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ABSTRACT
Recommenders are becoming one of the main ways to navigate

the Internet. They recommend appropriate items to users based on

their clicks, i.e., likes, ratings, purchases, etc. These clicks are key

to providing relevant recommendations and, in this sense, have

a signi�cant utility. Since clicks re�ect the preferences of users,

they also raise privacy concerns. At �rst glance, there seems to

be an inherent trade-o� between the utility and privacy e�ects

of a click. Nevertheless, a closer look reveals that the situation is

more subtle: some clicks do improve utility without compromising

privacy, whereas others decrease utility while hampering privacy.

In this paper, for the �rst time, we propose a way to quantify the

exact utility and privacy e�ects of each user click. More speci�cally,

we show how to compute the privacy e�ect (disclosure risk) of a

click using an information-theoretic approach, as well as its utility,

using a commonality-based approach. We determine precisely

when utility and privacy are antagonist and when they are not. To

illustrate our metrics, we apply them to recommendation traces

from Movielens and Jester datasets. We show, for instance, that,

considering the Movielens dataset, 5.94% of the clicks improve the

recommender utility without loss of privacy, whereas 16.43% of

the clicks induce a high privacy risk without any utility gain.

An appealing application of our metrics is what we call a

click-advisor, a visual user-aware clicking platform that helps users

decide whether it is actually worth clicking on an item or not

(after evaluating its potential utility and privacy e�ects using our

techniques). Using a game-theoretic approach, we evaluate several

user clicking strategies. We highlight in particular what we de�ne

as a smart strategy, leading to a Nash equilibrium, where every

user reaches the maximum possible privacy while preserving the

average overall recommender utility for all users (with respect

to the case where user clicks are based solely on their genuine

preferences, i.e., without consulting the click-advisor).

1 INTRODUCTION
The growth of data available online makes it di�cult for individu-

als to extract information relevant to their interests. Recommenders
do the job for them: they build pro�les [35] representing user in-

terests, and recommend items to users based on those pro�les [23],

typically using collaborative �ltering (CF) schemes [38].

The pro�les of users are derived from their clicks, e.g., their
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ratings in terms of likes (or dislikes) [35], their purchases, the pages

they spend time on, etc. On the one hand, the clicks have an im-

portant e�ect on the recommender utility for a user. On the other

hand, clicks may also disclose private information about users [34].
1

At �rst glance, a user might face a dilemma: To click or not to click?
The click could improve the utility of a recommender for that spe-

ci�c user, yet might also disclose private information. But is there

really always a trade-o� between utility and privacy?

Consider as a �rst illustration, the case of Alice, a user who

clicks on “Game of thrones”. By doing so, Alice improves utility by

helping the recommender �nd similar users to her. Assuming in-

deed that a large number of users have watched “Game of thrones”,

Alice’s click makes her also less distinguishable among those users

(than before she clicked). This click improves her privacy. There is

no trade-o� in this case between utility and privacy. If Alice instead

had clicked on an esoteric movie, she would have revealed a lot. A

curious user (an attacker), knowing through the item pro�les that

only one user liked that esoteric movie, could eventually deduce

the entire pro�le of Alice. (The curious user could, through a KNN

attack, create fake pro�les containing the esoteric movie and would

be recommended the entire pro�le of Alice.). The motivation of

this work is to determine exactly when a click induces a trade-o�

and when it does not, by precisely quantifying the e�ects of every

click on both utility and privacy.

In this paper, we compute the e�ect of a click on utility by intro-

ducing the notion of commonality of a user pro�le, i.e., representing

through a number how close the taste of a user is to that of other

users (which helps a recommender suggest relevant items that

are likely to match the user’s preferences). This notion captures

precision, the classical well-known measure of the quality of rec-

ommenders [32]. Whereas the idea of precision has been so far

considered as an empirical measure of the utility of a recommender

for all the users, we compute commonality, theoretically, and for

every individual user (in a user-centric manner).
2

The di�erence

between the commonality of a user pro�le, before and after the

click, is what we de�ne as the utility of the click.

We compute the privacy e�ect of a click through the concept

of disclosure degree of a user pro�le, using an information-theoretic
approach. The disclosure degree corresponds to the amount of

information stored in a user pro�le, also known as entropy [15].

Roughly speaking, the larger the amount of information in a user

pro�le, the higher the disclosure degree of the user pro�le. If the

disclosure degree of a user pro�le is low, then the user is not easily

distinguishable from others. We capture the disclosure risk of a

click, and hence its privacy e�ect, as the di�erence between the

1
This is without even considering the recommender itself as a threat, but only other

curious users who could deduce other pro�les through what is recommended to them.

2
It is important to note at this point that two user pro�les might be very di�erent,

and yet might have the same commonality, basically meaning that they could be

recommended the same number of relevant items but not necessarily the same items.
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i1 i2 i3 i4
u1 3 AA 3

u2 3 3

u3 77 B 3

u4 3 CC 77

f

Table 1: Clicks of Users
disclosure degree of a user pro�le before and after the click. Inter-

estingly, we prove that after user u’s click on item i , the disclosure

degree of u is never increased by the clicks of other users on i .3

To illustrate our notions of utility and privacy e�ects of the clicks

beyond Alice’s example above, consider the example depicted in

Table 1, involving 4 items and 4 users. (We will use this example

throughout the paper.) A bold style (resp. an outlined style) depicts

a like (resp. dislike) click on an item in the corresponding (user)

row and (item) column, respectively. The check-marks and cross-

marks represent the clicks already performed by the users and the

capital letters represent the following three clicks that could be

performed by the users:

AA denotes a click by u1 to dislike i2. AA improves the recom-

mender utility for u1 as AA indicates that the preference of u1 is

close to that of u3. Hence, the recommender can suggest relevant

items to u1 after AA (e.g., i4). However, AA compromises the privacy

for u1 in the sense that u1 becomes more distinguishable among

other users after AA. Indeed, the group of users who dislike i2 after

AA (u1 and u3) is smaller than the group of users who did not click

on i2 before AA (u1, u2 and u4); AA induces a utility-privacy trade-o�.

