

of DUAL(λ) and outputs a good dual solution αout of DUAL(λ+ εz) such that αin and αout

are close. In order to generate the desired close sequence of solutions, we first define an
initial solution for DUAL(0) by αj = mini∈F d(i, j)2 for j ∈ D. Then, for 0 ≤ ` < L, we
call QuasiSweep with αin = α(`) to generate the next solution α(`+1) in our sequence.
We show that each α(`) is a feasible dual solution of DUAL(` · εz) and that the following
invariant holds throughout the generation of our sequence:

Invariant 1. In every solution α(`), (0 ≤ ` ≤ L), every client j ∈ D has a tight edge to
a tight facility w(j) ∈ F (its witness) such that tw(j) ≤ (1 + ε)αj.

Note that this implies that each solution in our sequence is good. Indeed, consider a dual
solution α that satisfies Invariant 1. Then, for any client j, we have some i (= w(j)) such
that √αj ≥ d(i, j) (since j has a tight edge to w(j)) and

√
(1 + ε)δαj ≥

√
δti. Hence,

(1 +
√
δ + ε)√αj ≥

(
1 +

√
(1 + ε)δ

)
√
αj ≥ d(i, j) +

√
δti ,

49

Chapter 3. The k-Means and k-Median Problems

and so α is good (here, for the first inequality we have used that
√

1 + ε ≤ 1 + ε/2
and

√
δ ≤ 2). We observe that our initial solution α(0) has ti = 0 for all i ∈ F , and

so Invariant 1 holds trivially. In our following analysis, we will show that each call to
Sweep preserves Invariant 1.

We use the notion of buckets that partition the real line:

Definition 3.4.4. For any value v ∈ R, let

B(v) =

0 if v < 1,
1 + blog1+ε(v)c if v ≥ 1.

We say that B(v) is the index of the bucket containing v.

The buckets will be used to partition the α-values of the clients. Since αj will always be
at least 1 for each client (because its distance to any facility is at least 1), the definition
gives the property that the α-values of any two clients j and j′ in the same bucket differ
by at most a factor of 1 + ε.

Description of QuasiSweep

We now formally describe the procedure QuasiSweep that, given the last previously
generated solution αin in our sequences produces a solution αout returned next.

We initialize the algorithm by setting αj = αin
j for each j ∈ D and by increasing the

opening prices of each facility from λ to λ + εz. At this point, no facility is tight and
therefore the solution α is not a good solution of DUAL(λ+ εz). We now describe how to
modify α to obtain a solution αout satisfying Invariant 1 (and hence into a good solution).
The algorithm maintains a current set A of active clients and a current threshold θ.
Initially, A = ∅, and θ = 0. We slowly increase θ and whenever θ = αj for some client j,
we add j to A. While j ∈ A, we increase αj at the same rate as θ. We remove a client j
from A, whenever the following occurs:

j has a tight edge to some tight facility i with B(αj) ≥ B(ti). In this case, we say
that i is the witness of j.

Note that if a client j satisfies this condition when it is added to A, then we remove j
from A immediately after it is added. Then, αj is not increased.

Increasing the α-values for clients in A, may cause the contributions to some facility i to
exceed the opening cost λ+ εz. To prevent this from happening, we also decrease every
value αj with B(αj) > B(θ) at a rate of |A| times the rate that θ is increasing. Observe

50

3.4. Quasi-Polynomial Time Algorithm

that while there exists any such j ∈ N(i), the total contribution of the clients toward
opening this i cannot increase, hence i cannot become tight. It follows that once any
facility i becomes tight, B(αj) ≤ B(θ) for every j ∈ N(i) and so i is presently a witness
for all clients j ∈ N(i) ∩A. As no such client will subsequently decrease, i remains tight
until the end of QuasiSweep. Furthermore, any client j′ that is added to A later will
immediately be removed from A as soon as it has a tight edge to i. Thus, neither the
total contribution to i nor ti can subsequently increase, hence i remains a witness for all
such j for the remainder of QuasiSweep.

We stop increasing θ once every client j has been added and removed from A. The
procedure QuasiSweep then terminates and outputs αout = α. As we have just argued,
the contributions to any tight facility can never increase, and every client that is removed
from j will have a witness through the rest of QuasiSweep (in particular, in αout). Thus,
αout is a feasible solution of DUAL(λ+ εz) in which every client has a witness, and as the
values in the same bucket differ by at most a factor 1 + ε (using that the α-value of each
client is at least 1), the output of Sweep always satisfies Invariant 1.

This completes the description of QuasiSweep. For a small example of its execution see
Figure 3.2. We now proceed to its analysis.

Input (λ = 2)
αin
j1

= αin
j2

= 3, αin
j3

= αin
j4

= 4.
Thus the tight facilities are i1, i2, i3, i4.

Output (λ = 2 + εz)
αout
j1

= αout
j2

= 3+εz, αout
j3

= 4−εz, αout
j4

= 4+ 3εz

2 .
Thus the tight facilities are i1, i2, i3, i5.

i1

i2

j1

j2

i3

j3

i4

j4

i51

1

3

3 2
3 3 2 + εz

2

Figure 3.2 – The instance has 4 clients and 5 facilities depicted by circles and squares,
respectively. The number on an edge is the squared-distance of that edge and the
squared-distances that are not depicted are all of value 5. Given the input solution
αin with λ = 2, QuasiSweep proceeds as follows. First the opening prices of facilities
are increased to 2 + εz. Next the clients j1, j2 are added to the set A of active clients
when the threshold θ = 3. Then, until θ = 3 + εz, αj1 and αj2 increase at a uniform
rate while the (significantly) larger dual values αj3 and αj4 are decreasing |A| = 2 times
that rate. At the point θ = 3 + εz, both i1 and i2 become tight and the witnesses of j1
and j2 respectively. This causes these clients to be removed from A which stops their
increase and the decrease of the larger values. When θ = 4− 2εz, j3 and j4 are added to
A and they start to increase at a uniform rate. Next, the facility i3 becomes tight when
θ = 4− εz and client j3 is removed from A with i3 as its witness. Finally, j4 is removed
from A when θ = 4 + 3εz/2 at which point i5 becomes tight and its witness.

51

Chapter 3. The k-Means and k-Median Problems

Closeness and running time

We begin by showing that QuasiSweep produces a close sequence of solutions.

Lemma 3.4.5. For each client j ∈ D, we have |αin
j − αout

j | ≤ 1/n2.

Proof. We first note that the largest α-value at any time is at most (λ + εz) + n6 ≤
Lεz+n6 = 4n7 +n6 ≤ 5n7. This follows from the feasibility of α because, by Lemma 3.4.1,
no squared-distance is larger than n6 and the opening cost of any facility is at most
λ+ εz ≤ Lεz. Hence, B(αj) ≤ 1 + blog1+ε(5n7)c ≤ 10 log1+ε(n) for any client j and dual
solution α.

We now prove the following claim:

Claim. Any αj can increase by at most εzn3b while B(θ) ≤ b.

Proof. The proof is by induction on b = 0, 1, . . . , 10 log1+ε(n).

Base case b = 0: This case is trivially true because there are no clients j with
B(αj) = 0, hence no clients can been added to A while B(θ) = 0. Indeed, any client j
had a tight edge to some facility in αin, which by Lemma 3.4.1 implies αin

j ≥ 1, and a
client’s α-value can decrease only while some smaller α-value is increasing.

Inductive step (assume true for 0, 1, . . . , b−1 and prove for b): Now, we suppose
some αj is increasing while B(θ) ≤ b. Note that we then must have αj = θ. Let i be the
witness of j in αin, and let N in(i) be the set of clients contributing to i at this time. We
further suppose that αj is increased by at least εz while B(θ) ≤ b; otherwise the claim
follows immediately, since εz ≤ n3bεz for all b ≥ 0.

First, suppose that αj < αin
j . Then, αj was previously decreased. Moreover, since αj

was increased by at least εz while B(θ) ≤ b, we must have previously decreased αj while
B(αj) ≤ b. In particular, at the last moment αj was decreased, we must have had
B(αj) ≤ b, and since αj was decreasing at this moment, we also had B(θ) < B(αj).
Therefore αj was decreased only while B(θ) < b. Moreover, during this time, j’s α-value
was decreased at a rate of |A|, and so was decreased at most n times the amount that
any other client was increased. By the induction hypothesis, this increase was at most
εz · n3b−3, and so αj can be increased at most εz · n3b−2 until αj = αin

j .

Now, we consider how much αj may increase while αj ≥ αin
j . For each j′ ∈ N in(i) we

must have initially had B(αin
j′) ≤ B(αin

j) ≤ b since i is a witness for j in αin, and so the
α-value of j′ was decreased by QuasiSweep only while B(θ) ≤ b − 1. Then, by the
same argument as above, the α-value of any j′ ∈ N in(i) can decrease at most εzn3b−2

52

3.4. Quasi-Polynomial Time Algorithm

throughout QuasiSweep. Thus, the total contribution to i from all j′ 6= j can decrease
at most (n− 1) · εz ·n3b−2. After increasing αj at most (n− 1) · εz ·n3b−2 + εz, i will again
be tight. Moreover, at this moment, any client j′ contributing to i was either already
added to A (and potentially also removed) in which case αj′ ≤ θ = αj or it was not
already added to A in which case αj′ ≤ αin

j′ . Hence, as B(αin
j′) ≤ B(αin

j) ≤ B(αj), i is a
witness for j, and j will be removed from A.

Altogether, the total amount αj can increase while B(θ) ≤ b is then the sum of these
two increases, which is εz · n3b−2 + (n− 1) · εz · n3b−2 + εz ≤ εz · n3b, as required.

The claim immediately bounds the increase αout
j − αin

j by 1
n3 ≤ 1

n2 as required (recall that
εz = n−3−10 log1+ε n)). Moreover, as shown in the proof of the claim above, the α-value of
every client decreases by no more than n times the maximum increase in the α-value of
any client. Then, the desired bound 1

n2 on αin
j − αout

j follows as well.

Running time analysis The procedure QuasiSweep was presented in a continuous
fashion. We now describe a polynomial time implementation of QuasiSweep. As
presented, QuasiSweep maintains only the α-values of each client, the value of θ, and
the set A of active clients. We suppose we are increasing θ at the speed of 1, so that the
value of θ corresponds to the current time. Then, QuasiSweep changes each α-value at
the speed of either 0, 1, or −|A|. Moreover, this speed does not change until one of the
following events happens:

Event 1: Client j joins A: this can happen only if αj = θ.

Event 2: θ changes buckets: this can only happen when θ has reached the border of a
bucket.

Event 3: Facility i becomes tight: this can happen if (1) no client with a tight edge to i
is decreasing, and (2) some client in A has a tight edge to i.

Event 4: Client j gains a tight edge to facility i: this can happen only if j ∈ A.

Event 5: Client j /∈ A changes bucket and enters the same bucket as θ: this can happen
only if αj is being decreased.

Note that we remove a client from A either immediately after it is added to A, at the
time that some facility becomes tight, or at the time that it gains a tight edge to some
(tight) facility. Therefore, we do not need to add an event for removing a client from A,
since it only happens if one of the above events happen.

The polynomial time QuasiSweep now works as follows: In each step, we find the next
time that any one of the above events happens, then increase/decrease each α-value

53

Chapter 3. The k-Means and k-Median Problems

according to its current speed to obtain a new set of values at this time. Then, we
update θ, A, and our set of speeds and continue. We need to show how we can efficiently
compute the next event that happens, and also we need to prove that the number of
such events is polynomial. In what follows, we compute the time until each event above
happens, assuming that it is the next event that happens. Then the next event that
actually happens is the event with the minimum such time (breaking ties arbitrarily).

We now consider each of the above events in turn:

• The time until the Event 1 may happen next is minαj>θ αj − θ. Also we have
exactly n occurrences of this event.

• The time until Event 2 may happen next is the difference between θ and the border
of the next bucket, i.e., Bnext − θ, where Bnext = (1 + ε)B(θ). We have at most
O(ε−1 log(n)) such events.

• For Event 3, if some client with a tight edge to i is decreasing then (non-tight)
facility i cannot become tight (due to the choice of the speed of decrease). If no
decreasing client has a tight edge to facility i, then the time that i may become
tight is

(λ+ εz)−
∑
j∈D[αj − d(i, j)2]+

|N(i) ∩A| .

Notice that the numerator is the current slack of facility i and the denominator is
the speed at which this slack decreases. Moreover, there are at most m = |F| such
events, since if a facility becomes tight, it will stay tight (as we discussed in our
description of QuasiSweep).

• The time until Event 4 may happen for some edge (j, i) is d(j, i)2−αj if αj < d(j, i)2,
and there are at most nm such events, since if an edge becomes tight, it remains
tight afterwards.

• Finally, Event 5 may happen only for those clients j with B(αj) > B(θ). For
any such j, the time until Event 5 happens is (αj − Bnext)/|A|. This event can
happen also at most n times, since once B(αj) = B(θ), j is is no longer decreased.
Note that when αj is decreasing, we consider it to change buckets at the moment
that it lies on the lower border of it’s current bucket (i.e., at the moment that
1 + log1+ε αj = Bnext). It is easy to verify that still (1 + ε)αj ≤ αj′ for any j and
j′ placed in the same bucket by this rule.

From the above, it is clear that the number of events are polynomial, and also that the
next event can be computed in polynomial time.

54

3.4. Quasi-Polynomial Time Algorithm

We conclude the analysis of this section by noting that, as Sweep is repeated L =
nO(ε−1 logn) times, the total running time for producing the sequence α(0), α(1), . . . , α(L)

is nO(ε−1 logn).

3.4.2 Finding a solution of size k

In this section we describe our algorithm for finding a solution of k facilities given a close
sequence α(0), α(1) . . . , α(L), where α(`) is a good solution to DUAL(εz · `).

We associate with each dual solution α(`) a client-facility graph and a conflict graph that
are defined in exactly the same way as in Section 3.3.1: that is, the graph G(`) is a bipartite
graph with all of D on one side and every tight facility in α(`) on the other and G(`)

contains the edge (j, i) if and only if α(`)
j > c(j, i). Given each G(`), recall that H(`) is then

a graph consisting of the facilities present in G(`), which contains an edge (i, i′) if and only
if c(i, i′) < δmin(t(`)i , t

(`)
i′), where for each i, we have t(`)i = max{α(`)

j : α(`)
j > c(j, i)} (and

again we adopt the convention that t(`)i = 0 if α(`)
j ≤ c(j, i) for all j ∈ D). Thus, we have a

sequence G(0), . . . , G(L) of client-facility graphs and a sequence H(0), . . . ,H(L) of conflict
graphs obtained from our sequence of dual solutions. The main goal of this section is to
give a corresponding sequence of maximal independent sets of the conflict graphs so that
the size of the solution (independent set) never decreases by more than 1 in this sequence.
Unfortunately, this is not quite possible. Instead, starting with a maximal independent
set IS(`) of H(`), we shall slowly transform it into a maximal independent set IS(`+1) of
H(`+1) by considering maximal independent sets in a sequence of polynomially many
intermediate conflict graphs H(`) = H(`,0), H(`,1), . . . ,H(`,p`) = H(`+1). We shall refer to
these independent sets as IS(`) = IS(`,0), IS(`,1), . . . , IS(`,p`) = IS(`+1). This interpolation
will allow us to ensure that the size of our independent set decreases by at most 1
throughout this sequence. It follows that at some point we find a solution IS of size
exactly k: On the one hand, since H(0) contains all facilities and no edges we have
IS(0) = F , which by assumption is strictly greater than k. On the other hand, we must
have |IS(L)| ≤ 1. Indeed, as α(L) is a good dual solution of DUAL(Lεz) = DUAL(4n7), we
claim H(L) is a clique. First, note that any tight facility i has ti ≥ Lεz

n = 4n6 which
means that all clients have a tight edge to i when i becomes tight (as the maximum
squared facility-client distance is n6 by Lemma 3.4.1). Second, any two facilities i, i′ have
d(i, i′)2 ≤ 4n6 using the triangle inequality and facility-client distance bound. Combining
these two insights, we can see that H(L) is a clique and so its independent set has size at
most 1.

It remains to describe and analyze the procedure QuasiGraphUpdate that will perform
the interpolation between two conflict graphs H(`) and H(`+1) when given a maximal
independent set IS(`) of H(`) so that |IS(`)| > k. We run this procedure at most L times
starting with H(0), H(1), and IS(0) = F until we find a solution of size k.

55

Chapter 3. The k-Means and k-Median Problems

Description of QuasiGraphUpdate

Denote the input by H(`), H(`+1), and IS(`) (the maximal independent set of H(`) of
size greater than k). Although we are interested in producing a sequence of conflict
graphs, it will be helpful to think of a process that alters some “hybrid” client-facility
graph G, then uses G and the corresponding opening times t to construct a new conflict
graph H after each alteration. To ease the description of this process, we duplicate
each facility that appears both in G(`) and G(`+1) so as to ensure that these sets are
disjoint. Let V(`) and V(`+1) denote the (now disjoint) sets of facilities in G(`) and G(`+1),
respectively. Note that the duplication of facilities does not alter the solution space of
the considered instance, as one may assume that at most one facility is opened at each
location. Note that our algorithm will also satisfy this property, since d(i, i′)2 = 0 for
any pair of co-located facilities i, i′.

Initially, we let G be the client-facility graph with bipartition D and V(`) ∪ V(`+1) that
has an edge from client j to facility i ∈ V(`) if (j, i) is present in G(`) and to i ∈ V(`+1) if
(j, i) is present in G(`+1). The opening time ti of facility i is now naturally set to t(`)i if
i ∈ V(`) and to t(`+1)

i if i ∈ V(`+1). Informally, G is the union of the two client-facility
graphs G(`) and G(`+1) where the client vertices are shared (see Figure 3.3). We then
generate2 the conflict graph H(`,1) from G and t. As the induced subgraph of H(`,1) on
vertex set V` equals H(`) = H(`,0), we have that IS(`) is also an independent set of H(`,1).
We obtain a maximal independent set IS(`,1) of H(`,1) by greedily extending IS(`). Clearly,
the independent set can only increase so we still have |IS(`,1)| > k.

To produce the remaining sequence, we iteratively perform changes, but construct and
output a new conflict graph and maximal independent set after each such change.
Specifically, we remove from G each facility i ∈ V(`), one by one. At the end of the
procedure (after |V(`)| many steps), we have G = G(`+1) and so H(`,p`) = H(`+1). Note
that at each step, our modification to G results in removing a single facility i from
the associated conflict graph. Thus, if IS(`,s) is an independent set in H(`,s) before a
modification, then IS(`,s) \ {i} is an independent set in H(`,s+1). We obtain a maximal
independent set IS(`,s+1) of H(`,s+1) by greedily extending IS(`,s) \ {i}. Then, for each
step s, we have |IS(`,s+1)| ≥ |IS(`,s)| − 1, as required.

Analysis

The total running time is nO(ε−1 logn) since the number of steps L (and the number of
dual solutions in our sequence) is nO(ε−1 logn) and each step runs in polynomial time since
it involves the construction of at most O(|F|) conflict graphs and maximal independent
sets.

2Recall that a conflict graph is defined in terms of a client-facility graph G and t: the vertices are the
facilities in G, and two facilities i and i′ are adjacent if there is some client j that is adjacent to both of
them in G and d(i, i′)2 ≤ δmin(ti, ti′).

56

3.4. Quasi-Polynomial Time Algorithm

G(`) H(`)

t
(`)
1 = 3

t
(`)
2 = 3

t
(`)
3 = 4

t
(`)
4 = 4

j1

j2

j3

j4

i1 i2 i3 i4

G(`+1) H(`+1)

t
(`+1)
1 = 3 + εz

t
(`+1)
2 = 3 + εz

t
(`+1)
3 = 4− εz

t
(`+1)
5 = 4 + 3εz

2

j1

j2

j3

j4

i1 i2 i3 i5

G H

t1 = 3

t2 = 3

t3 = 4

t4 = 4

t1′ = 3 + εz

t2′ = 3 + εz

t3′ = 4− εz

t5 = 4 + 3εz
2

j1

j2

j3

j4

i1 i2 i3 i4

i1 i2 i3 i5

Figure 3.3 – An example of the “hybrid” client-facility graph and associated conflict
graph used by QuasiGraphUpdate. G(`) and G(`+1) are the client-facility graphs
of αin and αout of Figure 3.2. Next to the facilities, we have written the facility times
(ti’s) of those solutions. As the squared-distance between any two facilities is 5 in the
example of Figure 3.2, one can see that any two facilities with a common neighbor in the
client-facility graph will be adjacent in the conflict graph. G is the “hybrid” client-facility
graph of G(`) and G(`+1). When H is formed, we extend the given maximal independent
set IS(`) of H(`) to form a maximal independent set of H. The facilities in the relevant
independent sets are indicated with stripes.

We proceed to analyze the approximation guarantee. Consider the first time that we
produce some maximal independent set IS of size exactly k. Suppose that when this
happened, we were moving between two solutions α(`) and α(`+1), i.e., IS = IS(`,s) is a
maximal independent set of H(`,s) for some 1 ≤ s ≤ p`. That we may assume that s ≥ 1
follows from |IS(0)| > k and IS(`−1,p`) = IS(`) = IS(`,0) (recall that IS was selected to be
the first independent set of size k).

To ease notation, we let H = H(`,s) and denote by G the “hybrid” client-facility graph
that generated H. In order to analyze the cost of IS, let us form a hybrid solution α
by setting αj = min(α(`)

j , α
(`+1)
j) for each client j ∈ D. Note that α ≤ α(`) is a feasible

solution of DUAL(λ) where λ = ` · εz and, since α(`) and α(`+1) are close, αj ≥ α(`)
j − 1

n2

and αj ≥ α(`+1)
j − 1

n2 . For each client j, we define a set of facilities Sj ⊆ IS to which j
contributes, as follows. For all i ∈ IS, we have i ∈ Sj if αj > d(j, i)2. Note that Sj is a
subset of j’s neighborhood in G and therefore

αj = min(α(`)
j , α

(`+1)
j) ≤ ti =

t
(`)
i if i ∈ V(`)

t
(`+1)
i if i ∈ V(`+1)

for all i ∈ Sj .

57

Chapter 3. The k-Means and k-Median Problems

Using the fact that α(`+1) is a good dual solution, we can bound the total service cost of
all clients in the integral solution IS. Let us first proceed separately for those clients with
|Sj | > 0. Let D0 = {j ∈ D : |Sj | = 0}, and D>0 = D \ D0. We remark that the analysis
is now very similar to the proof of Theorem 3.3.4. We define βij = [αj − d(i, j)2]+ and
similarly β(`)

ij = [α(`)
j − d(i, j)2]+ and β(`+1)

ij = [α(`+1)
j − d(i, j)2]+.

Lemma 3.4.6. For any j ∈ D>0, d(j, IS)2 ≤ ρ ·
(
αj −

∑
i∈Sj βij

)
.

Proof. Consider some j ∈ D>0 and first suppose that |Sj | = 1. Then, if we let Sj = {i},
αj = βij + d(j, i)2 ≥ βij + d(j, IS)2 just as in “Case s = 1” of Theorem 3.3.4. Next,
suppose that |Sj | = s > 1. In other words, j is contributing to multiple facilities in
IS. We then have αj −

∑
i∈Sj βij ≥

1
ρd(j, IS)2 by the exact same arguments as in “Case

s > 1” of Theorem 3.3.4 using that we also in this case have αj ≤ min(ti, ti′) for any two
facilities i, i′ ∈ Sj .

Next, we bound the total service cost of all those clients that do not contribute to any
facility in IS. The proof is very similar to “Case s = 0” in the proof of Theorem 3.3.4.

Lemma 3.4.7. For every j ∈ D0, d(j, IS)2 ≤ (1 + 5ε)ρ · αj.

Proof. Consider some client j ∈ D0, and let i ∈ V(`+1) be a tight facility so that

(1 +
√
δ + ε)

√
α

(`+1)
j ≥ d(j, i) +

√
δt

(`+1)
i .

Such a facility i is guaranteed to exist because α(`+1) is a good dual solution. Furthermore,
note that i is present in H since H contains all facilities in V(`+1). By definition
ti = t

(`+1)
i and, as all α-values are at least 1 (by the preprocessing of Lemma 3.4.1),

(1 + 1
n2)αj ≥ αj + 1/n2 ≥ α(`+1)

j . Hence, the above inequality implies

(1 + 1
n2)(1 +

√
δ + ε)√αj ≥ d(j, i) +

√
δti .

Note the similarity of this inequality with that of (3.3.5) and the proof is now identical
to “Case s = 0” of Theorem 3.3.4.

Indeed, since IS is a maximal independent set of H, either i ∈ IS, in which case
d(j, IS) ≤ d(j, i), or there is a i′ ∈ IS such that the edge (i′, i) is in H, in which case

d(j, IS) ≤ d(j, i) + d(i, i′) ≤ d(j, i) +
√
δti ,

where the inequality follows from d(i, i′)2 ≤ δmin(ti, ti′) by the definition of H. In any
case, we have (using n� 1/ε)

d(j, IS) ≤ (1 + 1
n2)(1 +

√
δ + ε)√αj ≤ (1 + 2ε)(1 +

√
δ)√αj .

58

3.4. Quasi-Polynomial Time Algorithm

Squaring both sides and recalling that ρ ≥ 1
(1+
√
δ)2 and that ε is a small constant so

(1 + 2ε)2 ≤ (1 + 5ε) completes the proof of the lemma.

One difference compared to the analysis in Section 3.3.2 is that not all opened facilities
are fully paid for. However, they are almost paid for:

Lemma 3.4.8. For any i ∈ IS,
∑
j∈D βij ≥ λ− 1

n .

Proof. If i ∈ V(`+1), then it is a tight facility with respect to α(`+1), i.e.,
∑
j∈D β

(`+1)
ij =

λ+ εz. Similarly, if i ∈ V(`) then
∑
j∈D β

(`)
ij = λ. Now since αj ≥ max(α(`+1)

j , α
(`)
j)− 1

n2

for every client j,∑
j∈D

βij ≥
∑
j∈D

(
max(β(`+1)

ij , β
(`)
ij)− 1

n2

)
≥ λ− 1

n .

We now combine the above lemmas to bound the approximation guarantee of the found
solution. Recall that OPTk denotes the optimum value of the standard LP-relaxation
(see Section 3.2).

Theorem 3.4.9.
∑
j∈D d(j, IS)2 ≤ (1 + 6ε)ρ ·OPTk.

Proof. From Lemmas 3.4.6 and 3.4.7 we have:

∑
j∈D

d(j, IS)2 ≤ (1 + 5ε)ρ
∑
j∈D

αj −∑
i∈Sj

βij

 .

