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Abstract— In this paper, we propose a risk-based coordi-
nation method for the Multi-Robot Task Allocation (MRTA)
problem in human-populated environments. We introduce risk-
based bids that incorporate human trajectory prediction un-
certainties and furthermore, social costs in their formulation.
We demonstrate the effectiveness of including a predictive
component in the risk formulation despite the lack of accurate
position estimation for humans through an extensive suite of
experiments. This is done by means of testing different levels
of prediction error for known human trajectories and in a
separate approach, using a Kalman filter for human trajectory
estimation. Furthermore, we propose different risk formulations
and evaluate their performance in a high-fidelity simulator.
Additionally, a comparative study targeting human-agnostic
planning at both navigation and planning levels, human-aware
navigation and planning based on deterministic costs, and risk-
based human-aware planning with no individual human-aware
navigation has been conducted. Results confirm that risk-based
bids lead to more socially acceptable team plans that reduce
the need for the lower level individual human-aware navigation
to be activated. Risk-based plans that account for social costs,
prevent difficult social situations that can lead to less effective
human-aware navigation, such as traversing narrow passages
occupied by humans.

I. INTRODUCTION

With the increasing presence of technology and robots in
social environments, research in the area of socially-aware
navigation has received much attention in the recent years.
Robots in social environments either directly interact with
people or have to operate in spaces shared with humans.
Therefore, it is essential that robots gain the acceptance
of people by ensuring their safety and comfort [1] and
demonstrating legible and predictable [2] actions.

Despite the numerous applications of Multi-Robot Systems
(MRS) in social environments, such as personal assistants
at homes, robot tutors at schools, service robots at hospital
and nursing homes, research in the human-aware navigation
area focuses mainly on single robots and the problem of
cooperative human-aware navigation for MRS -an interesting
problem for both multi-robot and human-aware navigation
research- is largely unexplored.

In this paper, we focus on a particular class of MRS
coordination mechanisms commonly known as Multi-Robot
Task Allocation (MRTA) [3], [4] in social environments
using a market-based approach [5]. In such environments
the number of robots are often limited and the number of
tasks are usually moderate. The main difficulty for MRTA in
such highly dynamic and noisy environments, is that plans
are likely to change or to be rendered invalid, particularly if
the robots are planning for long periods of time. Additionally,
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Fig. 1: Two robots bidding on a task that will have a changing cost over
time. The human is initially static. He then decides to move towards Robot 1.
This snapshot shows the initial position of the robots and the human for
case study 1 in Webots.

robots are required to perform in a socially acceptable manner
in terms of navigation and interaction with people and
other team members. This adds additional constraints to the
planning problem.

In social environments, when robots take decisions based
on the current available information only, they are assuming
that their decision remains valid in its period of execution.
However, human actions such as walking, starting or ending
an interaction, can largely modify the social costs while a
robot is proceeding towards an already allocated task. In such
cases, the initial bid estimation for the task allocation is no
longer a true representative of the real cost. As a result, the
performance and efficiency of team plans can degrade in more
complex and dynamic environments. In this paper, we study
MRTA in dynamic social environments with costs that have
a stochastic nature due to the changing behavior of people.

To illustrate the problem, we will use the example in Fig. 1,
where two robots are coordinating to find the best team plan
for taking Task 1. In a social MRTA approach that only
considers the current available information when bidding on
a task and given a local balance function that scores tasks
inversely proportional to their distance to the robot, Robot 1
will take Task 1. This is because the distance that Robot 1 has
to travel (d1) is smaller than the distance traveled by the other
robot (d2). Additionally, Robot 2 will have to travel an even
larger distance (d3) to avoid the social costs associated to the
personal space of the human. However, in reality the human
is moving towards Robot 1. This means there will be no
social costs associated to the path of Robot 2. Additionally,
Robot 1 will have to modify its path in order to respect
the personal space of the human and will have to travel a
larger distance than planned. If robots consider the future
positions of the human while estimating their bids, they will
know that Robot 2 is a better candidate for taking Task 1 in
this situation.

Accurate estimation of future positions of humans in un-
controlled environments is not possible in reality. Nonetheless,
prediction of human motion despite being error prone, can still
provide valuable information about the changes that are likely
to occur. Taking a decision based on uncertain information
can be seen as taking a risk. In the context of MRTA, a risk



measure that adopts predictions and captures their errors as
uncertainties can be a useful extension to the deterministic
estimation of costs. Furthermore, accounting for the added
social costs corresponding to risky situations, can help the
robots to take more informed and socially-aware decisions.