B denotes a click to like i3 by u3. B improves the privacy for u3
in the sense that after this click, by knowing the preference of u3
for i3, u3 becomes indistinguishable from a group of other users

who liked i3 (this group consists of two users out of the total of

three users, other than u3). Moreover, B helps the recommender

�nd relevant items to u3 because i3 is similar to i4 and i1, and user

u3 has not clicked on i1 yet; the recommender can now propose i1
to u3. Hence, B improves both utility and privacy for u3.

CC is a click by u4 to dislike i3 that neither improves privacy for

u4 nor helps the recommender suggest relevant items to u4; before

CC, the recommender could �gure out that the preference of u4 is

close to u1 (neither to u2 nor u3). However, CC indicates that the

preference of u4 toward i3 is also opposite to u1. Hence, CC does not

improve the recommender utility for u4; worst, CC compromises the

privacy for u4.

Clearly, this example contradicts the traditional belief [29] of

an inherent trade-o� between utility and privacy, meaning that a

user necessarily improves recommendation utility at the expense

of compromising privacy (or vice versa). There are clicks that im-

prove utility without decreasing privacy and, at the other extreme,

there are clicks that hamper privacy without improving utility.

An interesting application of our work is what we call the click-
advisor, a virtual platform enabling users to decide whether or not

to actually click on an item. The process behind a click-advisor is

3
Three remarks are in order here. First, our notion of disclosure degree is a privacy

measure of a user pro�le, unlike k-anonymity [39] and di�erential privacy [12], which

are privacy measures of a dataset and an algorithm, respectively. In Section 6, we

show the extend to which our notion of disclosure degree is correlated to di�erential

privacy and k-anonymity. Second, (just like commonality) the disclosure degree of a

user pro�le depends on other pro�les. The fact that Bob is the only one to click on

his esoteric movie is what make his disclosure degree high. Third, a low disclosure

degree conveys a protection against possible attacks of curious users, but not against

a recommender, which is trusted.

as follows: a user (a) pre-clicks on an item, (b) gets a quick feedback

(in constant time, i.e. O (1), as shwon in the paper) on the utility

and privacy e�ects of that pre-click and then (c) decides to con�rm,

cancel, or even change the pre-click.

We use a game-theoretic approach to explore several user click-

ing strategies. For example, a user may follow a careful strategy

to con�rm a pre-click i� the pre-click does not hamper privacy

without improving utility (and to cancel the pre-click otherwise).

We highlight in particular a Nash equilibrium strategy, which we

call smart. If all users follow the smart strategy, they minimize their

disclosure degrees (maximize their privacy) while ensuring that

the expected value of the overall recommender utility for all users

remains the same as the case without consulting the click-advisor.

We illustrate our notions of utility and disclosure risk of a click

as well as the e�ects of various clicking strategies through experi-

ments on real datasets from Movielens [2] and Jester [19]. We show

that our notion of commonality of a user pro�le indeed conveys the

classical concept of precision of a recommender [32], restricted to

a user pro�le. We also show for instance that, according to Movie-

lens, 5.23% of the clicks improve utility without loss of privacy–at

the other extreme, 16.48% of clicks induce a high privacy risk with-

out a utility gain. Finally, we also show that the smart clicking

strategy does not impact utility (while maximizing privacy).

The rest of the paper is organized as follows. In Section 2 and

Section 3, we de�ne and show how to compute the e�ects of a click

on utility and privacy, respectively. Section 4 discusses the relation

between utility and privacy, and introduces our notion of a click-

advisor. Section 5 analyzes several clicking strategies based on a

game-theoretic approach. We report on our measurements with

datasets from Movielens and Jester in Section 6. Section 7 discusses

related work and Section 8 concludes the paper with remarks about

future work. For space limitations, we defer some algorithms and

discussions about the click-advisor as well as the proofs of our

theorems and lemmas to a companion technical report [1].

2 UTILITY
2.1 Recommender Model
We consider a general model of a CF recommender scheme [23].

The set of user clicks is modeled as a matrix, denoted by E. The

pro�le of user u, denoted byU , corresponds to a row of E. Each

column of E is related to an item. For the sake of presentation

simplicity, but without loss of generality, we model each click as a

like/dislike action.
4

The result of user u clicking on item i is either

a “like” or a “dislike”, represented by 1 and −1 in the corresponding

cell of E, e (u, i ), respectively. Also, we mark 0 in e (u, i ) if user u
has not clicked on item i .

We denote by M the size of the set of items and by N the number

of users. A user pro�le,U ∈ {−1, 0, 1}M , is a vector of size M , in

which the cell corresponding to item i is e (u, i ):

e (u, i ) =



1 u has clicked on i and likes it;

0 u has not clicked on i;
−1 u has clicked on i and dislikes it.

For each item i , we denote by NLike (i ) and NDislike (i ) the

number of users who like and dislike i , respectively. The item pro�le

4
This can model binary as well as non-binary types of rating: a low rating as a dislike,

and a high rating as a like.
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Notations

Items The set of all items in the system

Users The set of all users in the system

E A recommender dataset

u A user

U A user pro�le

i An item

I An item pro�le

I The set of all item pro�les

M The number of items in the system

N The number of users in the system

NLike (i ) The number of users who like item i

NDislike (i ) The number of users who dislike item i

NNotClicked (i ) The number of users who have not clicked on item i

Clicked (u) The set of items clicked by user u

U
A random created user pro�le based on

the information in item pro�les

Table 2: Notation Table

Item

Item Pro�le

Popularity Preferability

NLike NDislike NNotClicked
i1 2 0 2 0.5 0.5

i2 0 1 3 0.25 -0.25

i3 2 0 2 0.5 0.5

i4 2 1 1 0.75 0.25

Table 3: Pro�les, Popularity and Preferability of Items in
Table 1
of i , denoted by I, contains NLike (i ), NDislike (i ) as well as the

number of users who have not clicked on i yet, NNotClicked (i ).
5

Although user pro�les are private, item pro�les are typically public6

(e.g., in IMDb and Movielens). Table 2 summarizes the notations

we use in the paper.

2.2 Commonality of a User Pro�le
To de�ne our notion of commonality of a user pro�le (or simply, of

a user), we �rst go through the concepts of popularity and prefer-
ability of items.

De�nition 1. (Popularity)

popularity (i ) =
NLike (i ) + NDislike (i )

N
.

