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Abstract. We present a trustworthy connection between the Leon verification
system and the Isabelle proof assistant. Leon is a system for verifying functional
Scala programs. It uses a variety of automated theorem provers (ATPs) to check
verification conditions (VCs) stemming from the input program. Isabelle, on the
other hand, is an interactive theorem prover used to verify mathematical spec-
ifications using its own input language Isabelle/Isar. Users specify (inductive)
definitions and write proofs about them manually, albeit with the help of semi-
automated tactics. The integration of these two systems allows us to exploit Is-
abelle’s rich standard library and give greater confidence guarantees in the cor-
rectness of analysed programs.
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1 Introduction

This system description presents a new tool that aims to connect two important worlds:
the world of interactive proof assistant users who create a body of verified theorems, and
the world of professional programmers who increasingly adopt functional programming
to develop important applications. The Scala language (www.scala-lang.org) en-
joys a prominent role today for its adoption in industry, a trend most recently driven
by the Apache Spark data analysis framework (to which, e.g., IBM committed 3500
researchers recently [16]). We hope to introduce some of the many Scala users to
formal methods by providing tools they can use directly on Scala code. Leon sys-
tem (http://leon.epfl.ch) is a verification and synthesis system for a subset
of Scala [2, 10]. Leon reuses the Scala compiler’s parsing and type-checking frontend
and subsequently derives verification conditions to be solved by the automated theo-
rem provers, such as Z3 [13] and CVC4 [1]. Some of these conditions arise naturally
upon use of particular Scala language constructs (e.g. completeness for pattern match-
ing), whereas others stem from Scala assertions (require and ensuring) and can
naturally express universally quantified conjectures about computable functions.

Interactive proof assistants have long contained functional languages as fragments
of the language they support. Isabelle/HOL [14,20] offers definitional facilities for func-
tional programming, e.g. the datatype command for inductive data types and fun
for recursive functions. A notable feature of Isabelle is its code generator: certain ex-
ecutable specifications can be translated into source code in target languages such as
ML, Haskell, Scala, OCaml [5, 7]. Yet many Scala users do not know Isabelle today.

www.scala-lang.org
http://leon.epfl.ch
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Aiming to bring the value of trustworthy formalized knowledge to many program-
mers familiar with Scala, we introduce a mapping in the opposite direction: instead of
generating code from logic, we show how to map programs in the purely functional
fragment of Scala supported by Leon into Isabelle/HOL. We use Isabelle’s built-in tac-
tics to discharge the verification conditions. Compared to use of automated solvers in
Leon alone, the connection with Isabelle has two main advantages:

1. Proofs in Isabelle, even those generated from automated tactics, are justified by a
minimal inference kernel. In contrast to ATPs, which are complex pieces of soft-
ware, it is far less likely that a kernel-certified proof is unsound.

2. Isabelle’s premier logic, HOL, has seen decades of development of rich mathemat-
ical libraries and formalizations such as Archive of Formal Proofs. Proofs carried
out in Isabelle have access to this knowledge, which means that there is a greater
potential for reuse of existing developments.

Establishing the formal correspondence means embedding Scala in HOL, requiring
non-trivial transformations (§2). We use a shallow embedding, that is, we do not model
Scala’s syntax, but rather perform a syntactic mapping from Scala constructs to their
equivalents in HOL. For our implementation we developed an idiomatic Scala API for
Isabelle based on previous work by Wenzel [18, 21] (§3). We implemented as much
functionality as possible inside Isabelle to leverage checking by Isabelle’s proof kernel.
The power of Isabelle’s tactics allows us to prove more conditions than what is possible
with the Z3 and CVC4 backends (§4). We are able to import Leon’s standard library
and a large amount of its example code base into Isabelle (§5), and verify many of the
underlying properties.

