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4BAbstract – With the evolution of power electronics technologies, DC networks have been 
considered as promising distribution systems for future grids. This new concept of power systems 
comes with technical challenges in protection coordination, a result of the no natural current zero-
crossing point and very low thermal capacity of semiconductors in power converters. In order to 
overcome this technological barrier, many researches have been conducted. This paper presents a 
summary of the state-of-the-art on protection coordination technologies in DC distribution systems 
considering whole DC protection procedure: fault detection, fault localization, fault isolation and 
backup protection. In addition, two different protection schemes for low-voltage DC (LVDC) 
shipboard power systems (SPS) which are commercially viable measures are described. 
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1. Introduction 
 
 8BDC distribution systems are considered as a promising 
solution for many applications, such as rural residential 
loads (long-distance low-voltage distribution lines), 
offshore wind park integration, and stand-alone power 
systems [1]-[5]. Especially, this technology has rapidly 
been employed in a marine domain due to its main benefits: 
high fuel efficiency with variable-speed engines, better 
integration of energy storage systems, weight and footprint 
savings by removing bulky transformers, elimination of 
reactive power flow, and easier connection of power 
sources without need for frequency synchronization [6]-[8].
 This new concept of power systems comes with technical 
challenges in protection coordination, a result of the no 
natural current zero-crossing [9] and very low thermal 
capacity of semiconductors in power converters [10]. 
 In AC which periodically reverses its direction with 
sinusoidal waveforms, the interruption of fault currents 
occurs at the current zero-crossing. Whilst there is no 
polarity change in the DC current, this makes the 
development of DC circuit breakers (CB) difficult or costly 
compared to mechanical AC CBs. Fig. 1 depicts an example 
of AC and DC fault currents for a DC line-to-line fault and 
shows their typical time evolution. 

 
10BFig. 1. AC and DC fault currents for DC line-to-line fault 

 

 11BAdditionally, the semiconductors in power converters 
have much lower thermal capabilities than other power 
equipment such as generators and transformers, as shown in 
Fig. 2. It means that a fault in the DC network has to be 
cleared much faster than that in the AC network. 
 

 
12BFig. 2. Thermal capability comparison 

1B†  Corresponding Author : Power Electronics Laboratory, École 

Polytechnique Fédérale de Lausanne (EPFL), Switzerland 

(seongil.kim@epfl.ch) 

2B*  Power Electronics Laboratory, École Polytechnique Fédérale de 

Lausanne (EPFL), Switzerland (drazen.dujic@epfl.ch) 

3B**  Power Control Research Dept., Hyundai Electric & Energy Systems, 

Republic of Korea (park.youngho@hyundai-electric.com, 

kimsoonam@hyundai-electric.com) 

1977

24th International Conference on Electrical Engineering June 24-28, 2018 | Seoul, Korea



 

 13BWith the interest generated by DC distribution systems, 
various methods have been proposed for each DC 
protection process to find feasible protection measures. This 
paper provides brief overview of the state-of-the-art of 
protection coordination technologies for DC distribution 
systems. Furthermore, protection schemes for two 
commercial LVDC SPSs are also presented.  
 
 

2. State-of-the-Art of DC Protection Coordination 
 

14BThe general procedure of DC power system protection is 
illustrated in Fig. 3. When a fault occurs in the DC 
networks, it has to be detected to distinguish faults from 
normal transient conditions. Fault localization is essential to 
continuously supply electric power to healthy parts by 
selectively isolating faulty parts. The protection system 
with fault-limiting devices such as circuit breakers, fuses 
and fault limiters should rapidly interrupt faults to prevent 
damage to any other equipment. Backup protection should 
be considered in case of a primary protection failure to 
increase the reliability of the protection system. 

 

 
15BFig. 3. Procedure of DC power system protection 

 
 

16B2.1 Fault Detection 
 

17BThere are two main categories for the fault protection: 
direct measurement methods and signal processing-based 
methods, as shown in Table 1. A system fault is 
characterized by an increase in current and a decrease in 
voltage [11], and the current flow might be different from 
normal conditions depending on fault locations [12]. The 
first category directly uses the characteristics of measured 
voltage and current such as their amplitudes, derivatives 
and directions. These methods provide high detecting speed 
with fewer computational resources. They, however, offer 
little selectivity for the DC protection. The second is based 
on signal processing techniques like wavelet analysis and 
travelling wave analysis. According to [13]–[18], although 

the signal processing-based methods offer higher accuracy 
in fault detecting and localizing than the direct technique, 
they have some drawbacks like high computational time 
and implementation complexity. 
 