The contributions of this work include, proposing a concept
of risk-based human-aware bids that account for changing
costs in human-populated environments, evaluating the effect
of human trajectory prediction error on risk-based bid
estimation and team performance, and proposing different
risk formulations to account for the prediction error, risk
estimation accuracy, and social costs. To the best of our
knowledge, MRTA with stochastic human-aware costs in
social environments has not been investigated in the literature.

II. RELATED WORK

MRTA algorithms vary in design and application [6],
[7], but their common objective is to find a mapping
between robots in a team and a set of “tasks” that must be
accomplished in order for the team “goal” to be completed.
Among multiple approaches proposed for MRTA, we are
mainly interested in distributed approaches that can be
executed by a team of robots without the explicit need for a
centralized entity outside the team with perfect knowledge
of the environment [8].

Market-based multi-robot coordination [5], [9], [10] is an
example of such a MRTA approach. In these systems, robots
act as agents trying to maximize their individual profits. Every
time a task is auctioned, robots must pay a price to obtain it.
Once the task is completed, a payment is done to the robot
which won the auction. The underlying assumption is that
with every robot trying to maximize its individual profit, the
overall team coordination and efficiency will be improved.

As stated in [6], despite the importance of uncertainty in
real robotic problems and the potential of stochastic planning
for producing sound and robust allocation policies, most
MRTA approaches assume a deterministic MRTA model and
deal with uncertainty only at execution time by replanning
during task execution.

In stochastic allocation literature, it is assumed that a
model of uncertainty, for instance a probability distribution
of robot travel time, task arrival, etc., is available. Such
MRTA problems are commonly modeled as Markov Decision
Processes (MDPs) [11], or as pure or mixed stochastic integer
programs [12]. In a different approach, approximation of the
parametric uncertainties captured by the underlying system
model has been investigated in [13] by means of active
learning.

Despite the research is this area, it is not clear what is the
better approach for facing uncertainty and the challenges of
MRTA still remain open. In [6] such dilemma is summarized
as follows: “Is it more beneficial to build a complex model
that incorporates uncertainty, or is it enough to build less
well-informed plans and replan as often as needed to quickly
react to unexpected events?”

Planning under uncertainty can also be addressed using
Partially Observable Markov Decision Processes (POMDPs).
However, this approach is faced with a scalability problem
when considering teams of robots. Auctioning of independent
local POMDP-based controllers is proposed by [14] to
alleviate this problem. Nonetheless, for real uncontrolled envi-
ronments, the information space get too large to be tractable.

Very little work has been done in MRTA for social
environments. In [15], a general MRS architecture for person
search for a team of assistive robots in a retirement home
is proposed. Therein, MRTA is considered as a constraint
optimization problem and a centralized planning approach
based on constraint programming [16] is used to solve it.
The focus of this work is on the capabilities of the proposed
architecture and social aspects have not been considered.
In [17], a real-world multi-robot coordination problem for
human guidance, requiring stochastic transitions is shown to
be successfully implemented in a centralized fashion, at a
scale of five to ten robots. The human behavior is simplified
and a discrete state space representing key locations on a
map is used for the MDP. Similarly, no social costs have
been considered in this study.

In our previous work, a study of MRTA in dynamic
and noisy environments [18] for spatial task allocation
confirmed the effectiveness of our Hoplites-based method
[19] as a first step towards deployment of MRTA methods
in social environments. In [20], we proposed a human-
aware coordination method for MRTA that accounted for the
distance overhead of human-aware paths in the local balance
function of the robots and allowed for instant collaboration
in socially blocking situations. However, robots could only
see a snapshot of the environment and costs were assumed
to be deterministic.

MRTA in social environments should ensure social accep-
tance as well as achieving good performances in terms of
global team objectives such as the traveled distance, mission
time, etc. Respecting personal spaces, O-spaces and P-spaces
[21] are the common social behaviors considered in the
literature of human-aware navigation based on the concept
of “proxemics” [22]. In this work, proxemics-based social
costs encoded as costmaps similar to [23] along with a Fast
Marching Method (FMM)-based path planner constitute the
human-aware navigation components of the robots. FMM
has been proven to be successful in real domestic spaces
with high complexity [24]. There have previously been a
number of research papers addressing social path planning
using FMM [25].

Unlike most stochastic MRTA approaches, an uncertainty
model for uncontrolled social environments is not available
unless strong assumptions are made or a data-driven approach,
targeting a specific environment, is taken. Additionally, the
scale and complexity of the problem is too large for applying
POMDP-based solutions. Moreover, each encounter of the
robots with humans matters and improving the average
performance is not the best strategy to gain social acceptance
for the robots. As a result, we opt for an approach that uses
risk as a heuristic for estimating stochastic costs.