Contribution We contribute a mechanism to import functional Scala code into Isabelle,
featuring facilities for embedding Isabelle/Isar syntax into Scala via Leon and reusing
existing constants in the HOL library without compromising soundness. This makes
Isabelle available to Leon as a drop-in replacement for Z3 or CVC4 to discharge veri-
fication conditions. We show that Isabelle automation is already useful for processing
such conditions.

Among related works we highlight a Haskell importer for Isabelle [6], which also
uses a shallow embedding and has a custom parser for Haskell, but does not perform any
verification. Breitner et. al. have formalised “large parts of Haskell’s standard prelude”
in Isabelle [4]. They use the HOLCF logic, which is extension on HOL for domain
theory, and have translated library functions manually. Mehnert [12] implemented a
verification system for Java in Coq using separation logic.

In the following text, we are using the term “Pure Scala” to refer to the fragment
of Scala supported by Leon [2, §3], whereas “Leon” denotes the system itself. More
information about Leon and Pure Scala is available from the web deployment of Leon
at http://leon.epfl.ch in the Documentation section.

2 Bridging the gap

Isabelle is a general specification and proof toolkit with the ability of functional pro-
gramming in its logic Isabelle/HOL. Properties of programs need to be stated and

http://afp.sourceforge.net/
http://leon.epfl.ch


3

sealed abstract class List[A]
case class Cons[A](head: A, tail: List[A]) extends List[A]
case class Nil[A]() extends List[A]

def size[A](l: List[A]): BigInt = (l match {
case Nil => BigInt(0)
case Cons(_, xs) => 1 + size(xs)

}) ensuring(_ >= 0)

(a) Pure Scala version

datatype ’a list = Nil | Cons ’a "’a list"

fun size :: "’a list => int" where
"size Nil = 0" |
"size (Cons _ xs) = 1 + size xs"

lemma "size xs >= 0" by (induct xs) auto

(b) Isabelle version

Fig. 1: Example programs: Linked lists and a size function

proved explicitly in an interactive IDE. While the system offers proof tactics, the or-
der in which they are called and their parameters need to be specified by the user. Users
can also write custom tactics which deal with specific classes of problems.

Leon is more specialised to verification of functional programs and runs in batch
mode. The user annotates a program and then calls Leon which attempts to discharge
resulting verification conditions using ATPs. If that fails, the user has to restructure the
program. Leon has been originally designed to be fully automatic; consequently, there
is little support for explicitly guiding the prover. However, because of its specialisation,
it can leverage more automation in proofs and counterexample finding on first-order
recursive functions.

Due to their differences, both systems have unique strengths. Their connection al-
lows users to benefit from this complementarity.

2.1 Language differences

Both languages use different styles in how functional programs are expressed. Figure 1
shows a direct comparison of a simple program accompanied by a (trivial) proof illus-
trating the major differences:

– Pure Scala uses an object-oriented encoding of algebraic data types (sealed clas-
ses [15]), similar to Java or C#. Isabelle/HOL follows the ML tradition by having
direct syntax support [3].

– (Pre-) and postconditions in Leon are annotated using the ensuring function,
whereas Isabelle has a separate lemma command. In a sense, verification condi-
tions in Leon are “inherent”, but need to be stated manually in Isabelle.
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– Pure Scala does not support top-level pattern matching (e.g. rev (x :xs) = . . .).

The translation of data types and terms is not particularly interesting because it is mostly
a cavalcade of technicalities and corner cases. However, translating functions and han-
dling recursion poses some interesting theoretical challenges.

2.2 Translating functions

A theory is an Isabelle/Isar source file comprising a sequence of definitions and proofs,
roughly corresponding to the notion of a “module” in other languages. Theory devel-
opments are strictly monotonic. Cyclic dependencies between definitions are not al-
lowed [11], however, a definition may consist of multiple constants. In Pure Scala, there
are no restrictions on definition order and cyclicity.

Consequentially, the Isabelle integration has to first compute the dependency graph
of the functions and along with it the set of strongly connected components. A single
component contains a set of mutually-recursive functions. Collapsing the components
in the graph then results in a directed acyclic graph which can be processed in any
topological ordering.

