
Bachelor Project: Augmenting pyroomacoustics

with machine learning utilities

MERMET Alexis

June 8, 2018

Contents

1 Introduction 2
1.1 Objectives of the project . 2
1.2 What is pyroomacoustics? . 2
1.3 What is TensorFlow? . 3

2 Theoretical knowledge 4
2.1 Training the Neural Network 4
2.2 The GoogleSpeechCommands Dataset: Basic informations . . 5
2.3 Signal-to-noise ratio . 6
2.4 Algorithms . 6

2.4.1 Single Channel Noise Removal (SCNR) 6
2.4.2 Beamforming: Delay and Sum 8

3 Implementation 9
3.1 The GoogleSpeechCommands Dataset 9
3.2 How to label a file? . 10
3.3 How to synthesize noisy signals 11
3.4 Testing the performance of the algorithms 13

3.4.1 SCNR . 13
3.4.2 DAS beamforming . 14

4 Results 15
4.1 Analyse improvement of Single Channel Noise Removal . . . 15
4.2 Analyse improvement of Beamforming 16

5 Conclusion 18
5.1 Where are we now? . 18
5.2 What’s next? . 18

Bibliography 19

1

Chapter 1

Introduction

1.1 Objectives of the project

During this project, we want to implement new functionalities to the al-
ready existing Python library, pyroomacoustics[1]. These functionalities in-
clude a wrapper to Google’s Speech Commands Dataset[2], utilities for aug-
menting datasets with the already-available room impulse response (RIR)
generator, and scripts for evaluating the performance of single and multi-
microphone processing for speaker recognition against a pre-trained model.

Before I start, I would like to thank Eric Bezzam for the help he gave
me during all the semester, by meeting me every week and helping me really
quick when I had a problem. I also would like to thank Robin Scheibler who
gave me feedback before my presentations even though he is in Japan and
never met me.

1.2 What is pyroomacoustics?

First of all pyroomacoustics is a library allowing us to make audio room
simulation and also apply array processing algorithm in Python. Developed
by former and current EPFL undergraduate and graduate students, the goal
of this library is to aid in “the rapid development and testing of audio array
processing algorithms.”[1] There are three core components:

1. Object-oriented interface in Python for constructing 2D and 3D sim-
ulation scenarios;

2. A fast C implementation of the image source model for room impulse
response (RIR) generation;

3. Reference implementations of popular algorithms for beamforming,
direction finding, and adaptive filtering.

2

Before the start of this project, we could find five main classes in py-
roomacoustics: The Room class, the SoundSource class, the MicrophoneAr-
ray class, the Beamformer class and the STFT class . Quickly after I began
working, Robin Schleiber also added a Dataset class that helped me to start
creating a wrapper for Google’s Speech Commands Dataset (explained be-
low).

With the Room class, you create an object that is a collection of Wall
objects, a MicrophoneArray and a list of SoundSource(s). It can be either
2D or 3D. A SoundSource object has as attributes the location of the source
itself and also all of its images sources. In general we create this list directly
in the Room object that contains the source. Finally the MicrophoneArray
class consist of an array of microphone locations together with a sampling
frequency.

Figure 1.1: Example of a room in pyroomacoustics.

1.3 What is TensorFlow?

As they say on their website, TensorFlow is an“open source software
library for high performance numerical computation.”[3] We followed a Ten-
sorFlow tutorial called “Simple Audio Recognition” to create the neural
networks we used during the whole project (we are going to explain how it
was created in 2.1). We have also reimplemented some of their functions to
be able to label sounds we have modified through processing (see 3.2).

3

Chapter 2

Theoretical knowledge

2.1 Training the Neural Network

In this section we’re going to talk about how the neural network was
trained. First off all, we download the “Google’s Speech Commands”[3]
dataset since we need it to train our network but to test the performance
of our algorithms. According to the tutorial, this model is considered really
simple but is also “quick to train and easy to understand”.

This model works as a convolutional network (in fact this model is
similar to the one you can use to do some image recognition). First of all a
window of time is defined and the audio signal is converted to an “image”,
i.e. a 2D array, with the Short Time Fourier Transform (STFT). This is
done by “grouping the incoming audio samples into short segments and
calculating the strength of the frequencies across a set of bands”. All the
frequency strengths of a given segment will then be treated as a vector of
values. These vectors are then ordered according to the time, forming the
two-dimensional array known as a “spectrogram”

In the Figure 2.1, time is increasing from top to bottom and fre-
quencies from left to right. We can also see different part of the sound that
are probably specific part of it (like a syllable in our case of word).