By Lemma 3.4.8 (note that by definition,
∑
i∈IS βij =

∑
i∈Sj βij),

∑
j∈D

αj −∑
i∈Sj

βij

 ≤∑
j∈D

αj − |IS|
(
λ− 1

n

)
=
∑
j∈D

αj − k · λ+ k
n ≤ OPTk + 1 ,

where the last inequality follows from k ≤ n and, as α is a feasible solution to DUAL(λ),∑
j∈D αj−k·λ ≤ OPTk. The statement now follows from OPTk ≥

∑
j∈Dmini∈F d(i, j)2 ≥

n and n� 1/ε.

We have thus proved that our quasi-polynomial algorithm produces a (ρ + O(ε))-
approximate solution which implies Theorem 3.1.1. The quasi-polynomial algorithms for
the other considered problems are the same except for the selection of δ and ρ, and that
in the k-median problem the connection costs are the (non-squared) distances.

59

Chapter 3. The k-Means and k-Median Problems

3.5 A Polynomial Time Approximation Algorithm

We now show how to obtain a polynomial-time algorithm, building on the ideas presented
in the previous section. As in Section 3.4, we focus exclusively on the k-means problem,
and let δ = δmean ≈ 2.3146 and ρ = ρmean = (1 +

√
δ)2 ≈ 6.3574, and assume that the

squared-distances between clients and facilities are in [1, n6] by Lemma 3.4.1. Additionally,
we choose ε and γ to be suitably small constants with 0 < γ � ε� 1, and for notational
convenience we assume without loss of generality that n� 1/γ.

Similarly to Section 3.4.1, we give an algorithm for generating a close sequence of feasible
solutions to DUAL(λ), and then show how to use this sequence to generate a sequence
of integral solutions that must contain some solution of size exactly k. Here, however,
we ensure that our sequence of feasible solutions is of polynomial length. In order to
accomplish this, we must relax some of the requirements in our definition of a good
solution (Definition 3.4.2).

First, rather than requiring that every facility have opening cost λ, we instead allow each
facility i to have its own price in zi ∈ {λ, λ+ 1

n} (Condition 1 of Definition 3.5.1). For
each α(`), our algorithm will produce an associated set of facility prices z(`) = {z(`)

i }i∈F .
For any such (α(`), z(`)), we define β(`)

ij = [α(`)
j − d(j, i)2]+ and N (`)(i) = {j : β

(`)
ij > 0},

as before. However, we now say that a facility i is tight in (α(`), z(`)) if
∑
j∈D β

(`)
ij = z

(`)
i .

That is, we consider a facility i tight once its (possibly unique) price zi is paid in the
dual. Intuitively, if all the facility prices zi are almost the same, we can still carry out
our analysis, and obtain a (ρ+O(ε))-approximation.

Second, we shall designate a set of special facilities FS ⊆ F that we shall open, even
if they are not tight. To each special facility i ∈ FS we assign a set of special clients
DS(i) ⊆ D that are allowed to pay for i. Then, for each i ∈ FS, we define the time
τi = maxj∈N(i)∩DS(i) αj , while for each i ∈ F \ FS we set τi = ti = maxj∈N(i) αj . Again,
we adopt the convention that τi = 0 if N(i) ∩ DS(i) = ∅ for i ∈ FS or N(i) = ∅ for
i ∈ F \FS. Although a facility in FS is not necessarily tight, we shall require that the total
of all payments to such facilities by special clients is almost equal to λ|FS| (Condition 3
of Definition 3.5.1). That is, on average, each facility of FS is almost tight.

Finally, given the times τi, we shall not require that every client j have some tight or
special facility i such that (1 +

√
δ+ 10ε)

√
αj ≥ d(j, i) +

√
δτi. Specifically, we shall allow

some small set of bad clients DB to instead satisfy a weaker inequality 6
√
αj ≥ d(j, i)+

√
δτi

for some tight or special facility i. Such clients will have a higher service cost, so we
require that their total contribution to the cost of an optimal solution is small (Condition 2
of Definition 3.5.1).

Combining the above, we have the following definition.

Definition 3.5.1. Consider a tuple (α, z,FS,DS) where α ∈ RD, z ∈ RF , FS ⊆ F is a

60

3.5. A Polynomial Time Approximation Algorithm

set of special facilities, and DS : FS → 2D is a function assigning each special facility i a
set of special clients DS(i). We say that this tuple is roundable for λ (or λ-roundable) if
α is a feasible solution of DUAL(λ+ 1

n), and:

1. For all i ∈ F , λ ≤ zi ≤ λ+ 1
n .

2. There exists a subset DB of clients so that for all j ∈ D there is a facility w(j) that
is either tight or in FS and:

(a) (1 +
√
δ + 10ε)2αj ≥

(
d(j, w(j)) +

√
δ · τw(j)

)2
for all j ∈ D \ DB.

(b) 36γ ·OPTk ≥
∑
j∈DB

(
d(j, w(j)) +

√
δ · τw(j)

)2
,

3.
∑
i∈FS

∑
j∈DS(i) βij ≥ λ|FS| − γ ·OPTk and |FS| ≤ n.

Observe that any λ-roundable solution with FS = ∅, and DB = ∅ is essentially a good
solution for DUAL(λ+ 1

n) (as defined for the quasi-polynomial algorithm in Section 3.4)
except that the opening costs of the facilities are allowed to vary slightly. We shall also
say that (α, z) is roundable if (α, z, ∅,DS) is roundable.

An overview of our polynomial time algorithm is shown in Algorithm 1. The al-
gorithm maintains a current base price λ and a current roundable solution S(0) =
(α(0), z(0),F (0)

S ,D(0)
S) for λ, as well as a corresponding integral solution IS(0). As in

the quasi-polynomial algorithm, we shall enumerate a sequence 0, 1 · εz, 2 · εz, . . . , L · εz
of base prices λ, where now εz = n−O(1) and, as before we define L = 4n7 · ε−1

z .
Here, however we increase facility prices from λ to λ + εz one-by-one using an aux-
iliary procedure RaisePrice, which takes as input a fractional dual solution α(0),
a set of prices z(0), a current integral solution IS(0), and a facility i. RaisePrice
increases the price of facility i, then outputs a close sequence of roundable solutions
S(1) = (α(1), z(1),F (1)

S ,D(1)
S), . . . ,S(q) = (α(q), z(q),F (q)

S ,D(q)
S), each having z(`)

i = z
(0)
i +εz

and z(`)
i′ = z

(0)
i′ for all i′ 6= i. Note that in addition to increasing the facility prices one-

by-one, we now generate a sequence of solutions for each individual price increase.

Initially, we set λ ← 0 and then initialize S(0) by setting z(0)
i ← 0 for all i ∈ F and

FS = ∅ (observe that DS is then an empty function), and constructing α(0) as follows. We
set αj = 0 for all j ∈ D and then increase all αj at a uniform rate. We stop increasing a
value αj whenever j gains a tight edge to some facility i ∈ F or 2√αj ≥ d(j, j′) + 6√αj′
for some j′ ∈ D (the rationale behind this choice will be made clear in Section 3.7).
Finally, we initialize our current integral solution IS(0) = F .

As long as an integral solution of size k has not yet been produced, Algorithm 1 iterates
through each facility i ∈ F , calling RaisePrice to raise zi by εz < 1/n. The sequences
that are produced are used to obtain a sequence of integral solutions in which the size
of each solution decreases by at most 1. This is done by using a second procedure,

61

Chapter 3. The k-Means and k-Median Problems

GraphUpdate, which is very similar to the procedure QuasiGraphUpdate described
in the previous section. Note that raise price always increases a single facility i’s price by
εz < 1/n, and does not increase zi further until all other facility prices have also been
increased by εz. Thus, each in every pair of consecutive solutions S(`),S(`+1) considered
by GraphUpdate in line 7, every price zi ∈ {λ, λ + εz} and so both solutions are λ-
roundable (for the same value λ). We describe our auxiliary procedures GraphUpdate
and RaisePrice in the next sections. Note that initially |IS(0)| = |F| and, by the same
reasoning as in Section 3.4.2, once λ = L · εz = 4n7 we must have |IS(0)| = 1. Thus, at
some intermediate point, we will indeed find some solution IS of size k.

Algorithm 1: Polynomial time (ρmean +O(ε))-approximation algorithm for k-means
1 Initialize S(0) = (α(0), z(0),F (0)

S ,D(0)
S) as described in our discussion above

2 λ← 0, IS(0) ← F
3 for λ = 0, 1 · εz, 2 · εz, . . . , L · εz do

/* Raise the price of each facility i to z
(0)
i + εz = λ+ εz */

4 foreach i ∈ F do
5 Call RaisePrice(α(0), z(0), IS(0), i) to produce a sequence S(1), . . . ,S(q) of λ-roundable

solutions
/* Move through this sequence, constructing integral solutions */

6 for ` = 0 to q − 1 do
7 Call GraphUpdate(S(`),S(`+1), IS(`)) to produce a sequence IS(`,0), . . . , IS(`,p`)

8 if |IS(`,r)| = k for some IS(`,r) in this sequence then return IS(`,r)

9 else IS(`+1) ← IS(`,p`)

/* After each price increase, update current solutions */
10 S(0) ← S(q), IS(0) ← IS(q)

/* All prices have been increased. Continue to the next base price λ */

Algorithm 1 executes L = 4n7 · ε−1
z base price increases, each of which performs |F|

calls to RaisePrice. In order to show that Algorithm 1 runs it polynomial time, it
is sufficient to show that each call to RaisePrice and GraphUpdate produces a
polynomial length sequence in polynomial time. In the next sections, we describe these
procedures in more detail and show that they run in polynomial time. In addition, we
show that RaisePrice produces a sequence of roundable solutions (Proposition 3.8.18)
that are close (Proposition 3.8.10). In Section 3.6, we show that given these solutions,
GraphUpdate finds a (ρ+ 1000ε)-approximate solution (Theorem 3.6.4).3 This implies
our main theorem:

Theorem 3.5.2. For any ε > 0, there is a (ρ+ ε)-approximation algorithm for k-means.

3We remark that we have chosen to first describe GraphUpdate as that procedure is very similar to
QuasiGraphUpdate in the quasi-polynomial algorithm whereas RaisePrices is more complex.

62

3.6. Opening a Set of Exactly k Facilities in a Close, Roundable Sequence

3.6 Opening a Set of Exactly k Facilities in a Close, Round-
able Sequence

In this section, we describe our algorithm GraphUpdate for interpolating between two
close roundable solutions S(`) and S(`+1) starting with a maximal independent set IS(`)

of the conflict graph4 H(`) of S(`). The goal of this procedure is the same as that of
QuasiGraphUpdate explained in Section 3.4.2: we maintain a sequence of maximal
independent sets in appropriately constructed conflict graphs so that the size of the
independent set never decreases by more than 1, and the last solution is a maximal
independent set of the conflict graph H(`+1) of S(`+1). Similar to Section 3.4.2, we use a
“hybrid” client-facility graph to generate our conflict graph in each step of our procedure.
The only difference is that we need to slightly generalize the definition of a client-facility
graph to incorporate the concept of roundable solutions.

Client-facility and conflict graphs of roundable solutions. We define the client-
facility graph G of a roundable solution S = (α, z,FS,DS) as in Section 3.3.1 with the
following two changes: First, recall that we now consider a facility i tight if and only if∑
j∈N(i) βij = zi. Second, we shall additionally add every facility i ∈ FS to G, but place

an edge between each i ∈ FS and j ∈ D only if j ∈ N(i) ∩ DS(i). Intuitively, we treat
special facilities i ∈ FS essentially the same as tight facilities, except only those clients in
N(i) ∩ DS(i) are considered to be paying for i.

Formally, let V denote the set of all tight facilities or special facilities with respect to
S. Then, G is a bipartite graph on D and V that contains an edge (i, j) if and only
if i ∈ V \ FS and j ∈ N(i) or i ∈ FS and j ∈ N(i) ∩ DS(i). As before, we assign an
opening time τi to each i ∈ V. For i ∈ V \ FS, τi = ti = maxj∈N(i) αj , and for i ∈ FS,
τi = maxj∈N(i)∩DS(i) αj . In other words, τi equals the maximum αj over all clients j such
that (j, i) is an edge in G (in the case that there is no such edge, we adopt the convention
that τi = 0).

Given a client facility graph G, and a set of opening times τ , we construct the corre-
sponding conflict graph H in the same way as in Section 3.3: the vertex set of H is the
set of all facilities appearing in G and we place an edge between two facilities i and i′

in H if and only if there is some j ∈ D such that both (j, i) and (j, i′) are present in G
and d(i, i′)2 ≤ δ ·min(τi, τi′). Notice that this coincides with the definition in Section 3.3
when the set of special facilities is empty. In particular, the initial independent set F
is a maximal independent set of the conflict graph associated to the initial solution
(which has all facilities and no edges). Then, as in each iteration the last constructed
independent set by GraphUpdate is given as input in the next call (see Algorithm 1),
we maintain the property that the input independent set IS(`) is a maximal independent

4Below, we slightly generalize the definition of client-facility and conflict graphs in Section 3.3.1 to
that of roundable solutions.

63

Chapter 3. The k-Means and k-Median Problems

set of the conflict graph of S(`).

Description of GraphUpdate. Our algorithm now proceeds in the exact same way
as QuasiGraphUpdate in Section 3.4.2. A short description is repeated here for
convenience. Let G(`), τ (`) and G(`+1), τ (`+1) be the client-facility graphs and times
associated with S(`) and S(`+1), respectively. Furthermore, let H(`) and H(`+1) be
the conflict graphs generated by G(`), τ (`) and G(`+1), τ (`+1). Recall that the input to
GraphUpdate is S(`),S(`+1) and a maximal independent set IS(`) of H(`).

Define the “hybrid” client-facility graph G as the union of G(`) and G(`+1) where the
client vertices are shared and the facilities are duplicated if necessary so as to make sure
that the facilities of G(`) and G(`+1) are disjoint. The opening times are defined by

τi =

τ
(`)
i if i ∈ V(`)

τ
(`+1)
i if i ∈ V(`+1)

,

where V(`) and V(`+1) denote the (disjoint) sets of facilities in G(`) and G(`+1), respectively.
We then generate the conflict graph H(`,1) from G and τ . As the induced subgraph of
H(`,1) on vertex set V` equals H(`) = H(`,0), we have that the given maximal independent
set IS(`) of H(`) is also an independent set of H(`,1). We obtain a maximal independent
set IS(`,1) of H(`,1) by greedily extending IS(`). We then obtain the remaining conflict
graphs and independent sets by removing from G each facility i ∈ V(`), one by one. After
each step we generate the associated conflict graph and we greedily extend the previous
independent set (with i potentially removed) so as to obtain a maximal independent
set in the updated conflict graph. This results, as in Section 3.4.2, in the sequence
H(`) = H(`,0), H(`,1), . . . ,H(`,p`) = H(`+1) of |V(`)| + 2 many conflict graphs and a
sequence IS(`) = IS(`,0), IS(`,1), . . . , IS(`,p`) = IS(`+1) of associated maximal independent
sets so that |IS(`,s)| ≥ |IS(`,s−1)| − 1 for any s = 1, . . . , p`. The output of GraphUpdate
is this sequence of independent sets.

3.6.1 Analysis

GraphUpdate clearly runs in polynomial time since the number of steps is polynomial
and each step requires only the construction of a conflict graph and greedily maintaining
a maximal independent set.

We proceed to analyze the approximation guarantee. In comparison to Section 3.4.2, our
analysis here is slightly more involved because it is with respect to roundable solutions
instead of good solutions. In addition, we prove that all independent sets constructed
in Algorithm 1 (by calls to GraphUpdate) of size at least k have small connection
cost. Specifically, we show that any constructed independent set IS with |IS| ≥ k has

64

3.6. Opening a Set of Exactly k Facilities in a Close, Roundable Sequence

∑
j∈D d(j, IS)2 ≤ (ρ+O(ε))OPTk.

First note that the initial independent set IS(0) of Algorithm 1 contains all facilities and
hence

∑
j∈D d(j, IS(0))2 ≤ OPTk. All other independent sets are constructed by calls

to GraphUpdate. Consider one such independent set IS with |IS| ≥ k and consider
the first time this independent set was constructed. Suppose that when this happened,
we were moving between two solutions S(`) and S(`+1) that are roundable for the same
λ. Then, IS = IS(`,s) for some step s ≥ 1 of GraphUpdate. We may assume s ≥ 1
because IS(`,0) = IS(`) was constructed in the previous call to GraphUpdate (or it equals
the initial independent set). Let G and τ be the client-facility graph and the opening
times that generated the conflict graph H = H(`,s) in which IS = IS(`,s) is a maximal
independent set. Also note that we may assume, without loss of generality, that |IS| ≤ n.
Otherwise, we can reduce the size of IS since the connection cost of IS equals that of⋃
j∈D{arg mini∈IS d(j, i)}.

Similar to Section 3.4.2, we analyze the cost of IS with respect to a hybrid solution
α obtained by setting αj = min(α(`)

j , α
(`+1)
j) for each client j ∈ D. The following

observations and concepts are also very similar to the ones in that section. We remark that
α is a feasible solution of DUAL(λ+ 1

n) and, since α(`) and α(`+1) are close, αj ≥ α(`)
j − 1

n2

and αj ≥ α(`+1)
j − 1

n2 . For each client j, we define a set of facilities Sj ⊆ IS to which j
contributes, as follows. For all i ∈ IS, we have i ∈ Sj if αj > d(j, i)2 and (j, i) is an edge
in G. Note that Sj is a subset of j’s neighborhood in G and therefore

αj = min(α(`)
j , α

(`+1)
j) ≤ τi for all i ∈ Sj . (3.6.1)

Using the fact that S(`+1) is roundable, we can bound the total service cost of all clients
in the integral solution IS. Let us first proceed separately for those clients with |Sj | > 0.
Let D0 = {j ∈ D : |Sj | = 0}, and D>0 = D \ D0. The following lemma is identical to
Lemma 3.4.6 and its proof is therefore omitted.

Lemma 3.6.1. For any j ∈ D>0, d(j, IS)2 ≤ ρ ·
(
αj −

∑
i∈Sj βij

)
.

Next, we bound the total service cost of all those clients that do not contribute to any
facility in IS. The proof is very similar to that of Lemma 3.4.7 except that we also need
to handle the bad clients in DB.

Lemma 3.6.2.
∑
j∈D0 d(j, IS)2 ≤ (ρ+ 200ε)

∑
j∈D0 αj + 36γ ·OPTk.

Proof. Consider some client j ∈ D0, and let w(j) ∈ V(`+1) be the tight or special facility
for j corresponding to the roundable solution S(`+1). Note that w(j) is present in H
(since H = H(`,s) with s ≥ 1 contains all facilities in V(`+1)) and τw(j) = τ

(`+1)
w(j) by

definition. Thus, since IS is a maximal independent set of H, either w(j) ∈ IS, in which

65

Chapter 3. The k-Means and k-Median Problems

case d(j, IS) ≤ d(j, w(j)), or there must be some other facility i ∈ IS such that H contains
the edge (i, w(j)), in which case

d(j, IS) ≤ d(j, w(j)) + d(w(j), i) ≤ d(j, w(j)) +
√
δτi ,

where the inequality follows from the fact that i and w(j) are adjacent in H and thus
d(i, w(j))2 ≤ δmin(τi, τi′) by the definition of H. In any case, we have d(j, IS) ≤
d(j, w(j)) +

√
δτi with τi = τ

(`+1)
i , and so:∑

j∈D0

d(j, IS)2 =
∑

j∈D0\DB

d(j, IS)2 +
∑

j∈D0∩DB

d(j, IS)2

≤
∑

j∈D0\DB

(
d(j, w(j)) +

√
δ · τ (`+1)

w(j)

)2

+
∑
j∈DB

(
d(j, w(j)) +

√
δ · τ (`+1)

w(j)

)2

≤
∑

j∈D0\DB

(1 +
√
δ + 10ε)2 · α(`+1)

j + 36γ ·OPTk ,

where the final inequality follows from the fact that S(`+1) is roundable. The statement
now follows since α(`+1)

j ≤ αj + 1/n2 ≤ (1 + 1/n2)αj for all j ∈ D, ε ≤ 1,
√
δ ≤ 2, and

ρ ≥ (1 +
√
δ)2.

We now bound the contributions to the opened facilities as in Lemma 3.4.8 except that
we also need to handle the special facilities.

Lemma 3.6.3. For any i ∈ IS \ (F (`)
S ∪ F

(`+1)
S), we have

∑
j∈D βij ≥ λ− 1

n and for any

i ∈ F (x)
S for some x ∈ {`, `+ 1}, we have

∑
j∈D(x)

S (i) βij ≥
(∑

j∈D(x)
S (i) β

(x)
ij

)
− 1

n .

Proof. For the first bound, consider a facility i ∈ IS\(F (`)
S ∪F

(`+1)
S) and let x ∈ {`, `+1} be

such that i ∈ V(x). Then i is a tight facility with respect to (α(x), z(x)), i.e.,
∑
j∈D β

(x)
ij =

z
(x)
i . As S(x) is roundable for λ, we have z(x)

i ≥ λ. Moreover, αj ≥ α
(x)
j − 1

n2 for every
client j, and so∑

j∈D
βij ≥

∑
j∈D

(
β

(x)
ij − 1

n2

)
≥ λ− 1

n .

Now consider a special facility i ∈ F (x)
S for some x ∈ {`, ` + 1}. Then, by again using

that αj ≥ α(x)
j − 1

n2 for every client j,

∑
j∈D(x)

S (i)

βij ≥
∑

j∈D(x)
S (i)

(
β

(x)
ij − 1

n2

)
,

and the lemma follows since |D(x)
S (i)| ≤ |D| = n.

66

3.6. Opening a Set of Exactly k Facilities in a Close, Roundable Sequence

We are now ready to prove our main result, which bounds the connection cost of IS in
terms of OPTk as desired. The proof is very similar to the proof of Theorem 3.4.9.

Theorem 3.6.4. For any IS produced by GraphUpdate with |IS| ≥ k,∑
j∈D

d(j, IS)2 ≤ (ρ+ 1000ε) ·OPTk.

Proof. From Lemmas 3.6.1 and 3.6.2 we have:

∑
j∈D

d(j, IS)2 ≤ (ρ+ 200ε)

∑
j∈D

αj −
∑
i∈Sj

βij

+ 36γ ·OPTk . (3.6.2)

Note that by definition, if i 6∈ F (`)
S ∪ F

(`+1)
S then

∑
j∈D βij =

∑
j:i∈Sj βij and if i ∈ F (x)

S

then
∑
j∈D(x)

S (i) βij =
∑
j:i∈Sj βij . Also, recall that by our construction of H, F (`)

S and

F (`+1)
S are distinct. Thus, by Lemma 3.6.3,

∑
j∈D

αj −∑
i∈Sj

βij

 ≤∑
j∈D

αj − |IS \ (F (`)
S ∪ F

(`+1)
S)|

(
λ− 1

n

)

−
∑

x∈{`,`+1}

∑
i∈F(x)

S ∩IS

 ∑
j∈D(x)

S (i)

β
(x)
ij − 1

n


≤
∑
j∈D

αj − |IS \ (F (`)
S ∪ F

(`+1)
S)|λ

−
∑

x∈{`,`+1}

∑
i∈F(x)

S ∩IS

∑
j∈D(x)

S (i)

β
(x)
ij + |IS|

n
.

Since S(x) is roundable for x ∈ {`, ` + 1}, we have
∑
i∈F(x)

S

∑
j∈D(x)

S (i) β
(x)
ij ≥ λ|F (x)

S | −

γ · OPTk. Moreover, as α(x) is a feasible solution of DUAL(λ+ 1
n), we have that∑

j∈D(x)
S (i) β

(x)
ij ≤ λ+ 1

n for any i ∈ F (x)
S . Therefore,

∑
i∈F(x)

S ∩IS

∑
j∈D(x)

S (i)

β
(x)
ij ≥ λ|F

(x)
S ∩ IS| − |F

(x)
S \IS|
n − γ ·OPTk

≥ λ|F (x)
S ∩ IS| − 2γ ·OPTk .

where for the final inequality we use that |F (x)
S | ≤ n ≤ OPTk, which follows from

Definition 3.5.1, the fact that any client has distance at least 1 to its closest facility, and

67

Chapter 3. The k-Means and k-Median Problems

1/n� γ. Combining this with the above inequalities yields

∑
j∈D

αj −∑
i∈Sj

βij

 ≤∑
j∈D

αj − |IS|λ+ 4γ ·OPTk + |IS|
n

=
∑
j∈D

αj − |IS|(λ+ 1
n) + 4γ ·OPTk + 2|IS|

n

≤ OPTk + 4γ ·OPTk + 2|IS|
n
≤ (1 + 5γ)OPTk ,

where we in the penultimate inequality used that α is a feasible solution to DUAL(λ+ 1
n)

and |IS| ≥ k, therefore
∑
j∈D αj − |IS|(λ + 1

n) ≤
∑
j∈D αj − k(λ + 1

n) ≤ OPTk; and, in
the last inequality, we used that γ ·OPTk ≥ γn ≥ 2 and the assumption that |IS| ≤ n.

We conclude the proof by substituting this bound in (3.6.2):∑
j∈D

d(j, IS)2 ≤ (ρ+ 200ε)(1 + 5γ)OPTk + 36γ ·OPTk ≤ (ρ+ 1000ε)OPTk .

3.7 The Algorithm RaisePrice

In this section, we give the details of the algorithm RaisePrice, which is responsible for
raising facility prices and generating sequences of roundable solutions in Algorithm 1.
It is based on similar insights as used in the quasi-polynomial algorithm described in
Section 3.4. Let us first provide a high-level overview of our approach. Recall that in
our analysis of that procedure, changing the values αj in some bucket b by εz roughly
required changing the values in bucket b+ 1 by up to nεz. Because there were Ω(log(n))
buckets, the total change in the last bucket was potentially εznΩ(logn), and so to obtain
a close sequence of α values, we required εz = n−Ω(logn) in that section. Here, we reduce
the dependence on n by changing the way in which we increase the opening price z. As
in the quasi-polynomial procedure, our algorithm repeatedly increases the opening cost
of every facility from λ to λ+ εz, for some appropriate small increment εz = n−O(1) < ε.
However, instead of performing each such increase for every facility at once, we instead
increase only a single facility’s price at a time. Each such increase will still cause some
clients to become unsatisfied (or undecided as we shall call them), and so we must repair
the solution. In contrast to the quasi-polynomial procedure, RaisePrice repairs the
solution over a series of stages. We show this will result in a polynomial length sequence
of close, roundable solutions.

Notation: Throughout this section, we let zi denote the current price for a facility
i ∈ F , where always zi ∈ {λ, λ+ εz}. We shall now say that i is tight if

∑
j∈D βij = zi,

where as before for a solution α, we use βij as a shorthand for [αj − d(j, i)2]+. It will
also be convenient to denote √αj by ᾱj . Note that βij > 0, if and only if ᾱj > d(j, i).

68

3.7. The Algorithm RaisePrice

As in the quasi-polynomial procedure, we shall divide the range of possible values for αj
into buckets: we define B(v) = 1 + blog1+ε vc for any v ≥ 1 and B(v) = 0, for all v ≤ 1.