The resulting function definitions are not in idiomatic Isabelle/HOL style; in partic-
ular, they are not useful for automated tactics. Consider Figure 1: the naive translation
would produce a definition size xs = case xs of y # ys → . . . size ys . . . Isabelle
offers a generic term rewriting tactic (the simplifier), which is able to substitute equa-
tional rules. Such a rule, however, constitutes a non-terminating simplification chain,
because the right-hand side contains a subterm which matches the left-hand side.

This can be avoided by splitting the resulting definition into cases that use Haskell-
style top-level pattern matching. A verified routine to perform this translation is inte-
grated into Isabelle, producing terminating equations which can be used by automated
tactics. From this, we also obtain a better induction principle which can be used in
subsequent proofs.

When looking at the results of this procedure, the example in Figure 1 is close
to reality. The given Pure Scala input program produces almost exactly the Isabelle
theory below, modulo renaming. Because of our implementation, the user normally
does not see the resulting theory file (see §3). However, for this example, the internal
constructions we perform are roughly equivalent to what Isabelle/Isar would perform
(see §5).

2.3 Recursion

Leon has a separate termination checking pass, which can run along with verification
and can be turned off. Leon’s verification results are only meant to be valid under the
assumption that its termination checker succeeded (i.e. ensuring partial correctness).

Isabelle’s proof kernel does not accept recursive definitions at all. We use the func-
tion package by Krauss [9] to translate a set of recursive equations into a low-level,
non-recursive definition. To automate this construction, the package provides a fun
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command which can be used in regular theories (see Figure 1), but also programmati-
cally. To justify its internal construction against the kernel, it needs to prove termina-
tion. By default, it searches for a lexicographic ordering involving some subset of the
function arguments.

This also means that when Leon is run using Isabelle, termination checking is no
longer independent of verification, but rather “built in”. Krauss’ package also supports
user-specified termination proofs. In the future, we would like to give users the ability
to write those in Scala.

A further issue is recursion in data types. Negative recursion can lead to unsound-
ness, e.g. introducing non-termination in non-recursive expressions. While Leon has
not implemented a wellformedness check yet, Isabelle correctly rejects such data type
definitions. Because we map Scala data types syntactically, we obtain this check for
free when using Isabelle in Leon.

2.4 Cross-language references

One of the main reasons why we chose a shallow embedding of Pure Scala into Isabelle
is the prospect of reusability of Isabelle theories in proofs of imported Pure Scala pro-
grams. For example, the dominant collection data structure in functional programming
– and by extension both in Pure Scala and Isabelle/HOL – are lists. Both languages offer
dozens of library functions such as map, take or drop. Isabelle’s List theory also
contains a wealth of theorems over these functions. All of the existing theorems can
be used by Isabelle’s automated tactics to aid in subsequent proofs, and are typically
unfolded automatically by the simplifier.

However, when importing Pure Scala programs, all its data types and functions
are defined again in a runtime Isabelle theory. While the imported List.map function
may end up having the same shape as HOL’s List.map function, they are nonetheless
distinct constants, rendering pre-existing theorems unusable.

The naive approach of annotating Pure Scala’s map function to not be imported
and instead be replaced by HOL’s map function is unsatisfactory: The user would need
to be trusted to correctly annotate Pure Scala’s library, negatively impacting correct-
ness. Hence, we implemented a hybrid approach: We first import the whole program
unchanged, creating fresh constants. Later, for each annotated function, we try to prove
an equivalence of the form f ′ = f where f ′ is the imported definition and f is the
existing Isabelle library function, and register the resulting theorem with Isabelle’s au-
tomated tools. This establishes a trustworthy relationship between the imported Pure
Scala program and the existing Isabelle libraries.