Risk-based navigation (Risk-RRT [21]) has been adopted
in human-aware navigation for single robots. Therein, risk,
or the probability of collision with objects or intrusion
in socially costly areas, along any candidate trajectory is
taken into account for selecting an appropriate human-aware
path. Inspired by this idea, we propose a number of risk
formulations for estimation of stochastic costs for social
MRTA in the next section.

III. PROBLEM DESCRIPTION AND APPROACH

In this section we define the MRTA problem and explain the
underlying market-based framework for robot coordination.



Next we propose the risk-based bid formulations.

A. Problem Description
Consider a team of nr robots {rj , j = 1, . . . , nr} and

a set of nt tasks {ti, i = 1, . . . , nt}, where each task is
a location that a robot has to visit. The team of robots
should decide how to efficiently subdivide these tasks using
a local criterion in order to optimize a global performance.
This global performance can be a function of time, distance
traveled, etc. Tasks can be identified locally by the robots
through on-board perception or can be broadcasted to all
robots by an external source. Many applications such as
patrolling, attending service requests, etc., can benefit from
this functionality.

For succeeding in a social environment, robots are required
to ensure that social constraints, namely personal and inter-
action spaces of humans, are not violated.

B. Social Multi-Robot Coordination
By means of a Hoplites-based coordination [19] scheme

comprised of two main concurrent types of coordination,
passive coordination and active coordination, the robots,
which are self-interested agents in pursuit of individual profit,
can evaluate each available task and decide whether to take
it or sell/buy it to/from another robot in a distributed manner.

In passive coordination, each robot chooses its most
profitable plan and broadcasts it to other teammates with-
out any attempt to modify their plans. This information
is then used by other robots to reevaluate the expected
profitability of their current plans, update and broadcast
the changes. However, sometimes a robot’s best plan can
only be marginally profitable while a genuine team plan
could result in a higher profit. This suggests that modifying
the plans of the robot’s teammates would be an interesting
option to pursue. Concretely, this implies that the requesting
robot asks its collaborators for compensation price quotes
and persuades them to engage in a cooperative action. This
process is ruled by a market-based approach and constitutes
the active coordination. For details about the Hoplites-based
MRTA refer to [18] and [20].

The decision of switching to the active coordination mode
is based on the evaluation of a local balance function. This
function is strongly problem-dependent and can contribute
to reaching the globally optimal solution at the team level if
chosen correctly. Additionally, a problem-dependent global
balance function is also required for team-level evaluations.

The local balance functions constitute what is known as a
bid in the context of the market. While many formulations
can be used for encoding the local balance function of robots,
operating in social environments calls for including a social
factor in bids. Thus, human-aware bids and social time-outs
are used to encode the social information into the coordination
framework [20]. Social time-outs are used for requesting
collaboration when socially blocking situations occur.

C. Deterministic Social Bids
Robots should find the most appropriate assignment for

optimizing the global balance function based on a local
balance function. The local balance function of robot rj ,
for each task ti belonging to a plan P at time k is defined
in the following. This function is inversely proportional to
the length of the path planned by the FMM to the desired

task. We note that for social task planning, the path planned
by the FMM already takes into account the social costmaps
representing the human-centric Gaussian cost functions [26].

Bj,P (k) =
∑

ti∈P (k)(Rti(kr,ti)−Dsocial(lti−1 , lti)) (1)

Rti is the revenue of task ti, lti is the position of ti and
lti−1

is the position of the task that appears before ti in P .
kr,ti is the time that rj is expected to reach ti and Dsocial

is the distance traveled based on the human-aware path. This
balance function includes a revenue Rti that is decreasing
with time as shown below.

Rti(kr,ti) = max(0, Rmax(1− kr,ti − ka,ti
T

)) (2)

where kr,ti is the time in which ti is reached, Rmax is the
maximum revenue for the task, ka,ti is the allocation time of
ti and T is the time after which the positive revenue becomes
zero. This utility function is added to reinforce reaching the
tasks as early as possible. In real noisy social environments,
only an estimate of the time to reach a task (kr,ti) can
be computed and due to the changing behavior of people,
estimates of kr,ti and the distance traveled by the social
robot (Dsocial) can be far from accurate for some of the
robots and acceptable for the ones who are not faced with
humans. If a static person starts moving and clears the robot's
path, the initial bid on the task has been an over-estimation.
On the contrary, if a moving human suddenly occupies parts
of a robot's path or decides to interact with the robot, the
original bid has been an under-estimation. In other words,
costs associated with tasks are uncertain and can vary over
time.