To control the number of undecided (unsatisfied) clients, it will be important to control
the way clients may be increased and decreased throughout our algorithm. To accomplish
this, we shall not insist that every client has some tight witness in every vector α that
we produce (in contrast to Invariant 1 in the quasi-polynomial algorithm). Rather, we
shall consider several different types of clients:

• witnessed clients j have a tight edge to some tight facility i with B(αj) ≥ B(ti).
In this case, we say that i is a witness for j. Note that if i is a witness for j we
necessarily have (1 + ε)αj ≥ ti.5

• stopped clients j have

2ᾱj ≥ d(j, j′) + 6ᾱj′ (3.7.1)

for some other client j′. In this case, we say that j′ stops j. Note that if j′ stops j,
we necessarily have ᾱj ≥ 3ᾱj′ and so αj ≥ 9αj′ .

• undecided clients j are neither witnessed nor stopped.

Let us additionally call any client that is witnessed or stopped decided. Note that the
sets of witnessed and stopped clients are not necessarily disjoint. However, we have the
following lemma, which follows directly from the triangle inequality and our definitions:

Lemma 3.7.1. Suppose that j is stopped. Then j must be stopped by some j′ that is
not stopped.

Proof. We proceed by induction over clients j in non-decreasing order of αj . First,
note that the client j with smallest value αj cannot be stopped. For the general case,
suppose that j is stopped by some j1. Then, αj1 < αj . If j1 is stopped, then by the
induction hypothesis it must be stopped by some j2 that is not stopped. Then, we have
2ᾱj ≥ d(j, j1) + 6ᾱj1 , and 2ᾱj1 ≥ d(j1, j2) + 6ᾱj2 . It follows that

2ᾱj ≥ d(j, j1) + (6− 2)ᾱj1 + d(j1, j2) + 6ᾱj2 ≥ d(j, j2) + 6ᾱj2 .

Thus j is stopped by j2, as well.

Intuitively, the stopping criterion will ensure that no αj grows too large compared to the
α-values of nearby clients. At the same time it is designed so that all decided clients will
have a good approximation guarantee.

5Here, we use that all α-values will be at least one and two values in the same bucket differs thus by at
most a factor 1+ ε. We also remark that this is the same concept as in Invariant 1 of the quasi-polynomial
algorithm.

69

Chapter 3. The k-Means and k-Median Problems

Finally, we shall require that the following invariants hold throughout the execution of
Algorithm 1.

Invariant 2 (Feasibility). For all j ∈ D, αj ≥ 1 and for all i ∈ F ,
∑
j∈D βij ≤ zi.

We remark that for dual feasibility αj ≥ 0 is sufficient but the stronger assumption
αj ≥ 1 which is implied by Lemma 3.4.1 will be convenient.

Invariant 3 (No strict containment). For any two clients j, j′ ∈ D, ᾱj ≤ d(j, j′) + ᾱj′

Note that the above invariant says that the ball centered at j of radius ᾱj does not
strictly contain the ball centered at j′ of radius ᾱj′ . For future reference, we refer to the
ball centered at client j of radius ᾱj as the α-ball of that client.

Invariant 4 ((α(0), z(0)) Completely Decided). Every client is decided in (α(0), z(0)).

Invariant 4 will maintained as follows (as we show formally in Lemma 3.8.1): The initial
solution satisfies the invariant. Then, given an initial solution (α(0), z(0)) in which all
clients are decided, RaisePrice will output a close, roundable sequence S(1), . . . ,S(q),
where S(q) = (α(q), z(q), ∅,D(q)

S) is a roundable solution in which all clients are decided.
As the next call to RaisePrice will use (α(q), z(q)) as the initial solution, the invariant
is maintained.

3.7.1 The RaisePrice procedure

RaisePrice is described in detail in Algorithm 2. Initially, we suppose that we are
given a λ-roundable and a completely decided dual solution (α(0), z(0)) (i.e., satisfying
Invariant 4) where zi ∈ {λ, λ+ εz} for all i ∈ F . Additionally, let IS(0) be the independent
set (α(0), z(0)) of the conflict graph H(0) associated to the roundable solution (α(0), z(0)),
produced at the end of the previous call to GraphUpdate as described in Algorithm 1.
We shall assume that |IS(0)| ≥ k, as otherwise, Algorithm 1 would have already terminated.
For a specified facility i+, RaisePrice sets zi+ ← zi+ + εz. This may result in some
clients using i+ as a witness becoming undecided; specifically, those clients that are not
stopped and have no witness except i+ in (α(0), z(0)). We let U (0) to be the set of all these
initially undecided clients. Throughout RaisePrice, we maintain a set U of currently
undecided clients, and repair the solution over a series of multiple stages, by calling an
auxiliary procedure, Sweep. Each repair stage s will be associated with a threshold θs,
and will make multiple calls to the procedure Sweep, each producing a new solution α.
The algorithm RaisePrice constructs a roundable solution S = (α, z,FS,DS) from each
such α, and returns the sequence S(1), . . . ,S(q) of all such roundable solutions, in the
order they were constructed. RaisePrice terminates once it constructs some solution in
which all clients are decided. In Section 3.8, we shall show that this must happen after

70

3.7. The Algorithm RaisePrice

Algorithm 2: RaisePrice(α(0), z(0), IS(0), i+)
Input: (α(0), z(0)) : a λ-roundable solution satisfying Invariant 4 and

each zi ∈ {λ, λ+ εz}.
IS(0) : the independent set of conflict graph H(0) produced by GraphUpdate.
i+: a facility whose price zi+ is being increased from λ to λ+ εz

Output: Sequence S(1) = (α(1), z(1),F (1)
S ,D(1)

S), . . . ,S(q) = (α(q), z(q),F (q)
S ,D(q)

S) of
close λ-roundable solutions, where all clients are decided in S(q).

1 (α, z)← (α(0), z(0))
2 zi+ ← zi+ + εz
3 Let U (0) be the set of clients now undecided.
4 Set K = Θ(ε−1γ−4) and select a shift parameter 0 ≤ σ < K/2.
5 Set θ1 = (maxj∈U(0) α

(0)
j + 2εz)(1 + ε)σ and θs = (1 + ε)Kθs−1 for all s > 1.

6 U ← U (0)

7 `← 1, s← 1
8 while U 6= ∅ do

/* Execute repair stage s */
9 while there is some j ∈ U with αj < θs do

10 α← Sweep(θs, α) (this procedure is described in Section 3.7.2)
11 U ← set of clients now undecided.
12 Form FS and DS using α, z, α(0), and IS(0).
13 S(`) ← (α, z,FS,DS).
14 `← `+ 1
15 s← s+ 1

at most O(logn) stages, and that each stage requires only a polynomial number of calls
to Sweep. In addition, we show that the produced sequence is close and roundable.

Before describing Sweep in detail, let us first provide some intuition for the selection
of the thresholds θs and describe the construction of each roundable solution S(`) =
(α(`), z(`),F (`)

S ,D(`)
S) in RaisePrice. Our procedure Sweep will adjust client values αj

similarly to the procedure QuasiSweep described in Section 3.4.1. However, in each
stage s, we ensure that Sweep never increases any αj above the threshold θs beyond its
initial value α(0)

j , i.e., we ensure that αj ≤ α(0)
j for any αj ≥ θs. We set

θ1 = (max
j∈U(0)

α
(0)
j + 2εz)(1 + ε)σ and θs = (1 + ε)Kθs−1 ,

where K = Θ(ε−1γ−4) is an integer parameter and σ is a integer “shift” parameter chosen
uniformly at random6 from [0,K/2). Our selection of thresholds ensures that each stage
updates only those αj in a constant K number of buckets. Thus, the total change in any
α-value will be at most nO(K), which will allow us to obtain a polynomial running time.

6We shall show that it is in fact easy to select an appropriate σ deterministically (see Remark 3.8.16).

71

Chapter 3. The k-Means and k-Median Problems

This comes at the price of some clients remaining undecided after each stage, and some
such clients j may have service cost much higher than ρ · αj . We let B denote the set of
all such “bad” clients. Using that the α-values are relatively well-behaved throughout
RaisePrice, we show that only those clients j with α(0)

j relatively near to the threshold
θs can be added to B in stage s. Then, the random shift σ in choosing our definition
of thresholds will allow us to show that only an O(K−1) fraction of clients can be bad
throughout RaisePrice. Moreover, we can bound the cost of each client j ∈ B by 36α(0)

j .
Intuitively, then, if at least a constant fraction of each α(0)

j is contributing to the service
cost c(j, IS(0)), then we can bound the effect of these bad clients by setting K to be a
sufficiently large constant, then using Theorem 3.6.4 to conclude that:∑

j∈B
36α(0)

j ≤ ε ·
∑
j∈D

c(j, IS(0)) ≤ O(ε) ·OPTk .

Unfortunately, it may happen that many clients j ∈ B have α(0)
j − c(j, IS(0)) ≈ α(0)

j . That
is, some clients may be using almost all of their α(0)-values to pay for the opening costs
of facilities. In this case, we could have

∑
j∈B α

(0)
j arbitrarily larger than

∑
j∈D(j, IS(0)).

In order to cope with this situation, we introduce a notion of dense clients and facilities
in Section 3.8.5. These troublesome clients and facilities are handled by carefully
constructing the remaining components FS and DS of the roundable solution in line 12.
We defer the formal details to Section 3.8.5, but the intuition is if enough bad clients are
paying mostly for the opening cost of a facility, then we can afford to open this facility
even if it is not tight. This is precisely the role of special facilities in Definition 3.5.1.

3.7.2 The Sweep procedure

It remains to describe our last procedure, Sweep in more detail. Sweep operates in some
stage s, with corresponding threshold value θs, takes as input the previous α produced
by the algorithm, and produces a new α. Note that in every call to Sweep, we let α(0)

denote the roundable solution passed to RaisePrice, and U is the set of undecided
clients immediately before Sweep was called. Just like QuasiSweep, the procedure
Sweep, maintains a current set of active clients A and a current threshold θ, where
initially, A = ∅, and θ = 0. We slowly increase θ and whenever θ = αj for some client j,
we add j to A. While j ∈ A, we increase αj with θ. However, in contrast to QuasiSweep,
Sweep removes a client j from A, whenever one of the following five events occurs:

Rule 1. j has some witness i.

Rule 2. j is stopped by some client j′.

Rule 3. j ∈ U and αj is εz larger than its value at the start of Sweep.

Rule 4. αj ≥ θs and αj ≥ α(0)
j .

72

3.8. Analysis of the Polynomial-Time Algorithm

Rule 5. There is a client j′ that has already been removed from A such that ᾱj ≥
d(j, j′) + ᾱj′ .

We remark that Rule 5 says that j is removed from A as soon as its α-ball contains
the α-ball of another client j′ that is not currently in A. This rule is designed so that
the algorithm maintains Invariant 3. Also note that if a client j satisfies one of these
conditions when it is added to A, then we remove j from A immediately after it is added.
In this case, αj is not increased.

As in QuasiSweep, increasing the values αj for clients in A may cause
∑
j∈D βij to

exceed zi for some facility i. We again handle this by decreasing some other values αj′ .
However, here we are more careful in our choice of clients to decrease. Let us call a
facility i potentially tight if one of the following conditions hold:

• There is some j ∈ N(i) with αj > α
(0)
j .

• For all j ∈ N (0)(i), αj ≥ α(0)
j .

We now decrease αj′ if and only if B(αj′) > B(θ) and additionally: for some potentially
tight facility i with |N(i) ∩ A| ≥ 1, we have αj′ = ti. We decrease each such αj′ at
a rate of |A| times the rate that θ is increasing. To see that this maintains feasibility
we observe that at any time there are |A ∩N(i)| clients whose contribution to facility
i is increasing, and these contributions are increasing at the same rate as θ. Suppose
that i is tight at some moment with some j ∈ N(i) ∩ A. Then, since zi ≥ z

(0)
i , there

must be either at least one client j′ with αj′ > α
(0)
j′ or αj′ = α

(0)
j′ for all j′ ∈ N (0)(i),

and so i must be potentially tight. Consider some client j0 with αj0 = ti and note that
B(αj0) = B(ti) > B(αj) = B(θ), since otherwise we would remove j from A by Rule 1.
The value of αj0 is currently decreasing at a rate of |A| ≥ |N(i) ∩A| times the rate that
θ is increasing. Thus, the total contribution to any tight facility i is never increased.

As in QuasiSweep, we stop increasing θ once every client j has been added and removed
from A, and then output the resulting α. Note that Sweep never changes any αj < θ.
In particular, once some j has been removed from A it is not subsequently changed.
Additionally, observe that once B(θ) ≥ B(αj), Sweep will not decrease αj .

3.8 Analysis of the Polynomial-Time Algorithm

Unfortunately, in contrast to the quasi-polynomial time procedure, here our analysis
is quite involved. Let us first provide a high-level overview of our overall approach.
Note that any solution that does not contain any undecided clients must necessarily be
roundable with FS = ∅, and DB = ∅. Indeed, for any witnessed client j there is a tight

73

Chapter 3. The k-Means and k-Median Problems

facility i with (1 + ε)ᾱj ≥
√
ti and ᾱj ≥ d(j, i) and so

(1 + (1 + ε)
√
δ)ᾱj ≥ d(j, i) +

√
δti .

Similarly, any stopped client j in such a solution must be stopped by some witnessed j′

(using Lemma 3.7.1). Let i be the witness of j′. Then,

d(j, i)+
√
δti ≤ d(j, j′)+d(j′, i)+

√
δti ≤ 2ᾱj−6ᾱj′+(1+(1+ε)

√
δ)ᾱj′ < (1+

√
δ)ᾱj ,

since
√
δ ≥ 1. As τi ≤ ti for any facility i ∈ F , the required inequalities from Definition

3.5.1 hold for any decided client j. In the following our main goal will then be to bound
the cost of the remaining, undecided clients in any solution produced by RaisePrice.

Our first task is to characterize which clients may currently be undecided. To this
end, we first prove some basic properties about the way Sweep alters α-values together
with Invariants 2, 3, and 4 (Section 3.8.1). Then, we show that only clients above
threshold θs in each stage s can become undecided (Section 3.8.2). In Section 3.8.3, we
bound the cost of all decided and undecided clients, showing that we can indeed obtain
a (ρ + O(ε))-approximation for all decided clients and a slightly worse guarantee for
undecided ones. Next, we would like to argue that most clients have good connection
cost. Specifically, we would like to choose a set of thresholds that ensure that only a
constant fraction of clients become undecided throughout the entirety of RaisePrice. In
order to accomplish this, we show that our α-values remain relatively stable throughout
RaisePrice (Section 3.8.4). This allows us to prove that RaisePrice outputs close
solutions and to characterize those clients that may become undecided in RaisePrice
by their values α(0)

j at the beginning of RaisePrice. This, together with our selection of
thresholds, ensures that only an arbitrarily small, constant fraction of clients do not have
the desired guarantee. However, we must also show that these clients do not contribute
more than a constant to OPTk. As discussed above, this will follow immediately from
our analysis for those clients whose service cost is at least a constant fraction of α(0)

j .
For other (i.e. dense) clients, we must use a different argument, involving the sets of
special facilities and clients FS and DS(i) (Section 3.8.5). Finally, we put all of these
pieces together and show that RaisePrice produces a close sequence of polynomially
many roundable solutions and runs in polynomial time (Section 3.8.6).

3.8.1 Basic properties of Sweep and Invariants 2, 3, and 4

We start by showing that Invariants 2, 3, and 4 hold.

Lemma 3.8.1. Invariants 2, 3, and 4 hold throughout Algorithm 1.

Proof. We begin by proving Invariant 2, i.e., that the algorithm maintains a feasible dual
solution α with the additional property that αj ≥ 1 for all j ∈ D. Recall our construction

74

3.8. Analysis of the Polynomial-Time Algorithm

of the initial solution α(0) for Algorithm 1: we set αj = 0 for all j ∈ D and then increase
all αj at a uniform rate. We stop increasing a value αj whenever j gains a tight edge to
some facility i ∈ F or 2ᾱj ≥ d(j, j′) + 6ᾱj′ for some j′ ∈ D. Note that no αj is increased
after αj = d(j, i)2 for some facility i. Thus, we have β(0)

ij = 0 for all j ∈ D and i ∈ F , and
so α(0) is feasible. Now, we show that minj∈D α(0)

j ≥ 1. Consider the client j0 that first
stops increasing in our greedy initialization process. At the time αj0 stops increasing,
we have αj = αj0 for all j ∈ D and so 2ᾱj ≥ d(j, j′) + 6ᾱj′ cannot hold for any pair
j, j′ of clients. Thus, j0 must have stopped increasing because αj0 = d(j0, i)2 for some
facility i. By our preprocessing (Lemma 3.4.1) we have d(j0, i)2 ≥ 1, and so α(0)

j0
≥ 1.

Moreover, α(0)
j0

= minj∈D α(0)
j , and so indeed α(0)

j ≥ 1 for all j ∈ D. Now, we show that
Algorithm 1 preserves Invariant 2. Note that α is altered only by subroutine Sweep, and
by construction, Sweep ensures that always

∑
j βij ≤ zi. Moreover, Sweep decreases

any αj only while it is increasing some other αj′ < αj such that j′ has a tight edge to
some facility i. By our preprocessing (Lemma 3.4.1) αj′ ≥ d(j′, i)2 ≥ 1 for any such j′.
Thus, no αj is ever decreased below 1.

Next, we prove Invariant 3, i.e., that no client’s α-ball is strictly contained in the α-ball of
another client. First, let us show that the initially constructed solution (α(0), z(0)) satisfies
Invariant 3. Note that α(0)

j is equal to the value of αj at the time that our initialization
procedure stopped increasing αj . Consider any pair of clients j and j′. If α(0)

j ≤ α
(0)
j′ then

clearly ᾱ(0)
j ≤ d(j, j′) + ᾱ

(0)
j′ . Thus, suppose that α(0)

j > α
(0)
j′ , so αj′ stopped increasing

before αj in our initialization procedure. If αj′ stopped increasing because j′ gained a
tight edge to a facility i, then once ᾱj = d(j, j′) + ᾱj′ , j will have a tight edge to i and
stop increasing. If αj′ stopped increasing because 2ᾱj′ = d(j′, j′′) + 6ᾱj′′ for some client
j′′, then when ᾱj = d(j, j′) + ᾱj′ we will have

2ᾱj = 2d(j, j′) + 2ᾱj′ = 2d(j, j′) + d(j′, j′′) + 6ᾱj′′ ≥ d(j, j′′) + 6ᾱj′′

and so αj must stop increasing. In any case, we must have ᾱ(0)
j ≤ d(j, j′) + ᾱ

(0)
j′ . Having

shown that the invariant is true for the first α(0) constructed in Algorithm 1, let us
now prove that it is maintained. First, we show that the inequality ᾱj ≤ d(j, j′) + ᾱj′

will not be violated by increasing ᾱj . Suppose that j ∈ A and so αj is increasing. As
long as j′ ∈ A, as well, we have αj = αj′ = θ, and so ᾱj ≤ d(j, j′) + ᾱj′ . On the other
hand, if j′ 6∈ A, then as soon as ᾱj = d(j, j′) + ᾱj′ , j will be removed from A by Rule 5
and ᾱj will no longer increase. Now we show that also ᾱj ≤ d(j, j′) + ᾱj′ will not be
violated by decreasing αj′ . Suppose that αj′ is decreasing. Then, there must be some
potentially tight facility i with j′ ∈ N(i) and ti = αj′ . Let i be any such facility. If at
some point we have ᾱj = d(j, j′) + ᾱj′ , then we must also have j ∈ N(i) at this moment
and αj ≥ αj′ = ti. Thus, αj is also decreasing and in fact αj = αj′ (since also αj ≤ ti).
Then, ᾱj and ᾱj′ are decreasing at same rate and so ᾱj = d(j, j′) + ᾱj′ as long as ᾱj′
continues to decrease.

75

Chapter 3. The k-Means and k-Median Problems

Finally, we prove Invariant 4, i.e., that the input solution (α(0), z(0)) to RaisePrice is
always completely decided. Every client j is either stopped by some client j′ or has a
tight edge to some facility i in our initially constructed solution (α(0), z(0)). Moreover,
the initialization process ensures that N(i) = ∅ for all i (since βij = 0 for all i ∈ F
and j ∈ D). Thus, in the latter case ti = 0 and so i is in fact a witness for j, and so
every client j is indeed either stopped or witnessed in this initial solution (α(0), z(0)).
To show that Invariant 4 holds throughout the rest of the Algorithm 1, we note that
(α(0), z(0)) is always updated (in line 10 of Algorithm 1 where S(0) ← S(q)) with the
α-values corresponding to the last solution produced in a call to RaisePrice. Due to the
condition in the main loop of RaisePrice, every client is decided in this solution.

The next lemma makes some basic observations about the way in which Sweep alters
the α-values.

Lemma 3.8.2. The procedure Sweep satisfies the following properties:

Property 1. Any client j that becomes decided after being added to A remains decided
until the end of Sweep.

Property 2. If the α-ball of a client j contains the α-ball of a decided client, then j is
decided.

Property 3. Consider the solution α at the beginning of Sweep, and let µ = minj′∈U αj′ .
Then, no αj < µ is increased by Sweep, and no αj with B(αj) ≤ B(µ) is
decreased by Sweep.

Proof. For Property 1, suppose first that j had a witness i at some point after being
added to A. Consider any j′ ∈ N(i) at this moment. At this moment, we must have
B(αj′) ≤ B(αj) ≤ B(θ) and so αj′ cannot be decreased for the remainder of Sweep.
In particular, j retains a tight edge to i until the end of Sweep and i remains tight
until the end of Sweep. Additionally, any client j′ with αj′ > ti will be removed from A

as soon as it gains a tight edge to i (by Rule 1 since i would then be a witness for j′).
Thus, ti cannot increase and so i remains a witness for j until the end of Sweep. Next,
suppose that j was stopped by some j′ after being added to A. Then, at this moment,
αj′ < αj ≤ θ. Hence, for the remainder of Sweep, neither αj′ or αj are changed and so
j remains stopped by j′.

For Property 2 suppose that the α-ball of client j contains the α-ball of a decided client
j′. Then if j′ has a witness i, then i is also a witness for j, since ᾱj ≥ d(j, j′) + ᾱj′ ≥
d(j, j′) + d(j′, i) ≥ d(j, i) and B(αj) ≥ B(αj′) ≥ B(ti). Similarly if j′ is stopped by some
client j′′ then

2ᾱj ≥ 2(d(j, j′) + ᾱj′) ≥ 2d(j, j′) + 6ᾱj′′ + d(j′, j′′) ≥ 6ᾱj′′ + d(j, j′′) ,

76

3.8. Analysis of the Polynomial-Time Algorithm

and so j is also stopped by j′′.

Finally, for Property 3, consider the first client j whose value αj is increased by Sweep.
Note that j must not be decided before calling Sweep: otherwise, since no other α-
value has yet been changed, this would hold at the moment j was added to A, as well,
and so j would immediately be removed by Rule 1 or 2. Thus, the first αj that is
increased by Sweep must correspond to some j ∈ U , and at the moment this occurs,
θ = αj ≥ µ. Furthermore, by the definition of Sweep, no αj can then be decreased
unless B(αj) ≥ B(µ) + 1.

3.8.2 Characterizing currently undecided clients

The next observations follow rather directly from the properties given in Lemma 3.8.2
and the invariants. These facts will help us bound the number of clients that can become
bad throughout the algorithm, and also the total number of calls to Sweep that must
be executed in each call to RaisePrice. Throughout this section, we consider a single
call to RaisePrice and let (α(0), z(0), IS(0), i+) be its input.

Lemma 3.8.3. In stage 1, Sweep is executed only a single time. After this call, for
every j ∈ U (0), we have αj ≤ α(0)

j + εz < θ1 and j is decided.

Proof. Consider any client j0 ∈ U (0). Then i+ was j0’s witness in (α(0), z(0)), and j0
must not have been stopped or have had any other witness i 6= i+. Observe that our
choice of θ1 ensures that α(0)

j0
+ εz < θ1, so any j0 ∈ U (0) will be removed from A by

Rule 3 once αj = α
(0)
j + εz. Thus we must αj ≤ α(0)

j0
+ εz < θ1 at the end of Sweep for

every j0 ∈ U (0).

This also implies that no such j0 is removed from A by Rule 4. We now show that when
j0 is removed from A by any other rule, it must be decided. By Property 1, j0 is then
decided at the end of Sweep, as well. First, we observe that if j0 is removed from A

by Rules 1 or 2, then it is decided by definition. Next, suppose that j0 was removed by
Rule 3, and let µ = minj∈U(0) α

(0)
j . Since i+ was a witness for every j ∈ U (0), we must

have B(α(0)
j) ≤ B(µ) for all j ∈ N (0)(i+). Thus, by Property 3 of Sweep, αj ≥ α(0)

j for
every j ∈ N (0)(i+). Then, since αj0 = α

(0)
j0

+ εz, at the time j0 was removed from A, i+

must have been tight and also a witness for j0. By Property 1, j0 then remains decided
until the end of Sweep. Finally, we consider the case in which j0 was removed by Rule 5.
We show the following:

Claim. Suppose that some client j is removed from A by Rule 5 and that j is undecided
at this time. Then, αj ≥ θ1.

Proof. Consider the first time that any client j that is undecided is removed from A

77

Chapter 3. The k-Means and k-Median Problems

by Rule 5. By Property 2, the α-ball of this client j must contain the α-ball of some
undecided client j′ that was previously removed from A. By Property 1 and our choice of
time, j′ must have been removed from A by Rule 3 or 4. However, if j′ was removed by
Rule 3, we must have j′ ∈ U (0) and so, as we have previously shown, j′ must be decided.
Thus, j′ was removed by Rule 4, and so presently αj = θ ≥ αj′ ≥ θ1. To complete the
proof, we observe that any client that is removed from A after j must have an α-value at
least αj ≥ θ1.

It follows by the above Claim that no j0 ∈ U (0) can be undecided when it is removed
by Rule 5, since, as we have shown, αj0 < θ1 for all such j0. By the above cases, every
client j0 ∈ U (0) is decided with αj ≤ α(0)

j0
+ εz < θ1 at the end of Sweep.

It remains to show that RaisePrice continues to stage 2 after one call to Sweep.
Consider some client j that is undecided at the end of Sweep. By Property 1 j must not
have been removed from A by Rule 1 or Rule 2. Moreover, we must have j 6∈ U (0) and so
j was not removed from A by Rule 3. Thus, j was removed from A by Rule 4 or 5. In
either case, αj ≥ θ1 at this moment (and so also at the end of Sweep, since no αj is
changed after j is removed from A). Thus, after the first call to Sweep in stage 1, every
undecided client j has αj ≥ θ1 and so RaisePrice immediately continues to stage 2.

