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Introduction 21 

The use of steel moment-resisting frames (MRFs) in seismic zones is well established. In steel 22 

MRFs, the steel beams are expected to dissipate the seismic energy through flexural yielding. 23 

Although steel columns should remain elastic due to the employed capacity design principles (i.e., 24 

strong-column/weak-beam ratio), flexural yielding is still permitted near the column base. Lignos 25 

et al. (2016) gathered all the available experimental data on wide-flange steel columns published 26 

to date (Popov et al. 1975; MacRae et al. 1990; Nakashima et al. 1990; Newell and Uang 2006; 27 

Cheng et al. 2013; Chen et al. 2014; Suzuki and Lignos 2015; Lignos et al. 2016; Ozkula et al. 28 

2017; Elkady and Lignos 2018), which comprised of 155 specimens in total. The majority of them 29 

satisfy the web compactness limit for highly ductile members, λhd, as per ANSI/AISC 341-16 30 

(AISC 2016a). This is shown in Fig. 1a that summarizes the range of applied axial load ratios, 31 

P/PCL [P is the applied load and PCL is the lower-bound compressive strength calculated as per 32 

ASCE (2014)], with respect to the local web slenderness ratio, h/tw, of the gathered column 33 

specimen cross-sections. The experimental data suggests that steel columns utilizing stocky cross-34 

sections (i.e., 7.6 < h/tw < 17, 3.1 < bf/2tf < 5) exhibit a very stable hysteretic behavior without 35 

practically experiencing cyclic and/or in-cycle flexural strength deterioration. This is illustrated in 36 

Fig. 1b that shows the column rotation capacity, θmax at the peak response (i.e., prior to onset of 37 

local buckling), with respect to h/tw. On the other hand, the hysteretic behavior of deep and slender 38 

cross-sections (i.e., 30 < h/tw < 50, 5 < bf/2tf < 7) may be significantly compromised due to the 39 

coupling of local and member geometric instabilities at 2%-3% lateral drift demands. Referring to 40 

Fig. 1c, this is not necessarily the case if the axial load demands vary due to dynamic overturning 41 

effects, which is typical in end (i.e., exterior) columns (Suzuki and Lignos 2015). The gathered 42 

experiments also suggest that the plastic deformation capacity of highly ductile steel columns is 43 
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appreciable even in cases that P/PCL > 0.50 (see Fig. 1c). This implies that the current limit for 44 

force-controlled elements as per ASCE/SEI 41-13 (ASCE 2014) may be overly conservative. The 45 

aforementioned concerns have also been raised by engineering practitioners (Bech et al. 2015; 46 

Hamburger et al. 2016). 47 

The prior testing programs provide valuable insights into the behavior of steel wide-flange 48 

columns subjected to cyclic loading. Given the limited range of test parameters (e.g., specimen 49 

geometry, applied loading schemes, etc.), the above observations cannot be fully generalized such 50 

that the current seismic design and modeling recommendations for wide-flange steel columns can 51 

be assessed and further improved. Therefore, the above experimental database should be 52 

complemented with additional finite element simulations. Few prior studies have been conducted 53 

in this direction (Elkady and Lignos 2012, 2015a; Stoakes and Fahnestock 2016; Fogarty et al. 54 

2017). However, several issues that influence the steel column stability under seismic loading have 55 

not been fully addressed. These include the column axial shortening, the column plastic hinge 56 

length, the employed loading history as well as the steel column stability bracing force demands. 57 

This paper fulfills all purposes. In particular, a continuum FE modeling approach is first 58 

proposed to simulate the behavior of steel columns subject to cyclic loading. This approach is 59 

validated with past experiments on wide-flange steel columns under multi-axis cyclic loading. 60 

Through parametric simulations, the North American seismic design criteria (CSA 2009; AISC 61 

2016b) for steel MRF columns are assessed. Additional design criteria, related to column stability, 62 

are proposed. The gathered experimental data complemented with finite element simulations are 63 

also utilized to assess the current nonlinear modeling guidelines for the seismic evaluation of new 64 

and existing steel MRFs (ASCE 2014). 65 
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Proposed Finite Element Modeling Approach 66 

A detailed FE modeling approach is proposed to simulate the hysteretic behavior of wide-flange 67 

steel columns subject to multi-axis cyclic loading. The commercial software ABAQUS-FEA/CAE 68 

(2011) is employed for this purpose. Referring to Fig. 2a, the proposed FE model represents a 69 

typical first-story steel MRF column and its boundary conditions. From this figure, a fixed column 70 

base assumption is only valid if the flexibility of the column base connection is neglected 71 

(Kanvinde et al. 2012; Grilli et al. 2017; Inamasu et al. 2017). This issue deserves more attention 72 

but it is outside the scope of the present study. The in-plane rigidity of fully-restrained beam-to-73 

column connections intersecting the column top end in steel MRFs is represented by a flexible 74 

elastic beam-column element. The flexural stiffness of this element is tuned such that the inflection 75 

point within the column is always located at 0.75 L (L is the column length) measured from the 76 

column base, prior to column yielding. This is the expected inflection point location in typical 77 

first-story steel MRF columns (Gupta and Krawinkler 1999; Zareian et al. 2010; Elkady and 78 

Lignos 2015b). 79 

The proposed FE model incorporates large strain and deformation formulations, and utilizes 80 

quadratic 4-node doubly curved “S4R” shell elements that capture the local buckling initiation and 81 

progression by preventing shear locking and hourglass. The finite element mesh size is determined 82 

such that both the cross-section’s flanges and web are divided in a minimum of 12 and 24 elements, 83 

respectively. This size ensures minimal computational effort without compromising the solution 84 

accuracy. The optimum mesh size was determined based on a preceding mesh sensitivity analysis 85 

discussed in Elkady (2016). 86 

The material constitutive relationships are based on a von Mises yield surface “J2 plasticity” 87 