D. Risk-based Bids

Accurate prediction of the future for humans is not possible
because of the uncertainties inherent to uncontrolled social
environments. Therefore, we propose an abstraction that can
extract higher level information from perceptual data, by
introducing risks. “Risk” is defined as the probability of
occupation of an area with social costs by the robot.

In general, the local balance function B for a robot rj and
a given plan P at time k is defined as follows:

Brj ,P (k) = Rrj ,P (k) − C ′rj ,P (k)

C ′rj ,P (k) = Crj ,P (k) +Grj ,P (k)
(3)

where R is a generic revenue function, C a generic cost
function and G the penalty for constraint violations. In a
human-populated environment, the presence of people can
lead to an increase in the cost for a plan compared to the
estimated cost of that plan in an empty deterministic and
noise-free environment. Similar to the way humans assess
situations by means of evaluating the risks against the benefits
when taking a decision, the robot will compute a risk-based
cost C ′′ that will be aggregated with a revenue R for a given
plan P .

Another term Q is introduced to captures this stochastic
cost which is proportional to the risk γ associated with the
plan. fm is a user-defined function used to aggregate the
risk with revenue, cost and penalty terms, based on the risk
formulation method m.



Brj ,P (k) = Rrj ,P (k) − C ′′rj ,P (k)

C ′′rj ,P (k) = C ′rj ,P (k) +Qrj ,P (k)

Qrj ,P (k) =
∑

ti∈P (k) fm(γrj ,ti,k)
(4)

When evaluating Brj , the risk of being subjected to
additional costs due to human actions for each task ti in
P throughout the mission must be determined. This risk is
computed on the basis of the distance D between the robot
and any human present in a predefined vicinity of the robot
at any point of time. Let's assume that at time k, ti will be
started in k1 seconds and will be reached in k2 seconds. The
risk associated with this part of the plan is defined as follows:

γ(rj , ti, k) =

∫ k+k2

k+k1

∑
h∈H

gm(D(lrj ,k′ , lh,k′))dk
′ (5)

Here, gm is a function that is inversely proportional to D,
i.e., the distance measure between the robot position lrj and
the position of the human lh. Since risk is defined as the
probability of occupation of an area with social costs by the
robot, g is chosen to normalize the distance in a predefined
vicinity of the human with radius εR:

gm =
max{0, εR −Dm}

εR +Dm
(6)

The key information for computing risk is the future
positions of people. This calls for a human trajectory predictor
to make the required information available. Throughout this
paper, we assume that the output of the human trajectory
predictor is a Gaussian distribution. Mh,k is the mean and
Σh,k is the covariance matrix of the distribution. For time k
and human h, we will have a predictor that provides us with
the following information:

lh,k = N (Mh,k, Σh,k) (7)

Robot position on the other hand, can be given by the path
planner. For any given goal (lti), we obtain a sequence of
way-points w ∈ Wrj ,ti = {w1, w2, ..., wN} that constitute
the robot path, with w0 being the initial position of the rj .
An estimate of the corresponding reaching time for each w is
also known kw ∈ {kw1

, kw2
, ..., kwN

}. The robot trajectory is
then discretized and k is ignored as it is implicitly accounted
for through the use of kw. The new risk formulation can be
written as:

γ(rj , ti) =
∑

w∈Wrj,ti

∑
h∈H

gm(D(w, lh,kw )) (8)

H represents the set of all humans perceived by the robot.
Depending on the risk modeling approach, different distance
and risk formulations can be chosen. We are interested to
know how this choice can affect the performance of the team
plan in terms of both MRTA and social metrics. Therefore,
we propose the following risk formulations. Details of our
proposed generic bid estimation algorithm can be found in
Algorithm 1.

1) Euclidean Distance: By choosing this metric, using a
simple formulation that requires only the end points without
the uncertainty associated with them we compute the straight-
line distance between two points in Euclidean space, i.e.,
way-point and human positions. The expected value of the
human prediction distribution will be used as the position of
the human.

γ(rj , ti) =
∑

w∈Wrj,ti

∑
h∈H

gm(DE(w,E(lh,kw )) (9)

2) Mahalanobis Distance: Since human trajectory pre-
dictions provide a Gaussian distribution with a covariance
matrix, we do know about the uncertainty associated with
every prediction. Thus, a more accurate distance measure
can be extracted if this uncertainty is taken into account by
means of Mahalanobis distance.

The Mahalanobis distance between robot rj and human h
can be written as follows. Note that lrj = w.