Lemma 3.8.4. Consider any solution (α, z) produced by RaisePrice. If j is undecided
in (α, z), then αj ≥ α(0)

j .

Proof. Suppose toward contradiction that the statement is false. Consider the first call
to Sweep that produces a solution violating it and for this call let j be the first client
(in the order of removal from A) such that αj < α

(0)
j when j is removed from A but j

is undecided7. Then since, j is undecided it was removed by Rule 3, 4, or 5. If j was
removed by Rule 4, then at this moment αj ≥ α(0)

j . Suppose then that j was removed by
Rule 3. Then, j ∈ U . By Lemma 3.8.3, no client j ∈ U before the first call to Sweep is
undecided after this call, so j must have been undecided at the end of some preceding call
to Sweep. By assumption, we must have had αj ≥ α(0)

j at the moment j was removed
from A in this preceding call (and so also immediately before the present call). But, αj
has increased by εz, so still αj ≥ α(0)

j . Finally, suppose j was removed by Rule 5. Then,
the α-ball of j must contain the α-ball of a client j′ that has already been removed A.
If j′ is decided, then by Property 2 j is decided as well. Suppose that j′ is undecided.
Then, since we picked the first client that violated the condition of the lemma, and j′

was already removed from A, we have that αj′ ≥ α
(0)
j′ . But then, if αj < α

(0)
j , we have

ᾱ
(0)
j > ᾱj ≥ d(j, j′) + ᾱj′ ≥ d(j, j′) + ᾱ

(0)
j′ , which contradicts Invariant 3. In all cases

we showed that we must have αj ≥ α
(0)
j at the moment that j was removed from A,

7By Property 1, any client j violating the statement must be undecided when removed from A and
have αj < α

(0)
j at the time of its removal from A since Sweep does not change j’s α-value thereafter.

78

3.8. Analysis of the Polynomial-Time Algorithm

and so also at the end of Sweep, contradicting our assumption that αj < α
(0)
j for some

undecided client j.

Lemma 3.8.5. In every stage s > 1, no αj is changed by Sweep until θ ≥ θs−1.
In particular, every client j with αj < θs−1 is decided for every solution produced by
RaisePrice in stage s > 1.

Proof. By Property 3 of Sweep, no αj is changed until θ = minj∈U αj . Thus to prove
the first part of the claim, it suffices to show that in every stage s > 1, if U 6= ∅ then
minj∈U αj ≥ θs−1. Note that the second part of the claim then follows as well for every
solution except the one produced by the final call to Sweep in RaisePrice, and this
last solution has no undecided clients by Invariant 4.

Let us now prove that minj∈U αj ≥ θs−1 in every stage s > 1. We proceed by induction
on the number of calls to Sweep made in stage s. Before the first call to Sweep in
stage s, we must have αj ≥ θs−1 for every j ∈ U , since otherwise stage s − 1 would
have continued. So, consider some later call to Sweep in stage s, and consider any
j ∈ U before this call. Then, we must have had j undecided after the preceding call to
Sweep in stage s. Moreover, by Property 1, j must have been undecided when it was
removed from A in this preceding call. Consider the first client j that was undecided
upon removal from A in this preceding call. Then, j cannot have been removed by
Rules 1 or 2. Moreover, since every client that has been removed from A before j is
decided, Property 2 implies that j must not have been removed by Rule 5. If j was
removed by Rule 3, then we must have had j ∈ U already in this preceding call to
Sweep, and so by the induction hypothesis, αj ≥ θs−1. Then, since j was removed from
A by Rule 3, we had αj ≥ θs−1 + εz. Finally, if j was removed by Rule 4, then we must
have αj ≥ θs > θs−1 by definition. Thus, throughout every stage s > 1, if U 6= ∅, then
minj∈U αj ≥ θs−1, as desired.

Corollary 3.8.6. Suppose that in (α(0), z(0)), j is not stopped and has only i+ as a
witness, i.e., j ∈ U (0). Then, we have that j is decided with αj ≤ α

(0)
j + εz in every

solution (α, z) produced by RaisePrice(α(0), z(0), IS(0), i+).

Proof. We have j ∈ U (0) and so by Lemma 3.8.3, j is decided with αj ≤ α(0)
j + εz < θ1

in the first solution produced by RaisePrice. Moreover, by Lemma 3.8.5, αj remains
unchanged and j remains decided in all later stages.

3.8.3 Bounding the cost of clients

In this section we derive inequalities that are used to bound the service cost of each (α, z)
produced during the algorithm. Consider some solution α produced by the algorithm,

79

Chapter 3. The k-Means and k-Median Problems

and define

B = {j ∈ D : j is undecided and 2ᾱj < d(j, j′) + 6ᾱ(0)
j′ for all clients j′} . (3.8.1)

The set B is defined to contain those clients that are (potentially) bad, i.e., have worse
connection cost than our target guarantee. Specifically, we now show that all clients
j ∈ D \ B, satisfy the first inequality of Property 2 in Definition 3.5.1 (with τi replaced
by ti), while all clients (in particular those in B) satisfy a slightly weaker inequality.

Lemma 3.8.7. Consider any (a, z) produced by RaisePrice. For every client j the
following holds:

• If j ∈ D\B, then there exists a tight facility i such that (1+
√
δ+ε)ᾱj ≥ d(j, i)+

√
δti.

• There exists a tight facility i such that 6ᾱ(0)
j ≥ d(j, i) +

√
δti.

Proof. The proof is by induction on the well-ordered set (with respect to the natural
order ≤)

R = {0} ∪ {αj}j∈D\B ∪ {(1 + ε)α(0)
j }j∈D .

Specifically, we prove the following induction hypothesis: for r ∈ R,

(a) each client j ∈ D \ B with αj ≤ r has a tight facility i such that (1 +
√
δ + ε)ᾱj ≥

d(j, i) +
√
δti;

(b) each client j ∈ D with (1 + ε)α(0)
j ≤ r has a tight facility i such that 6ᾱ(0)

j ≥
d(j, i) +

√
δti.

The statement then follows from the above with r = arg maxr∈R r.

For the base case (when r = 0), the claim is vacuous since there is no client j such that
αj ≤ 0 or (1 + ε)α(0)

j ≤ 0 (because every α-value is at least 1 by Invariant 2). For the
induction step, we assume that each client j ∈ D \ B with αj < r satisfies (a) and each
client j ∈ D with (1 + ε)α(0)

j < r satisfies (b). We need to prove that any client j0 ∈ D\B
with αj0 = r (respectively, j0 ∈ D with (1 + ε)α(0)

j0
= r) satisfies (a) (respectively, (b)).

We divide the proof into two cases.

Case 1: j0 ∈ D \ B with αj0 = r. We prove that in this case j0 satisfies (a). Since
j0 6∈ B, either j0 has a witness, j0 is currently stopped, or there is another client j such
that 2ᾱj0 ≥ d(j0, j) + 6ᾱ(0)

j .

80

3.8. Analysis of the Polynomial-Time Algorithm

Suppose first that j0 has a witness i. Then, i is a tight facility and, since j0 has a tight
edge to i, d(j0, i) ≤ ᾱj0 . Moreover, B(αj0) ≥ B(ti) which implies that (1 + ε

2)ᾱj0 ≥√
(1 + ε)ᾱj0 ≥

√
ti. Therefore, using that

√
δ ≤ 2,

d(j0, i) +
√
δti ≤ (1 +

√
δ + ε)ᾱj0 .

Now suppose that j0 is stopped by another client j. Then αj ≤ αj0/32 = r/9. On the
one hand, if j ∈ D \ B, we have d(j0, i) +

√
δti ≤ (1 +

√
δ + ε)ᾱj ≤ 6ᾱj for some tight

facility i by the induction hypothesis (a). On the other hand, if j ∈ B then j is undecided
so by Lemma 3.8.4, α(0)

j ≤ αj . This in turn implies that α(0)
j ≤ αj ≤ r/9 < r/(1 + ε).

We can thus apply the induction hypothesis (b) to j, to conclude that there is a tight
facility i such that d(j, i) +

√
δti ≤ 6ᾱ(0)

j ≤ 6ᾱj . From above we have that, whether j is
in B or not, there is a tight facility i such that

d(j0, i) +
√
δti ≤ d(j0, j) + d(j, i) +

√
δti

≤ d(j0, j) + 6ᾱj
≤ 2ᾱj0 ≤ (1 +

√
δ + ε)ᾱj0 ,

where the penultimate inequality uses the fact that j0 is stopped by j and thus 2ᾱj0 ≥
d(j, j0) + 6ᾱj .

Finally, suppose that j0 is not stopped or witnessed. Then, j0 is currently undecided
and, as j0 6∈ B, there is a client j such that 2ᾱj0 ≥ d(j0, j) + 6ᾱ(0)

j . This implies that
α

(0)
j ≤ αj0/9 = r/9 < r/(1 + ε). We can thus apply the induction hypothesis (b) to j to

conclude, that there is a tight facility i such that d(j, i) +
√
δti ≤ 6ᾱ(0)

j . Now, we have:

d(j0, i) +
√
δti ≤ d(j0, j) + d(j, i) +

√
δti

≤ d(j0, j) + 6ᾱ(0)
j

≤ 2ᾱj0 ≤ (1 +
√
δ + ε)ᾱj0 .

Case 2: j0 ∈ D with (1 + ε)α(0)
j0

= r. We prove that in this case j0 satisfies (b).
Suppose first that αj0 < α

(0)
j0

. Then j0 is decided by Lemma 3.8.4. Therefore j0 ∈ D \ B
with αj0 < r and so by the induction hypothesis (a) there is a tight facility i satisfying
d(j0, i) +

√
δti ≤ (1 +

√
δ + ε)ᾱj0 < 6ᾱ(0)

j0
, as required. Similarly, if j0 ∈ U (0) then by

Corollary 3.8.6, j0 is decided and so

αj0 ≤ α
(0)
j0

+ εz < (1 + ε)α(0)
j0

= r ,

where the second inequality follows from εz < ε and α(0)
j0
≥ 1 by Invariant 2. We can

thus again apply the induction hypothesis (a) to conclude that there is a tight facility

81

Chapter 3. The k-Means and k-Median Problems

i satisfying d(j0, i) +
√
δti ≤ (1 +

√
δ + ε)ᾱj0 ≤ 6ᾱ(0)

j0
. Thus, from now on, we assume

that αj0 ≥ α
(0)
j0

and that j0 6∈ U (0). We divide the remaining part of the analysis into
two sub-cases depending on whether j0 was stopped in α(0).

First, suppose that j0 was stopped in α(0) by another client j. Then α(0)
j ≤ α

(0)
j0
/9 <

r/(1 + ε) and so by the induction hypothesis (b), there is a tight facility i satisfying
d(j, i) +

√
δti ≤ 6ᾱ(0)

j . Hence,

d(j0, i) +
√
δti ≤ d(j0, j) + d(j, i) +

√
δti

≤ d(j0, j) + 6ᾱ(0)
j

≤ 2ᾱ(0)
j0

< 6ᾱ(0)
j0
.

Finally, suppose that j0 was not stopped in α(0). Then since every client is decided in α(0)

(Invariant 4) j0 had a witness i in α(0). Moreover, as j0 6∈ U (0), we may assume that i 6= i+

and so zi = z
(0)
i . By the definition of a witness, α(0)

j1
≤ (1 + ε)α(0)

j0
for all j1 ∈ N (0)(i). If

αj1 ≥ α
(0)
j1

for all j1 ∈ N (0)(i), then, since zi = z
(0)
i , our feasibility invariant (Invariant 2)

implies that in fact αj1 = α
(0)
j1

for all j1 ∈ N (0)(i) and so N(i) = N (0)(i). Therefore,
in this case i is still a witness for j0 and d(j0, i) +

√
δti ≤ (1 +

√
δ + ε)ᾱ(0)

j0
≤ 6ᾱ(0)

j0
.

It remains to consider the case when αj1 < α
(0)
j1

for some j1 ∈ N (0)(i) (note that
j1 6= j0, since αj0 ≥ α

(0)
j0

by assumption). Since αj1 < α
(0)
j1

, j1 must be decided (by
Lemma 3.8.4) and so j1 ∈ D \ B. Moreover, αj1 < α

(0)
j1
≤ (1 + ε)α(0)

j0
= r, and so we can

apply the induction hypothesis (a) to conclude that there is a tight facility i1 satisfying
d(j1, i1) +

√
δti1 ≤ (1 +

√
δ + ε)ᾱj1 < (1 +

√
δ + ε)ᾱ(0)

j1
. Then,

d(j0, i1) +
√
δti1 ≤ d(j0, i) + d(i, j1) + d(j1, i1) +

√
δti1

< ᾱ
(0)
j0

+ ᾱ
(0)
j1

+ (1 +
√
δ + ε)ᾱ(0)

j1

≤ ᾱ(0)
j0

+ (1 + ε)ᾱ(0)
j0

+ (1 + ε)(1 +
√
δ + ε)ᾱ(0)

j0

≤ 6ᾱ(0)
j0
,

as required.

Lemma 3.8.7 shows that the clients in D \ B satisfy the first inequality of Property 2 in
Definition 3.5.1 while the potentially bad clients j ∈ B satisfy a slightly weaker inequality.
It remains to prove that the potentially bad clients will have a small contribution towards
the total cost of our solution.

82

3.8. Analysis of the Polynomial-Time Algorithm

3.8.4 Showing that α-values are stable

The key to our remaining analysis is showing that the α-values are relatively well-behaved
throughout the algorithm. The following lemma implies that Sweep decreases an αj′
only because it is increasing an αj which is at most a constant factor smaller. This will
imply the required stability properties.

Lemma 3.8.8. At any time during Algorithm 1: if a client j has a tight edge to some
facility, then αj′ ≤ 192αj for every other client j′ with a tight edge to this facility.

Proof. We prove the following stronger statement: at any time during Algorithm 1, we
have

2ᾱj′ ≤ d(j′, j) + 18ᾱj (3.8.2)

for any pair j, j′ of clients. To see that this implies the lemma consider two clients j and
j′ that both have tight edges to i∗. Then

2ᾱj′ ≤ d(j′, j) + 18ᾱj ≤ d(j′, i∗) + d(i∗, j) + 18ᾱj ≤ ᾱj′ + ᾱj + 18ᾱj ,

which implies that αj′ ≤ 192αj .

Inequality (3.8.2) is clearly satisfied by the initial solution α(0) constructed at the
beginning of Algorithm 1, since we stop increasing any αj as soon as 2ᾱj ≥ d(j′, j) + 6ᾱj′
for any client j′, and neither αj nor αj′ are later changed. We now show that (3.8.2)
continues to hold throughout the execution of Algorithm 1. The only procedure that
updates the dual solution is Sweep, so let us analyze its behavior.

First note that the inequality cannot become violated by increasing j′, because as soon
as 2ᾱj′ ≥ d(j′, j) + 6ᾱj , j′ will be removed from A by Rule 2 of Sweep. It remains to
prove that the inequality does not become violated because j is decreasing. To this end,
consider a time when j is decreasing. Then, by the definition of Sweep, there must
be some potentially tight facility i, such that j ∈ N(i) with αj = ti. Since j has the
largest α-value in N(i) and i is potentially tight, there is some client j1 ∈ N(i) (note
that possibly j1 = j) such that α(0)

j1
≤ αj1 ≤ αj . We show the following:

Claim. There exists some facility i? such that i? was tight in (α(0), z(0)) and also:

d(j1, i?) ≤ 2ᾱ(0)
j1
≤ 2ᾱj and

α
(0)
j′′ ≤ (1 + ε)α(0)

j1
≤ (1 + ε)αj for all j′′ ∈ N (0)(i?) .

Proof. By Invariant 4, every client must be decided in (α(0), z(0)). Consider client
j1. If j1 was witnessed in (α(0), z(0)), then there was a tight facility i? such that
d(j1, i?) ≤ ᾱ(0)

j1
≤ ᾱj and α(0)

j′′ ≤ (1 + ε)α(0)
j1

for every j′′ ∈ N (0)(i?). If j1 was stopped by

83

Chapter 3. The k-Means and k-Median Problems

a client j2 in (α(0), z(0)) (i.e., 2ᾱ(0)
j1
≥ d(j1, j2) + 6ᾱ(0)

j2
), then we may assume that j2 is

witnessed by Lemma 3.7.1. In this case, let i? be the witness of j2. Then,

d(j1, i?) ≤ d(j1, j2) + d(j2, i?) ≤ d(j1, j2) + ᾱ
(0)
j2
≤ 2ᾱ(0)

j1
≤ 2ᾱj ,

and also

α
(0)
j′′ ≤ (1 + ε)α(0)

j2
≤ α(0)

j1
≤ αj ,

for all j′′ ∈ N (0)(i?). In either case, the claim holds.

Now, let i? be the facility guaranteed to exist by the Claim. Consider the dual solution
α(p) at the last time that j′ was previously increased. Then, we must have α(p)

j′ ≥ αj′ .
Additionally, since Algorithm 1 never decreases any facility’s price, and the current call to
RaisePrice has increased any facility’s price by at most εz, we have z(p)

i? ≤ zi? ≤ z
(0)
i? +εz.

Let j? = arg minj′′∈N(0)(i?) α
(p)
j′′ . We claim that:

α
(p)
j? = min

j′′∈N(0)(i?)
α

(p)
j′′ ≤ (1 + ε)αj + εz . (3.8.3)

Indeed, otherwise by the Claim, we would have α(p)
j′′ > (1 + ε)αj + εz ≥ α(0)

j′′ + εz for every
j′′ ∈ N (0)(i?). Then, since i? is tight in (α(0), z(0)) we would have:∑

j′′∈D
[α(p)
j′′ − d(j′′, i?)]+ ≥

∑
j′′∈N(0)(i?)

[α(p)
j′′ − d(j′′, i?)]+

>
∑

j′′∈N(0)(i?)

[α(0)
j′′ + εz − d(j′′, i?)]+ ≥ z(0)

i? + εz ≥ z(p) ,

contradicting Invariant 2.

We shall now show that (3.8.3) and the claim imply (3.8.2). Since j′ was increasing when

84

3.8. Analysis of the Polynomial-Time Algorithm

α(p) was maintained, Rule 2 of Sweep implies that:

2ᾱj′ ≤ 2ᾱ(p)
j′ ≤ d(j′, j?) + 6ᾱ(p)

j? (j′ was last increased in α(p))

≤ d(j′, j) + d(j, j1) + d(j1, i?) + d(i?, j?) + 6ᾱ(p)
j? (triangle inequality)

≤ d(j′, j) + d(j, j1) + d(j1, i?) + ᾱ
(0)
j? + 6ᾱ(p)

j? (j? ∈ N (0)(i?))

≤ d(j′, j) + d(j, j1) + d(j1, i?) + ᾱ
(0)
j? + 12ᾱj (inequality (3.8.3))

≤ d(j′, j) + d(j, j1) + 2ᾱj + (1 + ε)1/2ᾱj + 12ᾱj (j? ∈ N (0)(i?) and Claim above)
≤ d(j′, j) + d(j, j1) + 16ᾱj (arithmetic)
≤ d(j′, j) + d(j, i) + d(i, j1) + 16ᾱj (triangle inequality)
≤ d(j′, j) + ᾱj + ᾱj1 + 16ᾱj (j, j1 ∈ N(i))
≤ d(j′, j) + 18ᾱj . (αj ≥ αj1 since j decreasing)

and thus (3.8.2) remains satisfied when j is decreasing.

Using Lemma 3.8.8, we can now prove that RaisePrice produces a close sequence of
solutions, and also bound the total number of clients in B for any solution produced by
RaisePrice. For both of these tasks, we make use of the following auxiliary lemma,
which is a consequence of Lemma 3.8.8.

Lemma 3.8.9. Throughout stage s, αj ≤ α(0)
j for all j with αj > θs and if α(0)

j ≥ 202θs

or αj ≥ 202θs then αj = α
(0)
j for all j.

Proof. For the first claim, we show that any client αj with αj ≥ θs can continue to
increase in stage s only while αj < α

(0)
j . Indeed, if αj ≥ θs then once αj = α

(0)
j , j will

immediately be removed from A by Rule 4.

For the remaining claim, suppose first that α(0)
j ≥ 202θs. Suppose further, towards

contradiction, that αj < α
(0)
j at some moment in stage s or earlier, and let α(−) be

the value of α at this time. Then, at some moment in stage s or earlier, we must have
had α(−)

j < αj < α
(0)
j , and αj ≥ 192θs but j decreasing. Since j is being decreased by

Sweep at this moment, we must have j ∈ N(i) for a potentially tight facility i. Since
α

(0)
j > αj we must also have j ∈ N (0)(i). However, Lemma 3.8.8 implies that for every

other j′ ∈ N(i) at this moment we have αj′ ≥ 19−2αj ≥ θs. Thus, by the first claim,
αj′ ≤ α

(0)
j′ for all j′ ∈ N(i). This contradicts the fact that i is potentially tight, since

j ∈ N (0)(i) with αj < α
(0)
j .

Finally, suppose that αj ≥ 202θs. Then, by the first claim, we must have αj ≤ α(0)
j and

so also α(0)
j ≥ 202θs. Then, as we have just shown, αj = α

(0)
j .

85

Chapter 3. The k-Means and k-Median Problems

RaisePrice produces a close sequence of α-values in polynomial time

In the preceding section, we showed that all of the α-values are relatively stable throughout
the algorithm. Using those observations, we can now prove that RaisePrice indeed
produces a close sequence of α-values. To that end, let us select the remaining parameters
K, σ, and εz used in RaisePrice.

Recall that the thresholds used by RaisePrice are defined by:

θ1 = (max
j∈U(0)

α
(0)
j + 2εz)(1 + ε)σ and θs = (1 + ε)Kθs−1 for all s > 1.

Therefore, the ratio of two consecutive thresholds is θs/θs−1 = (1 + ε)K . We select K to
be the smallest integer satisfying

(1 + ε)K ≥ C2/γ4

0 , where C0 = 81 · 25 · 208.

Note that K = Θ(ε−1γ−4). Given K, we select an integer “shift” σ uniformly at random
from the interval (0,K/2]. This completes the definition of our thresholds. Finally, we
set the price increment εz to:

εz = n−6(K+C1+2)−3 where C1 = dlog1+ε(204)e+ 1 = O(ε−1) . (3.8.4)

Using these parameters, we can show that the sequence of solutions (α, z) produced by
RaisePrice is indeed close. Because each successive α-value in this sequence is produced
by calling Sweep on the previous value, it suffices to show the following.

Proposition 3.8.10. Each call to Sweep changes every αj by at most n−2.

Proof. Consider a call to Sweep performed in stage s. By the definition of Sweep, it
suffices to bound how much αj has changed at the moment it is removed from A, since
it is not subsequently changed. Let us begin by bounding how much any αj may be
increased. As in our analysis of QuasiSweep, it will then be possible to bound how
much any α-value is decreased. Let α(1) be the value of α before this call to Sweep, and
let µ = minj∈U α(1)

j . We first show the following:

Claim. Any αj can increase by at most εzn6(b+1) while B(θ) ≤ B(µ) + b.

Proof. The proof is by induction on b = −1, 0, 1,

Base case b = −1: Let us first show that this base case indeed occurs in any call to
Sweep. Initially we have θ = 0 and, by Invariant 2, µ ≥ 1. Thus, at the start of any call
to Sweep, we must have B(θ) = 0 and B(µ) ≥ 1. Now, note that while B(θ) ≤ B(µ)− 1

86

3.8. Analysis of the Polynomial-Time Algorithm

we must have θ < µ. Then, by Property 3 of Sweep no α-value has yet been altered,
and so the claim holds trivially.

Inductive step (b ≥ 0): Now suppose that some αj is increased by at least εz while
B(θ) ≤ B(µ) + b. Otherwise, the claim is immediate since εz < εzn

6(b+1). Note that
while this αj is increasing we must also have αj = θ and so B(αj) ≤ B(µ) + b.

First, suppose that αj < α
(1)
j . Then, αj was previously decreased. Moreover, since αj

was increased by at least εz while B(θ) ≤ B(µ) + b, we must have previously decreased
αj while B(αj) ≤ B(µ) + b. In particular, at the last moment αj was decreased, we
must have had B(αj) ≤≤ B(µ) + b, and since αj was decreasing at this moment, we also
had B(θ) < B(αj). Therefore, αj was decreased only while B(θ) < B(µ) + b. Moreover,
during this time, j’s α-value was decreased at most |A| ≤ n times the amount that any
other client’s α-value was increased. By the induction hypothesis, any client’s α-value
can increase at most εzn6b while B(θ) < B(µ) + b. Thus, αj has decreased at most
εz · n6b+1, and after increasing αj by at most this amount, we will again have αj = α

(1)
j .

Next, let us bound how much j’s α-value may increase while αj ≥ α
(1)
j (and still

B(αj) ≤ B(µ) + b). We now consider three cases, based on the initial status of j in α(1).

If j is undecided initially, then j ∈ U and αj can increase by at most εz ≤ εzn6b (since
b ≥ 0) before it is removed by Rule 3.

Next, suppose that j had some witness i in α(1), and let N (1)(i) be the set of clients paying
for i in α(1). For each j′ ∈ N (1)(i) we must have B(α(1)

j′) ≤ B(α(1)
j) ≤ B(µ) + b, and so

αj′ is decreased by Sweep only while B(θ) ≤ B(µ) + b− 1. By the same argument given
above (when considering the case that αj < α

(1)
j), the α-value of any such j′ ∈ N (1)(i) can

decrease at most εzn6b+1 during Sweep. Thus, the total contribution to i can decrease
at most n · εzn6b+1 = εzn

6b+2 during Sweep. After increasing αj by at most this amount,
i will again be tight. Moreover, at this moment any client j′ contributing to i was either
already added to A (and potentially also removed), in which case B(αj′) ≤ B(θ) = B(αj),
or it was not already added to A, in which case B(αj′) ≤ B(α(1)

j′) ≤ B(α(1)
j) ≤ B(αj).

Thus, at this moment i is a witness for j, and so j will be removed from A by Rule 1.

Finally, suppose that j was initially stopped by some client j′. Then, by Lemma 3.7.1,
we may assume that j′ was not stopped. Let ∆ = ᾱj′ − ᾱ

(1)
j′ be the amount that ᾱj′ has

been increased by Sweep. Then, once ᾱj − ᾱ(1)
j ≥ 3∆, we will have:

2ᾱj ≥ 2ᾱ(1)
j + 6(ᾱj′ − ᾱ

(1)
j′) ≥ d(j, j′) + 6ᾱj′ ,

where in the last inequality we have used the fact that j′ stopped j in α(1). Thus, ᾱj
can increase by at most 3∆, before j will again be stopped by j′ and removed from A by

87

Chapter 3. The k-Means and k-Median Problems

Rule 2. It remains to bound the corresponding increases in αj and αj′ . We have:

αj − α(1)
j ≤

(
ᾱ

(1)
j + 3∆

)2
− α(1)

j = 6∆ · ᾱ(1)
j + 9∆2 .