18BTable 1. Fault detection techniques 
19BCategory 20BFault Detection 

21BDirect 
measurement 

22BUnder-voltage (amplitude) [11] 
23BVoltage & current derivatives [14] 

24BOver-current (amplitude) [19] 
25BCurrent difference (or direction) [12] 

26BImpedance (or distance) [20] 
27BSignal 
processing-based 

28BWavelet analysis [13] 
29BTravelling-wave analysis [15] 

 

 
30B2.2 Fault Localization 
 

31BFault localization is necessary for minimizing the impact 
from the fault by removing a faulty part. Communication-
based localization (Fig. 4(a)), which has been reported to 
provide high accuracy in fault locating, is based on data 
transfer between several adjacent local relays or data 
gathering into a central controller [21], [22]. It is therefore 
not possible to avoid a certain amount of time delay. Non-
communication measures rapidly operate local CBs when 
measured signals are higher than preselected thresholds. In 
this method, fault localization between different protection 
zones is given by selecting different operating times 
depending on amplitudes of fault current, voltage dip, or 
impedance [23], as shown in Fig. 4(b).  
 

 
32B(a) Communication-based [22] 

 

 
33B(b) Non-communication [23] 

 

34BFig. 4. Fault localization techniques 
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  35BHowever, these time-inverse methods cannot provide a 
selective coordination by the use of conventional protective 
devices due to low DC cable impedance and fast fault-
clearing requirement. 
 
 
36B2.3 Fault Isolation 
 

37BThe isolation methods are classified into three groups: (a) 
fault-blocking converter with DC isolator, (b) conventional 
converter with AC CB and (c) conventional converter with 
DC CB. The fault-blocking converter, like the full-bridge 
modular multi-level converter shown in Fig. 5(a), can handle 
the fault current by itself without any circuit breakers, if full-
bridge cells are used. The disadvantages of the fault-blocking 
converter are its high cost and high conduction loss.  

38BThe approach by means of the conventional converter with 
AC CB is proposed in [18]. This method, however, is needed 
to install very high reactance on the AC-side (Lf in Fig. 5(b)) 
to reduce the amplitude of a fault current that allows for use 
of the relatively slow AC CB. The reactor on the AC-side 
generates conduction loss, and makes the grid weak. 

 

 
39B(a) Strategy I – full-bridge modular multi-level converter 

 

 
40B(b) Strategy II – high reactance on AC side 

 

 
41B(c) Strategy III - DC CB (left: hybrid, right: solid-state) [24] 

 

42BFig. 5. Fault isolation methods 

 43BAs a last approach for the isolation, the conventional 
converter with DC CB can be a feasible combination. With 
very fast operation speed of the DC CB, this solution can 
isolate a system fault from the system within a few 
milliseconds. A lot of researches have been conducted for 
developing a hybrid (a mechanical circuit breaker combined 
with solid-state technology, Fig. 5(c) left) and a solid-state 
DC CB (Fig. 5(c) right). Nevertheless, they are still in the 
development stage due to difficulties in the no zero-
crossing and high thermal energy handling. 
 
 
44B2.4 Backup Protection 
 

45BBackup protection must be considered in case of the 
failure of the primary protection. In order to prevent the 
abnormal operation of the backup protection, a time margin 
Δ  in Fig. 6(a) between the primary and the backup 
protections has been used in the AC network [25]. But, for 
the DC network, such a time margin can lead to undesired 
equipment failures.  

46BIn [26], a detecting algorithm for the primary protection 
failure is proposed, and it can instantly identify the non-
operation of the primary action by observing impedance 
changes from the fault inception to the primary fault 
clearing time. This new approach can reduce the fault 
clearance time, as represented in Fig. 6(b), but it is still 
needed to verify its effectiveness for various types of faults 
and fault resistances. 
 