DM (lrj , lh,k) =
√

(lrj −Mh,kw )>Σ−1
h,wk

(lrj −Mh,kw ) (10)

γ(rj , ti) =
∑

w∈Wrj,ti

∑
h∈H

gm(DM (w, lh,kw )) (11)

3) Integrated Distances: In sections III-D.1 and III-D.2,
only way-points from the planner have been considered for
risk computation. However, if the granularity of robot path is
not fine enough, there are cases where important events can
be missed; for instance, robot and human collision or social
zone intrusion can happen in between two way-points without
the two ends of the trajectory segments being affected by
it. Therefore, a piece-wise linear breakdown of the segment
between way-points can be considered with a predefined
resolution. The formulation of gm for DE and DM for
integrated distances can be found in the following:

gm(DE(w,E(lh,kw ))) = max
wp∈PWL(w−1,w)

gm(DE(wp,E(lh,kwp
)))

(12)
PWL(w−1, w) represents the piece-wise linear breakdown

of the segment between w and its previous waypoint w−1.
Instead of max operator, summation can also be used to
account for the accumulated social costs. Similarly, for DM

integrated risk will make use of the following distance
formulation.

gm(DM (w, lh,kw )) = max
wp∈PWL(w−1,w)

gm(DM (wp, lh,kwp
))

(13)

4) Social Cost Incorporation: Human presence can affect
the cost for a task in a number of ways. The distance traveled
will increase, risk of interactions and therefore, incomplete
missions are introduced and additionally costs concerning
human discomfort or inconvenience can be incurred. By
assigning costs on the basis of social costmaps to the risk
formulation, social factors are further reinforced.

Expectation-based social costmaps are used to incorporate
the uncertainty in the human positions reported by the
human trajectory predictor. Consider a person at (xp, yp),
the deterministic costmap at (x, y) is:

S(x, y;xp, yp) = N(x− xp, y − yp) (14)

N is the 2D Gaussian modeling the standard social costmaps.
The probabilistic costmap is given by the expected value
of the social cost S, given the probability distribution of
the human's position p(xp, yp) which in this case belongs
to a Normal distribution for any point in its vicinity, e.g,
w = [x, y]> is:

S(w) = E(p(xp, yp)[S(x, y;xp, yp)]) =∫ ∫
N(x− xp, y − yp)p(xp, yp)dxpdyp (15)



This is in fact the convolution of the Normal function
modeling the human position lh,kw

and a Gaussian social
costmap model S centered on the mean of lh,kw which is
[xp, yp]>. Using this approach, we compute an expected
costmap incorporating all the uncertainty in the environment.
Based on this social costmap we now can have a risk value
that incorporates social costs directly. The risk formulation
for endpoint and integrated social costs can be written as the
following respectively:

γ(rj , ti) =
∑

w∈Wrj,ti

∑
h∈H

S(w) (16)

γ(rj , ti) =
∑

w∈Wrj,ti

∑
h∈H

max
wp∈PWL(w−1,w)

S(wp) (17)

The potential additional social costs only occur in the
vicinity of humans. This means for scenarios with many
tasks and many robots, only a subset of robots and tasks
which are subjected to social costs are making the difference
with non risk-based approaches. The building block of such
scenarios, is bidding on one task affected by one human. If
robots could improve their estimates of the cost for such a task,
they will subsequently improve their team level performance
since more grounded decisions will be taken. Additionally,
by means of an aggregated formulation of risk that accounts
for all the humans perceived by the robot, every human is
considered when computing the bid and areas containing
more humans will be associated a higher risk.

There are two main components to MRTA performing well
in dynamic social environments: 1) improved bid estimation,
2) adaptive replanning. In this paper, we focus on the former
since we believe providing a detailed evaluation of different
methods for risk-based bid computation is the first essential
step for understanding how to approach stochastic social
costs for acquiring better team plans. Moreover, reliable
risk estimation is the basis for devising adaptive replannig
strategies that can accommodate the high dynamics of social
environments. Currently, re-planning is done when a task is
accomplished or for verifying the validity of a stored plan
when a robot is on its way towards a task (refer to [18] for
detail).

Algorithm 1 Risk-based bid estimation of robot rj for task ti
with humans H

1: procedure BIDESTIMATION(lrj , lti , H)
2: . Compute the path to ti assuming an empty map
3: (Wrj ,ti , Krj ,ti , pathCostrj ,ti )← PATHPLANNING(lrj , lti )
4: bidrj ,ti ← pathCostrj ,ti
5: w−1 ← lrj
6: for w ∈Wrj ,ti do
7: for h ∈ H do
8: . Find human position at time kw
9: lh,kw ← PREDICTHUMANPOSITION(lh,kw−1

, kw)

10: . Estimate the risk of h for rj between w−1 and w
11: γrj ,h,w ← ESTIMATERISK(w−1, w, lh,kw−1

, lh,kw )

12: . User-defined function for aggregating risks with the bid
13: bidrj ,ti ← AGGERAGTERISK(γrj ,h,w, bidrj ,ti )

14: w−1 ← w

return bidrj ,ti

IV. METRICS AND NAVIGATION

In this section we will describe the evaluation metrics,
navigation method, the robots used for our experiments, and
the simulation tool.