(von Mises 1913) with a well-established combined isotropic/kinematic hardening law (Lemaitre 88 
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and Chaboche 1990). The nonlinear kinematic and isotropic hardening parameters defined in Eqs. 89 

(1) and (2), respectively, are based on one backstress, 90 
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in which, C is the initial kinematic hardening modulus, γ is the rate at which C decreases with 93 

respect to the cumulative plastic strain εpl, α is the backstress, σ o|0 is the equivalent yield stress at 94 

zero plastic strain (i.e. σy), Q∞ is the maximum change in the size of the yield surface and b is the 95 

rate at which the size of the yield surface changes as plastic deformation develops. For a standard 96 

A992 Gr. 50 (ASTM 2015) steel material (i.e., nominal yield stress, σyn=345MPa), the following 97 

values are recommended for the four material model parameters if one backstress is employed: 98 

C=3378MPa (490ksi), γ=20, Q∞=90MPa (13ksi), and b=12. The parameters were obtained through 99 

calibrations with uniaxial monotonic and cyclic coupon test data for A992 Gr. 50 steel material 100 

(i.e., nominal yield stress, fy=345MPa). The reader is referred to Suzuki and Lignos (2017) for 101 

characteristic stress-strain comparisons for typical steel materials including A992 Gr. 50 steel. The 102 

modulus of elasticity and the expected yield stress are taken as E=200000MPa (29000ksi) and 103 

σye=380MPa (55ksi), respectively. These values comply with the ones used in Suzuki and Lignos 104 

(2015) for A992 Gr. 50 steel. The aforementioned parameters depend only on the respective steel 105 

material but not on the imposed loading history. 106 

Local and global imperfections should be consistently introduced into the FE model such that 107 

local and member geometric instabilities can be properly traced. This can be achieved by scaling and 108 

superimposing proper buckling modes of the respective column. In particular, two types of 109 
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imperfections are introduced in the FE model: (1) local web and flange imperfections (see Fig. 110 

2b); and (2) global out-of-straightness imperfections (see Fig. 2c). The proposed magnitude of 111 

local web and flange geometric imperfections are d/250 and bf/250, respectively. Global 112 

imperfections (i.e., out-of-plane out-of-straightness of the column) should be limited to L/1500. 113 

The aforementioned values are tuned to provide the best fit between the FE simulation results and 114 

the gathered experimental column database with emphasis on cross-sections with 30 < h/tw < 50 115 

that are commonly used in steel MRFs. Because the magnitude of imperfections is strongly 116 

influenced by cooling after the hot-rolling process (Alpsten 1968 and Young 1971), it is likely that 117 

the imposed imperfections in stocky cross-sections (h/tw < 35) may be larger but still less than the 118 

manufacturing limits as per ASTM (2003) (i.e., bf/150 and d/150) and AISC (2016b) (i.e., L/1000). 119 

Similarly, a smaller amplitude of imperfections may be used in more slender cross-sections. 120 

Prior FE studies on steel columns that utilized stocky cross-sections (Newell and Uang 2006; 121 

Elkady and Lignos 2012) suggest that initial residual stresses have a minor effect on the hysteretic 122 

behavior of steel columns. This assumption implies that the Wagner coefficient is zero (Trahair 123 

1993); thus, there should not be expected much of a torsional stiffness loss of the member due to 124 

residual stresses. This assumption is not valid for deep and slender cross-sections because it yields 125 

erroneous residual stress distributions along their web (Sousa and Lignos 2017). Referring to Fig. 126 

2d, the residual stress distribution proposed by Young (1971) is recommended for deep and slender 127 

cross-sections (Sousa and Lignos 2017). This distribution is adopted for the purposes of the finite 128 

element model proposed herein. 129 

Finite Element Modeling Validation 130 

The proposed FE modeling approach is validated with experimental data from a full-scale test 131 

program, recently conducted by the authors (Elkady and Lignos 2018). This program utilized 132 



7 

600mm deep (i.e., W24) cross-sections. Figure 3 shows sample comparisons between the 133 

measured cyclic response and the FE simulation predictions in terms of the normalized end 134 

moment-rotation and axial shortening-rotation relations for selected column specimens. These 135 

represent columns with different cross-sections and end boundary conditions that were subjected 136 

to various lateral loading histories coupled with different compressive axial load ratios, P/Py, 137 

where Py is the measured axial yield strength. Note that Py is always larger than PCL (as per 138 

ASCE 41-13) for a given column cross-section geometry. However, a comparison between the 139 

two terms cannot be directly established because their relationship depends on both the cross-140 

section geometry and member length that could vary. Referring to Fig. 3(top), the deduced 141 

moment-rotation relation is predicted fairly well based on the proposed FE modeling approach 142 

including the onset and progression of local and member geometric instabilities. In particular, the 143 

associated relative error between the predicted and measured column flexural capacity did not 144 

exceed 10% throughout the entire loading history. Referring to Fig. 3 (bottom), the proposed FE 145 

model was able to accurately capture the column axial shortening up to 4% drift. At larger drift 146 

amplitudes, the relative error between the predicted FE simulations and the experimental results 147 

was less than 20%. 148 

Figure 4 demonstrates a relatively good agreement between the predicted versus observed 149 

deformation profiles at selected lateral drift amplitudes in both the strong- and weak-axis 150 

orientation for various specimens. Deep wide flange steel columns are susceptible to twisting and 151 

out-of-plane deformations (Elkady and Lignos 2017, 2018; Ozkula et al. 2017). Referring to Figs. 152 