After our “image” is created we can feed it into a multi-layer convo-
lutional neural network (CNN), with a fully-connected layer followed by a
softmax at the end. With a large amount of images and associated labels, we
can train our network to classify different words. It took between 16h-20h
to train the model and we’re going to look at its accuracy later on in this
report.

4

Figure 2.1: Spectrogram of one of our sample during the training (image of the
TensorFlow website).

2.2 The GoogleSpeechCommands Dataset: Basic
informations

Created by the TensorFlow and AIY teams, the Speech Commands
dataset is used to add training and inference in TensorFlow. The dataset
contains 65,000 one-second long sound of 30 short words, spoken by “thou-
sands of different people”.[2] This dataset is not fixed and will continue to
increase with the contribution of users. It is designed to help a user to cre-
ate his own basic voice recognition interface, with common words like ‘yes’,
‘no’, directions, etc. The network explained above is trained to recognize
the following words:

1. Yes
2. No
3. Up
4. Down
5. Left
6. Right
7. On
8. Off
9. Stop

10. Go

5

2.3 Signal-to-noise ratio

In this section, we’re going to talk about one of the most important
metrics to quantify the performance of signal processing: the signal-to-noise
ratio (SNR)[4]. Even though this idea is quite simple and well-known, we
talk about it because it is important in our data augmentation and analysis.
We are going to talk about it in the “Implementation” part (Chapter 4).

First of all, for a single sensor, considering the signal y(t) = s(t) +n(t),
with s(t) being the sound of interest and n(t) being the noise, the SNR is
defined as the signal power over the noise power (assuming zero-mean):

SNRsensor =
E[|s(t)2|]
E[|n(t)2|]

=
σ2s
σ2n

(2.1)

with σ2s being the power of the ignal of interest and σ2n being the power of
the noise.
Finally in this project we don’t use the SNR under this form but express it
in decibels (dB) such that we now have:

SNRdB = 10 log10
σ2s
σ2n

= 20 log10
σs
σn

(2.2)

(cause log10 t
2 = 2 log10 t).

2.4 Algorithms

In this section we are going to talk about the different algorithms we
used in this project.

2.4.1 Single Channel Noise Removal (SCNR)

SCNR is used to suppress the noise, stationary noise in particular[5].
We consider a noisy input signal x[n] that becomes X(k, i), with i referring
to specific time chunk and f to frequency. This conversion to the frequency
domain is done using the STFT (Short Time Fourier Transform) for overlap-
ping chunks of audio. The noise suppressor removes the noise by applying a
time-frequency-varying real-valued gain filter G(k, i) to X(k, i). We define
this gain filter has follow:

• If there is no noise at a given time and frequency, the gain filter has
value 1.
• If there is only noise at a given time and frequency, the gain filter has

value Gmin. We choose this value as the one at which the noise shall
be attenuated. For example if we want to reduce by 10dB then

Gmin = 10−10/20 (2.3)

6

• If there is a mix of signal and noise at a given time and frequency, the
gain filter has a value within [Gmin, 1].

For this algorithm, an estimation of the noise is needed, we have:

P (k, i) = E[|X(k, i)|2]

as the estimate of the instantaneous signal + noise power, and we need to
compute a noise estimate, PN (k, i). There is two ways to compute it:

1. If the noise is stationary: PN (k, i) = minP (k, i) over some past period
of time.

2. Use a voice detector to determine the most recent chuck corresponding
to silence + noise: PN (k, i) = P (k, i) during this silence period.

In our implementation, we chose the first option, looking back for a fixed
number of blocks B:

PN (k, i) = min
[i−B, i]

P (k, i) (2.4)

Now we can define our gain filter such that:

G(k, i) = max[
(P (k, i)− βPN (k, i))α

P (k, i)α
, Gmin] (2.5)

where β is an overestimation factor, often set to a value larger than 1 to
ensure all noise is suppressed by a factor of Gmin, and the exponent α
controls the transition behaviour of the gain filter between Gmin and 1.

Figure 2.2: STFT-based stationary noise suppressor (from the Audio Signal Pro-
cessing and Virtual Acoustics books[5]).