A. Metrics
For the global balance function concerning MRTA, the

total traveled distance (M1) and the mission time (M2) are
reported for all experiments. For evaluating the performance
of the MRS in terms of social-awareness, the maximum
accumulated social cost (M3), the maximum time steps spent
in areas associated with social costs (M4) and the minimum
distance to any human throughout the experiment (M5) are
reported among all robots.

B. Navigation
The navigation system is that of the MOnarCH project [27],

detailed in [24]. As input, it uses the pose estimates provided
by a standard Adaptive Monte Carlo Localization (AMCL)
self-localization system, given odometry, laser range finder
readings, and a static map. The navigation system is based on
FMM for motion planning, together with a Dynamic Window
Approach (DWA) algorithm for guidance and obstacle avoid-
ance. FMM and DWA run asynchronously. FMM is activated
when a new goal position is given, and DWA is running in a
closed loop with a fixed rate of 20 Hz in our experiments.

C. Robot
The robot we used in this work is called the MBot [28]

(see Fig. 1) and has been developed within the FP7 European
project MOnarCH1. It is an omni-directional drive robot with
an approximately round footprint of 0.65 m in diameter and a
height of 0.98 m. It is endowed with two laser range finders,
on both the front and the back for providing 360◦ coverage.

D. Simulations
The use of high-fidelity simulators such as Webots [29] is

fundamental, especially when considering multi-robot systems.
When evaluating MRS in human-populated environments, con-
ducting real experiments with varying features and complexity
levels becomes exceeding difficult. We have developed models
of the environments (see Fig. 1 and Fig. 2) for our experiments
that enable simulations with similar environmental richness
to the real world experiments, as shown in [18].

V. EXPERIMENTS

Two case studies of increasing complexity will be described
in this section. In section V-A, we will investigate the
performance of different risk formulations as well as the
effect of human trajectory prediction error on the method
performance. In section V-B, a comparative study targeting
1) human-agnostic navigation and planning, 2) human-aware
navigation without considering humans in the planning
phase, 3) human-aware navigation and planning based on
deterministic costs, and 4) human-aware planning based
on stochastic costs without any individual human-aware
navigation will be explained.

We note that in each case study, human trajectories are the
same across all runs with different methods. This choice has
been made to ensure that we are comparing the same MRTA
problem instance. Each scenario has been repeated for ten
simulation runs. Robots are relying on their self-localization
for computing the local balance functions and the evaluation
metrics (M1 −M5) have been obtained from ground truth
values provided by the simulation.

1http://monarch-fp7.eu/

http://monarch-fp7.eu/


Scenario No. of Humans Risk Method Noise σ (m)
1A 0 - -
1B-AG 1 - -
1B-E0 1 Euclidean 0.0
1B-E0.5 1 Euclidean 0.5
1B-E2 1 Euclidean 2.0
1B-E-KF 1 Euclidean KF
1B-M0.5 1 Mahalanobis 0.5
1B-M2 1 Mahalanobis 2.0
1B-M-KF 1 Mahalanobis KF
1B-S0 1 Social costmap 0.0
1B-S0.5 1 Social costmap 0.5
1B-S2 1 Social costmap 2.0
1B-S-KF 1 Social costmap KF

TABLE I: Details of different scenarios in case study 1. Noise stands for
the human trajectory prediction noise.

For computing social metrics, we rely on Gaussian social
costmaps. Similar to [23], we have chosen σx = 0.255 m, and
σy = σx since we don’t include orientation in our predictions.
The value of social cost for a given position varies between
0 and 100 and the radius of the social costmap is 1 m.

A. Risk Formulation and Trajectory Prediction Analysis
This test case consists of two robots, one task and a

dynamic human that causes the cost of the task to change
over time (see Fig. 1). The goal of this case study is to
investigate the main challenging aspect of changing costs,
i.e., impact of the human. This test case serves as the building
block for more generalized cases with more robots and more
humans. In the presence of multiple people, each robot will
perform the same operation to compute an accumulative risk
accounting for every perceived human.

For this test case, we have only included the point-based
risk methods, since with 0.25 m granularity of the way-points
in robot path planning, there is no need for opting for an
integrated risk model in our problem.