5a and 5b, the FE modeling approach successfully captured these deformations regardless of the 153 

cross-section geometry and/or the employed boundary conditions. Figure 5c shows sample 154 

comparisons of the measured and predicted longitudinal strain versus chord-rotation, at the center 155 
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of the flange and 1300mm away from the column base, of one of the tested specimens. Although 156 

the reliability of the strain measurements becomes questionable after the onset of yielding, the 157 

comparisons suggest that the simulated and measured plastic strains are very comparable.  158 

While the non-uniqueness of the material model parameter fitting does not significantly affect 159 

the predicted global force-deformation quantities (Cooke and Kanvinde 2015), the proposed FE 160 

modeling approach should be further validated if the intent of a modeler is to assess extreme strain-161 

based limit states (e.g., fracture). In this case, the prediction accuracy of internal plastic strains 162 

becomes critical due to non-uniqueness. This is outside the scope of the present work. 163 

In brief, the comparisons between the FE simulations and the experimental results suggest that 164 

the proposed FE model adequately predicts the hysteretic behavior of wide-flange steel columns 165 

under multi-axis cyclic loading. A number of other validation studies are also presented in detail 166 

in Elkady (2016) by employing the modeling assumptions proposed in this paper. 167 

Parametric Simulations 168 

Range of Investigated Cross-Sections 169 

Several untested configurations were investigated through parametric simulations. These include 170 

a “simulation-matrix” of 53 wide-flange cross-sections. Both shallow (i.e., W12 to W14) and deep 171 

(i.e., W16 to W36) cross-sections are employed as shown in Fig. 6. that summarizes their 172 

corresponding web and flange local slenderness ratios. The web and flange λhd compactness limits 173 

according to AISC (2016a) are superimposed in the same figure. To better facilitate the 174 

interpretation of the FE results, the 53 cross-sections are divided into four sets based on their web 175 

and flange slenderness ratios (i.e., total of eight sets). In brief, the majority of the selected cross-176 

sections are highly ductile, λhd according to the ANSI/AISC 341-16 (AISC 2016a). The rest of the 177 

cross-sections are moderately ductile, λmd as per AISC (2016a). The investigated cross-sections 178 
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have a member slenderness, Lb/ry, ranging from 38 to 115. The range of employed column cross-179 

sections is deemed to be representative of those found in modern and existing steel frame buildings 180 

designed in highly seismic regions (NIST 2010; Zareian et al. 2010; Bech et al. 2015; Elkady and 181 

Lignos 2015b). 182 

Employed Lateral Loading Protocols 183 

The parametric simulations involve three lateral loading protocols. A monotonic; such that each 184 

member’s monotonic backbone curve can be determined. A symmetric cyclic protocol (Clark et 185 

al. 1997) as shown in Fig. 7a, which has been routinely used in prior experimental studies (FEMA 186 

2000). A collapse-consistent protocol (Suzuki and Lignos 2014) as shown in Fig. 7b. This protocol 187 

is representative of seismic events with low probability of occurrence in which a building 188 

experiences asymmetric lateral loading that is characterized by few inelastic small amplitude 189 

cycles followed by large monotonic pushes (i.e., “ratcheting”) (Krawinkler 2009; Lignos et al. 190 

2011; Suzuki and Lignos 2014). 191 

The lateral loading protocols are coupled with five levels of constant compressive axial load 192 

ratios: 0%, 20%, 35%, 50% and 75% of Py. These loading conditions are representative of interior 193 

steel MRF columns that typically experience fairly small axial load demand fluctuations due to 194 

dynamic overturning moments. The axial load variation is more evident in end columns. However, 195 

experimental evidence (Suzuki and Lignos 2014, 2017) suggests that although end columns 196 

experience higher compressive axial load demands than interior columns during ground motion 197 

reversals at which the transient axial load amplifies the gravity-induced compressive load 198 

component, they still experience 6 to 7 times less axial shortening compared to interior columns 199 

within the same steel MRF bay. The reason is that end columns also experience appreciable tensile 200 

axial load in the opposite loading direction resulting into local buckling straightening; thus, the 201 
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focus of this paper is on the hysteretic response of interior steel columns. Furthermore, although 202 

P/Py > 0.3 is not typically seen in modern steel MRFs (Suzuki and Lignos 2014), it is often 203 

common in existing steel MRFs that utilize stocky members (Bech et al. 2015). 204 

Performance Indicators and Implications on Steel Column Stability 205 

Figure 8 shows several indicators to evaluate the steel column stability under multi-axis cyclic 206 

loading. These include: the overstrength factor, ρ, calculated as the ratio of the column’s maximum 207 

flexural strength, Mmax, to its full plastic strength, Mp; the achieved rotation capacities based on a 208 

first-cycle envelope curve (e.g., θ80%Mmax, see Fig. 8a) that can be directly compared with the 209 

current ASCE 41-13 (ASCE 2014) nonlinear modeling recommendations for steel columns; the 210 

unloading stiffness deterioration at a given chord-rotation, Kθ, (see Fig. 8a) that is strongly related 211 

to the column out-of-plane deformation, ΔOP, near the plastic hinge zone (see Fig. 8b); the column 212 

axial shortening, Δaxial (see Fig. 8b); the column plastic hinge length, LPH (see Fig. 8b); and the 213 

lateral stability bracing force demands, Pbrace, that strongly influence the steel column stability (see 214 

Fig. 8b). 215 

Column Flexural Capacity 216 

Figures 9a and 9b show the dependence of the overstrength factor, ρ, on the cross-section web 217 

slenderness. The plotted FE results are based on columns subjected to a symmetric loading 218 

protocol. Referring to Fig. 9a, all the columns reached their full plastic strength Mp for P/Py=0.2. 219 