De�nition 2. (Preferability, i.e., average of preferences of users

toward an item)

preferability (i ) =
NLike (i ) − NDislike (i )

N
.

The item pro�les as well as popularity and preferability of items

in Table 1 are represented in Table 3.

De�nition 3. (Mainstream preference) The mainstream pref-

erence of users for item i , denoted by m(i ), is computed as

popularity (i ) · preferability (i ). For all items managed by a recom-

mender, the mainstream preference of users is stored in a vector of

size M in which the corresponding cell to item i ism(i ). We denote

the mainstream vector by m ∈ [−1, 1]M .

We now introduce the concept of commonality of user u, (with

respect to other users) denoted by commonality(u). Roughly speak-

ing, we capture by a number, how close the user pro�le U is to

other users pro�les in the system in general.

5
In other words, an item pro�le, I, includes the average rating of i as well as the

number of users who like/dislike i .
6
Item pro�les (the average rating, the percentages of users who have used/purchased

an item, etc) play an important role in convincing a user to actually purchase an item.

i1 i2 i3 i4 Commonality

u1 3 3 0.5 × 0.5 + 0 + 0.5 × 0.5 + 0 = 0.5

u2 3 3 0 + 0 + 0.5 × 0.5 + 0.75 × 0.25 = 0.4375

u3 7 3 0 − 0.25 × (−0.25) + 0 + 0.75 × 0.25 = 0.25

u4 3 7 0.5 × 0.5 + 0 + 0 − 0.75 × 0.25 = 0.0625

Table 4: Commonalities of Users in Table 1

De�nition 4. (Commonality)

commonality (u) =
∑
i ∈I

popularity (i ) · preferability (i ) · e (u, i ).

Remark 1. commonality (u) = U ·mT .

Remark 2. Basically, the commonality of a user represents how

close the direction of the vectorU is to the direction of the main-

stream vector, m, by relatively computing the cosine of the angle

between vectorU and vectorm.

The commonalities of the users in Table 1 are computed in

Table 4 using Table 3 and De�nition 4. As all the users clicked on

exactly two items in Table 1, Table 4 shows that commonality is not

proportional to the number of user clicks. Instead, commonality

is a weighted function of user clicks based on how well the clicks

help the recommender connect users (or items) to suggest them

new items. For instance, the commonality of u1 is higher than

the commonality of u4, therefore the recommender should provide

more accurate recommendations to u1 than to u4. In Section 6, we

emprically show that the commonality captures the quality of not

only SVD-based recommenders but also KNN-based ones.
7

2.3 Utility of a Click
The utility of a click by user u is the di�erence between

commonality (u) before and after that click. To distinguish both

cases, we use the prime notation for the latter: commonality′(u)
denotes u’s commonality after the click.

De�nition 5. (Utility of a click by user u)

∆commonality (u) = commonality′(u) − commonality (u).

3 PRIVACY
We de�ne the notion of disclosure degree of a user pro�le (or simply,

of a user) based on the classical concept of entropy in information

theory [15]. Basically, the disclosure degree of user u, which we

denote by δu , corresponds to the amount of information that item

pro�les contain aboutu.
8

Remember that our goal here is to protect

users from other (curious) users. We assume that the recommender,

which stores all the user and item pro�les, is trusted.

3.1 Disclosure Degree of a User Pro�le
We address the situation where an intruder (i.e., a curious user),

given public item pro�les (I ), tries to disclose information about

user pro�les with a disclosure probabilistic model. The considered

privacy disclosure conveys the intruder’s ability to uniquely iden-

tify a user using this probabilistic model [3]. One could interpret

the disclosure degree of u as the number of bits of information that

the intruder has gained in order to uniquely identify u, given I .
The disclosure probabilistic model determines the probabilities

that users have clicked on items; these probabilities are assigned

by the intruder to a district random user pro�le, U . Let U have the

7
The commonality of a user pro�le can be further speci�ed for a CF recommender

based on a factorization method with latent factors.

8
We exclude users without any click from our study as those have no privacy concern.
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User Commonality Disclosure Degree

u1 0.5 − log(0.50 × 0.75 × 0.50 × 0.25) = 1.329

u2 0.4375 − log(0.50 × 0.75 × 0.50 × 0.50) = 1.028

u3 0.25 − log(0.50 × 0.25 × 0.50 × 0.50) = 1.505

u4 0.0625 − log(0.50 × 0.75 × 0.50 × 0.25) = 1.329

Table 5: Disclosure Degrees of Users in Table 1

conditional disclosure probability function Q (U ) = Pr (U = U|I ),
in which U represents each possible user pro�le in the system.

For a given disclosure probability distribution, the concept of dis-

closure degree provides a measure of the information (entropy in

information theory) about user pro�leU stored in I . In this case,

we denote by δu = H (U ) the entropy of the user pro�le given the

public item pro�les, what we call the disclosure degree.

Naturally, the lower Q (U ) = Pr (U = U|I ), the more unique

user pro�leU is (the higher δu ). When the interests of user u are

determined by click on an item by u, most of the time, this click de-

creases Pr (U = U|I ) and compromises the privacy for u. In other

words, after a click, the user usually provides more information

in the system and makes it hard for the recommender to hide this

information (we show however this is not always the case).

To compute the disclosure degree of a user pro�le, we compute

the probability of a click on an item i in U as follows:

Ei =




1
with probability

NLike (i )
N

(U likes i);

0
with probability 1 −

NLike (i )+NDisl ike (i )
N

(U does not click on i);

−1
with probability

NDisl ike (i )
N

(U dislikes i).

The following remark highlights the distribution of our disclosure

probabilistic model for each possible user pro�le given I .

Remark 3. For any possible user pro�leU :

Q (U ) = Pr (U = U|I ) =
∏

i ∈Items
Pr (Ei = e (u, i )).

We use the above disclosure model to de�ne δu , the disclosure

degree of user u:

De�nition 6. (Disclosure degree)

δu = − log(Pr (U = U|I )).

Note that δu captures the amount of information about a user

pro�le stored in the public item pro�les. In Section 6, we simulate

a KNN attack [6] to illustrate the protection level of di�erent users

with di�erent disclosure degrees. We show how accurately an

intruder can disclose information about users with di�erent disclo-

sure degrees. The following remark highlights how to precisely

compute δu . Later, we use Remark 4 to compute the privacy e�ect

of a click by user u.