Now, let us bound the right hand side. Since j′ is not stopped, the previous cases show
that αj′ − α

(1)
j′ ≤ εzn6b+2. Then, we have:

∆2 =
(√

αj′ −
√
α

(1)
j′

)2
≤
(√

α
(1)
j′ + εzn6b+2 −

√
α

(1)
j′

)2
≤ εzn6b+2,

where the last inequality follows from
√
a+ b ≤

√
a+
√
b for all a, b ∈ R+. On the other

hand, since g(x) =
√
x is a concave function of x for all x > 0, we have:

∆ =
√
αj′−

√
α

(1)
j′ ≤ g

(
α

(1)
j′ +εzn6b+2

)
−g
(
α

(1)
j′

)
≤ εzn6b+2·g′

(
α

(1)
j′

)
= εzn

6b+2

2
√
α

(1)
j′

≤ εzn
6b+2

2 ,

where the last inequality follows from Invariant 2, which implies α(1)
j′ ≥ 1. Combining

the above bounds, in this case we have

αj − α(1)
j ≤ 6∆ · ᾱ(1)

j + 9∆2 ≤ 6ᾱ(1)
j ·

εzn
6b+2

2 + 9εzn6b+2

≤ 3
√

5n7 · εzn6b+2 + 9εzn6b+2 ≤ 9εzn6b+11/2 ,

where the penultimate inequality follows from the feasibility invariant (Invariant 2) and
the preprocessing of Lemma 3.4.1 (that all squared-distances are at most n6) which
together imply that αj ≤ mini(zi + d(i, j)2) ≤ 4n7 + n6 ≤ 5n7 for all j ∈ D.

Combining all of the above cases, αj can increase at most εzn6b+1, until αj = α
(1)
j and then

at most an additional 9εzn6b+11/2. Thus, the total increase in αj while B(θ) ≤ B(µ) + b

is at most 9εzn6b+11/2 + εzn
6b+1 ≤ εzn6b+6, as required.

We now complete the proof of Proposition 3.8.10. By Lemma 3.8.9, no αj ≥ 202θs is
changed by Sweep in any stage s, and so once B(θ) ≥ B(202θs) no α-values are changed.
By the Claim, we then have that in any call to Sweep in stage s, each client’s α-value is
increased at most εzn6(b+1) where

b = B(202θs)−B(µ) ≤ blog1+ε(202θs/µ)c+ 1 .

We now bound the above value b for every stage s.

In stage 1, we execute only a single call to Sweep (as shown in Lemma 3.8.3) and in
this call, µ = minj∈U(0) α

(0)
j . Since every j ∈ U (0) must have a tight edge to the facility

88

3.8. Analysis of the Polynomial-Time Algorithm

i+ in α(0), Lemma 3.8.8 implies that ν , maxj∈U(0) α
(0)
j ≤ 202µ. Then, recall that

θ1 = (ν + 2εz)(1 + ε)σ ≤ ν(1 + ε)K ≤ 202µ(1 + ε)K ,

where we have used that ν ≥ 1 (by Invariant 2), εz < ε and σ ≤ K/2 < K. Finally,
recalling that C1 = dlog1+ε(204)e, we have:

b ≤ log1+ε(202θ1/µ) + 1 ≤ log1+ε(202 · 202 · (1 + ε)K) + 1 ≤ K + C1 + 1 .

In stage s > 1, we have µ ≥ θs−1 by Lemma 3.8.5. Then, recall that θs = (1 + ε)Kθs−1
Then, we have:

b ≤ log1+ε(202θs/µ) + 1 ≤ log1+ε(202(1 + ε)K) + 1 < K + C1 + 1 .

In any case, the maximum increase in any client’s α-value is at most εzn6(K+C1+2) = n−3

(recalling that by definition εz = n−6(K+C1+2)−3). As we have already observed above in
the proof of the Claim, each α-value can decrease at most n times this amount. Thus,
no α-value can decrease more than n−2.

Bounding the number of clients in B

We bound the number of clients in B by showing that such clients need to have an
α(0)-value close to a threshold θs. We then select the thresholds so that only a tiny
fraction of the clients can be in B.

Lemma 3.8.11. Suppose that j ∈ B for some (α, z) produced by RaisePrice. Then,
we must have 1

81θs ≤ α
(0)
j < 25 · 204θs for some s.

Proof. Consider a call to RaisePrice and let (α(0), z(0)) be the input solution. We
denote by (α(`), z(`)) the solution produced by the `th call to Sweep in the execution of
RaisePrice. We also use B(`) to refer to the set B of potentially bad clients associated
to the solution (α(`), z(`)). That is,

B(`) = {j ∈ D : j is undecided in (α(`), z(`)) and 2ᾱ(`)
j < d(j, j′) + 6ᾱ(0)

j′ for all clients j′ ∈ D}.

Note that B(0) = ∅ since every client is decided in (α(0), z(0)) by Invariant 4. We prove
the lemma by showing the following claim by induction on `:

Claim. For each client j ∈ B(`) there is a client j′ such that ᾱ(`)
j ≥ d(j, j′) + ᾱ

(0)
j′ and

1
9θs ≤ α

(0)
j′ ≤ 204θs, for some s.

Before proving the claim, let us show that it indeed implies the Lemma. Suppose that

89

Chapter 3. The k-Means and k-Median Problems

j ∈ B(`) for some `. Then, selecting j′ = j in the definition of B(`), we must have
2ᾱ(`)

j < 6ᾱ(0)
j and so α(`)

j < 9α(0)
j . Now, consider the client j′ and stage s guaranteed by

the claim. Then, we must have:

α
(0)
j ≥ 1

9α
(`)
j ≥ 1

9α
(0)
j′ ≥

1
81θs.

Moreover, because j ∈ B(`), j is undecided in (α(`), z(`)) and so by Lemma 3.8.4,
α

(0)
j ≤ α

(`)
j . Also, we must have:

2ᾱ(`)
j < d(j, j′) + 6ᾱ(0)

j′ ≤ d(j, j′) + ᾱ
(0)
j′ +

√
25 · 204 · θs ≤ ᾱ(`)

j +
√

25 · 204 · θs.

Thus, α(0)
j ≤ α

(`)
j ≤ 25 · 204θs, as well.

Proof of the Claim. The base case when ` = 0 is trivially true since B(0) = ∅. For the
inductive step, we assume the induction hypothesis for 0, 1, . . . , `− 1 and prove it for `.
Any client j ∈ B(`) is undecided and (by Property 1 of Sweep) must have been removed
from A by one of the Rules 3, 4, or 5. We divide the analysis based on these three cases.

Case 1: j ∈ B(`) was removed by Rule 3. In this case, we must have j ∈ U , by the
definition of Rule 3. Moreover, since all clients in U (0) are decided in every solution
produced by RaisePrice (Corollary 3.8.6), we must have that ` ≥ 2. Thus, j
must have been undecided in the previously produced solution (α(`−1), z(`−1)), and
α

(`)
j = α

(`−1)
j + εz. Then, j ∈ B(`−1), as well, since

2ᾱ(`−1)
j < 2ᾱ(`)

j < d(j, j′) + 6ᾱ(0)
j′ for all j′ ∈ D.

The statement then follows from the induction hypothesis and from that α(`)
j ≥

α
(`−1)
j .

Case 2: j ∈ B(`) was removed by Rule 4. By the definition of Rule 4, we must have
α

(`)
j ≥ α

(0)
j and α(`)

j ≥ θs, where s is the stage in which α(`) was produced. In this
case, we prove the claim for j′ = j. Clearly, we have ᾱ(`)

j ≥ ᾱ
(0)
j = d(j, j) + ᾱ

(0)
j .

Next, we prove that 1
9θs ≤ α

(0)
j ≤ 204θs. For the lower bound, we observe that

since j ∈ B(`) we must have 2ᾱ(`)
j < 6ᾱ(0)

j and so 1
9θs ≤

1
9α

(`)
j ≤ α

(0)
j . We now

prove the upper bound. First, note that j was not stopped by any client j′

in (α(0), z(0)) since then we would have 2ᾱ(`)
j ≥ 2ᾱ(0)

j ≥ d(j, j′) + 6ᾱ(0)
j′ which

would contradict that j ∈ B(`). Then, since every client in (α(0), z(0)) is decided
(Invariant 4), j must have been witnessed by some facility i in (α(0), z(0)). Since j
is undecided, by Corollary 3.8.6 we may further assume i 6= i+ and thus z(`)

i = z
(0)
i .

Now suppose toward contradiction that α(0)
j > 204θs. Lemma 3.8.8 then implies

α
(0)
j′ ≥ 20−2α

(0)
j > 202θs for every j′ ∈ N (0)(i). Then, by Lemma 3.8.9, αj′ = α

(0)
j′

90

3.8. Analysis of the Polynomial-Time Algorithm

for all j′ ∈ N (0)(i). Thus, as zi = z
(0)
i , i is still tight and a witness for i, which

contradicts the assumption that j ∈ B(`), since j is then decided.

Case 3: j ∈ B(`) was removed by Rule 5. Let j1, j2, . . . , jp be the clients in B(`) that
were removed from A by Rule 5 in the `th call to Sweep. We index these clients
according to the order in which they were removed from A. The previous cases
already imply that the clients in B(`) \ {j1, . . . , jp} satisfy the induction hypothesis.
We now assume that it is true for the clients in B(`)

<a := B(`) \ {ja, . . . , jp} and show
that it is also true for client ja, i.e., for all clients in B(`) \ {ja+1, . . . , jp}. Consider
client ja. Then, we must have ᾱ(`)

ja
≥ d(ja, j′) + ᾱ

(`)
j′ for some j′ that was previously

removed from A. Moreover, since ja is undecided, Property 2 implies that j′ must
also be undecided. We now show that j′ ∈ B(`). Indeed, since j′ is undecided, if
j′ 6∈ B(`), there must be a j′′ such that 2ᾱ(`)

j′ ≥ d(j′, j′′) + 6ᾱ(0)
j′′ . But then

2ᾱ(`)
ja
≥ 2d(ja, j′) + 2ᾱ(`)

j′ ≥ 2d(ja, j′) + d(j′, j′′) + 6ᾱ(0)
j′′ ≥ d(ja, j′′) + 6ᾱ(0)

j′′ ,

which contradicts the fact that ja ∈ B(`). Now, since j′ ∈ B(`) was removed from A

before ja, we in fact have j′ ∈ B`<a, and so by assumption there exists some j′′ and
s such that 1

9θs ≤ α
(0)
j′′ ≤ 204θs and ᾱ(`)

j′ ≥ d(j′, j′′) + ᾱ
(0)
j′′ . Thus

ᾱ
(`)
ja
≥ d(ja, j′) + ᾱ

(`)
j′ ≥ d(ja, j′) + d(j′, j′′) + ᾱ

(0)
j′′ ≥ d(ja, j′′) + ᾱ

(0)
j′′ ,

and so the induction hypothesis holds for ja as well (using j′′ and s).

The above lemma says that any client j that becomes potentially bad in any solution
produced by RaisePrice (i.e., in j ∈ B for one produced solution) must have α(0)

j close
to a threshold. Our selection of the shift-parameter σ then ensures that this can only
happen for a tiny fraction of the clients. This allows us to bound the connection cost of
clients in B by an arbitrarily small constant fraction (depending on the parameter K) of∑
j∈D αj . However, as stated in the second inequality of Property 2 in Definition 3.5.1,

we need to bound the total connection cost of these clients as a tiny fraction of OPTk

instead of
∑
j∈D αj . As all we know is that OPTk ≥

∑
j∈D αj − λk, this requires further

arguments that we present in the next section.

We complete this section by formally showing that a client is unlikely to become potentially
bad over the randomness of the shift-parameter σ. For any given integer σ ∈ [0,K/2), let

W(σ) = {j ∈ D : 81−1 · 20−2 · θs ≤ α(0)
j ≤ 25 · 206 · θs for some θs} .

Note that by the above lemma, any client that is in B in any solution produced during

91

Chapter 3. The k-Means and k-Median Problems

the considered call to RaisePrice, is in W(σ).8 Note that each value α(0)
j is fixed at

the beginning of RaisePrice, and there are only a (relatively) small number of choices
for σ such that any given j is in W(σ). Thus, if we choose σ uniformly at random, the
probability that any given j ∈ W(σ) is small. The following corollary formalizes this
intuition.

Corollary 3.8.12. If we select the shift-parameter σ uniformly at random from [0,K/2),

Pr[j ∈ W(σ)] ≤ γ4 for any client j.

Proof. Suppose that we select an integer σ uniformly at random from [0,K/2). Then,
note that by definition θs = (maxj∈U(0) αj + 2εz)(1 + ε)K·(s−1)+σ and so j ∈ W(σ) if and
only if:

K1 +K(s− 1) + σ ≤ log1+ε α
(0)
j ≤ K2 +K(s− 1) + σ ,

for some s, where K1 = log1+ε(81−1 · 20−2) + log1+ε(maxj∈U(0) α
(0)
j + 2εz) and K2 =

log1+ε(25 · 206) + log1+ε(maxj∈U(0) α
(0)
j + 2εz). In other words, σ needs to satisfy

K1 +K(s− 1)− log1+ε α
(0)
j ≤ −σ ≤ K2 +K(s− 1)− log1+ε α

(0)
j for some integer s.

Notice that the difference between the upper bound and the lower bound is K2 −K1 =
log1+ε(81 · 25 · 208) which by selection of K and C0 is at most γ4

2 K. Moreover, as
σ ∈ [0,K/2) there is at most one value of s that can satisfy the above inequalities. It
follows that there are at most γ4

2 K distinct values of σ so that j ∈ W(σ). Thus, j ∈ W(σ)
with probability at most γ4.

3.8.5 Handling dense clients

Corollary 3.8.12 implies that by carefully selecting our thresholds, we can ensure that only
an arbitrarily small fraction γ4 of clients j can ever appear in B throughout the execution
of RaisePrice. As briefly discussed previously, this is unfortunately insufficient for our
purposes. Specifically, in order to charge the extra service cost incurred by this small
fraction of clients to OPTk ≥

∑
j∈D αj − λk, we need to handle carefully those clients j

for which most of αj is contributing toward the opening cost λk.

To cope with this difficulty, we introduce the notion dense facilities and clients, as follows.
Recall that γ � ε is a small constant. We define the γ-close neighborhood of a facility i

8To argue B ⊆ W(σ), the bounds 81−1θs ≤ α(0)
j ≤ 25 · 204 · θs for some θs would be sufficient in the

definition of W(σ). However, the more relaxed bounds will be useful when analyzing dense clients in the
next section.

92

3.8. Analysis of the Polynomial-Time Algorithm

as

N (0)
γ (i) = {j ∈ D : d(j, i)2 ≤ γα(0)

j }.

Then, we say that a facility i ∈ IS(0) is dense if∑
j∈N(0)

γ (i)

α
(0)
j ≥ (1− γ)z(0)

i .

We let FD ⊆ IS(0) be the set of all dense facilities, and then define the set of dense clients
as DD =

⋃
i∈FD

N
(0)
γ (i). Note that the γ-close neighborhoods, dense facilities, and dense

clients are all determined only by the input solution (α(0), z(0)) and the integral solution
IS(0) passed to RaisePrice.

Intuitively, the dense clients are precisely those troublesome clients for which α
(0)
j is

much larger then the service cost of j in IS(0). In order to avoid paying 36α(0)
j for any

such clients, we construct a set of special facilities F (`)
S and special clients D(`)

S for each
α(`) produced by our RaisePrice, as follows. Let

F (`)
S = {i ∈ FD : |N (0)

γ (i) ∩ B| 6= ∅ and α(`)
j ≥ α

(0)
j ∀j ∈ N

(0)
γ (i)} , and

D(`)
S (i) = N (0)

γ (i) for every i ∈ F (`)
S , (3.8.5)

We will show that each solution S(`) = (α(`), z(`),F (`)
S ,D(`)

S) is roundable, with the set of
remaining bad clients given by DB = B \ DD.

Recall that in Definition 3.5.1, we have τi = maxj∈N(i)∩DS(i) αj for any facility i ∈ FS

and τi = ti for all other facilities. Note that as (α(0), z(0)) by Invariant 4 is a completely
decided solution, by our choice of FS and DS, we have F (0)

S = ∅ in the roundable solution
(α(0), z(0),F (0)

S ,D(0)
S). Therefore, the conflict graph H(0) of (α(0), z(0),F (0)

S ,D(0)
S) does

not contain any special facilities, and so τi = ti for each facility i ∈ H(0). Moreover, recall
that IS(0) was the maximal independent set of H(0) computed in the previous call to
GraphUpdate. In particular, |IS(0)| > k and IS(0) does not contain any special facilities.

The following simple lemma is now a direct consequence of our definitions.

Lemma 3.8.13. Suppose that j ∈ N (0)
γ (i) for some i ∈ IS(0). Then, β(0)

i′j = 0 for all
other i′ ∈ IS(0). Moreover, for every client j ∈ D, α(0)

j ≥
∑
i∈IS(0) β

(0)
ij .

Proof. We start by proving that if j ∈ N (0)
γ (i) for some i ∈ IS(0), then β(0)

i′j = 0 for all
other i′ ∈ IS(0). Consider some facility i ∈ IS(0), and suppose that j ∈ N (0)

γ (i). Further,
suppose that for some other facility i′ ∈ H(0) we have βi′j > 0. Note that this implies
(since no facility is special) that j is adjacent to both i and i′ in the client-facility graph

93

Chapter 3. The k-Means and k-Median Problems

that generated H(0). We shall show that i′ 6∈ IS(0). Indeed, we must have:

d(i, i′) ≤ d(i, j) + d(j, i′) < √γ · ᾱ(0)
j + ᾱ

(0)
j <

√
δ · ᾱ(0)

j ≤
√
δti =

√
δτi .

Thus, there is an edge between i and i′ in the conflict graph H(0), and since i ∈ IS(0), we
have i′ 6∈ IS(0).

We shall now prove that α(0)
j ≥

∑
i∈IS(0) β

(0)
ij for any client j ∈ D. Again using that no

facility is special, we have that j’s neighborhood in the client-facility graph that generated
H(0) is equal to the set of tight facilities that j is paying for. Therefore, we have that
α

(0)
j −

∑
i∈IS(0) β

(0)
ij ≥ d(j, IS(0))2/ρ (which implies α(0)

j ≥
∑
i∈IS(0) β

(0)
ij) by the exact same

arguments as “Case s = 1” and “Case s > 1” in the proof of Theorem 3.3.4.

The next lemma formalizes our intuition, showing that we can indeed charge the total
α(0)-value of all non-dense clients to OPTk.

Lemma 3.8.14.
∑
j∈D\DD

α
(0)
j ≤ γ−3 ·OPTk.

Proof. We partition the clients in D \ DD into two sets:

D>γ = {j ∈ D \ DD : d(j, IS(0))2 > γ · α(0)
j } and

D≤γ = {j ∈ D \ DD : d(j, IS(0))2 ≤ γ · α(0)
j }.

By definition,∑
j∈D>γ

d(j, IS(0))2 > γ ·
∑

j∈D>γ
α

(0)
j . (3.8.6)

To bound the remaining clients consider the following fractional token argument: each
client j ∈ D>γ distributes β(0)

ij = [α(0)
j − d(j, i)2]+ tokens to each facility i ∈ IS(0).

Lemma 3.8.13 says that
∑
i∈IS(0) β

(0)
ij ≤ α

(0)
j for every client j, and so the total number

of tokens distributed is at most
∑
j∈D>γ α

(0)
j .

Now, we observe that for each client j ∈ D≤γ , the closest facility i ∈ IS(0) to j must not
be in FD, since otherwise j would be in DD. Hence, we have∑

j∈N(0)
γ (i)

(1− γ)α(0)
j ≤

∑
j∈N(0)

γ (i)

[α(0)
j − d(j, i)2]+ ≤ (1− γ)z(0)

i . (3.8.7)

Moreover, there must be at least γz(0)
i tokens assigned to i, because it is a tight facility

with respect to α(0) and by Lemma 3.8.13, every client j 6∈ D>γ ∪ N (0)
γ (i) must have

94

3.8. Analysis of the Polynomial-Time Algorithm

βij = 0. Therefore,∑
j∈D>γ

β
(0)
ij =

∑
j∈D\N(0)

γ (i)

β
(0)
ij ≥ γz

(0)
i .

Thus, ∑
j∈D≤γ

α
(0)
j =

∑
i∈IS(0)\FD

∑
j∈N(0)

γ (i)

α
(0)
j ≤

∑
i∈IS(0)\FD

z
(0)
i

= 1
γ

∑
i∈IS(0)\FD

γ · z(0)
i ≤

1
γ

∑
j∈D>γ

α
(0)
j ,

where the first equality follows from Lemma 3.8.13, the first inequality from (3.8.7), and
the last inequality from the fact that each facility i ∈ IS(0) \ FD received at least γz(0)

i

tokens and the total amount of distributed tokes was at most
∑
j∈D>γ α

(0)
j .

Hence,

∑
j∈D>γ

α
(0)
j +

∑
j∈D≤γ

α
(0)
j ≤

(
1 + 1

γ

) ∑
j∈D>γ

α
(0)
j

<
1
γ
·
(

1 + 1
γ

) ∑
j∈D>γ

d(j, IS(0))2

≤ 1
γ
·
(

1 + 1
γ

) (
ρ+ 1000ε

)
OPTk ,

where the penultimate inequality follows from (3.8.6) and the last inequality from
Theorem 3.6.4.

Lemma 3.8.14 shows that we can relate the total α-value of all non-dense clients to OPTk,
as desired. Moreover, we have the following corollary.

Corollary 3.8.15. If we select the shift-parameter σ uniformly at random from [0,K/2),

E

 ∑
j∈W(σ)\DD

α
(0)
j

 ≤ γ ·OPTk .

In particular, if we set W =W(σ) for the value σ that minimizes
∑
j∈W(σ)\DD

α
(0)
j then,

we have∑
j∈W\DD

α
(0)
j ≤ γ ·OPTk .

95

Chapter 3. The k-Means and k-Median Problems

Proof. For the first claim, we note that

E

 ∑
j∈W(σ)\DD

α
(0)
j

 =
∑

j∈D\DD

Pr[j ∈ W(σ)] · α(0)
j ≤ γ

4 ∑
j∈D\DD

α
(0)
j ≤ γ ·OPTk ,

where the first inequality follows from by Corollary 3.8.12 and the last inequality follows
from Lemma 3.8.14. The second claim now follows since the minimum of left-hand side
over all σ ∈ [0,K/2) is at most its expected value over a randomly chosen σ ∈ [0,K/2).

Remark 3.8.16. The only property of the selection of σ that we use is that
∑
j∈W\DD

α
(0)
j ≤

γ · OPTk. It easy to find the σ that minimizes
∑
j∈W(σ)\DD

α
(0)
j (since the number of

options is constant) at the start of a call to RaisePrice and thus the selection of the
shift-parameter can be derandomized.

Now, we show how to obtain a better bound than that given by Lemma 3.8.7 for dense
clients DD ∩ B. This will allow us to eventually obtain a roundable solution. For this
purpose, recall the definition of special facilities and clients FS and DS:

FS = {i ∈ FD : |N (0)
γ (i) ∩ B| 6= ∅ and αj ≥ α(0)

j ∀j ∈ N
(0)
γ (i)} and

DS(i) = N (0)
γ (i) for every i ∈ FS.

Also, recall that for each special facility i ∈ FS we define τi = maxj∈N(i)∩DS(i) αj and for
all other facilities i we let τi = ti = maxj∈N(i) αj . Note that τi ≤ ti for all i ∈ F . We
now show how to bound the cost of all clients in DD ∩ B using the facilities of FS.

Lemma 3.8.17. For any j ∈ DD ∩ B, either:

• There exists a tight facility i ∈ F such that (1 +
√
δ + 10ε)ᾱj ≥ d(j, i) +

√
δti.

• There exists a special facility i ∈ FS such that (1 +
√
δ + 10ε)ᾱj ≥ d(j, i) +

√
δτi.

Proof. Consider a client j0 ∈ DD ∩ B. Since j0 ∈ DD there must be some i? ∈ FD such
that j0 ∈ N (0)

γ (i?). Moreover, since j0 ∈ B, j0 is undecided and so by Lemma 3.8.4 we
must have αj0 ≥ α

(0)
j0

.

Suppose first that i? ∈ FS. Then τi? = maxj∈N(i?)∩DS(i?) αj . Since i? ∈ FS we have
αj ≥ α(0)

j for all j ∈ N (0)
γ (i?). We claim that τi? ≤ (1 + ε)2αj0 . Indeed, otherwise there

96

3.8. Analysis of the Polynomial-Time Algorithm

is a client j ∈ N(i?) ∩ DS(i?) = N(i?) ∩N (0)
γ (i?) such that ᾱj > (1 + ε)ᾱj0 and so

(1 + ε)ᾱj > (1 + ε)ᾱj0 + ε
2 · ᾱj0 + ε

2 · ᾱj
≥ (1 + ε)ᾱj0 + ε

2 · ᾱ
(0)
j0

+ ε
2 · ᾱ

(0)
j (αj0 ≥ α

(0)
j0

and αj ≥ α(0)
j)

≥ (1 + ε)ᾱj0 + ε
2√γ · d(j0, i?) + ε

2√γ · d(j, i?) (j, j0 ∈ N (0)
γ (i?))

≥ (1 + ε)ᾱj0 + (1 + ε)d(j0, i?) + (1 + ε)d(j, i?) (γ � ε and so ε
2√γ ≥ (1 + ε))

≥ (1 + ε)
(
ᾱj0 + d(j0, j)

)
,

contradicting Invariant 3, since the α-ball of j would then strictly contain the α-ball of
j0. Hence, √τi? ≤ (1 + ε)ᾱj0 . Furthermore, d(j0, i?) ≤ γᾱ(0)

j0
≤ γᾱj0 and therefore

(1 +
√
δ + 3ε)ᾱj0 ≥ d(j0, i?) +

√
δτi? .

On the other hand, if i? 6∈ FS then (by the definition of FS) there must be some
j ∈ N (0)

γ (i?) with αj < α
(0)
j . By Lemma 3.8.4, j must be decided. Then, j 6∈ B and so by

Lemma 3.8.7 there exists some tight facility i such that (1 +
√
δ + ε)ᾱj ≥ d(j, i) +

√
δti.

Moreover, applying the same argument as above, we must have ᾱ(0)
j ≤ (1 + ε)ᾱ(0)

j0
, since

otherwise in α(0), the α-ball of j would strictly contain the α-ball of j0, contradicting
Invariant 3. Then, we have:

d(j0, i) +
√
δti ≤ d(j0, i?) + d(i?, j) + d(j, i) +

√
δti

≤ γᾱ(0)
j0

+ γᾱ
(0)
j + (1 +

√
δ + ε)ᾱj

≤ εᾱ(0)
j0

+ ε(1 + ε)ᾱ(0)
j0

+ (1 +
√
δ + ε)(1 + ε)ᾱ(0)

j0

< (1 +
√
δ + 10ε)ᾱj0 ,

where for the final inequality we used that j0 is undecided and so by Lemma 3.8.4 we
have αj0 ≥ α

(0)
j0

.