In particular, steel columns with stocky cross-sections (i.e., set W1 and similarly F1) developed, 220 

on average, an overstrength of 1.5. This is attributed to the steel material cyclic hardening prior to 221 

the onset of local buckling (i.e., local buckling occurring at drifts > 7%). This is consistent with 222 

experimental findings by Newell and Uang (2006). On the other hand, steel columns with cross-223 

sections close to the λhd limits (i.e., set W3 and similarly F3) developed an average overstrength 224 
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of 1.08. The observed column overstrength is strongly dependent on the applied compressive axial 225 

load ratio that has a profound influence on Mmax. In particular, Fig. 9b shows that steel columns 226 

subjected to a symmetric cyclic loading history coupled with P/Py = 0.5 developed, on average, 227 

35% less overstrength compared to those subjected to P/Py = 0.2. 228 

Figure 9c shows the influence of the web slenderness ratio on the column overstrength based 229 

on the symmetric protocol ( SYM ) over that based on the collapse-consistent protocol ( CPS ) for 230 

P/Py = 0.2. In most cases, the employed lateral loading protocol does not practically influence the 231 

observed column overstrength. Only columns with stocky cross-sections (i.e., set W1) subjected 232 

to a symmetric loading protocol developed 20% higher overstrength compared to those subjected 233 

to a collapse-consistent protocol. This is attributed to the fact that these cross-sections only buckle 234 

at very large lateral drift demands (Newell and Uang 2006); and the fact that they are subjected to 235 

the large number of small-drift amplitude cycles included in the symmetric protocol. These 236 

observations hold true regardless of the employed compressive axial load ratio. The overstrength 237 

factor, ρ due to cyclic hardening is dependent on the compressive axial load applied to the 238 

respective column and should be considered in the strong-column/weak beam ratio check as per 239 

AISC (2016a) and CSA (2009). 240 

Column Rotation Capacity and Comparison with ASCE 41-13 Nonlinear Provisions 241 

Figure 10 shows the achieved column chord-rotation at which 80% Mmax is reached ( 20
80%
SYM

Mmax  )242 

versus h/tw. The results are based on columns subjected to the symmetric loading protocol coupled 243 

with P/Py=0.2. Steel columns with cross-sections in the range 32.5 ≤ h/tw ≤ 43 and 5.5 ≤ bf/2tf ≤ 7 244 

(i.e., sets W3 and F3) reached 80% Mmax at an average drift ratio of 2.5%. To put this into 245 

perspective, the AISC (2016a) seismic provisions specify that the flexural resistance of steel beams 246 

in fully restrained beam-to-column connections, shall not be less than 80% Mp of the connected 247 
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steel beam after completing one cycle at 4% rads based on the symmetric cyclic loading protocol 248 

(i.e., θ80%Mp ≥ 4% rads). First-story interior MRF columns subjected to a compressive axial load 249 

of 20% Py satisfy this criterion only if a reduction to about two-thirds of the current compactness 250 

limit for highly ductile members is employed in the design process.  However, it should be 251 

acknowledged that the behavior of steel columns is not directly analogous with that of steel beams 252 

due to notable differences in their boundary conditions, the moment gradient and the associated 253 

inelastic seismic demands that they experience during an earthquake. 254 

The θ80%Mmax is based on the first-cycle envelope, which is loading-history dependent. Figure 255 

10b shows the ratio of the achieved θ80%Mmax based on the symmetric protocol (i.e., 20
80%
SYM

Mmax  ) over 256 

that achieved based on a collapse-consistent protocol (i.e., 20
80%
CPS

Mmax  ). In both cases, a P/Py = 0.2 is 257 

considered. The results suggest that steel columns subjected to a symmetric loading history achieve 258 

roughly a 50% smaller plastic rotation capacity compared to those subjected to a collapse-259 

consistent loading history. This difference becomes minimal at story-drift ratios of 3% or less. 260 

This is consistent with prior experimental studies that assessed the effect of loading sequence on 261 

the column hysteretic behavior (Suzuki and Lignos 2015; Elkady and Lignos 2018). 262 

The FE simulations offer the opportunity to assess the ASCE/SEI 41-13 (ASCE 2014) nonlinear 263 

modeling provisions for steel columns. Of interest are the plastic rotation parameters “a” 264 

(measured at 80% Mmax) and “b” (measured at 0% Mmax) of the ASCE/SEI 41-13 cyclic backbone 265 

curve as defined in Fig. 11a. Figures 11b and 11c compare the ASCE/SEI 41-13 pre- and post-266 

capping plastic rotations, “a” and “b”, respectively, with the corresponding FE simulation values 267 

(noted as aFEA and bFEA). This comparison is established for a range of axial load ratios. Referring 268 

to Figs. 11b and 11c, the wide scatter is attributed to the dependence of “a” and “b” on the member 269 

slenderness, Lb/ry (Lb is the laterally unbraced length and ry is the weak-axis radius of gyration) 270 
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and h/tw, in addition to the axial load ratio, P/Py (Hamburger et al. 2016; Hartloper and Lignos 271 