In Figure 2.2 you can see a representation of the noise suppressor we
have implemented. First the signal x(n) is converted into X(k,i) in the
frequency domain using the STFT. Then for each value X(k,i), the circuit
compute its power. It is then used as we said before to estimate the noise

7

(equation 2.6) and create the filters G(k,i) (equation 2.7). Finally we use
these filters in the frequency domain by multiplying each X(k,i) by G(k,i)to
obtain Y(k,i) that will be then transformed back into the time domain (by
using inverse STFT called here ISTFT).

2.4.2 Beamforming: Delay and Sum

In this section, we are going to talk about one of the most basic beam-
forming algorithm[6]. Beamforming tries to perform an intelligent combi-
nation of the sensor signals in order to increase the SNR.
If we consider an array of M sensors and define that the signal received at
the sensor m is ym(t) = sm(t) +nm(t). We can write z(t) as a weighted sum
of {ymt}M−1

m=0 :

z(t) =

M−1∑
m=0

wm · ym(t−∆m) = zs(t) + zn(t) (2.6)

with wm being the weight corresponding to the signal ym and ∆m being a
delay to time-align separate microphones so that the signal arrives at the
same moment to each sensor.
Now we can write the SNR of our beamformed signal z(t) as:

SNRarray =
E[|Zs(t)2|]
E[|Zn(t)2|]

=
|
∑

mwm|2σ2s∑
m |wm|2σ2n

(2.7)

where we have assumed that the noise is uncorrelated across channels.
Delay and Sum Weights also called Delay And Sum (DAS) looks like what
we discussed above. This algorithm takes each individual microphone signal
and put all of them in phase by doing a delay correction. Then it sums up
the delayed signals and normalized by the number of microphone channels.
If we consider an array of M sensors and define that the signal received at
the sensor m is xm(t) then we define y(t) such that:

y(t) =

M−1∑
m=0

wm · xm(t−∆m) (2.8)

with wm corresponding to the weights, used to improve the quality of the
recording for the mth signal xm and ∆m corresponding to the delay chosen
to maximize the array’s sensitivity to waves propagating from a particular
direction.

8

Chapter 3

Implementation

3.1 The GoogleSpeechCommands Dataset

The “GoogleSpeechCommands” dataset wrapper was created as a sub-
class of the “Dataset” class that was already implemented in pyroomacous-
tics. This class will load Google’s Speech Commands Dataset in a structure
that is convenient to be processed. It has four main attributes:

1. the directory where the dataset is located, the basedir.
2. A dictionary whose keys are word in the dataset. The values are the

number of occurrences for that particular word in a dictionary called
size by samples.

3. A list of subdirectories in basedir, where each sound type is the name
of a subdirectory, called subdirs.

4. And finally classes, the list of all sounds, which is the same as the
keys of size by samples.

There are multiple functions in this class and we’re going to review them
quickly to give you a general idea of what is possible with this wrapper.

1. we have the init function that is the builder of our class. When
creating a structure containing the Google Speech Command dataset,
the user can choose if he wants to download it or not. But he can also
choose if he wants to construct just a subset of the whole dataset at
the start.

Figure 3.1: The init function of a GoogleSpeechCommands structure

9

2. The build corpus function that allows the user to build the corpus
with some filters, as for example the list of the desired words to be
taken from the corpus.

Figure 3.2: The build corpus function from the wrapper

3. The filter function that allows the user to filter the dataset and
select samples that match the criterias provided.

Figure 3.3: The filter function from the wrapper

Now that we talk about the wrapper, we need to present also the
“GoogleSample” class that is inheriting from the class “AudioSample” cre-
ated beforehand in pyroomacoustics. This class allows the user to create an
audio object to print it in a nice way, plot the corresponding spectrogram,
and listen to the file using the sounddevice library.[7]

3.2 How to label a file?

In this section, we are going to see how a user can label a file (following
the example script available on my pyroomacoustics fork called how to label

sa file). This example uses the “GoogleSpeechCommand” dataset and also
the graph we obtained by training TensorFlow neural network. First of all
we rewrote some function of TensorFlow such that we could access the result
of labelling. These functions are:

1. load graph, that is loading the graph used to label sounds.
2. load labels loads the labels corresponding to the graph (for example:

yes, no, etc...)
3. run graph labels a sound and return the prediction (in percentage)
4. label wav, the main function

In the script, the user needs to specify his label file and his graph file.
In our example, he can choose one of the word from the list we saw in Sec-
tion 2.2 and then label it using the label wav function in the following way:

Here destination represents the directory in which the file to label is
kept, labels file the label file, graph file the graph obtained from TensorFlow
and finally word is the sound you except to obtain with this wav file.