Remark 4. δu = −
∑
i ∈Items log(Pr (Ei = e (u, i ))).

The disclosure degrees of the users in Table 1 are computed

in Table 5 using De�nition 6. The commonality and disclosure

degree
9

of each user are shown in the corresponding columns in

Table 5. Despite the fact thatu4 has a higher disclosure degree than

u2, the recommender can provide better recommendations to u2
than to u4 because the commonality of u2 is higher than that of u4.

This shows that a higher disclosure degree does not necessarily

9
A user with high disclosure degree has a low level of privacy.

∆commonality (u) > 0 ∆commonality (u) < 0

∆δu > 0 Trade-o� Dangerous/Deleterious

∆δu < 0 Safe Trade-o�

Table 6: Conditions for Each Click Zone
lead to a better utility. Actually, not only does the click of u4 on

i4 compromise u4’s privacy but neither does it help her get good

recommendations.

3.2 Disclosure Risk of a Click
We �x a useru for whom we compute the e�ect of a click on privacy.

We denote the di�erence of the disclosure degree of user u before

and after the click by ∆δu which can be expressed as the disclosure

risk of the click.

De�nition 7. (Disclosure risk of a click by user u)

∆δu = δ
′
u − δu .

Note that a click with a positive disclosure risk compromises the

privacy for a user. The larger the absolute value of the disclosure

risk of a click, the greater the privacy e�ect of that click. The

following remarks can then be easily derived:

Remark 5. Whenever u clicks on i , the disclosure degree of u
does not increase over time by clicks of other users on i

Remark 5 basically says that the disclosure risk of a click on i
by u is actually an upper bound of all changes in the disclosure

degree of u corresponding to item i after the time of the click.

4 CLICK-ADVISOR
In traditional recommenders, when a user clicks on an item, the

information about that click is directly propagated to the system.

We propose to leverage our utility and privacy metrics to build

a user-aware clicking tool: the click-advisor. After getting a new

recommendation, a user pre-clicks on the item and previews the

utility and privacy e�ects of the pre-click through the click-advisor.

Based on the click-advisor feedback, the user �nalizes the decision

on whether to click or not.

We categorize the clicks into four di�erent zones depending on the

sign of utility and privacy e�ects of the click as well as its reverse
10

:

• Safe zone: improves both utility and privacy.

• Trade-o� zone: induces a utility-privacy trade-o�.

• Dangerous zone: compromises both utility and privacy

but the reverse of the click improves privacy.
11

• Deleterious zone: Both the click and its reverse compro-

mise utility as well as privacy.

In Section 6, we show that, besides trade-o� clicks, safe, deleterious

and dangerous clicks indeed exist in real-world datasets. Table 6

describes the corresponding zones for all possible cases for the dis-

closure risk and utility of a click. Note that there are two cases in

which the clicks induce a trade-o�: clicks with positive utility and

positive disclosure risk, as well as clicks with negative utility and

negative disclosure risk. To distinguish deleterious and dangerous

zones for a click, we compute the disclosure risk of the reverse of

the click, ∆δ∗ (u). If ∆δ∗ (u) > 0, the click is in a deleterious zone,

otherwise, it is in a dangerous zone.

Table 7 shows the utility e�ect (∆commonality) and privacy ef-

fect (∆δ ) of each of the following clicks. The zone of a click is

10
The reverse of a like click is a dislike click and vice versa.

11
Note that the reverse of the click always compromises the utility for the user as it

is not based on the real preferences of that user.
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i1 i2 i3 i4 Click ∆commonality ∆δ ∆δ∗

u1 3 ◦ 3 D1

2
0.25 0.176 0.477

u2 ◦ 3 3 L2
2

0 0.477 0.176

u3 7 ◦ 3 L3
3

0.5625 -0.176 0.301

u4 3 ◦ 7 D4

3
-0.1875 0.301 -0.176

Table 7: The E�ects of Clicks

Figure 1: Click-advisor
determined by the sign of the utility and disclosure risk of that

click as described in Table 6:

D1

2
(the dislike click on i2 by u1): has a positive utility and a

positive disclosure risk. Hence, D1

2
is in the trade-o� zone.

L2
2

(the like click on i2 by u2): has a negative e�ect on the rec-

ommender utility for u2. Moreover, not only L2
2

has a positive

disclosure risk but the reverse of L2
2

also does. Hence, changing L2
2

does not improve the privacy for u2; L2
2

is in a deleterious zone.

L3
3

(the like click on i3 byu3): has a positive utility and a negative

disclosure risk. L3
3

thus improves both utility and privacy for u3
and is thus a safe click.

D4

3
(the dislike click on i3 by u4): compromises both utility and

privacy for u4; D4

3
is an unsafe click for u4. However, considering

the reverse of D4

3
, even though changing D4

3
decreases the recom-

mender utility for u4, the reverse of D4

3
improves the privacy for

u4 (∆δ∗), as shown in Table 7. That makes D4

3
a dangerous click so

u4 may prefer to change this click.

The following theorem determines the exact signs of ∆δu ,

∆δ∗ (u) and ∆commonality (u).

Theorem 1. When user u clicks on item i ′, the sign of the changes
in commonality (u) and δu are as follows:
sдn(∆δu ) = sдn(2 − 3popularity (i ) − e (u, i

′) · pre f erability (i )),

sдn(∆commonality (u)) = sдn(e (u, i ′) · pre f erability (i )),

sдn(∆δ∗ (u)) = sдn(2−3popularity (i )+e (u, i ′) ·pre f erability (i )).
Figure 1 represents the zones in the click-advisor in general. At

any point in time the click-advisor of a user represents the zones

as well as the points corresponding to all pre-clicks of the user. A

pre-click is presented as a point in one of the zones based on the

privacy and utility e�ects of a click and its reverse using Theorem 1

(which we prove in our technical report [1]) and Table 6. The lo-

cation of a pre-click is de�ned by the corresponding coordinates

based on whether the pre-click is a like or dislike. For example, to

locate the corresponding point to a click on item i in order to like

it, we use the liking coordinates.