To study the effect of prediction error on the performance
of our method, different levels of noise have been tested for
each risk formulation. This is done by means of adding noise
to the ground truth trajectory of the human, i.e., sampling
a point lh from a Gaussian distribution N (MGT , ΣNoise)
with:

MGT = [xGT , yGT ]> , ΣNoise =

[
σ2 0
0 σ2

]
(18)

xGT is the x component and yGT is the y component of
the true human position. The output of each prediction is
another Gaussian distribution N (lh, ΣNoise). When adopting
a Kalman Filter (KF) for human position prediction, a state
consisting of [x, y, vx, vy]> is tracked and [x, y]> is observed.
x is the x component of human position in the world frame,
y is the y component of human position, and vx, vy are
the corresponding velocity vector components. A constant
velocity dynamics model is assumed for the human motion.
Table I lists the details of each scenario in terms of noise-level
and risk method.

B. Comparative Evaluation of Different MRTA Strategies
In this case study, a problem consisting of five tasks, four

robots and two dynamic humans has been considered. Fig 2
illustrates the initial position of the robots, task placement
and human trajectories. The aim of this assessment is to
study the performance of the risk-based social task planner
in comparison to the other approaches in a more complex
setting. This case study demonstrates how team plans can

Fig. 2: Initial position of the robots and humans in test case 2 in Webots. Blue
circles depict the location of tasks and smaller circles on human trajectories
represent brief pauses.

change if future risks are to be considered and how social
costs can be significantly reduced by means of team plans
that avoid social risks.

To compare the performance of different MRTA strategies,
four series of tests across two scenarios have been conducted.
In Scenario 2A, there are no humans present, whereas in
Scenario 2B, two moving humans exist in the environment as
explained in the case study description. This latter scenario
adopts three different algorithms, Scenario 2B-AG, human-
agnostic robots, in this scenario humans are not considered
in the team plan and are only considered as obstacles in
robot navigation. Scenario 2B-SD, social deterministic costs
and individual human-aware navigation; here humans are
considered in task planning but through a social planner
that takes decisions based on currently available information
only. Scenario 2B-SR-KF, risk-based social planning without
individual human-aware navigation; in this scenario a KF
predictor is used for bid estimation. Among different risk
formulations, S-KF was shown to be the most effective (see
section VI-A), hence, we selected this method for further
evaluation. We chose to decouple the risk-based social planner
from individual human-aware navigation to highlight the
strengths of this planning approach and assess the contribution
of risk-based bids in finding better plans and reducing social
costs.

VI. RESULTS AND DISCUSSION

In this section the results of the two case studies explained
in the previous section will be discussed.

A. Risk Formulation and Trajectory Prediction Analysis

Consider Fig. 1 again. Upon initial biding of both robots,
Robot 1 is the closest to Task 1 and will therefore be allocated
to this task in Scenario 1A and 1B-AG. However, when
future risks are taken into account in task planning, in all
other scenarios Robot 2 will request a collaboration and take
Task 1. Social task planning based on deterministic costs has
not been included in this test case since it is clear that with
the added distance overhead of social paths (see d3 in Fig. 1),
Robot 2 will not be able to overbid Robot 1. For this test
case, plans are not included for brevity and we focus on the
extracted metrics instead. Fig. 3 shows the performance of
this test case across different scenarios. For Scenario 2A, we
expect to have the smallest M1 and M2 due to no humans
existing in the environment. This is confirmed by Fig. 3a-b.
Scenario 1B-AG has similar performance to 1A in terms of
M1 −M2 on average. However, without individual human-
aware navigation we observed Robot 1 having a mild or
major collision with the human in a few runs. This resulted
in pauses and localization errors for the robot and hence the
increased variability in M1 and M2 compared to Scenario
1A, despite following the same task assignment. Lack of
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Fig. 3: Performance metrics for the first set of experiments obtained from 10 runs. Note that for metric M3 to M5, no performance for scenario 1A is
plotted since no human was present.
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Fig. 4: Performance metrics for the second set of experiments obtained from 10 runs. Note that for metric M3 to M5, no performance for scenario 2A is
plotted since no human was present.

human-awareness has lead to large social costs for Scenario
1B-AG as seen in Fig. 3c-e.

For risk-based bidding methods, we can observe zero
socials cost on average and they maintain an appropriate
distance to the human across all tests despite noisy predictions.
The only exception here is 1B-M0.5 where Robot 2 was able
to persuade Robot 1 later than other scenarios in five of
the runs. As a result, Robot 1 stopped at a position that
would be sometimes too close to the human trajectory and
without activating human-aware navigation or social collision
avoidance, Robot 1 ended up being in the human's social zone.
Similar behavior was observed for fewer runs in Scenario
1B-E0.5 and Scenario 1B-E2.