10

Figure 3.4: The labelling function in the pyroomacoustics example

Later on, this construction will become really important to us cause we
will use it to test the efficiency of our signal processing algorithms for speech
recognition 3.4.

3.3 How to synthesize noisy signals

Now we will learn how to synthesize noisy signals in pyroomacoustics.
First of all we have implemented, in utils, two function to create noisy signal:

1. modify input wav

2. modify input wav multiple mics

We will only talk about the second one since the first function is just a
special case of the second function. It can be done with the functions taking
care of multiple microphones case (but we keep the first function since its
way easier to use it in the single microphone case since you obtain only one
noisy signal at the end and not an array of noisy signal you need to flatten).
This function will first of all create two rooms, one for the sound source and

Figure 3.5: the modify input wav multiple mics functions from pyroomacoustics

one for the noise source, of the same dimension as specified by the argument
dimension. We can separate them since the operations we are going to do
are linear and the sound is independent from the noise. Moreover, we would
like to separate them so that we can weight just the simulated propagated
noise according to a specific SNR. After that the room simulation is done,
we recover the signals obtained in both rooms. We normalize the noise
signal obtained before creating noisy signals for all SNR values given to the
function: the argument snr vals.

Figure 3.6: How to synthesize the noisy signal for each SNR value

In the figure above, we compute the noisy signal corresponding to each SNR
value. The new noise is obtained by multiplying the normalized noise by
a coefficient corresponding to a specified SNR value we would like at the

11

microphone(s). We obtain this coefficient from the formula for the SNR
(see 2.3).

SNRdB = 20 log10
σs
σn

(3.1)

⇔ SNRdB
20

= log10
σs
σn

(3.2)

⇔ 10

SNRdB
20 =

σs
σn

(3.3)

⇔ σs

10

SNRdB
20

= σn (3.4)

(3.5)

with σn being the square root of the noise’s power and also the coefficient we
are looking for and σs is computed from the simulated source signal. With
the obtained coefficient, we can compute the simulated signal with a desired
SNR at the microphone(s) as:

y(t) = normalized(x(t) + σn ∗ normalized(n(t))) (3.6)

where x(t) the simulated sound signal and n(t) the simulated noise signal
for our specified room.

You can see an example of how to use this function in my pyroomacous-
tics fork. It is called filterhow to synthesize a signal. In this example, for
a word from the “GoogleSpeechCommands” dataset (“no”) and an SNR of
20, we obtained the following new noisy signal:

(a) original input signal’s spectrogram (b) A noisy signal’s spectrogram

Figure 3.7: original input signal’s spectrogram compared to new noisy signal’s
spectrogram

12

3.4 Testing the performance of the algorithms

We have implemented one algorithm in this project, the Single Chan-
nel Noise Removal (SCNR). The Delay and Sum (DAS) was already im-
plemented in the package with lots of other beamforming algorithm that
incorporate more sophisticated approach but did not use. Nevertheless, the
example we provide can be extended to these algorithms by modifying the
algorithm used for processing.

3.4.1 SCNR

You can see how we implemented it in Figure 3.8 however we will explain
how we did it. First of all we create an STFT object from the pyroomacous-
tics library that allows us to compute the STFT and to use it in an easy and
efficient way. We prepare also an array that will contain all of our processed
audio at the end.

Figure 3.8: SCNR algorithm implemented in pyroomacoustics

Then we implement the algorithm that we run for each SNR values given by
the user in this case (example called analyse improvement of single noise

channel removal in pyroomacoustics). We set a counter n to 0 at the start
of the algorithm. It tells us in which chunk of the STFT we are at a given
moment. After that, we enter in the while loop where we use the STFT ob-
ject to our advantage. With it we can compute easily the STFT of our input
signal (a noisy signal). Then we fill our matrix containing all the previous
signal’s power estimation and we select its minimum value as our noise’s
power estimation. Having this estimation we can now compute the value

13

of our filter, called mask in the figure, using the formula (2.6) (see 2.4.1).
Finally we have to update our matrix containing the powers and our counter
n before repeating the actions above.