Furthermore, the place of a pre-click in the click-advisor repre-

sents the amount of disclosure risk and utility of that pre-click and

can be computed in O (1) as shown in Algorithm 1. At the time

Algorithm 1 : Computations of Commonality and Disclo-
sure Degree inO (M ) and Computation of the Utility and Pri-
vacy E�ects and Updates after a Click in O (1)

1: procedure GetCommonality
2: commonality ← 0.

3: δ [u]← 0.

4: for i : Items do
5: if u likes i then
6: commonality ← commonality +m[i].
7: δ [u]← δ [u] − log(Pr (Ei = 1)).
8: else
9: if u dislikes i then

10: commonality ← commonality −m[i].
11: δ [u]← δ [u] − log(Pr (Ei = −1)).
12: else
13: δ [u]← δ [u] − log(Pr (Ei = 0)).

return (commonality,δ [u]);

14: procedure UpdateClick
15: m[i]←m[i] + ∆m[i].
16: ∀r ∈ {−1, 0, 1} : Pr (Ei = r ) ← Pr (Ei = r ) + ∆Pr (Ei = r ).

of a click on item i , Algorithm 1 only computes and updatesm[i],
Pr (Ei = 1), Pr (Ei = 0) and Pr (Ei = −1) in a constant time to be

employed by the click-advisor. Also, Algorithm 1 computes the

commonality (using Remark 1) and the disclosure degree (using

Remark 4) of a user pro�le, linearly in the number of items.

The click-advisor solely uses the public item information to

locate the pre-clicks of a users. Hence, the click-advisor can be

implemented in the user-end to inform users about the utility and

privacy e�ects of their pre-clicks without introducing any new

privacy risks for the users. It is important to note here that the

click-adviosr is not a privacy-preserving platform, but rather the

visually informative one. More discussion about the click-advisor

is available in our companion technical report [1]. For example,

we show that safe pre-clicks never end up being in a dangerous or

deleterious zone in the future because of the clicks of other users.

5 THE CLICKING GAME
To analyze the behavior of the users, we model the act of clicking

as a game, which we call the clicking game. The players of this

game are the users of the system (providing recommendations as

well as a click-advisor) who want to maximize a reward function,

described in the following, for each click.

5.1 Reward Function
The reward function is denoted by ϕ : Users → R. Without

loss of generality, we assume that ∀u ∈ Users, ϕ (u) = 0 at the

beginning. A click by user u with utility and privacy e�ects

α = ∆commonality (u) and β = −∆δu modi�es ϕ (u) as follows:

ϕ (u) ← ϕ (u) + f (α , β ),

in which function f : R2 → R has the following properties:

1. f is an increasing function over α .

2. f has the single crossing property over max(α , β ).

Property 1 of f implies that the higher the recommender utility

for a user, the bigger the reward function for that user. The single

crossing property (de�ned in [4]) merely de�nes the sign of f .

More precisely, Property 2 means that the sign of max(α , β ) is the
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same as the sign of f (α , β ). Property 2 of f implies the following

naturally desired sub-properties for ϕ (u):

2a. If user u cancels a click, ϕ (u) remains the same.

2b. Compromising utility and privacy by a click of useru leads

to decreasing ϕ (u) (because of a negative f (α , β )).

Upon getting a new recommendation, a user pre-clicks on the item

and consults the click-advisor for the e�ects of that pre-click. Then,

the user chooses the desired action on the pre-click in order to

maximize the reward function through the clicking game.

5.2 User Actions
Consider N users, playing the clicking game. If a pre-click of a user

is in a safe or trade-o� zone, then either the privacy or the utility

improves for that user after con�rming that pre-click. However,

con�rming a pre-click in either a dangerous or a deleterious zone

compromises both utility and privacy. The user may then decide

to change or cancel a deleterious or dangerous pre-click. Basically,

we can consider three possible actions for the user:

• Con�rm: When the click follows the initial preference of

the user (i.e., the user con�rms the pre-click), the utility

and disclosure risk of the click are the same as what we

computed in Theorems 1 and 2, respectively.

• Change (for better privacy): The user decides to change

the pre-clicks (i.e., clicking to dislike an item instead of

clicking to like it) to improve privacy. In this case, the

disclosure risk of the click is the same as what is computed

in Theorem 2. However, the utility of the click would

change from what we measured in Theorem 1 because this

click is not the real preference of the user, but actually the

opposite to it. So, the utility of the click is the opposite of

the utility computed in Theorem 1.
12

• Cancel: In this case, the user decides not to click on an

item to preserve privacy. By canceling a pre-click on the

item, a user preserves privacy (which is the opposite of

what is calculated based on Theorem 2 assuming the pre-

click was con�rmed) at the expense of missing a potential

utility. With the same approach, the lost utility is what

the user would get with the assumption (of con�rming the

pre-click) in Theorem 1.

5.3 User Strategies
After being recommended a new item, a user considers one of the

above actions to gain the maximum possible reward over time.

There are various possible user clicking strategies. We highlight

few of them here.

• Basic: A user always con�rms the pre-click based on her

preference. In this strategy, the click-advisor is ignored.

• Careful: The user only cancels a pre-click in a dangerous

or deleterious zone. Otherwise, the user con�rms it.

• Smart: The user always con�rms a pre-click in a safe

or trade-o� zone, cancels the deleterious pre-click and

reverses the pre-click in a dangerous zone.

The following theorem says that the smart strategy leads to a Nash

equilibrium in the clicking game.

12
Note that the utility of a recommender for users depends on the real preferences

of users. Hence, the action of changing a pre-click by a user always decreases the

recommender utility for that user.

Theorem 2. All users playing smart is a Nash equilibrium, i.e.,
playing the smart strategy maximizes the reward function ϕ for a
user u, if every user other than u plays smart.

Lemma 1. If all users play smart, for item i :
(i) If preferability(i ) < 0, all users clicking on i disliked it.
(ii) If preferability(i ) > 0, all users clicking on i liked it.