2017). Figure 11b suggests that steel columns with stocky cross-sections (i.e., sets W1, F1), 272 

subjected to high axial load ratios (i.e., P/PCL ≥ 0.5), develop an appreciable plastic deformation 273 

capacity. Therefore, they do not seem to be force-controlled elements. On the other hand, columns 274 

that experience compressive axial loads due to gravity loading larger than 60% Py (≈ 80% PCL) 275 

should be treated as force-controlled elements. 276 

Column Axial Shortening 277 

Figures 12a and 12b show the column axial shortening, Δaxial with respect to the web slenderness 278 

ratio, measured at the 2% drift (i.e., representative of design-basis seismic events) based on a 279 

symmetric loading protocol coupled with different P/Py ratios. Referring to Fig. 12a, at P/Py=0.2, 280 

column set W1 shortened by 0.5% L on average while the least λhd compact column set W3 281 

shortened, on average, by 1.2% L. At higher axial loads, axial shortening developed rapidly due to 282 

the web and flange local buckling progression. These observations demonstrate the strong 283 

dependency of column axial shortening on h/tw and P/Py. 284 

Referring to Fig. 12c, at a 2% reference drift, columns subjected to a symmetric loading history 285 

shortened about two times more than nominally identical columns subjected to a collapse-286 

consistent loading history. This demonstrates the dependency of column axial shortening on the 287 

cumulative plastic rotation, Σθpl, which is defined as the sum of absolute plastic drift excursions 288 

following the yield rotation, θy, of the respective column. The yield rotation is defined as, θy = Mp 289 

(1-P/Py) / Ke; in which, Ke is the initial elastic stiffness of the member due to flexural and shear 290 

deformations (see Fig. 8a). 291 
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MacRae et al. (1990) proposed an empirical formula (Eq. (3)) to predict Δaxial as a function of 292 

Σθpl, the applied axial load ratio, P/Py, the column plastic hinge length, LPH and the web-to-gross 293 

area ratio, Aw/A. 294 
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Equation (3) assumes a linear relationship between Δaxial and ΣθH. However, this relation is 297 

exponential at large drifts due to the excessive web local buckling progression. This can be inferred 298 

from Fig. 13a for two of the column specimens tested recently by Elkady and Lignos (2018) at 299 

characteristic cumulative plastic rotations (i.e., Σθpl = 0.10, 0.25, 0.50). Both specimens had fixed-300 

flexible boundary conditions. Superimposed in the same figure are the calculated Δaxial values 301 

based on Eq. (3). Referring to Fig. 13a, Eq. (3) is only valid for story-drift ratios up to 2% (≈ Σθpl 302 

< 0.25 rads) in which Δaxial is still linearly dependent on Σθpl. 303 

To improve the accuracy of Eq. (3), a multiple regression is conducted based on the predictive 304 

model shown in Eq. (4) to estimate Δaxial based on the FE simulations. The selected variables, Σθpl, 305 

h/tw, and P/Py, are found to be statistically significant at the 95% level. For this purpose, a standard 306 

t-test and F-test were conducted. The quality of the regression model is evaluated based on the307 

conditions of the Gauss-Markov theory (Chatterjee and Hadi 2015) including that the mean of the 308 

residuals is equal to zero, no correlation is present among the residuals and the residuals have a 309 

constant variance. For more details, the reader is referred to Chatterjee and Hadi (2015).  310 

311 
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Equation (4) is applicable for the following range of predictors: Σθpl ≤ 1.0 rads, 11.1 ≤ h/tw ≤ 313 

57.5, and 0.0 ≤ P/Py ≤ 0.75. Figure 13b shows the scatter of the Δaxial values predicted by Eq. (4) 314 

compared to those measured from the FE simulations, indicating a relatively good match. This is 315 

also inferred from the corresponding coefficient of determination, R2 = 0.873 and the coefficient 316 

of variation COV = 0.281. Figure 13a also suggests that Eq. (4) predicts the column axial 317 

shortening for the selected experiments reasonably well regardless of Σθpl. 318 

Elkady and Lignos (2018) found that if the column axial shortening exceeds 1% L, then out-of-319 

plane deformations near the column plastic hinge region are triggered. If the current CAN/CSA 320 

S16-09 axial load limit is imposed (i.e., 30% Py) into Eq. (4), then cross-sections with h/tw ≤ 37 321 

can only be utilized if Δaxial is limited to 1% L. The preceding web slenderness ratio corresponds 322 

roughly to a 2/3 reduction of the current AISC (2016a) limit for highly ductile members. 323 

Alternatively, if a designer choses a cross-section with a h/tw ≤ λhd as per AISC (2016a), then Eq. 324 

(4) suggests that the allowable compressive axial load demands on first-story interior columns due325 

to gravity cannot exceed 15% Py. 326 

For the range of data explored in this paper, it was found that a simple modification to the 327 

current AISC 341-16 compactness limit for highly ductile members by 2/3 is suffice to limit 328 

column axial shortening to 1% of the respective member length and achieve a maximum of 20% 329 

flexural strength reduction at a 4% chord rotation. In this context, it was found that the member 330 

slenderness Lb/ry is somewhat important but only at story drift ratios larger than 3%. Depending 331 

on the employed performance objective criteria, alternative expressions may be used for the same 332 

purpose such as those proposed by Fogarty et al. (2017) and Wu et al. (2018). 333 
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Unloading Stiffness Deterioration due to Geometric Instabilities 334 

Recent experiments conducted by the authors (Elkady and Lignos 2018) suggest that column local 335 

buckling is typically followed by out-of-plane deformations, ΔOP, near the column plastic hinge 336 

region. These deformations mainly control the unloading stiffness deterioration of the column. 337 

Unloading stiffness deterioration due to member instabilities can influence the global stability of 338 

steel MRFs at seismic intensities associated with low-probability of occurrence seismic events. 339 

Deep columns with member slenderness ratios, Lb/ry >80 are prone to such failure modes at story 340 

drift ratios larger than 3% (Zhang and Ricles 2006; Ozkula et al. 2017; Elkady and Lignos 2018). 341 

Accordingly, the unloading stiffness is quantified and assessed. 342 

Figure 14 shows the normalized ΔOP, measured at the 2% drift amplitude versus h/tw. At 343 