All scenarios with zero prediction error, KF predictor, and
risks that are based on social costmaps, have resulted in
zero social costs. We believe the reason is that social costs
reinforce the risk in areas closer to the human, i.e., a larger
penalty (based on the social costmap model) is assigned to
all areas associated with possible human presence. Despite
large prediction errors, particularly for KF, we observe that
the correct decision has been taken by the robots. We believe
that extracting a direction from predictions is the key for
improving the bid estimates here. This is an abstraction
compared to accurate position estimation. However, this
information can be used to improve team plans in many
cases. Based on the results of this case study, we choose
the risk formulation that was based on social costmaps
with a KF human trajectory predictor for our risk-based bid
estimations in the next test case. We note that other scenarios
with frequent sudden changes in human trajectories or more
complex dynamics can be found where this solution alone
will not be sufficient. This is where monitoring risk variations
and adaptive replanning can help. We will pursue this further
in our future work.

B. Comparative Evaluation of Different MRTA Strategies

Looking at Fig. 2, for a non risk-based task planning
strategy, movement of Human 1 and Human 2 causes change
to the initial estimated costs of Room 1 and Room 6,
respectively. Sample team plans for all four scenarios are
shown in Fig. 5. We can see how the team plan changes for
Scenario 2B-SR-KF compared to the other scenarios. For
a human-free environment where tasks are scored inversely
proportional to their distance to the robot and given the
proximity of robots to tasks, Room 1 is the best choice for
Robot 1 and Room 6 is the best option for Robot 4. This is
confirmed by the team plans (see Fig. 5a and 5b) for both
Scenario 2A and Scenario 2B-AG. In Scenario 2B-SD humans
are taken into account when computing bids by means of
including the distance overhead of the social paths. We can see
that despite this consideration, the team plan does not change
(see Fig. 5c) and instant human-aware decisions are not able
to find the more appropriate task assignment. Scenario 2B-SR-
KF on the other hand, computes risk-based bids and includes
future estimates of human motion in decision making. Thus,
a different and less socially intrusive plan is found for the
team as depicted in Fig. 5d.

Fig. 4 demonstrates M1-M5 for Scenario 2A to 2B-SR-KF.
It can be seen that Scenario 2A has the smallest M1-M2 due
to lack of human presence. Slightly larger M1-M2 can be
seen for 2B-AG and 2B-SD with large variations in M2. This
is again caused by the minor or major collisions with humans.
We observed that despite having human-aware navigation for
robots in 2B-SD, robots could not fully eliminate social costs,
although M3−M5 has been improved for 2B-SD compared to
2B-AG on average. We observed two problematic situations
for the robots in term of human-aware navigation. Firstly,
when Robot 1 is moving to Room 1, Human 1 is about to
exit the room. The doorway is a very narrow passage that
does not allow for both of them to progress. This is a hard
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Fig. 5: Task assignment per robot over time for a sample run of the second set
of experiments for scenarios 2A, 2B-AG, 2B-SD, and 2B-SR-KF respectively.
End of mission (M2) is marked by the vertical line.

situation for human-aware navigation and we observed that
Robot 1 partially intruded the social space of the human with
variable severity in different runs. Secondly, there were a few
cases of collision when a human was moving too fast for
the robots to be able to adjust their paths and our individual
human-aware navigation was not able to ensure respecting the
social constraints in more difficult and dynamic situations.

Contrarily, in Scenario 2B-SR-KF because of avoiding
risky areas and despite having no individual human-aware
navigation, robots were able to ensure social-awareness. Risk-
based planning does not promise less traveled distance or
less time (see Fig. 4a and 4b). Depending on the human
behavior it might find a plan that is longer or shorter in terms
of distance and time, but it ensures that decisions will be
made considering all aspects (including social costs) together.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a risk-based bid estimation
method for MRTA with stochastic costs in dynamic social
environments. We investigated the effect of prediction error
on the performance of different risk formulations. Results
confirm that risk-based plans that account for social costs
lead to better team plans in term of social metrics, prevent
difficult social situations, and reduce the need for the lower
level human-aware navigation to be activated. Although risk-
based planning alone was able to achieve socially acceptable
results in our test cases, the combination of risk-based human-
aware coordination and planning, and human-aware individual
navigation ensures that social constraints will be respected
even if higher level plans incur some social costs due to yet
unpredictable changes in the environment or other sources
of uncertainty.

For future steps of our work, we will focus on adaptive
risk-based replanning that can improve the team performance
by correcting inaccurate or invalid estimates that can occur as
a result of sudden changes in the environment. Additionally,
we will look into MRTA with limited local perception and
information sharing among robots.
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