The proofs of Theorem 2 and Lemma 1 are given in our technical

report [1]. From Lemma 1, we can conclude that playing the smart

strategy by all users guarantees the maximum possible privacy

for all users. However, it can hamper the recommender utility for

users. We consider the sum of commonality for all users as an

overall recommender utility. In the following, we compare the

e�ect of the smart strategy and the basic strategy (the strategy

of clicking based on the real preferences of users) on the overall

recommender utility for users. By playing the smart strategy, the

users may change some of their clicks. If all users play the smart

strategy, the changes of the clicks depends on the initial clicks on

items. In that case, we compute the average of the overall recom-

mender utility for users for all possible initial clicks on items (in

order to compare with the overall recommender utility for users

playing the basic strategy in Theorem 3). The set of all possible

initial clicks on all items is denoted by C. For user u who is playing

the smart strategy and a possible c ∈ C, commonalitySmart (c ) (u)
represents the commonality of the real pro�le of u when all users

play the smart strategy and the initial clicks on items is c .

The following theorem says that the expected value of the av-

erage of the commonalities of the users in the case where they

all play the smart strategy is the same as the case where all users

play the basic strategy (users click on items based on their real

preferences).

Theorem 3.∑
u ∈Users

commonalityBasic (u) = E(
∑

u ∈Users
commonalitySmart (c ) (u)).

In other words, Theorem 3 (which we prove in our technical

report [1]) says that the overall average of the recommender utility

for all users playing the smart strategy is the same as the case where

users click on items based on their real preferences. However,

with regard to privacy, the smart strategy provides better privacy

compared to the basic strategy.

6 EXPERIMENTAL EVALUATION
We evaluate the utility and privacy metrics, as well as their ap-

plication to build a click-advisor, on two real-world datasets: the

Movielens 100K [2] and Jester [19] datasets. Movielens (ML) con-

sists of 100,000 ratings given by 943 users over 1682 movies. Jester

involves the clicks of 24,983 users on 100 items [10]. (As Jester does

not provide timestamps, we perform the time-based evaluations

for Movielens only).

6.1 Commonality as a Utility Measure
We �rst show here empirically that the notion of commonality of a

user pro�le indeed expresses the quality of a recommender for that

user. We more speci�cally highlight the positive linear correlation

between commonality and the classical notion of precision [32].

We measure the precision of a recommender for each user as

follows: we divide the dataset into a training set and a test set.

We put each rating from the original dataset into the test set with
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Figure 2: The Relation between Commonality and Precision in Movielens for Di�erent Recommenders
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(c) K Nearest Neighbors as in [38]

Figure 3: The Relation between Commonality and Precision in Jester for Di�erent Recommenders

probability 20% and hide all the ratings in the test set from the

training set. For a user u, we put Nu = 0.2 · |Clicked (u) | and deter-

mine the top-Nu recommendations for u based on state-of-the-art

recommender algorithms, namely a KNN (K Nearest Neighbors)

algorithm [38], a matrix reconstruction approach [36] and a SVD-

based recommender leveraging neighborhood [24].

Precision is measured in terms of standard classi�cation accu-

racy metrics (CAM) [32]. More precisely, we evaluate how well

a recommender can predict the context of the test set of a user u
using each of the mentioned algorithms on the training set. We

compare the top-Nu recommendations for user u with the hid-

den part of user pro�le u (test set). We compute Precision(u) as

the classi�cation accuracy metric used on top-Nu recommenders

computed in [10]. Precision(u) is then the ratio of the number of

relevant recommended items to the total number of recommended

items to user u. Actually, Precision(u) computes the recommenda-

tion quality for u.

We report here on our results for both Movielens and Jester. As

conveyed in Figures 2a and 2b, the commonality and precision fol-

low a linear fashion in Movielens for a SVD-based recommenders

using matrix reconstruction and neighborhood approaches. Math-

ematically evaluated, the correlation between commonality and

precision is 0.6557 for SVD-based recommender using matrix recon-

struction and the correlation increases to 0.6838 for a SVD-based

recommender leveraging neighborhood. For Jester, because of

the massive number of users, the direct correlation between com-

monality and precision in Jester for SVD-based recommenders is

presented using pseudocolor plots in Figures 3a and 3b. Hence, the

color of each block represents the number of users in it. (A darker

color of a block means more number of users in that block.) For

KNN recommender, Figures 2c and 3c depict a direct proportional-

ity (more precisely, linear for both Movielens and Jester) between

the commonality of a user pro�le and the precision of KNN rec-

ommender for the corresponding user. This basically means that

users with high commonality get high precision for their recom-

mendations in contrast to users with low commonality.

6.2 Disclosure Degree as a Privacy Measure
In this section, we use the Movielens and Jester datasets to show

the extend to which our notion of disclosure degree (de�ned for

each user pro�le) captures other well-known privacy concepts

such as di�erential privacy [12, 31] (de�ned for algorithms) and

k-anonymity [39, 8] (de�ned for datasets).

6.2.1 Di�erential Privacy. This guarantees that the presence or

absence of a record in a dataset will not signi�cantly a�ect the �nal

output of the algorithm [12]. In the following, we study the disclo-

sure degree as a privacy parameter of user pro�les, and determine

the relation between di�erential privacy and disclosure degree.

We employ the approach proposed in [31] to provide di�erential

privacy to recommenders by adding di�erent levels of Laplacian

noise to the Movielens dataset. Each noisy dataset corresponds

to a level of di�erential privacy. Figure 4 represents the average

of the disclosure degrees of user pro�les in each of these noisy

datasets. We observe that the users in a dataset with a high level

of noise (i.e., a low ϵ) have smaller disclosure degrees in average

compared to users in a dataset with a low level of noise. Intuitively,

the presence (or absence) of a rare click (i.e., with high disclosure

risk) highly a�ects the output of the recommender compared to

the presence (or absence) of a regular expected click.

6.2.2 K-anonymity. F. Casino et. al. applied the concept of

k-anonymity to collaborative �ltering [8]. Figure 5 represents

the average of disclosure degrees of user pro�les in Movielens as

well as Jester with di�erent levels of k-anonymity. As depicted in

Figure 5, increasing k (i.e., stronger anonymity for users) results in
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Figure 5: Disclosure Degree and K-anonymity

decreasing the average of disclosure degrees of user pro�les.
13

Our

concept of disclosure degree of a user pro�le captures how unique

a user pro�le is in the system. Intuitively, the higher the disclosure

degree of a user pro�le, the more distinguishable the user is among

others (the higher the risk of identifying the corresponding user

among all the users in the system).