P/Py=20%, highly ductile column cross-sections develop a ΔOP < 1% L (see Fig. 14a). Referring 344 

to Fig. 14b, if the current CAN/CSA S16-09 axial load limit of 30% Py is imposed, columns that 345 

employ cross-sections with h/tw < 32 would develop a ΔOP less than 1% L. This is consistent with 346 

earlier observations on the dependence of the column axial shortening on h/tw and P/Py. 347 

Figure 15 shows the normalized unloading stiffness K2%/Ke, at a reference lateral drift of 2% 348 

versus Lb/ry for selected P/Py ratios. Referring to Fig. 15a, columns that utilize stocky cross-349 

sections (i.e., sets W1 and W2) maintain their elastic stiffness (i.e., K2%/Ke > 0.90) up to 2% drift 350 

regardless of Lb/ry. This is due to the small amount of axial shortening and out-of-plane 351 

deformations in this case. Figure 15a suggests that the current CAN/CSA S16-09 (CSA 2009) Lb/ry 352 

limit of about 50~60 for columns in Type-D steel MRFs may be overlay conservative. In particular, 353 

steel columns with Lb/ry < 80, experience less than 50% reduction in their unloading stiffness. On 354 

the other hand, based on Fig. 15, it can be inferred that the CAN/CSA S16-09 axial load limit of 355 

30% Py is rational for Type-D steel MRFs [i.e., equivalent to special moment frames according to 356 
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AISC (2016a) and ASCE (2016)]. Interestingly, all the highly ductile cross-sections as per AISC 357 

(2016a) maintain at least 50% of their respective Ke at a lateral drift of 2%. 358 

Finally, it is worth noting that although the current seismic provisions for special moment 359 

frames (AISC 341-16) and type D ductile moment frames (CSA/S16 09) in North America attempt 360 

to limit the inelastic behavior in the beam-to-column web panel zone, this could still occur due to 361 

the composite floor slab that increases the flexural capacity of the respective beam and 362 

subsequently the panel zone shear demands (Elkady and Lignos 2014). Experiments conducted 363 

with deep members and beam-to-column web panel zones that exhibited appreciable inelastic 364 

behavior suggest that column twist is considerably reduced in such cases (Zhang and Ricles 2006). 365 

This highlights the need for system level experiments that the interactions between deep columns 366 

and connections (i.e., beam-to-column and beam-to-column web panel) shall be further studied. 367 

Column Plastic Hinge Length 368 

The column plastic hinge length, LPH, is the distance from the column base to the cross-sectional 369 

level with zero plastic strain. Figure 16 shows LPH normalized with respect to the corresponding 370 

cross-section depth, d, versus h/tw. Stocky cross-sections develop a larger plastic hinge length 371 

compared to the more slender ones. The former cross-sections are less prone to local buckling than 372 

the latter; thus, they can sustain several inelastic cycles prior to plastic strain localization due to 373 

local buckling. Notably, the plastic hinge length of columns utilizing highly ductile cross-sections 374 

as per AISC (2016a) is on average 2.0 d and 1.6 d for sets W1 and W3, respectively. This is in 375 

agreement with the lower-bound LPH values specified by the New Zealand seismic provisions 376 

(SNZ 2007). These values are superimposed in Fig. 16 with a dashed line for reference. In 377 

particular, SNZ (2007) specifies a minimum LPH of 1.5 d and 1.0 d for category 1 (equivalent to 378 

λhd) and category 3 cross-sections (equivalent to λmd), respectively. Shear stresses due to column 379 
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twisting also lead to a larger plastic hinge length. In particular, columns with large Lb/ry tend to 380 

develop large LPH. This becomes more evident in columns subjected to bidirectional lateral loading 381 

(Elkady and Lignos 2018). Figure 16 also underscores the dependence of LPH on P/Py. For an axial 382 

load increase from 20% Py (see Fig. 16a) to 50% Py (see Fig. 16b), the plastic hinge length 383 

increased by about 25%. This is attributed to the member second-order moment demands that push 384 

the location of the maximum moment away from the column base (Galambos and Surovek 2008). 385 

The LPH affects the steel column stability (SNZ 2007; Peng et al. 2008). In general, it is desirable 386 

to have plastic hinges forming at the column ends. If a large plastic hinge length is likely to 387 

develop, a designer may consider providing supplementary bracing along the plastified region 388 

(SNZ 2007). Kemp (1996) developed an empirical relation for estimating the plastic hinge length 389 

in steel beam-columns as follows, 390 
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392 

in which, Li is the distance between the inflection point and the column base and ryc is the radius 393 

of gyration of the elastic-section under compression (i.e., just before the point that the extreme 394 

fibers of the column cross-section reach the yield stress of the respective steel material). This 395 

equation is based on 44 wide-flange steel beam monotonic flexural tests and 14 beam-column tests 396 

(i.e., monotonic bending and axial force demands). Figure 17a shows a comparison between the 397 

predicted plastic hinge length based on Eq. (5) and those measured from the FE parametric study. 398 
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Kemp’s equation predicts reasonably well the column plastic hinge length for cross-sections that 399 

fall within its applicability range (i.e., 5 < bf/2tf < 11 and 39 < h/tw < 85). Notably, Kemp’s equation 400 

seems to highly over predict LPH particularly for stocky cross-sections (i.e., h/tw < 32). However, 401 

these cross-sections are outside the applicability of Eq. (5). For this reason, we propose a more 402 

general empirical predictive equation. It was found that Lb/ry, h/tw and P/Py are statistically 403 

significant to LPH based on a standard t-test and F-test at a 95% confidence interval. In particular, 404 
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, (COV=0.192, R2=0.684) (6) 405 

The range of applicability of Eq. (6) is 3.71 ≤ h/tw ≤ 57.5, 39 ≤ Lb/ry ≤ 115, and 0.0 ≤ P/Py ≤ 0.75. 406 