3.4.2 DAS beamforming

Even though we have not implemented the algorithm itself, we have used
the DAS algorithm as you can see in Figures 3.9 and 3.10. We have cre-
ate a function working as the one presented in How to synthesize noisy

signals as you will see below (see 3.3). In this function we directly compute
the beamformed signal that then we can use in a script looking like the one
presented before (see 3.2) to label it.

create identical rooms
for signal and noise

apply same DAS

Beamformer to

each room

Create noisy signals

for each SNR value

Label the noisy signals

Figure 3.9: schema of how our beamforming script works

Figure 3.10: how to create beamformed signals (utils package)

Indeed we create two rooms, one containing the signal and the other
one noise. In these room, we have a circular array of microphone plus one
placed at the centre of this circle. We simulate these two rooms before
applying DAS on both of their output (since this algorithm is linear we can
do so). Then we normalize our beamformed noise to be able to set the SNR
according to a desired value. To do so we use the norm of the noise at the
center microphone. Then we create our SNR factor using the norm of the
center microphone in the signal room. Finally we compute our noisy signal
as before (see 3.3).

14

Chapter 4

Results

In this section we will look at the performance of the two algorithms
when we try to label processed sound. First we will talk about SNCR and
then about DAS.

4.1 Analyse improvement of Single Channel Noise
Removal

We first tried the SNCR algorithm in a script called:
analyze improvement of single noise channel removal fulldata avail-
able in my pyroomacoustics fork. We ran it for subset of size 25 in the
GoogleSpeechCommands dataset and for the words “no”, “yes”, “stop” and
“up” that the TensorFlow neural network can recognize. This means we
have created 1750 samples per word and 25 samples per SNR for a given
word. We obtained the following results for the the word “no” and “yes”:

(a) classification of the word no (b) classification of the word yes

Figure 4.1: classification comparison between the original noisy signal and a pro-
cessed version of it using SNCR for samples of size 25

We can see in the case of the word “no” that the algorithm improved the

15

recognition for low SNR (SNR that are the most plausible in real life). For
example at a SNR of 10dB we have an improvement of 23% for the classifi-
cation which is huge (we go from 25% of correct recognition by the model
to 48%). We can also see that the recognition is always higher when we
are using a processed signal. The result of this test is even more impressive
when we are working with the word “yes” since we have an improvement
of the classification of 29% at a SNR of 10dB (we go from 23% of correct
recognition by the model to 52%).
We can conclude that the SNCR is a good algorithm for cleaning the data
before giving it to a classifier. The improvement for low SNR are always
close or above 20%. But we can’t say this is perfect. Even if the algorithm
is quick, we can see that we don’t achieve more that 50% of correctness in
a majority of the case for low SNR. This is not that good if we want to use
this algorithm for a vocal recognition system.

4.2 Analyse improvement of Beamforming

Now we will look at the efficiency of our DAS algorithm. We use the
script analyze improvement of beamforming fulldata available in my py-
roomacoustics fork. We ran it for subset of size 25 in the GoogleSpeechCom-
mands dataset and for all the word that the TensorFlow neural network can
recognize. This means we have created 1750 samples per word and 25 sam-
ples per SNR for a given word. We obtained the following result:

(a) classification of the word no (b) classification of the word yes

Figure 4.2: classification comparison between the original noisy signal and a pro-
cessed version of it using DAS for samples of size 25

In the case of the word “no” we can see that the algorithm improved a lot
the recognition for low SNR. At 0dB we have an improvement of 30% for the
classification. This is even better than the improvement of SNCR at higher
SNR! In this case we go from 10% of correct recognition by the model to
48% (nearly 50%). Also the processed signal is always better recognize by

16

the model. We have even better result when we are working with the word
“yes”. We have in this case we have an improvement of 58% of the classi-
fication at a SNR of 10dB (we go from 10% of correct recognition by the
model to 68%).
Now we can say that the DAS is an even better algorithm than the SNCR
for cleaning the data before giving it to a classifier. The improvement at low
SNR seems to be higher than 30% in general. One more time this algorithm
is not perfect (what we want is more than 50% of good recognition at low
SNR). But seeing its performance and knowing that DAS is the simplest
form of Beamforming, we could say that beamforming seemed to be one
solution to improve efficiently the vocal recognition of a system.