Depending on the size of the analysed program (including dependencies), this ap-
proach turns out to be rather inefficient.3 According to Leon conventions, we introduced
a flag which skips the equivalence proofs for Pure Scala library functions and just as-
serts the theorems as axioms. This also alleviates another practical problem: not all
desired equivalences can be proven automatically by Isabelle. Support for specifying
manual equivalence proofs would be useful, but is not yet implemented.

3 Because our implementation uses Isabelle in interactive instead of in batch mode, we cannot
produce pre-computed heap images to be loaded for later runs.
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3 Technical considerations

Isabelle has been smoothly integrated into Leon by providing an appropriate instance
of a solver. In that sense, Isabelle acts as “yet another backend” which is able to check
validity of a set of assertions.

3.1 Leon integration

A solver in Leon terminology is a function checking the consistency of a set of as-
sumptions. A pseudo-code type signature could be given as P(F) → {sat, unsat,
unknown}, where F is the set of supported formulas. According to program verifica-
tion convention, a result of unsat means that no contradiction could be derived from
the assumptions, i.e. that the underlying program is correct. If a solver however returns
sat, it is expected to produce a counterexample which violates verification conditions,
e.g. a value which is not matched by any clause in a pattern match.

The Isabelle integration is exactly such a function, but with the restriction that it
never returns sat, because a failed proof attempt does not produce a suitable coun-
terexample. Since Leon offers a sound and complete counterexample procedure for
higher-order functions [17], implementing this feature for Isabelle would not be useful.

3.2 Process communication

Communication between the JVM process running Leon and the Isabelle process works
via our libisabelle library which extends Wenzel’s PIDE framework [19, 21] to cater
to non-IDE applications. It introduces a remote procedure call layer on top of PIDE,
reusing much of its functionality. Leon is then able to update and query state stored in
the prover process. Procedure calls are typed and asynchronous, using an implementa-
tion of type classes in ML and Scala’s future values by Haller et al. [8], respectively.

While being a technologically more complicated approach, it offers benefits over
textual Isabelle/Isar source generation. Most importantly, because communication is
typed, the implementation is much more robust. Common sources of errors, e.g. pretty
printing of Isabelle terms or escaping, are completely eliminated.

4 Example

Figure 2 shows a fully-fledged example of an annotated Pure Scala program. As back-
ground, assume the List definition from the previous example enriched with some
standard library functions, a Nat type, and a listSum function.4 The functions in
the example are turned into lemma statements in Isabelle. The string parameter of the
proof annotation is an actual Isar method invocation, that is, it is interpreted by the Is-
abelle system. For hygienic purposes, names of Pure Scala identifiers are not preserved
during translation, but suffixed with unique numbers. To allow users to refer back to
syntactic entities using their original names, the <var _> syntax has been introduced.

4 The full example is available at https://git.io/vznVH.

https://git.io/vznVH
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def sumReverse[A](xs: List[Nat]) =
(listSum(xs) == listSum(xs.reverse)).holds

@proof(method = """(induct "<var xs>", auto)""")
def sumConstant[A](xs: List[A], k: Nat) =
(listSum(xs.map(_ => k)) == length(xs) * k).holds

@proof(method = "(clarsimp, induct rule: list_induct2, auto)")
def mapFstZip[A, B](xs: List[A], ys: List[B]) = {
require(length(xs) == length(ys))
xs.zip(ys).map(_._1)

} ensuring { _ == xs }

Fig. 2: Various induction proofs about lists

Running Leon with the Isabelle solver on this example will show that all condi-
tions hold. The first proof merely reuses a lemma which is already in the library. The
other two need specific guidance, i.e. an annotation, for them to be accepted by the sys-
tem. The proofs involve Isabelle library theorems, for example distributivity of (+, ∗)
on natural numbers. For comparison, Leon+Z3 cannot prove any proposition. When
also instructed to perform induction, it can prove sumConstant. (Same holds for
Leon+CVC4.) There is currently no way in Leon to concisely specify the use of a cus-
tom induction rule for Z3 (or CVC4) as required by the last proposition (simultaneous
induction over two lists of equal length).