Figure 17b shows a comparison between the predicted and measured LPH for the entire dataset. It 407 

was also found from the FE parametric simulations that the plastic hinge length is not practically 408 

influenced by the employed lateral loading history. It should be noted that rate-effects 409 

representative of seismic events were not considered in this case. This issue deserves more 410 

attention in future studies. 411 

Lateral Stability Bracing Force Demands 412 

Figure 18 shows the predicted lateral stability bracing force demands, Pbrace normalized with 413 

respect to Py, versus Lb/ry, at selected P/Py ratios. Referring to Fig. 8b, the Pbrace values refer to the 414 

nodal lateral bracing for steel column stability. The FE simulations suggest that there is a strong 415 

influence of Lb/ry on Pbrace. This finding is confirmed by experimental nodal lateral bracing force 416 

demand measurements (Elkady and Lignos 2018) that are superimposed in Fig. 18 for reference. 417 

For columns and beam-to-column joints in Type-D steel MRFs, the CSA (2009) seismic 418 

provisions specify a lateral brace axial strength, Pb: 419 
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Pb  = 0.02 Cf = 0.02 (1.1 Ry Fyn Acomp) (8) 420 

in which, Ry is a factor applied to estimate the probable yield stress (taken as 1.1) and Acomp, is the 421 

cross-sectional area in compression (see Clause 9.2.5). Similarly, for beam-columns, the 422 

ANSI/AISC360-16 (AISC 2016b) specifies a lateral “nodal” brace axial strength, Prb: 423 

 Prb = 0.01 Pr + 0.02 Mr Cd / ho (9)424 

in which, Pr and Mr are the required axial and flexural strength of the beam-column, respectively, 425 

ho is the distance between flange centroids, and Cd = 2.0 for braces closest to the column inflection 426 

point. The nodal lateral bracing design forces computed from Eqs. (8) and (9) are superimposed in 427 

Fig. 18. It is evident that the stability bracing design requirements overestimate the nodal lateral 428 

bracing design forces for steel MRF column stability by a factor of two for member slenderness, 429 

Lb/ry ≥ 60 regardless of the compressive axial load demands. This is in part associated with the 430 

fact that both equations have been derived with the assumption of an infinite number of braces, 431 

which is a conservative one for all cases (Geschwindner and Lepage 2013). In addition, Eqs. (8) 432 

and (9) do not reflect the apparent dependence of Pbrace on Lb/ry. Notwithstanding the limitations 433 

in the above equation derivations according to the elastic stability theory (Galambos and Surovek 434 

2008), the current design approach according to the AISC (2016b) specifications is deemed to be 435 

safe for columns with Lb/ry > 60 but may be insufficient for Lb/ry < 60 considering that the nodal 436 

bracing forces may amplify for real columns with initial out-of-plumbness as seen from the 437 

available experimental data (Elkady and Lignos 2018). 438 

Figure 18b also suggests that the stiffness requirement for lateral bracing of steel columns, in 439 

accordance with the AISC (2016b) specifications, controls over the strength if P/Py > 0.35. 440 

However, this limit is still much larger than the measured nodal stability bracing force demands. 441 
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This necessitates a thorough assessment of the lateral stability bracing for beam-columns vis-à-vis 442 

the above discussion. This is possibly one of the most important areas of future work. 443 

Summary and Conclusions 444 

Comprehensive parametric finite element (FE) simulations are conducted to study the seismic 445 

performance of steel MRF columns and to propose improved recommendations to the current 446 

seismic design provisions in North America. This is achieved with a high-fidelity FE modeling 447 

approach that was validated with available tests on steel columns subjected to multi-axis cyclic 448 

loading. The main findings of this paper are summarized below: 449 

 Modern steel MRF columns (i.e., range of axial load ratios P/Py~20%), with deep and slender450 

cross-sections, near the compactness limits for highly ductile members (λhd) as per AISC (2016a) 451 

(i.e., 32.5≤ h/tw ≤43 and 5.5≤ bf/2tf ≤7) develop an average overstrength of 1.08. Steel columns 452 

that employ stocky cross-sections (i.e., h/tw ≤ 22 and bf/2tf ≤ 3.9) develop an average overstrength 453 

of 1.50 for the same axial load ratio due to the local buckling delay even at very large lateral drift 454 

demands (i.e., 7%). This shows the influence of local slenderness on member overstrength. The 455 

column overstrength is reduced by 35%, on average, for P/Py = 50%, which may reflect the axial 456 

load demands in existing tall steel MRFs. The above values do not seem to be influenced by the 457 

imposed lateral loading history. 458 

 The plastic deformation capacity of steel columns is strongly dependent on, Lb/ry, h/tw and P/Py.459 

These dependences are not fully reflected in the current ASCE 41-13 (ASCE 2014) nonlinear 460 

modeling recommendations. The plastic deformation capacity of steel columns at the bottom-461 

stories of modern steel MRFs can be significantly increased (i.e., limiting the reduction in flexural 462 

strength to 20% Mmax at a reference lateral drift of 2%), if a reduction to about two-thirds of the 463 

current λhd compactness limit as per AISC (2016a)  is employed. 464 
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 Experiments and FE simulations demonstrate that seismically compact steel columns subjected 465 

to P/PCL ≥ 0.5 develop an appreciable plastic deformation capacity; hence, they may not be force-466 

controlled elements as discussed in ASCE (2014). Instead, it is recommended that this limit is 467 

raised to P/Py ≥ 0.6. 468 

 The CAN/CSA S16-09 (CSA 2009) limit of P/Py=0.3 (due to gravity) for columns as part of469 

Type-D Ductile MRFs, is rational and should be incorporated in future versions of the ANSI/AISC 470 