6.2.3 KNN A�ack. We consider here the KNN attack described

in [6]. An attacker creates K fake pro�les with some auxiliary

information about a target user uT and requests for recommenda-

tions. In the simple case of a KNN recommender, the K nearest

neighbors of a fake pro�le are uT and K − 1 other fake pro�les.

When a fake pro�le gets a new item as a recommendation, this

likely comes from the items which are already clicked by uT . The

reason is that the only items clicked by the K nearest neighbors

of a fake pro�le which are not included in that fake pro�le are the

items in the pro�le of uT . Upon a recommendation for any of the

fake pro�les, all the fake pro�les click on the recommended item

in order to add the new recommended item to their pro�les and

be updated to get further information about uT . The attack is per-

formed through several iterations. In each iteration, the attacker

accumulates new information about uT . To �gure out the relation

between the disclosure degree of a user pro�le and the accuracy

of the information an attacker can disclose about that user pro�le,

we trigger this KNN attack for the users with di�erent disclosure

degrees in Movielens and Jester.

For this simulation, we consider the Movielens as well as the

Jester dataset. We consider an attacker simulating a KNN attack

to disclose information about a given target user. We denote the

disclosure degree of the target user by δuT . We illustrate the accu-

racy and the amount of extracted information (%EI ) by the attacker

about di�erent target users with di�erent disclosure degrees.

For our simulations, we put K = 10. Table 8 shows how accurate

information an attacker can disclose by simulating the attack for

users with di�erent disclosure degrees after 10 iterations. Table 8

13
As k anonymity is a privacy parameter for a dataset, not for a user pro�le, to

compare k-anonymity and disclosure degree, we use the average disclosure degrees

of all user pro�les as an overall privacy measure for users.

Dataset uT
Auxiliary

Information

δuT %EI Accuracy

MLV 3 [1, 2, 3] 235.09 7.33 97.14

MLV 86 [1, 2, 3] 191.66 13.00 80.00

MLV 200 [1, 2, 3] 118.07 15.33 65.71

Jester 7 [0, 3, 6, 7, 5] 118.57 8.24 98.00

Jester 62 [1, 3, 4, 5, 0] 93.21 11.63 85.71

Jester 303 [5, 6, 7, 9, 10] 70.23 20.91 65.71

Table 8: Result of a KNN Attack for Jester and Movielens
after 5 Iterations

Figure 6: An Screen-shot of the Implemented Click-advisor
shows that the higher the disclosure degree of a user, the more

accurate the information disclosed by the attacker about that user.

We show that our notion of disclosure degree is compatible with

state-of-the-art privacy metrics (i.e., k-anonymity and di�erential

privacy). To illustrate the disclosure degree further, we show that a

user with low disclosure degree is more resistant to a KNN attack,

than another user with high disclosure degree. It is important to

notice though that our concept of disclosure degree is independent

of any particular attack. Also, remember that an attacker here has

only access to the output of a recommender, not an (anonymized)

version of the dataset. Therefore, de-anonymization attacks cannot

be applied in this case.

6.3 Click Zones
We compute the utility and privacy e�ects as well as the zones

of the clicks in Movielens, as discussed in Sections 2 and 3 and

4. (Jester does not provide timestamps.) We observe that most of

the clicks (77.63%) induce a trade-o� between utility and privacy.

Yet, there are clicks which do not induce a utility-privacy trade-o�:

others are safe (5.94%), dangerous (2.00%) and deleterious (14.43%).

6.4 Click-advisor
We implemented the click-advisor for a SVD-based neighborhood

recommender (as in [24]) using the Movielens dataset. Figure 6

represents a screen-shot of our click-advisor. At the beginning,

three recommended items are provided to a user. The genuine

pre-clicks (like or dislike) of a user on the recommended items are

shown in Figure 6a. In Figure 6b, the zone of each pre-click (shown

as grey circles) corresponds to the utility and privacy e�ects of that
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Con�rm Change Cancel Ask Me

Safe 100 % 0% 0% 0%

Trade-o� 96.97 % 0 % 0 % 3.03 %

Dangerous 3.03 % 39.4 % 30.30 % 6.07 %

Deleterious 3.03 % 0 % 93.94 % 3.03 %

Table 9: The Preferred Default Action in the Click-advisor
by the Participants in the Survey

Strategy Smart Careful Basic

Precision(%) 27.02 24.63 28.87

Accuracy of a KNN Attack (%) 55.67 60.53 82.12

Table 10: Recommender Precision and KNN Attack Accu-
racy for Di�erent User Strategies

pre-click on the user pro�le. Consulting the click-advisor, the user

would decide an action for each pre-click.

The link to our click-advisor as well as a survey to gather

the opinions of users on the click-advisor were distributed. More

than 95% of respondents agreed that the click-advisor increases

their con�dence in clicking and their trust to click on more items.

Also, we asked about the preferred default strategy in the survey.

Table 9 represents the percentage of the respondents who prefer

a default action (corresponding to a column) in the case of each

types of a click (corresponding to a row). As shown in Table 9, the

users chose the presented strategies as their default strategy as

follows: Basic (3.03%), Careful (30.30%), and Smart (39.4%). The

rest of respondents (6.06%) preferred to be asked as default for

some types of clicks. Knowing that the Smart strategy is a Nash

equilibrium, we can advertise the Smart strategy as the default

strategy. However, the users may adopt their actions as they prefer.

6.5 Clicking Strategies
Section 5 discusses di�erent user strategies for the clicking game.

We consider here the basic, careful, and smart strategies and apply

each of them to the Movielens dataset. Based on the timestamps

in Movielens
14

, we consider a click as a pre-click and place the

pre-click of the user in the click-advisor instantaneously. Based

on the position of the pre-click and the user strategy, we apply an

action to the pre-click (con�rm, cancel or change). Applying the

same strategy to all the users, we create a new updated dataset and

compute the precision of the recommender for this updated dataset.

Table 10 shows the precision of the recommender applying each

of the strategies to all the users. As predicted by Theorem 5, the

precision is almost the same for the basic and smart strategies.