3.8.6 Showing that each solution is roundable and completing the anal-
ysis

We start by showing that each solution (α, z) produced by Algorithm 1 satisfies the
properties of Definition 3.5.1.

Proposition 3.8.18. Every solution (α, z) produced by Algorithm 1 is roundable.

Proof. By construction, each solution (α, z) produced by Algorithm 1 is feasible with
respect to DUAL(λ+ εz) and εz < 1

n . In addition, we have λ ≤ zi ≤ λ+ εz ≤ λ+ 1/n for
all i ∈ F . It remains to show that Properties 2 and 3 of Definition 3.5.1 are satisfied.
Recall the definitions of FD and DD, and define FS and DS as in (3.8.5). Further let

97

Chapter 3. The k-Means and k-Median Problems

DB =W \DD.

Now we show that Property 2 holds for S = (α, z,FS,DD) with respect to the set DB. By
Lemma 3.8.11 (which shows that a client j ∈ B only if 1

81θs ≤ α
(0)
j ≤ 25 · 204θs for some

stage s) we have B ⊆ W. Thus B \ DD ⊆ DB. Now, by Lemma 3.8.7 for all j ∈ D \ B
there exists some tight facility i such that

(1 +
√
δ + 10ε)2αj ≥

(
d(j, i) +

√
δti
)2
≥
(
d(j, i) +

√
δτi
)2
.

Similarly, by Lemma 3.8.17, for all j ∈ B ∩ DD, there exists either some tight facility i or
some special facility i ∈ FS such that

(1 +
√
δ + 10ε)2αj ≥

(
d(j, i) +

√
δτi
)2

.

Finally, for each remaining client j ∈ B \ DD ⊆ DB, by Lemma 3.8.7, there is some tight
facility i such that

36α(0)
j ≥

(
d(j, i) +

√
δti
)2
≥
(
d(j, i) +

√
δτi
)2
.

For each such client j, let w(j) be this specified tight facility i. Then,

∑
j∈DB

(
d(j, i) +

√
δτw(j)

)2
≤ 36

∑
j∈DB

α
(0)
j ≤ 36γ ·OPTk,

where the last inequality follows from Corollary 3.8.15.

Finally, we show that Property 3 must hold. Consider some i ∈ FS. By definition of
FS, we must have j ∈ B for some j ∈ N (0)

γ (i). Then, by Lemma 3.8.11 we must have
1
81θs ≤ α

(0)
j ≤ 25 · 204θs for some s. By Lemma 3.8.8 (which bounds the ratio to be at

most 192 ≤ 202 between αj and αj′ for any pair of clients j, j′ that share a tight edge
to some common facility i), we must have α(0)

j′ ∈ W for any j′ ∈ N (0)(i). Moreover, by
Lemma 3.8.13 (which shows that each dense client pays for at most one dense facility in
IS(0)), we have β(0)

ij = 0 for all j ∈ DD \N (0)
γ (i). Altogether, then we have N (0)(i) ⊆ W

and N (0)(i) ∩ DD = N
(0)
γ (i) and so

N (0)(i) \N (0)
γ (i) = N (0)(i) \ DD ⊆ W \ DD ,

for every i ∈ FS. Notice that Lemma 3.8.13 also implies that for each dense facility
i ∈ FD there is some dense client that only pays for that facility in IS(0), so indeed
|FS| ≤ |FD| ≤ n. It remains to prove that

∑
i∈FS

∑
j∈DS

βij ≥ λ|FS| − γ ·OPTk. To that
end, recall that Invariant 4 implies that F (0)

S = ∅. Thus, every i ∈ IS(0) must have been
tight in α(0), and hence

∑
j∈N(0)(i) β

(0)
ij ≥ z

(0)
i ≥ λ. Combining these observations, for

98

3.8. Analysis of the Polynomial-Time Algorithm

every i ∈ FS we have:

∑
j∈DS(i)

βij =
∑

j∈N(0)
γ (i)

βij ≥
∑

j∈N(0)
γ (i)

β
(0)
ij ≥ λ−

∑
j∈N(0)(i)\N(0)

γ (i)

β
(0)
ij ≥ λ−

∑
j∈W\DD

β
(0)
ij ,

(3.8.8)

where the first inequality follows from the definition of FS, which requires that for any
i ∈ FS, αj ≥ α(0)

j for all j ∈ N (0)
γ (i). By Invariant 4, every client is decided in α(0) and

so, in particular, F (0)
S = ∅ and IS(0) contains no special facilities. Then, by Lemma 3.8.13,∑

i∈FS
β

(0)
ij ≤

∑
i∈IS(0) β

(0)
ij ≤ α

(0)
j for all j. Summing (3.8.8) over all i ∈ FS we thus have

∑
i∈FS

∑
j∈DS(i)

βij ≥ |FS|λ−
∑

j∈W\DD

∑
i∈FS

β
(0)
ij ≥ |FS|λ−

∑
j∈W\DD

α
(0)
j ≥ |FS|λ− γ ·OPTk,

where the final inequality follows from Corollary 3.8.15.

The following theorem completes the analysis.

Theorem 3.8.19. RaisePrice runs in polynomial time and produces a polynomial
number of close roundable solutions.

Proof. That the produced solutions are close follows from Proposition 3.8.10 and the
produced solutions are roundable follows from Proposition 3.8.18. We continue to bound
the running time and the number of produced solutions. RaisePrice produces one
solution for each call to Sweep. In Appendix 3.9 we argue (similarly as we did for
QuasiSweep) that Sweep can be implemented in polynomial time, and it is clear that
the remaining operations in RaisePrice can be implemented in polynomial time. Thus,
to prove both claims, it suffices bound the number of calls to Sweep in RaisePrice.
For that purpose, define:

M = λ+ max
j∈D,i∈F

d(j, i) ≤ 4n7 + n6 < n8 .

Using our preprocessing (Lemma 3.4.1), we note that at all times during any call to
RaisePrice, we have αj ≤ M , since otherwise α would be infeasible (contradicting
Invariant 2).

Let us now bound the number of calls to Sweep in each stage. In stage 1, we make only 1
call to Sweep, as shown in Lemma 3.8.3. In each stage s > 1, RaisePrice calls Sweep
only until αj ≥ θs and αj ≥ α(0)

j for every undecided client j. Consider a call to Sweep
in stage s > 1 and let (α, z) be the produced solution. Let j be the undecided client
with the smallest α-value in (α, z) (breaking ties in the order of removal from the set
A). If j was removed by Rule 4, we have αj ≥ θs and αj ≥ α(0)

j and so every undecided
client has an α-value of at least θs which implies the termination of stage s. Otherwise,

99

Chapter 3. The k-Means and k-Median Problems

as j has the smallest α-value of undecided clients it cannot be removed by Rule 5 (by
Property 2) and so it must have been removed by Rule 3. Therefore, by the definition of
that rule, j was undecided in the previous iteration and its α-value has increased by εz
in the considered call to Sweep. By the above, we have that either stage s terminates
or the smallest α-value of the undecided clients increases by at least εz. Therefore, the
stage must terminate after at most ε−1

z M = nO(ε−1γ−4) calls to Sweep since no α-value
is larger than M .

Finally, let us bound the number of stages executed in RaisePrice. By Lemma 3.8.5 after
stage s, all clients with αj < θs are decided. Then, for s = (Kε)−1Θ(logn) = γ4O(logn)
we have θs > M and so all clients must be decided.

3.9 Running Time Analysis of Sweep

In this section, we present a polynomial time implementation of the Sweep procedure.
The algorithm is exactly the same as QuasiSweep, besides the set of events. Recall
that the polynomial time algorithm for QuasiSweep is as follows: repeatedly find the
next event that happens, then update the α-values. We increase θ at a rate 1, so that θ
corresponds naturally to our notion of time. Let θ(0) denote the value of θ at the time
that the last event has happened.

We now focus on the events, explain them in detail, show the number of times that each
can occur, and discuss the way that we can find each one of them. We consider (1) the
tight edges, (2) the set A, (3) the set of potentially tight facilities, denoted by P , (4)
the set of clients with maximum α-value in N(i) for each facility in i ∈ P , and (5) the
buckets of clients and θ. While all the above quantities remain the same, the rate at
which any client’s α-value is changing remains constant. We now consider the set of
events that may cause these quantities to change. We show that we can easily compute
the next time that each event would occur if no other event happened before it, and
that the number of such events must be polynomial in n = |D| and m = |F|. Then, the
minimum such time is the next time that the behavior of Sweep might change. We
compute the minimum such time after θ(0), then update all of the α-values (using their
current rates of change and the time of this event) to obtain the α-values at this time.
Having these values, we then recompute the quantities (1)-(5) in the following order:

• Update the α-values: For each j ∈ D, we compute the new value of αj by multiplying
the previous rate of change in αj by θ − θ(0) and adding this to the previous value
αj .

• The buckets of the α-values: For each αj , we update the current bucket according
to the bucketing described in Sweep. In the case that some αj was decreasing and
now αj is on the lower border of the current bucket, we place αj in the next lower

100

3.9. Running Time Analysis of Sweep

bucket.

• Update A: Now, for each j 6∈ A, if αj = θ we add j to A. Then, for each j ∈ A, we
remove j if one of the conditions of Rules 1-5 in Sweep is satisfied by the newly
updated α-values. Notice that a client j might be added and then immediately
removed in this step.

• Update the set of tight edges: For each j ∈ D and i ∈ F , if αj > d(j, i)2 then add j
to N(i). If αj ≤ d(j, i)2 then we remove j from N(i) unless j ∈ A. If αj = d(j, i)2

and j ∈ A, then we add j to N(i).

• Update P : For each i ∈ F , we compute whether i is potentially tight as follows. If
αj > α

(0)
j for any j ∈ N(i), then place i ∈ P . If αj = α

(0)
j for some j ∈ N(i) ∩ A

then we also place i ∈ P , since as soon as αj increases by an infinitesimal amount,
we will have αj > α

(0)
j . No other facilities are placed in P .

Notice that the above cases capture all the potentially tight facilities as described
in the analysis of Sweep except for the following. We could have some facility
i with αj ≤ α

(0)
j for all j ∈ N(i) and αj = α

(0)
j for all j ∈ N (0)(i) but there is

no j ∈ N(i) ∩A with αj = α
(0)
j . Then, our definition of Sweep would consider i

potentially tight, but here we do not. However, observe that in this case N(i) ⊆
N (0)(i) and so we must have that N(i) ∩ A = ∅. Therefore, i cannot cause any
α-value to decrease in Sweep, so there is no harm in having i 6∈ P .

• Update rates: For each j ∈ A, we set the rate of change for αj to be 1, and for each
j with αj = ti for some i ∈ P , we set the rate of change of αj to be −|A| if and
only if N(i) ∩A 6= ∅. For all other clients j, we set the rate of change for αj to 0.

Now, we focus on the events that may require updating the above values. Throughout
our discussion we use the fact that once a client’s α-value has been increased by Sweep,
it is not subsequently decreased.

First we focus on (1), i.e., on the tight edges. The following two events take into account
when an edge becomes tight and when an edge becomes untight.

• Event 1: The edge between client j and facility i becomes tight. Since a client’s
α-value is never decreased after it has been increased, this event can happen at
most once for each client-facility pair. Notice that this event can occur only when
the edge (i, j) is not tight and j ∈ A, so αj is increasing. Then, since j ∈ A, this
event happens when d(i, j)2 = αj = θ.

• Event 2: The edge between client j and facility i becomes untight. Similar to
the previous event, this can also happen at most once for each j and i. Notice
that this event can occur only when the edge (i, j) is tight and the αj value is

101

Chapter 3. The k-Means and k-Median Problems

decreasing. Then, αj is decreasing at a rate of |A|, and so the event happens at
time θ satisfying |A|(θ − θ(0)) = αj − d(i, j)2.

Second, we focus on (2), i.e., the changes that can happen to set A. Notice that, A
changes only if a client joins it or leaves it. Therefore, we have the following events.

• Event 3: A client j joins A. This event happens exactly once for each client. For
each client j 6∈ A, it happens when θ = αj .

• Event 4: A client j ∈ A is removed from A. By the description for the algorithm it
happens in one of following five situations, and they can happen at most once for
each client (so in total n times):

– j gets a witness i: This can happen if j gets an edge to an already tight facility
i, or i becomes tight with B(ti) ≤ B(αj). In Event 1 we have discussed the
situation in which a client gets a tight edge to a facility, therefore here we only
focus on the time that facility i becoming tight. Note that the facility i might
remove j from A only if B(ti) ≤ B(αj), so we only consider such facilities
in this case. Notice that these facilities are easy to identify because, when
considering this event, we assume that no client or θ change bucket (those
events are considered separately) and therefore B(ti) and B(αj) stay constant.
A facility i can only become tight if there is no client in its neighborhood that
is decreasing, so we also restrict ourselves to such facilities (which are again
easy to identify).
The time θ, that i becomes tight can now be calculated by solving the following
equation:

zi =
∑

j∈D\A
[αj − d(i, j)2]+ +

∑
j∈A

[θ − d(i, j)2]+ .

– j is stopped by some client j′. This can only happen if j ∈ A and j′ 6∈ A.
The time θ that this event happens can be computed by solving the equation
2
√
θ = d(j, j′) + 6ᾱj′ .

– For a client j ∈ U , αj increases by εz. The time θ that this event happens
is θ = α

(1)
j + εz where α(1)

j denotes the α-value of j at the beginning of the
present call to Sweep.

– αj ≥ α(0)
j and αj ≥ θs. This happens at the maximum time that each of the

inequalities becomes tight. That is, at the time θ = max(α(0)
j , θs).

– There is a client j′ that has already been removed from A such that ᾱj ≥
d(j, j′)+ᾱj′ . This case is similar to the case that j is stopped by j′. That is, the
time it happens can be calculated by solving the equation

√
θ = d(j, j′) + ᾱj′ .

102

3.9. Running Time Analysis of Sweep

Now we focus on (3), i.e., the set of potentially tight facilities. In the following we explore
the events that make facilities become potentially tight.

• Event 5: A facility i becomes potentially tight. This can only happen if one of the
following situations occur:

– A new client j joins N(i): This is equivalent to saying that the edge (i, j)
becomes tight. We have already considered this case.

– αj becomes more than α(0)
j : This can happen only if αj is increasing. Moreover,

since α(0)
j is fixed throughout the call to Sweep, this might happen at most

once for each client (using that if an α-value increases, it will not decrease
later on). For any such j, time θ that this event happens is easy to compute:
θ = α

(0)
j .

– For all j ∈ N (0)(i), αj ≥ α(0)
j : We can compute for each j ∈ N (0)(i) the time

that this inequality becomes tight, i.e., θ = α
(0)
j . This event can occur only if

αj is increasing for some j ∈ N (0)(i) with αj < α
(0)
j , and in this case it may

happen at time θ = α
(0)
j . Again, this event might happen at most n times,

since no α-value is decreased after being increased.

• Event 6: A facility is no longer potentially tight. This event is similar to the
previous one, except we consider the clients that are decreasing.

Finally we focus on (4) and (5) in Event 7 and Event 8, respectively.

• Event 7: A client j becomes the maximum client connected to a facility i ∈ P . We
are interested in this case since it might result in decreasing αj . We decrease αj
only if B(θ) < B(αj), so we do not need to consider this event if j ∈ A. For the
remaining clients, this event can only happen if either the previous maximum client
j′ loses its tight edge to i or αj = αj′ . We have already considered the case that
tight edges change, so we focus on the time that αj = αj′ . The time θ that the
equality happens can be computed as

αj = −|A|(θ(0) − θ) + αj′ .

Notice that above we assume that αj is not already decreasing. This is without
loss of generality, since if αj is already decreasing then it cannot become equal to
αj′ , as αj′ is decreasing by at most the same rate as αj (namely, −|A|).

This event can happen at most once for each client-facility pair assuming that the
set P of potentially tight facilities and the set A of active clients do not change. The
reason is as follows. If αj > θ becomes the maximum α-value of all clients in N(i) for
some potentially tight facility i, it was not previously decreasing. Moreover, while

103

Chapter 3. The k-Means and k-Median Problems

αj does not decrease, it remains the maximum α-value of all clients in N(i). On
the other hand, if it starts decreasing then it will not stop decreasing until at least
one of the sets A or P has changed. In this case j will not become the maximum
α-value for any facility (for which it is not already the maximum). Therefore, as P
and A both change polynomially many times, this event can also happen at most
polynomially many times.

• Event 8: A client enters the bucket of θ or θ changes bucket. We can compute the
times of these events exactly as discussed in the analysis of the running time of
QuasiSweep. The number of occurrences of these events is the same as before
and the time that they happen can also be computed similarly.

The above shows that we can calculate the next event in polynomial time and that
there are in total at most polynomially many events. It follows that Sweep can be
implemented to run in time that is polynomial in the number of clients and facilities.

3.10 Bounding the Distances

Lemma 3.10.1. By losing a factor (1 + 100/n2) in the approximation guarantee, we can
assume that the squared-distance between any client and any facility is in [1, n6], where
n = |D|.

Proof. We prove that for a given instance of the k-means problem, I = (F ,D, d, k), we
can in polynomial time output an instance I ′ = (F ,D, d′, k) such that:

• The squared distance between any client and any facility is in [1, n6] in I ′, i.e., for
any i ∈ F , j ∈ D, we have 1 ≤ d′(i, j)2 ≤ n6.

• For any constant ρ, any ρ-approximate solution for I ′ is a ρ(1+100/n2)-approximate
solution for I.

In what follows, we first prove the lemma for the case that d is a metric distance function,
then we prove it for the case that d is a Euclidean metric function.

Metric Distance: We focus on the case that d is a metric distance. To that end, we
create 3 instances I1, I2, I ′ with distances d1, d2, d

′ respectively. Choose M , such that
OPT(I) ≤M ≤ 100OPT(I). We can use the algorithm presented in [33] to find such M .
First, let d1(i, j) =

√
n3

M d(i, j) for all i ∈ F , j ∈ D. This results in OPT(I1) = OPT(I)n3

M ,
so n3/100 ≤ OPT(I1) ≤ n3. Second, for any i ∈ F , j ∈ D let d2(i, j) = min(d1(i, j), n2).
Consider any constant ρ-approximate solution, for I1. This solution cannot use any

104

3.10. Bounding the Distances

of the edges that we updated in the previous step, since the cost of this edge is more
than n4 ≥ nOPT(I1). Similarly, any ρ-approximate solution for I2 cannot use any
such edge. Therefore, OPT(I2) = OPT(I1). Third, for any i ∈ F , j ∈ D, assign
d′(i, j) = max(d2(i, j), 1). Since this step might increase the cost of any solution by at
most n, OPT(I2) ≤ OPT(I ′) ≤ OPT(I2) + n. Now it is clear that for any i ∈ F , j ∈ D,
1 ≤ d′(i, j)2 ≤ n4. We need to show that any good solution for I ′ is also a good solution
for I. Note that during all these steps, we focused on the distances between clients and
facilities. For guaranteeing that the d′ is metric, we make the exact same changes on the
pairs of facilities and pairs of clients as well.

Consider a ρ-approximate solution for I ′. We know that the cost of this solution is
at most ρ · OPT (I ′). Now consider the same solution for I2. Since the cost of any
solution for I2 is no more than its cost for I ′, the cost of this solution for I2 is at most
ρ ·OPT (I ′) ≤ ρ · (OPT (I2) + n). Also the cost of the same solution for I1 equals to its
cost for I2 so it is at most ρ(OPT (I2)+n) = ρ(OPT (I1)+n) ≤ ρ ·OPT (I1)(1+100/n2),
where the last inequality is due to the fact that n3/100 ≤ OPT(I1). Thus the cost of the
same solution for I is at most M

n3 (ρ ·OPT(I1)(1 + 100/n2)) = ρ(1 + 100/n2) ·OPT(I).
The lemma then follows by noting that d′ is metric since we only rescaled, increased the
minimum distance, and decreased the maximum distance of the given metric d.

Euclidean Metric Distance: Now assume that the given distance function is Eu-
clidean. We assume that clients and facilities are points in some ` dimensional Euclidean
space. We first create a solution I1, making sure that the OPT(I1) is bounded by
a polynomial. Similarly to before, we divide each coordinate by

√
n3

M .9 We get that

d1(i, j) =
√

n3

M d(i, j) for all i ∈ F , j ∈ D and n3/100 ≤ OPT(I1) ≤ n3. Now we cluster
the points in D ∪F such that the distance between any two points in different clusters is
more than Ω(n) ·OPT(I1). To do that, we create each cluster as follows: Pick any client
j that is not part of any cluster and add it to cluster S; we call j the center of cluster
S. While there exists a client j′ ∈ D that is not part of any cluster and the distance
between j′ to its closest client in S is less than n2/4 add j′ to S. Let S1, . . . , Ss be the
clusters that we create. This gives a partition of the clients. Now we add a facility i to
cluster S`, if there exists a client j ∈ S`, such that d(i, j) < n2/8. This ensures that each
facility is at most part of one cluster, since the distance between two clients in different
clusters is more than n2/4.

It is easy to see that our clusters have the following properties.

1. d1(j, j′)2 < n6/16 for any two clients j, j′ in the same cluster. The reason is, any
client that we add to a cluster, the maximum distance in the cluster increases by

9We can still use [33] to find M

105

Chapter 3. The k-Means and k-Median Problems

less than n2/4 so d1(j, j′) < n3/4.

2. d1(i, j)2 ≤ n6/8 for any client j and facility i in the same cluster. The reason is, by
the triangle inequality we have that d1(i, j) ≤ d1(i, j1) + d1(j1, j) where j1 is the
client so that d1(i, j1) < n2/4. we also know that d1(j1, j) < n3/4 by the previous
property.

3. d1(i, i′)2 ≤ n6/8 for any two facilities i, i′ in the same cluster. Similarly to the
previous case, let j, j′ be the closest client in this cluster to i, i′ respectively. By
the triangle inequality we have that d1(i, i′) ≤ d1(i, j) + d1(j, j′) + d1(j′, i′) ≤
n2/4 + n3/4 + n2/4.

4. d1(i, j)2 ≥ n4/64 ≥ (n/64)·OPT(I1) for any facility i and client j not in the same
cluster.

We remove all the facilities that are not part of any cluster, since no client can be
connected to them in any solution with approximation guarantee better than n/64 (this
follows from the above property 4). From above properties 1, 2, and 3 it is clear that
the squared-distance between any two points in the same cluster is at most n6/8. Now
we continue by moving the center of the clusters to the origin and shift the whole cluster
with them. Consider any two points p1, p2 in the clusters and let j1, j2 be the centers of
those clusters respectively. We know that d1(p1, p2) ≤ d1(p1, j1) + d1(j1, j2) + d1(j2, p2).
Also we know that j1 and j2 are both on the origin so d1(p1, p2) ≤ d1(p1, j1) + d1(j2, p2)
and d1(p1, p2)2 ≤ 2(d1(p1, j1)2 + d1(j2, p2)2). Therefore, d1(p1, p2)2 ≤ n6/2. We add s
new dimensions, one for each cluster. For each 1 ≤ i ≤ s, we assign n2 to the ith new
coordinate for the points in ith cluster and 0 to the rest. Let `′ = `+ s the number of
the coordinates that the points have right now. Now consider two points and the value
of their coordinates, j = (j1, j2, ..., j`′), j′ = (j′1, j′2, ..., j′`′), we know that

d(j, j′)2 =
`′∑
k=1

(jk − j′k)2 =
∑̀
k=1

(jk − j′k)2 +
`′∑

k=`+1
(jk − j′k)2 ≤ n6/2 + 2n4.

Also, it still holds that any solution with an approximation guarantee better than n/64
can only connect the clients in a cluster to the facilities in the same cluster, since the
squared distance between any facility and any client in different clusters is at least n4/64,
which is more than n/64·OPT(I1). Now we need to make sure that the distance between
the facilities and the clients is at least one. To that end, we add one new dimension and
assign one for facilities and zero for clients in this coordinate. Similarly to the analysis
of the general metric, we can show that any ρ-approximate solution for the new instance
is also a ρ(1 + 100/n2)-approximate for I, since we increase the cost of any solution by
at most n. Note that the last step does not increase the distance-squared between any
two points by more than one so the maximum distance-squared between any two points
is at most n6/2 + 2n4 + 1 ≤ n6.

106

3.10. Bounding the Distances

Clearly, the running time of this procedure is poly(n).

107

4 Fast Algorithms and Empirical
Results for k-Means

This chapter is based on a joint work with Justin Ward and Ola Svensson.

4.1 Introduction

In this chapter, we focus on the empirical aspects of the clustering problems. We consider
the k-means, perhaps the most studied clustering problem, from the practical point of
view. We begin with a short introduction, followed by a short description of the algorithm
we use. Afterwards, we describe the techniques that we use to accelerate our algorithm
and present our empirical results. In order to be compatible with the naming convention
widely used in the literature, we refer to facilities as centers.

The most widely-used practical algorithms for k-means clustering are based on variants of
Lloyd’s algorithm [48], sometimes simply called the k-means algorithm. Lloyd’s algorithm
iteratively improves a given clustering by alternating two steps. Given some current set
of k centers, the algorithm first partitions the data points into k clusters by assigning
each point to its nearest center. Next, a new set of centers is obtained by calculating
the center of mass of each of these clusters. In order to initialize Lloyd’s algorithm, one
must choose a set of k starting centers. Because Lloyd’s algorithm is only guaranteed
to produce a local optimum, it might produce a k-means clustering of cost much higher
than the best possible for a given instance when initialized badly.

One way to cope with this difficulty is to randomly select the initial centers for the
algorithm. One of the most popular such randomized initialization routines is D2-
sampling. Here, a subset of k data points in C are chosen as the starting centers, by
iteratively selecting each successive point with a probability proportional to its current
squared Euclidean distance to the closest previously selected points. The K-Means++
algorithm, introduced by Arthur and Vassilvitskii [10] uses this randomized initialization
to start Lloyd’s algorithm. The resulting algorithm is easily implemented, and the initial
sampling can be done in O(nkd) time. Arthur and Vassilvitskii showed that K-Means++

109

Chapter 4. Fast Algorithms and Empirical Results for k-Means

performs very well on a variety of real and synthetic datasets. Furthermore, they showed
that it attains a Θ(log k) expected approximation guarantee in the worst case. Due to
its simplicity, fast running time, and good practical performance, K-Means++ has
emerged as one of the dominant solutions for the k-means clustering problem.