341-16 (AISC 2016a). This reduces the column axial shortening, the plastic hinge length and the471 

magnitude of out-of-plane deformations near the column base. 472 

 An empirical expression is proposed to estimate column axial shortening, Δaxial with respect to473 

h/tw, P/Py, and the cumulative plastic rotation, Σθpl. Unlike prior predictive equations, the proposed 474 

expression captures well the exponential increase of Δaxial at drifts larger than 2%. It can also 475 

facilitate the effective selection of column cross-sections if a design objective is to limit Δaxial, 476 

which is currently not addressed in North American seismic design standards. For instance, if P/Py 477 

is limited to 0.3, only cross-sections with h/tw < 37 should be utilized (roughly 2/3 of the current 478 

λhd limits) such that Δaxial becomes less than 1% of the member length, L. 479 

 The current CSA (2009) Lb/ry limit of 60 may be relaxed to 80. Similarly, to control the cyclic480 

deterioration in lateral stiffness, an upper limit of 0.45 may be considered for the torsional 481 

slenderness, λLTB of a steel MRF column. These limits could be adopted in future versions of the 482 

ANSI/AISC 341-16 (AISC 2016a) seismic design provisions. 483 

 The lower-bound plastic hinge length, LPH for both highly and moderately ductile steel columns484 

according to the New Zealand seismic provisions (SNZ 2007) is consistent with the ones presented 485 

in this paper. A general empirical equation is proposed to predict LPH. This equation extends the 486 
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range of applicability of the empirical equation by Kemp (1996) to both highly and moderately 487 

compact cross-sections (3.71 ≤ h/tw ≤32.5). 488 

 The safety margin for the lateral stability bracing design force of beam-columns as per CSA489 

(2009) and AISC (2016b) may be insufficient for columns with Lb/ry < 60. On the other hand, the 490 

same lateral bracing strength requirements may be overestimating the force demand by a factor of 491 

two for steel columns with Lb/ry > 60. Depending on the applied compressive axial load ratio, the 492 

lateral bracing due to stiffness may control over the strength requirement of the AISC (2016b) 493 

specifications. 494 

It should be stated that the improved seismic design recommendations for steel MRF columns 495 

presented herein are based on the specific performance objectives defined by the authors. These 496 

recommendations may be modified accordingly by targeting alternative performance objectives. 497 
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Fig. 1. Distribution of θmax with respect to web slenderness and axial load ratio for available experimental 664 

data on wide flange steel columns 665 
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Fig. 2. Finite element model specifics for wide-flange steel columns667 
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  (a) W24x146, P/Py=0.2 (a) W24x146, P/Py=0.5 (c) W24x84, P/Py=0.2 668 
  Unidirectional symmetric Unidirectional symmetric Bidirectional collapse-consistent  669 

Fig. 3. Comparison between simulated and experimental results: moment-rotation (top) and axial 670 

shortening-rotation (bottom) [data from Elkady and Lignos (2018)]671 
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 Unidirectional Symmetric Cyclic Bidirectional Symmetric Cyclic 673 

Fig. 4. Comparison between simulated and experimentally obtained deformation profiles [data 674 

from Elkady and Lignos (2018)]675 
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 (a) Spec. C9, 1.3m from base (b) Spec. C1, 1.3m from base (c) Spec. C2, 1.3m from base 676 

Fig. 5. Comparison between simulated and experimental results: (a) out-of-plane displacement, 677 

(b) twisting angle, and (c) flange longitudinal strain, [data from Elkady and Lignos (2018)] 678 
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Fig. 6. Selected cross-sections for finite element parametric simulations
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Fig. 7. Employed lateral loading protocols 680 
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Fig. 8. Damage progression performance indicators for wide-flange steel columns 682 
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(a) SYM lateral loading coupled with P/Py=0.2  683 
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(b) SYM lateral loading coupled with P/Py=0.5 684 
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(c) Dependence of column overstrength on lateral loading history 685 

Fig. 9. Dependence of column overstrength on web slenderness ratio and loading history 686 



41 
 

 687 

(a)  

80
%

M
m

ax
[%

 r
ad

s]

h
d

θ 80
%

M
m

ax
SY

M
-2

0

 688 

(b)  

θ 80
%

M
m

ax
SY

M
-2

0
θ 80

%
M

m
ax

C
P

S-
20

/

 689 
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Fig. 11. Plastic rotation parameters “a” and “b” based on ASCE 41-13 and FE simulations695 
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(c) Dependence of  column axial shortening on the lateral loading history 698 

Fig. 12. Column axial shortening measured at 2% lateral drift versus web slenderness ratio699 
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Fig. 13. Comparison of predicted versus measured normalized column axial shortening 703 
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  (a) P/Py=0.2 (b) P/Py=0.35 704 

Fig. 14. Normalized out-of-plane deformation near the column base at 2% drift versus web 705 

slenderness ratio (symmetric loading history)706 



46 
 

 

40 60 80 100 120
L

b
 / r

y

0

0.2

0.4

0.6

0.8

1
Set W1
Set W2
Set W3
Set W4

 
  (a) P/Py=0.2 (b) P/Py=0.35 707 

Fig. 15. Normalized unloading stiffness measured at 2% drift versus member slenderness ratio, 708 

Lb/ry (symmetric loading history)709 
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  (a) P/Py=0.2 (b) P/Py=0.50 710 

Fig. 16. Normalized plastic hinge length versus web slenderness ratio at selected axial load ratios 711 
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Fig. 17. Predicted normalized plastic hinge length, LPH/d and comparison with empirical models714 
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Fig. 18. Normalized lateral stability bracing force demands versus member slenderness ratio for 716 

columns subjected to a symmetric loading history717 
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