 
47B(a) Conventional approach for the AC network [25] 

 

 
48B(b) new approach for the DC network [26] 

 

49BFig. 6. Fault clearance time by backup protection 
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3. Protection Schemes for LVDC SPS 
 

50BVarious marine LVDC solutions were introduced and 
have commercially been applied to dynamic positioning 
vessels (e.g. platform supply vessels and shuttle tankers) 
with power levels up to 20 MW and a nominal DC voltage 
level of 1 kV [3], [4]. Fig. 7 illustrates a general schematic 
of the LVDC SPS. It consists of power generating units (a 
generator set with a rectifier), hotel loads, large motors, 
thrusters, energy storage systems and a bus tie breaker.  
 

 
51BFig. 7. General schematic of LVDC SPS 

 
52BThe LVDC ships have employed different protection 

schemes according to rectifier types. In this paper, the 
protection schemes for the LVDC SPSs based on a diode 
rectifier and a thyristor rectifier are described, as these 
systems are already in commercial use. 
 
 
53B3.1 Diode Rectifier-Based LVDC SPS 
  
 54BThe power generation part proposed by [3] consists of a 
generator set and a diode rectifier, as shown in Fig. 8. A 
protection scheme for the diode rectifier based-LVDC SPS 
uses the combination of a bus-tie breaker, relatively high 
sub-transient reactance of a synchronous machine, 
excitation removal and a semiconductor fuse.  
 

 
55BFig. 8. Generator set with diode rectifier [27] 

 56BFor the main DC bus fault, the bus-tie breaker in Fig. 7 
autonomously disconnects each bus within 50 μs [3]. With 
this operation, the faulty bus is disconnected from the 
system, and then the voltage in the healthy part is ramped 
up again. In the faulty part, the fault current from the 
generator is limited by the high sub-transient reactance, and 
then a generator protection unit in the generator trips the 
generator excitation controller to decay the fault current to 
zero. It takes a few seconds to completely eliminate the 
fault current with the excitation removal method. To avoid 
any device damage, the thermal capacity of the rectifier 
should carefully be designed to sustain the fault energy for 
such a long period of time.  
 57BIn this protection scheme, feeder faults which occur at 
load feeders are cleared by semiconductor fuses. In addition, 
the selective operation of the semiconductor fuses are also 
considered to minimize the impact of the faults. 
 
 
58B3.2 Thyristor Rectifier-Based LVDC SPS 
 
 59BIn [28], the thyristor rectifier-based LVDC SPS (its 
power generation part is shown in Fig. 9) is introduced with 
its protection scheme. This LVDC SPS is divided into two 
parts: a power generating unit (a generator set and a 
thyristor rectifier) and a drive unit (an inverter and an 
asynchronous machine or a hotel load). Protection devices 
in this system consist of a DC isolator, a bus tie breaker, a 
fuse and a controllable rectifier.  
 

 
60BFig. 9. Generator set with thyristor rectifier [29] 

 
 61BIn case of the main DC bus fault, the bus tie breaker 
isolates the faulty section, and then it makes the healthy 
party self-sustainable. The thyristor rectifier in the faulty 
area generates negative DC output voltage to interrupt the 
fault current by controlling the firing angle, called a fold-
back protection control. In the scheme, any fault currents 
can be cleared within maximum 40 ms [3]. Further 
advanced control scheme, active fault-current fold-back 
control, is proposed to reduce the fault clearing time in [30].  
 62BThe feeder faults in the protection scheme are also 
handled by the semiconductor fuse.  
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4. Conclusion 
 

63BThis paper briefly presented the protection coordination 
technologies in DC distribution systems with their pros and 
cons. For the whole protection procedure, a lot of techniques 
have been proposed to employ the DC systems into the 
conventional AC systems. However, there is a lack of 
comprehensive studies on the DC protection considering the 
whole procedure and different DC systems. In addition, in 
aspects of equipment and system, the DC CB is at an early 
development stage and there is no typical DC distribution 
systems as well as international standards on the protection. 

64BAs a second part in this paper, two commercial protection 
schemes for the LVDC SPS were discussed. Both schemes 
manage the fault currents without any breakers. But, these 
schemes are only applicable to low-voltage and limited 
power capacity of the DC SPS. Considering the demand of 
the DC SPS, it is expected that protection schemes for high-
power medium-voltage SPSs will be developed in near future.    
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