However, several algorithms are known with worst-case O(1) approximation guarantees
under no assumptions on the dataset. In contrast to many algorithms employed in
practice, these algorithms are based on local search [42] or primal-dual techniques from
linear programming [39]. The practical adoption of these algorithms has been limited by
two issues. First, their running times, while polynomial in n, k, and d, are prohibitively
large (at least quadratic in n), which prevents their use on even moderately sized instances.
Second, it is unclear whether their worst-case performance guarantees translate into
improved performance on practical problem instances.

Our contributions. In this chapter, we address both of these issues by giving a fast
initialization procedure for Lloyd’s algorithm in the primal-dual framework. Our starting
point is the Lagrangian-multiplier preserving primal-dual approach for k-median and
k-means, first introduced by Jain and Vazirani [39]. When combined with our results
from the previous chapter, this algorithm gives the best known worst-case approximation
guarantee for k-means. These recent results involve first relaxing the k-means problem to
a variant of facility location (in which any number of cluster centers can be opened) and
then running a complicated and costly procedure that ensures that exactly k centers are
opened. We replace this procedure by a simple binary search on the facility opening price,
and use additional insights to further reduce the running time of the overall procedure.
This results in an algorithm that runs in total time competitive with that of k-means++,
that additionally has a conditional, constant factor guarantee. Specifically, whenever our
algorithm successfully finds (via binary search) a set of exactly k centers to open, the
resulting clustering is guaranteed to have cost within a constant factor of the optimal
clustering. As with the initialization step of K-Means++, it is possible to restrict our
algorithm to choose only data points as cluster centers, and so it can also be employed
for exemplar clustering.

We prove that on a large family of well-clusterable instances, our algorithm will al-
ways successfully recover the optimal clustering, whereas K-Means++ fails with high
probability. We complement this proof with a set of synthetic instances inspired by
the original experimental evaluation of K-Means++ [10]. As expected, our algorithm
always recovers the optimal clustering for these instances, whereas, K-Means++ (on
average) fails to recover 25% to 30% of the centers and produces solutions of cost about
1.7 times that of the optimum.

We also provide a thorough experimental evaluation on several previously studied datasets.
We show that our algorithm produces initial clusterings of significantly better quality—

110

4.1. Introduction

often by 30-40 percent—than those produced by D2-sampling used by K-Means++.
Moreover, we show that running Lloyd’s algorithm by using our initial centers results in
a much better set of final clusters for the k-means problem. Specifically, we show that
when initialized with our procedure, Lloyd’s algorithm often converges more rapidly (up
to 50%) to better (up to 25%) local optima than K-Means++. Our algorithm’s total
running time, when combined with Lloyd’s algorithm, was comparable to K-Means++
and, indeed, slightly faster over 100 executions on a large instance, owing to its superior
initial solutions. We found that our binary search technique outputs exactly k centers,
thus delivering a guaranteed constant-factor approximation, at least 90% of the time on
every dataset (for each fixed value of k)1 and, in fact, 100% of the time on all but one
dataset we considered.

Related work. A survey by Celebi et al. gives a comprehensive description and
experimental evaluation of several initialization procedures, including that employed
by K-Means++ [22]. Because K-Means++ offers a good tradeoff between running
time and both the solution quality and convergence time of Lloyd’s algorithm [10], it
has emerged as a de facto standard for k-means clustering. Recent work has focused on
improved and scalable implementations of K-Means++ in streaming [1] and parallel
settings [17], as well as approximations to its initial seeding using MCMC techniques
[16, 15].

Parallel to this, there has been a line of theoretical work focused on obtaining improved
approximation guarantees for k-means clustering in polynomial time, even when k and
d are considered part of the input. These approaches have been based on two primary
algorithmic paradigms: primal-dual [39, 55] and local search [42, 32, 25].

In the standard formulation of the k-means problem, the set S of k centers can be chosen
as arbitrary points in Rd. However, primal-dual and local search algorithms must instead
operate on a discrete k-means problem, in which one can only select centers from a
given, discrete set F of potential centers in Rd. In theory, there are various constructions
that, given a standard k-means instance, yield a set F so that the optimal cost of the
resulting discrete problem is at most (1+ε) times that of the original, continuous instance
[49, 35, 34, 43, 28]. However, many of these constructions are quite involved, and result
in sets F with prohibitively large dependence on ε (at least ε−d). If instead one does
not insist on obtaining the best possible approximation guarantee, it is easy to see that
simply using the point set C as the set of discrete centers increases the cost by at most a
factor of 2.

1In the rare event that this fails to produce a set of exactly k centers, we simply prune the solution
down to size k arbitrarily for the sake of comparison.

111

Chapter 4. Fast Algorithms and Empirical Results for k-Means

4.2 Preliminaries

As discussed before, the k-means clustering problem is formally defined as follows. The
input consists of an integer k (specifying the target number of clusters) and a set C
of n points in Euclidean space Rd of dimension d ∈ N. The goal is to select k cluster
centers µ1, . . . , µk ∈ Rd so as to minimize

∑
j∈C min1≤i≤k d(j, µi)2, where d(j, µi) denotes

the Euclidean distance between j and µi. As discussed at the end of the introduction,
although there are infinitely many choices of cluster centers, we can instead consider
the discrete problem in which centers might be chosen from a polynomially large set of
candidate points F , and suffer only a small loss in the clustering cost.

We begin by restating the LP relaxation and the Lagrangian relaxation for the k-means
problem. Later, we state a simpler version of our algorithm used for this problem and
introduce our ideas that makes it faster.

Linear programming relaxation, the Lagrangian relaxation and its dual. Hav-
ing discretized the set of potential centers, the standard linear programming (LP) relax-
ation of k-means can now be formulated as follows:

min
∑
i∈F,j∈C xij · d(i, j)2 (4.2.1)

s.t.
∑
i∈F xij ≥ 1 ∀j ∈ C (4.2.2)

xij ≤ yi ∀i ∈ F, j ∈ C (4.2.3)∑
i∈F yi ≤ k (4.2.4)
x, y ≥ 0 . (4.2.5)

The variables are (yi)i∈F and (xij)i∈F,j∈C with the intended meaning that yi should take
value 1 if i is selected as a center and xij should take value 1 if i is the closest selected
center to point j. The constraints say that (4.2.2) each client is assigned to at least one
center, (4.2.3) clients are only assigned to selected centers, and (4.2.4) no more than k
centers are selected.

The primal-dual approach for clustering problems, introduced by Jain and Vazirani [39],
is based on reducing the problem to the facility location problem via the Lagrangian
relaxation. The Lagrangian relaxation is obtained by multiplying the constraint (4.2.4)
times a Lagrange multiplier λ and moving it to the objective. This results, for every
λ ≥ 0, in the relaxation and its dual, as shown in Figure 4.1, which we denote by LP(λ)
and DUAL(λ), respectively. The dual is slightly simplified by noticing that the dual
variables (βij)i∈F,j∈C corresponding to the constraints (4.2.3) of the primal can always
be set βij = [αj − d(j, i)]+; the notation [a]+ denotes max(a, 0).

112

4.2. Preliminaries

LP(λ)

min
∑

i∈F ,j∈D
xij · d(j, i)2 + λ ·

(∑
i∈F

yi − k
)

s.t. (4.2.2), (4.2.3), and (4.2.5).

DUAL(λ)

max
∑
j∈D

αj − λ · k

s.t.
∑
j∈D

[αj − d(j, i)2]+ ≤ λ ∀i ∈ F (4.2.6)

α ≥ 0.

Figure 4.1 – The Lagrangian relaxation LP(λ) and its dual DUAL(λ).

Facility location and Lagrangian multiplier preserving approximations. An
important observation is that, for a fixed λ, the relaxation LP(λ) where we disregard the
constant term λ ·k is exactly the standard relaxation of the facility location problem with
squared distances and uniform opening cost λ. Recall that the facility location problem
(with uniform opening cost λ) is the problem of selecting a subset S ⊆ F of centers so as
to minimize the opening cost λ · |S| plus the connection cost

∑
j∈C mini∈S d(i, j)2. The

approach of Jain and Vazirani is now to employ an approximation algorithm for facility
location and to find a price (Lagrangian multiplier) λ so that k centers are selected. For
this to work, the used approximation algorithm for the facility location program has to
satisfy a technical condition called Lagrangian Multiplier Preserving (LMP). Formally, a
ρ-approximation algorithm is LMP for the facility location problem with opening costs
λ if it returns a solution S ⊆ F satisfying

∑
j∈C mini∈S d(j, i)2 ≤ ρ(OPT(λ) − |S|λ),

where OPT(λ) denotes the value of an optimal solution to LP(λ) without the constant
term λ · k. The definition of LMP is motivated by the following: suppose that an LMP
ρ-approximation algorithm returns a solution S of cardinality k. We claim that S is then
a ρ-approximate solution to k-means. To see this note that we have∑

j∈C
min
i∈S

d(j, i)2 ≤ ρ(OPT(λ)− |S|λ) = ρ(OPT(λ)− kλ),

where the right-hand side equals ρ the optimum value of LP(λ) that is a lower bound on
the optimal (discrete) k-means solution. This completes our description of the framework.
For more information, we refer the reader to the excellent text books [?] and [?].

113

Chapter 4. Fast Algorithms and Empirical Results for k-Means

4.3 A Fast Primal Dual Algorithm

In this section, we first present the LMP primal-dual algorithm that we use for the
facility location problem. This algorithm is a simpler version of the algorithm that we
presented in Chapter 3. Then, we explain how we use it to design a fast and provable
good initialization algorithm for k-means.

4.3.1 Primal-Dual Algorithm

The primal-dual algorithm takes as input a set of points C, a set of potential centers
F , and an opening cost λ, and outputs a set of centers S ⊆ F as its solution. The
algorithm contains two main phases, the dual-growth phase and the opening phase. The
first phase increases the α-values of the points in C, while keeping the dual constraint
(4.2.6) satisfied. Therefore, it finds a feasible solution to DUAL(λ). The second phase
finds the centers S using the dual solution that we found in the first phase. These two
phases are explained in detail below:

Dual-growth phase: We set all α-values to zero and initialize a set of active
points A to C. Then we increase the α-values corresponding to the points in A at
the same speed. We remove points from A, whenever one of the following events
occurs, and terminate once A = ∅:

• Event 1: The constraint (4.2.6) becomes tight for some center i ∈ F (i.e.∑
j [αj − d(i, j)2]+ = λ). In this case, we call this center tight. We also remove

all the active points j for which αj ≥ d(i, j)2 from A.

• Event 2: For some active point j ∈ A, there exists a tight center i ∈ F , such
that αj = d(i, j)2. In this case we remove j from A.

Opening phase: Let N(i) = {j | αj > d(i, j)2} and ti = maxj∈N(i) αj for each
tight center i. We construct a graph G with a vertex for each tight potential center i
and an edge between two centers i1, i2 if and only if d(i1, i2)2 ≤ δmin(ti1 , ti2), where
δ is a constant that we fix later. Then we greedily find a maximal independent set of
G and return it as the set of centers S.

The dual-growth phase of the primal-dual algorithm is the same for both Jain et al. [39]
and our result in previous chapters. The main difference is in the opening phase. Jain and
Vazirani’s algorithm adds an edge in G between two tight centers i1, i2 if N(i1)∩N(i2) 6= ∅.
One can show that this algorithm guarantees an LMP 9-approximation. We add an edge
between two tight centers if N(i1) ∩N(i2) = ∅ and d(i1, i2)2 ≤ δmin(ti1 , ti2). Then they

114

4.3. A Fast Primal Dual Algorithm

show that by choosing δ = 2.314, their algorithm results in an LMP 6.357-approximation.

Here, we have observed that our analysis in previous chapter is still valid even if the
condition that N(i1) ∩N(i2) 6= ∅ is dropped. This enables us to overcome one of the
issues in implementing a fast version of the primal-dual algorithm, as it saves a factor
of n in the construction of G during the opening phase, as described below in more
detail. There are two other issues to be addressed when translating the LMP primal-dual
algorithm for facility location into an algorithm for k-means. First, obtaining a solution of
size exactly k requires computationally expensive methods in theory to avoid pathological
cases. Here, we employ a more efficient approach that works provably well in theory for
well-clusterable instances and also performs well in a variety of experiments. Second,
the algorithms operate on a discrete set of potential centers. Transferring a continuous
instance to a discrete one while minimizing the effect on the desired approximation
guarantee, might result in a large set F of potential centers.

4.3.2 Runtime Improvements

In this section, we describe our ideas for translating the LMP primal-dual algorithm into
a fast and provably good primal-dual algorithm (FastPD) for the k-means problem.

Dual-growth phase and opening phase. In the dual-growth phase, we maintain a
min-heap of possible events, which allows us to efficiently find the next event. As there
are also at most O(n|F |) events, the total running time for this part of the algorithm
would be O(n|F | · log(n|F |)). While processing events, we can also easily compute the
t-values for each center that becomes tight. Using these t-values computed during the
dual-growth phase, we can construct the graph G in time O(|F |2), in contrast to time
Ω(n|F |2) as required by primal-dual approaches of Jain and Vazirani. Combining the
above observations, the total running time of our primal dual algorithm for any given
price λ is O(n|F | log(n|F |) + |F |2).

Opening exactly k centers. In order to use the LMP algorithm, we must find a price
λ so that the opening phase results in a set of exactly k centers. In order to accomplish
this, we run a binary search: if for some value λ, we find a set of centers of size less than k
then we decrease λ. Similarly, if we find a set of centers of size greater than k, we increase
λ. The maximum value of λ that we need to consider is O(n∆), as a result this process
takes time at most O(log(n∆)), where ∆ is the maximum value between a point and a
potential centers, which without loss of generality we can assume is poly(n). In general,
this procedure might not eventually find a set of exactly k centers, since the number of
centers returned by the opening phase is not a smooth function in λ. However, note that
whenever our procedure does correctly find a set of k centers via binary search, the LMP

115

Chapter 4. Fast Algorithms and Empirical Results for k-Means

factor 6.357 guarantee holds with respect to its output. Moreover, in the next section, we
formally prove that it always finds the correct k for a family of well-clusterable instances.
Additionally, we observed in our experiments that on practical instances, binary search
indeed almost always produces a solution of size k. In the rare case that it does not, we
arbitrarily add or remove some centers from our solution to obtain exactly k centers.

Overall, our binary search ensures that the number of the times that we run the primal-
dual algorithm is O(logn). Therefore, we obtain a total running time O(n|F | log2 n +
|F |2 logn).

Constructing a Set F of potential centers. The previous guarantees all hold for
the discrete k-means problem in which centers may only be chosen from a discrete set
F . We now consider the problem of obtaining a small such set of centers F so that our
approximation guarantees can be translated to the original, continuous k-means problem.
To balance approximation performance and running time, here, we simply set F = C.
That is, we place one potential center at each data point. It can be seen that this results
in a loss of at most a factor of 2 compared to the optimal solution that may select centers
anywhere in the underlying space Rd. In order to show that, consider any cluster Q in
any solution to the given k-means instance. Let q be the centroid of this cluster, i.e.,
q = 1

|Q|
∑
x∈Q x (each coordinate of q is the average of the coordinates of the points in

Q). Moreover, let cost(Q) =
∑
x∈Q d(x, q)2 which is the actual cost of the cluster Q. We

know that for any point y:∑
x∈Q

d(x, y)2 ≤
∑
x∈Q

d(x, q)2 + |Q|d(y, q)2

Let y be the closest point in Q to q, we get∑
x∈Q

d(x, y)2 ≤ 2
∑
x∈Q

d(x, q)2 = 2cost(Q)

Therefore, by choosing the closest point to the centroid in each cluster, we obtain that
the total cost increases at most by a factor 2. This concludes that, assigning F = C also
increases the cost at most by a factor of 2.

By putting the above ideas together we get our fast primal-dual algorithm for k-means
that we call FastPD. In summary, FastPD takes as input an instance (C, k) of k-means,
sets the potential centers F equal to the set of clients C, then runs a binary search on
the opening cost λ in order to find a set S of k opened centers.

For larger instances, we proceed similarly except we first sparsify the instance to reduce
|C|. There is a long series of works investigating such techniques, which transform an
instance (C, k) of k-means into an instance (C ′, k) such that |C ′| � |C|. In this work we
use a sampling approach based on Feldman et al. [28]; it runs in time O(nkd), to obtain

116

4.4. Results for Clusterable Instances

an instance with |C ′| = O(k2/ε). We then run our algorithm FastPD on the resulting
instance (C ′, k). Feldman et al. [28] show that for any constant β, any β-approximate
solution for (C ′, k) that opens a subset of clients as centers, the same solution (set of
centers) is a β(1 + ε)-approximate solution.

Combining the loss from sparsification with the loss due to selecting only (sparsified) data
points as centers, the overall approximation guarantee that we get is (6.357 · 2)(1 + ε).
Moreover, the overall running time of our algorithm is O(nkd + poly(k, logn)). We
summarize this in the following theorem:

Theorem 4.3.1. For any 0 < ε < 1, the FastPD algorithm with sparsification, runs
in time O(nkd + poly(k/ε, logn)). Moreover, any solution of size k that it finds is a
(12.714 + ε)-approximate solution.

4.4 Results for Clusterable Instances

In this section, we compare our algorithm to k-means++ for instances in which the k
clusters are well-separated. We start with a theoretical analysis then further manifest
the advantage of our algorithm with experiments. We consider a similar model of
clusterability as that considered by Awasthi et al. [12] in the study of LP-relaxations.
We prove the following theorem:

Theorem 4.4.1. Consider k spheres of unit radius in Rd whose centers are separated
by distance 10 ≤ ∆ ≤ β where β ≥ 10 is an arbitrary constant. For large enough n,
if n random points are drawn uniformly and independently from each of the k spheres,
then FastPD is always guaranteed to find the correct clustering whereas K-Means++
initialization fails with high probability to correctly recover a constant fraction (depending
on β) of the clusters.

Proof. Lemma 4.4.2 (analysis of K-Means++ initialization) and Lemma 4.4.3 (analysis
of FastPD) imply the theorem.

Lemma 4.4.2. Under the same setting as in Theorem 4.4.1, K-Means++ initialization
fails with high probability of correctly recovering a constant fraction (depending on β) of
the clusters.

Proof. We first note that, for large enough n, we have that the cost of each sphere/cluster
is with high probability at least (1 − ε)n for a small 0 < ε < 1/k. We now analyze
k-means++ initialization, assuming that this holds for each of the k spheres (which, as
already mentioned, holds with high probability for large n). The key to the analysis is
the following: In any iteration of k-means++ initialization, the probability of sampling a
center from a cluster is at most (2 + β)2/k. This is clearly true for the first iteration (as
a center is chosen uniformly at random so the probability is 1/k to select a center from a

117

Chapter 4. Fast Algorithms and Empirical Results for k-Means

specific cluster using that all clusters contain the same number of points). For the general
case, consider the iteration after that t centers D = {d1, . . . , dt} have been sampled. Let
S1, . . . , Sk be the spheres/clusters of the instance. The probability to sample a center
from a sphere Sj is equal to∑

x∈Sj d(x,D)2∑k
i=1

∑
x∈Si d(x,D)2

, (4.4.1)

where d(x,D) = mini∈D d(x, i). As the distance between two points is at most 1 + β + 1
(using the triangle inequality and that we have unit spheres whose centers are at most
distance β apart), the numerator can be bounded by n · (2 + β)2. To bound the
denominator, let s1 be the number of spheres that have exactly one center in D and let
s0 be the ones that have none. Then s0 ≥ k − s1 − (t− s1)/2 = k − (t+ s1)/2. By the
initial assumption, the cost of the centers with exactly one center in D is at least (1− ε)n.
Furthermore, as the distance between points from different centers is at least 8, the cost
of the centers with zero centers in D is at least 82n. It follows that the denominator is
bounded from below by at least

s1 · (1− ε)n+ 82n(k − (t+ s1)/2) (4.4.2)

which is minimized when s1 is maximized, i.e., when s1 = t. Hence

(4.4.2) ≥ t(1− ε)n+ 82n(k − t) ≥ n
(
82(k − t) + t(1− ε)

)
≥ n

(
82 + (k − 1)(1− ε)

)
≥ k · n ,

where for the penultimate inequality we used that t ≤ k − 1 and, for the last inequality,
we used that ε < 1/k. Our bounds on the numerator and denominator, imply that (4.4.1)
is at most (2 + β)2/k.

Having proved that in each iteration the probability to sample a center from a sphere is
at most (2 +β)2/k, we can conclude that the probability to fail to recover a sphere in the
initialization is at least (1− (2+β)2

k)k which is a constant c ≈ e−(2+β)2 only depending on
β. Hence, the expected number of clusters that we fail to recover is at least c · k. The
fact that we fail to recover a constant fraction (say c/2) with high probability follows
from basic variance calculations.

We remark that the following lemma shows that our algorithmic always recovers the
correct clustering in the setting of Theorem 4.4.1 (i.e., it is not probabilistic). In addition,
using the same proof technique, one can see that it is possible to give tighter bounds on
the separation assuming more structure of the distances within clusters. This further
explains the experimental success of our algorithm since when selecting n random points
from a sphere or a Gaussian one expects most pairwise distances to be similar.

118

4.4. Results for Clusterable Instances

Lemma 4.4.3. Algorithm FastPD is guaranteed to return the correct clustering if given
an instance in which the (unique) optimal clustering O1, . . . , Ok satisfies:

1. each cluster contains n points;

2. d(j, j′) ≤ 2 for all j, j′ points that belong to the same cluster;

3. d(j, j′) ≥ 2∆ = 2
√

1 + δ ≈ 3.6 for all j and j′ that belong to different clusters.

We note that the above conditions are clearly satisfied by the randomly generated
instances in the statement of Theorem 4.4.1 (where each Oi corresponds to one of the
spheres).

Proof. The proof follows from showing the following:

1. The algorithm opens at least one center in each cluster Oi if λ ≤ 4n
δ ;

2. The algorithm opens exactly one center in each cluster Oi if λ = 4n
δ ;

3. The algorithm opens at most one center in each cluster if λ ≥ 4n
δ .

We first prove the case when λ = n
δk . The other cases then follow easily. Consider a

cluster Oi and recall that we have a potential center located at each client. We refer to
the center co-located with client j as cj . On the one hand, using that |Oi| = n it is easy
to see that no center in Oi can be tight before time 4/δ (it is tight at this time if and
only if all clients in Oi are co-located). On the other hand, there must be a center in Oi
that is tight at time t = 4 + 4

δ . Indeed suppose that at time t = 4 + 4
δ no center has been

tight. Then the total contribution to center cj (that is co-located with client j ∈ Oi)
equals∑

j′∈Oi

[αj′ − d(j, j′)2]+ =
∑
j′∈Oi

[t− d(j, j′)2]+ ≥ |Oi|(t− 4) = λ

and so cj would be tight opened. We can thus conclude that there is at least one tight
center in Oi and that any tight center cj satisfies 4/δ ≤ tcj ≤ 4 + 4

δ . Hence, by definition,
the graph G constructed in the opening phase of our algorithm satisfies2:

• It has an edge between any two tight centers of Oi since d(j, j′)2 ≤ δ(4/δ) (where
4/δ is the minimum opening time).

2Recall that graph G has an edge between two tight facilities i1 and i2 if d(i1, i2)2 ≤ δmin{ti1 , ti2}
where ti1 and ti2 are the times that these facilities became tight.

119

Chapter 4. Fast Algorithms and Empirical Results for k-Means

• It has no edge from a center in Oi to a tight center from another cluster because if
j, j′ belong to different clusters then d(j, j′)2 > 4∆2 = δ(4 + 4

δ) (where 4 + 4
δ is the

maximum opening time).

In other words, G consists of k disjoint cliques of tight centers (one clique for each Oi),
hence our algorithm will correctly recover the clusters. The remaining two cases now
follow easily from the arguments above. If λ ≤ 4n

δ , then by the same arguments, there
must be at least one tight center in each cluster at time t ≤ 4 + 4

δ , and still G will not
contain any edges between this center and tight facilities from different centers. Similarly,
if λ ≥ 4n

δ then no center can be tight before time t ≥ 4
δ and so still G must contain an

edge between any two centers in the same cluster.

The same proof technique as the last lemma also gives the following:

Lemma 4.4.4. Algorithm FastPD is guaranteed to return the correct clustering if given
an instance in which the (unique) optimal clustering O1, . . . , Ok satisfies the following
for some 0 ≤ ε ≤ 1/2:

1. each cluster contains n points;

2. d(j, j′) ∈ [1, 1 + ε] for all j, j′ points that belong to the same cluster;

3. d(j, j′) > 1 + ε for all j and j′ that belong to different clusters.

The difference compared to Lemma 4.4.3 is that we assume some regularity of the distances
within a cluster and, with this assumption, we get a tight bound on the separation of
the clusters. This further explains the experimental success of our algorithm, as when
selecting n random points from a sphere or a Gaussian one expects most pairwise distances
to be similar.

Proof. The proof is by the same arguments as given in the proof of Lemma 4.4.3. Indeed,
consider the opening price λ to be (1 + ε)2/δ which by assumption on ε is at most 1.
Then each center (recall that centers are co-located with clients) will become tight at
time (1 + ε)2/δ. As d(j, j′)2 ≤ δ(1 + ε)2/δ for j and j′ in the same cluster, every two
tight centers belonging to the same cluster will be adjacent in the graph G constructed
in the opening phase of FastPD. Similarly, as d(j, j′) > δ(1 + ε)2/δ for j and j in
different clusters, no tight centers from different clusters will be adjacent in G. It follows
that G consists of k disjoint cliques corresponding to the clusters if the opening price
is λ = (1 + ε)2/δ. If λ is smaller, then it is clear that we still open at least one center
in each cluster (no centers from different clusters are adjacent); and if λ is bigger, then
at most one center is opened in each cluster (since they form cliques in G). Hence, the
lemma follows.

120

4.4. Results for Clusterable Instances

The above theorem considers very well-clusterable instances in the sense that the clusters
are well separated and it is indeed easy to design customized algorithms for this setting.
The advantage here is that our algorithm, which is both fast and has the best known
worst-case guarantees, performs as expected whereas k-means++ initialization fails to
correctly recover the clusters. We remark that this behavior of k-means++ has been
observed before and it continues to hold even after running Lloyd’s algorithm (see the
experimental analysis below). Bubeck et al. [18] overcome some of these difficulties by
sampling more points than k and then performing a heuristic pruning step. This can be
seen as having similarities to our sparsification step (where we compress the instance
through sampling). However, here we use an algorithm with known guarantees to do the
pruning step.

In order to further compare the performance of our algorithm and k-means++ on well-
clusterable data, we run a series of experiments using synthetically generated sets of
10, 000 points. For each k = 25, 50, 200, we generate a d dimensional instance (where
d = 15 for k = 25 and d = 20 for k = 50, 200) as follows. We first select k cluster centers
on the d-dimensional {−1, 1}-hypercube uniformly at random. The parameter d is select
to ensure that any two selected centers were separated by squared Euclidean distance 8.
At each selected position c, we then generate a cluster of n = 10000/k points randomly.
We consider two different models for generating points around a cluster center c: in the
Sphere model, points were selected uniformly at random on the surface of a d-dimensional
unit sphere with center c; in the Gaussian model, points were selected according to a
d-dimensional Gaussian with mean c and covariance matrix Σ = 1

16Id. We remark that
our experimental setup is similar to that used in the original experimental evaluation
of K-Means++ [10], except our instances exhibit a much more moderate separation
between clusters.3

3For comparison, note that [10] place clusters at the vertices of a 5 and 15 dimensional hypercube
with side-length 500 and generate points from Gaussian distributions of unit variance.