We also apply the KNN attack to the updated datasets for each

user strategies. We consider the KNN attack with auxiliary infor-

mation as what described in Section 6.2.3 for Movielens. For this

experiment, we average the accuracy of the KNN attack over all

the cases in which every single user is the target user. Table 10

shows that the users become more resistant to the KNN attack as

they choose the Smart strategy over the Careful and Basic ones.
15

7 RELATEDWORK
CF recommenders. Although it has been shown that CF rec-

ommenders perform well, they have some limitations for sparse

datasets [38]. Sarwar, et. al. applied Singular Value Decompo-

sition (SVD) to reduce the dimensionality of sparse datasets of

14
The absence of timestamps makes this simulation impossible in Jester.

15
A higher accuracy of a KNN attack means the users are less resistant to that attack.

collaborative �ltering recommenders [36]. Recently, many collabo-

rative �ltering recommenders used matrix factorization methods

to cope with the sparsity of data, items correlations and dynamic

recommendation domains [26, 24, 25, 28]. Our utility and privacy

measures are compatible with matrix factorization-based CF rec-

ommenders as well as neighborhood-based ones.

Privacy in IR and recommenders. Privacy risks of user posts

in online communities were studied in [5] for textual contents, un-

like this paper which studies the privacy risks of a single click.

Moreover, several papers proposed privacy-preserving methods in

the context of recommenders [33, 30, 22]. Perturbative methods

were proposed in [33], where users submit perturbed ratings to the

recommender. However, even showing perturbed interest in a cer-

tain item may also disclose the preferences of users. For example,

the perturbed rating of a user on a comedy movie still highlights

the interest of the user in watching comedy movies. Furthermore,

some works [17, 21] indicate that the use of randomized data dis-

tortion techniques might not able to preserve privacy. Regarding

the use of cryptographic techniques, Canny proposed a method

that enables a group of users to calculate a public aggregate of their

pro�les without revealing them on an individual basis [41, 7]. The

major downside of this method is, however, the assumption of an

acceptable number of users is online and willing to participate in

the protocol. None of these privacy preserving approaches mea-

sured the privacy e�ect of a single click in a recommender (which

we do in this paper).

Di�erential privacy. The notion of di�erential privacy was

introduced by Dwork in the context of databases [12] and later

adapted to recommender algorithms [31, 20, 16]. In contrast, our

concept of disclosure degree studies the privacy for a speci�c user

regardless of the recommender algorithm. While in di�erential pri-

vacy the recommendations are considered the only observation of

an intruder, we take into account the public item pro�les as another

source of available information for the intruder (unlike di�erential

privacy, we seek to assign a privacy parameter to each user pro�le

in the system, regardless of the recommender algorithm).

A noise addition technique was described in [31] to apply di�er-

ential privacy to recommenders. In Section 6, we analyze the rela-

tion between (a) the di�erent levels of additional noise to dataset as

a di�erential privacy approach in [31] and (b) the disclosure degree

of users in the obfuscated datasets with di�erent ϵ . We empirically

show that the higher the level of noise in an obfuscated dataset

(higher di�erential privacy), the lower the disclosure degrees of

users in average.

K-anonymity. The concept of k-anonymity as a privacy protec-

tion method, was �rst formulated in [39], and recently applied to

collaborative �ltering recommenders in [8]. In Section 6, we com-

pare the disclosure degree of users in di�erent obfuscated datasets

for di�erent k , and we show that the average disclosure degree of

users in a dataset actually captures the level of anonymity of that

recommender dataset.

Degree of anonymity. Chaum introduced the notion of

anonymity set in order to model the security of Dining Cryptogra-

phers’ networks in [9]. Serjantov and Danezis raised some issues

about anonymity sets [37]. For example, anonymity sets do not

take into account the risk of inferring some sensitive attributes of
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the users in a set. To address these issues, a general measure to

quantify the degree of anonymity for message passing was pro-

posed in [37, 11]. Both papers independently proposed the use

of entropy as the basis for formally measuring anonymity. The

anonymity degree provided by the system quanti�es the amount of

information the system is leaking. We apply the idea of computing

the amount of information stored in a user pro�le as a privacy pa-

rameter (disclosure degree) in the context of recommender datasets.

Disclosure risk. In the literature, disclosure risk measures have

been classi�ed as measures for record re-identi�cation or con�den-

tial value disclosure [27, 14]. The latter focuses on measuring the

risk of compromising a con�dential value of a particular individual

while the former focuses on measuring the risk of inferring the

identity of an individual. In both cases, the disclosure risk measures

may be applied to the database as a whole, or to individual records.

Alfalayleh and Brankovic measured the disclosure risk based

on entropy [3]. However, if we use the same approach as in [3]

to compute the disclosure risk of a user pro�le, we would get the

same result for all users. Indeed, that approach provides a general

metric for all users while our measure of disclosure degree is a

speci�ed metric for a user pro�le.

Recommender utility. The utility of recommenders has been

measured di�erently in [18, 10, 13]. These measures, empirically

evaluate the global quality of recommenders. In contrast, our com-

monality measure predicts the quality of recommenders for a user

based on the user pro�le and an actual click. In Section 6, we show

that commonality and precision indeed have a positive correlation.

Privacy-utility relation. The utility-privacy trade-o� in

databases was studied by Sankar et. al. in [29]. Their utility

parameter is not applicable to recommenders for it computes the

rate-distortion [40] of the database, which is related to the input

of the recommender, not to the quality of its output. As we show

in this paper, in the case of clicks in recommenders, there is not

always a trade-o� between utility and privacy.

8 CONCLUDING REMARKS
This paper is the �rst to precisely quantify the e�ects of a user

click both in terms of utility and privacy in the context of rec-

ommenders. We show that all clicks do not have the same e�ect,

neither in terms of privacy nor in terms of utility. In contrast to a

common belief, we also show that there is not always a trade-o� be-

tween utility and privacy. We introduce the idea of a click-advisor,

which makes users aware of the e�ects of their clicks. Consulting

the click-advisor, users can formulate their own informed clicks.

Considering a reward function for the users in a clicking game,

we highlight in particular a smart clicking strategy that leads to a

Nash equilibrium. We prove that if all users follow this strategy,

their privacy improves without compromising the average overall

recommender utility (compared to the case where users do not use

the click-advisor).

Our utility and privacy metrics could be further extended to

latent factors of users and items in a SVD-based recommender.

It would also be interesting to incorporate a recommender that

optimizes the utility and privacy for all users solving a linear opti-

mization problem for their commonalities and disclosure degrees.
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