17

Chapter 5

Conclusion

5.1 Where are we now?

At the end of this project we were able to add a wrapper to Google’s
Speech Commands Dataset that is actually available in pyroomacoustics at
the address https://github.com/LCAV/pyroomacoustics/tree/master/

pyroomacoustics/datasets since we have done the pull request for it al-
ready(https://github.com/LCAV/pyroomacoustics/pull/30). We were
able to add utilities for augmenting datasets and to test the efficiency of
processing algorithm for improving the recognition’s quality of a system.
We have seen that SNCR is working quite well for what we are doing right
now but we can surely do much better (but we will talk about this at the
end). DAS beamforming also improved the recognition, but it would be
interested to test the performance of more sophisticated algorithms. All
the scripts we have done are now available on the GitHub of pyroomacous-
tics (my fork in fact) at the address https://github.com/alexismermet/

pyroomacoustics/tree/master/examples/final_scripts_for_final.

5.2 What’s next?

In the future and for the improvement of the pyroomacoustics library, other
students could test and implement other signal processing algorithm (for
example just test the other beamforming algorithms already available in
the package). They could also create new wrapper for other datasets. Then
they could also create a new dataset from scratch for pyroomacoustics which
could help user to test their algorithms in the best condition possible (also it
could be quite fun to record sound). Finally, they could try to find another
machine learning model with better accuracy than the model we have used
in this project.

18

https://github.com/LCAV/pyroomacoustics/tree/master/pyroomacoustics/datasets
https://github.com/LCAV/pyroomacoustics/tree/master/pyroomacoustics/datasets
https://github.com/LCAV/pyroomacoustics/pull/30
https://github.com/alexismermet/pyroomacoustics/tree/master/examples/final_scripts_for_final
https://github.com/alexismermet/pyroomacoustics/tree/master/examples/final_scripts_for_final

Bibliography

[1] Robin Scheibler, Eric Bezzam, and Ivan Dokmanić. “Pyroomacoustics:
A Python package for audio room simulations and array processing
algorithms”. In: arXiv preprint arXiv:1710.04196 (2017).

[2] Google Brain Team Pete Warden Software Engineer. Launching the
Speech Command Dataset. Ed. by Google AI Blog. 2017. url: https:
//ai.googleblog.com/2017/08/launching- speech- commands-

dataset.html.

[3] TensorFlow, ed. Simple Audio Recognition. 2018. url: https://www.
tensorflow.org/versions/master/tutorials/audio_recognition.

[4] Jørgen Grythe. Array gain and reduction of self-noise. report. Norsonic
AS, Oslo, Norway, 2016.

[5] Christof Faller and Dirk Schröder. Audio Signal Processing and Virtual
Acoustics. 2015.

[6] Robin Scheibler, Ivan Dokmanić, and Martin Vetterli. “Raking echoes in
the time domain”. In: Acoustics, Speech and Signal Processing (ICASSP),
2015 IEEE International Conference on. IEEE. 2015, pp. 554–558.

[7] Matthias Geier. Play and Record Sound with Python. 2018. url: https:
//python-sounddevice.readthedocs.io/en/0.3.11/.

19

https://ai.googleblog.com/2017/08/launching-speech-commands-dataset.html
https://ai.googleblog.com/2017/08/launching-speech-commands-dataset.html
https://ai.googleblog.com/2017/08/launching-speech-commands-dataset.html
https://www.tensorflow.org/versions/master/tutorials/audio_recognition
https://www.tensorflow.org/versions/master/tutorials/audio_recognition
https://python-sounddevice.readthedocs.io/en/0.3.11/
https://python-sounddevice.readthedocs.io/en/0.3.11/

	Introduction
	Objectives of the project
	What is pyroomacoustics?
	What is TensorFlow?

	Theoretical knowledge
	Training the Neural Network
	The GoogleSpeechCommands Dataset: Basic informations
	Signal-to-noise ratio
	Algorithms
	Single Channel Noise Removal (SCNR)
	Beamforming: Delay and Sum

	Implementation
	The GoogleSpeechCommands Dataset
	How to label a file?
	How to synthesize noisy signals
	Testing the performance of the algorithms
	SCNR
	DAS beamforming

	Results
	Analyse improvement of Single Channel Noise Removal
	Analyse improvement of Beamforming

	Conclusion
	Where are we now?
	What's next?

	Bibliography