Table 4.1 – Results for synthetic, well-separated instances.

Sphere Gaussian
k= 25 50 200 k= 25 50 200

Unrecovered K-Means++ 30% 26% 28% 29% 27% 29%
Clusters FastPD 0% 0% 0% 0% 0% 0%

Cost
K-Means++ 16,993 18,564 17,580 16,163 21,851 20,372

FastPD 9,975 9,949 9,796 9,382 12,407 12,206
Rel. Improvement 41.3% 46.4% 44.3% 42.0% 43.2 % 40.1 %

121

Chapter 4. Fast Algorithms and Empirical Results for k-Means

The results of our experiments are shown in Table 4.1. In order to measure the perfor-
mance, we consider the number of clusters correctly recovered by each algorithm in the
following sense. Let C be a randomly generated cluster and C̃ be some cluster returned
by the algorithm. We say that C̃ captures C if (1) C̃ contains at least 95% of the points
from C, and (2) at most 5% of the points in C̃ come from clusters other than C. We
say that an algorithm recovers C if it returns any cluster C̃ that captures C. Otherwise,
C is unrecovered. In Table 4.1 we report both the cost and the fraction of unrecovered
clusters for the considered number of clusters correctly recovered by FastPD and by
K-Means++. In all cases FastPD correctly recovers all clusters, whereas K-Means++
(even after running Lloyd’s algorithm) fails to recover (on average, over 100 runs) 25-30%
of the clusters. In fact K-Means++ failed to correctly recover the clusters in all of
the 100 runs for the considered instances. In addition, the clusterings returned by
K-Means++ have around 1.7 times the cost of that produced by FastPD.

4.5 Empirical Results

We also tested the performance of our algorithm against that of K-Means++ on a
variety of datasets previously used to evaluate k-means clustering algorithms [10, 17, 15].
We considered the Breast Cancer (n = 569; d = 30), Cloud (n = 1024; d = 10), Abalone
(n = 4177; d = 8), Spam (n = 4601, d = 58), and Census datasets (n = 2, 458, 285;
d = 68) from the UCI Machine Learning Repository4.

4.5.1 Evaluation of Initial Solutions

In this section, we evaluate the cost of the initial solutions produced by K-Means++
initialization and FastPD on the Cloud dataset and the Breast Cancer dataset. Both
algorithms produce k initial centers chosen from the set of all input data points. Thus,
these experiments can also be viewed as an instance of exemplar clustering, where we
seek the k best representatives from each dataset. For a benchmark, we also compare
both algorithms to the cost of the optimum solution for the associated linear program
(as given in Section 4.2), which gives a lower-bound on the true optimal cost for each
instance. Our results are presented in Table 4.2. In all cases, FastPD outperforms
K-Means++ initialization. Moreover, the difference between the cost of FastPD and
the LP optimum is smaller than that of the K-Means++ initialization by a factor of 4
in almost all cases.

4https://archive.ics.uci.edu/ml/datasets.html

122

4.5. Empirical Results

Table 4.2 – Initial solution costs for Cloud and Breast Cancer datasets (costs are ×106)

Cloud Dataset Breast Cancer Dataset
k=10 25 50 k=10 25 50

FastPD 6.83 2.49 1.37 9.72 3.18 1.34
K-Means++ 11.34 3.76 1.74 16.00 4.95 1.97
LP Optimum 5.96 2.14 1.18 8.67 2.87 1.13

FastPD Ratio 1.14 1.16 1.16 1.11 1.10 1.18
K-Means++ Ratio 1.90 1.56 1.47 1.84 1.72 1.74

4.5.2 Comparison after Running Lloyd’s Algorithm

Next, we evaluated the performance of running K-Means++ and FastPD followed
by Lloyd’s algorithm. For the Census dataset, we first employed sparsification before
running FastPD as described in Section 4.3.2. After finding a set of k initial centers, we
used the full, original dataset to compute the subsequent iterates for Lloyd’s algorithm.
Note that we always compare to the performance of K-Means++ without sparsification.
That is, we ran K-Means++ on the full, original dataset, and all solution costs for
both algorithms are reported with respect to the original, unsparsified instance. For
both initialization methods, we ran Lloyd’s algorithm to convergence and measured the
number of iterations. In next section, we also provide a series of plots which show that
our algorithm also produces solutions of better final costs, even if Lloyd’s is terminated
after a few iterations (as is common in practice).

Our results are shown in Table 4.3. On all datasets, we report the average of 100 runs
of K-Means++. For the Census dataset (the large dataset), we report the average of
100 runs of FastPD (to account for the randomness in our sparsification routine). We
present raw cost together with the relative improvement that we obtain compared to
K-Means++. That is, we report the ratio 1− FastPD cost

K-Means++ cost . The results show that
our algorithm performs much better than K-Means++ in all the discussed aspects. The
cost of our algorithm’s initial solution is roughly half the cost of K-Means++. Moreover,
even after running Lloyd’s algorithm completely to convergence the final clusterings that
FastPD produces are on the order of 10% better than K-Means++, which performs
roughly twice as many of Lloyd’s iterations.

For all small instances, our algorithm always found a set of exactly k centers S. For
the Census dataset, our algorithm failed to find exactly k in only 10% of the runs for
each of the experiments. In that case, we simply discarded |S| − k centers arbitrarily
(when |S| > k) or added k− |S| arbitrary data points as centers (when k < |S|) to obtain
a set of k centers for Lloyd’s algorithm. On small instances the running time of our
algorithm and K-Means++ were comparable (both took only a few seconds). On the
large instance (Census dataset), the total running time of FastPD with sparsification

123

Chapter 4. Fast Algorithms and Empirical Results for k-Means

for all experiments was lower than that of K-Means++ by a relative factor of 8.1%,
8.9%, and 6.2% (k = 25, 50, 75).

Table 4.3 – Raw experimental results (for simplicity, we divide costs by a suitable power
of 10).

Dataset Initial solution Final solution Number of
Lloyd’s rounds

PD km++ Ratio PD km++ Ratio PD km++ Ratio

Cloud
k = 10 6.86 11.34 39.49% 5.779 6.218 6.63% 9.10 26.9 66.19%
k = 25 2.48 3.10 33.89% 2.02 2.163 6.22% 21.00 19.95 -5.26 %
k = 50 1.37 1.96 30.06% 1.10 1.10 6.09% 10.00 15.36 34.89%

Breast
Cancer

k = 10 10.6 15.9 33.65% 8.64 9.24 6.52% 6.00 16.0 62.68%
k = 25 3.18 4.95 35.72% 2.72 2.99 9.12% 4.00 12.7 68.67 %
k = 50 1.34 1.97 31.53% 1.11 1.20 7.14% 4.66 11.7 60.44%

Abalone
k = 10 23.4 36.3 35.52% 17.7 19.7 10.36% 4.00 11.3 64.63%
k = 25 5.19 9.55 45.68% 4.64 5.33 12.95% 13.0 20.2 35.70 %
k = 50 1.89 3.13 39.50% 1.62 1.82 10.73% 14.0 27.1 48.33%

Spam
k = 10 24.0 34.9 31.11% 17.7 19.3 8.55% 3.00 10.0 70.26%
k = 25 5.19 9.63 39.4% 4.64 54.1 14.17% 13.0 19.5 33.63 %
k = 50 1.89 3.13 39.5% 1.62 1.82 10.73% 14.0 27.1 48.33%

Census
k = 25 28.2 31.2 9.34% 17.1 17.9 4.13% 49.3 57.5 14.21%
k = 50 20.7 23.1 10.45% 12.6 13.1 3.93% 60.5 72.7 16.77 %
k = 75 17.7 19.4 8.83% 10.8 1.11 2.05% 76.9 89.7 14.34%

4.5.3 Performance of FastPD Compared to K-Means++ as a Function
of the Number of Steps of Lloyd’s Algorithm

In Figure 4.2 we compare FastPD with K-Means++ after each step of the Lloyd’s
algorithm. Notice that regardless of the number of steps that we take, our algorithm
always performs better than K-Means++. In fact, the difference is minimized when
running Lloyd’s algorithm until convergence (which is the numbers reported in the other
experiments). Note that the huge improvement in the cost after one step of Lloyd’s
algorithm is because of the calculation of the centroids of the initial clusters (recall that
both FastPD and K-Means++ uses the clients as initial cluster centers). Finally note
that we plot the average cost of all the solutions for which Lloyd’s has not yet converged
after some number of iterations, hence the curves are not monotone decreasing.

124

4.5. Empirical Results

150000

170000

190000

210000

230000

250000

270000

1 6 11 16 21

ABALONE DATA SET, K=10

FAST PD K-MEANS++

42000

47000

52000

57000

62000

67000

1 6 11 16 21 26 31

ABALONE DATA SET, K=25

FAST PD K-MEANS++

15000

16000

17000

18000

19000

20000

21000

22000

1 6 11 16 21 26 31 36 41 46 51 56

ABALONE DATA SET, K = 50

FAST PD K-MEANS++

Figure 4.2 – Graphs showing the cost of the solutions obtained by FastPD and K-
Means++ after each step of Lloyd’s algorithm.

125

5 Conclusion

In this thesis, we have studied clustering problems from both a theoretical and a practical
point of view. We have first considered the dynamic facility location problem. We have
presented a new stable primal rounding technique by using exponential clock random
variables and have achieved a constant-factor approximation guarantee. An interesting
direction would be to use these techniques in other evolving problems.

We have also considered the k-means and the k-median problems and have designed
algorithms that improve the approximation guarantees for these problems in various
settings. We have presented a fairly clean quasi-polynomial time algorithm and we have
showed that these techniques can be generalized to achieve a polynomial running time
in a rather complex way. An interesting open problem would be to obtain a simpler
algorithm with polynomial running time.

Additionally, we note that although Jain, Mahdian and Saberi [38] present an LMP
2-approximation algorithm for the facility location problem, we are not yet able to use
their algorithm for our approach (and thereby not able to improve the approximation
guarantee for k-median in general metrics). This is because it is unclear how to obtain a
sequence of close dual solutions by using these techniques, hence we do not know how to
guarantee that the algorithm will open exactly k facilities by only losing a factor (1 + ε)
in that case. An interesting open question is whether it is possible to combine their
techniques with ours to give a 2-approximation for k-median.

The natural LP relaxation of the k-median problem has been proven to be useful in
designing approximation algorithms. Therefore understanding it better and finding the
integrality gap of this LP is of great importance.

Furthermore, we have presented a fast primal-dual algorithm (FastPD) for the k-
means problem; that has theoretical guarantees, as well as an improved experimental
performance. We have formally showed that FastPD correctly recovers the clusters in
well-clusterable instances (in contrast to K-Means++ that fails for these instances).

127

Chapter 5. Conclusion

Our empirical evaluation have further shown that we outperform K-Means++ in three
other aspects: initial solution, final solution, and the number of Lloyd’s rounds. Our
work is the first to use the primal-dual approach in practice for the k-means problem.
An interesting open problem would be to find a systematic ways to improve the running
time of primal-dual algorithms and to maintain good theoretical guarantees. It is quite
easy to see that this approach can be heavily parallelized and further research in this
direction looks fruitful.

128

Bibliography

[1] M. R. Ackermann, M. Märtens, C. Raupach, K. Swierkot, C. Lammersen, and
C. Sohler. StreamKM++: A clustering algorithm for data streams. J. Exp. Algo-
rithmics, 17:2.4:2.1–2.4:2.30, May 2012.

[2] S. Ahmadian, A. Norouzi-Fard, O. Svensson, and J. Ward. Better guarantees for
k-means and euclidean k-median by primal-dual algorithms. In 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,
October 15-17, 2017, pages 61–72, 2017.

[3] H. An, A. Norouzi-Fard, and O. Svensson. Dynamic facility location via exponential
clocks. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages
708–721, 2015.

[4] H. An, A. Norouzi-Fard, and O. Svensson. Dynamic facility location via exponential
clocks. ACM Trans. Algorithms, 13(2):21:1–21:20, 2017.

[5] A. Anagnostopoulos, R. Bent, E. Upfal, and P. V. Hentenryck. A simple and
deterministic competitive algorithm for online facility location. Information and
Computation, 194(2):175 – 202, 2004.

[6] B. M. Anthony and A. Gupta. Infrastructure leasing problems. In Proc. 12th IPCO,
pages 424–438, 2007.

[7] A. Archer, R. Rajagopalan, and D. B. Shmoys. Lagrangian relaxation for the
k-median problem: New insights and continuity properties. In Proc. 11th ESA,
pages 31–42, 2003.

[8] D. Arthur and S. Vassilvitskii. How slow is the k-means method? In Proc. 22nd
SoCG, pages 144–153, 2006.

[9] D. Arthur and S. Vassilvitskii. K-means++: The advantages of careful seeding. In
Proc. 18th SODA, pages 1027–1035, 2007.

129

Bibliography

[10] D. Arthur and S. Vassilvitskii. K-means++: The advantages of careful seeding.
In Proc. 18th SODA, SODA ’07, pages 1027–1035, Philadelphia, PA, USA, 2007.
Society for Industrial and Applied Mathematics.

[11] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local
search heuristics for k-median and facility location problems. SIAM J. Comput.,
33(3):544–562, 2004.

[12] P. Awasthi, A. S. Bandeira, M. Charikar, R. Krishnaswamy, S. Villar, and R. Ward.
Relax, no need to round: Integrality of clustering formulations. In Proc. 2015, pages
191–200, New York, NY, USA, 2015. ACM.

[13] P. Awasthi, A. Blum, and O. Sheffet. Stability yields a PTAS for k-median and
k-means clustering. In Proc. 51st FOCS, pages 309–318, 2010.

[14] P. Awasthi, M. Charikar, R. Krishnaswamy, and A. K. Sinop. The hardness of
approximation of euclidean k-means. In Proc. 31st SoCG, pages 754–767, 2015.

[15] O. Bachem, M. Lucic, H. Hassani, and A. Krause. Fast and provably good seedings
for k-means. In NIPS, pages 55–63, 2016.

[16] O. Bachem, M. Lucic, S. H. Hassani, and A. Krause. Approximate k-means++ in
sublinear time. In Proc. 30th, pages 1459–1467, 2016.

[17] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii. Scalable
k-means++. PVLDB, 5(7):622–633, 2012.

[18] S. Bubeck, M. Meila, and U. von Luxburg. How the initialization affects the stability
of the k-means algorithm. ESAIM: Probability and Statistics, 16:436–452, Jan. 2012.

[19] N. Buchbinder, J. S. Naor, and R. Schwartz. Simplex partitioning via exponential
clocks and the multiway cut problem. In Proceedings of the 45th Annual ACM
Symposium on Theory of Computing, STOC ’13, pages 535–544, 2013.

[20] J. Byrka and K. Aardal. An optimal bifactor approximation algorithm for the metric
uncapacitated facility location problem. SIAM J. Comput., 39(6):2212–2231, 2010.

[21] J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan, and K. Trinh. An improved
approximation for k-median, and positive correlation in budgeted optimization.
In Proc. 26th SODA, pages 737–756, 2015.

[22] M. E. Celebi, H. A. Kingravi, and P. A. Vela. A comparative study of efficient
initialization methods for the k-means clustering algorithm. Expert Systems with
Applications, 40(1):200 – 210, 2013.

[23] M. Charikar and S. Guha. Improved combinatorial algorithms for facility location
problems. SIAM J. Comput., 34(4):803–824, 2005.

130

Bibliography

[24] F. A. Chudak and D. B. Shmoys. Improved approximation algorithms for the
uncapacitated facility location problem. SIAM J. Comput., 33(1):1–25, 2004.

[25] V. Cohen-Addad, P. N. Klein, and C. Mathieu. The power of local search for
clustering. CoRR, abs/1603.09535, 2016.

[26] G. Divéki and C. Imreh. Online facility location with facility movements. Central
European Journal of Operations Research, 19(2):191–200, 2011.

[27] D. Eisenstat, C. Mathieu, and N. Schabanel. Facility location in evolving metrics.
In Proceedings of the 41st International Colloquium on Automata, Languages, and
Programming, ICALP ’14, 2014. To appear.

[28] D. Feldman, M. Monemizadeh, and C. Sohler. A PTAS for k-means clustering based
on weak coresets. In J. Erickson, editor, Proc. 23rd SoCG, pages 11–18, 2007.

[29] D. Fotakis. Incremental algorithms for facility location and k-median. Theoretical
Computer Science, 361(2-3):275 – 313, 2006.

[30] D. Fotakis. On the competitive ratio for online facility location. Algorithmica,
50(1):1–57, 2008.

[31] D. Fotakis. Online and incremental algorithms for facility location. SIGACT News,
42(1):97–131, 2011.

[32] Z. Friggstad, M. Rezapour, and M. R. Salavatipour. Local search yields a PTAS for
k-means in doubling metrics. CoRR, abs/1603.08976, 2016.

[33] A. Gupta and K. Tangwongsan. Simpler analyses of local search algorithms for
facility location. CoRR, abs/0809.2554, 2008.

[34] S. Har-Peled and A. Kushal. Smaller coresets for k-median and k-means clustering.
Discrete & Computational Geometry, 37(1):3–19, 2007.

[35] S. Har-Peled and S. Mazumdar. On coresets for k-means and k-median clustering.
In Proc. 36th STOC, pages 291–300. ACM, 2004.

[36] A. K. Jain. Data clustering: 50 years beyond k-means. Pattern Recogn. Lett.,
31(8):651–666, June 2010.

[37] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. V. Vazirani. Greedy facility
location algorithms analyzed using dual fitting with factor-revealing LP. J. ACM,
50:795–824, 2003.

[38] K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility location
problems. In Proc. 34th STOC, pages 731–740, 2002.

131

Bibliography

[39] K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and lagrangian relaxation. J.
ACM, 48(2):274–296, 2001.

[40] K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and Lagrangian relaxation. J.
ACM, 48(2):274–296, 2001.

[41] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y.
Wu. A local search approximation algorithm for k-means clustering. Comput. Geom.,
28(2-3):89–112, 2004.

[42] T. Kanungo, D. M. Mount, N. S. Netanyahu, A. Y. Wu, and C. D. Piatko. A local
search approximation algorithm for k -means clustering. Computational Geometry,
28(2-3):89–112, 2004.

[43] A. Kumar, Y. Sabharwal, and S. Sen. Linear-time approximation schemes for
clustering problems in any dimensions. J. ACM, 57(2):5:1–5:32, Feb. 2010.

[44] E. Lee, M. Schmidt, and J. Wright. Improved and simplified inapproximability for
k-means. CoRR, abs/1509.00916, 2015.

[45] S. Li. A 1.488 approximation algorithm for the uncapacitated facility location
problem. Inf. Comput., 222:45–58, 2013.

[46] S. Li and O. Svensson. Approximating k-median via pseudo-approximation. SIAM
J. Comput., 45(2):530–547, 2016.

[47] J. Lin and J. S. Vitter. Approximation algorithms for geometric median problems.
Inf. Process. Lett., 44:245–249, 1992.

[48] S. Lloyd. Least squares quantization in PCM. IEEE Trans. Inf. Theor., 28(2):129–
137, Sept. 2006.

[49] J. Matoušek. On approximate geometric k-clustering. Discrete & Computational
Geometry, 24(1):61–84, 2000.

[50] A. Meyerson. Online facility location. In Proceedings of the 42nd IEEE Symposium
on Foundations of Computer Science, FOCS ’01, pages 426–431, 2001.

[51] C. Nagarajan and D. P. Williamson. Offline and online facility leasing. In Proc.
13th IPCO, IPCO’08, pages 303–315, Berlin, Heidelberg, 2008. Springer-Verlag.

[52] M. Newman. The structure and function of complex networks. SIAM Review,
45(2):167–256, 2003.

[53] R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy. The effectiveness of
Lloyd-type methods for the k-means problem. J. ACM, 59(6):28:1–28:22, Jan. 2013.

132

Bibliography

[54] R. Pastor-Satorras and A. Vespignani. Epidemic spreading in scale-free networks.
Phys. Rev. Lett., 86:3200–3203, 2001.

[55] M. Shindler, A. Wong, and A. Meyerson. Fast and accurate k-means for large
datasets. In NIPS, pages 2375–2383, 2011.

[56] D. B. Shmoys, E. Tardos, and K. Aardal. Approximation algorithms for facility
location problems (extended abstract). In Proc. 29th STOC, pages 265–274, 1997.

[57] J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, L. Isella, J.-F. Pinton, M. Quaggiotto,
W. Van den Broeck, C. Régis, B. Lina, and P. Vanhems. High-resolution measure-
ments of face-to-face contact patterns in a primary school. PLoS ONE, 6(8):e23176,
2011.

[58] C. Tantipathananandh, T. Berger-Wolf, and D. Kempe. A framework for community
identification in dynamic social networks. In Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’07, pages
717–726, 2007.

[59] A. Vattani. k-means requires exponentially many iterations even in the plane.
Discrete & Computational Geometry, 45(4):596–616, 2011.

[60] D. Williamson and D. Shmoys. The Design of Approximation Algorithms. Cambridge
University Press, 2011.

133

Ashkan Norouzi-Fard

EPFL IC IIF THL2
INF 136, Station 14
CH-1015 Lausanne

Cell Phone: +41-78-7911017
Email: ashkan.norouzifard@epfl.ch

Home Page: people.epfl.ch/ashkan.norouzifard

� Combinatorial OptimizationResearch
Interests � Approximation and Randomized Algorithms

� Online and Streaming Algorithms

� Machine Learning

� École Polytechnique Fédérale de Lausanne, Switzerland (Sept 2013 - present)Education

· Ph.D candidate in Computer Science

· Advisor: Prof. Ola Svensson

� Sharif University of Technology, Tehran, Iran (Sept 2009 - July 2013)

· Thesis: Finding Paths with Minimum Shared Edges

· Thesis supervisor: Prof. Hamid Zarrabi-Zadeh

� Better Guarantees for k-Means and Euclidean k-Median by Primal-Dual Algo-Publications
rithms
Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. 1

58th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2017.
Invited to a special issue of SICOMP.

� Streaming Robust Submodular Maximization: A Partitioned Thresholding Ap-
proach
Ilija Bogunovic, Volkan Cevher, Slobodan Mitrovic, Ashkan Norouzi-Fard and Jakub Tar-
nawski. 1

30th Conference on Neural Information Processing Systems, NIPS 2017.

� An Efficient Streaming Algorithm for the Submodular Cover Problem
Ashkan Norouzi-Fard, Abbas Bazzi, Marwa El Halabi, Ilija Bogunovic, Ya-Ping Hsieh, and
Volkan Cevher.
30th Conference on Neural Information Processing Systems, NIPS 2016.

� Dynamic Facility Location via Exponential Clocks
Hyung-Chan An, Ashkan Norouzi-Fard, and Ola Svensson.1

26th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015.
Invited to a special issue of ACM Transactions on Algorithms.

� Towards Tight Lower Bounds for Scheduling Problems
Abbas Bazzi and Ashkan Norouzi-Fard.1

23rd Annual European Symposium on Algorithms, ESA 2015.

� A Novel Probabilistic Key Management Algorithm for Large-Scale MANETs
Mohammad Gharib, Ehsan Emamjomeh-Zadeh, Ashkan Norouzi-Fard, and Ali Movaghar.
27th IEEE International Conference on Advanced Information Networking and Applications,
AINA 2013.

1The authors are sorted in alphabetical order. 135

Ashkan Norouzi-Fard

� The Minimum Vulnerability Problem
Sepehr Assadi, Ehsan Emamjomeh-Zadeh, Ashkan Norouzi-Fard, Sadra Yazdanbod, and
Hamid Zarrabi-Zadeh.1

23rd International Symposium on Algorithms and Computation, ISAAC 2012.
Full version in Algorithmica special issue for ISAAC 2012 papers.

� Some Upper Bounds for Signed Star Domination Number Of Graphs
Saieed Akbari, Ashkan Norouzi-Fard, Alireza Rezaei, Rahmtin Rotabi, and Sara Sabour. 1

Discrete Applied Mathematics.

� Beyond 1/2-Approximation for Submodular Maximization on Massive Data StreamsManuscripts
Ashkan Norouzi-Fard, Jakub Tarnawski, Slobodan Mitrovic, Amir Zandieh, Aida Mousavifar,
and Ola Svensson.

� From Theory to Practice: Better Initializations for k-Means via the Primal-Dual
Method
Ashkan Norouzi-Fard, Justin Ward and Ola Svensson.

� Data-Driven Rebalancing Methods for Bike-Share Systems
Daniel Freund, Ashkan Norouzi-Fard, Alice Paul, Shane G. Henderson, and David B. Shmoys.

� Research Visit to the Center of Applied Math (CAM), Cornell University (Summer 2016).Research
and
Academic
Activities

· Supervisor: Prof. David Shmoys

� Chair of the Second Winter School at Sharif University of Technology (Winter 2016).

� My paper entitled “Dynamic Facility Location via Exponential Clocks” was invited to a
special issue of ACM Transactions on Algorithms

� My paper entitled “Better Guarantees for k-Means and Euclidean k-Median by Primal-Dual
Algorithms” was invited to a special issue of SICOMP

� Silver Medal in 2014 Southwestern European Regional Programming Contest, 2014.Honors and
Awards � Silver Medal in 2013 Southwestern European Regional Programming Contest, 2013.

� Silver Medal in 17th Iranian National Olympiad in Informatics (INOI), 2008.

� Ranked 1st at Sharif Freshmen ACM Challenge, 2009.

� Awarded summer school grant for undergraduate studies from Information Engineering
Department at Chinese University of HongKong (CUHK), 2012.

� Teaching Assistant, EPFLTeaching
Experience · Advanced Algorithms (Spring 2017)

· Advanced Topics in Theoretical Computer Science (Spring 2016)

· Algorithms (Fall 2014, Fall 2015, Fall 2016)

· Theory of Computation (Spring 2014, Spring 2015)

� Teaching Assistant, Sharif University of Thechnology

· Theory of Machine Languages and Automatas (Fall 2012, Spring 2012, Fall 2011)

· Design and Analysis of Algorithms (Fall 2012, Fall 2011)

· Discrete Mathematics (Spring 2012)

· Fundamentals of Programming (Fall 2011)

· Data Structures and Introduction to Algorithms (Fall 2011, Spring 2010)

· Introduction to Programming (Fall 2011, Spring 2011)

· Advanced Programming (Spring 2010)

� Programming: C++, Python, Java, Matlab.Skills
136