This example also demonstrates another instance of the general Isabelle philosophy
of nested languages: Pure Scala identifiers may appear inside Isar text which appears
inside Pure Scala code. Further nesting is possible because Isabelle text can itself con-
tain nested elements (e.g. ML code, ...).

5 Evaluation

In this section, we discuss implementation coverage of Pure Scala’s syntactic con-
structs, trustworthiness of the translation and overall performance.

Coverage. The coverage of the translation is almost complete. A small number of Leon
primitives, among them array operations have not been implemented yet.5 All other
primitives are mapped as closely as possible and adaptations to Isabelle are proven
correct when needed. Leon’s standard library contains – as of writing – 177 functions
with a total of 289 verification conditions, out of which Isabelle can prove 206 (≈ 71%).

Trustworthiness. Our mapping uses only definitional constructs of Isabelle and thus
the theorems it proves have high degree of trustworthiness. Using a shallow embedding
always carries the risk of semantics mismatches. A concern is that since the translation

5 In fact, while attempting to implement array support we discovered that Leon’s purely func-
tional view of immutably used arrays does not respect Scala’s reference equality implementa-
tion of arrays, leading to a decision to disallow array equality in Leon’s Pure Scala.
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of Pure Scala to Isabelle works through an internal API, the user has no possibility to
convince themselves of the correctness of the implemented routines short of inspecting
the source code. For that reason, all operations are logged in Isabelle. A user can re-
quest a textual output of an Isar theory file corresponding to the imported Pure Scala
program, containing all definitions and lemma statements, but no proofs. This file can
be inspected manually and re-used for other purposes, and represents faithfully the facts
that Isabelle actually proved in a readable form.

Performance. On a contemporary dual-core laptop, just defining all data types from
the Pure Scala library (as of writing: 13), but no functions or proofs, Leon+Isabelle
takes approximately 30 seconds. Defining all functions adds another 70 seconds to the
process. Using Leon+Z3, this is much faster: it takes less than 10 seconds. The consider-
able difference (factor≈ 10) can be explained by looking at the internals of the different
backends. Z3 has data types and function definitions built into its logic. Isabelle itself
does not: both concepts are implemented in HOL, meaning that every definition needs
to be constructed and justified against the proof kernel. The processing time of an im-
ported Pure Scala programs is comparable to that of a hand-written, idiomatic Isabelle
theory file. In fact, during processing the Pure Scala libraries, thousands of messages
are passed between the JVM and the Isabelle process, but the incurred overhead is neg-
ligible compared to the internal definitional constructions.

6 Conclusion

We have implemented an extension to Leon which allows using Isabelle to discharge
verification conditions of Pure Scala programs. Because it supports the vast majority of
syntax supported by Leon, we consider it to be generally usable. It is incorporated in
the Leon source repository,6 supporting the latest Isabelle version (Isabelle2016).

With this work, it becomes possible to co-develop a specification in both Pure Scala
and Isabelle, use Leon to establish a formal correspondence, and prove interesting re-
sults in Leon and/or Isabelle/Isar. Because of the embedded Isar syntax, complicated
correctness proofs can also be expressed concisely in Leon. To the best of our knowl-
edge, this constitutes the first bi-directional integration between a widespread general
purpose programming language and an interactive proof assistant.

An unintended consequence is that since Isabelle can export code in Haskell and
now import code from Pure Scala, there is a fully-working Scala-to-Haskell cross-
compilation pipeline. The transformations applied to the Pure Scala code to make it
palatable to Isabelle’s automation also results in moderately readable Haskell code.

Acknowledgements We would like to thank the people who helped “making the code
work”: Ravi Kandhadai, Etienne Kneuss, Manos Koukoutos, Mikäel Mayer, Nicolas
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6 https://github.com/epfl-lara/leon

https://github.com/epfl-lara/leon
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